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ABSTRACT

To comply with the 1990 amendments to the Clean Air Act, power plants

take various measures to reduce nitrogen oxide (NOx) emissions. Experiments

on NOx control have shown that NOx emissions from coal fired power plants can

be reduced by optimizing boiler operations. Optimal operating conditions can be

found through parametric testing of the boiler in question.

To aid electric utilities in reducing NOx emissions through optimal boiler

operation, two off-line computer advisors, optimization and diagnostic, were

developed. Expert systems, artificial intelligence tools useful in modeling

qualitative or uncertain knowledge, were used to develop the software, utiliZing

knowledge on the operating characteristics of boilers gained through previous

projects by the Energy Research Center.

The optimization advisor guides a plant operator or engineer through a

series of experiments to achieve a certain objective. The objective might be to

achieve the lowest NOx possible by the boiler or to reach a specified NOx level

while optimizing unit performance. Ensuring safe boiler operation is a major

consideration when conducting these experiments.

The diagnostic advisor is targeted towards a boiler that has already been

optimlzedJor low t'J()xQQeratio~ ILsu~h CLunit were t~~_uddenly ocg[adually

start to produce high levels of NOx, this software could be used to detect

possible causes of the problem and recommend solutions.

At this time, both software packages are configured for the Potomac



Electric Power Company's (PEPCO) Potomac River Station Unit 4, which is a

108 MW, tangentially fired boiler. While the diagnostic software is applicable for

the entire load range of the unit, the optimization software is currently

configured only for full load operation. At the present, the optimization software

has been completed and simulated runs using correlations of data from

Potomac River Unit 4 have proved to be successful. The diagnostic advisor's

major components have been completed, but it will require revisions and

additions before it is ready for use by utility personnel.
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INTRODUCTION

Since nitrogen oxides (NOx) have been shown to cause photo-chemical

smog and acid rain, Federal regulations require power plants to bring their

stack emission levels below a certain standard. This thesis discusses efforts to

reduce NOx emissions from coal fired power plants.

Nitrogen oxide (NO) makes up about 95% of NOx emissions from coal

fired power plants while nitrogen dioxide (NOz) constitutes the rest. In emission

control studies, NOx is more commonly identified by the source of nitrogen in

the NOx compound. "Thermal NO/ is formed from nitrogen in the combustion

air and "fuel N0x" is formed from nitrogen bound in the fuel [1]. Various

theoretical and experimental studies have suggested models for the formation

of both types of NOx' This thesis is based on the work done by The Energy

Research Center (ERC).

Since concern over emissions were first raised, various techniques have

been designed to reduce NOx' Flue gas treatments, like catalytic decomposition,

selective non catalytic reduction, and adsorption with activated charcoal,

remove NOx after it has been formed [1]. Low NOx burners have been designed

to reduce NOx during the combustion process.

The Energy Research Center (ERC), in collaboration with several electric

utilities and funded by Electric Power Research Institute (EPRI), has been

engaged in projects that attempt to reduce NOx emissions through optimization

of boiler operation [13,16,17,18,19]. These projects have shown that significant

3



reductions in NOx can be obtained by boiler control optimization and improved

boiler maintenance practice. The savings in NOx associated with such practices

have led in some cases to the ability to avoid expensive retrofit of low NOx

burners. Boiler optimization has the added advantage of helping to improve

boiler efficiency and power plant performance.

The ERe projects in boiler optimization have helped characterize boiler

performance and behavior as well as the factors that control NOx formation. The

control parameters that most affect NOx formation have been identified and

studied and the relationship of NOx formation with boiler performance and

safety parameters have been established.

This thesis deals with the development of two computer advisors that

model the knowledge described above. The optimization and diagnostic

advisors are designed to aid power plants achieve low NOx emissions in much

the same way as an engineer with a NOx control background. Both advisors are

intended for off-line use. E~pertise on boiler performance, NOx formation, safe

boiler operating procedures, and experimental and data analysis methods were

systematically gathered from ERe engineers and other relevant sources. The

knowledge gathered was generally qualitative, which suggested the relevancy

of artificial intelligence as a modeling tool.

Expert systems are one type of artificial intelligence tools that mimic

human methods of synthesizing solutions. They differ from conventional

computer programs in that they do not rely on quantitative algorithms, but they
_ __~._ _ ~ :r:=-.7S""_~'.-'-"-'~~~1:-:::-r.~...,~""",o:-,~~ .. ' ..••-=....,.......'._~ ...~~:--~~;:-_. #. -_.--_.-.~:-:::~';:'.'.-:':';;::";"":. ....:. -!-- ....'..,.......,.. .. - - -' .-. '-. __._'-_" ---,---------- ----',- ---
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are able to function under heuristic models and also process qualitative or

uncertain information. Expert systems are discussed in more detail in the next

chapter. Neural networks, another type of artificial intelligence, are also used in

the advisor packages. Neural networks build and synthesize a model of a

system using available information in much the same manner as brain neurons.

In the advisor packages, an expert system is used to model the expertise

gathered from ERe engineers. It interacts with the user to analyze qualitative

and quantitative information and also guides the user through a series of

questions, tasks and experiments to obtain more information. A neural network

is used to analyze any data that result from these interactions.

This thesis covers the development of the expert system portions of the

optimization and diagnostic advisors. The optimization advisor guides the user

through a series of experiments on boiler control parameters that are known to

affect NOx formation. The advisor monitors safety parameters constantly and

recommends test points that follow safe boiler operating procedures. The

objective of these tests is to find the operating conditions that give low NOx.

The data from these experiments is then analyzed by a neural network

optimization package (see reference 2) that finds optimum operating fPnditions

that give a specified low NOx level with high unit performance.

The diagnostic advisor is targeted towards a boiler that has already been

optimized for low NOx operation. This advisor is used when such a boiler starts

producing unexpectedly high NOx either gradually or suddenly for reasons that

-' ~ -, --.:
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are yet undetermined. The diagnostic advisor was modeled using past

experiences of any such occurrences by ERC engineers as well as

speculations of possible problem areas using knowledge of boiler operations

and NOx formation. This advisor steps the user through a series of questions

and tasks in an effort to point to a possible cause of the high NO
x

levels.

Both advisors were designed for pulverized coal, tangentially fired, steam
~,

generating plants, and are configured for PEPCO's Potomac River Unit 4. This

unit has a full load capacity of 108 MW and operates at subcritical pressures

with single superheat and reheat cycles. Suction mills provide pulverized

Bituminous coal to four burner levels at four corners. Steam temperatures are

controlled by tilting burner mechanisms. While the diagnostic software is

applicable throughout the load range of the unit, the optimization software is

currently configured only for full load operation.

In this thesis the following topics are covered:

• Overview of expert systems and their use in advisors.

• Discussion of the knowledge base used in the advisors.

• Descriptions of algorithms used to model knowledge and an over-view of the

advisor architecture.

• Results of tests conducted on advisors, future plans and recommendations.

6



EXPERT SYSTEMS

Shortliffe, one of the developers of the earliest medical expert systems,

described artificial intelligence (AI) as "the intelligence of any machine that

performs a task that a century ago would have been a uniquely human

intellectual ability." Around the middle of this century, as faster and more

efficient calculating machines were being developed and the first computers

were coming out, scientists began to be interested in the possibility of intelligent

machines. It was apparent that even though computers were able to do

calculations and perform certain tasks hundreds of times faster than human

beings, they were not able to compete in areas where "human intelligence" was

required. For example, speech recognition, vision, creation, design, telling

stories and solving problems without clearly defined algorithms remained

outside of computers' capabilities. So, could computers ever become

intelligent?

In order to determine if machines could be intelligent, it is first necessary

to understand 'what intelligence means. Webster's New Universal Unabridged

Dictionary defines intelligence as:

" a) the ability to learn or understand from experience; ability to acquire
and retain knowledge; mental ability

b) the ability to respond quickly to a new situation; use of the faculty of
reason in solving problems, directing conduct, etc... effectively.
c) in psychology, measured success in using these abilities to perform
certain tasks."

Intelligence is related to utilizing the abilities to learn, understand and reason to

develop useful skills. In the second half of the 20th century, scientists from
•.---- .. ~_. __ •• - • ~ _ 'r- ,_~ "_':- __ ~''''~ Q , ..... _ ·r,· .• ·._···~_ --.- .•• ---._~_.__.~-- .~_., .••-_•• _••.- :_.~__ _.:::.:.....~.::.;::::::....::.:.:..-_:_-~.,-;~~~--.-
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different fields such as mathematics, biology, psychology and philosophy

undertook the task of examining how humans learned, understood or reasoned.

Others like mathematician Alan Turing pioneered the field of artificial

intelligence by examining the criteria for a machine to be intelligent.

In his 1950 article "Computing Machinery and Intelligence", Turing

devised a thought experiment that would determine if a computer is "thinking"

independently or just following instructions. The Turing experiment proposed

that if a person talking to a machine can't tell that he is not talking to another

human being then the machine could be labeled intelligent [3]. This suggested

that if a machine can imitate human intelligence without necessarily replicating

it, it could be called intelligent. Thus, the intelligence of the computer does not

really have to be rooted in reality, and all its knowledge or data base does not

have. to be associated with objects in the outside world. For example, a ball in

the computer's "mind" would just be a concept with the characteristics of

roundness, bounciness and certain dimensions but the computer would not

associate it with a physical ball the way a human being would.

The study of human intelligence took two different paths: biological and

behavioral. In the former, scientists tried to understand the biological basis for

human intelligence. In 1943, McCulloch and Pitts of the University of Illinois

proposed the first computer model of the human brain with receptors, neurons

and the nervous system [4]. Neurons filter out and synthesize the information or

stimulus that they receive from the receptors in the eye, ear, nose, skin and

8



tongue. The result of the processing done by the neurons comes out as an

output either in the muscles or in a conclusion reached in the brain. Artificial

neural networks are the result of such studies. One of the great advantages of

artificial neural networks is their ability to learn about a particular domain on

their own by just interacting with their environments. Artificial neural networks

have now been successfully applied in machine or process control, image

processing (machine vision), signal processing, financial and economic

prediction and other areas [5].

The second area of human intelligence research focused on the

EXPERTISE
FROM
HUMAN
EXPERTS

KNOWLEDGE
BASE

(FACTS. HEURISTICS.
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DATA FROM DATA
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r---t--,. ~ (FORWARD
"-----7~1 OR

BACKWARD
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Figure 1 Expert System Components

.~-- -- ~~----..,~ ...,...._.--~._ .....-.---...._..... ~"._._.~,.....-----._ ... " ... -
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processes of human reasoning, understanding and learning. Cognitive,

psychology, which developed at about the same time as AI, contributed a lot to

the understanding of these processes. This research area examined uniquely

human abilities like language, memory and problem solving.

One of the most explored areas of machine intelligence is the problem

solving process. One model sees problem solving as the process of going from

an initial state to a final state following any applicable rules; while the problem

is the initial state, the solution or goal is the final, desired state. Humans

employ different reasoning processes to identify a solution. One method is to

explore or search through all the possible and available options. A person

explores a particular option until a rule violation (e.g. a physical law) occurs or a

solution is found. The earliest expert systems used this approach in games. A

number of successful game programs like chess explored all potential moves

by looking ahead at possible consequence,:; a few steps further and deciding on

the "best" move. This is the same process employed by human chess players

and today some of these powerful computer chess games beat even the most

accomplished human chess players.

Even though the approach described above was very successful in

modeling one aspect of human reasoning method, it became evident that most

of the problems that humans excelled at solving required some specific

knowledge. This led to the origin of knowledge based systems, otherwise

known as expert systems. In knowledge based systems, specific rules gained

10



either from experience or other learning sources are used to find a solution to a

problem. For example, a doctor, in seeing a particular set of symptoms in a

patient, d~es not order all the tests that might be at his/her disposal. Instead,

using his/her medical knowledge and his/her past experience with similar
,~

symptoms, he/she quickly eliminates a lot of the options and explores only the

most "likely" ones.

Thus, an: expert In a particular field uses general deduction methods,

knowledge specific tcrthe field' and' heuristic rules in solving a problem qUickly'. :" :,.~

and efficiently. Knowle9ge constitutes what is known about that domain. The

knowledge might include formulas~.~heories, observed facts, and other types of

data. Heuristics, on the other hand, are rules. of thumb that an expert uses to

solve a problem. An expert develops heuristics from experience or by learning,......

from another expert. Thus, an expert in a particular field might not know why a

particular action produces results but knows from experience that most of the

time that action produces the desired results. While heuristics do not guarantee

a result, they are usually a short cut to a solution. It is important to understand

that not all the options will be explored in this scenario, and the best solution

might not be found all the time. But a "good enough" solution is found most of

the time very quickly,and efficiently.

In expert systems there are two important components: the knowledge

base and the inference engine. The knowledge base consists of the domain

specific knowledge and heuristics described above. It represents all that is

. . - ,'.. -. .
'_"'~"--_,.--r~:~~.,..~_~.~=_-_""_. ....,.._~~ ..
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known about the problem and the different methods of solving problems in that

domain. The knowledge base can be represented in one or more representation

schemes like objects, procedural programs, data bases, frames or rules.

One of the most popular and successful methods of representing

knowledge in AI is rules. Rule based systems are especially suited for

representing heuristics and uncertain or qualitative knowledge. Rules have an if

... , then ... form, and knowledge based systems that represent knowledge in

such a way are referred to as rule based. "If it rains, then the ground gets wet"

is an example of a simple common sense rule. If the fact that it is raining is

known to be-true, the above rule would conclude that the ground is wet.

Rule based systems use "pattern matching" to match the premise of a
,

rule to a known fact in the system [7]. A fact is a statement that tells what is

.known to be currently true about a system. A fact is represented in the
j

knowledge base.as a sequential collection of symbols or words. For example "it- .
is raining" is a fact. The expert system searches through its fact base to find a

pattern match to the premise of a rules, and if there is a matCh, the rule is

executed. The execution of a rule might change the fact base, thus the state of

the syst~m, by either adding facts or deleting them.

Another knowledge representation paradigm that has become very

popular in recent years is object oriented programming. Object oriented

programming, a representation scheme that imitates the way objects in the real

world exist, makes program development modular and easy to modify [9]. An

12



object is a collection of data with information on how the data behaves, and it

reflects a concept,event, or object in the real world. An object called car would

contain the following information: make, manufacturing date, engine type, gas

milage, passenger room, cargo room, current state, etc. It would also contain

information on how this object car behaves in different situations. For example

when the gas pedal is pressed, the car moves.

The second component of a knowledge based system is the inference

engine. The inference engine acts on the knowledge

base to get to the final solution, and it is the basic reasoning process employed

behind the problem solving. In rule based systems, two types of reasoning

methods are usually used: forward chaining and backward chaining. Forward

chaining, or otherwise known as data driven systems, start out with the initial or

problem state and use the knowledge base to make deductions until the final

solution is found. This would be the case where a detective investigating a c~se

is starting out with a set of observations or clues and tries to figure out what

happened.

On the other hand, backward chaining, or goal driven systems, start out

with the final or desired state (goal) of the system and try to find observations

or facts that will validate the goal. In this case, the detective might have a

hypothesis or hunch and goes back looking for facts or clues that might prove

or disprove his/her hunch. The reasoning method used by an expert system

should best suit the problem at hand.

13



Within the last 40 years, many applications of knowledge based systems

have been successfully implemented. One of the earliest and most popular of

these, MYCINE, was a rule based, backward chaining, medical diagnostic

expert system designed to assist doctors in diagnosing infectious diseases. The

developers of MYCINE evaluated their program by sending the diagnosis of

MYCINE and those from nine other doctors of ten patients with meningitis to

infectious diseases specialists. The specialists, without knowing that MYCINE

was a computer program gave it the highest rating for appropriate diagnosis [6].

Since then a number of expert system application have come into

everyday use. Symbolic mathematical packages like MAPLE, grammar

correction packages, equipment maintenance packages, flight simulation

programs, and many other expert systems have emerged in fields from

business to engineering [7].

In the electric power generating industry, expert systems are rapidly

finding applications. In the 1992 Expert System Application conference

sponsored by the Electric Power Research Institute (EPRI), several expert

systems were reported to be in different stages of development or were already

in real time use. Some of th.ese expert systems were nuclear safety review

advisor (SARA), power system restoration aid (CRAFT), load dispatch

management assistant (CCLMA), boiler tUbe failure prevention management

tools, estimator of fly ash particle size and composition in coal combustion

- , -~~~:",''':'::=;'::_'':'''~-''::'~-'--'~ -4'- --:,-~.#~~-.:.,.,.•._ _~_·"._'_~"_4_""""' __ · ......
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systems (ASHPERT), performance advisor for fossil fuel power plants

(HEATXPRT), and evaluator of coal vendor financial viability in fuel purchasing

contracts (CVFA). Some of these expert systems were designed for on-line use

and monitor data continuously while others were designed for off line use. [8]

However, NOx emission control through expert system applications still

remains a relatively untouched area. NOxSMART, an on-line advisor developed

at TransAlta Utilities, is one known NOx reduction expert system that is in the

latter stages of development. NOxSmart monitors on-line data and gives

recommendations on furnace control parameter adjustments. After an initial trial

period, NOxSMART was reported to reduce NOx levels of a coal fired boiler by

15% at full load conditions and 9% over all load levels [9].

Other related expert software analyze coal and monitor emissions in an

effort to reduce NOx emission levels. Fireside Advisor, a coal quality expert

system for reducing emissions, was reported to be in the planning stages by,

Karta Technology Inc. at the 1992 EPRI Expert System Conference [8]. Besides

advising on coal, Fireside was to be designed to generate unit specific test

plans of boiler components. Coal QLiality Expert (CQE) is an expert system

software funded by the Department of Energy (DOE) and EPRI, and determines

the most cost effective coal and emission control strategy for power plant

performance and emission levels [10]. Central Station Compliance Advisory

System (CSCACS) is an expert system developed by South Coast Air Quality

Management District, a regional governmental agency that enforces air quality

_ ...,~;T..-:--~-,-""""""",,,,--,..., ..• --
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regulations in four southern California counties. CSCACS monitors emission

levels of 59 utility boilers [11].

Commercial expert system development tools with inference engine but

without the knowledge base are used to develop most of the present day expert

systems. These tools, referred to as shells, are programmed by the expert

system developer with the domain knowledge of the problem. CLIPS, C

Language Integrated Production System, an expert system shell written in C,

was used for the development of the NOx advisors in this project. CLIPS is a

forward chaining, rule based system designed by a group in NASA laboratory

[12].

A rule based system was chosen for the development of the NOx

advisors since the knowledge to be modeled was mostly heuristic or qualitative.

A forward chaining (data driven) reasoning model was appropriate because of

the enormous amount of initial available data from the plant data acquisition

system. The diagnostic advisor could have been modeled satisfactorily using a

backward chaining (goal driven) reasoning model but practical issues

demanded the choice of one shell to develop both the optimization and

diagnostic advisors. CLIPS was chosen in particular because of the number of

people ,on campus ,that had worked with it extensively and could provide

support. The fact that CLIPS was written in C made it a flexible tool that could

be modified or integrated with other programs if necessary. CLIPS had an

added advantage that it supported object-oriented and procedural programming
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as knowledge representing paradigms. The objects in CLIPS 6.0 could also be

pattern matched in rules.

On the other hand, CLIPS has two big drawbacks; it has a very crude

user interface and. its data acquisition and management system is primitive.

Despite these disadvantages, CLIPS was still found to be the most attractive

shell because of the immediately available support and its flexibility. These

disadvantages are currently being overcome at the ERC by the development of

a sophisticated user and data interface.

In the following sections, the knowledge base of both the optimization

and diagnostic advisors, the method of knowledge representation and overall

software architectures are discussed.

17
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OPTIMIZATION ADVISOR

Introduction

The objective of the optimization advisor is to provide gUidance to coal

fired power plants in their effort to reduce NOx emission levels. The projected

users of this advisor are plant operators or engineers with extensive knowledge

in boiler operation but no experience in NOx emission control or conducting

experiments. Thus, the advisor is intended to guide the user in each step of the

optimization exercise and process the data. The user is expected to understand

power plant terminology and be able to make jUdgments on issues concerned

with boiler operation.

The optimization advisor's task is to reduce NOx emissions through

optimization of boiler operations. Past ERC projects have shown that significant

reductions in NOx can be achieved through boiler control optimization. During

an initial six week test of optimum operating parameters at PEPCO's Potomac

River Unit 4, average NOx emission rates were reduced from baseline levels of

0.61 Ib/MBtu to 0.37 Ib/MBtu over the load range [13].

Boiler optimization is achieved through parametric testing of the variables

known to affect NOx formation. These variables can be identified from

theoretical and experimental NOx formation models as well as from directly

testing the boiler under various conditions.

NOx formation models classify NOx by the source of nitrogen in the NOx

compound. "~hermal NOx" is formed from nitrogen in the combustion air and

•____• ......_•.. __. __••• __ ._~.' -~ ._, ,_ ~_ .•"_••• ,'_' _', .••• ...,.., .' _ --';'.'-' ~ __ C~.....;..,t':'-:_-"_-'.--'."
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"fuel NOx" is formed from nitrogen bound in the fuel. Theoretical models

consider the thermodynamics and kinetics of the NOx producing reactions to

determine the variables that control NOx formation.

The basic equilibrium reactions of thermal NOx are:

o + N2 - ... NO + N

N + O2 - ... NO + 0

NO + 0'" N02

(1)

(2 )

(3 )

"

Thermodynamic analysis of these reactions shows a rapid increase in the

formation of NO and the decomposition of N02 into NO with increasing

temperatures. Thus, the overall concentration of NOx increases as the

temperature of the flame is increased [14]. Experiments have also shown that

the formation of NO increases dramatically in the flame region and this is

assumed to be the result of increased breakdown of oxygen into free radicals

which then react with nitrogen [15].

Analysis of the chemical kinetics of the thermal NOx reactions has shown

that the rate of NO formation is slower at lower temperatures. It has been

determined that [1,14,15]:

where

T = temperature
t = time

(4 )
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Thus, the reaction time determines the concentration of NO. Besides time and

tern'perature, the importance of the concentrations of N2 and O2 is also

indicated. Since the combustion process favors the oxidation of carbon, O
2

needs to be present above stoichiometric ratios for NOx to be formed. .

While "fuel NO " is assumed to be a mqior contributor to NOx in nitrogen
x "

rich fuels, the process of formation- is not yet well understood. Experiments

have shown that amount and rate of "fuel NO/ formation are related to the type

of fuel used and the percentage of nitrogen in the fuel. Experiments have also

shown that the reaction rate for "fuel NOx" is much faster than that of "thermal

NOx" [14]. The stoichiometry of the reaction mixture has been found to be an

important parameter in the formation of "fuel NOx" [15].

Prev~ous experiments and analyses suggest methods of NOx control.

Since NOx levels increase with increasing temperature, decreasing the flame

temperature should reduce NOx levels. Decreasing the amount of excess

oxygen is also predicted to reduce NOx formation. It has been shown that the

hottest zone in the fl?e has the highest NOx levels and as the combustion'

gases leave the flame. region for cooler combustion zones, further NO
x

formation is arrested. So, it has been recommended that having fuel rich flames

(with a higher ratio of fuel to a!r) and later introducing more oxygen to complete

the combustion would retard NOx formation. This process is called staged

combustion [1]. The last option for controlling NOx is the proper choice of the

type of fuel burnt.
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Experiments on coal fired furnaces support the above recommendations.

ERC projects on boiler optimization have shown that coal quality, concentration

of oxygen available for combustion, temperature in the furnace and the degree

of staged combustion can affect NOx formation significantly [13,16,17].

Even though general trends on NOx formation in furnaces have now

been established, the optimization of the boiler parameters that control these

trends has to be performed for each individual boiler. Optimization of boiler

control parameters is conducted through systematic testing of relevant boiler

components.

The optimization advisor is configured for full load operation at PEPCO's

Potomac River Station Unit 4, which is a pulverized coal, tangentially fired,

steam generating system. This unit has a full load capacity of 108 MW and

operates at subcritical pressures with single reheat cycle. The parameters

determined to contrdl NOx formation at this unit were economizer oxygen level,

burner tilt angle, relative mill coal feeder RPMs and secondary air dqmper

positions [13,16,17].

Other important parameters considered in the optimization advisor are

the variables related to performance and safety. Ensuring safe boiler operation

is an important consideration when conducting experiments. The optimization

advisor monitors safety and system design limits. These parameters are CO

level, windbox pressure, furnace oxygen level, steam temperatures, mill suction

pressures, mill current, mill exit temperatures, and qualitative assessment of

21



furnace flame quality.

Some of the steps taken to reduce NOx emission levels affect boiler

efficiency negatively [17]. Loss on ignition, LOI, a parameter that measures the

amount of unburned carbon left from c~mbustion, is measured directly and

indicates loss of performance, while heat rate is calculated from other

measured quantities and also measures power plant performance. LOI is

monitored constantly by the advisor while heat rate is used to make final

decisions on optimum operating conditions.

The advisor also scrutinizes parameters that are under regulatory limits.

Opacity, which is a measure of the visibility of stack emissions, is directly

affected by furnace conditions, and as such, is monitored by the advisor during

testing.

CLIPS 6.0 was used to develop a model that would guide the user

through a series of experiments that provide information on the specific relation

of NOx to boiler operating conditions and heat rate. The model is based on

knowledge of the parameters mentioned above, and experimental procedures.

The model consists of rules that conduct experiments on the boiler control

parameters that affect NOx formation, and monitor safety and performance

parameters. The model uses external curve fit programs to process data for

internal decision making and feeds all the data generated from the experiments

into a neural network-optimization package for final analysis [2]. This package

makes the decision on the optimum operating parameters for the bOiler.

":'':~f_
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Description of the parameters mentioned above, known effects of control

parameters on NOx levels, and safety and performance variables, experimental

procedures used in the model, and software architecture are discussed in the

following sections.
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Knowledge Base

At Potomac River Unit 4, the parameters determined to control NOx

formation are economizer oxygen level, burner tilt angle, mill coal feeder RPMs,

and secondary air damper positions.

The economizer, situated downstream from the furnace, is a heat

exchanger that extracts heat from the flue gas and heats incoming feed water

to the boiler (see Figure 2)[18]. Oxygen sensors located in the economizer

measure the concentration of oxygen in the flue gas, which gives an indication

of the amount of excess oxygen in the furnace.

Potomac River Unit 4 has a direct fired system and uses four Raymond

bowl suction mills that pulverize coal to be fed into the balanced draft furnace

(see Figure 3) [21]. The capacity of the mills is measured in terms of

revolutions per minute (RPM) of the feeders that bring coal to the mills, and at

Potomac River Unit 4, each mill can handle 22,000 Ibs/hr of coal [21].

The pulverized coal is delivered to four levels of burners in the furnace

via primary air induced by the exhauster (see Figure 4). The tilt mechanism of

the burners is designed to control steam temperatures. Burner tilt angle is

raised or lowered to adjust the location of the fire ball and the angle ranges

from -30 0 to 300 at Potomac River Unit 4.

The secondary air dampers control the amount of secondary air in the

windbox. The secondary air is the balance of air needed in addition to the

primary air delivering the coal. The secondary air dampers have incremental
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stages of openness. At Potomac River, "one" indicates the most closed state,

and "five" indicates the most open state. There are two types of secondary air

dampers: fuel air and auxiliary air dampers. Fuel air dampers control the air

flow in a narrow passage. surrounding the primary air coal nozzle. The auxiliary

air dampers control air flow to nozzles located between burners (see Figure 2).

Typically, there are the same number of fuel air dampers as burner levels, and

one more level of auxiliary air dampers than burners. Accordingly, at Potomac

River Unit 4, there are four fuel air dampers and five auxiliary air dampers in

each corner of the boiler. Varying the damper positions of the different

secondary air dampers controls the air distribution along the furnace, air

velocities, and the locations of fuel ignition points. [1]

Experimentation with the control parameters above creates different

boiler conditions which in turn affect other variables of interest. In relation to the

advisor, these parameters are referred to as safety and performance

parameters, and have maximum and/or minimum design, regulatory, or

performance limits. These parameters were carefully considered in model

design.

..

25



Tangentially fired open furnace
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Economizer Oxygen

Typically, furnace oxygen is maintained at above stoichiometric conditions to

ensure complete combustion and safe boiler operation, and this excess oxygen

is usually measured in the flue gas at the economizer exit. NOx has been

shown to decrease with decreasing excess oxygen levels [13,16,17]. Figure 5

shows parametric data from Potomac River Unit 4 correlating NOx levels to

economizer oxygen levels for different burner tilt angles. At Potomac River,

changes in 02 had the greatest effect on NOx levels and during parametric

tests accounted for changes in NOx of 0.2 to 0.25 Ib/MBtu. .Thus, lowering the

economizer oxygen level as much as possible is a key part of the strategy

used to reduce NOx emission levels.

The minimum excess 02 level possible is determined by safety and

performance parameters. Lowering economizer oxygen lowers furnace oxygen,

which, in turn, affects the amount of unburned carbon, CO, opacity, steam

temperatures, windbox pressures, and finally furnace flame quality. It is known

through experimentation and plant experience, that lowering the excess oxygen

level at Potomac River Unit 4:

• yields higher LOI (see Figure 6 );

• does not affect CO, until a certain point when CO increases rapidly

(see Figure 7) [20];

• produces lower steam temperatures;

• lowers windbox pressures;
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• produces poor quality flames.

Burner Tilt Angle

Burner tilt angles are strongly correlated to NOx levels and a parabolic

behavior was observed in most cases (see Figure 8). At full load at Potomac

River, burner tilt angles had the second highest effect on NOx levels, after O2,

and during parametric tests, these accounted for NOx reductions of up to 0.09

Ib/MBtu [17]. At baseline conditions and during parametric tests at Potomac

River, minimum NOx levels occurred with burners near the horizontal positions,

with tilt angles between 0 and 5 degrees [13,16,17]. Thus, the strategy for

reducing NOx emissions involves exploring the tilt angle range to isolate the

region of minimum NOx emissions. Since burner tilt angle is also a mechanism

for controlling steam temperatures, manipulating the burner tilt angles affects

heat rate, which is a strong function of steam temperatures (see Figure 9).

The loading pattern among the mills providing coal to the different

burner levels has been shown to affect NOx formation [13,16]. Biasing coal to

the bottom burners creates a staged combustion effect. To represent the

loading pattern al1}ong the mills, a mill bias parameter, P was developed (see

Eqn 5) [17]. P ranges from -1 to 1, with positive values indicating bias towards

the top mills, and negative values indicating coal biased towards the bottom
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where

0i = motor speed of the i th feeder (RPM)

mills. Figure 10 shows the reduction of NOx with decreasing mill bias at

Potomac River Unit 4. At this unit, during parametric testing at full load

conditions, a NOx reduction of 0.03 Ib/MBtu was achieved. To reduce NO
x

(S)

..-...... _~_._-'---:.._:.:.,..: - ----.- ._'----_ .. -- p-.- ••. -...~.,. ...,.,;.:-';....-.~#•_. _ .• -1:.• _. _;.,..'\ c.~-.:.=.._

emissions, the strategy should be to aim towards the most negative pvalue.

Even though at full load, this could be achieved at some units by unloading the

top burners completely, at Potomac River all four mills are needed to achieve

full load levels. In fact, in some circumstances which depend on coal quality

(moisture level, ash level, HHV, HGI, etc.), full capacity of all four mills is

needed, and no bias is be possible.

Biasing mills can affect the following parameters. Biasing coal flow to

towards the bottom mills lowers steam temperatures, which in turn raises heat

rate. When biasing away from the top mill, in order to make up for the load

difference, extra coal is fed to the bottom mills. Feeding more coal to a mill

increases the mill current, reduces available suction in the mill, and eventually

yields reduced mill exit temperatures.

Secondary Air Dampers

Secondary air dampers can be manipulated to create staged combustion

by adjusting the vertical distribution of fuel air and auxiliary air. In the case of
~ ...--<-- '-.;;....:.~ ..._.:.:..:~'.~.-:-~""....:.-.= ...--~_...':.:.~.: _.:::,:-~.~.; ...
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aUXiliary air dampers, biasing air to the top of the furnace has been shown to

reduce NOx emission levels [13,16,18]. To simplify the hundreds of different

combinations of dampers to a variable that represents the air bias along the

furnace, an auxiliary air bias parameter, (x, was developed (see Eqn. 6) [17].

where

Auxi = i th row auxiliary air damper postion

(6)

The parameter (X ranges from 0 to 1, with the higher numbers indicating air bias

to the top air registers. At Potomac River, during parametric testing, NOx was

reduced by as much as 0.04 Ib/MBtu in some ranges of (X while no effect was

seen at other ranges (see Figure 11 ).

While the strategy for reducing NOx is to increase (x, different

combinations of dampers that give the same (X can affect NOx and other safety

parameters differently and, thus, need to be explored. To reduce the number of

combinations of dampers explored per one (X to those that are more likely to

give safe boiler operations, a few rules of thumb were developed by ERG

engineers:

• when changing a damper position at one level, dampers should be

manipulated only one position at a time;

• the sum of all the auxiliary air damper positions should be between

14 and 18 (for full load conditions at Potomac River unit 4);

• an auxiliary damper should be at the same or greater damper position
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as the one a level below it;

• at full load, only one auxiliary air damper can be at the most closed

position (which is 1 at Potomac River Unit 4);

Manipulating fuel air dampers varies the fuel to air ratio in the region

near the burners, and experimental models (refer to the Introduction of the

optimization section) have shown that this affects the formation of NOx' Thus,

closing down on the fuel air dampers should create a fuel rich flame and reduce

NOx formation. It was noted in previous testing of fuel air dampers, that the

magnitude of their effect increases with decreasing load levels. At full load

testing of Potomac River Unit 4, manipulating the fuel air dampers produced

little or no effect on NOx [17]. Even though major reduction of NOx by this

mechanism is not expected at full load conditions, fuel air dampers are

optimized when fine tuning of NOx levels is needed.

The extent of manipulation of the secondary air dampers is restricted by

safety limits. Closing down on dampers can reduce furnace flame quality, and

closing down on fuel air dampers shortens ignition points, which can bring the

flame too close to the burners. Closing down on dampers increases windbox

pressure, while opening dampers decreases it. After maximum auxiliary air bias

has been achieved, manipulating fuel air dampers can create more room for

further experimentation with auxiliary air dampers. Damper positions can also

affect steam temperatures which then affects heat rate, but no trend has been

noted so far.
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Uncontrolled Parameters

Even though the above parameters have been observed to affect NOx,

and can be controlled in experiments, there are uncontrolled variables which

might as equally affect NOx' For instance, changes in coal quality can affect

NOx significantly (N2 and volatile matter content of coal, moisture level, HGI,

etc.).

Boiler cleanliness is another parameter that has so far been uncontrolled,

but for which models are in various stages of development. Slag bUild-up on

boiler tube walls increases steam temperatures and has been shown to

increase NOx emission levels significantly (see Figure 12) [17]. Soot blowing to

remove slag from boiler tube walls decreases steam temperatures and NOx

emission levels. Since a good correlation between soot blowing and NOx

formation has not yet been developed, and slag build up increases with time,

the advisor employs experimental procedures that correct for the possible effect

of boiler cle~nliness when testing the control variables discussed above (see

Section on experimental procedures).

Experimental Procedures

In designing the experiments conducted by the advisor, little or no

interaction of control variables with each other was assumed. This led to a

..
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"parametric testing" strategy to be utilized in the advisor. In parametric testing,

all other control variables are held constant, while the relationship of one

variable with NOx is explored. The sequence of parametric testing of the control

parameters is determined by the magnitude of their effect on NOx. Thus, at full

load, 02 is tested first, then burner tilt angle, then mills, and finally secondary

air dampers. At the end of each parametric testing series, the advisor

.determines the control setting that produces the desired NOx level, and that

parameter is fixed at that setting for the testing of the rest of the control

parameters.

In cases where a slight interaction between control parameters has been

observed, and/or the goal of the experimentation was to optimize heat rate

subject to a constraint on NOx (see Section on software description), a factorial

design of 23 or 22 was employed. In this type of experimental design, three

distinct points of the two variables are selected, and all possible combinations

of these points are tested. In this advisor, a factorial design was used on 02 /'~

and burner tilt angle, and on burner tilt angle and auxiliary air bias. Besides

bringing out any coupling effect of the two parameters on NOx' this

experimental procedure is intended to provide the necessary information when

simultaneously optimizing two variables like NOx and heat rate.

For the purposes of recommending test points, continuous functions with

a maximum of one minima or maxima (unimodal) of the control variables with

NOx were assumed. NOx was assumed to be a continuous linear function of °2,

~_._---,-_.. • ..•• '.----•. " -.<.-I.""-._•.••.•• --~-_..... - -_._- ...,-~.----_. ."_.- - - _.._-.-._.-
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(x, and ~, and a parabolic function of burner tilt angle. This assumption is used

only in conducting the experiments, since the final data analysis is done by a

neural network package that learns the real relationship of the dependent

variables with the control parameters.

When making decisions, the advisor curve fits any existing data to the

functions mentioned above. Curve fits are used in the advisor to correct for any

scatter in data and to predict real trends. Curve fitting also addresses

uncontrolled variable effects in a properly designed data set. To minimize the

effect of changes in boiler cleanliness over the time period of a test, initial test

points are repeated at the end of a test series.

Since time and cost are primary concerns for utilities, minimizing

experimentation time was a major consideration in the advisor design. Testing

is aimed in the direction of minimum NOx as suggested by the knowledge of the

control parameters described in the previous sections. Thus, testing is

conducted tow~rds decreasing 02' decreasing ~, increasing (x, and decreasing

fuel air damper settings. In this strategy, the minimum NOx setting is reached

relatively rapidly, but the advantage of having a large data set that would

capture the effects of uncontrolled variables is lost. Since NOx has exhibited a

parabolic relation to burner tilt angle, when the burners are near horizontal, the

direction of burner tilt angles towards decreasing NOx is not known. Instead, a

number of points over the range of angles are tested to find the minimum.

The strategy of testing towards minimum NOx in one direction also
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simplifies the task of monitoring safety and performance parameters. Assuming

continuous unimodal functions of safety parameters with control variables, if a

safety limit is violated, the advisor makes the decision to discontinue testing of

that control variable. For example, when testing excess oxygen level by

decreasing the setting steadily, if the CO limit is violated, the advisor

discontinues the oxygen test series after obtaining the replicate data that

correct for boiler cleanliness.

The advisor also ensures that sufficient data for proper data analysis are

gathered. The neural network package needs at least seven to eight data points

per independent variable. If, because of limit violations, the range of a particular

control parameter is narrow, replicate test points are obtained.

Various features are built into the experimental procedures to ensure

safety of boiler operation during testing. In the independent testing of control

variables, conservatively small increments are taken. This helps to assure that

an unsafe boiler condition is not created unexpectedly. For example, in the

case of oxygen, the minimum significant increment is used. When testing fuel

air damper settings, which can create dangerous furnace conditions, the user is

asked to close one damper at a time and make qualitative jUdgments on

furnace conditions before the next test is conducted.

In the next section, the details of the advisor architecture, the different

optimization goals it can address, and other relevant software features are

discussed.



Software Description

The advisor is designed to operate under either of two distinct

optimization goals:

• find the control settings that give the absolute minimum NO
x

, subject

only to safe boiler operating conditions;

• find the control settings that give minimum heat rate constrained to a

target NOx value, with safety still being an important consideration.

When operating under the goal of obtaining the minimum NOx level

~

possible, the advisor recommends only test points that are predicted to achieve

low NOx levels. On the other hand, when optimizing heat rate SUbject to a

constraint on NOx, additional information on the relation of NOx and heat rate

with each other and with the control variables are needed, and the advisor

recommends additional experiments towards this purpose. Thus, the factorial

experiments on O2 and burner tilt angle, and burner tilt angle and auxiliary air

bias are performed only when the optimization goal is to find minimum heat rate

with a constraint on NOx.

The advisor was also designed to accommodate different user

requirements. While the user has the option to optimize a boiler from a

completely unoptimized baseline condition by adjusting all the relevant boiler

control parameters, he/she can also choose to fine tune a boiler that has been

optimized previously. For instance, major variables such as oxygen and burner

tilt angle might have already been optimized, and now the user could be
- - - ..- -~. -- .... -._..'~---.-
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seeking a further reduction in NOx by optimizing mills and secondary air

dampers. Along the same lines, the advisor is designed to accommodate

boilers that might have one or more of the control parameters inoperational. For

example, the burners at a particular boiler might be locked in a certain tilt

position and can't be adjusted, or the secondary air damper mechanisms might,

at the moment, be broken. Thus, the user is given the option of choosing the

parameters that he/she wishes to optimize.

Data acquisition is an essential ingredient in the optimization advisor.

Data and information gathered before testing begins, and after each test is

performed, are used to determine what the next step in the optimization

exercise should be. The information required by the advisor can be both

quantitative and qualitative. The quantitative data are gathered either from the

data acquisition system, or if not available there, are obtained directly from the

user. At Potomac River Unit 4, the online plant data acquisition system, Plant

Monitoring Workstation (PMW), can provide most of the data required by the

advisor after a test is run. The quantitative data from a particular test that are

not available online, qualitative data that require jUdgment from the user, and

other system information required by the advisor at the initiation of the

optimization exercise, are obtained directly from the user. To aid with these

tasks, a user interface and a data communication system for use with PMW are

currently under development at the ERG.
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Inside the advisor, information is stored either in the form of facts1 or

objects2
. Rules3 use pattern matching4 to manipulate these objects and facts.

"Goal of the optimization is minimum NO/ or "Minimum burner tilt angle is -30°"

are examples of facts that might exist at any point in the advisor. All

information, except those directly related to test data, are stored as facts.

Objects are not used to their full capacity in the advisor. They are used merely

for data storage and act as records. An object called oper-data5 stores the

following information on each test point:

• test number

• date

• beginning and end times

• economizer oxygen level (%)

• burner tilt angle (degrees)

• mill loadings (RPM)

lA fact is a statement that tells what is known to be true about a system (see
Section on expert systems for further explanation.)

2 An 'object' is a collection of data that reflects a concept, event or object in the
real world (see Section on expert system for further explanations.)

3 Rules are knOWledge representation schemes in expert systems that use an
"If... then ... else..." form (see Section on expert systems for further explanation.)

4Pattern matching refers to the action performed by rule based programs when
they search through all the faCts in the system to find the ones that match the premise
of a rule. This is simply a matter of comparing the symbols (letters) contained in the fact
statement with those in the premise of the rule (refer to Section on expert systems).

-- 5Na'!!~~'}!~Sl!_c.i(l.t~d}yi~!,,,,,,~-!ZY pp~~'of the a~or _c~,d~ a.~~s~~wll ·ill this fOllt.- . '.
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• mill bias

• auxiliary air dampers

• auxiliary air bias

• fuel air dampers

• furnace oxygen level (%)

• windbox pressure (in/H20)

• main steam temperature (F)

• reheat steam temperature (F)

• opacity (%)

• CO (ppm)

• unburned carbon or loss on ignition (LOI) (%)

• mill currents (amps)

• mill suction pressures (in/H 20)

• mill exit temperatures (F)

• NO. (lb/MBtu)

• furnace quality (qualitative)

• ignition point (qualitative).

Besides rules, internal functions and external programs are used to

process data within the advisor. Functions defined internally in the advisor

calculate mill bias, auxiliary air bias, roots of quadratic equations, and perform

other routine tasks. An external Fortran code, "vlleastexe', that does regression

analysis was developed and linked to the advisor. The code uses the least
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squares method, and when provided with the degree of the polynomial required

and a data set containing one independent variable and one dependent

variable, it calculates the value of the coefficients. A second Fortran code,

"v2Ieastexe', that handles two independent variables which can be.of different

degree polynomials, was also developed. I v2/eastexe" is not used under the

current version of the advisor, but is anticipated to be used in future versions.

Since an expert advisor has to develop and be modified constantly as

the body of knowledge on the domain grows, it is important to design the

advisor in a way that eases such future tasks. Expert systems are especially

suited for this, since rules allow modular representation of knowledge. In the

best case scenario, most of the rules should be independent of each other so

that, if, in the future, a rule is modified, it does not render other rules ineffective.

One of the important advantages of rule based systems to procedural programs

is that a piece of code is not entwined with the rest of the program, but instead

reacts to the current state of the system, represented as facts and objects,

independently.

Conducting experiments is sequential and procedural to a certain extent,

and complete modularity of rules was not easily achievable. Instead, CLIPS 6.0

supports modularity of subdomains, and this feature was used to develop

separate experimental models for each of the control parameters. Modules can

be completely independent and blind to other modules, or there can be a

hierarchal relationship such that a module is visible to another module, but it
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"see" the other module.

The optimization advisor has the following modules: start-up, main,

economizer-oxygen, burner-tilt-angle, oxygen-burner-tilt, mills, secondary-air-

dampers, and burner-tilt-auxiliary-air-dampers. The start-up module is visible to all

the other modules, and the main module is visible to all modules except start-

up. The rest of the modules are independent of each other, except for the

secondary-air-dampers module which is visible to the burner-tilt-auxiliary-air~

dampers module (see Figure 13 and Figure 14).

The economizer-oxygen, burner-tilt-angle, mills, and secondary-air-dampers

modules contain rules on parametric experimental procedures of their

respective control variables. The oxygen-burner-tilt and burner-tilt-auxiliary-air-

dampers modules contain rules that specify experiments on different

combinations of the two variables suggested in their names. The main module

coordinates the activities of th~ advisor by interacting with the different

modules, the user and the data acquisition system. The start-up module is

initiated before the optimization exercise begins and obtains information on the

configuration of the system and any initial information relevant to the

optimization exercise.

When the optimization advisor is first started (refer to Figure 15 for flow

chart of the execution of the program), the start-up module has control of the

program. The user is asked to choose the optimization goal:

w.
c •••• _ ...,._~ _"':"_<- __ '._ ._ -_~-L-.-_-·_-- ~.• '''''''''~'":"
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• find the minimum NOx possible; or

• find the minimum heat rate constraining NOx to a target value.

If the user chooses the second option, he/she is asked to provide the

target NOx value. Then, the user is asked if any of the control variables have

been optimized previously or if any are inoperational. Depending on the

optimization goal and the parameters to be optimized, one or more of the

modules might be set inactive. The sequence of the optimization has been

discussed in the experimental procedures section. To learn the configuration of

the system that is to be optimized, the advisor prompts for the following

information:

• number of mills

• maximum capacity of mills

• number of auxiliary and fuel air dampers

• open and closed setting of dampers

• minimum and maximum burner tilt angles.

In this initial version of the advisor, the number of mills and number of

secondary air dampers are held fixed at the Potomac River Unit 4 configuration

(four mills, five auxiliary air dampers, and four fuel air dampers).

Next, the user is asked to provide design and safety limits on the

following parameters:

• minimum furnace oxygen

• minimum and maximum windbox pressure

.~-----_._-
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• minimum and maximum main steam temperature

• minimum and maximum hot reheat steam temperature

• maximum opacity

• maximum LOI

• minimum and maximum mill currents

• minimum and maximum mill suction pressures

• minimum and maximum mill suction pressures.

These parameters are monitored after each test to see if any violation

has occurred.

Then, the user is asked to provide baseline operating settings for

economizer oxygen, burner tilt angle, mill RPMs, and secondary air damper

positions. This information is used in the first test point unless the advisor

modifies it to settings closer to the low NOx operating conditions. In accordance

with the objective of minimizing the number of experiments, initial baseline

settings are sometimes modified within the advisor: if oxygen level is very high,

it is reduced to a value known to be safe; if burner tilt angle is set very high, it

is reduced to halfway between horizontal and maximum angle; and a slight

upward bias is given to auxiliary air dampers. This initial setting is changed

back to baseline settings if the first test produced any limit violations.

Next, control of the program is passed to the main module. The main module

passes the control to the economizer-oxyge1l, burner-tilt-angle, oxygen-burner-tilt,

mills, secondary-air-dampers, or burner-tilt-auxiliary-air-dampers modules
-
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depending on the goal of the optimization, the parameters that are to be

optimized, and the predetermined sequence of testing. The module that has the

control then determines what the next test point should be, and passes the

information to the main module.

The main module communicates this information to the user along with

instructions on how to conduct the test. For example, these instructions might

include "the unit should be steady before testing begins, and tests should be at

least fifteen minutes long." Before conducting the test, the user is given the

option of suspending testing for the moment, in which case the current state of

the program is saved and the program is interrupted. When the user restarts

the program, it starts from the point where it was last suspended. This is an

important feature since the experiments can take several days to perform, and

an uninterrupted testing routine can not be guaranteed.

After the test is conducted, the advisor obtains the time range of the

experiment from the user, extracts all available online data from the plant data

acquisition system, and pror;npts the user for the rest.

The data are then analyzed by the main module to see if any limit

violation has occurred. If a limit violation has occurred, the user is made aware

of this via a warning message. The user is then asked to make a jUdgement on

the seriousness of the violation, and whether that particular course of testing

should be discontinued. For instance if the opacity limit were violated, the user

could elect to temporarily sacrifice a little on opacity to reduce NO
x

.
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All information on the current test data and any limit violations, are

passed along to the current module. Using this information, the module

determines if more testing is needed. If more testing is needed, it passes its

recommendation on the next test point to the main module.

Recommendations of test points are based on the current state of the

boiler and are determined using the knowledge described in the previous

sections. Recommendations may vary for different optimization goals. Test point

recommendations are specific for all the control parameters except mills. Since

the loading capacity of the mills can change with varying coal supply, the user

is only instructed as to the loading pattern of the mills. When the optimization

objective is to find the minimum heat rate with a constraint on NOx, there is a

need to obtain mill bias information at a number of Pvalues instead of just at

the minimum and no bias situations. So, once the mill capacity during a

particular series of test has been established (capacities at no bias and

minimum bias are recorded from previous test points during the 'same test

series), the advisor recommends specific RPM's for each of the mill feeders that

would give intermediate Pvalues.

If the module that has current control of the program decided that further

testing is not needed, then in some cases, it may analyze the data gathered

using "vlleast.exe" to determine if any significant reduction in NO
x

has been

achieved, and to find a rough estimate of the control setting needed to achieve

minimum. NOx• This setting is fixed in SUbsequent ~ests of other control
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parameters. When appropriate, whether the target NOx level has been achieved

<

is also determined. The modules that perform the type of data analysis

mentioned above are economizer oxygen, burner-tilt-angle, mills and the auxiliary

air section of the secondary-air-dampers module. The other modules leave any

data analysis for the final portion of the optimization package.

If the main module gets information to conduct more tests, it goes

through the same procedure described above. Otherwise, it determines what

the next module should be and passes on control. At the beginning of the mills

and secondary-air-dampers modules, the user is given the option of abandoning

further testing if he/she so chooses. This option is provided for the user in case

the NOx reduction achieved up to that point has been sufficient, and the user

determines that further testing is not cost effective. Also, before beginning

testing of fuel air dampers, the user is cautioned that a person with experience

in evaluating ignition points is needed to conduct the tests, and is given the

option of abandoning fuel air testing.

If the advisor determines that all the required testing is done, it passes.
""-

the data base accumulated to the neural network-optimization package [2].

Other important information passed by the advisor to the neural network-

optimization package are the optimization goal, target NOx value if applicable,

the parameters to be optimized, and ranges of safe operating conditions for

each of these param~ters.

The neural network learns the relationships of the dependent variables
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with all the relevant independent variables. These relationships are passed to

the optimization subroutine which then determines the optimum control settings

(see Ref 2 for more information on the neural network-optimization package).

Start-Up Module

The start-up module has definitions of functions and data bases to be

used by the advisor, and rules that obtain initial information and configure the

advisor for the boiler that is being optimized.

The functions defined are classified into two categories: input-output

functions that interact with the user in the absence of the user interface that is

currently under development; and mathematical functions that are used

throughout the advisor. The input-output functions include Choose_Ask,

Type_Number, TypeJnteger, Y_N_Ask, good-ok-bad, and run-window-app.

Choose_Ask prints a specified question with a few choices to the screen and

reads the answer back if it corresponds to the choices provided. Y_N_Ask uses

Choose_Ask, but the choices it provides the user are fixed between yes and no,

while !(ood-ok-bad fixes its choices between good, ok, and bad. Type_Number

and TypeJnteger print a question to the screen and read back a real number

and integer respectively. Run-window-app uses Y_N_Ask to request the user to

run an external program and answer yes when the request is performed. All

these functions print an error message to the user and print their question again
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until a window user interface is developed, and run-window-app is a temporary

function until an internal CLIPS function that runs external programs invisible to

the user is created.

Other functions defined in the start-up module calculate the mill bias

given the mill RPMs, and the auxiliary air bias given auxiliary air damper

positions. Functions that calculate first and second order polynomials given

values of coefficients and the independent variables, and the roots of quadratic

equations given coefficients and the dependent variables are also defined.

To store the data generated by the experiments, a class of objects called

oper-data is defined. Oper-data is defined as "pattern-match reactive" so that

rules can access any of its objects by pattern matching just like any other facts

(refer to Section on expert systems). All the slots6 in this class can be written to

and read from. A slot for each of the variables that describe a test point is

defined, and these slots are declared multifield7
, so that they can store more

than one variable. Thus, a multifield-slot called mill-amps would store four mill

current values corresponding to four different mills, and a multifield slot called

aux-air-dampers would store values corresponding to the five auxiliary air

dampers. Besides the slots that contain information from a particular test, slots

called status and par-eval are defined. Status stores information used to identify

6 Slots are fields that contain a particUlar piece of information on an object.

-<:eo.~':='-:-i~,::",.c::.-_~,.;_:~~lAmulti field slot'iS'~,slot thal:p?f1:eootain:more than 9JJ.e.:.p.i~~~_Qfrelated·information.- - ----- -----
. . - - t- _ ~~_o--,-""",,~:,-,-~_·_,;.:~-~ ••_. ~"i7i'''--'';~'.z7~~":.:':=:::'::'':':=;--~~~
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what a particular object is being used for: currentS is an object that stores the

.data for the current test point; previous is an object that stores data from

previous tests; optimum is an object that stores optimum control settings as

determined by the expert advisor up to that point; baseline stores baseline

control settings as specified by the user; system-baseline stores advisor modified

baseline settings to be used as the first test point; and recommend stores

advisor recommended control settings for the next test point. Objects with status

current eventually become previous, and all the objects with status previous make

up the database accumulated by boiler testing. There will only be one object

each for the status baseline, system-baseline, optimum, and recommend. On the

other hand, the slot par-eval is used to store information on whatever series of

testing that particular object is associated with. For example, a value of eco0
2

would mean that the object contains data obtained during economizer oxygen

parametric testing, while a value of tilt-see-air would mean that the object

contains data obtained during a factorial burner tilt and auxiliary air damper

testing series. In the object with status recommend, the slot par-eval is us~q for

communication between the main module and the other testing modules (this is

described in the main module section).

Initial facts that set the sequence of the activation 9 of the rules described

RValues used or stored by the code are shown in this font.

9 Activation in rule based language refers to the triggering of a rule to be possibly
.used..in.the. near future.,---~~\· -- --.-~ -- _._-- .
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below are first asserted 10. Thus, depending on what fact is on the top of the list,

the following rules are activated and fired 11 (refer to Figure 16 for flow chart).

When a rule fires, the actions specified in the consequent part of the rule are

performed.

A rule called objective prompts the user for the optimization objective and

asserts this fact into the fact list. If the objective is to minimize heat rate with a

constraint on NOxI this rule causes rule targetNOx to be activated. Otherwise a

fact that says "target NOx is A" is asserted into the fact list. TargetNOx prompts

the user for the target value of the NOx and asserts this fact.

The default objective of the optimization exercise is set by objective to be

minimizing NOxI no matter what optimization objective the user chose. Once the

program is underway, in the case when the optimization objective is to minimize

heat rate with a constraint on NOx, if target NOx is achieved, the current

objective is changed to minimizing heat rate. The strategy under the default

objective of minimizing NOx is to continually assess the control settings that

give low NOx and use these settings for the next series of testing. The strategy
,

under the objective of minimizing heat rate, is to guide testing to obtain enough

data for heat rate and NOx optimization at the completion of the program. These

strategies are discussed in greater detail under the modules

10To "assert a fact" in rule base language refers to storing and saving a particular
information containing statement (fact) into the system memory.

11 When an activated rule is used to perform the actions that it is designed for, the
........_- -·--rule·is~fired";--· --~ .---.---.----- . --- --'" -."-'~ -_~

?··~~:..:.:.~::.:.:_:~:::=~:€=~"S:::.:0~:::..:.:._7..~_:~!~-~_~~"'~·~~~T-:;::.-·~~-:~=.E~~-:~~~:"::"':~~=-"'"-:~~::::~·---,:.;-;:-~·:~~-.:.:.~:~~~~~·:'~·_:::->::,~~~:~~'~c~~~~~-.:~;·_::_~·-...:~~:?::-:;":.::~~ ..~ u-__=o""~~~:;;~~~~;:;~
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that guide testing for each of the parameters.

Then, a series of rules ask the user which parameters can and should be

optimized and determine which modules the advisor will use for testing.

Examples of these rules are,

If

user says O2 has been optimized or
user says burner tilt can't be optimized

then
combination of O2 and tilt has been optimized

If
optimization objective is to minimize NOx

then
combination of O2 and tilt can't be optimized
and combination of tilt and auxiliary air dampers can't be
optimized.

The results of these rules determines which one of the modules will be

used for testing. If there is a fact that states that a particular parameter or

combination of parameters has been or can't be optimized, then the module

associated with the parameters is never activated.

A configuration rule prompts the user for values that describe the system

and asserts these as facts, and a safety limits rule asks the user for safety and

performance limits and asserts these as facts. "Number of auxiliary air dampers

is 5" and "minimum main steam temperature is 850" are two examples of such

facts.

A rule called baseline-operators prompts the user for baseline operating

control settings and stores them in an oper-data object with status baseline. Then
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a series of rules finds the control settings for the initial test point and stores

them in oper-data objects with status system-baseline, optimum and recommend.

The control setting for the initial test point is the same as the baseline control

setting if that particular parameter has been or can't be optimized. Otherwise,

economizer oxygen is set at 2.5%, burner tilt angle is set at 15°, mill bias is set

at 0, and auxiliary air dampers are set at positions 4,4,2,2,2 corresponding to a

bias of 0.5. These settings are for Potomac River Unit 4, and would need to be

readjusted for different boiler configurations.

Control of the program now passes to the main module.

Main Module

The main module asserts a few sets of initial facts before execution of

the program starts. One set of facts relate variables with the units associated

with them. For example, "unit of economizer oxygen is %" etc. These facts are

used when communicating information about a particular variable to the user.

Another fact states that "significant reduction in NOx is 0.01 Ib/MBtu." This fact

is used when analyzing if a particular series of testing produced any significant

results.

Another set of facts deals with the optimization sequence of the control

parameters: "If nothing is optimized, then goal is economizer oxygen"; "If

economizer oxygen is optimized, then goal is burner tilt angle"; "If burner tilt

angle is optimized, then goal is 02-tilt combination"; "If 02-tilt combination is
_ ••_. ~ __ "+ __ ._ • __ .+ . .;_.• ~O::-"'-:'~~~~--:--':':-.-~'.~.'":':!-'--:-::-:=-~

~~_~;_:':)_7.:-~ ···"\-~-:';'."'-~~-T~-. ~:::"'~~.':":7-:·.....':!.::,,~~ ,_•• -,-~;':_~".~"""';~-_~~~~~..;.L.:-,--,..;....:-..;;_~.... <-":~~_'--_:-,:: _ _.~_::"'~C:":"'::::>'"T'-;;:'·'-:-:- .,.__.:.~~,o;.._" __ ~""""'_"'-"<:''''''_'_~!:<~~~-_~''!~='':''F-~'··''''~''-:'--=~''';;;::;;';'';;.o;..~
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a series of rules finds the control settings for the initial test point and stores

them in oper-data objects with status system-baseline, optimum and recommend.

The control setting for the initial test point is the same as the baseline control

setting if that particular parameter has been ·or can't be optimized. Otherwise,

economizer oxygen is set at 2.5%, burner tilt angle is set at 15°, mill bias is set

at 0, and auxiliary air dampers are set afpositions 4,4,2,2,2 corresponding to a

bias of 0.5. These settings are for Potomac River Unit 4, and would need to be

readjusted for different boiler configurations.

Control of the program now passes to the main module.

Main Module

The main module asserts a few sets of initial facts before execution of

the program starts. One set of facts relate variables with the units associated

with them. For example, "unit of economizer oxygen is %" etc. These facts are

used when communicating information about a particular variable to the user.

Another fact states that "significant reduction in NOx is 0.01 Ib/MBtu." This fact

is usedwhen analyzing if a particular series of testing produced any significant

results.

Another set of facts deals with the optimization sequence of the control

parameters: "If nothing is optimized, then goal is economizer oxygen"; "If

economizer oxygen is optimized, then goal is burner tilt angle"; "If burner tilt

angle is optimized, then goal is 02-tilt combination"; ~g2-1lI_t__~_~IlJEL~ati~D,,)~"O:-c=-=-,-o--,"-'-~
_,~-,-_ .•.......-_~_~ __ G...".'-'-....... , .0:T:~:'T:-:-'.~~ ... ' .', ...... 1 .•.•_7·.=;-;-:'.-~.~~~·r~.7"-==-,..-:"'-~~- -- -- -----...:---: .... -...~-~ .. -.. ~.~_. - _- .-._ ..•... ~ _. _._'__ :..".,'--.~ __ ._.'." .. _,_~'.'_.,..,.:-;
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optimized, then goal is mills"; "If mills are optimized, then goal is secondary air

dampers"; "If secondary air dampers are optimized, then goal is burner tilt

angle-auxiliary air dampers combination".

A rule called perpetuate, looks through the facts in the system and uses

the above facts to determine what the current goal should be (refer to flow chart

in Figure 17). For example, if, after coming out of the start-up module, it is

known that 02 has already been optimized and burner tilt can't be adjusted, this

rule would determine that mills should be the current goal in the optimization

exercise. Once mills are optimized, this rule would then determine that the

current goal is secondary air dampers. Then, a rule called change-module hands

control of the program to the module that deals with the parameterls specified

in the current goal statement.

Before control of the program is handed over to the testing module, the

current state of the main module is saved. At the entrance to the testing

module, the current state of that module is also saved. When the program

comes back to the main module, the current state of the main module is saved

again to capture any changes made by the testing module. The state of the

advisor is saved as a precaution to any computer or electrical failure that might

cause the loss of days of testing. The saved states are also used if the user

temporarily suspends programming and restarts the program at a later time.

The program comes back to the main module with the recommended
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Then, rules do-test and results communicate these recommended values to the

user and obtain the results from the current test. The data from the current test

are stored in a oper-data object with status current, while the status slot of the

object containing the data form the last test is changed to previous. Rule do-test

gives the user the option of suspending testing for the moment. If the user

declines, results is fired. Otherwise, program is halted to be restarted at a later

time with the saved data.

A series of rules compares the current data with the system limits that

are in the fact base and alert the user if any violation has occurred. The user is

asked to make the decision as to the gravity of the violation. If the user finds

the violation unacceptable, then the rules assert a fact stating the violation and

at what test point it occurred. An example of such a fact is "opacity violation of

1.6% occurred in O2 parametric testing at test no 5".

Special rules deal with limit violations at baseline conditi6'ns. These rules

are activated if a limit violation occurs at the first test point. In this case, the

rules would convert the initial test point to user supplied baseline settings stored

in the object with status baseline. Rules do-test and results then communicate

recommended settings to the user and obtain results back.

)
If this next test point also had limit violations, a rule that advises the user

to the fact that limit violation occurred at user supplied baseline conditions is

fired. The user is advised to investigate the situation and restart the program at

a later time and the program terminates.
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Other relevant rules in the main module assess the different stages of

the optimization exercise. Rule object-hatred changes the current objective to

minimizing heat rate, if the optimization objective is minimizing heat rate with a

constraint on NOx1 the current objective is to minimize NOx1 and the fact that

target NOx is reached is known (see start-up module section for description of

current objective.) The fact that target NOx is reached is determined by one of

the testing modules.

Rule optimized is fired if the object with status recommend has optimized-par

in its par-eval slot. This occurs if the testing module that has current control of

the program has decided that it has finished testing and wants to pass this

information to the main module. The rule then asserts a fact that states that the

parameter that was just being tested is optimized and updates the object with

the status optimum with the optimum control setting of that parameter. This

setting is passed by the testing module to the main module via the object with

status recommend. Perpetuate is then fired to determine the next goal in the

optimization exercise (the next parameter/s to be tested.)

Economizer-Oxygen Module

The economizer-oxygen module has an initial fact in its knowledge base

stating that the economizer O2 increment is 0.2%. This is the increment used in

testing 02 control settings and stating it as a fact makes any subsequent

adjustment of the increment easy.
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Rule start-test is fired only when the economizer-oxygen module is first

called (refer to Figure 18 for flow chart). It modifies12 the par-eva/ slot of the

recommend object to have the value ecoD2 to indicate the tests that are being

done from here on are parametric economizer oxygen tests. The value of the

(~ar-eva/ slot is copied to all sUbsequently created objects with status current.

Rule start-test opens a data file "o2.dat' where all 02 set point tested in this

module and the corresponding NOx value are stored. At the end of the testing

series, the data in this file are analyzed. Once this rule is fired, control of the

program is handed over to the main module. Since the economizer-oxygen

module has not yet made any changes to the oxygen control setting, the O2 set

point that is going to be tested next is the system baseline.

Prep-experi determines the O2 set points for the rest of the O2 parametric testing

period. This rule is fired if there has not been any violation during the

parametric 02 testing. This rule writes the values of O2 and NOx in the object

with status current into "Ol'dat', and decreases the 02 setting in the object with

status recommend by the 02 increment stated earlier. After this rule if fired,

control of the program is handed to the main module.

If a limit violation has occurred, then finish-experi is fired. This performs the

same tasks as prep-experi except that it sets the 02 value in the object with the

recommend status to the first 02 value tested. This value is obtained from the

... ' '" 12. To "modify__~LQ.t£o.Pj~.cu..fAcr[efflJs. tp..JeplaciAQ.Jt:l~d:¥a4.l~~b*Jtlese.~~~~
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object with optimum status since this object is not modified until the series of

testing of a particular parameter is finished. This repeat baseline test is

important since slag might have been accumulating on the boiler walls since the

first 02 test was conducted, and since 02 was tested systematically in one

direction the true relationship of 02 with NOx would be disguised. The repeat

baseline test would reveal the variation of NOx due to slag build up.

Once the program comes back from this last test, the data from the

oxygen parametric tests are analyzed only if the current objective of the

program is to find the minimum NOx' In this case, and if more than 2 data

points exist, "o2.dat' is renamed "vldata.dat' which is the file name expected by

the external curve fit program "vlleast.exe". The first line of "vldata.dat' is the

number 1 to indicate a linear fit. The coefficients from this curve fit are written

into a file called "vlleast.dat'. Rule evaluate-target uses this information to

evaluate if significant reduction in NOx can be achieved by lowering 02 to the

lowest acceptable level. The lowest acceptable level is an increment above the

level where a violation occurred.

If significant reduction occurred, this rule also determines if target NOx

was achieved. If target NOx was not reached, the 02 value in the recommend

object is updated with the lowest acceptable 02 setting plus one increment. This

additional increment is a safety measure.

If target NOx was achieved, the fact that target NOx has been reached is

asserted, and rule find-target finds the 02 setting where this target NOx is

.~~-...----~~:-::::;:::..--:-~~~..:~--;-~~:;.;:~~_':;:'-:..r:;;:;J::;'~_:':'-:::=:","';~:,~,-"'~7.-..4.~;:~=;~"';:".T"':':::';:;:"-=-~_:-~:f' ~.:
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achieved. Before the program returns control to the main module, the O
2

value

in the object with recommend status is updated with this target 02 setting. This

helps ensure lower heat rate values while operating on target NOx'

If no significant reduction occurred by lowering O2 or if the current

objective is heat rate, the O2 value in the recommend object is set at the initial

setting. The value of 02 in the recommend object when the program finally

leaves the economizer-oxygen module, will be the set point for any SUbsequent

testing where 02 is not varied. The par-eval slot in recommend object is changed

to optimized-par to tell the main module that 02 parametric testing is finished.

Burner-tilt Module

A statement declaring the burner tilt increment to be eight degrees is

defined as an initial fact. This increment is used for adjusting the burner tilt

settings during this parametric testing.

The strategy behind the sequence of burner tilt testing is to cover the

whole range of burner tilt settings before analyzing the data to find the setting

that gives the minimum NOx level. The reasoning behind this strategy relies on

the empirical observation that the burner tilt angle has a quadratic relationship

with NOx• Thus, a regression using only part of the range of tilt settings could

give a false curve.

Attention was also given to the fact that steam temperature, which is

controlled by burner tilt angle, is also affected by slagging. The latter is an

~-::-o.:"'~,-..-C'"~--==--,=~~~~~~",;,,,.:".·_:..r-.::~-.7,,,_-.r1:.,,y
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uncontrolled parameter that could significantly obscure the real relationship of

burner tilt angle with NOx• To control the effect of slagging during the parametric

testing, randomizing the sequence of the settings tested was necessary. Since

this can create practical problems, such as unstable furnace conditions, if tilts

are adjusted randomly from one extreme setting to another, or since much

valuable time would be lost in waiting for the unit to steady out, complete

randomization of the test points was not considered desirable. Instead, the

sequence of the experiments systematically reduces the tilt settings by the

increment specified in the initial fact until the lowest tilt possible is reached. The

tilt angle is then systematically increased, this time testing points in between of

points already tested. This strategy was adopted to correCt for any bias due to

slag accumulation.

The rules in the burner-tilt module address two actions; one set of rules

is used to recommend test points and another set of rules is used to analyze

the data that are generated by the parametric testing. Rules start-test, prep-

experi-in-range, prep-experi-out-range, jinish-experi and ending are used to

choose the operating settings that are to be tested.

Rule start-test, which is fired when the burner-tilt module is first

activated, opens a data file, "tilLda(', where all the tilt settings that are tested by

this module and the corresponding NOx values are stored (refer to Figure 19 for

flow chart). At the end of the burner tilt testing series, the data in this file are

analyzed by the second set of rules in the burner-tilt module.
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Start-test modifies the par-eval slot of the recommend object to the value burner-

tilt to indicate that the tests that are conducted from here on are parametric

burner tilt tests. The direction of the testing is also set by a fact stating the

direction to be towards decreasing tilts. Once this rule is fired, control of the

program is transferred over to the main module, thus making the first point to

be tested the one that has been determined to be the optimum up to this point.

Prep-experi-in-range and prep-experi-out-range select the test points for

the rest of the testing series. These rules are fired only if there has been no

limit violation and they record the last burner tilt setting tested and the

corresponding NOx value, obtained from the object with the current status, in

"tilt.dat". Depending on what the current testing direction is, these rules either

decrease or increase the last burner tilt setting tested by the tilt increment set

initially (refer to Figure 20) and store it in the object with status recommend.

ItoE:<,---1-----i 1---:3--~3>I
Minimum safe burner Baseline burner tilt Maximum safe

tilt angle I ~ angle I • tlit angle
f-
1

--2-----7I 1f---I.~------1
'----- ----' '--- ----' '--- --...J

t t
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performed only If testing 1 and 2
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If the last tilt angle tested is near the lowest or the highest possible tilt

angles, and if the current testing direction is towards decreasing or increasing

tilt angles respectively, then these rules retract13 the fact stating the current

testing direction and instead assert a fact that states a reversed testing

direction. The first point to be tested in this new direction is set at a mid point

between the last two tilt settings that were tested, thus making the next series

of tilt settings to be tested all in between ones that were already tested.

Prep-experi-in-range is the rule that is fired before any tilt data is

analyzed. It adjusts tilt settings towards decreasing angle? first and then

increases tilt angles until the baseline tilt is encountered. Then, if the rules that

analyze the data find that the minimum is expected to be found at a tilt setting

higher than the baseline setting, the next series of test points are determined by

prep-experi-out-range which tests the tilt settings larger than baseline tilt angle

by first increasing tilt angles and then decreasing tilt angles until the baseline

setting is encountered.

Rule ending is fired if prep-experi-in-range or prep-experi-out-range can no

longer be fired indicating that parametric testing is finished for the moment. If

more than two data points have been gathered, this rule causes the rules that

analyze data to be activated. Rules curve-fit, find-minimum-curve, evaluate-target-

no-curve and evaluate-target-curve analyze data that are generated during

13 To "retract a fact" refers to removing a fact from the system memoryL thus.
_._ •• ·.0_- making thejnfQrmatio.uc_ontajmtdjnJbe_.f<tGt--:.!J~kRQW/]::ff9m.h.§fE;:On.....~c .._" 7c~:.·~:'-:.·~:7";~~7::;,::.::~~:;::;:;
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I

parametric testing and are only activated if the current objective is to minimize

NOx· If the objective at the moment of burner tilt parametric testing is to

minimize heat rate, then the data analysis is left for the neural network-

optimization package at the completion of the expert optimization advisor.

Rule curve-fit renames "tiltdat' to "vldata.dat' and calls the external curve fit

program, "vlleastexe". The first line of "vldata.dat' contains the number 2 to

indicate a quadratic fit. The coefficients from this curve fit are written into a file

called "vlleastdat'. Rule find-minimum-curve uses this information to find the

burner tilt setting that the lowest NOx level occurs at and determines if the NO
x

reduction from baseline tilt settings is significant using the fact in the main

module that states what a significant reduction in NO
x

is. If the minimum NO
x

level is predicated to occur in the tilt range that is higher than baseline and if

this range has not yet been tested, then this rule would activate prep-experi-out-

range. Otherwise, the burner-tilt slot of the object with the status recommend is

modified to hold the burner tilt setting that gives minimum NO
x
' This will be the

value the burner tilt will be set at during the testing of the other control

parameters.

Rule evaluate-target is fired if the current objective of the system is to find

the minimum NOx• Evaluate-target is used to find if the minimum NO
x

value that

was found by find-minimum-curve is lower than the target NO
x

value. If

minimum NOx was lower than the target NOx, this rule finds the burner tilt

setting that gives the target NOx value using the curve that was generate9..~t~ =_"._",_.
.. ._~---...,.-- -_ .. -

._~._-",---_._-. - - -."-';.-.~.~_:_"':';
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the curve fitter. If the burner tilt setting that gives the target NO. value is higher

than the setting that gives the minimum NO" the object with the status

recommend is modified to hold the target burner tilt setting. This is in accordance

with the knowledge that higher burner tilt settings give increased steam

temperatures and thus better heat rate.

Tilt-optimized is fired if all the burner tilt testing is truly finished and there

are no more relevant rules that can be fired. It hands the control of the program

back to the main module after closing all open files and removing unnecessary

facts. At this point the par-eval slot of the object with the recommend status will

have been changed to optimized-par by rule ending after a series of testing has

been finished.

02-burner-tilt Module

The 01-bumer-tilt module is activated only if both burner tilt angle and

economizer oxygen are parameters to be optimized and the goal of the

optimization exercise is to optimize heat rate with a target on NO.. A 32

experimental design is employed to test a narrow range of control settings

around the optimum burner tilt angle and oxygen level found in their respective

parametric testing.

The rules and facts in the Oz-bumer-tilt module address three tasks; one

set of rules determines the nine combinations of burner tilt angle and oxygen
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be tested in the next experiment; and the last set of rules evaluates any limit

violation and accordingly adjusts the rest of the combinations of tilt and O2

settings.

Since Orburner-tilt module tests a narrower range of settings than the

parametric testing modules, initial facts declare the range of economizer oxygen

to be tested to 0.6% and the range of burner tilt angle to be tested to nine

degrees. Using these facts and facts stating the highest and lowest burner tilt

and oxygen settings tested in the parametric modules, generate-combinations

picks three points each for burner tilt angle and oxygen level around the

optimum points determined by the parametric testing modules. Form-

combinations forms nine different paired data sets of O2 and burner tilt from

these points.

Start-test is fired when control is first handed to the 02-burner-tilt module

(refer to Figure 21 for flow chart), and it initiates the rules that form the paired

data sets of oxygen and burner tilt angle. Start-test also modifies the slot par-

eval of the object with the recommend status to OFtilt to indicate that the

following testing series is for combinations of O2 and burner tilt angle. Prep-

experi is activated only if there have not been any limit violations or the

violations have been dealt with by the third set of rules that evaluate violations.

Prep-experi selects one of the paired data mentioned above and modifies the

object with recommend status to hold these values in the oxygen and burner-tilt

~~=...,..~~;--~.., "_.--.
.---~-:-'_.~'.
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slots. Control of the program is then handed over to the main module that

recommends the testing of the selected points to the user.

The set of rules that deals with limit violations makes use of two kinds of

facts. The first kind of facts deals with common sense knowledge and are used

by the module to deduce what type of actions to take. These facts are declared

in the main module so that they can be used by other modules if necessary.

These facts are

• if something is too high, lower it,

• if something is too low, raise it,

• opposite of lower is raise

• opposite of raise is lower

• opposite of high is low

• opposite of low is high.

The second kind of facts deal with specific knowledge on boiler

variables. These facts are

• to lower NOx, lower burner tilt angle

• to lower main steam temperature, lower burner tilt angle

• to lower reheat steam temperature, lower burner tilt angle

• to lower NOx, lower economizer oxygen level

• to lower furnace oxygen, lower economizer oxygen level

• to lower LOI, raise economizer oxygen level

• to lower CO, raise economizer oxygen level

..K.:•.:.::......:-... ,- :
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• to lower opacity, raise economizer oxygen level

• to raise main steam temperature, raise economizer oxygen level

• to raise wind box pressure, raise economizer oxygen level

• to improve furnace flame quality, raise economizer oxygen level.

Rules action-on-violations, analyze-facts-l and analyze-facts-2 use the

above facts to deduce what the proper action for a particular violation should

be. For instance, if main steam temperatures had gotten too low, then these

rules would either conclude that the proper action is to raise the burner tilt

angle or to raise oxygen levels.

Rules evaluate-violations-O]-low, evaluate-violations-02-high, evaluate

violations-tilt-low, and evaluate-violations-tilt-high remove paired O2 and tilt

settings from the list selected to be tested depending what the proper action

was concluded to be. For instance, if the proper action was found to be to raise

the burner tilt setting, then evaluate-violation-tilt-low removes paired data

containing burner tilt settings lower or equal to the one tested last from the

paired sets of O2 and tilt that have not been tested yet.

If there has been a limit violation and the set of rules that deal with

violations can't handle this particular problem (knowledge on how to deal with

this violation does not exist in the advisor at this time), or all the selected paired

02-ti1t set points have been tested, finish-experi is fired. Finish-experi modifies

the par-eval slot of the object with status recommend to contain the values

optimized-par to ifl.9i.9ate to the main module that testing by this module is done.
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Control of the program is then handed back to the main module.

Mills Module

Facts that set the significant mill RPM change to be twenty and the

minimum number of required mill tests to be seven are initially defined. The

minimum number of mill tests is determined by the minimum number of tests

per variable that the neural network-optimization package needs in order to do

a proper analysis. At the initiation of the mills module, rule start-test asks the

user if he/she wants to go on with mill testing. This is done to give the user the

option of reducing the time and effort spent in testing if the NOx reduction

achieved up to that point was deemed sufficient. If the user wants to go on

with the optimization, a file, "mills.dat , that is to contain the mill bias

parameters, ~, that would be tested and the corresponding NOx values is

opened.

The type of testing done by the mills module is determined by the goal of

the optimization exercise. If the goal is to find the minimum NO
x

regardless of

what happens to heat rate, the principle behind the testing is to see if biasing

the mills as much as possible produces significant NOx reduction. Thus, ,the

advisor recommends only two test points to be repeated enough times to satisfy

the minimum data requirement. These points are mills loaded with no bias and

with maximum bias toward the bottom mills.

The second type of testing is done if the goal of experimentation is to

. ---- .".-'-'- _. ~ ....
...-~-_.- -- .~ .. --,-._- -"+-'.' --.---- --,,-~......-.~---_ .....
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optimize heat rate while limiting NOx to a target value. In this case, it is

important to provide the neural network-optimization package with enough

distinct beta values to generate a relationship between NO
x

and ~ and do

proper optimization. Thus, the advisor recommends zero and minimum bias of

mills as well as values in between.

Rules begin-test-2, no-biasing, calculate-bias, and biasing undertake the

selection and recommendation of the mill bias parameters to be tested (refer to

Figure 22 for flow chart). Rule begin-test-2 selects test points in three stages.

The different stages are activated in turn until the minimum number of required

tests has been satisfied and each stage handles the selection of the mill bias to

be tested next. When the mills module is first initiated, a rule modifies the par

eval slot of the object with the status recommend to hold the value mills to

indicate that the tests that are to follow are for parametric mill testing.

The first stage sets the test point to be done with all the mills loaded

equally. Thus, it modifies the mill-bias slot of the object with the recommend

status to zero. When control of the program comes back from doing this test,

the second stage changes the slot of the object with the recommend status to

hold the value -1. This informs the main module to recommend to the user to

bias back the top mill as much as possible and distribute the extra load equally

among the lower mills.

The third stage of the testing sequence is activated if the goal of the
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experimentation is to optimize heat rate with a constraint on NO
x
• If this is not

the case, the first stage is activated after the second stage and the next test will

be at zero mill bias. The third stage of the testing sequence activates either rule

no-biasing or calculate-bias.

Rule no-biasing is activated only if the difference between the mill RPM

of the top mill when no bias was recommended and when maximum bias was

recommended was not significant (less than the significant RPM defined at the

beginning of the mills module). In this case, the mills can not really be biased

and the rest of the testing is not necessary. End testing is then initiated.

Rule calculate-bias is activated if significant bias was achieved by the

previous two tests. Calculate-bias divides the difference of the top mill RPM at

no bias and minimum bias by three in order to obtain two in-between test

points. If the difference between these two new points is insignificant, calculate-

bias obtains only one point in-between the maximum and minimum biases

tested.

Rule biasing then recommends these test points one at a time by

modifying the values of the mills slot in the object with the status recommend.

This rule makes certain that the total of all the mill RPM's comes to the total

that was recorded when the mills were being run unbiased. The user sees a

slightly different recommendation screen for this test point in that instead of

general advice to run the mills with no bias or with as much bias as possible,

the advisor tells the user at what RPMs to load the mills.
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After all the test points found by the third stage have been tested, and if

the minimum number of tests has not yet been achieved, the first stage of the

testing is reactivated. If the minimum number of tests required have been done,

then rule ending is activated. Rule ending is also fired if a violation has occurred

when biasing the mills. If a violation has occurred or the mills were not able to

be biased, the mil/-bias slot of the object with status recommend is modified to

zero and the par-eval slot is modified to optimized-par. Then, control of the

program is handed over to the main module.

If mill testing was successful and the current objective of optimization is

to minimize NOx, then ending activates a series of rules that evaluate the data

that were generated. Rule curve-fit renames "mil/s.dal' to "vldata.dat' and calls

"vlleast.exe" to do a linear curve fit on the data. Rule evaluate-target, then, uses

the curve that was generated to see if significant reduction in NO
x

was achieved

by biasing the mills. If biasing mills did not produce any results, then the mil/

bias slot of the recommend object is modified to zero. If biasing mills did produce

significant reduction in NOx' then the mil/-bias slot of the recommend object is

modified to -1. If significant reduction was achieved, then the target NO
x

value

is compared with the minimum NOx that was achieved by mill biasing. If the

minimum NOx value was lower than the target NOx value, then the current

objective of minimizing NOx is removed and an objective of minimizing heat rate

is established for the next variable to be tested. At this time, the par-eval slot of

the recommend object is modified to optimized-par and control of the program is
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passed to the main module.

Secondary-Air Module

The secondary-air-damper module tests the dampers in two stages: the

auxiliary air damper$ firs't, and.the fuel air dampers next. At the initiation of this

module the user is given the option of quitting if he/she decides that NOx has

been reduced enough. The option of quitting is again offered when testing of

the fuel air dampers is about to start if the user is not experienced in evaluating

ignition points or if further NOx reduction is not worth the effort of testing the

dampers.

If the user decides to go ahead with auxiliary air damper

experimentation, then rule aux-combinations activates a sequence of rules that

generate various combinations of auxiliary air dampers that the advisor may

select for testing (refer to Figure 23 for flow chart). Rules generate-aux-

combinations, wrong-aux-cause-sum, wrong-aux-comb-full-/oad, remove-insuffident-

aux-com use the rules that were developed by the ERC (refer to Section on

secondary air dampers knowledge base) to develop auxiliary air damper

combinations that have less likelihood of yielding unstable furnace conditions.

Generate-aux-combinations generates combinations of auxiliary air damper

positions where an auxiliary air damper has at least the same or greater open

position as the one a level below it. Wrong-aux-comb-sum removes any of these

combinations that have a sum of damper positions less than fourteen or
._-.-- .-----_ .._--

.'- -._ ..
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greater than eighteen. Wrong-aux-comb-full-Ioad removes combinations where

more than one damper position is at the most closed state.

After the list of auxiliary air damper positions that can be tested has been

compiled, rule aux-starting modifies the par-eval slot of the object with the

recommend status to sec-air to indicate that the coming tests are for secondary

air dampers. It also opens a data file, "auxi.dat' , that is to hold the auxiliary bias

parameters, a, that were tested and the corresponding NOx values. After this

rule is fired, control of the program is handed over to the main module where

the baseline damper settings are tested.

When control of the program comes back after doing the baseline test,

the rules that select the auxiliary air damper settings to be tested are initiated. If

there has not been any limit violation in the last test, next-test-aux finds the

auxiliary air bias of the next test point by calculating the a of the last test and

adding one increment to it. If the furnace condition of the last test was bad, the

new bias is set at the bias of the last test by next-test-aux-bad-furnace. This

would cause the selection of another set of damper settings of the same bias

that might possibly give better furnace conditions. Next-test-aux-bad-furnace also

marks the last combination of damper settings as "bad" for future reference. If

two damper combinations with the same bias yielded bad furnace conditions,

next-test-aux-dampers activates the end of the auxiliary air dampers testing. If the

bias of the last test was the highest auxiliary air bias possible, then both next-

test-aux and next-test-aux-dampers would activate the rules that deal with the end
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of testing.

After the bias for the next test has been selected, a sequence of rules

that chooses a combination of auxiliary air damper positions that yield the new

auxiliary air bias are initiated. Rule possible-dampers selects damper settings

combinations that yield the desired bias from the list of auxiliary air damper

settings compiled previously. In accordance with the rule that damper positions

should be manipulated only one position at a time (refer to Section on

secondary air damper knowledge base), possible-dampers selects only the

damper setting combinations that satisfy this condition. Thus, a combination of

damper settings that yields the desired bias but which has a damper whose

position differs from the last setting tested by more than one increment will not

be selected.

If more than one combination of damper settings were selected by this

method, the following rules are used to sele'ct among them. Choose-dampers-

IVindhox-high removes combinations of dampers which admit less secondary air

into the furnace (sum of damper settings is low) if a violation of high windbox

pressure was detected. Choose-dampers-lV;ndhox-IOIv removes combinations of

dampers which admit more secondary air into the furnace (sum of damper

settings is high) if a violation of low windbox pressure was detected. Choose-

dampers-not-tested selects the damper combinations that have not yet been

tested. If there are more than one combinations left even after these rules have

been fired, choose-dampers-arhitrary chooses one of the damper combinations
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arbitrarily.

Rule prep-experi-aux modifies the object with status recommend to hold the

values of the selected damper positions and writes the (X and the corresponding

NOx of the last test to "auxLdat'. The dampers that are currently going to be

tested are marked "tested" for future reference. Rule jinish-experi-aux is

activated if there are no more auxiliary air damper setting combinations

selected, which will happen if the highest auxiliary air bias has been already

tested, if two damper combinations of the same bias yielded bad furnace

conditions, or if the last test created some limit violation that the user found.

unacceptable. In this case, rule jinish-experi-aux extracts the baseline damper

positions from the object with the status optimum and modifies the recommend

object with these values. This is done to test the baseline conditions at the end

of a testing series to counteract the effect of slagging or other time dependent

uncontrolled variables.

After control comes back to the secondary-air module from testing

baseline control settings, rule end-experi-aux modifies the par-eval slot of the

object with status recommend to optimized-par. If more than one data point has

been collected and the current objective of the system is to minimize NO
x

, this

rule activates a series of rules that analyzes the data.

Rule curve-Jit-aux renames the file "auxLdaf' to "vldata.daf' and calls

"vl/east.exe" to do a linear curve fit on the data. Rule evaluate-target-aux then

checks if the lowest NO, level predicted by this curve gives a significant
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reduction in NOx from baseline auxiliary air bias. If there was significant

reduction in NOx' this rule next checks if the lowest NOx possible is lower than

the target NOx required. If the lowest NOx is greater than target NOx' then the

optimum bias is set at the highest bias tested (which will be the bias that will

yield the lowest NOx') If the lowest NOx predicted is less than target NOx value,

then find-target finds the auxiliary air bias that yields the target NOx using the

curve that was generated from the test data and this bias is set as the optimum

bias for any series of tests that might follow. In each case, both when the

lowest NOx achieved is lower than or higher than the target NOx' a series of

rules that finds the damper combinations that yield the optimum bias is initiated.

Some of these rules are the same as the ones that select the damper

setting combinations of the next test: possible-dampers and choose-dampers-

arbitrary. But instead of using choose-dampers-not-tested to choose among

combinations that were not yet tested, this time the advisor uses rule choose-

dampers-tested to choose among the ones that were already tested. Choose-

dampers-tested-ok-furnace removes combinations of damper settings if bad

furnace conditions were exhibited at those particular settings. Rule Opti-aux-

dampers-found then modifies the object with status recommend to hold the

optimum damper positions and then control of the module passes on to rule

change-to-fuel-da11lpers.

Change-to-fuel-da11lpers warns the user that the presence of a person

experienced in evaluating ignition points is needed to conduct fuel air damper
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testing and gives the user the option of abandoning this series of testing for

now. If the user wants to stop, control of the program is handed over to the

main module. If the user wants to go ahead with the testing, then a series of

rules that handle fuel air damper testing is activated.

As mentioned in the description of the knowledge base, the most

important issue when experimenting with fuel air dampers is to make certain

that unstable furnace conditions or flames that are too near the burners are not

created. Towards this purpose, rule prepare-furnace instructs the user to make

changes on one damper at a time and check the furnace condition each time

before a full test is conducted (refer to Figure 24 for flow chart). The testing

sequence is set so that, first, the fuel air dampers are closed as much as

possible and then, if further closure of dampers is unsafe, the testing sequence

is changed so that fuel air dampers are opened until baseline settings are met.

These testing sequences are interchanged until the minimum number of fuel air

damper tests is met (this number is declared to be seven at the initiation of the

advisor).

Prepare-furnace recommends either the closing or opening of one fuel air

damper at a time by one increment and asks the user to check the furnace

quality and the ignition point after each adjustment. If the user reports that

something bad happened during the last adjustment, the advisor adjusts the

damper back to the last position and moves on to the next damper. If bad
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furnace conditions were seen at a particular burner with a certain damper

position, then further closing of that damper will not be recommended in the

future. After all the dampers have been adjusted once and checked, rule testing-

proceed modifies the fuel-air slot of the recommend object with the new damper

positions that yielded safe furnace conditions and control of the program passes

on to the main module where a real test will be recommended.

A typical damper-checking interaction between the user and the advisor

would look like this:

(baseline fuel air dampers are set at 4-4-4-4 starting from the top level)

Advisor: Please adjust fuel air dampers to 3-4-4-4 and
observe the furnace.

User:

Advisor:

User:

Advisor:

User:

Advisor:

User:

Furnace quality is good.
Ignition points a~e ok.

Please adjust fuel air dampers to 3-3-4-4 and
observe the furnace.

Furnace quality is good.
Ignition points are ok.

Please adjust fuel air dampers to 3-3-3-4 and
observe the furnace.

Furnace quality is ok.
Ignition points are NOT ok.

Please adjust fuel air dampers to 3-3-4-3 and
observe the furnace.

Furnace quality is bad.
Ignition points are NOT ok.

.._;-- .
,~r:l •.···

At this point the advisor would recommend the user to run a test where the fuel
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air damper positions are set at 3-3-4-4.

Rule testing-stop'"TS activated if fuel air dampers can no longer be

adjusted in the current testing direction, or if some limit violation is observed. If

the reason is the former, and if the minimum number of fuel air tests has not

yet been performed, then the testing direction is reversed and testing begins all

over again. But, if limit violation has been observed or the minimum number of

test points has been acquired, rule close-up is activated. Rule close-up modifies

the par-eval slot of the recommend object, removes any unnecessary facts and

hands control of the program back to the main module.

Burner-tilt-auxiliary-air-damper Module

The burner-tilt-auxiliary-air-damper module is activated only if both burner

tilt angle and secondary air damper modules are parameters that have already

been optimized by the advisor and the goal of the optimization exercise is to

minimize heat rate with a target on NOx. This module makes use of what has

happened during the secondary air damper parametric testing and also uses

some of the functions in the secondary-air module. For this reason, the

secondary-air module is visible to the burner-tilt-auxiliary-air-damper module.

The experimental design employed in the burner-tilt-auxiliary-air-damper

module is to test a narrow range of control settings around the optimum values

of burner tilt angle and auxiliary air bias found in previous parametric tests. The

rules and facts in the hurner-tilt-auxiliary-air-damper module address three
,,-~~-;::-c.jr'=';"'~~"'~"::';;~d~~~rl~ ;_o;:¢.-.:,--~-~ .."'.- ~·,~-~:':"~_3,~:.t,·r-~;·:~;~~...:":!n:;;.·,r..'_""·'~ ;'_''':~"'':-:t''.A..:- -';:;'<.~~ :-'~'-;--,~-_.("::::_?' .~'; i.~~~ ....tT:'i.~p-·>:',~.C·.:....-':: • .;.'- -l~:::~.~:':"-~~~:::-_~-~:"L_--;:....>~': "~'.,.- ....:" ~--:.--~7:"'''; ':.~.....~:~~-::::__~::.:

~ ",,- ~

_.- .. - '-... . --- - .. -,' ..,....
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tasks; one set of rul~s determines the six combinations of burner tilt angles and

oxygen levels to be tested (three tilt settings and two auxiliary air dampers);

one set of rules and facts chooses the operating settings to be tested in the

next experiment; and the last set of rules evaluates any limit violation and

accordingly adjust the rest of the combinations of burner tilt angles and auxiliary

air damper settings.

Initial facts in the burner-tilt-auxiliary-air-damper module declare the

range of burner tilt angles to be tested to twelve degrees. Using this fact and

facts stating the highest and lowest burner tilt angles tested in the parametric

module, generate-combinations picks three points each for burner tilt around the

optimum setting determined by the parametric testing module. The two auxiliary

air bias settings to be tested are the lowest and the highest safe biases tested

in the secondary-air module. Form-combinations forms six different paired data

sets of O2 and burner tilt from these points.

Start-test is fired when control is first handed to the burner-tilt-auxiliary-

air-damper module, and it initiates the rules that form the paired data sets of

auxiliary air bias and burner tilt angle (refer to Figure 25 for flow chart). Start-test

also modifies the slot par-eval of the recommend object to tilt-see-air to indicate

that the following test series is for combinations of auxiliary air bias and burner

tilt angle.

Finding-aux then selects one of the combinations of these paired data
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the auxiliary air bias specified in the combination of tilt and auxiliary air bias

settings to be tested next are selected (refer to Section on the secondary-air

module for detailed explanation). Effort is made to test combinations that were

not tested previously if more than two combinations that satisfy the selected

bias are found (rule choose-dampers-not-tested accomplishes this task.)

Rule prep-experi is activated only if there have not been any limit

violations or the violations have been dealt with by the third set of rules that

evaluate violations (third set of rules are discussed below). Prep-experi selects

one of the paired data mentioned above and modifies the object with recommend

status to hold these values in the auxiliary-air-damper and burner-tilt slots. The

control is then handed over to the main module that recommends the testing of

the selected points to the user.

The set of rules that deal with limit violations make use of two kinds of

facts. The first kind deal with common sense knowledge and were described in

detail in the 02-hurner-tilt module. The second kind deal.with specific knowledge

on boiler variables and the facts that deal with burner tilt angle are again listed

in the 0Fburner-tilt module. Facts that deal with auxiliary air bias and any of the

relevant parameters whose limits might be violated as a result of bias

manipulations were not included since these relationships have not yet been

well established. For instance, the effect of auxiliary air bias on steam

temperatures is not known.
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Rules action-on-violations, analyze-facts-l and analyze-facts-2 use the above facts

to deduce what the proper action for a particular violation should be. For

instance, if main steam temperatures became too low, then these rules

conclude that the proper action is to raise the burner tilt angle. Rules evaluate-

violations-tilt-low, and evaluate-violations-tilt-high remove combination of auxiliary

air bias and burner tilt settings from the selected list depending on what the

proper action was concluded to be. For instance, if the proper action was found

to be to raise the burner tilt setting, then evaluate-violation-tilt-low removes

paired data containing burner tilt settings lower or equal to the one tested last

from the paired sets that have not been tested yet.

If there has been a limit violation and the set of rules that deal with

violations can't handle this particular problem, or al.1 the selected paired tilt and

. .
auxiliary air bias set points have been tested, rule finish-experi is fired. Finish-

experi modifies the par-eval slot of the object with the status recommend to

optimized-par to indicate to the main module that the factorial test of tilt and

auxiliary air bias is finished. Control of the program is then handed back to the

main module since all the data analysis of this module is handled by the neural

network-optimization package at the conclusion of all testing.
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Results

While the expert advisor is not ready to be tested in an environment of

its intended use, as an initial check, correlations of data from parametric tests

at Potomac River Unit 4, and functions created to approximate behavior of the

variables were used to run the program. Equations 7, 8, 9 and 10 show

correlations of the parametric data gathered from Potomac River Unit 4 for full

load operation [18].

NOx = 0.182 + 0.128'02 + 3.44.10-4 .tilt 2

- o. 006 53 . til t + o. 0192 . ° 2 , tilt

Main steam temperature = 1141.43 -138.662.°2
+ 26. 893 . ° 2

2 + 1. 105 . 02 . til t

Reheat steam temperature = 1121.07 - 154.639.°2
2 '1+ 3 0 . 6 . 02 + 1. 121. ° 2 , t ~ t

Lor = 17.4398 02-1.0348

(7)

(8)

(9)

(10)

The NOx equation was artificially adjusted to show influences of ~, a

and fuel air dampers. Functions that approximated the behavior of CO and
",_,__ ,-1.."0 -_" ..... ~_"""•._~_. ._,-__ • __. ' ..

..~~..,~-'_~r. -'r..::,::,::),~~~;--<~:..:._'. ~ ._.
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,
opacity (see Figure 7 and Section on knowledge base) were created and used

in trial runs. Furnace oxygen was approximated by adjusting the economizer

oxygen setting downward by 1.4 percent to account for convective pass in-

leakage. Other parameters were disabled for the trial runs. Figure 26 and 27

show v~riations of main steam temperature and reheat steam temperatures with

burner tilt angle for one trial run. These curves are not smooth since the

temperatures vary with 02 which was varied in the trial run. Figures 28, 29 and

30 show variations of CO, opacity and LOI with O2 for the same trial run.

The advisor was run for different optimization goals, system limits, and

initial conditions. Three trial runs were analyzed: trial run 1 had an optimization

goal of minimizing heat rate with a constraint of 0.41 Ib/MBtu on NOx' All the

control parameters were tested in trial run 1. Trial run 2 had an optimization

goal of minimizing NOx' with testing performed on all the control parameters.

Trial run 3 had an optimization goal of minimizing heat rate with a constraint of

0.41 Ib/MBtu on NOx. Testing was performed only on economizer oxygen, mills

and auxiliary air dampers for this case. Recommended trial settings in all the

trial runs were found to correspond to tho~the knowledge base and to the

experimental procedures used in the design of the advisor. The advisor warned

the user every time there was a violation in one of the safety and performance

parameters. Test runs were reviewed by ERC engineers and approved as tests

they would have recommended to achieve the same goal.

Figures 31, 32 and 33 show NOx versus test numbers for the three trial
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runs, and a general trend of experimentation towards decreasing NO, can be

seen. Trial 1 obtained the largest number of data points in accordance with

optimizing two dependent variables, and trial 3 had the fewest number of data

points because three instead of five parameters were tested.

Figures 34, 35, and 36.~how NO, versus oxygen from data collected

during parametric testing of economizer oxygen. The settings where opacity

violations occurred are indicated and there are no oxygen data below these

points. Note that the user did not accept the opacity violation at a higher

oxygen setting in trial 3. Figures 37, 38 and 39 show the oxygen settings as

testing proceeded. In all three trial runs, economizer oxygen parametric testing

was done first and the first test was repeated once the lowest possible 02 was

tested. Then, economizer oxygen was set at 0.2% above the lowest acceptable

02 setting for the remainder of the testing (note that the lowest 02 tested was

not acceptable). For the first trial only, 02 was varied in one more series of

testing in a factorial oxygen and burner tilt testing procedure. This procedure

was not performed in trial 2 since the optimization objective was to just

minimize NO" and it was not done in trial 3 since the burner tilt was locked in

position.

Figures 40 and 41 show NO, and burner tilt angle for trial runs 1 and 2,

and the angle that gave the minimum NO, can be seen to be around 4°.

Figures 42 and 43 show burner tilt recommendations as testing proceeded.

After the parametric burner tilt testing was performed, for tests where burner tilt

~,--~c-,~,--,-~_._

-c7~ -::--_~ -:;r ~.' -
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was not varied, it was set at the minimum angle of 4°. In trial run 1, where the

optimization objective was to minimize heat rate and NOx, factorial experiments

on 02 and burner tilt, and factorial experiments on burner tilt and auxiliary air

dampers were performed.

Figures 44, 45, and 46 show mill biases as testi~g proceeded. The

biases in all three trials were set at 0 before parametric mill testing was done,

and then they were set at the minimum values possible once downloading mills

was found to produce significant reduction in NOx (see Figures 47, 48 and 49.)

Trials 1 and 3 show a few distinct ~ values, while trial 2 shows ~ values just

around 0 and at minimum ~. These two different patterns occured for the

following reasons. When the objective is to optimize both NOx and heat rate, a

few distinct ~ points are needed to learn the real relation of ~ with NOx and

heat rate. Conversely, when the objective is to just minimize NO
x

, the only

information needed is whether downloading mills as much as possible produces

a significant reduction in NOx'

Figures 50, 51 and 52 show auxiliary air bias settings as testing

proceeded. The last test in each of the parametric testing series was a repeat

of the first test to correct for boiler slagging. After the parametric test in trial run

1, the auxiliary bias setting was returned to the original bias since the target

NOx condition of 0.41 was already achieved (see Figure 53). In trial 2, even

though NOx was at similar levels as in trial 1 (see figure 54), auxiliary bias was

set at the highest settings after the parametric test, since the objective is to find
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the lowest NOx possible. In trial 3 (Figure 55), replicate auxiliary air bias

settings were obtained since bad furnace quality was reported and the advisor

recommended different damper combinations that result in the same bias.

Tables 1, 3 and 5 list the different auxiliary air damper setting combinations

tested. Tables 2 and 4 show fuel air dampers recommended for trial runs 1 and

2. Damper settings for both the auxiliary air and fuel air dampers are listed

starting with the top most damper on the boiler. In trial run 3, the user declined

to run fuel air damper tests.
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Main Steam Temp. vs Burner Tilt
trial run 1, minimize heat rate & NOx
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Reheat Steam Temp. vs Burner Tilt
trial run 1, minimize heat rate & NOx
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co vs Economizer oxygen
trial run 1, minimize heat rate &NOx
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Opacity vs Economizer oxygen
trial run 1, minimize heat rate &NOx
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LOI vs Economizer oxygen
trial run 1, minimize heat rate &NOx
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NOx vs Test #
trial run 1, minimize heat rate & NOx
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NOx vs Test #
trial run 2, minimize NOx
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NOx vs Economizer 02 (parametric)
trial run 1, minimize heat rate & NOx

2.52.31.9 2.1
Economizer 02 (%)

1.7

x

x
,

x

.... opacity limit
0.4

0.36
1.5

0.52

0.56

d 0.44
z

s-
CO 0.48
~

:0-
:::::::-

# ..

Figure 34

I;-C'~·=O'::::'~"·~;·,:., ....:~,,·.::.• ,,-~·•.~ ..•~.;:~-,..c,~-;:':~-~=>":::::.:-- -.~~::'::", ..,...~~:~:::.:-:;.,:-~---"""'''---::-~"''"''.'''~-' """7':.::-,~,c:·,. ~ __= ..::-...~~._.'O-;.~,,_ ...--:~ '. -:;:..;.. ';"'0.----..;..,;;-:--.-- .- .. . .- -_.. ----- ."._-:-- ._'-:...--_ ..... ,_ ..:'--.-'-.,~.. ,,,,,.- ~--' .....~.",."..--_ ...•---_.
--, .."-~~-~=~=.•. ~=.•....~-.c-"-" .•=.,.=c:c=.=·,=:c:;:-_-_·.._•.. c.........,2:.."==.. o·-·:''::':;':''''~'::;';:;;':;':~I

115 I

I

I

i



NOx vs Economizer 02 (parametric)
trial run 2, minimize NOx
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NOx vs Economizer 02 (parametric)
trial run 3, minimize heat rate & NOx
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Economizer oxygen vs Test #
trial run 1, minimize heat rate & NOx
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Economizer oxygen vs Test #
trial run 2, minimize NOx
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Economizer oxygen vs Test #
trial run 3, minimize heat rate & NOx
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NOx vs Burner tilt (parametric)
trial run 1, minimize heat rate & NOx
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NOx vs Burner tilt (parametric)
trial run 2, minimize heatrate & NOx
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Burner Tilt vs Test #
trial run 1, minimize heat rate & NOx
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Burner Tilt vs Test #
trial run 2, minimize NOx
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Mill Bias Parameter vs Test #
trial run 1, minimize heat rate & NOx
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Mill Bias Parameter vs Test #
trial run 2, minimize NOx
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Mill Bias Parameter vs Test #
trial run 3, minimize heat rate & NOx
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NOx vs Mill Bias (parametric)
trial run 1, minimize heat rate & NOx
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NOx vs Mill Bias (parametric)
trial run 2, minimize NOx

-0.00-0.02-0.06 -0.04
Mill bias, beta

-0.08

3 replicate data ~

x ... 2 replicate datax

0.56

0.52

0.4

0.36
-0.10

s-
al 0.48
~-.c::::::.

<S 0.44
z

Figure 48

129



NOx vs Mill Bias (parametric)
trial run 3, minimize heat rate & NOx

0.56

0.52

~ 0.44
z

0.4

3 data
2 data ..

~~ •

,. '.,., r_&_

2 data

0.36
-0.08 -0.04

Mill bias, beta

Figure 49

0.00

:i.~~""'::-~;;r:\:'::-i r"-~":-::;'~----'''''~;'--!;'- ",.. ~_-... :,, .. ~ ) .__ . ,__ ,_. _...~..-.....: -~- .....oo;:~:~.-:.,.~;-:.~~~_~'~'~~~'C ..,..... " r'f::':'":·",. -....'l-.r'---:;:.:.c-"..ri:--:-.=-~~~~::·~ ..... -~:....~~::~_·:·,·~_· ...~~·:c~·_:.-::~ .....'_·.....:·~~,·.>::i-7·~~!"'"7~j:_~:~~-:'-"Ci'C:~
, ..... -- ... -: "'-.~. .. ','

130



Auxiliary Air Bias vs Test #
trial run 1, minimize heat rate & NOx
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Auxiliary Air Bias vs Test #
trial run 3, minimize heat rate & NOx
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NOx vs Alpha (parametric)
trial run 1, minimize heat rate & NOx
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NOx vs Alpha (parametric)
trial run 2, minimize NOx
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Table 1 Auxiliary Air Dampers Tested During Parametric Testing (trial 11

test 02 tilt beta fuel-air NOx alpha aux-air flame

35 1.9 4 -0.071 4AA,4 0.39 0.50 4A,2,2,2 ok

36 1.9 4 -0.071 4AAA 0.39 0.58 5A,3,3,2 ok

37 1.9 4 -0.071 4AAA 0.39 0.67 5AAA,1 ok

38 1.9 4 -0.071 4,4AA 0.39 0.75 5A,3,3,1. ok

39 1.9 4 -0.071 4AAA 0.39 0.83 5,5,3,3,1 ok

40 1.9 4 -0.071 4,4AA 0.39 0.92 5,5,2,2,1 ok

41 1.9 4 -0.071 4AAA 0.39 0.50 4A,2,2,1 ok

50 1.9 -2 -0.071 4AAA 0.39 0.50 5,3,3,3,2 ok

51 1.9 4 -0.071 4AAA 0.39 0.50 4AAA,1 ok

52 1.9 10 -0.071 4AAA 0.39 0.50 4,3,3,3,1 ok

53 1.9 -2 -0.071 4AAA 0.39 0.75 5AA,3,1 ok

54 1.9 4 -0.071 4,4AA 0.39 0.75 5,5,3,2,2 ok

55 1.9 10 -0.071 4444 0.39 0.75 55222 ok

Table 2 Fuel Air Dampers Tested During Parametric Testing (trial 11

test 02 tilt beta alpha NOx fuel-air flame

42 1.9 4 -0.071 0.50 0.38 3,3,3,3 ok

43 1.9 4 -0.071 0.50 0.38 2,3,3,3 ok

44 1.9 4 -0.071 0.50 0.39 3AAA ok

45 1.9 4 -0.071 0.50 0.39 4AAA ok

46 1.9 4 -0.071 0.50 0.39 3,3,3,3 ok

47 1.9 4 -0.071 0.50 0.39 2,3,3,3 ok

48 1.9 4 -0.071 0.50 0.39 3AAA ok

49 1.9 -2 -0.071 0.50 0.39 4444 ok
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Table 3 Auxiliary Air Dampers Tested During Parametric Testing (trial f.l

test 02 tilt beta fuel-air NOx alpha aux-air flame

23 1.9 4 -0.086 4,4,4,4 0.39 0.50 4,4,2,2,2 ok

24 1.9 4 -0.086 4,4,4,4 0.39 0.58 5,4,3,3,2 ok

25 1.9 4 -0.086 4,4,4,4 0.38 0.67 5,4,4,4,1 ok

26 1.9 4 -0.086 4,4,4,4 0.38 0.75 5,4,3,3,1 ok

27 1.9 4 -0.086 4,4,4,4 0.38 0.83 5,5,3,3,1 ok

28 1.9 4 -0.086 4,4,4,4 0.38 0.92 5,5,2,2,1 ok

29 1.9 4 -0.086 4444 0.39 0.50 44221 ok

Table 4 Fuel Air Dampers Tested During Parametric Testing (trial f.l

test 02 tilt beta aloha NOx fuel-air flame

30 1.9 4 -0.086 0.92 0.37 3,3,3,3 ok

31 1.9 4 -0.086 0.92 0.36 2,3,3,3 ok

32 1.9 4 -0.086 0.92 0.37 3,4,4,4 ok

33 1.9 4 -0.086 0.92 0.38 4,4,4,4 ok

34 1.9 4 -0.086 0.92 0.37 3,3,3,3 ok

35 1.9 4 -0.086 0.92 0.36 2,3,3,3 ok

36 1.9 4 -0.086 0.92 0.37 3,4,4,4 ok

37 1.9 -2 -0.086 0.92 0.38 4444 ok

--~
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Table 5 Auxiliary Air Dampers Tested During Parametric Testing (trial ~

test 02 tilt beta fuel-air NOx alpha aux-air flame

16 2.1 15 -0.029 4,4,4,4 0.48 0.50 4,4,2,2,2 ok

17 2.1 15 -0.029 4,4,4,4 0.47 0.58 5,4,3,3,2 ok

18 2.1 15 -0.029 4,4,4,4 0.47 0.67 5,4,4,4,1 ok

19 2.1 15 -0.029 4,4,4,4 0.47 0.75 5,4,3,3,1 bad

20 2.1 15 -0.029 4,4,4,4 0.47 0.75 5,4,4,3,1 ok

21 2.1 15 -0.029 4,4,4,4 0.47 0.83 5,5,3,3,1 bad

22 2.1 15 -0.029 4,4,4,4 0.47 0.83 5,5,4,3,1 bad

23 2.1 15 -0.029 4444 0.48 0.50 44221 ok
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DIAGNOSTIC ADVISOR

Introduction

The objective of the diagnostic advisor is to investigate reasons of high

NOx levels in a boiler that has already been optimized for low NOx operation.

Such a boiler would have operated at the targeted NOx levels for a period of

time, before, either gradually or suddenly, it starts producing high NOx levels. In

this case, the advisor is used to find possible causes of high NOx and guides an

engineer through a series tasks and questions towards this purpose. The

engineer is assumed to be experienced in running investigative experiments

and in making judgements on test data and other boiler operational issues.

In designing the diagnostic advisor, possible causes of high NOx and the

evidence that points to these causes were gathered from ERC engineers. This

information was based from past experiences in diagnosing reasons for

increases in NOx in boilers and from speculations based on knowledge of NO
x

formation mechanisms and knowledge of boiler hardware.

The knowledge gathered was organized in the form of possible causes of

high NOx levels, and clues that would indicate if these causes were present.

These clues could be data obtained from the online data acquisition system,

information from tasks or experiments requested by the advisor, historical

information on the boiler, or other boiler observations made by the engineer.

These causes and clues, the diagnostic process employed by the

advisor, software architecture and present status of the software are discus_s~~
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in the next sections.
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Knowledge Base

The knowledge used as the basis of the diagnostic advisor was gathered

from ERC engineers who used their past experiences in trouble-shooting boilers

producing unexpectedly high NOx, or speculated on what could go wrong using

their knowledge of NOxformation~ The first stage of gathering this knowledge

included identifying all the possible causes of high NOx and the evidence that

would help identify if a particular cause was present. The second stage in

gathering the knowledge focused on identifying and understanding the

investigative process employed by the engineers when trying to identify the

possible problem areas, and then implementing a working technique for the

diagnostic advisor.

Causes of .t:J.lQ..tLNOx_Levels

Twelve categories of problems were identified as possible causes of high

NOx levels. These causes affect NOx formation in varying degrees. Under each

cause the evidence that could alert the engineer to the existence of that cause

was listed. This evidence is found by performing tasks such as analyzing data

for unexpected trends, performing specific experiments that prove or disprove

the nature of the problem, checking for any malfunctioning boiler components,

and identifying when or over what load range high NOx levels occurred.

Incorrect Control Settings

The first cause. identifies incorrect control settings as a possible reason

...... . -.,',.. ' -- ;:
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of high NOx' Once a boiler has been optimized for low NOx operation, if, for

some reason, the boiler is set at points other than the recommended settings, it

would start producing different NOx levels that are, very possibly, highe~ than

usual. As discussed in the optimization advisor section, the boiler control

parameters used to reduce NOx are economizer oxygen level, burner tilt angle,

the number of mills in operation, the coal bias among burners, auxiliary air

damper positions and fuel air dampers positions. The first and only task

involved in verifying if control parameter settings could be a cause of high NOx

is to check if the current control settings correspond to recommended control

settings.

Besides the parameters listed above, exhauster damper positions and

mill classifier settings (see Figure 3 ) are two parameters that are not

considered in the optimization advisor, but could also be optimized for improved

boiler performance and reduced emissions. The exhauster damper positions

control the flow rate primary air transporting the pulverized coal to the burners

and the mill classifier settings control the fineness of the coal that is being

pulverized.

A mill that is performing below acceptable levels can indirectly affect NOx

levels by instigating other problems. If boiler performance is suffering because

of mill performance problems and LOI values are very high, then plant

operators would compensate by increasing the oxygen levels and thus create

high NOx levels. Mill performance problems can also affect the maximum rate of
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coal flow and influence the extent the mills can be biased. Thus, in order to be

able to adjust the oxygen levels back to recommended settings or to be able to
\

bias\~ills, the mill performance problem would need to be fixed. LOI values and

co.~e-ntrations that are t60 high for the current oxygen setting, and mil! exit

temperatures, mill suction pressures, mill currents and mill amps to feeder RPM

ratio that are unexpected for the current mill settings are clues to a mill that is

not performing to standard. Mill rejects that are unusually high in quantity or

contain too much coal, or coal fineness that does not correspond to the mill

classifier settings can also indicate a mill that is not performing well.

Oxygen Sensor Malfunction

A problem with economizer 02 sensors is another possible cause of

high NOx' This problem could exist as a result of incorrect calibration, loss of

calibration, sensor malfunction or changes in the O2 stratification patterns in the

economizer. This means that the oxygen readings in the control room do not

reflect the true measure of oxygen in the boiler. The presence of this problem

could be identified by the existence of one or all of the following: LOI values

that do not compare to typical values; calibration reports that show serious drift

in calibration points or inaccurate calibrations; calibration lines that have leaks;

different sensors producing significantly different outputs or no output; and flue

gas flow rate that does not correspond to the indicated economizer oxygen

setting. Comparison of independent traverse measurements of oxygen in the

economizer with the sensor readings would finally prove or disprove sensor
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malfunctions.

Boiler Air Leakage Change

Changes in rates of boiler air leakage to the furnace or convective pass

could significantly affect NOx levels since it affects the amount-of oxygen in the

boiler, which has been shown to be a major factor in NOx fermation. It could

also affect NOx rate calculations if the rate equation is based on excess oxygen

levels. The existence of changes in leakage in the convective pass can be

detected by comparing furnace oxygen levels with economizer oxygen levels to

see if there is a change in the difference from previous times. Checking boiler

maintenance records for any recent work on the boiler or inspecting the boiler

envelope for any visible changes are also steps that can be taken to ascertain

changes in boiler air leakage. Finally, performing leakage measurements would

ascertain changes in rates of leakage.

Malfunctioning Burner Tilt and Air Damper Sensors

Burner tilt angle, secondary air damper, or exhauster damper sensors

could be malfunctioning and the indication outside of the boiler could be

different from the readings in the control room. This is a problem in the signals

that are sent from the boiler components to the control room. Steam

temperatures that are not within the typical range for the burner tilt setting could

indicate a malfunctioning burner tilt sensor. Unexpected windbox pressures

could indicate a problem with the secondary air damper sensors, and

unexpected exhauster discharge and mill suction pressures could indicate
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problems with the exhauster damper sensors. Performing burner tilt damper

surveys, secondary air damper surveys or exhauster damper surveys would tell

for certain if any of these problems exist. Surveys are visual checks of the

indicators outside the boiler to see if they correspond to control room settings.

Malfunctioning Burner Tilt and Air Damper.Mechanisms

Even if the sensors discussed above were not malfunctioning and show

the true values, the mechanisms that operate these boiler components could be

broken and the indicators outside the boiler might not show what is really

happening inside the boiler. For example, if the burner tilt mechanisms were

broken, changing the burner tilt settings in the control room would change the

burner tilt indicators outside the boiler, but the actual burner tilts would not

change. The same scenario could happen for secondary air damper

mechanisms and exhauster damper mechanisms. Performing boiler surveys at

two different control settings would demonstrate the existence of this type of

problem, if the indicators outside the boilers change but nothing else in the

state of the boiler changes. Checking if variations in burner tilt setting produced

insignificant or unexpected changes in NOx and steam temperatures would

produce clues to a malfunction in the burner tilt mechanisms. Insignificant

changes in windbox pressure and NOx to variations in secondary air damper

changes would indicate malfunction of secondary air dampers, and insignificant

response of exhauster discharge and mill suction pressures to variations in

exhauster damper settings would indicate a malfunction of the exhauster
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damper mechanisms. Making visual furnace inspection might also reveal broken

tilt mechanisms.

Coal Feeder Malfunctions

Coal feeder malfunctions can contribute to high NOx problems by not

delivering the desired quantities of coal to individual mills. The malfunction

could be attributed to a number of different reasons that could be detected by

one of the following ways. If the mill amps to feeder RPM ratio is radically

different from typical values, if desired mill exit temperatures can no longer be

achieved, if mill suction pressures can not be maintained, or if mill output is not

steady, then there is reasonable likelihood of a coal feeder malfunction.

Performing feeder counts and comparing it to the motor RPM signal would also

reveal inconsistencies. Inspecting a feeder for blockages, uncontrolled coal

flow, malfunctioning feeder leveling arm or other irregularities is another step

that would be taken if coal feeder malfunction is suspected.

Fuel Quality Change

Since "fuel NOx" is shown to be directly related to fuel quality, changes in

fuel quality could be a cause of high NOx levels. Poor quality coal can result in

high LOI values, and coal that does not grind well or is wetter than usual can

affect the quantity, fineness and flow of coal delivered to the burners. If,

typically, mills can be biased at full load, but at the present, full capacity of mills

~

is needed to achieve load levels, the problem might be a result of changes in

fuel quality instead of C! millperforma.n.~~, 1?~~~lenl ?S mentioned earlier.. _,.....
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High LOI values and CO concentrations that are different from typical

values might be used as an indication of changes in the quality of the coal

supply. Coarse coal grind, unexpectedly high mill amps, too much mill rejects or

mill rejects that contain too much coal might also point to poor quality coal.

Manual and visual inspection can reveal a very wet coal supply or unusually

large chunks of coal that should have been ground better before reaching the

mills.

Performing proximate and ultimate analysis of the coal would also give

more accurate information on the current coal supply. Proximate analysis is

performed by heating the coal and gives certain characteristics of the coal:

moisture content, volatile matter, fixed carbon and ash. Two additional tests

which are routinely performed provide information on heating value and ash-

fusion temperature. The Hardgrove Grindability Index, HGI, provides information

on the hardness of the coal [1]. The ultimate analysis gives the elemental

components of the coal: carbon, hydrogen, nitrogen, oxygen and sulfur.

~

Error in CEM Calibration

Calibration problems with the continuous emissions monitoring system

(CEM) could be the cause of high NOx readings, when in reality the NOx levels

are unchanged. The CEM measures NOx and CO2 levels. Infrequent calibration

could result in serious drift in calibration and may be used as a first clue that

there might a problem with the CEM. A problem with the calibration gases used

in the last calibration could also result in a CEM measurement error and -_ .. _-,.-.........,.-
~"'";,;,:.'_._,-'" ..... , ••-..-..:>;<..r......-""'--"""~••::1<,,-.'.:!,..~_-_.~:_~ ...-~ ....-'"...,..-.":-- --_. --- ...-.
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recalibration using a new batch of calibration gases would fix this problem.

One possibility for detecting CEM calibration problems involves analyzing

the fuel factor, Fo' The F0 of a particular type of fuel reflects the combustion

characteristicsbf the fuel and it-should-fallwithin a-range of values (see Table

6).

20.9-%0 2
Fa = %CO

2

(11)

If the calculated F0 value (see Eqn. 11) is not within the typical range, it could

be the result of incorrect CO2 or O2 readings [22].

Table 6 Typical Eo_Values for Different Fuels [22]

Fuel Type Fo range

Coal Anthracite and 1.016 - 1.130
lignite

Bituminous 1.083 - 1.230

Oil Distillate 1.260 - 1.413

Residual 1.210 - 1.370

Gas Natural 1.600 - 1.836

Propane 1.434 - 1.586

Butane 1.405 - 1.553

Wood 1.000-1.120

Wood bark 1.003 - 1.130
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Unexpected F0 values could also be a result of fuel changes. It is

recommended that O2 and CO2 be measured at the same location and they

both be measured on a dry basis

CEM Mechanical or Electrical Problems

Mechanical or electrical problems with the CEM could cause a problem

with the NOx signal and result in high NOx readings. Out of range values of NOx

and CO2 could be a result of this problem. Performing calibrations on NOx and

CO2 , and checking for disagreement with CEM output signals would verify the

presence of this problem. Finally, to identify the precise nature of the problem,

sampling lines should be checked for leaks, and wiring should be checked for

short or open circuits.

Error In.-NOx_Rate Calculations

Error in NOxemission rate calculations is another cause of false high

NOx levels. NOx is calculated according to EPA method 19, and sampling and

measurement techniques determine the equation that should be used. The NOx

gas sampling can be done on a dry basis or wet basis, the rate calculation can

be based on 02 or CO2 (the calculation gas), and the calculation gas sampling

can be done on a dry or wet basis. Table 2 shows a compilation of all the

equations as listed in EPA method 19 (see Ref 23). The concentration of NOx is

measured in ppm and multiplied by 1.194.10-7 to convert it to Ib/scf and the F

factor is in units of scf/MBtu which gives a NOx rate of Ib/MBtu. The F factor of

a fuel is found by diViding the volume of the gaseous products of combustion by
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the heat content of the fuel. The wet F factor, Fw' includes all products of

combustion, the dry F factor, Fd, excludes moisture, and the carbon based F

factor utilizes CO2 measurement. F factors of different fuels ,as listed in

Reference 23, are shown in Table 8. Bwa is the moisture content of ambient air

and usually can be approximated by 0.027 [23]. BW9 is the moisture fraction of

the flue gas and is measured directly.

NOx emission rate calculation errors, resulting in change in NOx level

reading, can occur in a number of different ways if sampling locations, methods

or computer calculation methods are altered by plant personnel without the

appropriate accompanying changes. If NOx and the calculation gas are not

measured in the same location, none of the equations in Table 7 are valid.

Errors can also occur by using equations that are not appropriate for the

sampling method, or using the wrong parameter for the sampling method and

the fuel type (see Tables 7 and 8).

As already mentioned in previous sections, excessively dirty boilers

cause increases in NOx emissions (see Figure 12). First clues to a dirty boiler

are very high steam and furnace exit gas temperatures. Since the burner tilt .

angle is automatically reduced if steam temperatures are too high, very low

burner tilt angles could be an indication of a dirty boiler. Checking if sootblowing

occurs at acceptable frequencies, whether the appropriate sootblowers are

=;~-~_."'~ -;~;~~J·L~§.9,.~~D(:Llr t~_~.~~~dt~l9-~~rsare m$JILJP£ti<lOJ09...wQldlSLtsD_C:>Y.J1f__ .
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Table 7 NOx_Rate Equations

NOx sampling calculation gas sampling NOx rate equation
method gas method NOx(lb/MBtu) =

dry O2 dry NOxL·(20.9)
(20.9 - %02)

wet O2 !'Net NOxLw·(20.9)
20.9(1 - Bwa) - %02

NOx£·(20.9)
20.9(1 - Bwg) - %02

~et O2 dry ~£.(20.9 - %021
20.9 . (1 - BWg)

dry O2 ~et NO £.(20.9)
(20.9) - _ 02_

(1 - BWg)

dry CO2 dry NOxL·100
%C02

~et CO2 ~et NOxL·100
%C02

~et CO2 dry NOxL·100
%C02·(1 - Bwg)

dry CO2 ~et NOxL·100.(1 - Bwgl
OfoC0 2 ·

the boiler is too dirty or not. Finally, a visual inspection of the furnace might

reveal slag build-up.

Improper Ignitor Usage

The last problem identified as a possible cause of high NOx is ignitor

usage. Vi~ua~ insp.ection of the furnace by experienced plant personnel could
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Table 8 F Factors for Various Fuels [231

Fuel type Fd Fw Fe
scf/MBtu scflMBtu scf/MBtu

Coal Anthracite 10,100 10,540 1,970

Bituminous 9,780 10,640 1,800

Lignite 9,860 11,950 1,910

Oil 9,190 10,320 1,420

Gas Natural 8,710 10,610 1,040

Propane 8,710 10,200 1,190

Butane 8,710 10,390 1,250

wood 9,240 1,830

wood bark 9,600 1,920

Municipal 9,570 1,820
solid waste

reveal improper use of ignitors, malfunctioning ignitors, or improperly aligned

ignitors. Ignitors might also need purging.

Since, for each cause, there are a number of different forms of evidence

gathering, the engineers identified the tasks that they would give priority in

performing. A priority is given to a particular evidence gathering task either

because it is the easiest to perform, or because it would provide the most

information. For instance an engineer would check LOI values, go over

calibration reports, and check for calibration line leaks before ordering traverse

measurements of the economizer to identify O2 sensor problems.

The existence of a piece of evidence could be the result of ar:1Y one of a
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number of causes and varying degrees of weight are associated to the

likelihood of each cause. For example, if LOI values are unexpectedly high,

one would strongly suspect fuel quality problems, be somewhat suspicious of

malfunctioning economizer O2 sensors and finally be aware of the possibility of

mills that are not performing to standard. This is reflected in the different
--< .--,.' ~ "

weights given to each one of the problem areas.

Diagnostic Process

To design a technique for the diagnosis of the above causes, it was first

necessary to understand the investigative process employed by the NO
x

control

engineers. Even though different engineers use slightly different techniques and

follow different paths, the principle underlying their techniques was established.

When the fact that there is a high NOx problem at a particular unit is first

discovered, general questions that would characterize the boiler, operating

conditions, and the nature of the NOx problem are asked. Using this information

as a basis, the more likely causes are identified. In the case where high NO
x

levels are observed over the whole load range of the unit, change in the

chemical composition of the fuel supply, calibration error of sensors and CEM,

and error in the NOx rate calculations, would be identified as likely causes. In

cases where the high NOx levels occur over only a specified load range,

improper control settings could be the cause. If the deviated NO
x

levels occur
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NOx is minimized at high loads. The character of the change in NOx from

acceptable levels also provides clues to the problem area. Sudden changes in

NOx would be more likely a result of mechanical or electrical problems with the

CEM, while a gradual change would be more likely to result from a boiler

becoming more heavily slagged with time.

Likely causes can also be identified based on past experience. For

example, if a plant engineer who has worked with boilers for several years sees

the boiler suddenly exhibit unacceptable trends, he/she might immediately get a

"gut feeling" as to where the problem lies. This feeling is developed over a

number of years of encountering a particular problem. Since the utility industry

does not have extensive experience with trouble shooting boilers for high NOx

problems, this type of apriori likelihoods are not incorporated into the advisor.

Instead, in the absence of any evidence, the engineers might give some

causes priority over others based on intelligent guessing, choosing the causes

that are easy to verify, choosing causes that would have the greatest effect on

NOx, or just as a matter of style. For instance, checking if the control

parameters were on their recommended settings came very high on the list of

all the NOx control engineers interviewed.

Then, some initial data that are easily available are also analyzed to see

if a particular cause is more likely than others. For instance, high steam

temperatures would point in the direction of a dirty boiler, and, by a smaller

degree, to malfunctioning tilt indicators or broken tilt mechanisms. Non typical
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mill suction pressures would point to coal feeder malfunction or malfunctioning

exhauster damper indicators.

Based on the initial information and data described above, a list of likely

causes of the high NOx levels is formed. Some causes would be higher in the

list than others since they would have either stronger or a larger quantity of

evidence pointing in their direction. These causes are now investigated one at a

time with the checks, experiments, or exploratory tasks described in the

previous section. These investigations would either disprove that a particular

problem exists, or improve the likelihood of the presence of a problem. If a

problem is found to exist, it is corrected, and the investigation of other causes is

continued until the level of NOx is returned to acceptable levels.

To represent the process described above, various models were

explored. The challenge lay in characterizing the expressed likelihoods,

suspicions, probabilities, and uncertainties. How can a statement like "If LOI is

too high, there is a strong likelihood that there is a mill performance problem,

some chance of problem with fuel supply, and a small probability of

malfunctioning economizer oxygen sensors." be expressed in the expert

system? How can mounting suspicion towards a particular problem be

represented as more and more evidence is gathered?

Representing uncertainty in expert systems was identified as a very

important field in AI, and a number of models have been developed to aid with

this task. There are different sources of uncertainty in knowledge based
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systems: data or information could be imprecise; knowledge could be heuristic

or intuitive, and even if it helps the expert guess well, it is not certain;

knowledge could be on the probability of an event; information could be

incomplete; and information could be qualitative. Various models were

developed or used to deal with these types of uncertainties: probability theory,

belief networks, certainty factors, Dempster-Shafer theory, and fuzzy set logic

[7,24].

The certainty factors method was chosen for the diagnostic advisor since
,

it is one of the most widely used and easily applied methods, and it has a

proven record with diagnostic systems. This method was developed by Sortliffe

and Buchanan for MYCINE, the earliest, and one of the most successful

medical diagnostic expert systems (see section on expert systems) [6,25].

In the certainty factors method, a statement, A, is associated with a

certainty measure C(A), such that C(A) = 1, if A is true, C(A) = -1 if A is false,

and C(A) = a if nothing is known of A. So, a statement could have a certainty

measure that is anyWhere between -1 and 1, indicating some degree of

certainty on the statement. On the other hand, rules have a certainty factor, CF,

that ranges between -1 and 1. The certainty factor is a measure of the reliability

of a rule and is expressed in the following manner: If A, then B with a certainty

factor = y.

"If you turn on the light switch and the light does not come one, then the bulb is

burnt out, with CF = 0.8" is an example of an~.v~l)'da.y rule ~ressed with a . _ .
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(13 )

certainty factor.

In order to calculate the certainty measure of the consequence of a rule,

Equations 12, 13 and 14 are used. For a rule in the form of "If A, then B with

CF", and where A is known with absolute certainty, C(A) = 1, and C(B) is
I
\

knowr then to calculate the new C(8), these equations are used

\

C(B/ A) = C(B) + (1 + C(B) ) CF

for C(B) <0, CF<O

C(B/A) = C(B) +(1 - C(B)) CF

for C(B) ~O, CF~O

C(B/A) = (CF + C(Bl l
(1 - min(lC(B)IICR)

for C(B)~O, CF~O

(12)

(14)

If C(A) < 1, then CF of the rule is modified by multiplying it by C(A). If a rule

. has multiple conditions, then, the composite certainty measure of the conditions

are calculated by the following rules:
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C (X 0 r Y) = max ( C (X) I C (Y) )

C(X and Y) = min (C(X) I C( Y) )

(15)

(16)

For the diagnostic NOx advisor, the experts were asked to quantify their

suspicion levels of a cause if they see a particular evidence. This produced

certainty factors for all the rules that relate an evidence to a cause. Examples

of suspicion levels assigned to a rule are: "If F0 value is not within typical range,

then problem could be fuel related (CF = 0.3), or problem could be with CEM

calibration (CF = 0.6).", or "If calibration report does not show any errors, then

there is less likelihood of a problem with the economizer O2 sensors (CF =-.2)".

Positive values prove the existence of a cause, while negative values disprove

it. Most of the evidence does not give a 100% verification of a the presence or

absence of a problem.

In this version of the advisor, the antecedents of the rules are assumed

to have a certainty measure of 1. This means that the statements that steam

temperatures are high, that windbox pressure is too low, or that coal fineness is

not typical are known with perfect certainty. So all the evidence is treated as if it

is 100% true. This assumption is not necessarily valid, but perhaps it should be

reexamined in later versions of the advisor.

The engineers were also asked to prioritize the causes they would

.§.~plQ[~ il!t.h~_~.~~.El~c~. of any evidence. Thus· the causes were classified into a
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few broad categories according to when the engineers thought they should be

explored. For example, incorrect control room settings, fuel related problems, or

problems with CEM calibration would be explored first, while improper ignitor

usage or exhauster damper malfunctions would be explored last. Using these

categories as a basis, initial certainty measures were assigned to all the

possible causes. As the diagnostic process goes underway and rules are used

to make conclusions, the certainty measures of causes are updated by

Equations 12 through 16.

The other area where prioritization was used was in the tasks or

information that are requested by the advisor when exploring a particular cause

of .high NOx' Some information like historical data is easily available and is

given priority over the gathering of other types of information. Experiments or

other types of tasks that are expensive, time consuming or difficult to perform

are not requested until there is high probability of the presence of the problem.

The implementation of the knowledge base and the diagnostic process

described above is discussed in the next section.

__~.=__.;:-::_.:::c:-:.+--_---
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Software Description

The execution of the diagnostic advisor is accomplished in three stages.

In the first stage, the user is asked to provide details on the nature of the NO
x

problem and other relevant system information. In the second stage, the advisor

analyzes the information obtained in the first stage ~nd compiles an initial list of

possible causes of the high NOx level. In the last stage, using the results of the

second stage, the advisor guides the user through questions, tasks, an'd

experiments to determine the real cause of high NOx levels.

For purposes of discussion, rules, functions and facts in the diagnostic

advisor can be categorized into three sections according to their role in the

execution of the program. Various features of the advisor that aid in the

execution of the program are discussed in the first section. In the second

section, the inference engine, or the rules that perpetuate the program are

discussed. The last section contains the rules that comprise the specialized

knowledge base on the diagnosis of high NOx and make up the three stages

discussed above.

Program Features

The diagnostic advisor uses a set of input-output functions that interact

with the user in the absence of a user interface. Choose_Ask, Type_Number,

Typejllte!(er, Y_N_Ask, good_ok_bad and rtm-wiltdow-app are input-output

functions also used in the optimization advisor and are described in .detail in the
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the section describing start-up module (refer to Section on start-up module).

Type-String prints a question to the screen and reads back an answer if it is a

string. Open-file uses Type-String to obtain the name of a file containing some

specific information from the user and tests if the file actually exists by trying to

open it. If the file does not exist, Open-jile 'informs the user of this anq repeats

the request for the right file name.

Other functions defined in the diagnostic advisor calculate mathematical

values. Functions that calculate mill and auxiliary air bias parameters are

discussed in the optimization section. A function called NOx-equation calculates

the NOx rate equation given NOx in ppm, a code identifying the sampling

methods, and the value of the calculation gas.

Various facts that would be used in the advisor were predefined. The

first set of facts were stored in templates14 defined for each type of data

needed. Each definition of a template has a name and different slots15 to store

various attributes of the data. In the diagnostic advisor, two types of templates

were defined: one to store F factors of fuels, and one to store NOx rate

equations. The template called f-factors has slots for type of coal, wet F factor,

dry F factor, carbon based F factor, and the minimum and the maximum of the

14 A template is a customized database structure that stores facts in a specific
way. For example a NOx template that stores NOx in ppm and NOx in Ib/MBtu could
be defined.

,~~~~,,~....,..-....c=-==~~~1ha,slots~otaternplate.a[e.similar~to..1h.e,slptsJQLan,object,and~,tQ(~~QI1~,pie£§''':'':='='7'''''~
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Fa factors. The template called NOx-calc has slots f0l' NOx gas sampling

method, the name of the calculation gas to be used in the rate equation, the

sampling method for the calculation gas, the rate equation in a string format

that could be displayed to the screen, and a code the could be used to identify

the right equation in the NOx function for the conditions described by the other

slots. Thus, the information in Tables 6 and 8was stored in facts using the

template f-factors, and information in Table 7 was stored in facts using the

template NOx-calc. These facts serve as a data base for the diagnostic advisor

and are accessed by any rule that needs information on NOx rate equations or

various fuel factors.

Facts that contain current information on the various causes of high NO
x

are initially defined. These facts are continually updated by the rules containing

the knowledge base on high NOx diagnosis and have the form (cause <name of

cause> <suspicion level> <unique marker». <Name of cause> contains

descriptive names of the causes described in the. previous section. These

names are consistently used throughout the program to identify a particular

cause. Twenty four different names were used to identify all the specific

problems that were categorized under twelve sections in the previous section:

eco-Orsetting, burner-tilt-setting, number-oj-mills-operating, mill-bias, aux-air-pattern.

fi/el-air-pattern. exhauster-damper-settings, mill-classifier-settings. mill-pefjormance,

ecoOrsensor-ma(function. boiler-leakage-change, burner-tilt-indicators. secondwy-air-

indicators. exhauster-damper-indicators. burner-tilt-mechanism, secondwy-air-
- '-._.0-, ..• __ ~._ .• " ~ ~.' .>-_,.. __ - • • .••• , <.rr.~T;""_~", .... ,'·"·"'''''''---r.,.~"''7.''''''''~·';-'"·~~"lo·''-'';''·::'~.....",..,............., .... _""::.-:-:'..:?',:.. ':-.-.. -, ·· ......--·~··":'"""·-···._~--c,("~·;.-.·~ __ ~ ...~..:
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mechanism, exhauster-damper-mechanism, coal-feeder-malfunction, NOx-rate-

calculation, fUel-related, CEM-calibration, dirty-boiler, CEM-mechanical-electrical

and ignitor-usage.

<Suspicion level> contains the value of the certainty factor of that cause

at that moment. A different initial suspicion level is assigned to each cause

before the execution of the program starts to reflect the idea that in the

absence of any evidence, an investigator might still be suspicious of one cause

more that others either from previous experience or other form of intuition. At

this point in the development of the advisor, all the causes were prioritized only

in three levels. Thus, initially, a cause will have one of three suspicion levels.

Since the value of these initial suspicion levels are very small, in the presence

of evidence they become insignificant.

The <unique marker> is a number produced by a random number

generator to mark one fact as different from another fact that might by

coincidence contain the same information. For very short durations of the

program (explained in the next paragraph), two similar cause facts can exist and

the marker becomes important in distinguishing between the two facts.

Examples of cause facts are: (cause ecoOrsetting .03 gen1), (cause boiler-

leakage-change .02 gen30), (cause dirty-boiler .02 gen34), (cause fUel-related .01

gen39). Most of the time, only one cause fact per cause exists in

the system. When a rule addressing a particular cause is fired, the rule asserts

a new cause fact with a suspicion level related only to the evidence it has just
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evaluated, regardless of the current suspicion of the cause. Thus, at that point

there will be two cause facts that are associated to the same cause and which

mayor may not have the same suspicion level. Then, a rule called combine-

certainties, which has a salience16 of 1000 and thus has higher priority over all

rules of less salience (a rule with no externally defined salience, has an implied

salience of a), is fired. Combine-certainties is fired only if two cause facts for the

same cause exist, and removes both these facts to assert one cause fact that

assigns that has one suspicion value. Combine-certainties finds this new

suspicion value using Equations 13, 14 and 15.

Besides rules, functions and facts, the diagnostic advisor uses a file,

"cause. lis", containing detailed text information on the various problems to better

communicate with the user. "Cause. lis", was developed using a CLIPS capability

to build a help file that can be accessed in a tree17 format. The information

contained in this file helps interpret some of the terms used in the advisor in

more detail to the user. For example, if the advisor comes up with a conclusion

that there is a problem with NOx-rate-equation, accessing information under NOx-

1
6A salience refers to the priority given to a rule in comparison to other rules that

have the potential to be executed at that point. A higher salience number corresponds to
a higher priority. The salience of all rules is a unless otherwise defined.

17A "tree format" refers to a way of classifying information so that one starts out
with the most general information and "branches out" as the information gets more
specific. For instance "the animal kingdom" can be represented in a tree format. Animal
kingdom is the top of the tree, then the two branches from the top will represent the
vertebrates and the invertebrates. Each of ·these 'branch out further until all the known

-;"~'':''_~''h=~"",---e-.-....-aflimals,al'e~speeifically,=categoJ1zea;:;;;",.,,-,,_~:'~':::::-.'::;';-:;7_~-~:~:,::'::.-~:~~-,;,:._.,:::";;:'.:,. . ... ":--". -----""',."3~',.,'
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rate-equation in the "cause. lis" file would give a more informative and detailed

description as to the nature of the problem. In this case, the description would

say "the NOx rate equation that you are using is incorrect f) the calculation gas

and the sampling method that you are using." The use of the help file enables

the advisor to operate with descriptive variables like NOx-rate-equation internally,

but become more informative when communicating with the user.

"Cause. lis" is set up to have twenty four different trees corresponding to

the names of the twenty four specific high NOx causes mentioned above. Under

each tree, different branches contain information on one aspect of the cause.

For example, under NOx-rate-calculation, there are three different branches: NOx-

rate-equation, NOx-rate-variables, and NOx-rate-location. The information contained

in NOx-rate-equation is described above. The description under NOx-rate-location

says "the sampling locations of NOx and the calculation gas are different

creating a possible error in the NOx rate calculation." The description under

NOt-rate-variables would say "The values of the variables that you are using in

the NOx rate calculation are wrong for the type of coal and the gas sampling

method you are using."

To aid in accessing the information in "cause. lis", facts named explanation

were defined for each of the possible causes. The format of the explanation

facts are: (explanation <name of cause> <list of specific information that indicate

the possible presence of the cause> <unique marker». <Name of cause>

would con.tain one of the twenty four names of causes. This corresponds tq.H
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name on the top of a tree in "cause. lis". An example of such a name is NOx-rate-

calculation. <List of specific information> contains zero or more items and

relates to specific information that indicate the possible presence of the cause

listed in <name of cause>. Examples of the items that could be listed in <list of

specific information> are NOx-rate-equation, NOx-rate-iocation and NOx-rate-

variables.

When a particular rule concerned with one or more of the causes is fired

and finds a problem, it asserts an explanation fact listing the name of the cause

it is evaluating and the name of the problem it has found. A rule called combine-

explanations, which has a salience of 1000 is then fired. Combine-explanations is

fired only if more than one explanation facts for the same cause exist, and

removes both facts to assert one explanation fact with a combined list of

specific problems. Thus, at anyone time, there exists only one explanation fact

for one cause.

Inference Engine

The rules in this section are used to perpetuate the program through the

different stages mentioned in the introduction of this section. Rule NOx-high is

fired when the program is first initiated and asks the user if there is a high NOx

problem (refer to Figure 56 flow chart of the program). If the user answers in

the negative, this rule halts the execution of the program. If the user

·c~.::'~·~~~.... ·_:-o~""''''''''~:r:~.,';''";''''''''~~r-.z::::::...~;,.r~";;;"~-=-''.~''''''''~'·f;-''''''~·~:;:_:'''~''''''O;-.'''r;«~ \:";/.";:Y,~ . -.-.~.~=;,.:' :',:"'. ~~.'f'.-_.... ;, ~ '- :~-,. ""r:-:-,
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CAUSE

aux-air-pattem

mill-bias-setting

hoi/er-/eakage-change

acknowledges a high NOx problem, then rule levelO is activated. LevelO has a

salience of -1000, which means that it does not get fired until all other relevant

rules with higher salience are fired. LevelO initiates the rules that execute the

first stage of the program. These rules are grouped under section level-O inside

the program.

The next rule that aids in the execution of the diagnostic advisor is rule

levell. Levell is fired only if levelO has already been fired and it has a salience

of -1000 so that it will get fired only after all relevant rules under section level-O

are fired. Levell passes execution of the program to rules that control the

second stage of the program. These rules are grouped under section level-l

inside the program.

Rule levell-a is activated only after levell is fired and it has a salience of

-1000 preventing it from being fired until all relevant rules under section level-I

are fired. Levell-a activates a sequence of rules that would print to the screen a

list of possible causes of high NOx and the corresponding suspicion levels in

order of declining suspicion levels. An example list would look like:

INITIAL SUSPICIONS

SUSPICION LEVEL

1.0

1.0

0.89
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If causes with suspicion levels above 0.2 do not exist, then a message

informing the user that there is no initial guess to the cause of high NOx is

printed.

Rule levell-h, which has a salience of -1000 is fired after the suspicions

list is printed out. This rule activates rule ask-if-they-want-to-change which

examines the causes in the initial suspicions list, and if they are above a certain

suspicion level (the advisor is reasonably sure that the cause does exist) it

activates rules adjust and get-delta-NO)(,

These two rules are used throughout the execution of the program to

communicate to the user the existence of a particular problem and to

recommend a fix as soon as possible. Rule adjust accesses the explanation fact

associated with the cause that is currently under investigation and using the list

of specific problems found in this fact, it accesses the text information in

"cause.lis" to inform the user on the details of the problem. There might be more

than one problem listed for one cause such as NOx-sampling-location and NOx-

rate-variables. Then the rule asks the user if he/she would like to fix the problem

at the present time. If the user decides to correct the problem at this point, rule

Ket-delta-NOx is accessed. Get-delta-NOx requests from the user the decrease in

NOx that was achieved by fixing the last problem. This decrease in NOx is then

subtracted from the !1-NOx known at the present. !1-NO
x

is the difference

between the current value of NOx and the typical or normal value of NOx' Rule
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of uncertainty of typical NOx values. If cause-found is fired, it informs the user

that the high NOx problem has been fixed and then halts execution.

Rule level2 is activated after levell-b has been fired and it has a salience

of -1000. Level2 passes control of the program to the rules that make up the

last stage of the program. These rules are organized under section level-2 and

direct the user through the different tasks, questions and experiments that

detect the cause of high NOx levels. Rule level2-a is activated after level2 has

been fired and is not fired until all the relevant rules under section level-2 have

been fired. Level2-a activates the same set of rules that rule levell-a activates.

These rules print out a final compilation of problems· which have a high

probability of being the cause of high NOx' After this point, the program

terminates.

Diagnostic Rules

As discussed in the previous sections, the rules that contain the

specialized knowledge are organized under three levels according to what

stage of the program they are used at. Rules under section level-O ask the user

to provide details on the nature of the NOx problem and other relevant system

information. Rules under section level-l analyze this information to obtain

different degrees of suspicion levels for the different causes the advisor

considers. The rules under section level-2 use the results of section level-l to
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cause of high NOx levels.

Level-O

Section level-O has a sequence of rules that extract initial information

about the system under investigation and nature of the NOx problem from the

user. All the information obtained is stored in the form of facts to be accessed

for later analysis. None of the information is analyzed until control of the

program is passed on to section level-I.

Rule NOx-range asks for the load range of high N9x levels, if known:

whether it is over all load levels, over low load levels or high load levels. Rule

NOx-rate asks for the rate of NOx increase, if known: whether it was sudden or

gradual. The information from these question would help prioritize some causes

over others. For example, if high NOx levels were seen only over low load

levels, then ignitor usage would come under suspicion (the rule addressing

ignitor usage would be found under/section level-I). Rule load-range asks the

user what steady state load range to analyze for this session and issues a

warning if this range is different from the load level where high NOx levels are

exhibited.

Rule calculation-gas asks for the gas used in the NOx rate calculation.

Rule sampling-method asks if the sampling method of NOx, 02 and CO
2

is wet or

dry. Rule sampling-location asks for the sampling location of these gases and

rule fuel-humed asks for the type of coal burnt. Using the information from these

rules, if the sampling locations of 02 and CO2 are the same, rule calculate-fo
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calculates the current Fo value for the coal that is being burnt.

Rule initial-question-NOx obtains the typical or normal value of NO
x

for

the load level that is being analyzed, the current NOx level, and the

uncertainties associated with each value. Then IJ.-NOx ' which is the difference

between the typical and current levels of NOx, is calculated. Rules NOx-not-high-

1 and NOx-not-high-2 are fired if IJ.-NOx falls within the uncertainty measures of

the typical NOx values or current NOx is actually less than typical NOx values.

These rules inform the user that there is no problem and terminate the

program.

Rule recommended-setting obtains the name of the file that contains the

recommended low NOx control settings for the load level that is currently under

investigation and reads in these values. At the present, these settings include

economizer oxygen levels, burner tilt angle, number of mills under operation,

mill bias parameter, auxiliary air dampers, fuel air dampers, exhauster dampers

and mill classifiers. This information is stored in facts that have the form

(recommended <control parameter name> <list of values». <List of values>

would contain either one setting value or a list of settings corresponding to

either different mills or different dampers. Then, rule initial-data obtains from

the user the current values of these control parameters and any measurement

uncertainty that might be associated with them. These are stored in facts which

have the form (current-setting <control parameter name> <list of values».

Since the values of economizer oxygen level and burner tilt angle can be

_<i-.";";'"-~_--:,.;..;-'
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associated with uncertainties, they are stored in facts with the form (current

<variable name> <value> <uncertainty».

Then rule typical-data obtains the name of the file containing typical

values and the corresponding uncertainties of all other relevant boiler variable.

These are convective pass in-leakage, CO2 , CO, LOI, air flow, exhauster

discharge pressure, mill suction pressure, mill amps, coal feeder RPM, mill exit

temperature, furnace exit temperature, NOx in ppm, minimum tilt angle, range of

steam temperatures, range of windbox pressures, and ranges of mill amp to mill

RPM ratios. The variables that are expressed in terms of a single value with

uncertainties are stored in facts that have the form (typical <variable name>

<value> <uncertainty». The variables that are expressed in terms of a range

are stored in facts that have the form (range <variable name> <minimum

value> <maximum value». Rule current-data obtains the name of the file

containing the current values of all the variables listed in the typical date file.

These data are stored in facts that have the form (current <variable name>

<value> <uncertainty».

Level-1

The rules in s~ction level-l analyze the data obtained by the rules in

previous sections. This analysis causes the initial suspicion levels of all the

causes to be adjusted ancLthus it forms an initial list of possible causes of high,

---------
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When the NOx diagnosis knowledge base was described in the section

headed "Knowledge Base", it was organized under twelve categories of

possible causes of high NOx and under each category were listed evidences

that could suggest the presence of these causes. In describing the process of

investigation, it was shown that the NOx control engineers first analyze data

they have easy access to and then form a list of suspicious causes of high NO
x

'

To represent this process, the NOx diagnosis knowledge was reorganized in the

form of a list of evidences and the problems that they would suggest by their

presence. Thus, the presence of a piece of evidence could point at one or a

few different causes with varying degrees of certainty. For example, if LOI is

much higher than is typically experienced, then cause of high NO
x

could, more

likely be change in the fuel quality, or it could also be malfunctioning

economizer 02 sensors.

Rules that analyze the initial data obtained in section level-O and

conclude the presence of a particular cause were constructed. These rules use

pattern-matching on all the facts that exist in the system and are fired if all their

conditions are met. If they are fired, they assert cause facts for certain causes

with associated suspicion levels. These rules also assert explanation facts that

record the reason for the suspicion of the causes they are investigating.

Combine-certainties and combine-explanations then consolidate these facts with

any existing ones as described in previous sections.

175



Examples of the rules in section level-l are listed:

Rule: ecoO[set
If

current oxygen level is more than recommended oxygen setting
then

assert these facts:
(cause ecoOrsetting 1 <marker»
(explanation ecoOrsetting more-than-recommended <marker»

Rule: LO/
If

current LOI is lower than typical LOI
then

assert these facts:
(cause eco02-sensor-malfunction 0.1 <marker»
(cause/uel-related 0.2 <marker»
(explanation ecoOrsensor-malfunction low-LO! <marker»
(explanation fuel-related low-LO! <marker»

Rule: windbox
If

current windbox pressure is outside the range of typical values
then

assert these facts:
(cause secondmy-air-indicators 0.2 <marker»
(cause secOl1odary-air-mechanism 0.1 <marker»

I
(explanatian secondary-air-indicators out-ofrange-windbox <marker»
(explanation secondwy-air-mechanism out-olrange-windbox

<marker»

Rule: low-range
If

high NOx levels are seen only at low loads
then

assert these facts:
(cause ignitor-usage 0.4 <marker»
(explanation ignitor-l/sage NOx-low-load <marker»

Level-2

Investigative questions, experiments and any other tasks that might
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reveal the presence of a particular cause are constructed as rules in this level.

Thus, under this level, the approach to the investigation will have taken a

different path. Unlike level-l where all available data are looked at and analyzed

to form initial suspicions of possible causes, in this level the advisor looks at

one particular cause at a time and explores different avenues that would prove

or disprove the presence of that cause.

The cause that would be under current investigation is chosen for having

the highest suspicion level of all other causes. If two causes of the same

suspicion level exist, then one cause is chosen randomly. Only one

investigative task for the chosen cause is performed before the suspicion levels

of all relevant causes are updated and the search for the cause of the highest

priority is again performed. This means that if an investigation of a particular

cause seems to disprove the presence of the cause, then the suspicion level of

the cause would have gone down and another cause might have priority for

investigation next.

To accomplish the above processes, rules that choose the most

suspicious cause for investigation were constructed: initial-most-suspect-cause

and l1lost-smpect-cause. If no more rules that would be able to investigate the

cause found to have the highest suspicion level exist, no-rules-available is fired

to remove the cause from further consideration. Combine-certainties (described

above) update the new suspicion level of the cause that was just under

investigation.
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If the investigative tasks that explore a cause are prioritized because of

level of difficulty or the extent of information they provide, the rules that

address these tasks are set up such that a rule of lower precedence will not get

activated unless a rule with a higher precedence has already been fired. Thus,

one of the conditions for a rule with a lower precedence of investigation would

be that an investigative task of higher precedence will already have been

performed. For example, one of the conditions that needs to be satisfied for the

rule that recommends independent traverse measurements of the economizer

to be fired is that calibration lines should have been checked for leaks. This is

because the latter task is less expensive and relatively easier to perform.

If a particular rule needs initial information, then accompanying rules that

obtain this information were constructed. For example, the rule that would

compare oxygen independent traverse measurements of the economizer with

oxygen sensor readings has accompanying rules that recommend the traverse

measurements to the user, and obtain the files that contain the values of these

measurements as well as oxygen sensor readings. If a task is hard to perform

like independent traverse measurements, the user is given the option of

skipping it and performing it later in his/her convenience.

If any of the rules discovers a problem, it immediately gives the user the

option of fixing it by activating rule adjust which was described earlier. This is

unlike level-J where all the data are analyzed and a list of suspicious causes
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problems. In this case, adjust will ask the user if he/she wants to fix the problem

and if the answer is positive, it activates get-delta-NOx which obtains the

reduction in NOx obtained by the adjustment. If the reduction is sufficient to

bring current NOx levels within range of typical NOx levels, cause-found is fired

which terminates the program.

Examples of the rules in section level-2 are listed:

Rule: wiring-and-lines
If

the most suspicious cause is CEM-mechanical-electrical
then

Ask the user:
"Check sampling lines for leaks and wiring for short or open
circuits. Did you find something?"
If

the answer is "YES"
then

activate rule adjust
assert these facts:
(cause CEM-mechanical-electricaI1 <marker»
(explanation CEM-mechanical-electricalleak-or-short <marker»

else
assert this fact:
(cause CEM-mechanical-electrical -0.2 <marker»

Rule: independent-NOx-C02

If
the most suspicious cause is CEM-mechanical-electrical AND
wiring and sampling lines have already been checked

then
Ask the user:
"Please perform NOx and CO2 calibration. Does CEM output
signals agree with monitor signals?"
If

the answer is "NO"
then
.activate rule adjust
assert these facts:
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(explanation CEM-mechan ical-electrical independent-measurements
disagree <marker»

else
assert this fact:
(cause CEM-mechanical-electrical -0.4 <marker»

Rule: soot-blowing..frequency
If

the most suspicious cause is dirty-boiler
then

Ask the user:
"What is the soot blowing frequency?
a) every day
b) every other day
c) once a week"

If
the answer is "once a week"

then
activate rule adjust
assert these facts:
(cause dirty-boiler 0.7 <marker»
(explanation dirty-boiler infrequent-soot-blowing <marker»

If
the answer is "every other day"

then
activate rule adjust
assert these facts:
(cause dirty-boiler 0.2 <marker»
(explanation dirty-boiler infrequent-soot-blowing <marker»

If
the answer is "every day"

then
assert this fact:
(cause dirty-boiler -0.2. <marker»

- -
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CONCLUSIONS

Optimization Advisor

The optimization advisor package is not yet ready to be tested at a

power plant. The data communication system and the user interface are still

being developed. The neural-network-optimization package is undergoing

revisions and has not yet been connected to the expert system part of the

advisor. The expert advisor is also being modified to accommodate testing at

additional load levels before it is made available for use by utility personnel.

To determine if the optimization advisor will successfully optimize a

boiler, it has to be tested on real boilers to see how it handles situations that

arise outside of the assumptions made to write this program. Some of the

assumptions might need to be modified in future versions of the advisor. The

assumption that all the relationships between the control parameters with the

dependent variables are continuous functions with only one minimum or

maximum could be false at some units. For example, a particular component of

a boiler might be malfunctioning or working peculiarly and might not behave

according to what is generally expected. Thus, NOx versus burner tilt angle

might not be parabolic or there might be a discontinuity in the function of NOx

versus a. The assumption that the coupling between control variables is weak

might not be valid at all boilers and a sequential parametric approach to testing

might not give the best results. The validity of this assumption can only be

verified after testing several boilers",The advisor should be able to handle such

..,~ ,_ . _~ ._.;.,.'. ..-,-------.,~._,..._ .c~~-·_--·,,·...:.. .. t,
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situations.

The advisor would also benefit from being redesigned to make it less

procedural and more rule based. As knowledge on NOx control and behavior of

boiler control parameters grows and the principle behind the experimental

process employed by the NOx control engineers is better understood and

documented, this task could be more easily achieved.

Future plans for the advisor include development of extensions that will

guide experimentation at part loads. Rules to configure the advisor for boilers

other than those similar to Potomac River Unit 4 should also be developed.

Diagnostic Advisor

The diagnostic advisor has a few more development stages to pass

through before it can be tested. Even though the foundation has been laid and

the major framework has been constructed, there are decisions on various

features of the diagnostic advisor still to be made and more development work

to be done. Some of the decisions made and the final development path taken

will determine the required level of expertise of the intended users. Described

below are some of the tasks that would need to be accomplished before the

diagnostic advisor is ready for use.

A decision should be made on whether the diagnostic advisor will

analyze current data to determine if there actually is a high NOx problem, at

what load ranges it exists, and the rate of the NOx increase. At the present, the
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user is assumed to know the answers to these questions and is asked to

provide qualitative answers. If more quantitative answers to these questions

are deemed necessary, and the intended user does not have the expertise or

facilities to provide the answers, the advisor would have to perform rigorous

analysis on current and historical data. The development of this analysis tool is

a fairly substantial task, and the current state of the program might be

considered sufficient for the first version of the advisor. •

Whether diagnosis will be performed at one steady state load level at a

time or if all load levels will be investigated at once needs to be decided.

Analyzing all levels at once could be complicated, while analyzing one load

- level at a time could be unnecessarily time consuming and might also miss

some information that would be obvious when examining the entire load range

of the boiler. At the present, the advisor is configured to handle one steady

load level at a time.

The gathering and analysis of initial data has to be resolved. These

questions involve where and how typical data are gathered and represented

and how current data are gathered and over what time period they are

averaged. Data spanning full ranges of the various variables required by the

diagnostic advisor could be obtained from the existing data base or by

performing targeted experiments on the relevant variables at the time of NOx

optimization. Since an existing data base can't be guaranteed, a considerable

amount of experiments might need to be performed to fill the gaJ:>. The issue of
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how, when and by whom typical values of data are compiled is a critical one

for the success of the diagnostic advisor. At this point, it is assumed that all

the initial data needed by the advisor exist regardless of how they were

obtained.

Data representation could be accomplished by building an extensive

data base that would have the typical values of all the relevant variables

"throughout the ranges of all the control settings, developing correlations of the

variables with the control parameters they are known to depend on, or by

building neural networks [Ref. 2]. Building a data base that could be accessed

by the advisor is a conceptually easy but cumbersome task, while a neural

network presents an elegant solution that could present some implementation

difficulties. The simplest representation scheme might lie with correlation

equations of the variables with the control settings they are known to depend

on. The solution to this issue would also depend on whether the different load

levels are analyzed at once or one steady state level at a time. If all load

levels are analyzed at once, then neural networks or correlation equations

would present very simple alternatives to developing sophisticated data base

functions that could access different parts of the data base simply and

efficiently. The neural networks and the correlation equations would have load

as one of the independent variables. Currently, the data for the load level that

are being analyzed are read from a file requested from the user and then

stored internally for the duration of the diagnosis.
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The type and extent of the analysis of the data that might be obtained

by one of the investigative tasks in the third stage are not yet clarified. The

issues with the extent of the analysis lies with the level of experience of the

intended user. For example, if the user knows the sensitivity of steam

temperatures to burner tilt variations, then the advisor can simply recommend

the user vary the burner tilt in a certain way, check the steam temperature and

report back whether steamlemperatu-res6enavea--appfoprii3tely. If the user is

assumed not to know how' to analyze such data, then the advisor would need

to obtain the results of the experiments and do the analysis.

If it is decided that the advisor will do the actual analysis of the results

of an investigative task, the next step is to determine the type of analysis

required. In most cases, simple regression analysis will suffice, and the curve

fitting Fortran codes that were developed for the optimization package are also

built into the diagnostic advisor for this purposes Besides the type of analysis

that is done on the data, information on how to evaluate the resu!tJ.night

become an issue. For instance, the criteria for the evaluation of steam

temperature sensitivity to burner tilt angle variation might be hard to define.

Currently, even though the framework for obtaining the data exists, the method

for data analysis for the listed tasks has not been implemented. This includes

economizer 02 calibration reports, economi~er ~eDdenUraverse

."
..1n~?:~urEments;45TIfner tilt survey results, burner tilt sensitivity tests, secondary
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damper survey results, exhauster damper sensitivity tests, proximate and

ultimate analysis results, and CEM calibration reports.

The last task that needs to be performed before the advisor is ready to

be tested is building the help file, "cause.lis." The structure of the file has been

developed and some of the subject headings and the information they contain

have already been entered. The only task involved in completing "cause. lis" is

entering all the text information that would be required to explain to the user

the different problems and to match the names that access this information

with those mentioned in the explanation facts.

At this point, the advisor will be ready to be tested. It is recommended

that testing be accomplished in two stages. The first stage of the testing

should involve the NOx engineers that contributed to the diagnosis knowledge

base. These engineers should run the advisor with a data base that could have

resulted when a particular problem exists. The engineers should then evaluate

the path the advisor takes to get to a solution and if necessary modify the

certainty factors of rules to adjust the path. For instance, if the advisor uses a

particular investigative rule (at level-2) later than when the engineers think

advisable, then they would adjust the certainty factors (refer to Section on

diagnostic process employed in the diagnostic advisor) of all relevant rules (at

level-I) that deal with the cause under consideration so that the cause will have

a higher suspicion level upon the presence of particular evidence. The
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since the certainty factors are quantitative measures that try to reflect

subjective judgments on the part of the NOx control engineers.

It is recommended that the second stage of the testing involve testing

the advisor at a power plant with real problems. This might have to wait until

after the development of a more sophisticated user and data interface. The

user and data interface that are being developed for the optimization advisor

would probably have to-be modified only slightly to be used by the diagnostic

advisor. At this point, the advisor will be ready for use by utility personnel.

__ _ --_ ........--- .••. ,., ..·~-·""'·-c~_"··· .. -
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