
Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

Utilizing extended entity relationship modeling as a
basis for logical relational database design
Randall E. Wambold
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Wambold, Randall E., "Utilizing extended entity relationship modeling as a basis for logical relational database design" (1992). Theses
and Dissertations. Paper 86.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/86?utm_source=preserve.lehigh.edu%2Fetd%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

c
c

Wa Id, andall "

III :

Illizin xl nde nlily

R lationship Mod ling as
a Basis f r ogical

lati nal atabase
iii

Sl n

: Ma 31,1992

utilizing Extended Entity Relationship Modeling as a

Basis for Logical Relational Database Design

by

Randall E. Wambold

A Thesis

Presented to the Graduate committee

of Le~igh university

in Candidacy for the Degree of

Master of Science

in

computer Science

Lehigh university

March 1992

Table of'contents

Page

1

Abstract

Evaluating the Quality of a Database Design

1

3

1.1
1.2
1. 2.1
1. 2.2
1. 2.3
1. 2.4
1. 2.5
1.3
1. 3.1
1. 3.2
1. 3.3

Introduct i on .
Operational Design Features .

Instrinsicality and Completeness .
Reliability .
Representability and Resolution .
Cons i stency .
Normalization .

Usability Design Features .
Flexibility and Clarity .
Efficiency .
Semantic Integrity .

3
4
4
5
6
7
8
9

10
11
12

2 semantic Modeling 14

2.1 Introduction. 14
2.2 Analysis and Design Context 14

-----~2__;_3~~-Ext-en-d~-dnn'Ctty_Rera.-tionsnl~ing'TERM) - -----..1"'5~--~
2.4 Semantic concepts 16
2.4.1 Entities 16
2.4.2 Relationships. 19
2.4.3 Attributes. 29
2.4.4 Supertypes and subtypes 32
2.4.5 Primary Keys and Foreign Keys . 35
2.4.6 Integrity Rules 37

3 project Management - Extended ER Model Example

iii

43

·4 systematically Deriving a Relational DB Design
from an Extended ER Model . 57

4.1 Introduction. 57
4.2 The Derivation Process .. 57
4.2.1 Create the Modified Extended ER Model....... 59
4.2.1.1 Identify a Subtype Attribute for All Complex

Entity Types 59
4.2.1.2 Transform One-to-One and One-to-Many

Relationship Types into components of the
participating Entities 59

4.2.1.3 Conclusion................................ 63
4.2.2 Create the Relational Database Schema 64
4.2.2.1 Transform Simple Entity Types into Tables 64
4.2.2.2 Transform Complex Entity Types (Supertypes

and Subtypes) into Tables and Views 64
4.2.2.3 Transform Many-to-Many Relationship Types

into Tables 69
4.2.2.4 Transform Attributes into Columns 69
4.2.2.5 Define Default Indexes 70
4.2.2.6 Define Default Integrity Constraints . 72
4.3 Conclusion and Pseudo-SQL Syntax 72

~__ .. __ ___5__...,.Der.i.-v.ed-Re-l.ationa-l~I>B-Design---for-the-project:~-·

Management Example . 93

6 Design Issues Raised by the use of Extended ER
Modeling .. 122

6.1 Introduction. 122
6.2 Denormal ization 123
6.3 optional Indexes 128
6.4 Retaining One-to-One and One-to-Many

Relationship Types As Distinct Tables 132

Footnotes

Bibliography

135

137

vita
iv

139

Figures

Page

Figure 5-2:

Figure 5-3:

Figure 4-5:
Figure 5-1:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:

97

96

81
84

46
74
75
80

18
25
26
27
28
31
34
45

10.6 - ----

Regular and Weak Entities .
Example Many-to-Many Relationship .
Example Existence Dependence Relationship
Example Recursive Relationship .
General Relationship Representation .
Attribute Information for Figure 2-2
Supertypes and Subtypes .
project Management Extended ER Diagram
Project Management Extended ER

Supplemental Data .
Example Extended ER Diagram .
Example Extended ER Supplemental Data
Example Modified Extended ER Diagram
Example Modified Extended ER Supplemental

Data .
Example Derived Relational DB Design, .
Project Management Modified Extended ER

Diagram .
Project Management Modified Extended ER

Supplemental Data .
project Management Derived Relational DB

Design '_'.'.' _'--"--~ '.'

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 3-1:
Figure 3-2:

v

Abstract

Extended Entity Relationship Modeling is an accepted

standard method used during the analysis and design phases

of system construction. It encompasses two activities.

First, the methodology is used to create a semantic, or

conceptual, model that provides an accurate representation

of the information requirements necessary to satisfy a

particular application arena. Then, second, the finalized

model, which is composed of a conceptual diagram and supple-

mental data, is transformed into an initial logical rela-

tional database design that represents the meaning of the

original model in a form compatible with, and understood by,

the Relational Database Management System.

Relationship Modeling approach, including both the specifi-

cation of a conceptual model and its associated database

design derivation process. Design issues raised by the use

of the Extended Entity Relationship Modeling technique are

also examined. My intent, then, is to demonstrate the

effectiveness of the basic technique. First, I show how the

technique can be used to create an effective conceptual

representation of a target domain. Second, I demonstrate

how the completeness, flexibility and ease of understanding

and use of the initial conceptual model can be preserved and

transferred to the logical design. And, finally, I explore

1

the expected performance characteristics of the default

logical relational database design derived from the Extended

ER model, and how those characteristics might be improved by

extending the derived design.

2

Chapter 1 Evaluating the Quality of a Database Design

1.1 Introduction

For the purpose of this thesis, I find it important to

first discuss the objectives and features of a superior

database design. The primary objective in creating a data-

base is to store information that supports the efficient

performance of functions. Databases are designed to facili-

tate reasoning and action. Descriptions of real world
"

objects are organized and held by the structures of a data-

base. The structures and their associated rules for manipu-

lation provide a data model designed to address a problem

area.

The features discussed here seek to ensure that a given

database design can satisfy the problem objectives for which
----- ------

it was originally created. The design features that must be

assessed can be divided into two sets. [1] The first set

can be termed Operational Design Features which must be

satisfied for the design to be functionally sufficient. If

the operational features are incompletely satisfied, then

the functions supported by the database will only partially

be fulfilled. The second set can be termed Usability Design

Features. These quality features assess the ease of use and

the adaptability of the design.

In the discussion that follows, I do not draw conclu-

sions about the absolute value of each design feature ex-

plored. Rather, I seek only to list those features that

3

should constantly be reviewed as a design evolves. The real

importance of each factor will depend on the problem's

objectives. I use many terms freely: conceptual design,

_database design, application design, etc. The interchange-

ability of these terms indicates the applicability of these

general design feature assessments to all forms of the

database design ~ from its conceptual foundation in a schema

to its specific relational database definitions.

1.2 Operational Design Features

1.2.1 Intrinsicality and Completeness

These design features seek to verify that the basic

components of the conceptual schema (entities, relation-

ships, attributes - much more will be said about these

later) are indeed relevant to the functions that the data-

base will facilitate. Often as an application is designed,

its original objectives evolve. As the objectives evolve,

the components required to support those objectives evolve

also. These design features verify that the final conceptu-

al components match the final application objectives.

The intrinsicality feature requires that each conceptu-

al component can be directly mapped to some function within

the application. strict adherence to this design require-

ment will cause the elimination of any component that does

not support a function of the database. The unnecessary

4

inclusion of these components will introduce additional

complexity into the design which may compromise its effec-

tiveness. Each entity, relationship or attribute type must

be measured against the set of system functions. (This type

of test indicates the need for finely defined function

definitions.)

The completeness feature is the opposite requirement of

intrinsicality. with this test we establish that all of the

conceptual components necessary to achieve the known func-.
tions of the database are indeed contained in the conceptual

schema. While the completeness of the conceptual schema, as

compared to the set of database functions known at a partic-

ular point in time, can be established, the degree of a

database's completeness tends to vary over time. That is, a

database's completeness tends to deteriorate as the func-

tional use of that database expands over time.

1.2.2 Reliability

Given a set of conceptual components for a database,

the reliability design feature assesses the ability of the

database users, specifically those who gather the root

information for entry into the database, to identify the

data in the world. That is, is the required information

available? "Availability" introduces many reliability

factors. First, an appropriate and reliable source for the

data must be found. Second, the specificity or granularity

5

of the data must be sufficient to meet the requirements of

the application functions. And, third, the data must be

available in a timely manner. If the reliability feature

cannot be met, the conceptual design is flawed, and the

ultimate functions of the database cannot be attained.

1.2.3 Representability and Resolution

While the reliability test specifies the quality of the

information sources required to provide the basic data to

populate a database, the representability feature applies

further quality tests to that information. Chiefly, the

representability tests assess whether the root data can be

unambiguously mapped to the conceptual components of the

database. Does the root data clearly identify the logical

entities, relationships and attributes, or are the logical

targets not precisely evident? [2] Additional data evalua

tion rules may be required to answer questions of represent

ability. For example, when the root data shows that an

employee has equal assignments to two projects, but the

database requires the identification of each person's pri

mary "assigned to" project, then the root data's represent

ability is lacking. (That is, two equal assignments do not

convey an apparent primary assignment, so we must require

the data source to indicate which is the primary assignment,

or provide a scheme where the required information can be

6

correctly determined.)

Resolution is the database-oriented design feature that

is complimentary to the representability feature. On occa

sion, the existence of representability questions may indi

cate a flaw in the basic conceptual design. Resolution

seeks to verify that each conceptual component of the data

base design is appropriately distinguishable from the other

components. Entity, Relationship and Attribute names that

are not semantically distinct,should be reviewed to see if

the same root data is really sought. For example, the

attribute Address and the entity Location seem suspiciously

similar. Or, a database that contains both

Transportation_Mode and Vehicle_Type entity types may have

poor resolution if it needs to represent a real world ob

ject, such as my car. Additionally, indistinct attributes

are quite common, occurring wherever more than one fact

qualifies as an attribute value. So, in a marketing data

base, where the client entity type has an attribute entitled

"Product_Interest", the fact(s) that I am interested in both

their skiing and tennis products creates a situation where

the available root data cannot be properly represented

within the database as it is designed.

1.2.4 consistency

consistency is a design feature that measures and

ensures the internal consistency of the conceptual model.

7

with this feature we seek to demonstrate that the definition

of each component is consistent with the definitions of all

other related components. By example, this design check

would require the postal address of the Person entity to

share a like definition with the postal address within the

Business entity. Less obvious consistency checks, such as

the use of standardized abbreviations for attribute values

(such as Unit_of_Measure or Degree_Type), could also be

enforced.

1.2.5 Normalization

The normalization feature [3J provides quality checks

to verify that the conceptual components are indeed struc

tured in a manner that is consistent with relational theory.

Adhering to the set of normalization rules reduces redundan

cy in the database, and in turn removes the potential for

database inconsistencies.

The accepted normal forms, and their rules for con

struction, extend common-sense notions. The first normal

form verifies that each conceptual attribute takes only

atomic values, i.e., that these values cannot be decomposed.

The higher level normal forms verify the interactions or

dependencies of the attributes in the database. In second

normal form, we verify that every non-key attribute really

does depend on the key attribute that it has been associated

8

with (this normal form establishes functional dependency).

In third normal form, functional dependencies between non

key attributes are uncovered and rooted out (in this case,

full functional dependency is established in each conceptual

entity - usually through the introduction of new entities) .

Additional normal forms are defined which uncover other

instances of dependency - such as transitive and multivalued

dependency - and provide prescriptions to modify the concep

tual components in a manner that allows the full representa

tion of these dependencies in the database and is relation

ally sound.

Adhering to these rules of normalization, creates a

high degree of data integrity in the database. [4] Update

anomalies, where in an unnormalized database the change of a

single real world fact might be represented in several

database value changes, cannot occur. Likewise, insertion

anomalies, where a new real world fact must be recorded in

mUltiple database locations, will not occur. And, deletion

anomalies, which are the inverse of insertion anomalies,

will be prevented. Again, the removal of these anomalies is

only accomplishable because of the systematic removal of

data redundancy.

1.3 Usability Design Features

These design features cannot be attained with the same

certainty associated with operational design features.

9

Usability features tend to be quality measurements that

interact among themselves. Each cannot be maximized because

there are tradeoffs between the features. Realizing that

there are tradeoffs, it is necessary to establish the rela

tive importance of each feature when seeking to satisfy it.

1.3.1 Flexibility and Clarity

The flexibility and clarity design features assess the

ability of the conceptual schema components to adapt to

changes in the real world that the database seeks to repre

sent.

The quality of the flexibility feature can be explored

by theorizing hypothetical changes in the problem domain and

assessing the ease by which the database design can accommo

date the change. Ideally, the database design should easily

adapt to likely evolutions in the problem domain. For

instance, an airline's aircraft maintenance application that

does not anticipate (i.e., easily accommodate) the introduc

tion of new aircraft types, such as a Boeing 797, clearly

would receive low marks for flexibility. When evaluating

database design flexibility, the designers must weigh both

the likelihood and frequency of each real world change with

the corresponding modifications in the database to accommo

date that change.

The clarity, or preciseness of definition, associated

10

with each database component is ,another aspect of flexibili-

ty~ On one hand, database users and designers seek clear

and unambiguous definitions of database components. This

enhances their ease of use, in that the appropriate compo-

nents to be used in the development of information and

actions is easily and correctly identified. Yet, complete

precision of definition can bring with it a penalty. Com-

plete clarity reduces a database object's flexibility or

adaptability. Open-ended or vague database object defini-

tions allow application users to exercise jUdgment and thus

extend or continue a given database design.

1.3.2 Efficjency

The efficiency quality design feature seeks to deter-

mine the performance characteristics of a database design.

This must be both a measurement of the expected database

performance as well as the real performance requirements of

the application users. The functional objectives of the

application determine the database performance requirements.

[5]

The quality of the efficiency of a database design can

be construed in several ways. In one way, efficiency can be

determined by assessing the success with which data redun-

dancy has been minimized. (In chapter 6, I will discuss the
e

use of redundant data - often in the form of summarized data

- as an efficient method of addressing the needs of some

11

application functions.) In general, we should consider a

less redundant database design as the more efficient design.

In another way, efficiency may be assessed by determining

the number of entity types, relationship types, and at-

tribute types needed to support the functions of the data-

base application. From this perspective, a flexible design

will normally appear much less efficient than a less flexi-

ble design. That is, a conceptual schema with many compo-

nents will perform less well (due to the increased physical

actions required to access the data contained in those many

components) than when compared to a conceptual schema that

stores the same data in far fewer components. Additionally,

the efficiency of a design can be significantly affected by

some detail design decisions. For example, a given fact may

be represented in the conceptual schema as either an at-

tribute of one entity type, or as an independent entity,

with its own series of attributes, associated with a root

entity. In general, it is much more efficient to access an

attribute rather than an associated entity.

1.3.3 Semantic Integrity

The semantic integrity quality feature seeks to assess

a database's ability to support the creation of meaningful

and useful inferences. That is, this quality feature seeks

to verify that the results of using this database applica-

12

tion do indeed provide sufficient information for its users

to reason and take action.

Meaningful inferences can only be provided if the data

contained within the database is appropriately specific.

That is, the conceptual components of the database - the

entity types, relationship types and attribute types -

should not be so broad (read, flexible) as to obscure their

semantic meaning and thus undermine their usefulness. As

the design process progresses, it must be assured that the

conceptual schema continues to satisfy the absolute func-

tional requirements of the database application. Coupled

with this general requirement for "specificity", the domain

definitions for each attribute type within the schema must

be expressive and specific enough to capture the required

real world meaning of the attribute. (I use "required" to

differentiate the following. We cannot expect to capture

the full real world meaning of an attribute in a simple

database structure, but we must pursue the capturing of the

necessary meaning - where "necessary" indicates the at-,.

tribute domain specificity required to produce useful infer-

ences from the database.)

13

Chapter 2 semantic Modeling

2.1 Introduction

The process of semantic modeling [6] attempts, first,

to identify that set of semantic concepts that are essential

and useful when speaking of some real world problem domain.

While these semantic concepts are not precise, their crea

tion is the essential first step in the process of creating

a database design. Given the identification of these con

cepts, the next step is to devise a set of symbolic objects,

such as entity types and relationship types, that can be

used as the building blocks for the creation of a formal

model. Coupled with the development of these symbolic

objects, a set of complimentary integrity rules, that in a

formal way guide the manipulation of these objects, must

also be developed.

2.2 The Analysis and Design Context

Extended Entity Relationship Modeling (ERM) is just one

tool that is used during the analysis and design phases of

an application project. other complementary tools include

Process Modeling and Function Definition. [7]

Process Modeling defines the movement and transforma

tion of data through functions within a business or opera

tion. Often dataflow diagrams are used to record this

process information. They record the sources of inputs and

the destinations of outputs. Dataflows indicate the trans-

14

fer of data through processes and between data stores.

Function definitions describe the elementary 'operation

al processes that must be implemented to achieve the objec

tives of the application. The documentation for each func

tion would include: the triggering action that invokes the

function, a frequency of activity, a detailed description of

the function's logic, a list of data entities that are

consumed / produced / or modified by the function and a list

of related functions that may be invoked.

Information that is retained over time (as opposed to

that which is generated and consumed within a function) for

later use is what we seek to define with Extended ER model

ing.

Process models and function definitions, alone, are

ineffective as a basis for the design of databases. These

techniques model data transformations, but a database is a

designed representation of data. While I will not define

these tools beyond the brief description that I have provid

ed above (because they are not the focus of this paper), the

reader should note that their development is an essential

related task to the development of the conceptual schema.

2.3 Extended Entity Relationship Modeling (ERM)

ERM is a popular implementation of semantic modeling.

ERM utilizes semantic objects such as entities, attributes,

15

2.4

2.4.1

relationships, supertypes and subtypes. ERMseeks to cate-

. gorize all information elements into these semantic concep

tual categories. [8] Tightly integrated with this modeling

scheme is a corresponding diagraming technique. Thus the

objects of a given model can be easily represented in a

concise, but effective manner (in terms of its ability to

convey the existence and interrelationships of all objects

within the diagram). Supplemental documentation, consisting

primarily of integrity rule information, is combined with

the semantic object data to create a complete semantic model

(extended data model). This complete semantic model is also

referred to as the conceptual model.

The modeling technique discussed in the following pages

is my aggregation of many distinct techniques. [9] I feel

that this technique permits the development of a flexible,

and yet precise, semantic model of a conceptual database.

Semantic concepts

Entities

An entity is any object about which we need to hold

information and which contributes to the satisfying of our

application's objectives. [10] An entity can be a real

person, place, object or event, or it can be a concept or

activity. It must, in all cases, be significant to the

objective. Each specific instance of an entity must be

uniquely identifiable / distinguishable from all other

16

occurrences of the entity type. Entities can be classified

as regular and weak entities. Regular entities have the

characteristic that they are capable of existing independ-

ently from all other entities. Weak entities are dependent

upon some other entity, and never exist outside of a rela-

tionship with this other entity. For example, an employee's

emergency contacts would be weak entities, in that they
~

should not exist if the relevant employee entity instance

does not exist.

A regular entity is represented diagrammatically by a

rectangle containing a capitalized entity name. A weak

entity is shown diagrammatically within a softbox.

Figure 2-1 shows two example entities. The entity type

labeled Corporation is a regular entity. And, the entity

type labeled Address isa weak entity.

While I have included distinct graphical representa-

tions for regular and weak entity types, strictly speaking

this is not necessary. It is the characteristics of the

relationships between one entity and other entities that

truly define its class. I retain the two graphical repre-

sentations as a simple method of highlighting each entity

type's characteristics to the users of the database.

17

Figure 2-1: Regular and Weak Entities

Corporation Address

18

2.4.2 Relationships

A relationship represents a significant association

between two entity types. [11] Each distinct relationship

type has two properties (besides its name). Cardinality

(e.g., one-to-one, one-to-many or many-to-many) defines the

number of possible participant entity instances that can

occur in a relationship. And, optionality defines the

nature of the participation for each entity type. That is,

if each and every entity instance of a particular entity

type must participate in this relationship, then its option

ality is mandatory, else it is termed optional. The identi

fication of an entity type's participation as mandatory

implies the invoking of an additional rule during the inser

tion of each instance of the entity. This rule requires

that an instance of the specified relationship type be

created simultaneously with the creation of each root entity

instance. corresponding update and delete constraints must

be applied to retain at least one relationship instance for

each entity instance in the mandatory relationship.

Diagrammatically, relationships can be shown in two

ways. In most cases, a relationship is shown by two line

segments and a diamond connecting the rectangles or softbox

es of two entities. (This diagrammatic structure is used to

associate all entities in any relationship except the spe

cial relationship case where a weak entity's existence

dependence on another entity is being described.) The name

19

of the relationship is contained in the diamond. The cardi

nality of each entity type at the end points of the rela

tionship is noted by the values of "1" (One) and "M" (Many).

Regarding optionality, a single line segment between the

rectangle of an entity type and the diamond of a relation

ship indicates optional participation. A double line seg

ment indicates the entity type's mandatory participation in

the relationship.

In the special case where a weak entity's existence

dependence is being described, the diamond shape connector

is replaced by a triangle. In this case, the base of the

triangle faces the "subordinate" entity and the apex of the

triangle points to the "superior" entity. (I use the terms

"subordinate" and "superior" to permit the case where both

entities are weak entities, and one weak entity controls the

existence of another.)

Figure 2-2 illustrates the graphical representation of

an optional many-to-many relationship between the regular

entity types, Part and Vendor. The relationship type is

named Quote. The relationship is optional because some

instances of Part may exist for which we have no Quotes, and

some instances of Vendor may exist which have not yet pro

vided a Quote. The relationship is termed many-to-many

because a single Part may have Quotes from many Vendors, and

a single Vendor may Quote for many Parts.

20

Figure 2-3 represents an Existence Dependent Relation

ship. The weak entity Branch Location is dependent on the

existence of a relevant regular entity instance of

Business Unit. The relationship is labeled, Located At /

Contained_In (more will be said about the use of two names

later), and the relationship's cardinality is one-to-many.

That is, a single Business Unit may be "Located At" many- -

Branch_Locations, but a single Branch_Location may be

"contained In" only one Business unit. Each Business unit's

participation in the relationship is optional, but each

Branch_Location's participation is mandatory. The one-to

many cardinality and mandatory participation by the depend

ent entity are standard characteristics of an Existence

Dependent relationship.

While I have included a distinc~ graphical representa

tion of Existence Dependent Relationship types, strictly

speaking this is not necessary. These relationships could

be described as any other relationship. It is the relation

ship type's characteristics (the one-to-many cardinality and

the mandatory participation of the "many" entity) that

really designate a given relationship as an Existence De

pendent relationship. I retain the triangular graphical

representation to highlight this type of relationship to the

users of the database.

21

Figure 2-4 illustrates a recursive relationship. The

regular entity, Part, can optionally participate in a rela-

tionship with other instances of its type. The many-to~many

cardinality indicates that each part may be "Composed_Of"
--'

many component parts, and that each part (simultaneously)

may be "Used In" the construction of many higher-level

Parts, i.e., assemblies.

22

Figure 2-5 i~lustrates the General Relationship Repre

sentation. The solid and dashed lines indicate entity

participation - either optional (a singl~ solid line seg

ment) or mandatory (a double solid line segment). The 11M

indicates the cardinality of each entity type in the rela-

tionship. I have provided two names for the single rela-

tionship type shown in the example. This is a common con-

struct that highlights the bidirectional nature of a rela-

tionship. The graphic representation of each relationship

can be described in a formal syntax, as follows:

Relationship Formal Syntax:

(must be)
a) Each and every ENTITY-A < > relation name 1

(may be)

and,

(one and only one
<
(one or more

ever)
ENTITY-B > .

plural)

(must be)
b) Each and every ENTITY-B < > relation name 2

(may be)

(one and only one
<
(one or more

23

ever)
ENTITY-A > •

plural)

The use of this formal syntax is helpful in verifying

the structure of the diagram by allowing its contents to be

verbalized. The relationship in figure 2-3 could be verbal

ized as follows:

a) Each and every Business_unit may be Located At

one or more Branch Locations.

and,

b) Each and every Branch_Location must be contained In

one and only one Business unit ever.

24

Figure 2-2: Example Many-to-Many Relationship

Part

M

25

· Figure 2-3·: Example Existence Dependence Relatio'nship

Business Unit

1

M

Branch Location

26

Figure 2-4: Example Recursive Relationship

Part

M M

Of

On

27

Figure 2-5: General Relations~ip Representation

28

2.4.3 Attributes

The specific information that can be stored for each

entity type or relationship type is referred to as its

attributes. Attributes provide the details that describe

the significant aspects of an entity or relationship. [11]

Attributes identify, classify, quantify or. describe the

state of an entity or relationship. Additionally, at

tributes may be key or non-key elements. An attribute that

is a key element can serve as the unique identifier for the

entity type. Non-key attributes do not uniquely ident~~y an

entity instance or relationship. Attributes may also be

designated as optional or mandatory. The value of a manda

tory attribute must be known when the entity or relationship

instance is first created. And, although the values of

mandatory elements can be modified, they cannot simply be

removed. Only optional attributes may ever be assigned an

"unknown" or "null" value. Finally, it is important to note

that a relationship type may be defined without associating

any attributes with it.

Diagrammatically, attributes are often shown as named

ellipses attached to the rectangles/softboxes of entity

types or the diamonds/triangles of relationship types.

Alternately, attributes may be represented by placing their

names in lower case within the graphic symbol of the owning

object. For purposes of this thesis, attributes will nor

mally not be listed or will be listed in a supplemental

29

document to the ER diagram. When listed, attributes that

serve as the primary key will have a "#" prefix, and manda-

tory attributes will have a "*" prefix.

Figure 2-6 details attribute information that could be

associated with the simple conceptual schema of figure 2-2.

Of special interest is the attribute information associated

with the relationship Quote. Note that it contains the

primary keys of the related entity types, that is,

Part Number and Vendor Number of entities Part and Vendor

respectively.

30

Figure 2-6: Attribute Information for Figure 2-2

Entity: Part

Attributes: # * Part Number

* Part Name

Raw Material Spec- -

ECN Number

Entity: Vendor

Attributes: # * Vendor Number

* Vendor Name

* Quality_Rating

Address

Standard Terms

Relationship: Quote

Attributes: # * Quotation_Number

* Part Number

* Vendor Number

* Price

Special_Terms

31

2.4.4 Supertypes an~ Subtypes

A given entity type may have instances that are recog-

nizable as distinct groups within the larger entity type.

The larger entity type is referred to as a supertype, and

the subset groups are referred to as subtypes. For example,

a Person entity type may be divided into two subtypes:

Applicant and Employee. Subtypes must be mutually exclu-

sive.

Each supertype and subtype may have associated at-

tributes and relationship types. The attributes and rela-

tionship types of the supertype are inherited by its sub-

types. That is, each subtype logically contains its super-

type's attributes and logically participates in all of the

relationships in which the supertype participates. Note
Q

that the converse is not true - the attributes and the

relationship types of the subtype do not apply to the super-

type. Note also that each entity subtype is a legitimate

entity type, which permits it to be the supertype over other

subordinate subtypes.

Diagrammatically, subtypes are represented as inner

boxes (either rectangles or softboxes) contained within an

outer box representing the supertype entity.

Figure 2-7 illustrates several supertypes and sUbtypes.

The primary supertype is labeled Person. It has two manda-

tory attributes of which Person Id is the primary key. All

Person instances may participate in the relationship labeled

32

A. The supertype Person has subtypes, Employee and Appli

cant. As subtypes of the Person entity, they share its

attributes (and unique identifier) and its relationship A.

The subtype Employee also functions as a supertype, and has

two subtypes of its own, labeled Exempt and Non_Exempt .. The

attributes of Employee are logically contained in its sub

types. Additionally, the relationship in which all Employee

instances may participate, labeled B, is logically associat

ed with its subtypes. That is, both Exempt and Non_Exempt

sUbtype entities may participate in relationship B. Howev

er, the Applicant subtype (the other subtype entity of

Person) cannot participate in relationship B, as that rela

tionship is only associated with the Employee subtype, as

shown by the relationship's direct connection to the Employ

ee entity.

33

· Figure 2-7: Supertypes and Subtypes

Person
#11: Person Id

A-
11: Name

Employee
." Department
." Normal_Work_Hrs

BExempt
." Job_Class
11: Montly_Rate

Non_Exempt
." Contract_Number
." Hourly_Rate

Skill_Data

Applicant

Test Data

34

2.4.5 Primary Keys anq Foreign Keys

Earlier, I referred to attributei as either key or non

key elements. In this section, I'll look more closely at

keys.

The primary key of an entity type or relationship type

is that attribute (or those attributes) that uniquely iden

tifies each instance of the entity or relationship. [12]

The attribute(s) chosen to be the primary key must uniquely

identify every instance of the entity or relationship type.

Additionally, if the primary key is a composite key, it

should be minimal. That is, the primary key should be

reduced to the set of attributes such that if anyone at

tribute were removed, the uniqueness quality would be dis

rupted.

It is possible that a given entity type or relationship

type may have more than one unique identifier (composed of

one or more attributes). These are termed 4 candidate keys.

When multiple candidate keys exist, one (normally the best

known, most commonly used, or easiest to determine) is

chosen as the primary key. The other candidate keys then

remain as alternate k~ys. That is, they function as unique

identifiers, but not as "the" unique identifier for this

entity or relationship type that is known within the remain

der of the conceptual model.

While primary keys are normally formed from attributes

associated with the entity or relationship in question, they

35

may also be formed by inheriting attributes from other

entities or relationships. For instance, if a specific

relationship type does not possess its own internal unique

identifier, a unique identifier may be constructed by con-
I

catenating the primary keys that identify the two entity

types in the relationship. Or, a weak entity may inherit

part of its primary key from the superior entity upon which

it depends, via the relationship between the two entities.

The concept of a foreign key was mentioned earlier. A

foreign key can be defined as the inclusion of attribute(s)

in one object that fully identify the primary key of another

object. [13] For purposes of this semantic modeling tech-

nique (i.e., the ERM technique that I am describing), I will

temporarily restrict the definition of foreign keys by

requiring that they occur only in relationship types, and

that the foreign keys only identify the primary keys of

entity types. In this way, a reference from one entity type

to another must be implemented through an intervening rela-

tionship type. Therefore, a (binary) relationship will

always contain two foreign keys which reference the primary

keys of the two entity types participating in the relation-

ship. (As an extension, a ternary relationship will contain

three foreign key definitions.) The definition of the

foreign keys in a relationship must exactly correspond to

the definitions of the primary keys in the referenced enti-

36

ties. It is this correspondence of foreign keys to primary

keys (and vice versa) that provides the referential power of

the resulting database.

Please note that the implementation of an actual rela

tional database would allow the direct referencing of one

entity type by another entity type, i.e., without the speci

fication of an intervening relationship. While this is

permissible, it requires one of two special relationship

cases to exist between the two entities. These special

cases will be discussed more fully in chapter 4. For now,

the restriction I noted in the previous paragraph allows me

to more easily describe the modeling technique.

2.4.6 Integrity Rules

Two categories of integrity rules exist. [14] First,

the Entity Integrity rule states that the attribute (or at

tributes) defined as the primary key for an entity or rela

tionship type must not accept null values. That is, it may

never have an unknown value. Because this rule applies to

all entity and relationship types, in all cases, it is

unnecessary to represent this rule in the conceptual model.

It simply applies in all cases.

The second integrity rule is the Referential Integrity

rule. It states that the instances of objects within a

database must never contain an unmatched foreign key value.

A foreign key value is unmatched when there does not exist

37

an instance of the target entity with a matching primary key

value. This integrity rule is primarily enforced whenever

attributes identified as foreign key identifiers are modi-
•

fied within the database, either as new object instances are

created or as current ones are modified. The general intent

of this rule is to control the modification of the database

in such a way as to always ensure the full referential

integrity of the database.

To achieve the full intent of the general rule, two

additional detail questions must be evaluated for every

foreign key defined within the conceptual schema. The

answers to these questions supplement the diagrams and

attribute lists, discussed above, to yield a full conceptual

schema. The answers are used to provide direction to data-

base modification routines in such a way as to guarantee

that the final result of any modification activity against a

"referenced" entity is a referentially consistent database.

This is achieved by prefixing audit routines and appending

supplemental modification operations to each root database

modification request.

The first question asks what is the appropriate action

when the target instance of a foreign key, contained in an

entity, is identified for deletion. That is, for example,

what should be done if the particular Course instance,

identifi~d by the value of the foreign key, co~rse_Id, in a

38

p,articular Student_Registration relationship instance, is

targeted for deletion? Two basic options exist:

a) "Restricted": In this case, the deletion of the

entity instance is only permitted if no foreign key refer

ences, specified with the Restricted option, contain the

value specified for deletion.

b) "Cascades": In this case, the deletion of the

specified instance will be permitted, but its deletion will

cause the deletion of all instances of the referencing

relationships which contain a matching foreign key reference

to the target instance, and have specified the Cascades

option.

The description, above, is only partially complete. In

reality, the "tests", associated with the potential deletion

of an entity instance where its primary key is referenced as

a foreign key in a relationship, must be more comprehensive.

In one case, a single entity may be ~eferenced by many

relationship types, each with their own particular answer to

the question. Therefore, the deletion of the target in

stance can occur only if the rules of all referencing rela

tionships can be simultaneously and consistently satisfied,

else, the root deletion operation must fail. In a second

case, additional referential integrity logic must be invoked

because the root deletion request for one entity instance

might generate additional entity instance deletions in the

other entity type participating in the relationship when its

39

participation is mandatory. Thus, through the specification
J

of the Cascades option, an additional set of referential

integrity checks must be invoked, each assuming the other

entity instances identified through the application of the

Cascade option as a new deletion target. Therefore, this

integrity rule should be considered to apply recursively.

The second question, asks what is the appropriate

action when the target instance of a foreign. key, contained

in an entity or relationship, is designated for update.

That is, for example, what should be done if the particular.

Course instance - currently Id number 100, and specified as

a Course Id in a Student_Registration instance - is identi

fied to have its Id number altered to 101? Again, as above,

two basic options exist:

a) "Restricted": In this case, the update of the

specified primary key is only permitted if no foreign key

references, specified with the Restricted option, contain

the value that will be replaced by the update operation.

b) "Cascades": In this case, the update of the speci-

fied primary key will be permitted, but the update effect

will cascade to all instances of the relationship which

contain a matching foreign key reference to the target

instance, and have specified the Cascades option. In this

way, the prior references remain intact and referentially

consistent.

40

The description, above, is only partially complete. In

reality, the "tests", associated with the potential u~date

of an instance where its primary key is referenced as a

foreign key, must be more comprehensive. That is, a single

entity may be referenced by many relationship types, each

with their own particular answer to the question. There

fore, the update of the target instance can occur only if

the rules of all referencing relationships can be simultane

ously and consistently satisfied, else, the root update

operation must fail. Often the update of a foreign key

value, caused by the application of a Cascades option, will

not have a rippling effect beyond the first level of refer

ence in the associated relationsh±p types. But, a true

rippling effect does occur when the updated foreign key

participates as a component in the referencing instance's

composite primary key. (In this case, the update of a

primary key value may cascade through several levels of

"reference".) Therefore, this integrity rule should be

considered to apply recursively.

The answers to the prior questions (each associated

with a foreign key definition) establish the necessary

integrity rules to control the update or deletion of a

referenced primary key value. These rules can be labeled as

a Delete rule and an Update rule. Inserts to the referenced

entity type need no special integrity checks, that is, they

cannot create a referentially inconsistent database.

41

f

Additionally, inserts, deletes and updates to the

instances of the referencing relationship type (containing

the foreign key) need no special referential integrity

checks beyond the basic enforcement of the Referential

Integrity rule. They do, however, require that the option

ality properties of the entity types participating in the

relationship under modification not be disrupted.

To conclude, each foreign key defined within the con

ceptual schema must include selections, either Restricts or

Cascades, to establish the Delete and Update rules.

42

Chapter 3 Project ,Management - Extended ER Model Example

Fi~ures 3-1 and 3-2 provide a complete model of a

simple Project Management system. The system's basic objec

tives are: 1) to provide a definition of a project, in terms

of its tasks, 2) to detail the assignment of persons and

material resources to a project, and 3) to enable the bill

ing of clients for work or material expended on their

projects.

The diagram in figure 3-1 shows the entity and rela

tionship types of the system. The following description

expresses the semantic content of the diagram. Projects are

Composed_Of Tasks (and, Tasks can exist only in a relation

ship with a project). Projects are Owned By Clients (and

again, as above, Projects are existence dependent on Cli

ents). Persons exist as a supertype, with Employee and

Contractor subtypes. But only an Employee Manages a

Project, Contractors cannot. Any Person, both Employees and

Contractors, can be assigned (through a Person_Assignment

relationship) to a Task. The supertype Resource has two

subtypes, Durable and Consumable, of which only a Durable

Resource is worthy or capable of assignment (through a

Durable Assignment relationship). The final entity to be

discussed is the weak entity, Actual_Charge. It is exist

ence dependent, via the Billed_To relationship, on the

entity Task - meaning that within this database it is not

possible to record charge data without immediately identify-

43

ing the Task to be charged. Additionally, when an

Actual_Charge is created, it must immediately participate in

one of two mandatory relationships, either the Person_Charge

relationship or the Resource_Charge relationship. (The

exclusive nature of these relationships is recorded on the

diagram by the single hash mark crossing the line segments

that connect the Actual_Charge entity to the two relation

ships. If a single entity participated in multiple exclu

sive relationships, they would be differentiated by paired

hash marks, e.g., the first exclusive relationships could be

denoted with a single hash mark, the second set of exclusive

relationships could be denoted with a double hash mark,

etc.)

Figure 3-2 contains the supplemental information asso

ciated with the Extended ER diagram of figure 3-1. Specifi

cally, it contains Attribute information (Names, key and

mandatory characteristics, and format data) for all Entity

and Relationship types, and the associated Integrity con

straints.

44

Figure 3-1: Project Management Extended ER Diagram

Person Client

M

Project

M

M

Durable

Resource

Employee

Actual
Charge

IConsumable

IContractor

45

Figure 3-2: Project Management Extended ER Supplemental Data

Entity: Person

Attributes: # * Person Id Numeric (6)

* Name Alpha (40)

Charge_Rate_Wk Numeric (4,2)

Entity: Employee

Attributes: * Social Sec Nbr Numeric (9)

* Hire Date Date

* Pay_Rate_Wk Numeric (4,2)

Entity: Contractor

Attributes: * Contractor Id Numeric (9)

* Fed_Emplr_Id Numeric (9)

Contract Start Date

Contract_Stop Date

Contract Rate Mo Numeric (5,2)

Entity: Resource

Attributes: # * Resource Id Numeric (4)

* Resource Title Alpha (40)

Charge_Rate_Unit_Of_Meas Alpha (4)

Resource Class Alpha (4)

46

Entity: Durable

Attributes:

Entity: Consumable

Attributes:

* Quantity Numeric (5)

Use Restrictions Alphanum (60)

~ Replenish_Days Numeric (3)

Entity: Actual_Charge

Attributes: # * Actual_Charge_Id Numeric (7)

* Actual_Charge_Rate Numeric (5,2)

* Actual_Charge_Quantity Numeric (3,2)

47

Entity: Client

Attributes:

Entity: project

Attributes:

Entity: Task

Attributes:

* Client Id Numeric (9)

* Client Name Alpha (40)

Contact Name Alpha (40)

Contact Title Alpha (50)

Contact Addr Line 1 Alphanum (50)

Contact Addr Line 2 Alphanum (50)

Contact Phone Numeric (10)

Client_Rating Alphanum (2)

* Project Id Numeric (5)

* Project_Name Alpha (40)

start Date Date

Want Date Date

Promise Date Date

* project Id Numeric (5)

* Task Id Numeric (3)

* Task Name Alpha (40)

start Date Date

stop_Date Date

48

Relationship: Manages. / Managed_By

Attributes: # * Person Id Numeric (6)

* Project_Id Numeric (5)

Integrity Rules: Foreign Key Person Id

References Employee.Person_Id

Delete of Employee Cascades

Update of Employee.Person_Id

Cascades

Foreign Key Project_Id

References Project.Project_Id

Delete of Project Cascades

Update Of Project.project_Id

Cascades

Note: Because this relationship is a one-to-many

relationship, it could be implemented as a foreign key
..

residing directly in the entity referenced by the "Many"

foreign key, i.e., the Project entity type. More will be

said about this in the next chapter of the paper.

49

Re~ationship: Person_Assignment

Attributes: # * Person Id Numeric (6)

* Project_Id Numeric (5)

* Task Id Numeric (3)

start Date Date

stop_Date Date

Integrity Rules: Foreign Key Person_Id

References Person. Person Id

Delete of Person Cascades

Update of Person. Person Id Cascades

Foreign Key Project Id, Task Id- -

References Task.Project_Id,

Task.Task Id

Delete of Task Restricted

Update Of Task.Project_Id,

Task.Task Id Cascades

50

Relationship: ,Billed_To / Billed_By

Attributes: # * Actual_Charge_Id Numeric (7)

* Project_Id Numeric (5)

* Task Id Numeric (3)

Integrity Rules: Foreign Key Actual_Charge_Id

References Actual_Charge.

Actual_Charge_Id

Delete of Actual_Charge Cascades

Update of Actual_Charge.

Actual_Charge_Id Cascades

Foreign Key Project_Id, Task_Id

References Task.Project_Id,

Task.Task Id

Delete of Task Restricted

Update Of Task.Project_Id,

Task.Task Id Cascades

51

/

Relationship:. Durable_Assignment

Attributes: # * Resource Id Numeric (4)

* Project_Id Numeric (5)

* Task Id Numeric (3)

start Date Date

stop_Date Date

Integrity Rules: Foreign Key Resource_Id

References Durable.Resource Id

Delete of Durable Cascades

Update of Durable.Resource Id

Cascades

Foreign Key Project_Id, Task Id

References Task.Project_Id,

Task.Task Id

Delete of Task Restricted

Update Of Task.Project_Id,

Task.Task Id Cascades

52

Rel~tionship: Owns / Owned_By

Attributes: # * Client Id Numeric (9)

* Project_Id Numeric (5)

Integrity Rules: Foreign Key Client Id

References Client. Client Id

Delete of Client Restricted

Update of Client. Client Id Cascades

Foreign Key Project_Id

References Project.Project_Id

Delete of Project Restricted

Update Of Project. Project Id

Cascades

")

53

Relationship: Composed_Of / Assigned~To

Attributes: # * Project_Id Numeric (5)

* Task Id Numeric (3)

Integrity Rules: Foreign Key Project Id

References Project.Project_Id

Delete of Project Restricted

Update of project.Project_Id

cascades

Foreign Key Project Id, Task Id

References Task. Proj ect_Id ,

Task.Task Id

Delete of Task Restricted

Update of Task.Project_Id,

~ask.Task Id Cascades

54

Relationship: Person_Charge

Attributes: # * Person Id Numeric (6)

* Actual_Charge_Id Numeric (7)

Integrity Rules: Foreign Key Person Id

References Person. Person Id

Delete of Person Restricted

Update of Person. Person Id Cascades

Foreign Key Actual_Charge_Id

References Actual_Charge.

Actual_Charge_Id

Delete of Actual_Charge Cascades

Update Of Actual_Charge.

Actual_Charge_Id Cascades

55

Relationship: Resource_Charge

Attributes: # * Resource Id Numeric (4)

* Actual_Charge_Id Numeric (7)

Integrity Rules: Foreign Key Resource_Id

References Resource.Resource Id

Delete of Resource Restricted

Update of Resource.Resource Id

Cascades

Foreign Key Actual_Charge_Id

References Actual_Charge.

Actual_charge_Id

Delete of Actual_Charge Cascades

Update Of Actual_Charge.

Actual_Charge_Id Cascades

56

Chapter 4 systematically Deriving a Relational DB Design

from an Extended ER Model

4.1 Introduction

A primary benefit of using the Extended ER model as the

conceptual specification for an information or application

domain is that it can be used as the basis for an automati

cally generated default relational database design, that is,

a logical relational specification of a database. The

objective of this process is to produce a set of relation

definitions that are capable of satisfying the information

requirements defined by the Extended ER model. [15] The

automatic generation of a logical design facilitates the

rapid creation of a prototype database. The prototype can

be used to verify the logical design of the Extended ER

model. with a small populated prototype system, sample

processes, corresponding to the principal retrieval and

update actions of the system can be constructed and tested.

As a side-effect, this process will develop early perform

ance data about the base design. Eventually, alternatives

to the conceptual design can be considered, or performance

enhancing modifications to the relational design can be

implemented.

4.2 The Derivation Process

This section of the paper provides the details of the

process that systematically derives a default relational

57

'database design from an Extended ER model. To clarify, the

process uses the detailed information provided in the Ex

tended ER model (as described by the Diagram and the Supple

mental Data) as its source data, and transforms it into a

relational database schema, including definitions of rela

tions (for the purpose of clarity, I will refer to relations

as tables in the following discussions), views, indexes,

columns and integrity rules. [16]

The Derivation Process:

. Create the Modified Extended ER Model

· Identify a Subtype Attribute for All Complex

Entity Types

· Transform One-to-One and One-to-Many Relation

ship Types into Components of the

Participating Entities

. Create the Relational Database Schema

Transform simple Entity Types into Tables

· Transform Complex Entity Types (Supertypes and

Subtypes) into Tables and Views

· Transform Many-to-Many Relationship Types into

Tables

Transform Attributes into Columns

· Define Default Indexes

· Define Default Integrity Constraints

58

4.2.1

4.2.1.1

To facilitate the explanation of the derivation proc

ess, I have included a complete Example Extended ER Model.

It is described in figures 4-1 and 4-2. Its corresponding

Modified Extended ER Model is included as figures 4-3 and

4-4. And, finally, the results of the derivation process

are included as figure 4-5, Example Derived Relational DB

Design.

Create the Modified Extended ER Model

Identify a subtype Attribute for All Complex Entity

Types

For a purpose that will become clearer in a later

section of this chapter, it is necessary to identify a

single attribute within each highest level supertype entity

that can be used to distinguish each subtype entity. If

such a single attribute does not exist in each of the high

est level supertypes, then a new attribute can be invented

to satisfy this requirement. This attribute will simply

function as a definitive indicator of the lowest level

subtype to which each instance of the complex entity may be

categorized. This attribute must be designated as mandato

ry.

4.2.1.2 Transform One-to-One and One-to-Many Relationship

Types into Components of the Participating

59

Entities

Relationship types can be categorized by their cardi

nality: one-to-one, one-to-many or many-to-many. In this

step of the derivation process, all one-to-one and one-to

many relationship types are transformed into attributes and

integrity rules associated with one of the entity types in

the relationship. This transformation is legitimate because

it is possible to guarantee a one-to-one correspondence

between each instance of the identified relationship type

and each instance of one of the participating entities.

That is, because all instances of one of the participating

entities will correspond to at most one instance of the

relationship type, the values of that relationship type can

be transferred to the entity type.

In a one-to-many relationship, the attributes and the

integrity rules of the relationship type are transferred to

the entity type designated as the "many" participant. In

the Example ER model described in figures 4-1 and 4-2, the

components of relationship type B are transferred to entity

type C and the components of relationship type I are trans

ferred to entity type G. (Note that the attributes of these

relationship types that can be equated to the primary key of

the "many" participant, simply vanish. That is, it is

unnecessary to repeat this value because it already exists

in the entity as the primary key attribute(s). It is equal-

60

ly unnecessary to transfer the foreign key integrity rule

for these attribute'(s) as this rule is redundant with the

constraints standardly associated with a primary key.) The

components of a one-to-one relationship type may be trans

ferred to either participating entity type. In general, it

is preferable to merge the relationship information into the

entity type which has a mandatory membership in the rela

tionship, or with the entity type that has the fewest antic

ipated occurrences.

When relationship attributes are transferred to an

entity, the names of these attributes are normally prefixed

with the name of the relationship type. This permits the

unique identification of the attributes associated with each

particular relationship type when mUltiple relationships

exist between the same two entity types. In some cases, the

attribute to be integrated into the entity will already be

present. This is the case with relationship type B. An

A_Key attribute already exists within entity type C as part

of its concatenated primary key. It is, therefore, neces

sary only to transfer the integrity rule for A_Key to entity

type c.

When the attributes of a relationship type are appended

to those of an entity type, they are initially declared as

optional attributes. Subsequent to this, all attributes

associated with the root relationship type are declared as a

unit. This unit identification is necessary so that the

61

relational database management system (RDBMS) can control

the existence and modification of these attributes as a

group. For example, the integrity of the database would be

compromised if the non-foreign key attributes were added to

the database in the absence of the associated foreign key

value. within this unit declaration, the optional / manda

tory nature of all non-foreign key attributes are specified.

This specification applies only when the described relation

ship actually exists for an instance of the entity type.

That is, a mandatory attribute will only be required when

the relationship actually exists, and it will be required to

be null (i.e., not exist) when its associated relationship

does not exist.

When the integrity rule of a relationship type's for

eign key is appended to the supplemental data for an entity

type, it must be modified and reviewed in the following

manner. First, a new clause must be specified to describe

the participation of the entity type in the relationship.

"Nulls Allowed" is specified if the entity type's participa

tion is optional, and "Nulls Not Allowed" is specified if

the participation is mandatory. This specification defines

whether or not the foreign key attribute(s) contained within

the unit may ever contain nulls. And second, the value of

the Delete clause within the integrity rule must be audited.

If the value specified for the Delete clause is "Cascades",

62

it must be set to "Nullifies". "Cascades" instructs the

RDBMS to remove the instance of a relationship type when the

referenced entity has been identified for deletion. Alter

ing this value to "Nullifies" causes the RDBMS to logically

remove this instance of the relationship when the referenced

entity has been identified for deletion by "nullifying" all

of the attributes in the unit representing the relationship,

this accomplishes the directed deletion. A Delete clause

value of "Restricted" should remain unaltered.

The components of relationship types with a many-to

many cardinality cannot be transferred to a participating

entity type. They must stand on their own, and remain

designated as a relationship type. Relationship type H is

such a relationship. These relationships will be considered

in section 4.2.2.3.

4.2.1.3 Conclusion

Figure 4-3 shows the Example Modified Extended ER

Diagram associated with figure 4-1. They are identical

except that two relationship types, B and I, in figure 4-3

are shown with "dashed" symbols. This notes that their

components have been integrated into one of the relation

ship's participating entities. Figure 4-4 details the

Example Modified Extended ER Supplemental Data. Themajor

changes from figure 4-2 include the integration of relation

ship types B and I components into entity types C and G, and

63

the addition of a new mandatory attribute in entity D,

D_Subtype.

4.2.2 Create the Relational Database Schema

4.2.2.1 Transform Simple Entity Types into Tables

Each simple entity type can be translated into a single

table. By simple entity type, I mean any entity that is not

a supertype and/or sUbtype (these are complex entities and

require further examination). A simple entity type, whether

regular or weak, can be transformed in this direct manner.

In figure 4-3, regular entity type A and weak entity type C

are eligible for this transformation.

4.2.2.2 Transform Complex Entity Types (Supertypes and

Subtypes) into Tables and Views

Two basic options exist when defining a default trans

formation process for complex entity types. The choice of

one option over the other is driven by many concerns, pri

marily, maintaining the basic relational integrity of the

database and retaining the semantic clarity and simplicity

of the original logical model.

The first option would be to define a separate table

for each of the lowest level subtypes, and define views for

all higher level supertypes which union the contents of the

underlying tables correspoDding to the subtypes. In the

64

example modified diagram shown in figure 4-3, subtypes F, G

and J would be transformed into t9-b1es, while supertypes D

and E would be implemented as views. View E would union the

contents of tables F and G, and view D would union the

contents of view E and table J.

certain concerns arise with this implementation method.

First, and primary, maintaining the exclusive feature of the

subtypes becomes difficult (i.e., I would not expect the

RDBMS to standardly implement this type of control). By

"exclusive feature of the subtypes", I am referring to the

requirement that any value of the unique identifier used for

each instance of all subtypes should occur only once in all

of the subtypes, that is, the identifier remains unique at

the highest supertype level. Because the values would be

-stored in multiple tables, the implementation of this integ-

rity requirement would be cumbersome if attempted at the

application level, and still my strong preference would be

to have this very basic control handled directly by the

RDBMS. A second problem also surfaces when we consider the

relationship types in which the supertypes and subtypes

participate. In a later section, we will see that the

remaining (many-to-many) relationship types in a model will

be transformed into tables. This process should be

straightforward. However, when the sUbject relationship

type has a participating member entity which is a supertype,

the transformation process becomes quite difficult under

65

this transformation scheme. In figure 4-3, relationship

type H, between entity type C and supertype E, is an excel

lent example. Using this first transformation process

option, relationship type H becomes a relationship between C

and F, and between C and G. Should relationship type H be

implemented as two tables? Or, should it be implemented as

one table with mUltiple foreign keys referencing two entity

types. Under either approach, the clarity of the original

model suffers significantly. Due to these concerns, I

reject the first option.

The second option would be to define a single table for

the highest level supertype, and define views for all sub

types. In the example diagram shown in figure 4-3, super

type D would be transformed into a table and subtypes E, F,

G and J would be implemented as views. In this approach,

the views would identify subsets of the larger underlying

table (as opposed to performing union operations as de

scribed in option one, above). For example, view E would

contain only the attributes associated directly with its

logical specification and those inherited from supertype D,

and the instances selected into view E would be governed by

a "Where" clause which identifies the instances that make up

the distinct subtype. (The subtype attribute identified for

each complex entity type would be used to easily segregate

the. instances of the complex entity into their appropriate

66

subsets.) In this way, each subtype can be logically imple

mented as a view of the larger table. Additionally, a view

corresponding to the highest level supertype, but containing

only those attributes common to it, should also be defined.

This approach allows the RDBMS to overcome my primary

concern associated with option one. Because all instances

of this complex entity type are contained in a single table,

the exclusive feature, or uniqueness requirement for all

instances within the complex entity, can be automatically

enforced by the RDBMS in an elegant fashion. The specifica

tion of a unique primary key for this table achieves the

end.

As alluded to earlier, each view will reveal only those

attributes, and participate in only those relationship types

consistent with the supertype or sUbtype being described.

The use of these views allows us to overcome the relation

ship problem specified above under option one. When rela

tionships with complex entities must be described, they

will, first, be defined within the base (highest level

supertype) table as a "restricted" relationship based on the

subtype column, and then noted as valid columns within the

proper view. In our example, then, relationship type H can

be implemented as a relationship between table C and view E

of table D. The view E actually restricts the instances of

table D to the appropriate subset that can legitimately

participate in the relationship. This preserves the sim-

67

plicity and clarity of the model.

Unfortunately, ? new problem arises when this transfor

mation option is selected. Under this option, the enforce-

ment of the mandatory / optional characteristic associated

with each attribute becomes more difficult. The transforma-

tion of the attributes listed in the model will be more

fully discussed in a later section. However, at this point

we should just note that the enforcement is defined in the

underlying table (in our example, table D) and invoked

through the usage of the views. When the highest level

supertype is transformed into a table, it must accommodate

all subtypes. So, even though there are attributes that are

mandatory for one subtype, within the table they must be

specified as optional - because they will not occur for all

of the other subtypes. Only mandatory attributes of the

highest level supertype can have this characteristic en-

forced in the derived table. The specification of subtype

data "units" define the true mandatory / optional character-

istics for each attribute and are invoked and enforced when

the subtype characteristic of each table instance is as-

signed or modified. The generated views, then, specify the

enforcement of these characteristics through the inclusion

of subtype data units, as shown in figure 4-5, Views E, F, G

and J.

In summary, the transformation of complex entity types

68

into a single table with views. (option two) is effective in

maintaining the integrity of the application system, pro

vides easy access to supertypes and subtypes, and retains

the clarity of the model.

4.2.2.3 Transform Many-to-Many Relationship Types into

Tables

Each of the remaining relationship types, all of them

representing a many-to-many relationship, can be translated

into a single table. In figure 4-3, relationship type H

would yield a corresponding table. The attributes and

integrity rules associated with each of these relationship

types will be transferred to the derived table, as shown in

figure 4-5.

4.2.2.4 Transform Attributes into Columns

Each attribute associated with an entity type or eligi

ble relationship type is translated into a column. Optional

attributes are specified as "null"(able) columns, and manda

tory attributes are specified as "not null"(able) columns.

(The specification of the "null" / "not null" clause is

massaged to accurately reflect the constraints associated

with subtype unit attributes and relationship unit at

tributes.) This specification allows the RDBMS to enforce

. this constraint.- Additionally, other special characteris

tics such as the identification of the primary key'or the

69

specification of "with Check option" constraints associated

with an attribute are also transferred to the column defini-

tions.

It is important to note that columns are specified for

both derived tables and views. Again, see figure 4-5 for an

example of this transformation.

4.2.2.5 Define Default Indexes

Three types of default indexes can be generated in the

process of transforming the modified model into a relational

database schema. The indexes that are generated only apply

to tables. Any derived views do not have associated index-

es, as they inherit the use of the indexes associated with
/

the underlying (or referenced) table. Remember, also, that

these indexes may be based on concatenated columns.

First, the column(s) representing the primary key of

each derived table receives an index. The importance of

this index is two-fold. First, it facilitates the rapid and

direct access of each instance within the table by the

RDBMS. This enhances the general performance of the de-

signed database. And, second (if the RDBMS does not do this

as a result of identifying the primary key); the index can

be specified as "unique" in order to direct the RDBMS to

enforce the basic relational integrity of the system, i.e.,

disallowing the creation of duplicate rows or tuples.

70

Second, each table derived from a complex entity re

ceives an additional index. This index would identify a

concatenated key consisting of the table's sUbtype-identify

ing column followed by the column(s) representing the pri

mary key. This default index .is included to enhance the

general performance of the database. It permits the RDBMS

to rapidly access the appropriate subsets of instances that

correspond to each derived view.

Third, all foreign keys specified within the tables,

derived from the relationship types of the original model,

would receive indexes as well. Foreign keys derived from

one-to-one relationship types would receive a "unique"

specification. This would enforce the one-to-one cardinali

ty of the relationship. Foreign keys derived from one-to

many and many-to-many relationship types would not receive a

"unique" specification.

In the example of figures 4-3 and 4-4, tables A, C, D,

and H would each receive a unique index over the primary

key. Table D would receive two additional indexes. The

first index would be based on the sUbtype-identifying col

umn, D Subtype, and the second would be based on the foreign

key implemented to effect relationship type I. Table H

would receive an additional pair of indexes over· its two

foreign keys. Note that table C would not receive an addi

tional index over the foreign key contained within its

concatenated primary key. The index over the primary key

71

can function as the index over this foreign key.

4.2.2.6 Define Default Integrity Constraints
~

In the course of executing the transformation processes

described above, additional default integrity constraints

may be derived. within the scope of this discussion, an

additional constraint would be derived for each subtype-

identifying column, limiting it to values which would have a

one-to-one correspondence with each of the lowest level

subtypes contained within the complex entity type.

4.3 Conclusion and Pseudo-SQL Syntax

The earlier sections of this chapter describe a system-

atic process for deriving a complete relational database

design from an Extended Entity Relationship model. The

result of this derivation process is a set of relational

database object definitions (such as tables, views, and

indexes) that can be processed by the RDBMS to actually

implement the database, thus, achieving the objective and

benefits of moving directly from the model to a relational

specification. In figure 4-5, I have described the results

of the process as applied to the Example Extended ER model

of figures 4-1 and 4-2. The results utilize a pseudo Struc-

tured Query Language (SQL) as the basis for the syntax.

This definition syntax has been abbreviated, ignoring any

72

parameters typically required by an RDBMS that are associat

ed with each object's logical and physical characteristics.

(In an actual implementation of this process, additional

data such as "estimated instances of the entity/relation

ship" would have been captured in the model. This, augment

ed with some default location data, such as a database or

tablespace specification, would permit the automatic genera

tion of all characteristics associated with the objects

yielding a complete relational definition.)

The basic syntax for the three main database objects is

as follows:

Create Table <table name>

Columns: <column name> <column constraint> , ...

[Integrity Rules: <rule name> <table constraint>

, ...]

Create View <view name>

As «query» {i.e., Select ... }

Create [Unique] Index <index_name> On <table name>

«column_name(s» [ASCIDESC] , ...)

73

D

Figure 4-1: Example Extended ER Diagram

A

1

M

E
M

M

74

M c

Figure 4-2 Example Extended ER Supplemental Data

Entity: A

Attributes:

Entity: C

Attributes:

Entity: D

Attributes:

Entity: E

Attributes:

Entity: F

Attributes:

* A Key Numeric (5)

* A Data 1 Alpha (30)

A Data 2 Numeric (7)

* A Key Numeric (5)

* C_Key Numeric (2)

C Data 1 Alpha (20)

* D Key Numeric (4)

* D Data 1 Alpha (40)

* E Data 1 Numeric (7)

E Data 2 Alpha (20)

* F Data 1 Alpha (10)

F Data 2 Alpha (30)

75

Entity: G

Attributes:

Entity: J

Attributes:

* G Data 1

G Data 2

* J-Data 1

J Data 2

76

Numeric (10)

Alpha (30)

Alpha (15)

Alpha (25)

Relationship: B

Attributes: # * A Key Numeric (5)

* C Key Numeric (2)

Integrity Rules: Foreign Key A_Key

References A.A_Key

Delete of A Restricted

Update of A.A_Key Cascades

Foreign Key A_Key, C_Key

References C.A_Key, C.C_Key

Delete of C Cascades

Update of C.A_Key, C.C_Key Cascades

77

Relationship: H

Attributes: # * H_Key Numeric (6)

* D_Key Numeric (4)

* A_Key Numeric (5)

* C_Key Numeric (2)

* H Data 1 Alpha (4)

In~egrity Rules: Foreign Key D_Key

References E.D_Key

Delete of E Cascades

Update of E.D_Key Cascades

References C.A_Key, C.C_Key

Delete of C Cascades

Update of C.A Key, C.C Key Cascades-. -

78

Relationship: I

Attributes:

Foreign Keys:

* D_Key Numeric (4)

* A_Key Numeric (5)

* C_Key Numeric (2)

* I Data 1 Alpha (10)

D_Key

References G.D_Key

Delete of G Cascades

Update of G.D_Key Cascades

A_Key, C_Key

References C.A_Key, C.C_Key

Delete of C Cascades

Update of C.A_Key, C.C_Key Cascades

t

79

..

Figure 4-3: Example Modified ER Diagram

A

1

I \
18,

L ..\

M
D

M M
E C

F 1
"M ,,- "-

~

"
J

./

80

Figure 4-4 Example Modified Extended ER Supplemental Data

Entity: A

Attributes: # * A Key Numeric (5)

* A Data 1 Alpha (30)

A Data 2 Numeric (7)

Entity: C

Attributes: # * A_Key Numeric (5)

* C_Key Numeric (2)

C Data 1 Alpha (20)

Relationship B Attributes:

* A_Key

Foreign Key A_Key

Integrity Rules: Foreign Key A_Key

Nulls Not Allowed

References A.A_Key

Delete of A Restricted

-Update of A.A_Key Cascades

Entity: D

Attributes: # * D Key Numeric (4)

* D Data 1 Alpha (40)

* D_Subtype Alpha (1)

81

Entity: E

Attributes:

Entity: F

Attributes:

* E Data 1 Numeric (7)

E Data 2 Alpha (20)

* F Data 1 Alpha (10)

F Data 2 Alpha (30)

Entity: G

Attributes: * G Data 1 Numeric (10)

G Data 2 Alpha (30)

Rel_I_A_Key Numeric (5)

Rel_I_C_Key Numeric (2)

ReI I Data 1 Alpha (10)

Relationship I Attributes:

* Rel_I_A_Key

* Rel_I_C_Key

* ReI I Data 1

Foreign Key Rel_I_A_Key, Rel_I_C_Key

Integrity Rules: Foreign Key Rel_I_A_Key, Rel_I_C_Key

Nulls Allowed

References C.A_Key, C.C_Key

Delete of C Nullifies

Update of C.A_Key, C.C_Key Cascades

82

Entity: J

Attributes: * J-Data 1 Alpha (15)

J Data 2 Alpha (25)

Relationship: H

Attributes: # * H_Key Numeric (6)

* D_Key Numeric (4)

* A_Key Numeric (5)

* C_Key Numeric (2)

* H Data 1 Alpha (4)

Integrity Rules: Foreign Key D_Key

References E.D_Key

Delete of E Cascades

Update of E.D_Key Cascades

A_Key, C_Key

References C.A_Key, C.C_Key

Delete of C Cascades

Update of C.A_Key, C.C_Key Cascades

83

Figure 4-5 Example Derived Relational DB Design

Not Null

Not Null

Null

Create Table A

Columns: A Key Numeric (5)

A Data 1 Alpha (30)

A Data 2 Numeric (7)

Integrity Rules:

Primary_Key = (A Key)

Create Unique Index A_Primary_Key_Index on A

(A_Key ASC)

84

Create Table C'

Not Null

Not Null

Null

Update of A.A_Key Cascades)

Note: The "Not Null" specification on A_Key within

Rel B unit signifies that when the unit exists, the column

A_key must not be null. The "Nulls Not Allowed" specifica

tion within the Rel_B Foreign Key clause specifies that the

relationship is mandatory. (Both of these specifications

are, in fact, redundant because A_Key is a component of

table CIS primary key, implying a "not nulls"

specification.)

Create Unique Index C_Primary_Key_Index on C

(A_Key, C_Key ASC)

85

. .

Create Table D

Columns: D_Key Numeric (4) Not Null

D Data 1 Alpha (40) Not Null

D_Subtype Alpha (1) Not Null

with Check Option (D_Subtype = 'F' or 'G' or

'J I)

E Data 1 Numeric (7) Null

E Data 2 Alpha (20) Null

F Data 1 Alpha (10) Null

F Data 2 Alpha (30) Null

G Data 1 Numeric (10) Null

G Data 2 Alpha (30) Null

J-Data 1 Alpha (15) Null

J Data 2 Alpha (25) Null

Rel_I_A_Key Numeric (5) Null

Rel_I_C_Key Numeric (2) Null

ReI I Data 1 Alpha (10) Null

Integrity Rules:

Primary Key = (D_Key)

ReI I Unit = ((Rel_I_A_Key Not Null

Rel_I_C_Key Not Null (...

ReI I Data 1 Not Null)

with Check option = (D subtype =

'G'))

ReI I Foreign Key = «(Rel_I_A_Key, Rel_I_c_Key)

Nulls Allowed

86

References (C.A Key, C.C Key)

Delete of C Nullifies Rei I Unit

Update of (C.A_Key, C.C_Key) Cascades)

SUbtype_E unit = ((E_Data_l Not Null

E Data 2 Null)

with Check Option = (D Subtype = 'F' or

IG I))

SUbtype_F unit = ((Subtype E unit

F Data 1 Not Null

F Data 2 Null)

with Check Option = (D Subtype = IF I))

SUbtype_G Unit = ((Subtype_E Unit

G Data 1 Not Null

G Data 2 Null)

with Check option = (D_Subtype = IGI))

SUbtype_J Unit = ((J_Data_l Not Null

J Data 2 Null)

with Check option = (D_Subtype = IJI)

Create unique Index D_Primary_Key_Inctex On D

(D Key ASC)

Create Index D_Subtype_Index On D

(D_Subtype, D_Key ASC)

87

Create Index D Rel I Index On D

Create View D V

D Data 1 '

From D) {see note below}

'\
Note: This view, like other views, inherits all integ-

'rity rules associated with the underlying base table.

Therefore, while this view can be used to maintain some

columns within the table, an attempt to change an instance's

subtype from "F" to "E" will be unsuccessful because this

view does not allow the specification of the "Rel I" pre-

fixed columns. Such an update action would generally have

to be performed against the underlying table, such as table

D, where all columns and integrity rules are availabie.

88

Create View E

As (Select D-,-Key

D Data 1

D_Subtype

subtype_E unit

From D Where D_Subtype = 'F' Or 'G')

Create View F
'\,

As (Select D~Key

D Data 1

Subtype_E unit

Subtype_F unit

From D Where D_Subtype = 'F')

Create View G

As (Select D_Key

D Data 1

subtype_E unit

subtype_G unit

ReI I Unit

From D Where D_Subtype = 'G')

89

Create View J

As (Select D_Key

D Data 1

D_Subtype

Subtype_J unit

From D Where D_Subtype = 'J')

90

Create Table H

Columns: H_Key Numeric (6) Not Null

D_Key Numeric (4) Not Null

A_Key Numeric (5) Not Null

C_Key Numeric (2) Not Null

H Data 1 Alpha (4) Not Null

Integrity Rules:

Primary Key = (H_Key)

Foreign Key = (D_Key

Nulls Not Allowed {see note 1 below}

References E.D_Key {see note 2 below}

Delete of E Cascades

Update of E.D_Key Cascades)

Foreign Key = ((A_Key, C_Key)

Nulls Not Allowed {see note 1 below}

References (C.A Key, C.C_Key)

Delete of C Cascades

Updat~of (C.A_Key, C.C_Key) Cascades)

Note 1: These clauses are derived from the mandatory

characteristic associated with the foreign key columns.

Note 2: This foreign key references view E, thus

limiting the instances of table D to the appropriate subset.

91

J

Create Unique Index H_Primary_Key_Index On H

(H_Key ASC)

Create Index H Rel 1 Index On H

(D Key ASC)

Create Index H Rel 2 Index On H

(A_Key, C_Key ASC)

92

Chapter ,5 Derived Relational DB Design for the project

Management Example

This chapter presents the results of the derivation

process d~scribed in chapter 4 when it is applied against a
i

larger model. The source Conceptual model is the one de-

scribed in chapter 3, figures 3-1 and 3-2.

In the first phase of the derivation process, a Modi-

fied Extended ER model is created. Figures 5-1 and 5-2

describe the Modified model for the Project Management

example. It differs from the source Conceptual model in two

ways. First, new subtype attributes have been added to the

Person and Resource supertypes. This permits the easy

identification of the subtypes. Second, six of the eight

relationsHip types have been transformed into components of

the participating entity types. Relationship types Owns /

Owned_By and Manages / Managed_By have been folded into

entity type Project. Relationship type Composed_Of / As-

signed_To has been added to entity type Task. And, three

relationship types: Billed_By / Billed_To, Person_Charge and

Resource_Charge, have been defined as attributes within the

Actual_Charge entity type. An additional integrity rule

(see the note under entity type Actual_Charge within figure

5-2) has ~een created to enforce the exclusive nature of two

of the relationship types.

In the second phase of the derivation process, the

Modified Extended ER model is translated into a Relational

93

Database Schema. Figure 5-3 details the complete relational

database design for the Project Management model. Simple

entity types: Client, Project, Task and Actual_Charge are

transformed into tables. Complex entity types Person and

Resource are also transformed into tables. Table Person

receives three views: Person_V, which is a view of the

supertype, and two views corresponding to the valid sub

types, Employee and Contractor. Table Resource receives

three views as well: Resource_V, which is a view of the

supertype, and two views corresponding to the valid sub

types, Durable and Consumable. Many-To-Many relationship

types, Person_Assignment and Durable_Assignment, are also

transformed into tables. This yields a total of eight

tables and six vi.ews comprising the schema. The required

default indexes are defined for each table. First, a unique

index on the primary key of each table is specified. Sec

ond, each table representing a complex entity type receives

an additional index to aid in the access of the tdentified

subsets. In this model, table Person receives the

Person_Subtype_Index and table Resource receives the Re

source_Subtype_Index. And, finally, each foreign key con

tained within the tables receives an index to aid in the

enforcement of the integrity rules. In the model under

examination, table Actual_Charge receives three of these

indexes, table Project receives two, and tables

94

Person_Assignment and Durable_Assignment each receive one.

In the case of these last two tables, they each have another

foreign key which is a candidate for an index. But, they do

not receive an inde~ because these foreign keys, Person_Id

and Resource_Id respectively, appear as the first component

within each table's primary key, allowing the primary key

index.to function as the foreign key index as well. (Table

Task has a similar situation. -Its single foreign key is the

first component of its primary key, so a specific foreign

key index is not required also.) In all, seventeen default

indexes are defined. Regarding integrity rules, all of the

rules that were specified within the Conceptual and Modified

models are transferred to the tables of the relational

database schema. Additionally, I have included a "with

Check Option" rule on each complex entity's subtype

identifying column to limit its values to codes that corre

spond to the defined sUbtypes.

In summary, figure 5-3 contains the complete set of

database objects required to define the Project Management

relational database.

95

Figure 5-1: project Management Modified Extended ER Diagram

Person Client

M

M

/Camposed_Of I
:. Ass~ned_To

Project

M

M

M

r-
BlHed By I
BWe~

l- -

M

Resource

Durable

M

"Re~~rce
(Cha -

"

Employee

IConsumable

IContractor

96

Figure 5-2: Project Management Modified Extended ER

Supplemental Data

Entity: Person

Attributes: # * Person Id Numeric (6)

* Name Alpha (40)

Charge_Rate_Wk Numeric (4,2)

* Person_Subtype Alpha (1)

~

Entity: Employee

Attributes:

Entity: Contractor

Attributes:

* Social Sec Nbr Numeric (9)

* Hire Date Date

* Contractor Id Numeric (9)

Contract Start Date

contract_Stop Date

Contract Rate Mo Numeric (5,2)

97

Entity: Resource

Attributes: # * Resource Id Numeric (4)

* Resource Title Alpha (40)

Charge_Rate_Unit_Of_Meas Alpha (4)

Resource Class Alpha (4)

* Resource_Subtype Alpha (1)

Entity: Durable

Attributes: * Quantity Numeric

Use Restrictions

(5)

Alphanum (60)

Entity: Consumable

Attributes: * Replenish_Days Numeric (3)

98

Entity: Actual_Charge

Attributes: # * Actual_Charge_Id Numeric (7)

* Actual_Charge_Date Date

* Actual_Charge_Rate Numeric (5,2)

* Actual_Charge_Unit_Of_Meas Alpha (4)

* Actual_Charge_Quantity Numeric (3,2)

Actual_Charge_Start_Date Date

Actual_charge_Stop_Date Date

Billed_To_Project_Id Numeric (5)

Billed To Task Id Numeric (3)

Person_Charge_Person_Id Numeric (6)

Resource_Charge_Resource_Id

Numeric (4)

Relationship Billed To Attributes:

* Billed_To_Project_Id

* Billed To Task Id

Foreign Key Billed_To_Project_Id,

Billed To Task Id

Relationship Person_Charge Attributes:

* Person_Charge_Person_Id

Foreign Key Person_Charge_Person_Id

Relationship Resource_Charge Attributes:

* Resource_Charge_Resource_Id

Foreign Key

Resource_Charge_Resource_Id

99

Integrity Rules: Foreign Key Billed_To_Project_Id,

Billed To Task Id

Nulls Not Allowed

References Task.Project_Id,

Task.Task Id

Delete of Task Restricted

Update of Task.Project_Id,

Task.Task Id Cascades

Foreign Key Person_Charge_Person_Id

Nulls Allowed (see note below}

References Person. Person Id

Delete of Person Restricted

Update of Person. Person Id Cascades

Foreign Key

Resource_Charge_Resource_Id

Nulls Allowed (see note below}

References Resource.Resource Id

Delete of Resource Restricted

Update of Resource.Resource Id

Cascades

((Foreign Key Person_Charge_Person_Id

Must Not Be Null and

Foreign Key

Resource_Charge_Resource_Id

Must Be Null) or

(Foreign Key Person_Charge_person_Id

100

Must Be Null and

Foreign Key

Resource_Charge_Resource_Id

Must Not Be Null))

{see note below}

Note: The combination of the "Nulls Allowed" specification

on the foreign keys of the second/and third integrity rules

and the fourth rule fully enforces the mandatory participa

tion of each Actual charge instance in either a

Person_Charge or Resource_Charge relationship, but not both.

101

Entity: Client

Attributes: # * Client Id Numeric (9)

* Client Name Alpha (40)

Contact Name Alpha (40)

Contact Title Alpha (50)

Contact Addr Line 1 Alphanum (50)

Contact Addr Line 2 Alphanum (50)

Contact Phone Numeric (10)

Client Rating Alphanum (2)

Entity: Project

Attributes: # * Project_Id Numeric (5)

* Project_Name Alpha (40)

start Date Date

Want Date Date

Promise Date Date

Owned_By_Client_Id Numeric (9)

Managed_By_Person_Id Numeric (6)

Relationship Owned_By Attributes:

* Owned_By_Client_Id

Foreign Key Owned_By_Client_Id

Relationship Managed_By Attributes:

* Managed_By_Person_Id

Foreign Key Managed_By_Person_Id

Integrity Rules: Foreign Key Owned_By_Client_Id

Nulls Not Allowed

102

Entity: Task

Attributes:

References Client. Client Id

Delete of Client Restricted

Update of Client. Client Id Cascades

Foreign Key Managed_By_Person_Id

Nulls Allowed

References Employee.Person_Id

Delete of Employee Nullifies

Update of Employee.Person_Id

Cascades

* Project_Id Numeric (5)

* Task Id Numeric (3)

* Task Name Alpha (40)

start Date Date

Stop_Date Date

Relationship Assigned To Attributes:

* Project_Id

Foreign Key Project_Id

Integrity Rules: Foreign Key Project Id

Nulls Not Allowed

References Project.Project_Id

Delete of Project Restricted

Update of Project.Project_Id

Cascades

103

Relationship: Person_Assignment

Attributes: # * Person Id Numeric (6)

* Project_Id Numeric (5)

* Task Id Numeric (3)

start Date Date

stop_Date Date

Integrity Rules: Foreign Key Person Id

References Person. Person Id

Delete of Person Cascades

Update of Person. Person Id Cascades

Foreign Key Project_Id, Task_Id

References Task.project_Id,

Task.Task Id

Delete of Task Restricted

Update Of Task.Project_Id,

Task.Task Id Cascades

104

Relationship: Durable_Assignment

Attributes: # * Resource Id Numeric (4)

* Project Id Numeric (5)

* Task Id Numeric (3)

start Date Date

Stop_Date Date

Integrity Rules: Foreign Key Resource_Id

References Durable.Resource Id

Delete of Durable Cascades

Update of Durable.Resource Id

Cascades

Foreign Key Project_Id, Task Id

References Task.project_Id,

Task.Task Id

Delete of Task Restricted

Update Of Task.Project_Id,

Task.Task Id Cascades

105

Figure 5-3: Project Management Derived Relational DB Design

Create Table Person

Columns: Person Id Numeric (6) Not Null

Name Alpha (40) Not Null

Charge_Rate_Wk Numeric (4,2) Null

Person_Subtype Alpha (1) Not Null

with Check Option (Person_Subtype = 'E' or

'C')

Employee_Social_Sec_Nbr Numeric (9) Null

Employee_Hire_Date Date Null

Employee_Pay_Rate_Wk Numeric (4,2) Null

Contractor Contractor Id Numeric (9) Null

contractor_Fed_Emplr_Id Numeric (9) Null

Contractor Contract start Date Null

contractor_contract_Stop Date Null

Contractor Contract Rate Mo Numeric (5,2) Null

Integrity Rules:

Primary Key = (Person_Id)

Subtype_Employee unit =

«Employee_Social_Sec_Nbr Not Null

Employee_Hire_Date Not Null

Employee_Pay_Rate_Wk Not Null)

with Check option = (Person Subtype = IE'))

SUbtype_Contractor unit =

«contractor_Contractor_Id Not Null

106

contractor_Fed_Emplr_Id Not Null

Contractor Contract start Null

Contractor_Contract_Stop Null

Contractor Contract Rate Mo Null)

with Check Option = (Person_Subtype = IC'))

Create Unique Index Person_Primary_Key_Index On Person

(Person_Id ASC)

Create Index Person_Subtype_Index On Person

(Person Subtype, Person Id ASC)

107

Create View Person V

As (Select Person Id

Name

Charge_Rate_Wk

Person_Subtype

From Person)

Create View Employee

As (Select, Person_Id

Name "

Charge_Rate_Wk

Person_Subtype

SUbtype_Employee Unit

From Person Where Person_subtype IE')

Create View Contractor

As (Select Person Id

Name

Charge_Rate_Wk

Person_Subtype

SUbtype_Contractor unit

From Person Where Person_subtype = IC')

108

Create Table Resource

Columns: Resource Id Numeric (4) Not Null

Resource Title Alpha (40) Not Null

Resource Class Alpha (4) Null

Resource_Subtype Alpha (1) Not Null

with Check option = (Resource Subtype = '0' or

'C I)

Durable_Quantity Numeric (5) Null

Durable Use Restrictions Alphanum (60) Null

Consumable_Replenish_Days Numeric (3) Null

Integrity Rules:
~

Primary Key = (Resource Id)

Subtype_Durable unit =

((Durable_Quantity Not Null

Durable Use Restrictions Null)

With Check Option = (Resource_Subtype = '0'))

Subtype_Consumable unit =

((Consumable_Replenish_Days Not Null)

with Check option = (Resource Subtype = 'C'))

109

--;; I

Create Unique Index Resource_primary_Key_Index On Resource

(Resource_Id ASC)

Create Index Resource_Subtype_Index On Resource

(Resource_Subtype, Resource Id ASC)

110

Create View Durable

As (Select Resource Id

Resource Title

Charge_Rate_Unit_Of_Meas

Resource Class

Resource_Subtype

SUbtype_Durable unit

From Resource Where Resource_Subtype '0 1)

Create View Consumable

As (Select Resource Id

Resource Title

Charge_Rate_Unit_Of_Meas

Resource Class

Resource_Subtype

Subtype_Consumable unit

From Resource Where Resource Subtype 'C')

111

Create Table Actual_Charge

Columns: Actual_Charge_Id Numeric (7) Not Null

Actual_Charge_Date Date Not Null

Actual_Charge_Rate Numeric (5,2) Not Null

Actual_Charge_Quantity Numeric (5,2) Not Null

Actual_Charge_stop_Date Date Null

Billed_To_Project_Id Numeric (5) Null

Billed To Task Id Numeric (3) Null

Resource_Charge_Resource_Id Numeric (4) Null

Integrity Rules:

Primary Key = (Actual Charge Id)- -

Billed To Task Id Not Null)

Billed To Foreign Key = «Billed_To_Project_Id,

Nulls Not Allowed

References (Task.Project_Id,

Delete of Task Restricted

Update of (Task.Project_Id,

Task.Task Id) Cascades)

Person_Charge unit =

112

/

Person_Charge Foreign Key =

(person_charge_Person_Id

Nulls Allowed

References Person. Person Id

Delete of Person Restricted

Update of Person. Person Id Cascades)

Resource_Charge unit =

Resource_Charge Foreign Key =

(Resource Charge Resource Id- - -

Nulls Allowed

References Resource.Resource Id

Delete of Resource Restricted

Update of Resource.Resource Id Cascades)

Person_Resource_Charge Rule =

Resource_Charge_Resource_Id Must Be Null) or

Must Not Be Null))

113

Create Unique Index Actual_Charge_Primary_Key_Index On

Act~al_Charge (Actual_Charge_Id ASC)

Create Index Actual_Charge_Rel_Billed_To_Index On

Actual_Charge

(Billed_To_Project_Id, Billed To Task Id ASC)

Create Index Actual_Charge_Rel_Person_Index On

Actual_Charge (Person_Charge_Person_Id ASC)

(

Create Index Actual_Charge_Rel_Resource_Index On

Actual_Charge (Resource_Charge_Resource_Id ASC)

114

Create Table Client

Columns: Client Id Numeric (9) Not Null

Client Name Alpha (40) Not Null

Contact Name Alpha (40) Null

Contact Title Alpha (50) Null

Contact Addr Line 1 A~phanum (50) Null

Contact Addr Line 2 Alphanum (50) Null

Contact Phone Numeric (10) Null

Client_Rating Alphanum (2) Null

Integrity Rules:

Primary Key = (Client_Id)

Create Unique Index Client_Primary_Key_Index On Client

(Client Id ASC)

115

Create Table Project

Columns: Project~Id Nume~ic (5) Not Null

Project_Name Alpha (40) Not Null

start Date Date Null

want Date Date Null

Promise Date Date Null

Integrity Rules:

Primary Key = (Project Id)

Nulls Not Allowed

References Client. Client Id

Delete of Client Restricted

Update of Client. Client Id Cascades)
~ -

Managed_By unit =

(Managed_By_Person_Id Not Null)

Managed_BY Foreign Key = (Managed_By_Person_Id

Nulls Allowed

References Employee.Person_Id

Delete of Employee Nullifies Managed_By unit

Update of Employee.Person_Id Cascades)

116

Create Unique Index Project_Primary_Key_Index On Project

(Project_Id ASC)

Create Index Project_Rel_Owned_By_Index On Project

(Owned_By_Client_Id ASC)

Create Index Project_Rel_Managed_By_Index On Project

(Managed_By_Person_Id ASC)

117

Create Table Task

Columns: Project_Id Numeric (5) Not Null

Task Id Numeric (3) Not Null

Task Name Alpha (40) Not Null

start Date Date Null

Stop_Date Date Null

Integrity Rules:

Primary Key = (Project_Id, Task_Id)

Assigned To Unit = (Project Id Not Null)

Assigned_To Foreign Key = (Project_Id

Nulls Not Allowed

References Project.Project_Id

Delete of Project Restricted

Update of Project. Project Id Cascades)

Create Unique Index Task_Primary_Key_Index On Task

(Project Id, Task Id ASC)

118

Create Table Person_Assignment

Columns: Person Id Numeric (6) Not Null

Project_Id Numeric (5) Not Null

Task Id Numeric (3) Not Null

Start_Date Date Null

Stop_Date Date Null

Integrity Rules:

Primary Key (Person_Id, Project_Id, Task_Id)

Foreign Key = (Person Id

Nulls Not Allowed

References Person. Person Id

Delete of Person Cascades

Update of Person. Person Id Cascades)

Foreign Key = ((Project Id, Task_Id)

Nulls Not Allowed

References (Task.Project_Id, Task. Task_Id)

Delete of Task Restricted

Update of (Task.Project_Id, Task.Task_Id)

Cascades)

Create unique Index Person_Assignment_Primary_Key_Index On

Person_Assignment (Person_Id, Project_Id, Task Id ASC)

Create Index Person_Assignment_Rel_Project_Task_Index On

Person_Assignment (Project_Id, Task Id ASC)

119

Create Table Durabl~_Assignment

Columns: Resource Id Numeric (4) Not Null

Project_Id Numeric (5) Not Null

Task Id Numeric (3) Not Null

start Date Date Null

Stop_Date Date Null

Integrity Rules:

Primary Key = (Resource_Id, Project_Id, Task_Id)

Foreign Key (Resource Id

Nulls Not Allowed

References Durable.Resource Id

Delete of Durable Cascades

Update of Durable.Resource Id Cascades)

Foreign Key = ((Project Id, Task Id)- -

Nulls Not Allowed

References (Task. Project Id, Task.Task Id)

Delete of Task Restricted

Update of (Task.Project_Id, Task.Task Id)

Cascades)

120

Create Unique Index Durable_Assignment_PrimarY_Key_Index On

Durable_Assignment

(Resource Id, Project Id, Task Id ASC)

Create Index Durable_Assignment_Rel_Project_Task_Index On

Durable_Assignment (Project Id, Task Id ASC)

121

Chapter 6 Design Issues Raised by the Use of Extended ER

Modeling

6.1 Introduction

The primary objective of utilizing an Extended ER

Modeling technique is to facilitate the identification and

organization of the semantic concepts that are essential to

the achievement of an application system's goals. These

semantic concepts can then be used as the basis to define

the RDBMS structures and,rules necessary to represent the

target application domain. These derived structures and

rules comprise the actual relational database design. In

this chapter, I will discuss possible modifications to, or

compromises on, the default database design. A constant

underlying aspect of these discussions will be the impact of

any contemplated design modifications on the quality fea

tures of the database, such as the operational feature of

normalization and the usability features of flexibility,

clarity, efficiency and semantic integrity. Within certain

discussions, I will use the function definition requirements

associated with each application domain (created in parallel

with the Extended ER Model, see chapter 2) as a source of

additional criteria to evaluate the overall quality of the

default database design. These functions provide a useful

reference point from which to examine and judge the overall

effectiveness of the default design. It is likely that a

large number of functions will be associated with each

122

application system. From these, a representative set of

functions must be chosen and measured against the database

design to determine its strengths and to uncover its weak

nesses. The representative set of functions should include:

all application performance-critical functions, a sampling

of the most complex functions, and some randomly selected

functions. [17J Through this analysis, we can assure the

acceptabi~ity of the default database design, or identify

points of improvement to achieve the required level of

quality.

The following sections discuss permissible alterations

to the default design that can be used to improve the quali

ty of the design without compromising the business effec

tiveness of the model.

6.2 Denormalization

Strict data normalization can easily lead to the speci

fication of a large number of tables. [18J Normalization

seeks to reduce the complexity of maintaining data and

enforcing its integrity by removing duplicate data. In

general, normalized structures offer greater data control

and update efficiency at the expense of function and report

ing efficiency. This is because the body of normalized data

must be manipulated, such as combined or summarized, in

order to be useful in the accomplishment of functions or the

123

production of reports.

Denormalization techniques seek to improve the perform

ance of vital functions by [1~]:

· reducing the number of tables accessed per each

function, primarily by reducing the need to join

tables

· reducing the absolute number of rows in specific

tables, those most often accessed by the

significant functions

· reducing the number of real-time calculations

necessary to accomplish the significant functions

In essence, denormalization techniques aim to improve a

database design by adding controlled redundancy or by parti

tioning the target data. A discussion of the basic tech

niques follows. [20]

The first technique is to choose table structures that

represent joined data, in violation of the normal forms

definitions. An example might be to include reference data

(such as, data that describes or t~anslates code values)

directly in the base table. Under a normalized structure,

we would want to keep these descriptions separate from the

base tables so that if a description would change, it would

only need to be up~ated in one place, the reference data

table. But, because these reference descriptions rarely

change (and when they do, we are only adding new descrip

tions, not changing current ones) and because they are often

124

accessed in a set of critical functions and reports, we can

choose to store the information in a joined format. This

format reduces the I/O operations for each access (due to

the fact that only a single table is accessed) and creates a

simpler structure for users to examine. The reference data

table remains, to support the validation of new data insert

ed into the base table, but not to support the utility of

the data once it is inserted.

The second technique includes a series of possible

design modifications that pursue function and reporting

efficiency gains by storing redundant data in forms that are

more easily and directly used by (that is, specifically

designed to achieve or meet the needs of) critical functions

and reports. These modifications seek to improve efficiency

by storing artificially generated data, normally in the form

of calculated values. These values may include appended

calculated columns, where the values of many columns within

a single row are used as inputs to a function to yield a

calculated value, or summary rows in public summary tables

that are calculated from detail data in operational tables.

The first of these, calculated columns, make these values

easily and quickly accessible to all processes that require

them, without the need to explicitly invoke or perfectly

replicate the function's logic. Of course, the disadvantage

of utilizing calculated columns is that whenever a detail

125

data input within the row is modified, we must be certain

that the ROBMS or the application software refreshes the

calculated column. A lapse, here, would disrupt the basic

integrity of the database. Calculated columns are best

employed when the data, upon which the derived value is

based, rarely changes. Regarding public summary data, this

class of calculated values is less sensitive to database

changes because it is usually historical. For example, the

monthly payroll activity for each department could be summa

rized into a single row of data. New values would be calcu

lated at the end of each month, but all data related to the

previous months would remain intact. These values need to

be calculated only once, yet they are continuously available

to all processes that require the data while allowing each

process to avoid the effort necessary to recalculate the

values by passing through all of the detail operational

values. An interesting refinement of this approach would be

to retain the aggregated data in a Rolling Summarization

format. By rolling summarization, I mean that the granular

ity of the summarized data is increased over time. In the

payroll activity example mentioned earlier, the initial

granularity of the summarized data might be weekly. And,

then, as the data ages, the granularity might .be elevated to

monthly and even annual values. Again, the intent of re

taining these summarized values is to achieve efficiency by

allowing certain processes and reports to avoid a level of

126

detail data that is unimportant to their objectives.

A final technique seeks to increase performance through

the artificial partitioning of base table data, i.e., reduc

ing the number of rows searched, or the width of each row

searched, to satisfy a function or reporting module. Hori

zontal partitioning can be applied when a normalized table

contains some columns that are both broad (i.e., lengthy)

and seldom referenced. For example, if a table contains

required quality specifications for parts, as well as ex

tended comments detailing the development of these specifi

cations, it would be legitimate to divide this table into

two when the vast majority of the processes accessing the

table do not require the extended comment data. Each of

those processes, then, enjoy faster access to the desired

data because it is unnecessary to read and discard the

comments. Processes that do require the extended comments

may access that data directly from the second table or they

may join it to the contents of the original base table.

vertical partitioning seeks to achieve efficiency by segre

gating a table into logical subsets that correspond in

content to the subsets of data accessed by the most fre

quently performed or time-critical processes. This segrega

tion is normally based on static values within each row

(i.e., we do not want a situation where individual detail

rows are frequently migrating between the many tables that

127

represent each logical sUbse~ - this would significantly

complicate the database maintenance routines). Segregation

value types might include currency measurements, where, for

example, three tables are kept, one for products under

development, one for current products and one for discontin

ued products. Segregation may also be employed where well

defined categories exist, so that separate sales data for

each business sector or sales district may be stored in

distinct tables. If the majority of the functions desire to

retrieve and analyze the data as these subsets are con

structed, then this can be a useful technique. However,

whenever the data required for a function or process over

laps several subsets, this structure of several tables can

become cumbersome to access and analyze.

6.3 Optional Indexes

Indexes, beyond those identified in the default data

base design derivation process, can substantially improve a

desIgn's quality by speeding query execution. [21]

To determine where indexes on non-key columns can be

most effectively employed, the representative group of

application functions, selected earlier, must be closely

examined. Columns that are referenced in the "Where"

clauses of critical functions, or are simply referenced in

the "Where" clauses of many typical functions, should re

ceive an index. Additionally, columns that are referenced

128

in SQL group functions', such as MIN and MAX, are also good

candidates for indexing. These optional indexes can reduce

database I/O at query execution time by permitting the

RDBMS' query optimization routines to select a direct path,

via an index, to the desired rows within a table without

expending the effort to access and examine all rows con

tained within the target table. Again, these additional

indexes should only be specified if there are particular

functions that can benefit from their existence. The

presence or absence of an index will not enable or prohibit

the achievement of any function within the application

system, it will only affect the efficiency of the database's

response. Occasionally, the indexes suggested by some

functions would be inappropriate. For example, if the

selectivity (range) of the values contained within a column

is small, an index may actually degrade the database's

performance. Such a case would exist when a column contains

a relatively even number of two or three possible values.

If every physical unit of the database storage for the table

contains some desired rows, then the use of an index will

actually slow the execution of the query by causing the

RDBMS to access index storage pages in addition to all of

the associated table data storage pages. If the index does

not exist, a simple full table scan (which is the default

search procedure to satisfy a query) will be used to achieve

129

the same end. But, the full table scan will not. expend any

effort tracing through the index. In general, if the use of

an index will always select 15% or more of the rows within a

table, it should not be defined. In another case, any

indexes identified for columns in small tables (250 rows or

less) should not be defined. This is because the lengthened

access path to the data, i.e., by going through the index

first and then, second, to the data storage pages, may

require more time than just performing a simple full table

scan on the small number of actual rows.

Indexes can sUbstantially improve the performance of

queries against a database, yet indexes do have a cost.

Each time an INSERT, UPDATE or DELETE SQL statement is

performed on a table, not only must the table data be modi

fied, but all indexes must be updated to correspond to the

new table data. Therefore, while the extensive use of

indexes may improve query performance, their use may make

the performance of database update operations unacceptable.

Database query and update performance objectives must be

reconciled and balanced, leading to a practical limit on the

number of indexes placed on each table. The timing of

database update functions can be used to determine an ac

ceptable upper limit on the number of indexes for each

table. Occasionally, the absolute number of indexes is not

a constraining factor, but rather the change frequency of

the values within the candidate column. If the values

130

change too frequently, the cost of maintaining the index may

be much greater than its benefit to the group of functions

that could utilize it. In this case, it is best to leave

the index undefined.

To this point, I have spoken strictly of indexes that

can be applied to base tables. An alternative object, an

index table, could be defined to meet the needs of a few

critical functions. An index table simply contains rows of

primary keys that identify and correspond to rows in some

base or reference table. An index table is manually main~

tained by the application software. It is best employed

when a huge table (with hundreds of thousands or millions of

rows) has a very small subset of rows that is required for a

particular set of functions. In this case, the application

software maintains a separate table of primary key values

that correspond to the desired subset. Then, when that

subset needs to be accessed, it is identified by the rows in

the index table. Other column values are "joined" to this

index table from the base table as required to satisfy the

requirements of the functions. This approach can be much

more efficient than the normal approach of maintaining an

index directly over the base table. The index of the base

table would track all rows in the base table, not just the

few that the set of functions require. Unfortunately, having

the application software maintain the index table, rather

131

than having the RDBMS maintain a normal index over the base

table, introduces some new integrity concerns. So, this

approach must only be initiated when the demands of the

application require it.

6.4 Retaining One-to-One and One-to-Many Relationship Types

As Distinct Tables

For purposes of flexibility and clarity, it may be

prudent to~retain the distinct definition of one-to-one and

one-to-many relationship types, rather than transforming

them into components of the participating entities as de

scribed in chapter 4. [22] Implementing these relationship

types as tables allows the database design to easily evolve.

with a separate table for each relationship type, the cardi

nality of the relationship can easily move from one-to-one

or one-to-many to the more complex situation of a many-to

many relationship, without causing a redesign of the data

base. This is an important point. The example Project

Management application, discussed in chapters 3 and 5,

displays a potential weakness associated with the implemen

tation of the Manages / Managed By relationship type. As it

is implemented, the design will fail as soon as the user of

the application wishes to assign co-managers to a project

(i.e., altering the relationship type from a one-to-many to

a many-to-many cardinality, requiring a distinct table to

correctly represent the data). Whenever there is a legiti-

132

mate possibility that a current relationship type's cardinal

ity ?ould evolve into a many-to-many state, then the rela

tionship type should be transformed into a distinct table

rather than integrated with a participating entity. (The

preceding discussion can be extended to include the design

weakness resulting from choosing the "wrong" participating

entity type as the recipient of a foreign key associated

with a one-to-one relationship type.)

The one-to-one and one-to-many relationship types can

be transformed into tables following the same procedure used

to transform the many-to-many relationship types. As this

alternate derivation process is followed, each foreign key

within these new tables will receive a default index. When

the foreign key represents a "one" membership condition, the

index would receive a "unique" specification. And, when the

foreign key represents a "many" membership condition, the

index would not receive a "unique" specification. If the

relationship's type cardinality does change from a "one" to

a "many" condition, the index's "unique" specification

constraint can then be relaxed (i.e., removed).

Of course, the added flexibility of implementing each

relationship type as a distinct table does have a cost.

First, there is a slightly larger database maintenance

effort, in terms of a larger number of tables to be main

tained and indexed. And, second, certain database query

133

/

operations will be slower because the path between the

entities in these relationships will now be longer. That

is, rather than directly "joining" the two tables represent

ing the entities in the relationship, a third intermediate

table representing the relationship type must now be

"joined" to each of the members. These costs must be meas

ured against the benefits of a more flexible design imple

mentation.

134

Fo.otnotes

1. The majority of these features are discussed in Fidel,
chapter 8.

2. Fidel, chapter 7.

3. Normalization theory is discussed in Rodgers, chapter
4, and Bisland, p 361 - 369.

4. Ullman, chapter 7.

5. See Rodgers, chapter 6, for an interesting "Real Time
vs Real Quick vs Human Time" discussion.

6. Date, An Introduction to Database Systems, chapter 22.

7. Barker, CASE Method: Tasks and Deliverables, p 4-13 and
G-2.

8. Oracle Corporation, SQL Language Reference Manual,
p 1-2.

9. My primary sources are Date, An Introduction to
Database Systems, and Barker, CASE Method: Entity

_ Relationship Modelling.

10. Barker, CASE Method: Entity Relationship Modelling,
chapter 3 and p 5-2, plus Rodgers, p 38.

11. Barker, CASE Method: Entity Relationship Modelling,
chapter 3.

12. Date, Relational Database writings, p 116 - 117.

13. Date, An Introduction to Database Systems, p 281.

14. Date, Relational Database writings, p 118 ~ 121.

15. Whittington, chapter 10, and Barker, CASE Method:
Entity Relationship Modelling, appendix F.

16. Bisland, chapter 15, and Barker, CASE Method: Entity
Relationship Modelling, appendix F.

17. Barker, CASE Method: Tasks and Deliverables, p 5-12.

135

18. Malamud, p 272.

19. Rodgers, p 94.

20. This discussion draws on three sources: Inmon, p 177
188, Malamud, p 272 - 275, and Barker, CASE Method:
Entity Relationship Modelling, p F-13.

21. This discussion draws on three sources: Oracle
Corporation, Oracle Database Administrator's Guide,
p 5-11 - 5-15, Oracle Corporation, Oracle RDBMS Tuning
Guide, p 2-7 - 2-14, and Barker, CASE Method: Entity
Relationship Modelling, p F-3.

22. Date, An Introduction to Database-Systems, p 586.

136

Bibliography

Barker, Richard. 1990. CASE Method: Entity Relationship
Modelling. Reading, Massachusetts: Addison-Wesley
Publishing Company.

Barker, Richard. 1990. CASE Method: Tasks and
Deliverables. Reading, Massachusetts: Addison-Wesley
PUblishing Company.

Bisland, Ralph B. 1989. Database Management: . Developing
Application Systems Using Oracle. Englewood Cliffs,
New Jersey: Prentice-Hall.

Date, C. J. 1990. An Introduction to Database Management
Systems, Volume I, Fifth Edition. Reading,
Massachusetts: Addison-Wesley Publishing Company.

Date~ C. J. 1990. Relational Database Writings, 1985
1989. Reading, Massachusetts: Addison-Wesley
PUblishing Company.

Fidel, Raya. 1987. Database Design' for Information
Retrieval. New York: John Wiley & Sons.

Inmon, W. H. 1990. Using Oracle to Build Decision Support
Systems. Wellesley, Massachusetts: QED Information
Sciences.

Malamud, Carl. 1989. Ingres: Tools for Building an
Information Architecture. New York: Van Nostrand
Reinhold.

Oracle Corporation. 1989.
Guide, Version 6.0.
Oracle Corporation.

Oracle Database Administrator's
Redwood Shores, California:

Oracle Corporation.
Version 6.0.
Corporation.

Oracle Corporation.
Version 6.0.
Corporation.

1990. Oracle RDBMS Tuning Guide,
Redwood Shores, California: Oracle

1990. SQL Language Reference Manual,
Redwood Shores, California: Oracle

Rodgers, Ulka. 1991. Oracle: A Database Developer's
Guide. Englewood Cliffs, New Jersey: Prentice-Hall.

137

Ullman, Jeffrey D. 1988. principles of Database and
Knowledge-Based systems. Rockville, Maryland:
Computer Science Press.

Whittington, R. P. 1988. Database Systems Engineering.
New York: Oxford University Press.

138

vita

Randall Wambold was born on December 13, 1954. He
received an Associate in Applied Science degree from North
ampton community College in 1974 and a Bachelor of Arts
degree in Business and Economics from Lafayette College in
1982. He is currently the Systems and Programming Manager
of the Administrative Systems Office at Lehigh University.

139

	Lehigh University
	Lehigh Preserve
	1992

	Utilizing extended entity relationship modeling as a basis for logical relational database design
	Randall E. Wambold
	Recommended Citation

	00282
	00283
	00285
	00286
	00287
	00288
	00289
	00290
	00291
	00292
	00293
	00294
	00295
	00296
	00297
	00298
	00299
	00300
	00301
	00302
	00303
	00304
	00305
	00306
	00307
	00308
	00309
	00310
	00311
	00312
	00313
	00314
	00315
	00316
	00317
	00318
	00319
	00320
	00321
	00322
	00323
	00324
	00325
	00326
	00327
	00328
	00329
	00330
	00331
	00332
	00333
	00334
	00335
	00336
	00337
	00338
	00339
	00340
	00341
	00342
	00343
	00344
	00345
	00346
	00347
	00348
	00349
	00350
	00351
	00352
	00353
	00354
	00355
	00356
	00357
	00358
	00359
	00360
	00361
	00362
	00363
	00364
	00365
	00366
	00367
	00368
	00369
	00370
	00371
	00372
	00373
	00374
	00375
	00376
	00377
	00378
	00379
	00380
	00381
	00382
	00383
	00384
	00385
	00386
	00387
	00388
	00389
	00390
	00391
	00392
	00393
	00394
	00395
	00396
	00397
	00398
	00399
	00400
	00401
	00402
	00403
	00404
	00405
	00406
	00407
	00408
	00409
	00410
	00411
	00412
	00413
	00414
	00415
	00416
	00417
	00418
	00419
	00420
	00421
	00422
	00423
	00424
	00425
	00426
	00427

