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Abstract

The availability of a reliable routing algorithm for a transputer based parallel

system is of elementary importance. The difficulty in designing such an algorithm lies

in the occurance of deadlocks in blocking message passing processes. The situation of

several processes waiting indefinitly is called deadlock. Deadlock is usually discussed

in the multi-programming environment where several processes may compete for a

finite number of resources. One way to break this deadlock is for the system to take

extreme action and p,reempt the resources held by the processes. In general, detecting

and recovering from deadlocks is difficult, and the best strategy is to have policies

and strategies that avoid deadlock.

The topic of this thesis is the design and implementation of a modular

deadlockJree routing algorithm for a two-dimensional mesh, on a network of

transputers of any size. Various routing techniques and topologies are first discussed

to get a better understanding of the nature of deadlocking. This thesis also describes

the difficulties in avoiding deadlock situations. The routing algorithm is implemented

on a network of transputers using the OCCAM language.



Chapter 1: Introduction

Message routing in interconnection networks has been the subject of constant

interest in recent years. Various techniques have been used to route a message

through a network. Of even a greater interest has been the problem of deadlocking,

which can effect communication latency. A deadlock is a situation, in which a set of

processes are allowed to hold some resources while requesting others [1].

In order to address the issue of designing routing algorithms, several factors

have to be considered such as routing techniques, type of architecture and topologies

and flow control strategies.

Two major techniques are used in routing: source and distributed routing.

Each of the techniques has its advantage over the other and is discussed in detail in

this thesis. Another classification of routing is deterministic or adaptive routing.

A network consists of many channels and buffers. A flow control strategy

deals with the allocation of channels and buffers to a packet as it travels along a path

through the network. What action is to be taken when a packet is blocked, depends on

the flow control policy.

In this chapter, concurrent processing is first introduced. A brief description of

various interconnection topologies and switching techniques are then presented.
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1.1 Concurrent Processing

Concurrent processing is an ancient concept and has been an important factor

in the fonnation and development of societies on earth. With the advancement in

computer technologies, as the problems become more complex, computers have been

gaining both in speed and data storage capabilities. In the near future, there seems to

be no realistic approach to substantially increasing the performance of individual

computers ; technology is already nearing limits set by the speed of light and quantum

physics effects. The general agreement is that the only route to significantly increase

performance is through concurrent-computation i.e the use of many computers

together to solve the same problem [2].

Concurrent Processing is defined as the "use of several working entities,

working together toward a common goal" [2]. In concurrent computation, the entities

are computers and the goal might be a complex scientific computation.

1.2 Interconnection· Topologies

Since in Concurrent Processing more than one processor is used, an immediate

question is how to connect the processors to achieve the desired speed-up in a way

that is both economically and physically feasible, since the network can easily

dominate the hardware cost and program execution time [3]. The interconnection

network in a parallel computer ( a computer with multiple processors) specifies how

3



the processors are connected together. The processors communicate by sending

information through the network.

1.2.1 Shared vs Distributed memory

Parallel Computers are characterized by shared or distributed memory

organizations. The shared memory machines feature a common memory that can be

accessed by all the processing elements. The simplest design is shown in Figure 1.1

[2]. This type of design uses a common bus or a communication channel to allow the

individual processors to access the shared memory. Such a design is particularly

appropriate if N, the numberof processing elements, is small [2].

In distributed memory machines, the basic processing element includes local

memory to the exclusion of shared or global memory. "Distributed memory machines

go hand-in-hand with the message passing model for concurrent computation" [2]. In

distributed memory machines, messages can only be exchanged directly by two nodes

( a node is a processor with local memory) that have a direct connection of some sort

with each other. Messages from other nodes can also be passed through intermediate

nodes, which then forward the message to their neighboring nodes. The distributed

memory system has an advantage over the shared memory system in that the

bottleneck or memory conflict caused by the access of one memory location by

multiple processes, as in shared memory, is not encountered.

4
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1.2.2 Interconnection and Node Structures

Each node of a network contains a switching element (SE) responsible for

interprocess communications. Other processors are then attached either to this SE or

to the I/O ports ofthe processor. If a processor wants to communicate, or send some

information to another processor, it sends the request to it's SE, and from there the

information is passed on to the neighboring processor's SE, until it reaches its

destination. The destination processor or memory module finally removes this

information from the network [3].

Indirect and Direct networks

There are basically two types of networks, indirect and direct [3]. In indirect

networks, processors and memory modules are attached only to the I/O ports of the

SE. There are two major configu.rations:

a) processor-to-memory: In this method, the network is put in between the

arrays of processors and memory modules, and communications between processes

are achieved by processors sending messages through the network to shared variables

in the memory modules [3]. The main advantage of such an architecture is the ability

to share large blocks of data and to vary the amount of memory used by each

processor. This is depicted in Figure 1.2, where processors on the left send messages

through the network, to the memory modules on the right side of the network.

6
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b) PE-to-PE: In this configuration, each processor is paired with a memory

module fonning a processing element (PE) , which is then attached to one of the input

ports and one of the output ports of the network. The main advantage of such a

structure is fast local memory reference. An example of PE-to-PE configuration is

shown in F~gure 1.3. A memory module and a processor are paired together to fonn a

processing element (PE) , which is then connected to the network.

In direct networks, each node is attached to by aPE. Hence each PE is

connected directly to a number of PE's via neighboring SE's. Figure 1.4 shows an

example of such a structure on a hypercube. Each SE is connected to its neighboring

SE's via links.

Indirect interconnection schemes are used for shared memory models, while

the direct structures have been used mainly for message-passing architectures. The

indirect approach is preffered for systems with a few number of processors, while the

direct approach is preferred for systems with hundreds or thousands of processors [3].

1.2.3 Switching Techniques

Switching refers to the wayan SE switches data from one link to another, as it

is routed to a destination node. There are four main approaches to sWitching: circuit

switching, store and forward, virtual cut-through and womlhole routing.

Circuit Switching

In this approach, a physical circuit is established between the source and

8
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Figure 1.4 An Example of a Direct Network Architecture [3]
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destination nodes during the circuit establishment phase [1]. Once the path is

established, the SE's on the path remain dedicated until the path is released. The Intel

PSC!2 uses circuit switching for data.

Store and Forward

In this approach, a logical unit of data called message makes its way from SE

to SE, releasing links and SE's immediately after using them. The advantages of such

a technique is greater line efficiency and no need for simultaneous availability of the

sender and receiver. This method is used in iPSC-l, Ncube 1, and FPS T-series. A

major drawback is that each node has to buffer every incoming packet consuming

memory space [9].

Virlual Cut-through

In this approach, a packet is stored at an intennediate node only if the next

required channel is busy [12].

Wonnhole routing

In this approach, a packet is divided into a number of flits(flow control digits)

for transmission. The header flit governs the route. As the header flit advances along

the route, the remaining flits follow in a pipelined manner. If the header flit

encounters a busy channel, it is blocked until the channel becomes available, and the

rest of the flits remain in the flit buffers along the established route [10].

Figure 1.4 [1] compares the communication latency of wonnhole routing with

that of store and forward and circuit switching in a contention-free network. The

11
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figure shows the activities of each node over time when a packet is transmitted from a

source node S to the destination node D through three intermediate nodes, 11, 12 and

13. Unlike store and forward switching, both circuit switching and wormhole routing

have communication latencies that are nearly independent of the distance between the

source and destination nodes [11].

1.2.4 Topologies of Direct Networks

The topology of a direct network is usually modeled as a graph. It defines how

nodes are interconnected by channels. If every node is connected to every other node

in the network, it is called a fully-connected network. Such a network is very

expensive and impractical to use because of limited amount of VLSI area available for

communication related hardware. Many direct networks use a fixed, multiple-hop

topology such as the hypercube network shown in Figure 1.4. Most popular direct

networks fall in the general category of either n-dimensional meshes or k-ary n-cubes

because their regular topologies simplify routing.

Formally, an n-dimensional mesh has ko*kl*.. '~.2 *~-l nodes, k;
nodes along each dimension i, where k; > = 2. Each node x is
identified by n coordinates, O"n_I(X), O"n.ix)' .... 'O"I(X)' O"o(x), where 0< =
kj -1 for 0< =i< =n-1. Two nodes x and yare neighbors if and only if
O"j(x)-O"j(y) for all i, 0< =i< =n-1, except one, j, where O"/y)=O"/x) +
1. Thus, nodes have from n to 2n neighbors, depending on their
location in the mesh.

In a k-ary n-cube, all nodes have the same number of neighbors.
The definition of a k-ary n-cube differs from that of an n-dimensional
mesh in that all of the k;' s are equal to k and two nodes x and yare
neighbors if and only if O"j(x) =O"j(y) for all i , 0 < = i < = n-1, except

. one, j, where O"j(Y) = (O"j(x) +- 1) mod k. The use of modular
arithmetic in the definition results in wraparound channels in the k-ary

13



n-cube, which are not present in the n-dimensional mesh. A k-ary n
cube contains kn nodes. If k=2, then every node has n neighbors, one
in each dimension. If k > 2, then every node has 2n neighbors, two in
each dimension." [1]

A general description of some commonly used topologies follow:

Binary Trees

In the basic binary tree, interior nodes have degree 3 with two children and

one parent [6]. Leaves have degree 2 and the root has degree 1. The binary tree

network has many variations, 'a tree with double roots being one. In the fat-tree

network, the PEs are attached to the leaves of the tree while the trees internal nodes

are SEs; furthermore, the closer an integral node is to the root, the more the number

of edges is between it and its father. The Connection Machine CM-5 adopts this

topology. The X-tree network is a binary tree with additional edges between

neighboring nodes on the same level. Figure 1.6 (c) and (d) shows an example of a

binary tree, and an X-tree topology.

Hypercubes

In the n-dimensional' cube, each node is represented by a n bit number, and

each edge connects two nodes that differ by exactly one bit position [6]. The

hypercube has been used for a number of machines namely CM-2, Intel PSC-2 and

iPSC/860. The number of processors in a hypercube is always an exact power of 2.

14
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If the number of processors is 2d
, then d is called the dimension of the hypercube.

Figure 1. 6 (b) shows the structure of a hypercube of dimension 3.

Mesh

The simplest mesh has N2 processors, with N rows and N colvmns. The

connectivity of a mesh is 2 to 4 based on the location of the nodes. Other variations

of meshes are a P * Q mesh, a 3-D mesh, or a wraparound mesh. An example of a

mesh topology is shown in Figure 1.6 (a).

This chapter introduced parallel architecture and presented an insight of

various interconnection topologies. The next chapter deals with Deadlocks in message

passing systems and discusses methods to avoid deadlocking.

16



Chapter 2: Deadlock

Deadlock is usually discussed in the context of a multiprogramming

environment, where a number of processes may compete for a finite number of

resources, such as printers, processors etc. A process here is defined as an instant of

a program in execution. As an example, consider a system with four tape drives. Say

a process holds two tape drives and needsa third tape drives. It requests for the third

drive and goes into a wait state. If another process is holding the other two drives,

and it too needs a third drive, then each process will wait for the other to release its

tape drives. This situation, where a number of processes wait for resources to get free

is called a deadlock [22]. A way tQ break such a deadlock would be for the system to

take some action, or preempt the resources held by the two processes, i.e. force them

to release the tape drives. In a message-passing programming environment,

deadlocking is also very common, and detecting and recovering from deadlocks is

difficult. Thus the most favorable strategy to combat deadlocking is to have policies

and mechanisms that avoid deadlock.

~
This chapter describes the various forms of deadlocks in blocking message

passing. Techniques to combat or avoid deadlocking are also discussed.

17



2.1 Deadlock in Message Passing Systems

In multiprogramming environment, deadlocking occurs from events related to

resource acquisition and release. However in message passing systems, the major

cause of deadlocking is improper communication when blocking communication is

used. Blocking is a term used to define synchronous commUIiication where the sender

and the receiver only communicate whenever they are both ready.

A set of processes is in a deadlock state when every process in the set is

waiting for an event that can only be caused by another process in the set [4]. In

c.oncurrent programming languages, such as parallel C and Occam, deadlock occurs

when a set of parallel processes is unable to progress any further. In such a condition,

the system just hangs, and furthermore, debugging for the cause is extremely hard to

do.

There are two major types of deadlocks that are encountered in a message

passing environment where blocking communication is used between processes:

Algorithmic deadlocks and cyclic deadlocks.

Algorithmic Deadlocks

These types of deadlocks arise when there is a mismatch in an algorithm for

pairs of sends and receives (in Occam the '!' and '?' statements). That is for every

send there must be a receive on the other end of that channel to accept it [4]. If there
•

is no corresponding receive, a process waiting for its pair can not progress any

further, thus blocking that process from continuing. In worst cases, the whole

18



program can hang if the algorithm depends on that particular process to proceed.

Cyclic Deadlocks

These types of deadlocks occur if tWo processes are trying to send data to each

other at the same time, thus forming a eycle. If each process is sending to another

4 process, then each will wait indefinitely for the other to receive the message before

progressing further which results in a cyclic deadlock [4]. This kind of deadlocks can

occur b~tween two or more concurrent processes. Any chain of sends that creates a

cycle can cause a cyclic deadlock.

Cyclic deadlocks can prove really hard to debug, since the deadlock situation

can depend on the ordering of events to happen. A slight change in the code may alter

the way the execution of the processes interleaves and produce a situation that no

longer deadlocks [5].

An example of a cyclic deadlock is shown in. Figure 2.1, which involves four

routers and four packets. Each packet is holding a flit buffer while requesting the flit

buffer being held by another packet.

2.2 Avoiding Communication Headlocks

There are numerous ways to avoid deadlocking when working in a parallel

programming environment, some important techniques are discussed here:

2.2.1 Misuse of Channels

In parallel languages, it has to be made sure that all connections of channels

are point to point. If the channel is not point to point, the program may hang and

19



appear to be a deadlock, e.g.

ch: Channel
z: integer
SEQ {begin in sequence}

receive z from ch
send 2 on ch

In such an OCCAM construct, the program will hang because communications

on channels are synchronous, the receive will wait for a send to occur. The send will

never occur since the execution of the program is done in sequential order. The

following rules should be practiced to avoid deadlocking

- If channels must be point to point, then if two processes share a

channel, they must be the only processes that use that channel.

- If Channels are unidirectional, then once a direction has been

established by a first use, all messages must pass in that same

direction from then on.

2.2.2 Algorithmic Synchronization

If certain events of one process must be performed before the events of

another process, then synchronization of processes is needed. In order for processes

.
to synchronize, a synchronization message is sent to processes when needed. Thus a

process that has to wait upon another process, will continue processing and will wait

20
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once it reaches the synchronization message for the other process. A perfect example

is that of sorting in a hypercube, where each node sorts a certain number of items,

and then items from neighboring nodes are merged to form a sorted list. If the

synchronization is off during merging, then the list would end up to be wrongly

sorted.

2.2.3 Shared Variables

When dealing with shared variables, where variables that are written by one

process and read by another, one has to really be careful. Care must be taken to

guarantee that the two processes are coordinated properly with a synchronization

mechanism such as a semaphore [4].

2.3 Avoiding Cyclic Deadlocks

A cyclic deadlock, as discussed earlier, is one which may occur when two

processes send data to each other at the same time. Any chain of sends or receives

that creates a cycle can also cause a deadlock. Cyclic deadlocks occur due to the

order of events which is time dependent, the buffers fill up and no sends or receives

are possible. Cyclic deadlock avoidance requires careful planning to make sure cycles

are not created. In order to prove that the program does not have a cycle of sends is

to introduce a Hoare-style monitor to break the cycle [4]. A second way is to prove

that the cycle never occurs by carefully introducing enough buffer space in a ring

22



[4]. A couple of these techniques are discussed below:

2.3.1 Buffering

If a cyclic deadlock occurs, buffering may reduce the possibility of deadlock.

This technique lowers the chances of having a deadlock, but does not guarantee the

complete elimination of a deadlock. One way to buffer is to use a concurrent process

that waits for a message to arrive and stores it into a buffer. Inserting such a process

<
between two processes to decouple the two processes communicating with each other

allows more slack in communication.

2.3.2 Monitors

Monitors offer a solution in the sense that they guarantee that a cycle of

processes cannot send at the same time; that there is a free buffer space. The monitor

contains a data structure that keeps a record of which process is sending at a given

moment. Before any process sends a message, it has to take permission from the

monitor if it can do so. The monitor c'hecks if the introduction of this message will

result in a cycle. If it does, it does not allow the message to be sent. If a send is

completed between other processes, the monitor updates its data structure, once it

receives a message from the completed send [23]. Implementing a Monitor, though

guarantees no deadlocks, involves a great cost in extra communication.

23



2.3.3 The Roscoe Approach

In a paper in 1988, Roscoe [13] developed a message passing protocol for a

ring network that avoided deadlock.

In Roscoe's approach, at each node there is a two-slot buffer which can hold

two messages, and there is a computation section. A node of such a structure is

shown in Figure 2.2 If a message from the ring is for the computation process, it is

removed from the first slot and forwarded to the computation section. The buffer can

only accept a message from the computation section when it is empty. Also, only

after a send of a message along the ring does the node receive from the ring. If this

rule is observed, the following example shows that a deadlock is not possible : If

there exists a cycle of deadlocked processes, Po, p!, ..Pn • Each Pi must have received

from Pi-! after its last send along the ring. Therefore, a message was passed from Pi

to Pi +! after the last message from Pi+! to Pi+2• If this is continued around the entire

ring, a contradiction is reached. Therefore, no cycles of deadlocked processes can

exist if this protocol is followed [13].

Thus from this reSUlt, it is deduced that if the number of messages in the ring

is smaller than the number of message slots, a ring will not cyclic deadlock. There is

always a free slot, that a message can be moved to.

This chapter discussed deadlocks in detail and presented various techniques to

avoid such situations. The next chapter introduces routing algorithms in direct

networks.
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Chapter 3. Routing Algorithms in Direct Networks

One of the most important issue in parallel computers is interprocessor

communication. Since processors are linked together by a relatively sparse network,

due to cost considerations, packets have to traverse many links and even be delayed

by other packets due to conflicts or full buffers before reaching their destinations.

Communication time therefore can easily exceed execution time, with the result that
.~

efficient routing becomes a primary concern. It is also desirable to have a constant

buffer size for scalability purposes.

This chapter presents various routing techniques that are commonly used. Flow

control strategies are also discussed and adaptive routing techniques are examined.

3.1 Classification of Routing

There are certain classifications of routing in a direct network topology that

are discussed here. In direct networks, every node must be able to send packets to

every other node. In the absence of a fully connected topology, routing determines the

path selected by a packet to reach its destination. Efficient routing is critical to the

performance of direct networks [1].

Routing is classified under the following methods:

Source Routing vs Distributed Routing

In source routing, the source node selects the entire path before sending the
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packet. Each packet that is being sent out must carry with it the routing information,

thus increasing the packet size. Also once the packet is sent, the route cannot be

altered. This type of routing has a few drawbacks. First the packet size is increased

reducing scalability. Second if malfunctioned links are encountered, the packet will

remain undelivered since it will not be re-routed.

Distributed routing is the most commonly used routing in direct networks. In

this approach each router, upon receiving the packet, decides if the packet has to be

sent to the local processor or to the router for further transmission. In the latter case,

the routing algorithm determines which neighboring node is the packet to be

forwarded to. In a practical router design, the routing decision process must be as fast

as possible to reduce the network latency [1]. The decision process does not require

global state information of the network. If this has to be incorporated, additional

storage space in each router is needed, and also results in additional traffic.

Detenninistic Routing vs Adaptive Routing

In deterministic routing, the path is totally determined by the source and the

destination addresses. On the other hand in adaptive routing the path taken by the

packet depends on the dynamic network conditions such as the presence of faulty or

congested channels [8].

Minimal Routing vs Nonminimal Routing

A routing approach is said to be minimal if the route taken by the packet is the

shortest. In this type of approach, every channel visited will bring the packet closer to
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the destination.

In the nonminimal routing approach, the packet is allowed to follow a longer

path, depending on the network condition such as faulty links. Special care should be

taken in this type of approach, that the packet does not end up being undelivered

forever.

3.2 Flow Control Strategies

A network consists of many channels and buffers. Flow control deals with the

allocation of channels and buffers to a packet as it travels along a path through the

network without causing congestion or deadlock situation. If two processes collide or

compete for a resource, and one of them cannot proceed, it is called a resource

collision. Whether the packet is dropped, blocked in place, buffered, or rerouted

through another channel depends on the flow control policy. A good flow control

policy is one which avoids channel congestion while reduces the network latency [1].

The allocation of channels and their associated buffers to packets can be

viewed from two perspectives. In the output selection policy, the routing algorithm

determines which output channel should the packet be sent to that is arriving on an

input channel. In the input selection policy, it has to be determined which packet may

use the output channel since many incoming packets on the input channels may

request a particular output channel.

In order to resolve conflicts, certain strategies have been developed, a few of
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the detenninistic and adaptive routing algorithms are discussed below.

3.2.1 Packet Collision Resolution

When packets are moved from one node to another, the following three

elements must be present: a) The source buffer holding the packet, b) The channel

being allocated, and c) the receiver buffer accepting the packet.

When two packets reach the same node, they may request the same receiver

buffer or the same outgoing channel. Two major decisions have to be made at this

point: i) Which packet will be allocated the channel?, and ii) what will be done with

the packet that has been denied the channel?

There are four basic techniques for resolving the conflict between packets

competing for the same outgoing channel. In the first approach as illustrated in Figure

3.1 (a), Packet 2 is temporarily stored in a packet buffer. When the channel becomes

available, it will then be transmitted. This buffering approach has the advantage of not

wasting the resources already allocated. However, it requires the use of a large buffer

to hold the entire packet [5]. This virtual cut-through method combines both

wonnhole and store-and-forward schemes.

The second technique, illustrated in Figure 3.1 (b) uses a blocking policy in

case of packet collision. Packet 2 is blocked from advancing and once packet 1 is

transmitted, Packet 2 is let through. This approach is one used by wonnhole routing.

The third technique illustrated in Figure 3.1 (c) uses the discard policy that
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Figure 3.1 Flow control methods for resolving collisions [5]
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just drops the packet being blocked from passing through. The discard policy may

result in severe waste of resources and it demands packet retransmission and

acknowledgement. Otherwise, a packet may be lost after discarding it [5]. This policy

is rarely used due to its unstable nature.

The fourth policy illustrated in Figure 3.1 (d) is called detour. In this policy,

the blocked packet is misrouted to a detour channel. This technique offers more

flexibility in packet routing. However, it may waste more channel resources than

necessary to reach the destination.

These are some of the techniques that are used by various interconnection

networks. In practice, most networks use hybrid policies which may combine the

advantages of some of the above flow control policies [5].

3.2.2 Dimension Order Routing

Dimension-ordering routing requires the selection of successive channels to

follow a specific order based on the dimensions of a multidimensional network. Each

packet is routed in one dimension at a time, arriving at the proper coordinate in each

dimension before proceeding to the next dimension. By enforcing a strictly monotonic

order on the dimensions traversed, deadlock free routing is guaranteed. Both

hypercubes and 2-D meshes each use a deadlock free minimal deterministic routing

algorithm. In the case of the two-dimensional mesh network, the scheme is called X

Y routing because a routing along the X-dimension is decided first before choosing a
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path along the Y-dimension [5]. This approach is discussed in detai.1 in the next

chapter on Mesh.

3.3 Adaptive Routing Techniques

The previous approaches that were discussed were deterministic techniques

where the communication path is completely determined by the source and destination

nodes. The main disadvantage of detenninistic routing is that it cannot react to

dynamic network conditions such as congestion [1]. An adaptive routing technique

must also address the deadlock issue. To do so requires the use of additional

channels, in particular, some adjacent nodes must be connected by multiple pairs of

opposite unidirectional channels. These pairs of channels may share one or more

physical channels. An adaptive routing technique on the 2-D mesh is discussed in the

next chapter.
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Chapter 4. Mesh Topology

The mesh topology consists of processors arranged in a two-dimensional array.

A given processor at row i and column j is connected to its four immediate

neighboring processors to the left, right, above and below: at locations (i-I ,j),

(i +1,j), (i,j-I), and (i,j + I). All connections are horizontal between adjacent columns,

or vertical between adjacent rows see (Figure 4.1). There are no diagonal

connections. Boundary processors have only two or three immediate neighbors. The

2-D meshes in some form are used in the ILUAC IV, MPP, DAP, and WRM [6].

As an example in the ILUAC, all nodes have degree 4, bottom nodes are connected

to the top node, in the same column, and rightmost nodes are connected to the

leftmost nodes in the next row.

4.1 Characteristics of a Mesh

A mesh multicomputer topology consists of processors arranged in a two

dimensional array. The mesh has the following characteristics.

*

*

*

All connections are horizontal between adjacent columns, or vertical

between adjacent rows.

There are no diagonal connections between processors.

The processors are numbered sequentially by rows, with processor 0 in
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Figure 4.1 A Simple two dimensional square mesh
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*

*

*

*

*

*

the upper left comer.

Every pair of processors have a minimum path length between them

measured by the sum of the row distance and the column distance.

For a mesh of N processors, where N =n*n and n is the number of

processors on one side of the mesh, the diameter of the network is the

path length between processors at opposite comers of the mesh, which

is always 2*(n-l).

The Mesh topology can be improved by adding end-around connection.

The minimum latency of a mesh is O(n)=O(/N) .

.The Connectivity of the Mesh is 4-8 nearest neighbors.

The wire cost for a Mesh Topology is O(N)=O(n 2)

Figure 4.2 shows Latency, bandwidth, connectivity, wire and switching costs

of some commonly used direct networks as compared to the mesh network.

4.3 X-V Routing on the 2-D Mesh

\
In a deterininistic X-Y routing, an approach called Dimension ordered routing

is used [1]. In this method, each packet is routed in one dimension at a time, arriving

at the proper coordinate in each dil1}ension before proceeding to the next dimension.

Deadlock free routing is guaranteed by enforcing a strictly monotonic order on the

dimension traversed [1].

In a 2-D mesh, each node is represented by its position (x,y) in the mesh. In
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Figure 4.2 Tradeoffs among commonly used direct networks
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the X-Y routing method, packets are first sent in the X dimension and then in the Y

dimension, depending on the destination of the message. This approach allows only

one turn in the routing and that turn is from the X dimension to the Y dimension.

As an example, let (s"Sy) and (d"dy) denote the address of a source and

destination node, respectively, and let (gx,gy) = (dx - sx' dy - Sy). XY routing can be

implemented by placing gx and gy in the first two flits of the packet, respectively.

When the first flit of a packet arrives at a router, it is decremented or incremented

depending on whether it is greater than 0 or lesser than O. If the result is not equal to

0, the packet is forwarded in the same dimension and direction it arrived in. If the

result is 0 and the packet arrived on the Y dimension, the packet is delivered to its

local processor. If the result is 0 and the packet arrived on the X dimension, the flit is

discarded and the next flit is examined. If that flit is zero too, then the packet is

delivered to the local processor, otherwise it is forwarded in the Y dimension [1]. An

example of X-Y routing is shown in Figure 4.3

This routing method is deadlock free and ensures that the path taken is the

minimal route and the shortest distance between any source and destination

processors.

4.4 Adaptive Routing on the 2-D Mesh

The problem with a deterministic routing such as the one discussed above is

that it cannot conform to dynamic network conditions. For example, in a deterministic

37



/

FoIl ($OQ/ce, destlnWooI pairs: (2,1:1,6) ~ (0,1; UI -..

(5.HO) -C> (6J; l~) ..• -!f

Figure 4.3 Example of X-Y routing on a mesh [5]
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approach, if a packet encounters a bad link or a busy channel all it will do is wait

there for the channel to get fixed or get free whatever the situation may be. If the

problem is major, the packet will wait there indefinitly and will not be rerouted.

In the adaptive routing algorithm, the messages are re-routed based on the

network conditions. To ensure deadlock free adaptive routing, the use of additional

channels is required however in particular, some adjacent nodes must be connected by

multiple pairs of opposite unidirectional channels [1].

One approach for a minimal adaptive routing is to partition the channels into

disjoint subsets. Each subset constitutes a corresponding subnetwork and packets are

routed through different subnetworks depending on the location of destination nodes.

Figure 4.4 shows the application of this approach on a 2-D mesh. Additional

pair of channels are added to the Y-dimension, with the result that the network can

now be partitioned into two subnetworks labelled +X and -X, each having a pair of

channels in the Y dimension., and a unidirectional channel in the X dimension. If the

destination node is to the right of the source, i.e dx > s" the packet will be routed

through the +X subnetwork, and if dx < s" the -X subnetwork will be used. If dx =

s" then either of the subnetworks can be used.

This double Y-Channel routing algorithm is minimal and fully adaptive; that

is, a packet can be delivered through any of the shortest paths. The algorithm can be

proved to be deadlock-free by ordering the channels appropriately. An example of

such an ordering of the channels in the +X subnetwork is shown in Figure 4.4 (b).

39



(I) (b)

Figure 4.4 Adaptive Y-Channel routing for a 2D mesh [1]
(a) Double Y Channel 2D mesh
(b) +X subnetwork and labelling
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For any pair of source and destination nodes, the channels will be traversed in

descending order, no matter which shortest paths are taken. Hence a deadlock cannot

occur [1].

In Figure 4.4 (b) for example, any of the minimal paths (25,24,18),

(25,17,14), and (16,15,14) can be taken, to go from node (1,0) to node (2,2). All the

paths mentioned valid and are all minimal. Thus this approach is adaptive, but there is

a cost added to it, in the sense that additional channels are to be added to the

network, and the number of additional channels increase rapidly with N, which is the

number of processors, and thus makes it impractical with large N's.

4.5 Network of Transputers

A transputer is a microcomputer with local memory and communication links

that can connect it to four other transputers. The SuperSetPlus64 [7] contains 64

T805-20 transputers connected by C004 software programmable link switches. The

T805-20 is a 32-bit microcomputer running at 20MHz. It has a 64-bit floating point

unit, a 4 bi-directional 10Mb/sec communication links, and 4K of on-board RAM. In

addition, each transputer has access to either 4MB or 1MB of external memory. The

SuperSetPlus64 does not have a defined or fixed topology, and thus a number of

topologies such as a Mesh, Hypercube, a Tree or a user-defined topology can be

implemented on it.

41



The '?uperSetPlus64 transputer array is partitioned into groups of four and

each group is called a cluster. Nodes are allocated on a cluster-by-cluster basis. So

processors are allocated in units of four at a time. Figure 4.5 shows a cluster of four

transputers of a SuperSetPlus64.

4.5.1 Setting up a Mesh on the Transputer

A number of different topologies can be set up on the SuperSetPlus64. By

default, a four-processor network is provided with each processor connected to every

other processor, and the host processor is connected to the PC. This standard

topology can be modified by using a MAP me.

A sample MAP file follows:

; Sample .MAP me to create a Two by Two mesh

; Processor # Connects To Position

1 2,3 ;Upper Left Corner

2 1,4 ;Upper Right Corner

3 1,4 ;Lower Left Corner

4 3,2 ;Lower Right Corner
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;The overall processor arrangement is:

1--------2
I I
I I

3--------4

Once the MAP file has been created, a network information file (NIP) is

created by using the node_map program. This generates the NIP file. This file

contains the information of how each processor is connected to another. An example
,

of setting up a two by two mesh follows:

# [LinkO Link1 Link2 Link3

0 [HOST 1:2 2:1

[... 3:2 0:1

2 [... 0:2 3: 1

3 [ ... 2:3 1:1

The first line in this file (processor # 0) shows that link #0 connects it to the

HOST (PC), and link #1 connects it to 1:2, i.e processor, link 2. In other words it

says that processor # 0 is connected to link # 2 of processor #1 , by link #1, and so

on.
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Figure 4.5

rrBn~lJte'

A cluster of four transputers of a SuperSet64 [7]
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This chapter detailed the characteristics of a mesh, and the various routing

techniques that are commonly used. Adaptive routing, though may look more general
,

than the deterministic one on the mesh, at its worst it can result in more problems

than are bargained for such as the message can be lost forever in attempting to find a

clear path. The deterministic method is more easier to implement and it is the most

commonly used among the two.

The next chapter details the design and implementation of a deadlock-free

routing algorithm on a 2-D mesh using the Superset Plus 64 machine. Various

techniques that were discussed earlier in this chapter and that will be discussed in the

following chapter have been incorporated to achieve the goal.
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Chapter 5. Design And Implementation Of Deadlock-free

Routing

The previous chapters discussed various issues regarding routing, deadlocks,

and meshes in general. This chapter presents the actual implementation of a deadlock-

_ free routing algorithm on a network of transputers, using some of the techniques that

were discussed in the preceeding chapters. The structure of each process and the

routing technique that is implemented for a deadlock-free routing algorithm are

outlined.

5.1 Previous Work

The problem of developing a deadlock-free routing support has dragged on for

years without any really satisfactory solution being found. Only recently has the routing

systems for networks based on transputers been discussed in literature, and there are

currently quite a few techniques for setting up deadlock-free routing protocols.

Ugo De Carlini and Umberto Villano [14] discussed various approaches to

eliminate deadlocks in transputer systems. The one they emphasized on was the use of

a simple graphical representation of the data exchanged in a program, the I/O graph,

which makes it possible to detect potential program deadlock. They illustrated that

Communcation deadlocks can be detected by means of the communication state graph,

which is a direct graph that dynamically models the ungranted I/O requests issued by a
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set of communicating processes. In this graph the processes waiting for an I/O exchange

and their partners are represented by vertices, and the ungranted I/O request by arcs. The

arcs are directed by convention from the process issuing a request to the one requesting

the I/O exchange. A deadlock is detected, if there is a cycle in the communication state

diagram [14].

Another approach that they discussed was the use of buffers. An example of the

buffering technique is given by the following code that outlines the outputting process

-- outputting process

PRJ ALT
out.chan ! message
SKIP

NOT(buffer. full) & SKIP
... store message into buffer

Whenever a message is available to be transmitted, the above process tries to

output it to the out.chan, but if the channel is busy, the message is temporarily stored in

a buffer. In this example, the buffers reduces the likelihood of there being a deadlock but

it does not completely solve the problem, because the buffer might be full, and thus it

can result in a deadlock.

When discussing buffers, tllere is also a method called the' structured buffer pool'

[15-17]. In this technique, message buffers are. partitioned into d(max) classes, where

d(max) is the maximum path length in the network, and a packet that has already covered

i hops is allowed to use only the buffers of the classes < = i. Under nbnllal traffic
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conditions, the messages are stored only in class 0 buffers, but when the load of the

messages increases, buffers from level 0 to level d(max) are progressively used. This

means that if the buffers of the classes < = k are full, only messages coming from a

node distant at least k hops from their sources are accepted. If this strategy is adopted,

an ungranted request for a buffer can be directed only from a buffer of class i to a buffer

of class (i + I). Hence a possible chain of ungranted requests cannot form a circuit,

because it passes through buffers of progressively higher classes, and no deadlock can

occur.

N.T Son and Y. Parker [18] used an adaptive deadlock-free packet routing

approach in transputer-based multiprocessor interconnection networks. Their research

presented an adaptive routing algorithm which controlled the transmission of messages

through the network. As the messages build up in the network, the algorithm tries to

reduce the blocking of traffic by using adaptively the existing idle buffers in the network.

The method is called adaptive deadlock-free routing (ADR). This ADR algorithm is

based on a combination of deterministic and adaptive routing. The algorithm IS

detenninistic for light traffic, and becomes adaptive for heavy traffic conditions.

A simplified algorithm of the ADR approach is given below, where d.a represents

the destination address of a packet, the Iink l is obtained from the routing function R{n}

where n is the destination, and q(i) stands for the state of the queue i, i.e full or empty.
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WHILE running
SEQ

.. .Input a packet

... Find link I: =R{d.a}
IF

q(l) NOT full
...Send the packet to queue I

TRUE
SEQ

...Find the q(i) that is NOT full

... Send the packet to queue i

The messages thus try to first find the shortest path, i.e deterministic. The

adaptive strategy is used only when a shortest path starts getting overloaded or a

destination a'cmress is temporarily unable to consume incoming messages.

~,
G.D.Piffare, L. Gravano, S.A. Felperin and I.L.C. Sanz [19], developed a fully

adaptive minimal deadlock-free packet routing algorithm on hypercubes, Meshes and

other networks. For a Mesh, a partially adaptive algorithm is developed that is based on

the idea of "Hanging" the mesh from the (0,0) and (n-l,n-l) nodes and consists of two

phases. In phase A the messages move toward their destination by visiting nodes in such

a way that if a message passes from (x,y) to (x', y') in one routing step, then x < x' or

y < y'. In phase B, the messages visit nodes with lower numbers. In other words, in

phase A the mesh is hung from node (0,0) and the messages visit nodes with higher

levels where the level of (x,y) is x+y. In phase B ,the mesh is hung from node (n-l,n-

1) and the nodes are visited in decreasing level order. Once all the steps that could be

taken in step A have been completed, the message enters phase B. This scheme can be

implemented with two queues" q[a] for phase A, and q[b] for phase B messages. The
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routing scheme is deadlock free, because the queue dependency grapgh is acyclic [19].

This scheme can also be extended into a fully adaptive one, that is still deadlock-free and

uses the same number of queues. This is done by allowing messages that have not

completed their phase A to take phase-B steps (but still visfting q[a] queues. In phase B,

the messages still have to go through ascending paths. The resulting algorithm is such

that every message always has a chance of taking a static transition, as messages keep

visiting q[a] queues while taking dynamic transitions [19].

These are some of the techniques that are available and that have been designed

and developed. The algorithm designed in this research uses some of the existing

techniques and at the same time introduce some modifications to develop a deadlock-free

.routing algorithm for a square mesh.

5.2 Choice of Language - "OCCAM"

Transputers can be programmed in most high level languages and are designed

to ensure that compiled programs will be efficient. Where it is required to exploit

concurrency, but still to use standard languages, OCCAM is the most reasanable

choice.

To gain most benefit from the transputer architecture, the whole system can be

programmed in OCCAM. This not only provides the advantages of a high level language

but also provides maximum program efficiency and the ability to use the special features

of the transputer.
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Occam is the first language to be based upon the concept of parallel, in addition

to sequential, execution and to provide automatic communication and synchronization

between concurrent processes.

\
The transputer and OCCAM were designed together and all transputers include

special instructions and hardware to provide maximum performance and optimal

implementations of the OCCAM model of concurrency and communications.

In OCCAM, processes are connected to form concurrent systems. Each process

can communicate with other processes using point to point communication channels.

Basic Overview

In its most general form, OCCAM programs are built from three primitive

processes [20]: Assignment, Input and Output.

An assignment computes the value of an expression and sets a va~able to the

value. An example would be

c:= v -- assign the value of v to c

Input and Output primitives are used for communication between processes. Two

processes communicate with each other by means of a one-way channel. One process

outputs or sends the data on the channel, while the other process inputs or receives the

data from the channel. Communication in OCCAM takes place when both the sending

and receiving processes are ready. Thus in order for communication to-tlkepra-ce-;-thi:o .
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processes have to be synchronized [21].

An example of communication between two processes follows:

PAR

c!e

c?v

-- output variable e to channel c

-- input from channel c and assign the value to v

The other major component of OCCAM are constructs. A construct itself is a

process and is composed of a combination of several processes. Each component process

of a construct is written two spaces further from the left hand margin to indicate that it

is a part of a construct. The following three constructs are the most important in

OCCAM

SEQuential

PARallel

ALTernative

components executed one after the other.

components executed together

component fIrst ready is executed.

An example of several constructs running in parallel follows:

PAR
SEQ

pI
p2

SEQ
p3

-- processl

-- process 2
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p4
PAR

p5 -- process3
p6 -- process4

In this example four processes are running in parallel. Firstly process I and 2

are running in parallel, while process 3 and 4 are running in parallel as part of process

2.

OCCAM can be used to program an individual transputer as well as a network~

of transputers. On a single transputer, channels are used to communicate data between

processes. On a network of transputers, communication is implemented directly by

transputer links.

Thus considering the versatile nature of OCCAM and its close link to the

transputer, OCCAM was the obvious choice to implement the routing algorithm on the

transputer.

5.3 Software Overview

The basic goal of the thesis is the design and implementation of a modular

deadlockJree routing algorithm for a two-dimensional mesh on a network of any size.

In this thesis, for discussion and explanation purpose only, a two by two mesh will be

used as an example. This will help understand the structure of the approach and give an

insight of how communication is performed.

In chapters 3 and 4 routing on a mesh topology were discussed, and it was found
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that the most suitable approach for routing on the mesh is' the X-Y routing. Both

deterministic and adaptive techniques can be used, but since adaptive routing can cause

loss of messages in the worst case, and also since it is more tedious to implement,

minimal deterministic routing was chosen . What this means is that the path taken by the

message as it travels from the source to the destination will always be the minimal path,

i.e requiring the least numQer of hops. Also the store and forward technique is used for

switching.

Since for discussion purposes, only four nodes/processors will be used, only one

cluster from the Superset Plus 64 is required.

5.3.1 Process Structure

Each node has been designed to have a number of processes running on it.

Basically six major processes are running, all in parallel. Firstly there is the input

process that waits in parallel to receive on any of the channels that a node might have.

Since there are more than one input channels, the ALT component is used. The moment

any channel recieves an input, all other channels are blocked and the message is read and

stored in a buffer. Figure 5.1 outlins all the six processes and how they interact with

each other. A pseudo code of the input process follows:

PAR
WIllLE TRUE

ALT
channell x ? source; destination; direction; message; status

-- read values from channell x
buffer! ! source; destination; direction; message; status

-- write the values to a buffer
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channel2x ? source; destination; direction; message; status
-- read values from channel2x

buffer2 ! source; destination; direction; message; status
-- write the values to a buffer

channe13x ? source; destination; direction; message; status
-- read values from channe13x

buffed! source; destination; direction; message; status
-- write the values to a buffer

The second process running is the one that reads from the buffer and calls the

routing procedure. Since the routing process has already been discussed, an example of

the buffer process follows:

WIllLETRUE
ALT

buffer! ? source; destination; message; status
-- read from buffer!

SEQ
route(bufferout, sourqe, destination, direction, message, status)

-- call the router
IF

direction = 1 -- if direction is 1, i.e source is reached call route again
to determine the destination

route(bufferout, source, destination, direction, message, status)
TRUE

SKIP
buffer2 ? source; destination; message; status

SEQ
route(bufferout, source, destination, direction, message, status)

buffer3 ? source; destination; message; status
SEQ

route(bufferout, source, destination, direction, message, status)

Next come the output processes, the first one gets the data from the router and

puts it in the output buffer, while the other reads from the output buffer, and sends the

message to the respective output channel.
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Figure 5.1 Structure of the processes and their interaction
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WHILE TRUE
ALT

outbufferl ? source; destination; direction; message; status
SEQ

channelly ! ource; destination; direction; message; status
outbuffer2 ? source; destination; direction; message; status

SEQ
channel2y ! ource; destination; direction; message; status

The last process is the local process, that can recieve message that is sent to it,

do computation on it, and also send it to other processors.

5.3.2 Message Routing

In its most general fonn, processors are labelled from °to 4. Since processor°
will be the root processor, it is attached to a HOST which is used for I/O. The HOST

requests for user input and asks for the source and the destination node. The data type

of source and destination is kept as a structure, thus each x and y co-ordinates are read

for each processor.

The HOST also requests for the message that must be sent by the processor. Once

the message is read, the HOST sets the direction of the message to 0, sets the status to

0, and writes to the channel (channelOx in this example) that connects it to Processor 0,

the source address, the destination address, the message, direction and status.

At the same time, in Processor 0, there is a process that is waiting in parallel for

inputs from all its channels. Since in this example, channelOx is the channel that connects

Processor °to the HOST for inputing message, the moment the HOST writes something
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to this channel, it is read by Processor a and stored in a buffer. At the same time,

another process is running in Processor a that reads from the buffer and sends it to the

routing process.

The routing process is an independent process that gets the value from the buffer

,

and attempts to route the message to its appropriate destination. The direction of the

message is kept at a until the source of the message is determined. Once the source is

reached, the direction variable is set to I and passed on to the destination. Once the

destination is reached, it is set to 2. This is done in case the message has to be re-routed

to the HOST, and a direction of 2 would mean that this message has reached its

destination and is on its way back to the HOST for monitoring purposes.

The routing process uses the deterministic X-Y method. Each Processor knows

its x and y coordinates. Once a message is recieved, the routing process compares the

x value of its own with the incomming message. If it is the same, it compares the y value

of the message with itself. If that is the same too, it knows that it is the source and

direction is set to 1. If the x coordinates are not the same, then it checks to see if it is

greater or less than its own x value. Depending on the result, it writes to the respective

output channel buffer where it is read by another process and written out to the output

channel. The same is true for the y- coordinates. Thus each message is routed in one

direction at a time until it arrives at the proper coordinate in each dimension, before

proceeding to the next dimension. Instead of incrementing or decrementing the difference

of the source and destination coordinates, each processor just compares the source and
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destination address with its own coordinates depending on which direction the message

is comming from and directs the message depending on the results of the comparison.

. A pseudo code of the routing algorithm follows:

-- if the x coordinate of source is greater than x

-- the y coordinate of source is greater than y

source[l] < y
SEQ

buffout4 ! source, destination, direction, message, status
-- write the message to the output buffer.
-- if Y coordinate of source is also equal to y

source[O] < x
SEQ

buffout2 ! source, destination, direction, message, status
-- write the message to the output buffer
-- if x coordinate of source is equal to x

source[l] = y
SEQ

dir := I -- set direction to I: the source has been reached
TRUE

SKIP
TRUE

SKIP

source[O] = x
IF
source[ I] > y

SEQ
buffout3 ! source, destination, direction, message, status

-- write the message to the output buffer.
-- the y coordinate of source is less than y

PROC route
SEQ

IF
direction = 0

IF
source[O] > x

SEQ
buffoutl ! source, destination, direction, message, status

-- write the message to the output buffer
-- if the x coordinate of source is less than x

This giyes an example of how the router works. A small variation is used for

messages comming from other directions, but the concept is the same. This type of
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routing is minimal and always uses the shortest path to reach the destination.

5.4 Deadlock Avoidance Techniques

Since deadlock-free routing was one of the goals of the thesis, several features

have been used in the algorithm to avoid deadlocking. A set of processes is in a deadlock

state when every process in the set is waiting for an event that can only be caused by

another process in the set. Since deadlocking is very much inherent to parallel

computation, the proper choice of routing algorithm is required.

Considering this problem, the X-Y routing technique, which uses dimension

order routing, enforces a strictly monotonic order on the dimensions traversed, and thus

guarantees deadlock-free routing. [I]

The other technique that is used in this algorithm is buffering. Buffers do not

guarantee deadlock-free situation, but very much reduces the chance of having a deadlock

to occur. Keeping one buffer for each input and output channel, reduces the chance of

a deadlock to occur. A concurrent process is used 'in this program as seen in the previous

section, that buffers the input and output message~. Though it might create a slack in

communication, but it helps in avoiding deadlocks. i

If buffering was not used a deadlock would easily occur. As an example if there

are four nodes arranged in a two-by-two mesh and node I is sending to node 2, node 2

is sending to node 3, and node 3 is sending to node 1 all at the same time, then a
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send at one time. Thus a deadlock will occur with only four messages in the network.

However if a buffer is placed in each node, then the writing node can write to the buffer

of the recieving nodes and thus will free a link.

Other causes of deadlocks such as "Misuse of Channels" are also considered, and

the program is reviewed by introducing test data to check if a miscommunication is

occuring. Also since all channels are uni-directional, care has been taken that the

channels are being used in one direction only.

5.5 Flow Control Strategy

Flow control deals with the allocation of channels and buffers to a packet as it

travels along a path through the network. If a problem is encountered in the normal path

of a packet, a decision is to be made what to do with the packet such as rerouting,

blocked or dropped altogether. In this program, the fIrst come fIrst serve strategy has

been employed using the ALT construct. Along with the Flow control Strategy, the Store

and Forward switching technique is used. So if a message is to arrive at a node and

cannot continue because of a channel is in use, the whole message is stored in the buffer

and forwarded once the channel is available again.

5.6 Modularity of the Algorithm

The program has been developed in such a manner that it can account for a square

mesh of any size. In the confIguration fIle, only the network part where the nodes are

connected to each other with links, that a user has to hardcode the information. Other
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than that, the program computes addresses of each processor, based on the size of the

mesh.

The processors are numbered from left to right in the order of 0, I ,2,3 ..Width-I.

The next issue is to determine what is the position of each node on the mesh. This is

done by simple DIV's and MOD's functions with the width of the mesh, and the

programs goes through an 'IF' construct to determine the position of each node.

As an example, the following code will determine where each node is located on

the mesh and accordingly how many channels it is connected to.

PAR 1= 1 FOR width*width
PROCESSOR p[I]

IF top edge
IF left edge

PAR
call procedure for Corner node (four channels plus host)
call procedure for host

IF right edge .
call procedure for Corner node (four channels)

ELSE
call procedure for intermediate edge node (six channels)

IF bottom edge
IF left edge

call procedure for corner node

ELSE
call procedure for middle node (eight channels)

In this way, three major procedures are called each having four, six or eight

channel declarations. The process number °is a special case, since it is a corner node
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but at the same time it is connected to the host with two extra channels.

This chapter presented the method utilized to implement a deadlock-free algorithm

on a transputer machine. The process structure, the choice of the routing algorithm and

various approaches to avoid deadlock were also discussed.

63



CHAPTER 6. Comments And Future Work

The topic of this thesis was the design and implementation of a modular

deadlock_free routing algorithm for a two-dimensional mesh, on a network of transputers

of any size. This paper presented the mesh topology and the different routing techniques

that can be implemented on them. The X-Y routing was selected for implementation on

the mesh since it incorporates minimal routing and is deterministic. Also the store and

forward technique was used for switching. The advantage gained from this switching

technique was that there was a greater link efficiency and there was no need for

simultaneous availability of the sender and reciever.

For avoiding deadlocks, the X-Y routing in mesh enforces a strictly monotonic

order on the dimensions traversed and thus guarantees deadlock-free routing.

For future work, the wormhole routing technique can be implemented instead of

the store and forward switching technique one used in this research. Since wormhole

routing works in a pipelined fashion, the absence of network contention makes the

network latency relatively insensitive to path length [1]. This is also shown in Figure 1.1

where the store and forward approach, circuit switching and wormhole routing are

compared in communication latency.

Another point that was neglected in this paper but would be of interest is the size

of the buffer at each processor. The larger the size of the buffer, the lesser the possibility

of a deadlock [4]. Instead of a buffering process, a process that manipulates a queue, that
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is, a data stmcture that stores and recieves messages can be used.

Adaptive routing is another issue that can be implemented on the network of

transputers. Detenninistic routing cannot respond to dynamic network conditions such

as congestion. In order to do that requires additional channels which has a cost associated

with it, and also in most applications the utilization of these extra channels is not high

[I] .

Lastly virtual channels were also used to implement deadlock-free routing in this

research. The way the algorithm has been developed in this paper, the unidirectional

virtual channels used provide the same result and were thus ineffective.

65



References

1. Lionel M. Ni, Philip K. McKinley, "A Survey of Wormhole Routing

Techniques In Direct Networks", Computer. Feb 01 1993 v 26 n2.

2. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker, Solving

Problems On Concurrent Processors, Prentice Hall, Englewood Cliffs, NJ

1988.

3. Yuh Dauh Lyuu, Information Dispersal And Parallel Computation, Cambridge

University Press, 1992.

4. C. Nevison, D. C. Hyde, G. Schneider, and P. Tymann, "Laboratories for

Parallel Computing", Jones and Bartlett Pub. Boston, 1994.

5. K. Hwang, Advanced Computer Architecture, McGraw Hill, 1993.

6. F. Thomson Leighton, Introduction To Parallel Algorithms & Architectures,

Morgan Kaufmann Publishers, CA 1992.

7. InMos The Transputer Databook, 2nd edition 1989, Berkely, California.

8. D. H. Linder and J. C. Harden, "An Adaptive and Fault-Tolerant Wormhole

Routing Strategy for k-ary n-cubes," IEEE Trans. Computers, Vol. 40, No.1,

Jan. 1991, pp. 2-12.

9. Tanenbaum, A S Computer Networks, Prentice Hall, Englewood Cliffs, NJ,

1981.

10. Seitz, C "The Cosmic Cube" Comm.. ACM vol 28, No.1 Jan. 1985 pp 22-

66



33.

II. Dally, W. J. "Fine-grain Message Passing Concurrent Computers", Proc. 3rd

Conf. on Hypercube Concurrent Computers Vol. 1 1988 p. 2-12.

12. Kennani, P and Kleinrock, L. "Virtual Cut-through: a new communication

switching technique", Computer Networks Vol. 3, 1979, pp. 267-286.

13. Roscoe, A. W., 1988 "Routing Messages Through Networks: An Exercise in

Deadlock Avoidance", Parallel Programming of Transputer Based Machines,

edited by Traian Muntean, Springfield, Va. : lOS (Proceedings of the 7th

Occam User Group Technical Meeting, Grenoble, France), 55-79.

14. Ugo De Carlini and Umberto Villano, "The routing problem in Transputer-based

parallel systems", Microprocessors and Microsystems, Vol 15. No. 1 Jan/Feb

1991 pp. 21-32.

IS. Gerlemter, D "A DAG-based algorithm for prevention of store-and-forward

deadlock in packet networks", IEEE Trans. Computers Vol C-30 No. 10, Oct

1981, pp. 709-715.

16. Gunther, K. D. "Prevention of deadlock in pacaket switched data transport

systems", IEEE Trans. Communications Vol COM-29 No.4 April 1981, PP.' 512

524.

17. Annot, J. K and Van Twist, R.A.H. "A novel deadlock free packet switching

communication processor", in de Bakker, J.W., Nijman, AJ and Tre1eaven, PC

(eds) Lecture notes in Computer Science 258 Springer Verlag, NY 1987, pp. 68-

67



p

85.

18. N.T. Son and Y. Parker, "Adaptive deadlock-free packet routing in Transputer

based Multiprocessor Interconnection Networks, " The computer Journal, Vol. 34,

No.6, 1991 pp. 493-502.

19. G. D. Pifarre, L. Gravano, S.A. Felperin, and Jorge L.C. Sanz, "Fully adaptive

Minimal deadlock-free packet routing in hypercubes, meshes and other networks:

Algorithms and simulations", IEEE transactions on parallel and distributed

systems, Vol. 5, No.3, March 1994 pp. 247-253.

20. Dick Pountain and David May, "A Tutorial Introduction to OCCAM

programming", 1988, Hollen St. Press, U.K.

21. IoMos, OCCAM2 toolset, User Manual part 1, IoMos Ltd. 1991.

22. Peterson, James L., and Abraham Silberschatz, 1985. Operating Systems

concepts, 2d edition, New York: Addison-Wesley.

23. Hoare, C. A. R., 1974. Monitors: An Operating System Structuring Concept,

Communications of the ACM, 17, pp. 549-557.

68



Vita

Syed H. Kirmani was born in Lahore, Pakistan on May 25th, 1968. He recieved

his Bachelor's degree in Computer Science from Rutgers University, New Jersey in

1991. He also has a Bachelor's degree in Computer Science from The Canadian School

of Management, Lahore Pakistan. Presently he is working as a consultant for Lehigh

University Computing Center. Syed has worked for Wild Orchid Ltd, New York NY,

where he helped design an information system for the company. He has also worked as

a system administrator for Dr. Mirza M.D where he was responsible for the computer

operations and managed a medical package for the clinic. He expects to receive his M.S.

in Computer Science from Lehigh University in 1995.

69



'END

OF
TITLE


	Lehigh University
	Lehigh Preserve
	1995

	Design and implementation of a modular deadlock-free routing for a mesh network of transputers
	Syed H. Kirmani
	Recommended Citation


	00097
	00098
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139
	00140
	00141
	00142
	00143
	00144
	00145
	00146
	00147
	00148
	00149
	00150
	00151
	00152
	00153
	00154
	00155
	00156
	00157
	00158
	00159
	00160
	00161
	00162
	00163
	00164
	00165
	00166
	00167
	00168
	00169
	00170
	00171
	00172

