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Abstract

The success of a face recognition algorithm depends on its robustness with respect to

various factors such as the lighting condition, the departure of the face from fully frontal,

the skin color, ... etc. The performance of the sensors used to capture the test image also

plays an important role in acquiring images for basic feature extraction. While the ability

70f the sensors might affect the image by the discrepancy in pixel level (not necessary a

relationship of inferior and superior), no previous research concerning how and to what

degree this disparity could affect the results of the face recognition algorithms has been

conducted. Using the results of the same face recognition algorithm performing on

different sets of data that have exact image context under the same condition except

taken by different sensors gives results of evaluating sensors directly coming from the

impact of the quality of sensors on the algorithms. Similarly, evaluating the same sensor

under different outdoor weather gives the impact of the weather directly on performance

of the algorithms. In this paper we conducted evaluations that clarify the effect of the

weather on sensors and the difference between sensors and proved that these factors can

result in considerable difference in the performance of the algorithm. In addition to the

general results concerning sensor's ability, we also explore various ways to use limited

data to do evaluation that gives us additional infonnation about how various factors are

affected by this difference. The empirical distributions used for statistical tests are

fonned by using the Central Limit theorem. which states the limiting property of the

summation despite the different true distribution of the yariable used. Various fonnation



of the Central Limit Theorem and the criteria that make them work will be introduced

throughout this thesis. Different formation and the influence of the factors will be

explored in different experiments. The results of this paper suggest any experiment

undergoing sensor change should be cautious about the effect of the difference in sensor

to ensure the consistency and stability of their results.
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Chapter 1. Introduction

Face recognition has been one of the most studied fields in computer vision.

Various efficient algorithms have been proposed to adopt different inferior conditions

[1, 5, 26]. Currently there are four major categories of algorithms following different

principles [9, 21]: PCA [2], LOA [27], Bayesian classifier [15], and graph matching

[10]. The PCA approach tries to find the most important features and ignore others to

reduce the dimension and calculation needed. After extracting the features, several

"eigenfaces" are serving as the basic unit vector. Test images are represented as the

combination of these basic vectors. Recognition takes place when the test image's

vectors are most close to that of the recognized image. The most recent LDA method

developed by University of Maryland is actually a combination of PCA and LOA, it

uses PCA to obtain some major feature then use the linear discriminate method to make

the decision [27]. The concept of LOA is similar to that of PCA, but the meaning is in a

complemented way. While PCA tries find the most important feature, the small

difference that distinguish the two character "0" and "Q" might be

ignored[book].While for LDA, the approach is to sum the features together. Thus the

small tail in "Q" will make a difference between them.

The Bayesian approach is developed by MIT [15]. The Bayesian classifier,

unlike those previously stated, uses a probability model rather than some distance

measurement to predict the probability of the face being recognized. Instead of using
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eigenfaces, they use the intensity curve of the face for fitting and predicting. The graph

matching face recognition was developed by USC[10]. This method turn the fiducial

points of face (eg, eyes, mouth, ... ) into graph, then turn the face recognition into graph

matching problems.

The FERET database construct first by University of Maryland consisting of test

images and algorithms gives a standardized evaluation for face recognition. This solves

the problem of researchers claiming the performance of their algorithm with possibly

biased measurement without fair criteria. Face recognition applications have improved

to the extent that it can be used in real-world applications. Face recognition can robustly

recognize people with hair style change or some other disguise techniques since it is

mainly based on the structure of the face instead of some other appearance that people

used to recognize face. Applications range from custom check to personal identification.

Some commercial applications has been made in the market like the Visionic[6].

Despite all the progress and effort researchers made in the literature, there still

exist some experimental problem that hasn't been addressed. Since face recognition lies

in the feature extraction, the source of the feature, the image quality, or equivalently, the

sensor's quality, comes into play. Under practical situations the image taking process

might have to undergo sensor change [14]. Even in a single sensor, the response curve

of each pixel may not be totally identical. Without taking the effect of sensor change

into consideration before applying target experiment might cause inconsistent results.

The role of sensor evaluation become even more important while the application of face
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recognition has moved on the real world application, where the deploy of the camera is

inevitably in outdoors, and unlike indoor applications, various factors like lighting

conditions can not be reproduced, which might worsen the consistency of images taken

by different sensor due to sensor's nonlinear response to lighting condition. Even a

single sensor can have a different result for fixed scene and fixed under the same

lighting condition. The difference in temperature may cause the sensor to operate in

different operating environment thus have a different response curve.

Since all recognitions lies on extracting basic features from the images, less

sharp images reduce the information available for recognition. Not only the blurring of

the image could cause problem. Sensors from different models or producers might make

the sensors response to lights from different wavelength differently. This might put

different emphasis on different features. This difference in the image might cause the

algorithm to perform differently for the same target and scene. Although sensor's

response to various situations can be modeled by the user manual as done in [4], how

and to what degree does these differences effect of recognition has never been

explored/remain unknown

Given a set of images taken by some sensor, the distribution of the recognition

results represents the algorithm's response to the various parameters of the training set:

the condition under which the images were taken. and the sensor's performance. While

the true distribution of what the algorithms should response to a perfect camera is

unkno\\l1. and we cannot quantify the how perfonnance of the algorithm has departure
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from the true performance it should have for an image taken by some perfect camera.

By comparing the sets of results taken by different cameras by statistically justified

method we get to know the potential difference among the sensors might have from

those distributions of results.

The results of the recognition for images taken from some sensor can be

transformed into empirical distributions identifying the performance of that sensor

regarding particular conditions (if there is any) like lighting conditions under which the

images were taken. We address two important issues concerning the formation of the

distributions. First, the distribution should be able to represent the sensor's ability as a

whole. The sensors may perform differently on different class of images. On some

special cases like the target's wearing glasses, blurred images may be better for

recognition than clear images that separate the frame of the glasses from the eye. The

overall distribution of the sensor should be able to show the superior/inferior of the

sensor despite these special cases. Second, to make the distribution represent the

sensor's characteristic more accurately, we should exploit all knowledge we have about

the images to reduce the variances. While some factors like a particular gesture may

tend to be more sensitive to the changes in image quality than others, we look into these

factors by using them as the basis in the formation of our distributions. By comparing

distributions based on different factors we get to further investigate the sensitivity of

different factors to the sensor change.
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Two cameras of the same factory quality are placed at different distances from

the target to simulate different sensor quality. Our experiments are conducted outdoors

to simulate the environment the researchers are most interested to solve. Several

different factors can account for the cause of different sensor response for a single

sensor response. We try to eliminate this intra-sensor difference by collecting sets of

data under similar conditions. Factors can be put consideration includes the visibility of

the scene, the wind speed when the images are collected, the temperature, and the sky

condition, the humidity, ... etc. If we specify the factors in a strict way, the data belong

to each category might not be enough for us to conduct statistical procedures and tests.

In our current implementation we only specify the sky condition roughly into three

categories, clear, partly cloudy, and mostly cloudy. This way it would allow a large pool

of data to be collected. This pool of data includes different targets (people) under

different pose of that target. We take totally 256 people and four poses of each person

as our raw data. Some algorithms are then used to recognize these faces. The metric

used to characterize the performance of the sensors follows that in [14, 19]. The

algorithms took two sets of images. One is the training set, which gives the algorithms a

standard of what do identify. The other is the testing images, which is the target to be

identified and find a match in the training set. These two sets of images are exclusive.

The set of test images different from the training images is fed to the face recognition

algorithm. The algorithm can compute some score saying how similar the test image is

to one of the images in the training set. To do classification, the algorithm has to
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compute the scores for the test image and all the images in the training set. A success of

the recognition should rank the probability (score) of the correct face being the highest

among all. Failure may result from either miss-classification or failure in detecting the

faces at all. The lower the probability the algorithm produces for the correct class, the

lower score it receives in that test. Different levels of failure can either receive different

scores for how serious the algorithm had done wrong or it is simply a mistake no matter

how good or bad this mistake is. Details in defining the test and the metrics used will be

stated in next section.

Simple looking into the test result of each image does not give us too much

information other than how the algorithm works under this specific person, the pose of

that person, the condition like lighting of weather in the specific scene. We tried to

group similar data into some distribution. The distribution of the results for each camera

represents the performance of each sensor for the specification of that group of data.

The pool of data collected may bear several kinds of variances thus makes comparing

the mean of each camera meaningless. By combining data in different ways we not only

reduce the variances, but also get to investigate how various factors (person,

pose, ... etc.) react to the difference in sensor quality. The perfect distribution of the

specification of the group of data can never be know, thus we have know way of know

how far these data has gone from where it is suppose to be if the camera taking them are

perfect. However. the Central Limit Theorem states that the distribution of an average

tends to be Gaussian, even when from which the average is computed is decidedly non-
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Gaussian [7, 11]. By taking averages of similar data, by similar we mean to eliminate

some potential difference like different target, and we can convert the original

distribution into something we can use to do statistical tests, we get a Gaussian

distribution representing the algorithm's response to that set of testing data.

Although this Gaussian distribution gives us some idea of how the algorithm

response to that set of data with its various factors like how the sensor did and the

restricted specifics to get this similar data, it still tell us nothing more than that special

condition. Although we might want to compare the two cameras on its overall

performance, mixing all the data to get this Gaussian distribution bears too many

variances, this result still won't tell us too much more than a single mean. We can then

specify the factor affecting the performance of the algorithm as the parameter we wish

to investigate. After fixing the parameter of interest, we then by combining several

different "similar data sets" under the same restriction we put on the factor of interest

we get the result to be both stable and general, and reduce the final result to one

Gaussian distribution representing the character of that camera with respect to the factor

specified. This final combination has a similar meaning of that of linear discriminate

methods. It both serves as a dimension and variance reduction. Unlike the linear

discriminate. which tries to find the combination that would show the difference of each

class most. we treat each class equally since we wish to sce the pcrformance of the

camera by investigating the grouped behavior of all the class. The definition of class

can be viewcd as. by specifying the factor in intcrest, we vary all thc parameters except
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the one fixed. And the multiple class may consist of data from sets of "complementing"

data, meaning the data are related in a way that not only the variances are reduced, the

reduction in dimension made the final Gaussian distribution more capable of

representing the performance of a particular sensor.

The Central Limit Theorem is not only a theorem. There are series of criteria

can be used for various application. The restriction put on the variables in question

ranges from independently identically distributed, independently distributed, to

dependency between data can be assumed. We will examine the validity of our data

before we apply the theorem. After the Gaussian distributions representing the sensor

have been constructed, we can then use the t test to see if there is a significant

difference between the qualities of the two sensors.

The importance of this evaluation come from that it not only gives a way of

evaluating the performance of the sensor, but that the difference tells us directly the

result why the researchers wish to conduct the sensor evaluation at all, to see to what

degree can the sensor's performance can affect the algorithm's performance. We can

then conduct some statistical test from two Gaussian distribution A t test is then applied

to the distributions of the two cameras to decide if there is a significant difference in the

performance of the two sensors. Our results showed that the difference in the sensor's

quality, while might not differentiable to the human eye through the image quality, can

indeed affect the performance of the same algoritlun to a significant degree. Any

10



experiment undergoing sensor change should take this factor into consideration before

applying further analysis/experiment to avoid inconsistent results.
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Chapter 2. System Model

In this section we define the terminology and introduce the mathematical backgrounds

and the metrics that will be used throughout this paper. We will first define some basic

terminology that has special meaning designated to make the statement of the concepts

and experiments easier and unambiguous. The metric defined by other researchers that

will be utilized in our experiments will then be stated. Finally, the mathematical

principles that will be used to transform the recognition results into empirical

distributions designating the performance of the sensor will be introduced with their

basic idea and the criteria for them to apply.

First we define the term experiment to be the basic unit for testing some

hypothesis about which we wish to investigate. In one experiment there can be several

trials that may have different formation concerning the data. These formations, however,

must be constrained in such way that the hypothesis of the experiment can still be tested

in each one of them.

2.1 Image classification

In this section we define the tenninology and metrics concerning how we define and

combine recognition results that will be used in this paper. Some of the definition

follows that in [14. 19]. the reader can find more details in it.

Each image has certain spec(fics. The spec(fics is a 4-tuple (T. rv. E, 0) where

1. T is a finite set denoting the time the image is taken.
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2. W is a finite set denoting the weather condition,

3. E is a finite set denoting the person in the image, and

4. 0 is a finite set denoting the pose of the person while the image is taken.

Let Ip (e;) be the label of ith element (image) in an image set p, designating the

specifics of e,. Each in the database can be uniquely identified by the label of that

image and the camera used to take that image.

The set of images G represents a training set, or gallery, which is used in

recognition process as the model that new incoming images should be mapped to. Some

image set, p, different from those in G, is called the probe or the test images, which are

to be classified. Each probe has a property, which constrains certain specifics of the

images in the probe. For any of the tuple X in specifics, we write P(X) to be the

collection of all subsets of X. P(X) is called the power set [5] I of X. We define a special

character Dr' "don't care", to be the largest subset of X, Dx E P(X/. The property of a

probe is a 4-tuple (T',W',E',O') where

1. T' ~ P(T) is the set of times the images in p were taken,

2. W' ~ P(1J] is the set of weather conditions,

3. E' c prE) is the set of people,

4. 0' <;;;; prO) is the set of poses.

I The definition of power set can be found in n1athcn1aticallitcmtures like [2-l1.
; The usage of this detinition will appear in latcr scction.

13



The same image can appear in a certain probe multiple times, that is, it is possible that

'pee,) ='p(e,) , i"* j . We define the character of a probe to be a 5-tuple (T',W', E', 0', C) .

C is a finite set denoting the camera used to take the images of the probe. Note here that

while the constraint put on the property is less strict, that it can be an element of a

power set, the camera used in each probe must be unique.

A probe set P, P ={PI,P2'" .,PlPl} , is a set of probes that each probe in the set has a

property that is different from others in the set by at most one variable other than C in

property. For example, all probes in the set has the property (x, a, b, c, d) where a, b, c,

and d are constants throughout the set, and x is the one variable that may be different for

the probes in the set. Note here that the variable in the property can be one of the four

variables, T', W', E', and 0 '. The camera used for a probe set must be unique. There

can be two probes in a probe set having the same property, but the two probes have to

be independent, '3i,lpi (e,) "* Ip2 (e,) . The empirical distributions for the probes in a probe

set must be independent. Two probes pi and p2 are called equally representative3 if

jpII=lpJ Two probes Pa and Ph are called corresponding if la(e,) = lh(e,) , and the

characteristics of the two probes differ only in the camera used. Two probe sets are

Identifying the identity of certain face image is a kind of classification. Each

person in the image gallery can be viewed as one class. The ith class in G. is denoted as

Ci. For a image x in probe p, XE p. and an image gEGi, the classifier ¢ can compute

, :"ote that the meaning of rcprcscnlali,'c here is ditTerent from that defined in [14],
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some score from the similarity metric sp (x, g), indicating the degree of similarity

between these two images with respect to the recognition algorithms used. To classify x,

the classifier computes the scores for x and all images in each class in G, sp(x,gl)'

s;(x,gz)'"'' sp(x, gn) where g, E G, and n is the number of classes in the gallery. It

then outputs a list of classes in diminishing scores. Let the true class of x be true(x). Let

rank be the position the class true(x) has in the list. If for some x it has rank 1, it is

correctly classified. Otherwise it will have the rank value of 2 through n where n is the

number of classes in G. The larger the rank is, the more seriously wrong the classifier

did in the classification for x.

2.2 The Central Limit Theorem

The results of individual classifications, the ranks in our experiment, have to be

transformed into some empirical distributions that we can comprehend, showing the

property of the target sensor, and be used to perform statistical comparison between

sensors. While we can get an estimator of the distributions of the given statistics using

the indicator function like the This kind of distributions do not give us much

information about the performance of the sensors, nor \vould we be able to compare

those coming from different sensors since we have no way to know how different these

distributions should be so that we can say t\VO distributions from two sensors are

perfonning different enough. While nonnal distribution may seem a good way to

compare between distributions. taking the mean of the given measurements for

15



comparison in a certain probe is neither useful nor meaningful since we have no way of

verifying if the error term of the true distribution of the ranks should be normal, nor

would it likely to be, since the ideal mean should be one while the wrong classification

will drive the mean only larger. However, Central Limit Theorem provides us a way to

transform seemingly unknown distributions into normal by taking the distribution of the

means, as long as we have a sample size large enough [16, 7]. We introduce the

definition of Central Limit Theorem and the criteria to make it successful in this section.

2.2.1 Central Limit Theorem on i.i.d case

This version of central limit theorem is the most commonly used [16, 7]. Let X i' X 2 , •• ,

be a series of mutually independent, identically distributed random variables with finite

mean j.1 and variances °< (J 2 < 00, then

n

LX, -1lf.1

lim ,=) h =N(O,I)
n-+ce 1l(J

In other words. the distribution of the means from will have a mean E (f.1) and variance

(j /.j;;. This theorem possesses a desired property that the limit property does not

depend on the particular choice of the original random variable X n • In other words, the

distribution of the means of any i.i.d random variable \\ill be approximately nonnai.

16



2.2.2 Triangular Arrays

A triangular array is the set of random variables

The array satisfies the following conditions:

1. for each i, the 11, random variables X'I'X,1"",Xm in the ith row are mutually- ,

independent

2. E(XIJ) =0 for all i,j, and

3. " EX 2 =1 for all i.L... 1 'I

The random variables in each row are 110t required to be identically distributed. There

are no constraints concerning the number of element in each row, 11,. In our experiment,

however, all 11, s are equal.

2.2.3 Underberg's Condition

17



Although the CLT described above can tum distributions into nonnal in statistically

justified way, the requirement of Li.d. is not practical enough since taking results of a

particular class merely shows the sensors' perfonnances with respect to these specific

targets. As mentioned previously, single-class results may be biased due to the

properties of the features in that class that might make blurred image better for

recognition. These distributions, although can be used to compare in statistically

meaningful way, can't show the sensors' perfonnance as a whole. We introduce another

version of CLT in this section [11]. This version of Central Limit Theorem relaxes the

i.i.d. condition on random variables in section 2.2.1 to the triangular array condition

described in the previous section. Let the sum of each row be

Suppose that in addition to the triangular array condition, the array satisfies the

following condition

V5> O'!Tli E[X,~ ~X'I > 51)] =°
./=1

then

S - 11J.l
lim ~ = NCO,I).
n~,., 110'

18



Lindeberg's condition requires that the variances of each row must be small comparing

to the total variances of the whole for Central Limit Theorem to apply. This requirement

is also viewed as the homogeneity ofthe variances, or homoscedasticity

2.2.4 Other Central Limit Theorem

There are other versions of the Central Limit Theorem that does not reqUIre the

variables be independent. That is, the sums of non-independent variables. The m

independent central limit theorem [3, 23] states that in the triangular array defined

above, the requirement of independent rows can be relaxed to 111 of them being

dependent where the m can be extend to infinity as long as the ratio of m and n, the total

number of rows, are fixed. The Martingale Central Limit Theorem uses the requirement

of the Lindeburg' s CTL and further analyzes that the requirement of independence is for

the underlying uncorrelated properties [18], and uses the martingale difference array to

construct the necessary condition. Also the Central Limit Theorem for mixing processes,

which adapt the bracketing approximation based on a moment inequality for sums of

strong mixing arrays [12, 13,20].

2.2.4 Test for homogeneit)·

19



There are many ways to test the homogeneity of the variances, each has their own field

of application. We will introduce four of them together with their advantages and

drawbacks.

Levene's Test

Levene's test is the most commonly adopted and least to be affected by departure from

normality.4 It uses the F distribution and is relatively simple. However, it tends to be

more strict in checking homogeneity and has the tendency to incorrectly reject the

hypothesis in some situation. It is defined as:

HI: (J'; =I; (J' j for at least one pair of (i,j)

Test statistics: given a variable Y with sample size N divided into k groups, where Ni

is the sample size for ith subgroup. The Levene's test is defined as follows:

• TI1Crc arc othcr vcrsions oflc\cnc's tcst for diOcrcnt bcha\ior of the distribution likc skc\\TICSS or hcavy-tailcd. Wc
usc ... vcrsion of thc tcst. ..
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There are three choices for defining Zij' which determined the robustness of the test

according to different situation. where

where f,. is the mean of the ith subgroup.

Z. is the mean of Z for the ith group, and Z.. is the overall mean of Z .
I IJ IJ

The significance level used throughout this paper is 95%.

Bartlett's test

Bartlett's test is sensitive to departure from normality. When the distributions tested are

not normal, the test may simply be testing normality. While the distributions to be

compared are normal, this would be the best candidate. It uses the X2 distribution and is

defined as:

HI : (Ji :;:t (J J for at least one pair of (i,j)

The test statistics is to test for equality of variance of the k groups tested. The

hypothesis is rejected if the variances for at least two groups are unequal.

21



T _ (N - k) Ins~ - L~=I (N, -1) Ins;
- k

1+ (lI(3(k -1)))((L lI(N, -1)) -lI(N - k))
,=1

S,2 is the variance of the ith subgroup with size Hi. N is the total sample size with k

groups. s~ is the pooled variance which is defined as follows:

s~ =L~=I (N, -1)s; I(N - k)

The variance are decided to be unequal if:

where X(2a .k_I) is the upper critical value of the chi-square distribution with k-l degree

of freedom at significance level u.

Fmax Test

The Fmax test uses the Fmax table. The advantage of this test is that is simple and

quick to do the test. However, it is also affected by non-normality. The Fmax has test

statistics as the following:

22



2

F
(J'Ja:rgesl

max = 2

(J'smallest

with degree of freedom being (the number of groups, the data size in each group-I).

This is a intrinsive ratio of the largest variance variance comparing to the smallest

variances of the groups being compared.

Cochran's Test

Cochran's test is computationaly simpler than the Bartlett's test, but it is also

affected by the departure from normality. The test uses Cochran's C table with test

statistics defined as:

the degree of freedom is the same as those in Fmax test.

The Fmax and the Cochran's test differs in their denominator, while the Cochran's

test captures the individual variance comparing to the overall variance, which has a

similar meaning of the requirement of the Linderburg's Central Limit Theorem, the

Fmax test emphesize on the difference of the variances between individuals. Both

methods, however. are computationally cheaper than the Bartlett's test and Levene's
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test for they make use of the data that can be generated while the subgroups were

formed.

2.3 Sampling with replacement

The application of CLT will be based on the probe and probe sets. We will apply the

CTL twice to turn the measurements at hand into normal distributions representing the

performance of each probe. Detail will be given in the next section. We use a single

probe as the basis for forming distributions. Before applying the CLT, we have to

ensure the selection of the members in a probe will guarantee the formation of the

distribution to be correct. The first time we apply the CTL will be on each probe.

Images in each probe have their specifics constrained by the property of that probe thus

can be viewed as being in the same class. To make the members in the probe to

distribute independently we use sampling with replacement for the design of this

sampling guarantee that each possible sequence of Ipl units has equal probability of

being selected [25].

2.4 T Test

A t distribution is a distribution that, given 11 independent measurements X" let

X-fl
(=--

- s/-f;;
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where f-l is the population mean, x is the sample mean, and s is an estimator of the

population standard deviation defined by

N

2 1 "C -)2
S == N -1 LJ XI - X .

,=1

The t distribution [8] is asymptotically normal. T distribution is defined as the

distribution of random variable when we don't know the real (j. The distribution can be

used to draw confidence level or test hypothesis. The t test is used to determine if two

normal distributions are likely to be the same with respect to the variables tested. The

statistics is defined as follows:

171 1 -111 2t =--'-:=~

.JA*B

where

and

25



m/, 0"/, and n/ are the mean, sample standard deviation, and number of data in each

group respectively [13]. The confidence level used to test hypothesis in this paper is

95%.
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Chapter 3. Experiment Model

In this section we will describe in detail, how to use the mathematics introduced in the

previous chapter to construct the experiment. We describe how to use some metrics

produced by face recognition algorithms, not necessarily have to be those derived from

that defined in section 2.1 (although that is what we will use in our experiment), to form

some distribution describing the character of each sensor. Some other techniques that

may also be used, but is not included in this thesis, will be mentioned but not explained

in detail.

Given certain probe p, defined by some characler, we can calculate some

statistics Bp =T" (XI" . " Xn) for it. If we get the mean f1 of T" of the images in p by the

method described in section 2.3,sampling with replacement, by CTL we know f.1 will

be distributed normally. Let the mean of Ii be Jl p and variance be (7p' This

distribution describes the algorithms' response to the character of probe p. Suppose

probe Pn is taken by the near camera and P f is taken by the far camera, and

In(e,)= 11(e,) where Ink} designate the label for ith element (image) for the near

camera and If (e,) designate the label for ith element for the far camera. We can use the

t test to decide if the Gaussian distributions from the two probes are significantly

different. The comparison result of the two statistics Bp, and BPr yields the potential

difference of the cameras regarding the particular probe choice. or the properl)' of the
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probe. We call two probes PI and Pz are corresponding if

Two probe sets p.. and Pz

see the difference of the two cameras in a more general term, we have to use probes

with different properties, best with complementing properties. That is, suppose X is the

varymg property of the corresponding probe sets p.. and Pz

Let a series of probes be represented as P ={p"P2,,,,,PIi'I}' In the series, I p, (e j)

and IPt (e j ), where IPt (e j ) means the label for the jth element for the Pk probe, are not

necessarily equal, "di,k,i*k,3j,lpt (e
j
)*lp,(e). This means there is no presumed

relation between any of the two elements P, and Pk in P, p,and Pk are independent of

each other. Remember each element P, in P is represented by a normal distribution.

The sum of several independent Gaussian distribution will still be Gaussian. Suppose

the mean and variance of element Pi are Ji i and u, respectively. We can calculate the

Gaussian distribution of P by simply adding the weighted element together;

2 2 2 2 2 2Yare?) = a l 0"1 + a~0"2 + ... + apG":r
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where

Here the two-layered distribution ensured the fulfillment of our two goals mentioned

previously. The first layer, the distribution formed from individual images of the probe,

reduces the variances for putting similar images in a probe. Note that similar here could

be defined differently according to different context. The summation of the distributions

of probes in a probe set combines the measurements from different testing sets (probes),

and demonstrates the sensor's performance as a whole. Note here that the optional

choice of complementing properties of the probes in a probe set makes this

representation more complete. The distributions of the individual probes can be used for

further analysis of how the varying factor in this probe set affect the recognitions.

By summing the elements of probe set P we are able to both reduce the

dimension of the data and possibly reduce the variance caused by different properties'

response to image quality and get to know the sensor's behavior as a whole. This serves

similar function as the linear discriminate method [9, 10]. Linear discriminate methods

basically try to project the data in a way that is best for different data set/classes to be

distinguished. We also do dimension reduction to reduce the number of Gaussion

distribution representing the perfomlance of the camera to perfonn t test. However, our

goal is 110t trying to discriminate between the behaviors of the two cameras - we do not

29



know if there is supposed to be a difference, on the contrary, this is what we are trying

to find out. Unlike linear discriminate methods, which lie on determining the weight of

the different features, we assigned all a, to the same value, Vlpl. Note that the

summation of the weights does not necessarily have to be one, we put one here so that

the difference between summation and individual probes can still be seen.

Suppose we have two series of probes, Pf and Pn for each camera, and that Pf

and P" are equally representative. We can then compare the two cameras by the

student's t test to see if there is a difference in the performances of them.

There are other ways of combing the data from different sets. If we treat P as a IPI

dimensional "feature" vector (assuming the selection of a probe set is based on

complementing property of the probes), we may preserve the response of the camera to

the characteristic of each specification of property. If we are to compare the two

cameras, by measuring the distance between the "corresponding" Gaussian distributions,

by corresponding we mean the distributions from those probes with characteristics only

different in the camera used, and In (e,) = If (e,), we can then apply some distance metric

like the Hamming distance on these individual features to determine the total difference

between the performance of the two cameras in how many or what value of the varying

variable. This way we may give a more quantitative approach to the difference between

cameras. However, we are to investigate if there is a significant difference between the

recognition results due to the disparity of the sensor's perfonnance. The quantitative

approach is out of the scope of this thesis and will not be discussed further.
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Other distance measurements with confidence level included like the Mahalanobis

distance can be used for given statistics of the probes to check the disparity of the

sensor's performance. However, the Gaussian distributions formed here can simplify

the process without giving up statistical validation.

FaceIt

The algorithm we will use to classify the face images is Visionic's Facelt. This

algorithm claims to improve the shortcoming of the PCA algorithms. This algorithm is

based on the method called Local Feature Analysis [17]. The PCA algorithm use the

global representation of the features, which is not robust to local changes like occlusion

[9, 21]. LFA method is built on PCA with local information that remedies the PCA's

inadequacy with low dimensionality. According to Visionics [6] 5, their product can

recognize human face under various lighting, glasses, ...etc. They also claim to handle

the pose variation of up to 35 degree in any direction from full frontal.

The evaluation of the claim was conducted by Gross, etc [9]. Although the result

of the evaluation shows the robustness regarding different pose variation and

illumination still can be improved. Our goal, however, is not to test the performance of

these formations, but is to know what degree does these variations deteriorate

recognition results regarding to the reduction of image quality. It would be interesting to

5 Visionics has merged with Indetix Incorporated. the biggest supplier of biometric technology. in June 26.
2002. and bare the name oflndentix.
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know if the deterioration of recognition results differs in the different factors on the

same degradation of image quality.
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Chapter 4. Experiments

The classifier used to classify the images here is Facelt [14]. Due to the time-consuming

nature of our experiment, we did not utilize other algorithms although same processes

can be applied. Images were taken concurrently by the near and the far camera for

targets under designated environments. Thus for each property, there are two sets of

images having exact context taken by each camera. There are 256 people and four

possible poses for each person. We categorize the weather (environment) into three

types according to the sky condition: clear, partly cloudy, and mostly cloudy. For each

weather condition, data are collected at 243, 137,72 time period respectively. The

specification of these four parameters defines the properties of a certain probe.

The face images collected are then fed to the face recognition algorithm. Since

the correct classification should have the rank be one and wrong classification can

produce rank as large as 256, obviously by taking the rank as it is to compute the

Gaussian distribution for each probe can be biased by a small number of seriously

wrong classifications. We use a clamped average to compute the Gaussian distribution:

ranks over certain number r are all treated as r. This way the distribution is more likely

to show on a whole how sensors really perform. The definition of Central Limit

Theorem says when the number of means go infinite, the distribution will approach

Gaussian. While we are not able to reach this criterion. different probe sizes might show

how our experiments do.
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To form the Gaussian distribution for each probe, we have to divide the member of

the probes into subgroups and decide the mean for each subgroup. The members of a

probe are assigned a subgroup according to their position in the probe. That is, image e,

belongs to li/nJ, where n is the sampling size, or the size of the subgroups in a probe. In

our setting, the sizes of all probe sets, probes, and subgroups in a particular trial in an

experiment are all fixed. By having different trials we get investigate the influences of

the sampling sizes in addition to the hypothesis of that experiment. The constraint for

the property (of the probe), however, is the same throughout the experiment. We define

the syntax G(x, y, z) to be that the Gaussian distribution for each probe set is of size x

(that it consists of x probes), and each probe consists of y subgroups where each

subgroup is a data set of size z, the sampling size. Images are collected from October

2002 through April 2003.

The Influence of Image Quality on Different Targets

In this experiment we wish to investigate the how sensor's performance can affect

recognition results by looking into the degradation of successful classifications on

individual targets. Let the probe set of some camera be P, p = {P"P2"oo,P
1

f'!} where IPI = 11

is the number of different targets. which in here is 256. in P. The elements in each P,

consist of images from a particular person. No constraint was put on the pose of that

person or the time the images were taken. Images are all taken, however. under clear

sky. The person in each P, is exclusiye in the probe set. Thus the property for some
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probe p, in P here would be (T', W', E', 0') where T'=DT', W'=Clear, E '= person" and

o '=DO '. The Gaussian distribution from P, designates the algorithm's performance on

this person under clear weather. By simply comparing the Gaussian distributions from

Pji and PnI' we get to know how the sensor's quality can affect the recognition result on

this particular person. The result in Fig 3 shows the percentage of the targets having

better classification results in each camera. Each data point in the graph is the average

of ten different probes under the same constraint but independent. Further examining

the raw data we found that the targets that the algorithms perform better on the far

camera are consistent. That is, some targets are more suitable for recognition when the

image qualities are less ideal. In the different formations, which are all of data size (total

number of images in one probe) 1500, around 65% of the classes possess significantly

different empirical distribution of classification results on the two corresponding probes.

This result initially verified the assumption that the difference in image quality can lead

to significant difference in recognition results. While the 7% of the results that the far

camera have a better recognition results suggests the possible validity of the previous

mention effect that some targets are better recognized in blurred images. Different

grouping does not affect the proportion of the result as long as the formation is in

reasonable range.

To view the changes in recognition results In a more general tenn. we use the

method described in the previous section. Face images from different persons can be

viewed as some basic feature being skewed to different degree and tension. The
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difference in the Gaussian distributions for PI and Pn will show to what degree a less-

sharp image will deteriorate the ability of the algorithm to identify blurred features. Fig

2 shows the p-value of some targets with different formation. Each target has a stable p-

value throughout different formation, which may indicate some targets tend to be less

sensitive to the change in image quality on classification. There is no evident relation

between the means and variances of the ranks of these targets. The total data size is still

1500. The central limit theorem starts to have a good approximation at sample size

around 30. We did not show the result of PI and Pn in graphs because all formation has

a p-value ofless than 0.0001.
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Fig 1. The avcrage percentage of targets' performance relative to diffcrent group sizes.
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By using different person as. the unit for forming distributions, not only do we increase

the database by incorporating the different pose and time and past variance test, but also

get to further investigate the importance of image quality on individual class defined by

different targets. The sum of these individual target distributions results in the empirical

distribution of the algorithms' performance in a more general perspective on various

targets and, if the database is comprehensive enough, possibly the class of human faces

on this camera. All formations of the distributions reject the null hypothesis of the two

distributions being identical. From this graph we show that the ability of the sensor can

affect the recognition rates to a discernable degree even if the difference is not

identifiable by human. Any experiments undergo sensor change should take the effect

of the sensor quality into consideration before blindly apply target experiments to

ensure the consistency of the results.
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.. - --:"-"':""'l"-_.)\_~'._'''''-.... I
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Fig 2. The two-tailed p-value of some targets in different fonnation of probes.
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The Sensitivity of Target's Pose to Image Quality Change Using different poses as

the base of individual distributions clarifies the algorithms' ability in recognizing

different departure from fully frontal images. Each distribution from a particular pose of

the target not only demonstrate the algorithms' ability in recognizing this class of

images on that particular camera, but by comparing the corresponding distribution on

different camera we also get to know how sensitive this particular gesture react to image

quality change. Although this property may be algorithm-specific, this potential

discrepancy between classes should be general, with difference only in the quantitative

aspect, and similar techniques can be applied to other algorithms as well. This

experiment has a similar setting as that in the previous experiment. The difference

would be the constrained being the poses instead of target (person). Thus the property

for some probe P, in P here would be (T',W',E',O') where T'=DT', W'=Clear, E'=DE',

and 0'= pose,. Due to that the data collected only consist of four poses, instead of only

having four elements in the probe set P, we can view the definition of probe set as

P={PI ,PI "",PI ,P2 ,P2 "",P2 "",P4 ,P4 ,,,,,P4 } where 11 can be an arbitrarily chosen
I 2 • 1 2 • I 2 •

number so long as it can be used to justify the statistics needed, and that Pk, and Pk,'

i '* j , are independent elements of kth pose. This formation is not mandatory and is

used to increase the data in each probe set to make it stable?? The different poses

impose tilted or missing feature. or features viewed from different angle for the

recognition algorithm. The comparison of P
f

and Pn then show the algorithm's

robustness to blurred nrsion of these already-Iess-infonllatiye features. By summing all
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the poses together the distribution is able to represent the performance of the classifier

with respect to all possible departure from frontal images on that particular sensor if the

database used is general enough.
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Fig 3. The two-tailed p-value for the distributions of different probes and the probe set.

Fig4 shows the model for each pose. Fig5 shows the two-tailed p-value from the test

statistics for distributions of the four different poses and the overall distribution over

different fomlation, where the dash line indicate the 95% confidence level. The increase

of p-value actually indicates the decrease of significance level. The p values vary with

different poses, which indicated the different degree of impact the image quality has to

different poses. While the increase in sample size should improve the approximation of

the nomlal distribution and reduce the variation of the means, the effect that the t value

of less degree of freedom has larger p-value overthrow the improvement in
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approximation since overall data size has to remain constant. As can be seen some

poses tends to be more sensitive to the change in pose, which might be explained by

that these poses have more available features for classification and the deterioration of

these feature worsen the the overall result, however, the near camera performs better in

all poses and are all above the significance level of 99% which indicates a significant

impact on the difference of quality on classification results. This consistency may

shows that grouping by poses rather than target can eliminate the potential difference

Exploration in Temporal effect

In this experiment the constrained tuple is the time the image is taken. Unlike previous

experiments, which deal with the recognition under different treatment of features, that

group data different definition of possible classes, grouping by the time the images are

taken is dealing with a more general expression of the environment. If the visibility, the

atmosphere, even the temperature and all other environmental condition are the same,

recognition results of images taken at different time should be distributed around the

point decided by other specifics of the images. While the distributions of the pixels of

the images should be normal. the pattem of the ranks resulting from this pixel level

difference is less obvious. But we can, however, assume the results of the comparison

of different sets of data under the same enviromnent defined previously to be quite

similar. But this is highly unlikely the case since the environment can't be reproduced

40



so the context the image is taken can never be identical. The comparisons of the two

sensors then tell us how different the two sensors would react to this environmental

factor, which might be affected by the different response curve of the cameras. In

actual image taking processes, we may record some of the environment fact like the sky

condition, wind speed, visibility ... etc. We restrain the condition of the sky to be clear

to see how the comparison results can vary under this loose definition of similar

environment. The property for some probe P, in P here would be (T',W',E',O') where

T'=time
"

W'=Clear, E'=DE', and O'=DO',

While the p-value of a comparison at a particular time period indicates the

performance of the two cameras under that environment, the distribution of the probe

set, the summation of the probes, can still demonstrate the overall performance of that

camera by smoothing out the temporal effect. Fig 6 shows two set of probes that

following relation: l~'a =l~'b' ea =eb' 0 a =0b' and ta :;: tb for all p, and PJ that i '* j . The

time constraint for the probes is that it consists of a single element in T, that is, each

probe consists of images from a particular time period. We do not call this set of probes

as probes sets because it does not fulfill the constraint of a probe set that the probes of a

probe set should be independent. The reason for selecting such particular image

collection and observe its behavior over time is to make sure the variation of the p-value

is not due to the difference in selecting the member of a probe. The results containing

the probes of a probe set is also shO\\11 in this graph. The graph suggests that during
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certain time periods, the p-value does tend to be larger, which makes the difference

between the performances of the two probes insignificant. This variation in the p-value

under clear sky indicates that although all under clear sky conditions, the environmental

variation is still too big to ignore. The probe sets under different formation as in

previous section all have a p-value of over 99.9 which indicates the significant

performance difference in the two cameras. This result suggests that the data for sensor

evaluation should still be collected overtime to smooth out temporal effect and get a

more justified result.
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Fig 4. The variation of the two-tailed p-value over time on difference selection of image

sets.

"'cather effect on the classification
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In this experiment we are to investigate if the weather effect can affect the classification

to a discemable degree. Unlike previous experiments, which compare the performances

of different cameras under similar conditions, we compare equally representative probe

sets from the same camera under different weather conditions. As suggested in the

previous experiments, data should be collect overtime under similar condition to avoid

inconsistent result from temporal effects. We divide the sky overcast conditions roughly

into clear, partly cloudy, and mostly cloudy to allow enough data to be collected. The

formation of the distributions would use pose as the unit for distributions since the

poses appear to be more stable/consistent in the distributions in the probe levels, despite

that in the probe set level all formation can discriminate the performances of different

cameras in significant level. We conduct the comparison on both cameras.
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Fig 5. The two-tailed p-value for distributions based on poses under different weather.

43



While the differences between the distributions from clear sky to overcastted skies

from both cameras are all significant, the impact of this weather factor appears to be

more apparent on the near camera. Although might be obvious in the figure, the

difference of the p-values between sky conditions of both cameras are to the degree of

three xxx. The disparity between mostly cloudy sky and partly cloudy sky is

insignificant in all poses and overall.

Different definition of Clamped Average

We examine the clamped average using different threshold. Although clamped

average should be consistent despite the different formation/threshold, we will

investigate to what degree the clamped average will be affect by the settings. Fig 3

shows the clamped average of a threshold ofl, 5, and 10. For experiment having

threshold being one, the correct classification will receive a score of zero and all

others being one. While for threshold being five and ten, the correct classification

will have a rank of one, the classification having rank of less than five/ten \vill keep

the original rank, while the results being larger than five/ten will be treated as

five/ten.
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The result in fig 8 shows consistency throughout the different threshold

given. And the tendency of the p-value of different poses also tend to be consistent.

That is, in certain pose the p-value tends to be higher despite the threshold used.
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Chapter 5. Conclusion

In this paper, we present a methodology for investigating the potential difference of

recognition results due to the difference in sensors' performances. This is done by using

central limit theorem to force the distributions of the defined measurements of the

goodness of recognitions into normal for statistical methods to apply. Further

investigation of the parameters that can identify each image in the testing set also

reveals how various factors can affect distributions. Despite some inconsistent results in

the distributions composed of images having certain specifics in common, the overall

distributions composed of a more general set of data shows that there is a significant

difference in the recognition results from different sensors. Thus additional care should

be taken when sensor change is unavoidable during an experiment to avoid inconsistent

results.
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