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Abstract

We present a robust optimization approach with multiple ranges and chance constraints.

The first part of the dissertation focuses on the case when the uncertainty in each objective

coefficient is described using multiple ranges. This setting arises when the uncertain coefficients,

such as cash flows, depend on an underlying random variable, such as the effectiveness of a new

drug. Traditional one-range robust optimization would require wide ranges and lead to conservative

results. In our approach, the decision-maker limits the numbers of coefficients that fall within each

range and that deviate from the nominal value of their range.

We show how to develop tractable reformulations to this mixed-integer problem and apply our

approach to a R&D project selection problem. Furthermore, we develop a robust ranking heuristic,

where the manager ranks projects according to densities (ratio of cash flows to development costs)

or Net Present Values. While both heuristics perform well in experiments, the NPV-based heuristic

performs better; in particular, it finds the optimal solution more often.

We show the how to use multi-range robust optimization approach to have a robust project

selection problem. While this approach can imitate the stochastic optimization’s scenario settings,

our problem is significantly faster than stochastic optimization, since we do not have the burden

of having many scenarios. We also develop a robust approach to price optimization in presence of

other retailers.

The last part of the dissertation connects robust optimization with chance constraints and shows

that the Bernstein approximation of robust binary optimization problems leads to robust counter-

parts of the same structure as the deterministic models, but with modified objective coefficients that

depend on a single new parameter introduced in the approximation.

1



Chapter 1

Literature Review

This chapter describes the traditional models of optimization under uncertainty, provides definitions

for robust optimization, and discusses recent advances in the robust optimization literature.

1.1 Traditional Models of Optimization under Uncertainty

1.1.1 Stochastic Programming

Information in real-life applications is often revealed in stages, forcing the manager to make deci-

sions with only limited knowledge of the data, and to adjust his strategy as he observes the real-

ization of random parameters such as customer demand over time. Dantzig [35] first investigated

decision-making under uncertainty in the 1950s, pioneering the field now known as Stochastic Pro-

gramming (SP). This methodology assumes that parameters are random but obey a known discrete

distribution and that the decision-maker minimizes (or maximizes) the expected objective value over

the possible scenarios. The most frequent setup has two stages, with two groups of decision vari-

ables: here-and-now (or first-stage) variables, which represent decisions made before the manager

can observe the resolution of the uncertainty, and wait-and-see (or second-stage) variables, which

represent recourse actions. The SP problem is linear but of potentially very large size, motivating the

use of structure-specific solution methods. The structure here is that the constraints either connect

2



1.1. TRADITIONAL MODELS OF OPTIMIZATION UNDER UNCERTAINTY

first-stage decision variables with each other, or first-stage decision variables with second-stage

decision variables for a specific scenario, but never second-stage decision variables for different

scenarios. Such a structure is said to be L-shaped because of the position of the non-zero elements

in the coefficient matrix. The second-stage problem, formulated for given first-stage variables, is

called the recourse problem. It can be shown to be convex and piecewise linear. The main algorithm

used to solve this problem relies on generating pieces of the recourse function as needed, which can

be interpreted as a delayed constraint generation algorithm. The reader is referred to Birge and

Louveaux [29], Kall and Wallace [43], Prékopa [58], and Ruszczyński and Shapiro [59] and the

references therein for a wide-ranging treatment of SP.

If recourse decisions are required to be integer (which is called SP with integer recourse), the

integrality constraints increase the complexity of the second-stage problem significantly and the

master problem becomes very hard to solve. Stochastic integer programs (where some variables are

forced to be integer, in the first and/or second stages) are computationally intractable. Algorithms

used to solve these problems include variants of the L-shaped method based on Benders decom-

position (Laporte and Louveaux [48], Carøe and Tind [30]), branch-and-cut (Sen and Sherali [62],

Ntaimo and Sen [55]) and branch-and-bound (Ahmed et. al. [2]), among others.

Drawbacks. Under the assumption that the stochastic parameters are independently distributed,

Dyer and Stougie [38] show that the two-stage SP problems are NP-hard. Furthermore, the number

of scenarios grows exponentially with the number of parameters when the latter are independent,

creating tractability issues. (For instance, a retailer considering fifteen independent products with

demand for each taking three possible values would need to generate over fourteen million scenar-

ios.) Moreover, it is often difficult to estimate probability distributions accurately. Even when the

distributions of random parameters for past time periods can be estimated with a high degree of pre-

cision using historical data, these distributions might differ from future ones in unpredictable ways

due to changing conditions. The difficulties faced by two-stage stochastic programming are com-

pounded in the multistage case, where multiple piecewise linear recourse functions, corresponding

to different time periods, need to be approximated by generating linear pieces as needed. Shapiro

3



1.1. TRADITIONAL MODELS OF OPTIMIZATION UNDER UNCERTAINTY

and Nemirovski [65] provides an in-depth discussion of the complexity of two-stage and multistage

SP problems, and argues that multistage SP problems are, in general, intractable.

1.1.2 Dynamic Programming

Dynamic Programming (DP) deals with multi-stage decision-making. The key idea is that the man-

ager behaves optimally at all time periods, which reduces the number of strategies to be considered.

This is formulated in mathematical terms through a system of recursive equations known as the

Bellman equations:

Vt(St) = min
xt∈Xt

{Ct(St, xt) + E{Vt+1(St+1|St, xt)}} ∀St ∈ St, (1.1)

where Vt(St) is the optimal value (cost-to-go function) associated with being in state St in stage t

and St+1 is the state at the next time period. St is the space of possible states at time t. Intuitively,

the equations state that the manager will follow the optimal strategy from time t+ 1 onward, so that

the problem at time t reduces to minimizing the current costs plus the optimal costs incurred from

the next time period up to the end of the time horizon.

Solving Problem (1.1) requires the investigation of structural properties of the value functions

to guarantee global optimality. DP is most insightful when the optimal policy can be proved to have

a certain structure and the decision-maker only has to compute the parameters defining that policy

(for instance, basestock levels in dynamic inventory management under uncertainty, see Bertsekas

[13]). It is important to note that DP leads to optimal policies, rather than optimal numbers, so

that the decision-maker does not need to resolve his problem as time progresses and uncertainty is

revealed: he simply implements the pre-computed policy that corresponds to the state and the time

period he is in. Because DP relies on the fact that the decision-maker will act on new information at

the next stage, it is sometimes called closed-loop optimization (new observations are incorporated

in a feedback loop), in contrast with open-loop optimization, which generates numbers rather than

4



1.2. POSSIBLE DEFINITIONS FOR ROBUST OPTIMIZATION

policies and where the problem needs to be re-solved at each time period to capture new informa-

tion. (An advantage of open-loop optimization is that it is much less computationally demanding.)

Readers may refer to Bertsekas [13] and Powell [57] for detailed treatments of DP.

Drawbacks. Value functions need to be stored for each time period and each possible state at that

time period, creating severe dimensionality challenges as the size of the state space and/or the time

horizon increases. This is known as the “curse of dimensionality”, which makes DP impractical

in many applications. Approximate Dynamic Programming attempts to overcome these shortcom-

ings (Powell [57] and Bertsekas [14]) but remains hard to implement. In addition, as for stochastic

programming, it can be difficult to estimate the underlying probability distributions accurately.

In summary, there are two main issues with the traditional methods of dynamic decision-making

under uncertainty:

i. Probability distributions are difficult to estimate accurately,

ii. Dimensionality issues arise even when the distributions of the random parameters are exactly

known.

We will see in subsequent parts of this article how robust optimization can address these issues.

1.2 Possible Definitions for Robust Optimization

Robust Optimization (RO) is another method that addresses data uncertainty. Unlike SP and DP, RO

models uncertainty assuming that uncertain parameters belong to a bounded, convex uncertainty set.

While SP minimizes expected cost (or maximize expected revenue), RO is a worst-case analysis

and minimizes the maximum value of the objective over the uncertainty set. This approach was

pioneered by Soyster [66] in the 1970s, although he did not call it “robust optimization” at the

time. He assumed that each uncertain parameter took values in an uncertainty interval and proposed

an optimization model to generate feasible solutions for the worst case. Because the model led

to each parameter being equal to its worst-case value, it was thought to be too conservative for
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1.2. POSSIBLE DEFINITIONS FOR ROBUST OPTIMIZATION

implementation in business; however, the issue of solution feasibility has remained an important

topic of research, which saw critical advances in the 1990s.

1.2.1 Scenario-Based Robust Optimization

The expression “robust optimization” became popular in the mid-1990s, when Mulvey et al. [53]

proposed a scenario-based description of the problem data and penalized the variance of the op-

timal solution for any realization of the scenarios, given a certain level of risk expressed by the

decision-maker. This approach does not match Soyster’s and is not in line with later uses of the

expression “robust optimization”, which will be described below. We mention it here because of its

relation to stochastic programming as well as to avoid confusion for the reader familiar with [53]

and subsequent approaches called robust optimization.

Consider the LP optimization model:

min
x∈Rn

1 ,y∈Rn
2

cTx+ dT y

s.t. Ax = b,

Fx+Gy = h,

x, y ≥ 0.

(1.2)

Let Ω = (1, 2, ..., S) be the set of scenarios with ps probability of scenario s, where each scenario

s ∈ Ω is associated with the vector (ds, Fs, Gs, hs) of realizations for the uncertain coefficients. ys

is the second-stage control vector for scenario s ∈ Ω; also, we introduce a new vector zs, which

measures the extent of the constraint infeasibility under data scenario s. The objective function

ξ = cTx + dT y becomes a random variable that takes values ξs = cTx + dtsys with probability ps

for s ∈ Ω.

The robust counterpart of Problem (1.2) using the Mulvey-Vanderbei-Zenios framework can

6



1.2. POSSIBLE DEFINITIONS FOR ROBUST OPTIMIZATION

then be formulated as:

min σ(x, y1, ..., ys) + ω · ρ(z1, ..., zs)

s.t. Ax = b,

Fsx+Gsys + zs = hs,∀s ∈ Ω

x, ys ≥ 0 ∀s ∈ Ω.

(1.3)

ρ(z1, . . . , zs) term in the objective function is a feasibility penalty function and σ(x, y1, . . . , ys)

is the optimality robustness term. (The scalar ω captures the decision-maker’s tradeoff between the

two goals of feasibility and optimality.) If the solution is “close” to the optimal for any realization

of the scenario s ∈ Ω, then it is referred to as “solution-robust”. If it remains “almost” feasible

for any scenario realization, then it is referred to as “model-robust”. The authors suggest possible

functions in [53] to help users define solution-robustness and model-robustness. For instance, for

moderate- to high-risk decisions under uncertainty, they advocate the use of the average objective

plus a constant (λ) times its variance as an appropriate solution-robustness term:

σ(x, y1, ..., ys) =
∑
s∈S

psξs + λ ·
∑
s∈S

ps

(
ξs −

∑
s′∈S

ps′ξs′

)2

An example of feasibility penalty function is:

ρ(z1, ..., zs) =
∑
s∈S

ps z
T
s zs

where both positive and negative violations of the control constraints are penalized equally.

In [53], the authors apply this technique to applications such as power capacity expansion,

matrix balancing and image reconstruction, air-force airline scheduling, scenario immunization for

financial planning, and minimum-weight structural design. Other applications include capacity

expansion of telecommunication networks (Laguna [47]), a more in-depth look at power capacity

expansion (Malcolm and Zenios [50]) and the portfolio management of callable bonds (Vassiadou-

Zeniou and Zenios [70]).

Drawbacks. This approach to robust optimization changes the structure of the deterministic model;

7
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the robust model is no longer linear. In addition, it suffers from the same dimensionality issues

encountered in stochastic programming.

1.2.2 Set-Based Robust Optimization

Robust optimization addresses data uncertainty by assuming that uncertain parameters belong to

a bounded, convex uncertainty set and maximizing the minimum value of the objective over that

uncertainty set, while ensuring feasibility for the worst-case value of the constraints. Soyster’s

model [66] required that each uncertain parameter be equal to its worst-case value, and thus was

deemed too conservative for practical implementation. In the mid-1990s, Ben-Tal and Nemirovski

([9], [10], [11]), El-Ghaoui and Lebret [40] and El-Ghaoui et al. [41] focus w.l.o.g. on uncertainty

in the constraints of mathematical programming problems and define robust solutions as solutions

that are feasible for the worst-case value of the parameters within an uncertainty set. They use

ellipsoidal uncertainty sets and propose a tractable mathematical reformulation that turned linear

programming problems into second-order cone problems, while reducing the conservatism of Soys-

ter’s [66] approach. Furthermore, Ben-Tal and Nemirovski [12] study robust optimization applied

to conic quadratic and semidefinite programming. The reader is referred to Ben-Tal et. al. [6] for

an overview of robust optimization, with an emphasis on ellipsoidal sets. One drawback of that

framework is that it increases the complexity of the nominal problem.

Bertsimas and Sim [23, 24] and Bertsimas et al. [20] investigated in the early 2000s the special

case where the uncertainty set is a polyhedron. Specifically, the uncertainty set consists in range

forecasts (confidence intervals) for each parameter and a constraint called a budget-of-uncertainty

constraint, which limits the number of coefficients that can take their worst-case value. The ap-

proach preserves the degree of complexity of the problem (the robust counterpart of a linear prob-

lem is linear) and allows the decision-maker to control the degree of conservatism of the solution.

Bertsimas and Sim [24] also provide a probabilistic guarantee of constraint violation. A drawback

of the approach is that it adds auxiliary variables and constraints to the initial formulation. Bertsi-

mas and Thiele [26] surveys the robust optimization literature up to 2006, especially for polyhedral

8
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uncertainty sets.

Let c be the objective coefficient vector of size n. The general model we consider is:

max c′x

s.t. x ∈ X ,
(1.4)

where X is the constraint set of x, which may include integrality constraints. We further assume

that all decision variables are non-negative, which is a natural assumption to make in the context

of operations management, where decision variables represent for instance ordering quantities or

amounts transported; this assumption is particularly justified in the project management application

described in Section 3.2, where decision variables are binary.

We consider the case where the vector c is uncertain, which will correspond to uncertain project

cash flows in Section 3.2. We can apply the traditional one-range robust optimization approach that

Bertsimas and Sim developed in [20], [24] to the uncertain parameter c. Specifically, we model ci,

i = 1, . . . , n, as an uncertain parameter in the interval [ci − ĉi, ci + ĉi]. (Note that, since decision

variables are non-negative, the worst case will always be achieved at the low end of the range;

therefore, knowledge of the high end of the range is not required to implement the approach and

the confidence interval does not have to be symmetric.) Define the scaled deviation yi such that

ci = c̄i + ĉi yi for all i. In line with Bertsimas and Sim [24], the scaled deviations are assumed to

belong to the polyhedral uncertainty set:

P = {y|
n∑
i=1

|yi| ≤ Γ, |yi| ≤ 1, ∀i}.

The parameter Γ ∈ [0, n] is the budget of uncertainty which specifies the maximum number of

coefficients that can deviate from their nominal values.

• If Γ = 0, the only feasible element in P is the zero vector, so that the problem reduces to its

deterministic counterpart.

• If Γ = n, each uncertain parameter takes its worst case value.

9
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• Taking a value of Γ between 0 and n allows the decision-maker to achieve a trade-off be-

tween the nominal performance of the deterministic model and the risk protection of the most

conservative model.

While the setup above assumes that the project cash flows are independent, it is straightforward to

extend the approach to the case where cash flows are correlated by using the multi-factor model

described in Bertsimas and Sim [24]. This extension is left to the reader.

The robust problem becomes:

max min
n∑
i=1

(c̄i + ĉi yi)xi

s.t. y ∈ P

s.t. x ∈ X .

(1.5)

Theorem 1.1 (One-range robust optimization (Bertsimas and Sim [24])) The robust counterpart

of Problem (5.1) is:

max

n∑
i=1

c̄i xi − Γz0 −
n∑
i=1

zi

s.t. x ∈ X

zi + z0 ≥ ĉi xi, ∀i,

zi, z0 ≥ 0 ∀i.

(1.6)

Proof. This is a direct application of Bertsimas and Sim [24] to Problem (1.5) after injecting the

fact that the worst case is always achieved for yi ≤ 0 for all i and that the decision vector x is

non-negative.

Those early works spearheaded significant research efforts on the theory and practice of robust

optimization. Bertsimas and Brown [15] provide a methodology to construct uncertainty sets within

the framework of robust optimization, using the decision-maker’s risk preferences expressed by a

coherent risk measure. RO has been applied to inventory management (Bertsimas and Thiele [27],

Bienstock and Ozbay [28]), revenue management (Adida and Perakis [1]), portfolio management
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(Bertsimas and Pachamanova [19], Kawas and Thiele [44]), telecommunications (Ye and Ordóñez

[71]), among others. Notice that, while RO was initially developed to address data ambiguity (i.e.,

uncertain parameters whose value was unknown but constant), the methodology was subsequently

applied to random variables with uncertain distributions; in the early 2000s, Bertsimas and Thiele

[27] was the first work to model random variables as uncertain parameters and apply robust opti-

mization to the deterministic problem. In the context of multi-stage decision-making, this leads to

open-loop problems. A drawback is that these problems had to be reoptimized at each time period,

as a necessary tradeoff to achieve tractable formulations.

In addition, if the knowledge of the probability distributions driving the random variables is

imprecise, but the manager knows that the distribution belongs to a family of distributions, then it is

possible to implement a robust optimization approach to the uncertain probability density functions

themselves. The manager optimizes his objective over the worst-case value of the probabilities.

This is referred to in the literature as the minimax or min-max approach (rather than robust opti-

mization); see Dupacova [36], Shapiro and Kleywegt [64] and Shapiro [63]. Thiele [68] applies the

robust optimization approach using polyhedral uncertainty sets to stochastic optimization problems

and provides theoretical insights into the solution. Unfortunately, the RO approach to stochastic

programming is only as tractable as the underlying SP problem for the nominal probabilities.

Goh and Sim [42] suggests tractable approximations to distributionally robust optimization us-

ing piecewise-linear decision rules. Ben-Tal et al. [4] proposes a framework for robust optimization

that extends the standard notion of robustness by allowing the decision-maker to vary the protec-

tion level across the uncertainty set. This captures the fact that at least some partial probabilistic

description of the world is available in many applications such as finance. The approach in [4] al-

lows for different performance guarantees for different subsets within P , where P represents the set

of possible underlying probability measures for the random variables. For instance, performance

guarantees of a portfolio can then be linked in a smooth way to the performance of the market as

a whole. The authors call this new approach the soft robust approach and show that it preserves

convexity properties of the nominal problem.

11



1.3. ROBUST DYNAMIC OPTIMIZATION

Dimensionality issues explain why researchers have focused on the alternative view of RO,

which incorporates uncertainty to the deterministic formulation of the problem, instead of consid-

ering a stochastic description of uncertainty. While the tractability of the RO approach is appealing,

the limitations of open-loop policies have incited researchers to investigate dynamics models in ro-

bust optimization in more depth. Of particular interest has been the development and analysis of

decision rules with a specific structure, which are described in the following section.

1.3 Robust Dynamic Optimization

1.3.1 Linear Decision Rules and Adjustable Optimization

Ben-Tal et al. [8] extend the scope of RO by introducing the Adjustable RO methodology. Consider

the uncertain linear programming problem:

{
min
x

{
cTx : Ax ≤ b

}}
ζ≡[A,b,c]∈Z

(1.7)

where ζ ≡ [A, b, c] lies in the uncertainty set Z ⊂ Rn × Rm×n × Rm a nonempty compact convex

set. (This section uses the same notation as [8].)

The Robust Counterpart (RC) of the uncertain problem (1.7) is defined as:

min
x

{
sup

ζ≡[A,b,c]∈Z
(cTx) : Ax− b ≤ 0 ∀ζ ≡ [A, b, c] ∈ Z

}

In the traditional RO approach, all the variables represent “here-and-now” decisions, so that the

optimal solution x must be chosen to optimize the worst-case objective over all possible values of

ζ in Z . Ben-Tal et al. [8] suggest to incorporate “wait-and-see” decisions, that is, decisions that

are taken after the uncertainty is realized. In the RO terminology, the variables that correspond

to recourse action are called adjustable, while the others are called non-adjustable. The vector x

in (1.7) is partitioned according to non-adjustable (u) and adjustable (v) variables such that x =

(uT , vT )T and Problem (1.7) becomes:

12
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min
(s,u),v

s : cT

 u

v

 ≤ s, Uu+ V v ≤ b


[U,V,b,c]∈Z

where (s, u) represents the non-adjustable part of the solution. The uncertain LP (1.7) problem can

be rewritten w.l.o.g. (after redefining parameters appropriately) as:

LPZ =

{
min
u,v

cTu : Uu+ V v ≤ b
}

[U,V,b]∈Z
(1.8)

The matrix V is called the recourse matrix. When V is not subject to uncertainty, Problem (1.8) is

a fixed recourse LP.

Definition 1.1 The Adjustable Robust Counterpart (ARC) of the uncertain LP problem LPZ is

defined as:

ARC : min
u

{
cTu : ∀ζ = [U, V, b] ∈ Z ∃v : Uu+ V v ≤ b

}
. (1.9)

ARC has a larger robust feasible set and hence is more flexible and less conservative than the

robust counterpart (RC). On the other hand, it is a semi-infinite LP problem; it suffers from compu-

tational tractability issues and is NP-hard even for simple uncertainty sets. As a remedy, the authors

introduce the Affinely Adjustable Robust Counterpart (AARC) of an uncertain LP by restricting the

adjustable variables to be affine functions of the corresponding data. In other words, v is forced to

be of the form:

v = w +Wζ

for some w, W parameters to be determined.

13
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Definition 1.2 The Affinely Adjustable Robust Counterpart (AARC) of (1.8) is defined as the opti-

mization problem:

min
u,w,W

{
cTu : Uu+ V (w +Wζ) ≤ b ∀ζ = [U, V, b] ∈ Z

}
. (1.10)

Ben-Tal et al. [8] shows that if the uncertainty set Z in a fixed recourse problem LPZ is compu-

tationally tractable (in the sense that a tractable separation oracle exists), the AARC is also computa-

tionally tractable, that is, polynomially solvable. When the uncertainty set is also “well-structured”

(i.e., given by a list of linear matrix inequalities such as polyhedral, conic quadratic or semidefinite

representations), then the corresponding AARC is also “well-structured” and thus can be solved by

linear or semidefinite programming techniques. On the other hand, if the recourse matrix V is sub-

ject to uncertainty, the AARC ofLPZ can become computationally intractable. [8] shows that in that

case, AARC has a tight computationally tractable approximation (which is an explicit semidefinite

programming problem). Ben-Tal et al. [7] apply the AARC heuristic to two-echelon multiperiod

supply chain problem (specifically, a retailer-supplier flexible commitment (RSFC) problem) and

derive a single deterministic convex optimization problem that is either a linear or a conic-quadratic

problem.

Ordóñez and Zhao [56] identify the conditions on the uncertainty set that would lead to a

tractable ARC approach in the case of a robust capacity expansion problem for network flows.

They consider the classic network flow problem with additional decision variables representing arc

capacity expansions. The capacity expansion problem can be written as:

zD(b, c) = min
x,y

cTx

s.t. Nx = b

x ≤ u+ y

dT y ≤ q

x, y ≥ 0,

(1.11)
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where c ∈ Rm are the transportation cost coefficients, x ∈ Rm are the arc flow variables and

y ∈ Rm are the decision variables representing the new arc capacities. N ∈ Rn×m is the node-arc

incidence matrix, initial arc capacities are given by u ∈ Rm and the demand-supply vector is given

by b ∈ Rn. Expanding the capacity of arc i costs di where q is the total budget for investment. The

demand b and the travel times c belong to closed, convex and bounded uncertainty sets Ub and Uc

respectively. It is assumed that the y variables are determined prior to the realization of the uncertain

data (b, c) and the flow variables x will adapt to the realized data. Then the ARC of robust capacity

expansion problem (RCEP) is defined as:

zARC = min
y,γ

γ

s.t. dT y ≤ q

y ≥ 0

∀c ∈ Uc, b ∈ Ub ∃x :


Nx = b

0 ≤ x ≤ u+ y

cTx ≤ γ.

Ordóñez and Zhao [56] presents three cases (problem with fixed demand, single commodity problem

with uncertain demand and multicommodity problem with uncertain demand), where the RCEP is

formulated as a conic problem and solved by interior point methods in polynomial time.

Shapiro and Nemirovski [65] states that the main reason for using linear decision rules is their

tractability but linear decision rules are rarely optimal. In other words, there is no guarantee that

the true optimal solution is close to the one given by the linear decision rule and the optimality gap

is not known. Linear decision rules may perform poorly or even lead to infeasible instances even

in the case of complete recourse. Chen et al. [32] gives the following example: suppose that the

support of z̃ isW = {−∞,∞}. Then the nonnegativity constraint on:

w(z̃) = w0 +

N∑
k=1

wk z̃k
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implies that

wk = 0 ∀k ∈ {1, ..., N},

and the decision rule reduces to w(z̃) = w0, which is independent of the underlying uncertainty and

may lead to infeasibility.

Ben-Tal et al. [5] extends the AARC approach by relaxing the “uncertain-but-bounded” as-

sumption of RO that characterizes the uncertain parameters. Requiring that all realizations of the

uncertain data lie in the uncertainty set may be pessimistic (leading to overly large sets) or infea-

sible if the random variables have unbounded support. The approach in [5] exhibits controlled

performance degradation for “large deviations” in the uncertain data. Assume that the uncertainty

set Z represents the typical range for the uncertain data. When ζ ∈ Z , the solution must satisfy

the constraints of the problem. When the data ζ falls outside the uncertainty set Z , the violation of

the constraints should not exceed a prescribed multiple of the deviation of the data from its normal

range. These multiples serve as “global sensitivities” of the constraints. Ben-Tal et al. [5] calls this

extension of AARC the Comprehensive Robust Counterpart of uncertain linear problems.

1.3.2 Piecewise Constant Rules and Adaptive Optimization

Bertsimas and Caramanis [16] introduce a variable degree of adaptability, on the grounds that com-

plete adaptability can be too expensive and assuming the exact realization of uncertainty (which

is required to implement AARC above) is overly optimistic. The generic problem Bertsimas and

Caramanis consider is:

min
{
cTx : Ax ≥ b, ∀A ∈ P

}
, (1.12)

where P is a polytope. The re-optimization formulation is given by:

max
A∈P

{
min

{
cTx : Ax ≥ b

}}
. (1.13)
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The authors introduce the concept of k-adaptability (see Problem (1.14)), which is formulated

as a disjunctive optimization problem with infinitely many constraints. The decision-maker selects

k solutions and commits to one solution after uncertainty is revealed; at least one of the k solutions

must be feasible regardless of the realization of the uncertainty.

min max{cTx1, c
Tx2, ..., c

Txk}

s.t. [Ax1 ≥ b or Ax2 ≥ b or ...Axk ≥ b] ∀A ∈ P
. (1.14)

Problem (1.14) is equivalent to the k-partitioning problem (1.15) where the uncertainty set P

has been partitioned into a finite number k of regions: P = P1 ∪P2 ∪ ...∪ Pk. The decision-maker

learns which region of the partition will contain the realization of the uncertainty before he has to

commit to a solution.

min
P=P1 ∪...∪Pk



min max{cTx1, c
Tx2, ..., c

Txk}

s.t. Ax1 ≥ b, ∀A ∈ P1

...

Axk ≥ b, ∀A ∈ Pk


. (1.15)

Problem (1.15) represents an application of finite adaptability to single-stage optimization. For

two-stage optimization as in the ARC model (1.9), the problem becomes:

min
P=P1 ∪...∪Pk



min : cTu

s.t. Uu+Bv1 ≥ b, ∀(U, V ) ∈ P1

...

Uu+Bvk ≥ b, ∀(U, V ) ∈ Pk


. (1.16)

Let VRO, VReOpt, V k
adapt be the optimal objective values of Problems (1.12), (1.13) and (1.15),

respectively. We have:

VRO ≥ V k
adapt ≥ VReOpt.
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Furthermore, with an additional continuity assumption, limk→∞ V
k
adapt = VReOpt. Hence, finite

adaptability bridges the gap between robust optimization (total lack of adjustability, where all de-

cision variables are here-and-now) and re-optimization (total adjustability, where all decision vari-

ables are wait-and-see).

While the k-adaptability problem was formulated above as a disjunctive program, it can also

be formulated as a bilinear optimization program. For k = 2, the bilinear optimization problem

becomes:

min max{cTx1, c
Tx2}

s.t. ui,j [(A
lx1)i − bi] + (1− ui,j)[(Alx2)j − bj ] ≥ 0 ∀1 ≤ i, j ≤ m ∀1 ≤ l ≤ K

0 ≤ ui,j ≤ 1, ∀1 ≤ i, j ≤ m

.

m is the number of rows of the constraint matrix A and K is the number of extreme points

of the uncertainty set P , where P is defined as the convex hull of its extreme points: P =

conv(A1, . . . , AK). Bertsimas and Caramanis [16] proves that obtaining the optimal partition

P = P1 ∪ P2 in 2 − adaptability is NP-hard in general, provides a hierarchy of the levels of

adaptability and proposes a heuristic tractable algorithm.

Bertsimas and Goyal [18, 17] consider two-stage adaptive optimization problems and investigate

the power and limitations of robust solutions and affine policies. In [18], Bertsimas and Goyal show

that the robust optimization approach is a good approximation to solving the corresponding two-

stage mixed integer stochastic optimization problem to optimality. They compare the optimal cost

of the robust problem to the optimal costs of the stochastic problem and the adaptability problem.

If the uncertainty set and the probability distribution over the uncertain set are symmetric, and if

the second-stage variables are continuous variables, the optimal cost of the robust problem is at

most twice the expected cost of the optimal two-stage solution to the stochastic problem. In [17],

Bertsimas and Goyal show that an affine policy is optimal if the uncertainty set u ∈ Rm+ is a convex

combination of m + 1 affinely independent points in Rm+ and this optimality result is almost tight.

They also prove that if the uncertainty set is a polytope, the worst case cost occurs at an extreme
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point of the uncertainty set. On the other hand, for uncertainty sets with m + 2 non-zero extreme

points, the affine policy is suboptimal. Bertsimas and Goyal [17] also give a lower and upper bound

for the performance of an optimal affine policy compared to an optimal fully adaptable two-stage

solution.

1.3.3 Other Approaches

Thiele et al. [69] develop a robust optimization approach for generic two-stage stochastic problems

with uncertainty on the right-hand side. The authors apply a cutting plane algorithm based on

Kelley’s algorithm to the robust linear problem with general recourse and test the methodology on

a multi-item newsvendor problem and production planning example where the demand is uncertain

but must be met.

Chen et al. [31] generalizes the robust linear optimization frameworks of [11] and [24] by in-

troducing a new uncertainty set that captures the asymmetry of the underlying random variables

through the use of new deviation measures (forward and backward deviations). They integrate these

deviation measures to the uncertainty set and obtain solutions to chance-constrained problems. Ap-

plying the linear decision rule of [8], Chen et al. [31] present a tractable robust optimization ap-

proach in order to find less conservative feasible solutions for stochastic programming with chance

constraints. This framework also leads to the computational scalability of multistage stochastic

models. Chen et al. [32] propose a novel framework to approximate multistage stochastic optimiza-

tion by introducing two new piecewise linear decision rules. The first one is called deflected linear

decision rule, which is best-suited for SP problems with semi-complete recourse and provides a

tighter approximation of the original objective function than the linear decision rule. The second

one is called segregated linear decision rule, which is best-suited for SP problems with general

recourse. When combined with the first rule, the segregated linear decision rule exhibits better

performance than both linear and deflected linear decision rules. Under these new piecewise linear

rules, the authors show that the computational tractability of the problems is preserved. Chen and

19



1.3. ROBUST DYNAMIC OPTIMIZATION

Zhang [33] and See and Sim [61] extend the theory of robust optimization to approximate solu-

tions of multistage problems. See and Sim [60] applies these robust optimization approaches to

multi-period inventory control.
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Chapter 2

Positioning and Contributions

2.1 Positioning

The robust optimization approaches we mentioned in the previous chapter assume that the uncertain

parameters belong to a convex uncertainty set; in particular, for the model with polyhedral uncer-

tainty sets, each parameter belongs to a pre-defined confidence interval (range forecast) and can

take any value within that range. While this is valuable in many applications, it has limitations for

random variables with more complex underlying distributions, such as cases where the uncertain

parameters are driven by underlying random variables. For instance, in the case of drug trials, the

potential revenue of a drug will depend on the effectiveness of the active chemical compound being

tested; if the performance of the compound is disappointing, the resulting cash flows will fall in

a low range; if the compound is effective in healing a wide array of patients, cash flows will fall

in a high range. Trying to encompass all possible values of the cash flows into a single interval

will generate an overly large range forecast, with an ill-defined nominal value lacking any realistic

meaning if it falls between the two intervals, as the decision-maker never believes he will observe

such cash flows.

This is particularly a concern in robust optimization, since it can be shown (see Bertsimas and

Sim [24]) that at optimality, the worst-case coefficients of Problem (1.5) will be equal to either
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their worst case or their nominal value, assuming the budget of uncertainty is integer. Hence, it is

important for the relevance of the robust optimization approach and its adoption by practitioners that

the optimal values of the uncertain coefficients correspond to values these parameters can actually

take. Similar arguments can be made in the case of demand for a new product, the sales of which

depends on the degree of popularity or market share that the product will achieve. Such items, with

a wide range of possible outcomes, require a finer-grained representation of uncertainty than the

one-range model is able to provide.

Our focus throughout the dissertation is to develop robust optimization models that capture com-

plex features of real-life uncertain systems, features that are not incorporated in the traditional robust

optimization framework. We aim to thus make robust optimization more appealing to practition-

ers. In the first part of our work, we focus on problem setups where the ranges taken by uncertain

coefficients depend on the realizations of underlying random variables; we then investigate connec-

tions between uncertainty sets and probabilistic constraints via “safe tractable approximations.” We

consider applications drawn from the field of R&D project selection, where the need to model mul-

tiple ranges arises frequently, for instance when project cash flows are uncertain but also depend

on the effectiveness of the underlying compound tested by the pharmaceutical company. Project

selection requires binary variables, for which ellipsoidal uncertainty sets are ill-suited as they lead

to nonlinear integer problems (Bertsimas and Sim [25]); therefore, we will focus throughout this

dissertation on polyhedral uncertainty sets, specifically, sets with range forecasts and budget-of-

uncertainty constraints. The traditional robust optimization approach, with a single range for each

uncertain coefficient, would require very large ranges and thus lead to overly conservative solutions.

The multi-range robust optimization approach we propose allows for a more realistic description of

uncertainty. While Metan and Thiele [52] introduces multiple ranges for product demand in a sim-

ple two-stage robust revenue management problem for a single product, that approach is an hybrid

between robust optimization and stochastic programming, where the decision-maker gains advance

knowledge of the range that product demand will fall into. It incorporates neither binary variables
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nor budgets of uncertainty and has a single source of uncertainty, and focuses on the impact of sce-

nario probabilities on the quality of the optimal solution. To the best of our knowledge, we are the

first to present a generic, comprehensive multi-range approach in the context of robust optimization.

The Research and Development (R&D) project selection problem has been studied since the

1960s. Competition between R&D companies has increased the importance of funding projects

that would best meet their needs. While many methods to identify these projects have been investi-

gated, there is no consensus on their practical effectiveness. Martino [51] presents various methods

available for selecting R&D projects, in particular ranking methods, economic models, portfolio or

optimization models and ad-hoc methods.

Early studies of the R&D project selection problem mostly use ranking methods. The most

common ones are scoring models and the analytic hierarchy procedure (AHP) (see Baker and Free-

land [3] for a literature review on these approaches.) Economic methods, which are recommended

by Martino [51], consider the cash flows involved with the project, using metrics such as net present

value (NPV), internal rate of return (IRR) and cash flow payback. Portfolio optimization methods

implement mathematical programming to find the projects, from a candidate project list, that would

give the maximum payoff to the firm. For instance, Childs and Triantis [34] use a real options

framework in order to examine dynamic R&D investment policies and valuation of R&D programs,

and Stummer and Heidenberger [67] use a multi-objective integer programming model to determine

all efficient (Pareto-optimal) portfolios.

Data envelopment analysis (DEA) is another method for solving R&D project selection deci-

sions. Linton et. al [49] proposed this method to split decisions on project portfolios into accept,

consider-further and reject sub-groups. Eilat et. al [39] use a methodology based on an extended

DEA that quantifies some qualitative concepts embedded in the balanced scorecard (BSC) approach.

They employ a DEA-BSC model first to evaluate individual R&D projects, and then to evaluate al-

ternative R&D portfolios.

R&D project selection problems include high levels of uncertainty in future cash flows; however,

the most common approaches to project selection replace uncertain parameters by their expected
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values or rely on traditional, stochastic descriptions of randomness, although quantifying accurately

the probability distributions of future cash flows for a R&D project and the probabilities of project

success is very difficult in practice. As mentioned above, the classical robust optimization approach

also suffers from over-conservatism in this setup due to the large ranges that would be required to

implement it. This makes multi-range robust optimization a novel theoretical extension of robust

optimization with valuable practical applications.

2.2 Contributions

Our contributions to the literature are as follows.

• We define the multi-range robust optimization framework and derive tractable reformulations.

• We connect robust optimization to chance constraints in binary optimization using safe tractable

approximations.

• We provide robust rankings, which allow practitioners to gain insights into what makes a

project valuable and to implement optimization-free heuristics.

Multi-Range Optimization

• We show that the linear relaxation of the inner minimization problem (which computes the

worst-case objective for a given strategy and requires binary variables to model multiple

ranges) has integer optimal solutions in both robust optimization models we consider.

• We apply the approach to a R&D project selection problem.

• We present a robust ranking heuristic to identify projects to fund without any optimization

and test it in numerical experiments.

• Our computational results suggest that, in this setting, ranking projects according to Net

Present Values rather than densities (ratio of cash flows to development costs), yields higher-

quality solutions, i.e., solutions closer to optimality.
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Robust Prioritizing Project Selection

• We show the how to use two-range robust optimization approach to have a robust project

prioritizing problem.

• Multi-range robust optimization approach allows us to consider all the possible values for the

uncertain parameter in a tractable optimization problem. We do not need many scenarios.

• While our robust approach can imitate the stochastic optimization approach’s scenario set-

tings, our problem is significantly faster than stochastic optimization approach, since we do

not have the burden of having many scenarios.

Robust Pricing

• We develop a robust optimization approach to pricing decisions in presence of other retailers.

• We formulate tractable robust models for price optimization problems when the demand is a

linear function of the prices.

Chance Constraints

• We show that the safe tractable approximation (called Bernstein approximation) to binary op-

timization problems is equivalent to a deterministic problem with modified cost coefficients,

which only depend on problem data and one extra coefficient.

• We consider two cases: (i) when the uncertain parameters obey a jointly Normal distribution,

which allows us to demonstrate the insights we can gain in the simplest setting when we

know, in closed form, both the distributions of the uncertain parameters and of the objective

function, (ii) when we only know the first two moments and the support of the distributions

of the uncertain parameters. Our conclusions are valid for both.

• We investigate an iterative approach to address the risk of over-conservatism of the safe

tractable approximation approach, which arises because the methodology uses Markov’s In-

equality for non-negative random variables, admittedly an unsophisticated bound connecting
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tail percentile with expected value.

• We compare our approach in numerical experiments with the one proposed by Bertsimas and

Sim [23], also for binary optimization problems with uncertain coefficients but for a different

modeling of uncertainty when probability distributions are not known, and argue that, while

solution quality is comparable, the solution times in our approach are substantially smaller.
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Chapter 3

Multi Range Robust Optimization

3.1 Multi-Range Robust Optimization

Instead of having a single range of uncertainty, we now assume that we have multiple ranges that

the uncertain values can take values from. For notational simplicity, we assume that each uncertain

parameter has the same numberm of possible ranges, but the approach can be extended easily to the

case where the number of ranges depends on the uncertain parameter. We will analyze two cases:

i. The simple case where the (pessimistic) decision-maker assumes that each uncertain param-

eter takes the worst value of the range it falls into, and the maximum number of parameters

that can fall in a given range is bounded by a budget of uncertainty.

ii. The more complex case where the decision-maker extends the setup in Case 1 to introduce

another family of budgets of uncertainty limiting the number of parameters that can take their

worst-case value in a given range. This allows some parameters to be equal to their nominal

value, rather than their worst-case value, in that range.

Case 1: Without a Budget For the Deviations Within The Ranges

Let ck−i , resp. ck+
i be the lower, resp. higher, bound of range k for parameter i, i = 1, . . . , n,

k = 1, . . . ,m. The budget Γk constrains the maximum number of coefficients that can fall within
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range k, k = 1, . . . ,m. (The decision maker can also choose to introduce these budgets only for the

lowest ranges, corresponding to the most conservative outcomes, to limit the conservatism of the

approach.)

The robust problem can be formulated as a mixed-integer programming problem (MIP):

max
x∈X

min
c,y

c′x

s.t. ck−i yki ≤ cki ≤ c
k+
i yki , ∀i, k,

m∑
k=1

yki = 1, ∀i,

ci =

m∑
k=1

cki , ∀i,

n∑
i=1

yki ≤ Γk, ∀k,

yki ∈ {0, 1}, ∀i, k.

(3.1)

The tractability of the robust optimization paradigm relies on the decision-maker’s ability to convert

the inner minimization problem into a maximization problem, of such a structure that the master

maximization problem (incorporating the outer maximization problem and the new inner maxi-

mization problem) can be solved efficiently. Strong duality has emerged as the tool of choice to

implement this conversion (Bertsimas and Sim [24]); however, the model of uncertainty we propose

require the use of integer (binary) variables, which makes the rewriting of a minimization prob-

lem as an equivalent maximization one considerably more difficult. It is thus natural to investigate

whether the linear relaxation of the inner minimization problem in Problem (3.1) yields binary y

variables at optimality. This is the purpose of Lemma 3.1.
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Lemma 3.1 The linear relaxation of the inner minimization problem:

min
c,y

c′x

s.t. ck−i yki ≤ cki ≤ c
k+
i yki , ∀i, k,

m∑
k=1

yki = 1, ∀i,

ci =

m∑
k=1

cki , ∀i,

n∑
i=1

yki ≤ Γk, ∀k,

yki ∈ {0, 1}, ∀i, k,

(3.2)

has a binary optimal vector y for any given integer Γl and nonnegative vector x.

Proof. The objective is a minimization over c of c′x where ci =

m∑
k=1

cki for all i and x is non-

negative. Hence, cki will take the minimum value in its range, i.e., cki = ck−i yki at optimality for all

i, k. It follows that ci =
m∑
k=1

ck−i yki for all i and the feasible set is reduced to
∑m

k=1 y
k
i = 1, ∀i,∑n

i=1 y
k
i ≤ Γk, ∀k, and yki ∈ {0, 1}, ∀i, k,. The feasible set of the linear relaxation has binary

extreme points, thus proving the lemma.

This allows us to derive a tractable reformulation of Problem (3.1).

Theorem 3.2 Problem (3.1) has the equivalent robust linear formulation:

max

n∑
i=1

pi −
m∑
k=1

γk Γk −
n∑
i=1

m∑
k=1

zki

s.t. pi − γk − zki ≤ c
k−
i xi, ∀i, k,

x ∈ X

γk, zki ≥ 0, ∀i, k.

(3.3)

Proof. As in the proof of Lemma 3.1, we notice that, due to the non-negativity of the vector x, the

optimal objective coefficients in the robust optimization framework are always achieved at the low

29



3.1. MULTI-RANGE ROBUST OPTIMIZATION

end of the range. Therefore, we can rewrite the group of constraints:

ck−i yki ≤ cki ≤ ck+
i yki , ci =

m∑
k=1

cki ,

as:

ci =

m∑
k=1

ck−i yki .

We use Lemma 3.1 to rewrite Problem (3.2) as:

min
c,y,u

n∑
i=1

m∑
k=1

ck−i yki xi,

s.t.
m∑
k=1

yki = 1, ∀i,

n∑
i=1

yki ≤ Γk, ∀k,

0 ≤ yki ≤ 1, ∀i, k,

(3.4)

which is a linear programming problem with a non-empty, bounded feasible set. We can then invoke

strong duality to reformulate the minimization as a maximization problem, i.e., replace the primal

formulation by its dual. Re-injecting yields Problem (3.3).

Case 2: With a Budget For the Deviations Within the Ranges

In practice, it is unlikely that every single uncertain parameter will take the worst-case value of the

range it falls in. The purpose of this section is to extend the robust optimization approach presented

in Section 3.1 to the case where the manager also decides how many parameters, at most, can take

the worst-case value in the ranges they are in.
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As before, the uncertain coefficients satisfy:

ci =
m∑
k=1

cki , ∀i,

ck−i yki ≤ cki ≤ c
k+
i yki , ∀i, k,

m∑
k=1

yki = 1, ∀i,

n∑
i=1

yki ≤ Γk, ∀k,

yki ∈ {0, 1}, ∀i, k.

Because we need to define the deviation of each parameter within its given range, we further assume

that the nominal value of parameter i in range k, denoted c̄ki , is known for all i = 1, . . . , n and k =

1, . . . ,m. The measure of uncertainty for parameter i of range k is then defined as ĉki = c̄ki − c
k−
i

for all i = 1, . . . , n and k = 1, . . . ,m. Again, because the decision variables are non-negative,

the part of the range forecast above the nominal value will not be used in the robust optimization

approach and the optimal uncertain coefficients satisfy:

ci =
m∑
k=1

(c̄ki − ĉki zki ) yki ,

where zki is the scaled deviation of coefficient i, i = 1, . . . , n, from its nominal value in range k,

k = 1, . . . ,m with:
n∑
i=1

m∑
k=1

zki ≤ Γ,

0 ≤ zki ≤ 1, ∀i, k.

Lemma 3.3 For any feasible x ∈ X , the worst-case objective can be computed as a mixed-integer

31



3.1. MULTI-RANGE ROBUST OPTIMIZATION

programming problem:

min
c,y

n∑
i=1

m∑
k=1

xi

(
c̄ki y

k
i − ĉki uki

)
s.t. uki ≤ yki , ∀i, k,

n∑
i=1

m∑
k=1

uki ≤ Γ,

m∑
k=1

yki = 1, ∀i,

n∑
i=1

yki ≤ Γk, ∀k,

yki ∈ {0, 1}, ∀i, k,

uki ≥ 0, ∀i, k.

(3.5)

Proof. Defining uki = zki y
k
i , we obtain:

cki = c̄ki y
k
i − ĉki uki , ∀i, k,

where 0 ≤ uki ≤ yki . The result follows from the fact that it is suboptimal to have zki > 0 when

uki = 0 for any i, k.

The following lemma is key to the tractability of the robust optimization approach we present.

Lemma 3.4 The constraint matrix of Problem (3.5) is totally unimodular.

Proof. A matrix obtained by a pivot operation on a totally unimodular matrix is totally unimodular

(Nemhauser and Wolsey [54]). The matrix A below is the constraint matrix of Problem (3.5) where

the columns represent the variables [u y].
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C =



Inm −Inm

11×nm 01×nm

0m×nm An×nm

0n×nm Bm×nm


where Inm is the nm× nm identity matrix and matrix An×nm has the following structure:



1 · · · 1 0 · · · 0 · · · 0 · · · 0

0 · · · 0 1 · · · 1 · · ·
...

...
. . .

...

0 · · · 0 · · · 1 · · · 1


Specifically, A is defined as:

Ai,j =

 1 if (i− 1)m < j ≤ im

0 otherwise,

Matrix Bm×nm has the following structure:


1 · · · 0 1 · · · 0 · · · 1 · · · 0

...
. . .

...
...

. . .
... · · ·

...
. . .

...

0 · · · 1 0 · · · 1 · · · 0 · · · 1


Specifically, B has the following structure:

B =

(
Im×m Im×m · · · Im×m

)

We will do the following operations on C.

1) Let Rj is the jth row and Rj is the jth column of C. By doing the row operations, we obtain the

r-th version of the matrix C which is denoted by (C)r
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For j = nm+ 2 to nm+ 2 +m, do

−Rj +Rnm+1 → Rnm+1

and call the resulting matrix (C)m.

Now, for j = 1 to nm, do

Rj +Rj+nm → Rj+nm.

and call the resulting matrix (C)m(n+1).

2) At the end of these row/colum operations we obtain the matrix (C)m(n+1), which is

(C)m(n+1) =



Inm 0nm

11×nm 01×nm

0m×nm An×nm

0n×nm Bm×nm


To conclude the proof, we will need the following result.

Lemma 3.5 (Nemhauser and Wolsey [54], p. 544) Let A be a (0, 1,−1) matrix with no more than

two nonzero elements in each column. Then A is totally unimodular if and only if the rows of A can

be partitioned into two subsets Q1 and Q2 such that if a column contains two nonzero elements, the

following statements are true:

a. If both nonzero elements have the same sign, then one is in a row contained in Q1 and the

other is in a row contained in Q2.

b. If the two nonzero elements have opposite sign, then both are in rows contained in the same

subset.

The matrix (C)m(n+1) satisfies these conditions of total unimodularity. Since a matrix obtained

by pivot operations on a totally unimodular matrix is also totally unimodular, our constraint matrix
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C is totally unimodular.

Theorem 3.6 The robust counterpart is equivalent to the following problem, with a linear objective

and linear constraints added to the original feasible set:

max
n∑
i=1

pi −
n∑
i=1

m∑
k=1

zki −
m∑
k=1

γk Γk − Γ γ0

s.t. πki + γ0 ≥ ĉki xi, ∀i, k,

πki + pi − γk − zki ≤ c̄ki xi, ∀i, k,

x ∈ X

γk, γ0, π
k
i , z

k
i ≥ 0 ∀i, k.

(3.6)

Proof. Since the constraint matrix of Problem (3.5) is totally unimodular (Lemma 3.4) and the

right-hand-side values of the constraints are integer, the linear relaxation of the problem has integer

optimal solutions. It follows from strong duality, because the feasible set of the linear relaxation

of Problem (3.5) is non-empty and bounded, that Problem (3.5) and the dual of its linear relaxation

have the same optimal objective. Reinjecting the dual yields Problem (3.6).

3.2 Application to Project Management

3.2.1 Problem Setup

We now apply the setting described in Section 4.2 to an example in R&D project selection. The

manager must decide in which projects to invest over a finite time horizon. Each project has known

cash requirements at each stage of its development (for notational simplicity, we assume all projects

have the same number of stages; this corresponds for instance to the case of drug trials of small,

medium and large scale leading to possible approval by the Food and Drug Administration in the

United States), but cash flows during and at the end of development are uncertain and depend on

underlying random variables, such as the effectiveness of the active compounds or the market re-

sponse to the new product. These random variables are realized only once (e.g., the drug compound
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is effective for the disease being treated), so that the coefficients for a given project all fall in the low

range or all fall in the high range. We allow for cash flows to be generated during development as

the company might file for patents or generate monetary value from the results of the intermediary

stages; the biggest cash flows, however, will be generated at the end of the development phase.

We assume that there are two uncertainty ranges for each cash flow: a project might be success-

ful and has high cash flows, or it might be a failure and has low cash flows. Note that cash flows are

non-zero, even in the low state, as the drug might be found to be effective on a subset of the patients

and retain some market value. Because no new information is revealed during the time horizon in

this robust optimization setting, we do not consider the possibility of stopping a project after it has

started, before the end of the development phase.

The goal is to maximize the worst-case cumulative Net Present Value of the projects the man-

ager invests in, where the worst case is computed over the uncertainty sets described in Sections 3.1

and 3.1, subject to constraints on the amount of money available at each time period to spend on

development. We will use the following notation throughout the paper.

General and cost parameters.

n : number of projects,

T : number of time periods,

S : number of development phases for each project,

Bt : available budget for the time period t where t = 1,..., T ,

CDi,s : development cost of project i in phase s,

r : discount rate at each time period.

36



3.2. APPLICATION TO PROJECT MANAGEMENT

Cash flow parameters.

CF l−i,s : lower bound of cash flow of project i in phase s if unsuccessful,

CF
l
i,s : nominal value of the cash flow of project i in phase s if unsuccessful,

CF l+i,s : upper bound of cash flow of project i in phase s if unsuccessful,

ĈF
l

i,s : measure of uncertainty for cash flow of project i in phase s in low range,

CF h−i,s : lower bound of cash flow of project i in phase s if successful,

CF
h
i,s : nominal value of the cash flow of project i in phase s if successful,

CF h+
i,s : upper bound of cash flow of project i in phase s if successful,

ĈF
h

i,s : measure of uncertainty for cash flow of project i in phase s in high range,

Robust optimization parameters and decision variables.

Γl : uncertainty budget that restricts the number of projects whose cash flows will be

in the low range,

Γ : uncertainty budget that restricts the number of projects whose cash flows deviate from

their nominal value within their given range,

xi,τ : 1 if the project i is selected to begin at time τ , 0 otherwise,

yi : 1 if the project i is in its low range (unsuccessful), 0 otherwise.

The deterministic project selection problem where each project can be selected at most once is

formulated as:

max
n∑
i=1

T−S+1∑
τ=1

xi,τ
(1 + r)τ−1

[
S∑
s=1

CFi,s
(1 + r)s

]

s.t.
n∑
i=1

t∑
τ=max{1,t−S+1}

CDi,t−τ+1 xi,τ ≤ Bt ∀t

T∑
τ=1

xi,τ ≤ 1,

xi,τ ∈ {0, 1}, ∀i, τ.

(3.7)
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3.2.2 Case 1: Robust Optimization Without a Budget for the Deviation Within the

Ranges

First, we consider the simple case where the manager only limits the number of projects that will be

unsuccessful, and assumes that each cash flow will take its worst case within a given range. Problem

(3.1) becomes:

max
x

min
CFi,s,yi

n∑
i=1

T−S+1∑
τ=1

xi,τ
(1 + r)τ−1

[
S∑
s=1

CFi,s
(1 + r)s

]
Total cash flow over time

s.t. Cash flow interval if in low range

CF l−i,s yi ≤ CF li,s ≤ CF
l+
i,s yi ∀(i, s)

Cash flow interval if in high range

CF h−i,s (1− yi) ≤ CF hi,s ≤ CF
h+
i,s (1− yi) ∀(i, s)

Cash flow is either high or low

CF li,s + CF hi,s = CFi,s ∀(i, s)

At most Γl projects in low range
n∑
i=1

yi ≤ Γl

yi ∈ {0, 1}, ∀i

CF li,s, CF
h
i,s, CFi,s ≥ 0 ∀(i, s)

s.t. Budget constraint at each time period
n∑
i=1

t∑
τ=max{1,t−S+1}

CDi,t−τ+1 xi,τ ≤ Bt ∀t

Each project started at most once
T∑
τ=1

xi,τ ≤ 1, ∀(i)

xi,τ ∈ {0, 1}, ∀i, τ.

(3.8)

The theoretical results in Section 3.1 show Problem (3.8) can be reformulated in a tractable manner.
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Theorem 3.7 Problem (3.8) is equivalent to the mixed-integer programming problem:

max
n∑
i=1

T−S+1∑
τ=1

S∑
s=1

xi,τ CF
h−
i,s

(1 + r)τ+s−1
− zl Γl −

n∑
i=1

zi

s.t.
n∑
i=1

t∑
τ=max{1,t−S+1}

CDi,t−τ+1 xi,τ ≤ Bt, ∀t,

T−S+1∑
τ=1

xi,τ ≤ 1, ∀i,

zl + zi ≥
T−S+1∑
τ=1

xi,τ
(1 + r)τ−1

S∑
s=1

(CF h−i,s − CF
l−
i,s )

(1 + r)s
, ∀i,

xi,τ ∈ {0, 1}, ∀i, τ,

z, zi ≥ 0, ∀i.

(3.9)

Proof. The proof is a straightforward application of Theorem 3.2.

3.2.3 Case 2: Robust Optimization With a Budget for the Deviation Within the

Ranges

Assume that cash flows for project i in phase s, with i = 1, . . . , n, s = 1, . . . , S, are either in

[CF
l
i,s − ĈF

l

i,s, CF
l
i,s + ĈF

l

i,s] or [CF
h
i,s − ĈF

h

i,s, CF
h
i,s + ĈF

h

i,s]. In line with the framework

in Section 3.1, they can be written in mathematical terms as:

CFi,s = (CF
l
i,s − ĈF

l

i,s z
l
i,s)y

l
i + (CF

h
i,s − ĈF

h

i,s z
h
i,s)y

h
i ,

with 0 ≤ zli,s, z
h
i,s ≤ 1 ∀i, s and yji ∈ {0, 1} ∀j ∈ {l, h}. Since the coefficients must belong

to one of the two ranges, we only introduce a budget-of-uncertainty constraint on the number of

coefficients that fall into their low range.

Given feasible binary variables xi,τ (equal to 1 if project i is started at time τ and 0 otherwise),
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the worst-case cash flows are given by:

min
ul,uh,y

n∑
i=1

T−S+1∑
τ=1

xi,τ
(1 + r)τ−1

 S∑
s=1

CF
l
i,s y

l
i − ĈF

l

i,s u
l
i,s + CF

h
i,s y

h
i − ĈF

h

i,s u
h
i,s

(1 + r)s


s.t. uli,s ≤ yli, ∀i, s,

uhi,s ≤ yhi , ∀i, s,

yli + yhi = 1, ∀i,
n∑
i=1

yli ≤ Γl,

n∑
i=1

S∑
s=1

(uli,s + uhi,s) ≤ Γ,

yji ∈ {0, 1}, ∀i, j,

uli,s, u
h
i,s ≥ 0, ∀i, s.

(3.10)

It is a direct application of Lemma 3.4 that the constraint matrix of Problem (3.10) is totally uni-

modular.
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The robust optimization problem is given by:

max
x

min
ul,uh,y

n∑
i=1

T−S+1∑
τ=1

xi,τ
(1 + r)τ−1

 S∑
s=1

CF
l
i,s y

l
i − ĈF

l

i,s u
l
i,s + CF

h
i,s y

h
i − ĈF

h

i,s u
h
i,s

(1 + r)s



s.t.

uli,s ≤ yli, ∀i, s,

uhi,s ≤ yhi , ∀i, s,

yli + yhi = 1, ∀i,
n∑
i=1

yli ≤ Γl,

n∑
i=1

S∑
s=1

(uli,s + uhi,s) ≤ Γ,

yji ∈ {0, 1}, ∀i, j,

uli,s, u
h
i,s ≥ 0, ∀i, s,

s.t.

n∑
i=1

t∑
τ=max{1, t−S+1}

CDi,t−τ+1 xi,τ ≤ Bt, ∀t,

T−S+1∑
τ=1

xi,τ ≤ 1, ∀i,

xi,τ ∈ {0, 1}, ∀i, τ.
(3.11)

The following theorem provides a tractable reformulation of Problem (3.11). Because it is a

straightforward application of Theorem 3.6, we state it without proof.
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Theorem 3.8 The robust optimization problem (3.11) is equivalent to the mixed-integer program-

ming problem:

max
n∑
i=1

pi −
n∑
i=1

(zli + zhi )− Γl γl − Γ γ0

s.t.
n∑
i=1

t∑
τ=max{1,t−S+1}

CDi,t−τ+1 xi,τ ≤ Bt, ∀t,

T−S+1∑
τ=1

xi,τ ≤ 1, ∀i,

S∑
s=1

πli,s + pi − γl − zli ≤
T−S+1∑
τ=1

xi,τ

S∑
s=1

CF
l
i,s

(1 + r)τ+s−1
, ∀i,

S∑
s=1

πhi,s + pi − zhi ≤
T−S+1∑
τ=1

xi,τ

S∑
s=1

CF
h
i,s

(1 + r)τ+s−1
, ∀i,

πli,s + γ0 ≥
T−S+1∑
τ=1

xi,τ ĈF
l

i,s

(1 + r)τ+s−1
, ∀i, s,

πhi,s + γ0 ≥
T−S+1∑
τ=1

xi,τ ĈF
h

i,s

(1 + r)τ+s−1
, ∀i, s,

xi,τ ∈ {0, 1}, ∀i, τ,

πli,s, π
h
i,s ≥ 0 ∀i, s,

zli, z
h
i ≥ 0, ∀i,

γl, γ0 ≥ 0.

(3.12)

The feasible set can be decomposed as follows:

• The first two groups of constraints are the same as in the deterministic model, representing

the maximum amount of money to be allocated at each time period and the fact that a project

can be started at most once.

• The third and fourth group of constraints are the dual constraints corresponding to the primary

variables yli and yhi , respectively, and incorporate the information about the nominal values of

the cash flows. Because one of these decision variables (either yli or yhi ) will be non-zero for
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each i at optimality, by complementarity slackness, one of the dual constraints will be tight

for each i, thus determining pi as a function of the nominal cash flow for that range and the

other dual variables. This will bring the nominal cash flows back into the objective.

• The fifth and sixth group of constraints are the dual constraints corresponding to the primary

variables ulis and uhis, respectively, and incorporate the information about the uncertainty on

the cash flows in each range. At most one of these decision variables (either ulis or uhis) will be

non-zero for each i at optimality; if it is non-zero, by complementarity slackness, one of the

dual constraints will be tight for each i, thus determining either πlis or πhis as a function of the

uncertainty in that range and the other dual variables. (Otherwise the πlis and πhis variables will

be at zero.) This will bring the cash flow uncertainty, through the half-range of the confidence

intervals, into the objective when needed.

• The other constraints are sign constraints or binary constraints.

The robust formulation (3.12) has n (3+T+2S)+2 decision variables and T+n(3+2S) constraints

in addition to sign and binary constraints; therefore, the size of the mixed-integer programming

problem increases linearly with each of the parameters n, T, S (number of projects, length of time

horizon, number of development stages) when the others are kept constant.

3.3 Robust Ranking Heuristic

While Problem (3.12) provides an exact formulation of the robust optimization problem for project

management, we focus in this section on developing optimization-free heuristics to provide a fea-

sible solution to the robust problem, which would give practitioners more insights into the strategy

they implement and the impact of the cash flow parameters.

We are motivated by the fact that, when there is only one time period and one development

phase (T = 1 and S = 1), the project selection problem has the structure of a knapsack problem,

for which a well-known heuristic is to rank items by decreasing order of density (value to weight
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ratio) and fill the knapsack until the next item in the list does not fit (see, for instance, Kellerer et.

al. [45])). In particular, we provide a robust ranking procedure to rank the projects with uncertain

cash flows; to the best of our knowledge, we are the first to present such a ranking procedure in the

context of robust optimization.

We will consider two ways to rank the projects: (a) according to decreasing density, (b) ac-

cording to decreasing Net Present Value. Method (a) is motivated by its popularity to solve the

generic knapsack problem; Method (b) is motivated by its superior performance in the numerical

experiments provided in Section 3.4 and the widespread use of Net Present Value to select projects

in practice. Once projects are ranked, we apply the greedy multiple-knapsack heuristic described in

Kellerer et. al. [45] to generate a candidate solution. Specifically, we proceed down the ranked list

of projects and assign project j to knapsacks t, . . . , t+ S − 1, with t the smallest integer such that

the project development costs fit in all of these knapsacks’ capacity.

3.3.1 Case 1: Ranking for the Projects Without a Budget for the Deviation Within

the Ranges

Recall that, if there is no budget for the deviation within the ranges, the cash flows always take their

worst case within the range, and that the range (high or low) is only selected once, i.e., the range

does not change with the development phase.

The high-level idea is to (i) compute two rankings, one using the low range of the cash flows

and the other using the high range, (ii) use the low-range ranking until the budget of uncertainty has

been used up, and then (iii) use the high-range ranking.

Ranking procedure.

Step 1 Compute the following parameters for all projects i.
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Method (a): Densities

ahi =
S∑
s=1

CF h−i,s
(1 + r)sCDi,s

ali =

S∑
s=1

CF l−i,s
(1 + r)sCDi,s

Method (b): Net Present Values

ahi =
S∑
s=1

(
−CDi,s +

CF h−i,s
(1 + r)s

)

ali =

S∑
s=1

(
−CDi,s +

CF l−i,s
(1 + r)s

)

For either method, compute two rankings: in decreasing order of ahi , and in decreasing order

of ali.

Step 2 Add Γl projects to your ranking list corresponding to the projects with the largest Γl values

of ali. Then proceed to Step 3.

Step 3 Continue until all projects are ranked by choosing the unranked projects according to the

largest values of ahi , discarding projects that have already been selected in Step 2.

3.3.2 Case 2: Ranking for the Projects With a Budget for the Deviation Within the

Ranges

In this case, the cumulative cash flow of a project can take four possible values (four cash flow

measures): low value of the low range, nominal value of the low range, low value of the high range,

nominal value of the high range. The high-level idea is to (i) compute four rankings, one for each of

the possible cash flow measures, (ii) use the “low value of the low range” ranking until one of the

two budgets of uncertainty has been used up, (iii) use either the “nominal value of the low range”

ranking or the “low value of the high range” ranking (depending on which budget is not yet zero)

until the other budget of uncertainty has been used up, and (iv) complete the procedure using the
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“nominal value of the high range” ranking.

Ranking procedure.

Step 1 Compute the four following parameters for all projects i.

Method (a): Densities

Ahi =
S∑
s=1

CF
h
i,s

(1 + r)sCDi,s
, Ali =

S∑
s=1

CF
l
i,s

(1 + r)sCDi,s
,

ahi =

S∑
s=1

CF h−i,s
(1 + r)sCDi,s

, ali =

S∑
s=1

CF l−i,s
(1 + r)sCDi,s

.

Method (b): Net Present Values

Ahi =

S∑
s=1

(
−CDi,s +

CF
h
i,s

(1 + r)s

)
, Ali =

S∑
s=1

(
−CDi,s +

CF
l
i,s

(1 + r)s

)
,

ahi =
S∑
s=1

(
−CDi,s +

CF h−i,s
(1 + r)s

)
, ali =

S∑
s=1

(
−CDi,s +

CF l−i,s
(1 + r)s

)
.

Using either method, create four rankings, ranking projects in decreasing order of each of the

parameters Ahi , Ali, a
h
i and ali.

Step 2 Choose the projects corresponding to the largest min(Γl,Γ) values in the ranking based on

the ali parameters.

Step 3 If Γl > Γ (all cash flows will now take their nominal value as we have used up the Γ budget,

but the manager still expects Γl − Γ projects to have cash flows in the low range), add Γl − Γ

projects to the ranked list by using the ranking based on the Ali parameters, skipping the

projects that have already been selected in Step 2.

Step 4 If Γ − Γl > 0, add Γ − Γl projects to the ranked list by using the ranking based on the ahi

parameters, skipping the projects that have already been selected in Steps 2 and 3.
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Step 5 Continue until all projects are ranked by using the ranking based on the Ahi parameters,

skipping the projects that have already been selected in Steps 2, 3 and 4.

3.4 Numerical Example

In this section, we investigate the practical performance of our robust optimization models and

heuristics on an example. We focus on the case where T = 1 and S = 1, for which the mathemat-

ical formulation without uncertainty becomes a well-known knapsack problem. Furthermore, we

consider two uncertainty ranges: high (indicated by the superscript h in relevant parameters) and

low (indicated by the superscript l). We have two main goals in this experiment:

i. Test whether the robust optimization framework does protect against downside risk as adver-

tised.

ii. Test the performance of the heuristics, (a) compared to the optimal solution, (b) compared to

each other.

3.4.1 Setup

We first provide the robust optimization formulations for clarity. As this is a special case of Section

3.2, the results are stated without proof.

Case 1: Without a budget of uncertainty for the deviations within the ranges.

The robust optimization problem becomes:

max

n∑
i=1

CF h−i xi
(1 + r)

− zl Γl −
n∑
i=1

zi

s.t.
n∑
i=1

CDi xi ≤ B,

zl + zi ≥
(CF h−i − CF l−i )

1 + r xi, ∀i,

xi ∈ {0, 1}, ∀i

zl, zi ≥ 0, ∀i.

(3.13)
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The project density parameters (Method (a)) are given by:

Ahi =
CF h−i

(1 + r)CDi
, Ali =

CF l−i
(1 + r)CDi

.

The project Net Present Value parameters (Method (b)) are given by:

Ahi = −CDi +
CF h−i
1 + r , Ali = −CDi +

CF l−i
1 + r .

Case 2: With a budget of uncertainty for the deviations within the ranges.

The robust optimization problem becomes:

max
n∑
i=1

pi −
n∑
i=1

(zli + zhi )− Γl γl − Γ γ0

s.t.
n∑
i=1

CDi xi ≤ B,

πli + pi − γl − zli ≤
CF

l
i

1 + r xi, ∀i,

πhi + pi − zhi ≤
CF

h
i

1 + r xi, ∀i,

πli + γ0 ≥
ĈF

l

i
1 + r xi, ∀i,

πhi + γ0 ≥
ĈF

h

i
1 + r xi, ∀i,

xi ∈ {0, 1}, ∀i,

πli, π
h
i , z

l
i, z

h
i ≥ 0 ∀i,

γl, γ0 ≥ 0.

(3.14)

The project density parameters (Heuristic (a)) are given by:

Ahi =
CF

h
i

(1 + r)CDi
, Ali =

CF
l
i

(1 + r)CDi
,

ahi =
CF h−i

(1 + r)CDi
, ali =

CF l−i
(1 + r)CDi

.
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The Net Present Value parameters (Heuristic (b)) are given by:

Ahi = −CDi +
CF

h
i

1 + r , Ali = −CDi +
CF

l
i

1 + r ,

ahi = −CDi +
CF h−i
1 + r , ali = −CDi +

CF l−i
1 + r .

3.4.2 Numerical Results

We tested our formulations and heuristics for 4 data sets. Data Sets 1 and 2 have 10 projects while

Data Sets 3 and 4 have 20 projects. In all cases, development costs (CDi) were generated using a

Uniform distribution in [80 − 120], nominal values of low cash flows (CF li) were generated using

Uniform distribution in (0.5− 2.5) ·CDi, and nominal values of high cash flows (CF hi ) generated

using Uniform distribution in (2− 3.5) · CDi. For all i, the deviation parameters ĈF
l

i, ĈF
h

i were

selected as 0.2CF
l
i, 0.2CF

h
i respectively. Budget for development costs was set to 500 in all

cases. In addition, Data Sets 3 and 4 were also solved for a value of the budget equal to 1,000.

The same distributions were used to compute the actual objective using random cash flows once the

optimization problem had been solved. The probability of the cash flows being in the low range was

taken equal to 0.5.

Optimal solution.

We solved Problem (3.12) for each data set and for each (Γ,Γl) combination. Figure 3.1 shows

the histogram of revenues for Data Set 1 and the deterministic model, where parameter values are

taken equal to their expected values, here (CF
h
i + CF

l
i)/2 for all i (red line with square markers)

as well as two robust models: (Γ,Γl) = (2, 1) and (Γ,Γl) = (3, 4) (blue line with lozenge markers

and green line with triangle markers, respectively). These budgets were chosen to have Γ > Γl in

one case and Γ < Γl in the other. This histogram was generated using 1,000 scenarios. Figure 3.1

suggests that robust optimization is more conservative than its nominal counterpart (limits upside

potential) but decreases the downside risk.

Figures 3.2 and 3.3 show the number of iterations versus budget of uncertainty Γl for five dif-

ferent Γ values, for Data Sets 1 and 3, respectively. Recall that Data Set 1 has 10 projects and Data
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Figure 3.1: Histogram of Revenues.

Figure 3.2: Number of Iterations versus Budget of Uncertainties for Data Set 1, Budget=500.

Set 3 has 20. (Our observations remain valid for other values of Γ, but the corresponding graphs

were omitted for graph readability.) We observe that, for each Γ value, the number of iterations

in the robust optimization models does not differ substantially from the number of iterations in the

deterministic model when Γl is close to its bounds (Γl = 0 or Γl = 10), which means that most
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Figure 3.3: Number of Iterations versus Budget of Uncertainties for Data Set 3, Budget=1000.

projects are in the same uncertainty range.) When projects are more evenly assigned to low and

high ranges (middle values of Γl), the number of iterations increases, sometimes substantially (see

Figure 3.3, where the top curve corresponds to Γ = 10).

Since robust optimization maximizes the worst-case cash flow over the uncertainty set, it is

natural to evaluate how well it protects against downside risk. To do that, we compute the first

and fifth percentile of the distribution of the random objective where we have injected the optimal

solution, for Data Set 1 and all (Γ,Γl) combinations, using 1,000 scenarios. These results are

shown in Tables 3.1 and 3.2, respectively. Table 3.3 shows the expected value of the objective for

reference. We see that robust optimization does indeed protect against downside risk, as evidenced

in the increase in the values for the first and fifth percentile, with modest performance degradation

(decrease in average objective value).

It is important to note that the optimal solution will not change once Γ or Γl increases past the

number of projects being funded, which we will denote x. If p is the (estimated) probability of

project cash flows falling in the low range, a decision-maker interested in protecting his cumulative

cash flow against adverse events will select Γl ≥ p x; however, x cannot be determined before the

51



3.4. NUMERICAL EXAMPLE

robust optimization problem has been solved (and depends somewhat on Γ and Γl, although the

dependence is minimal in our experiments: the manager invests in 4 or 5 in all data sets with budget

equal to 500, and 10 or 11 projects out of 20 in Data Sets 3 and 4 when the budget is equal to 1,000).

Therefore, we recommend that the decision-maker compute Tables 3.1, 3.2 and 3.3 for his own

project selection problem, and choose an appropriate (Γ, Γl) pair based on the tradeoff between

downside risk (measured either by first or fifth percentile) and performance (measured by average

objective) that he wishes to achieve. Also note that several (Γ, Γl) pairs have the same optimal

solution, due to the use of binary variables, and that what the manager ultimately needs to determine

is the strategy he will implement, rather than a specific (Γ, Γl) pair, which would only be used to

compute the corresponding optimal strategy anyway. In the case of Data Set 1, we recommend to

invest in projects 1, 3, 6, 8, 10; this strategy is optimal for (Γ, Γl) pairs (3, 4), (4, 4), (0, 3) and

(Γ, 3) for any Γ ≥ 5. This choice maximizes both first and fifth percentiles over all possible (Γ, Γl)

combinations, achieving the biggest shift of the cumulative cash flow distribution to the right.

↓ Γ Γl → 0 1 2 3 4 5-10
0 811.5 811.5 908.5 919.5 919 919
1 811.5 908.5 908.5 908.5 919 919
2 842.5 908.5 908.5 908.5 919 919
3 842.5 908.5 908.5 908.5 919.5 919
4 842.5 908.5 908.5 908.5 919.5 919
5-10 811.5 811.5 908.5 919.5 919 919

Table 3.1: First percentile values for each (Γ,Γl) pair with Data Set 1.

↓ Γ Γl → 0 1 2 3 4 5-10
0 879.5 879.5 965 981 968 968
1 879.5 965 965 965 968 968
2 911 965 965 965 968 968
3 911 965 965 965 981 968
4 911 965 965 965 981 968
5-10 879.5 879.5 965 981 968 968

Table 3.2: Fifth percentile values for each (Γ,Γl) pair with Data Set 1.
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↓ Γ Γl → 0 1 2 3 4 5-10
0 1156.3 1156.3 1162.0 1148.1 1117.4 1117.4
1 1156.3 1162.0 1162.0 1162.0 1117.4 1117.4
2 1176.7 1162.0 1162.0 1162.0 1117.4 1117.4
3 1176.7 1162.0 1162.0 1162.0 1148.1 1117.4
4 1176.7 1162.0 1162.0 1162.0 1148.1 1117.4
5-10 1156.3 1156.3 1162.0 1148.1 1117.4 1117.4

Table 3.3: Expected revenue for each (Γ,Γl) pair with Data Set 1.

Heuristics.

Table 3.4 compares the objective function values of Method (a) (ranking according to densities)

and Method (b) (ranking according to NPV) with the optimal objective function value. For this

comparison, the development budget was taken equal to 500 in all data sets. # Opt. indicates the

number of times the heuristics gives the same objective function value as the optimal solution when

all possible (Γ,Γl) pairs are enumerated. We see that Method (b) generally performs better in terms

of the number of times it finds the optimal value: it performs as well as Heuristic (a) for Data Set

2 and performs much better for the other three data sets. Highest performance is achieved for Data

Set 3, where Heuristic (a) never found the optimal solution while Heuristic (b) had a success ratio

of 76%.

Method (a) vs Optimal Method (b) vs Optimal
% Obj. Dif. # Opt. % Obj. Dif. # Opt.

Data Set 1 3.28 15/121 2.12 90/121
Data Set 2 6.32 77/121 5.77 77/121
Data Set 3 1.82 0/441 3.27 336/441
Data Set 4 5.23 21/441 5.35 48/441

Table 3.4: Optimal objective function value versus heuristic results.

We now evaluate the optimal solution and the heuristic solutions. We generated 100 scenarios

for the cash flows when the probability of falling into the low range is 0.5. We implemented the

optimal and heuristic solutions of each data set for these scenarios (again, with a budget of 500 in

all cases, to allow for easy comparison) and computed mean and standard deviation of the objective

(cumulative discounted cash flows). Table 3.5 shows the average percentage (absolute) difference
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in mean and standard deviation of the simulation results over all (Γ,Γl) combinations for method

(a) and method (b). We see that using the heuristics rather than the optimal solution does not sig-

nificantly change the objective average, but does change the standard deviation more significantly.

There was no sign pattern in the mean difference or standard deviation difference, which is why we

only show absolute values.

Method (a) vs Optimal Method (b) vs Optimal
% |Dif.| % |Dif.| % |Dif.| % |Dif.|
(Mean) (St. Dev.) (Mean) (St. Dev.)

Data Set 1 0.96 9.60 0.86 8.77
Data Set 2 3.32 3.50 3.25 5.11
Data Set 3 3.92 28.76 2.53 7.01
Data Set 4 2.79 4.81 4.28 6.94

Table 3.5: Difference between simulated optimal solutions versus heuristic solutions.

3.5 Conclusions

We have presented an approach to robust optimization with multiple ranges for each uncertain coef-

ficient, derived tractable exact reformulations and studied an application to R&D project selection.

We have also provided a robust ranking heuristic and tested two possible ranking criteria: (a) ac-

cording to project densities, and (b) according to project Net Present Values. Numerical experiments

suggest that, while both heuristics exhibit good performance, Heuristic (b) performs better. The

multi-range approach gives more flexibility to the decision-maker to specify how many coefficients

can fall in each of the ranges and thus allows for a finer description of uncertainty within the robust

optimization framework.
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Chapter 4

Multi-Range Robust Optimization:

Some Applications

This chapter illustrates some applications of multi range robust optimization. Project selection

application in Chapter (3) was an example when uncertain parameters have underlying discrete

random factors that affect the uncertainty. However, uncertainty does not always come from un-

derlying discrete random factors. Sometimes multiple decision makers cause multiple uncertainty

ranges. Sometimes we have some expert knowledge on the likelihoods of uncertainties to be real-

ized. Our aim in this chapter of the thesis is to show some applications where we incorporate multi

rance robust optimization to these cases.

4.1 Prioritizing Project Selection

This section describes a multi-range robust optimization approach applied to the problem of capac-

ity investment under uncertainty. Our goal is to investigate the merits of an approach based on a

concept called multi-range robust optimization, which was developed in Chapter (3), for the specific

setting of project selection and prioritization presented in Koc et. al. [46]. We consider a number

of possible projects with anticipated costs and cash flows, and an investment decision to be made
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under budget limitations. Uncertainty in anticipated parameter values – cost and net present value

of each project in our case – could seriously damage the real-life viability of the suggested invest-

ment plan. We set up the multi-range robust optimization so that the possible values taken by the

uncertain parameters match the three possible values of the cost or net present value distributions

in the stochastic programming approach. While the stochastic programming approach implemented

by Koc et. al. [46] suffers from tractability issues, the robust optimization approach solves the same

capacity investment problem in seconds. We also show how to compute the project prioritization

list to substantially decrease computation time.

The paper by Koc et. al. [46] was selected as the benchmark because the authors implement

a stochastic programming framework to a real-life problem using real data, and the main “selling

point” of robust optimization has long been that it is more tractable than stochastic programming

in real-life applications. (Another selling point is related to the difficulty in estimating underlying

probabilities correctly in the stochastic framework, but we will not consider this point here.) The

main contribution in this chapter is to present multi-range robust optimization as a tractable alter-

native to stochastic programming when the budgets of uncertainty are set appropriately based on

the probabilities of the stochastic programming model. A secondary contribution is that we show

how to compute the project priority list in a far more efficient manner than what was proposed in

Koc et. al. [46], thus substantially reducing computation times. When testing our approach using

the problem setup provided in Koc et. al. [46], the stochastic programming approach does not solve

to while our robust optimization approach solves its model to optimality within seconds.

The rest of the chapter is structured as follows. In Section 4.1.2, we describe how a simple

change to the model implemented by Koc et. al. [46] will drastically improve the solution time of the

stochastic programming problem by providing a more computationally efficient way of computing

the project priority list. Section 4.2 presents the robust optimization formulation in the proposed

setting, while Section 4.3 provides the details of the numerical implementation. Section 4.6 contains

concluding remarks.
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4.1.1 Problem Overview

Preliminaries

Our study is motivated by Koc et al. [46], who consider an investment problem with cost and

NPV uncertainties. They use a company-made analysis of the projects, which is provided by South

Texas Project Nuclear Operating Company and which lists the anticipated NPV and costs in three

possible scenarios: pessimistic, optimistic and most likely cases. The analysis also categorizes the

projects in two groups: low-risk and medium-risk. Koc et al. [46] compute a priority list so that

the decision-maker can adjust immediately to changes in the budget (capacity) by implementing a

greedy approach, i.e., she will go down the priority list selecting projects until capacity has been

filled. In this paper we are interested in the approach called Optimal Project Prioritization, where

Koc et al. [46] formulate an optimization model that incorporates budget, cost and profit scenarios

and outputs an optimal priority list.

Our robust optimization approach differs from [46] at three levels.

• First, we develop a robust optimization model where we optimize the project portfolio perfor-

mance and provide a robust priority list, which would be still viable under the worst cases of

the cost and NPV outcomes as defined by our uncertainty set. [46], on the other hand, mod-

els the problem as a two-stage stochastic programming problem and maximizes the expected

NPV of the selected costs calculated over predefined scenarios.

• We do not consider uncertainty on the right-hand side (budget) here and concentrate on the

cost and NPV uncertainty assuming that the budget is given. If there were uncertainty on the

RHS, robust optimization would require to assign the RHS its worst-case value. Therefore,

budget uncertainty – if it is present in the formulation – will be addressed in the same manner

as Koc et al. [46], using scenarios for different levels of the budget. In what follows, we

assume that there is no budget uncertainty (both for our approach and our implementation of

the Koc et al. [46] approach.)
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• Finally, we do not make the assumptions on the behavior of the uncertain parameters that are

made in [46]: we do not assume that the cost and NPV are perfectly correlated; furthermore,

we do not assume that the projects in the same risk groups are perfectly correlated. We feel

that our setting is more representative of real-life industry situations.

4.1.2 Improved Stochastic Formulation

Model

The notation and formulation of the optimal prioritization model in [46] are:

Indices and sets:

i, i′ ∈ I candidate projects

p ∈ P priorities; P = {1, 2, . . . |I|}

t ∈ T time periods (years)

ω ∈ Ω scenarios
Data:

aωi net present value of project i under scenario ω

bωt available budget in period t under scenario ω

cωit cost of project i in period t under scenario ω

qω probability of scenario ω
Decision variables (binary):

xωi 1 if project i is selected under scenario ω, 0 otherwise

yi,i′ 1 if project i has higher priority than i′, 0 otherwise

zip 1 if project i is assigned priority level p, 0 otherwise
Formulation:
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max
x,y,z

∑
ω∈Ω

qω
∑
i∈I

aωi x
ω
i (a)

s.t.
∑
i∈I

cωi,t x
ω
i ≤ bωt , t ∈ T, ω ∈ Ω (b)∑

i∈I
zi,p = 1, p ∈ P (c)∑

p∈P
zi,p = 1, i ∈ I (d)

|P |yi,i′ ≥
∑
p∈P

(|P | − p)(zi,p − zi′,p), i 6= i′, i, i′ ∈ I (e)

yi,i′ + yi′,i = 1, i < i′, i, i′ ∈ I (f)

xωi ≥ xωi′ + yi,i′ − 1, ω ∈ Ω, i 6= i′, i, i′ ∈ I (g)

xωi ∈ {0, 1} i ∈ I, ω ∈ Ω (h)

yi,i′ ∈ {0, 1} i 6= i′, i, i′ ∈ I (i)

zi,p ∈ {0, 1} i ∈ I, p ∈ P (j)

(4.1)

This formulation can be explained as follows:

Objective (a) The decision maker maximizes the expected NPV.

Constraints (b) The total cost cannot exceed the budget, in any given scenario.

Constraints (c) Each priority rank can only be assigned to one project.

Constraints (d) Each project can only be assigned to one priority rank.

Constraints (e) For any pair of projects (i, i′), if i′ is assigned a lower priority than i then i is

preferred to i′.

Constraints (f) For any pair of projects (i, i′), either i is preferred to i′ or i′ is preferred to i.

Constraints (g) For any pair of projects (i, i′) and any scenario ω, if i′ is selected in scenario ω

and i is preferred to i′, then i is selected in scenario ω as well.

Constraints (h),(i),(j) Decision variables are binary.
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4.1. PRIORITIZING PROJECT SELECTION

An important remark we made when we first attempted to implement the approach in Koc et al. [46]

is that the decision variables zi,p, which provide the priority level of the projects, are not necessary

in the formulation. The essential knowledge – the pairwise comparisons of the projects’ priorities

– lies in the variable yi,i′ . This makes constraints (c),(d),(e) unnecessary. Note that the |P | used in

constraints (e) is nothing but a big-M constraint, which impairs the tightness of LP relaxations and

increases the run times.

Further, we suggest the following changes for constraints (f) and (g):

ỹi,i′ ≥ xωi − xωi′ , ∀ω ∈ Ω, i, i′ ∈ I : i < i′ (4.2)

1− ỹi,i′ ≥ xωi′ − xωi , ∀ω ∈ Ω, i, i′ ∈ I : i < i′ (4.3)

Note that we replace the variable yi,i′ with ỹi,i′ , which is only defined for i, i′ ∈ I : i < i′. We

can set ỹi,i′ = 0 if i ≥ i′ and drop them. If xωi = 1 and xωi′ = 0, Eq. (4.2) forces ỹi,i′ = 1.

Then Eq. (4.3) forces i to be preferred to i′ for all ω. When the model is solved, the optimal ỹi,i′

give us a two-by-two comparison of all variables. We can then build the priority list based on this

information, because (i � j and j � k) implies i � k. This statement is proved by noting that, by

definition, i � j means that if xωi = 0 in some scenario ω then xωj = 0 for the same scenario ω

and there is at least one scenario ω for which xωi = 1 and xωj = 0. Similarly, j � k means that if

xωj = 0 in some scenario ω then xωk = 0 for the same scenario ω and there is at least one scenario ω

for which xωj = 1 and xωk = 0. Combining the two statements yields the result immediately.

The new set of constraints described above are tight as they do not require a big-M constant.

(In fact, ỹi,i′ can even be relaxed to be in [0,1] for all pairs of projects.) Instead of Model (4.1), we

can then solve the following problem as a more computationally efficient stochastic programming
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4.1. PRIORITIZING PROJECT SELECTION

problem:

max
x,y

∑
ω∈Ω

qω
∑
i∈I

aωi x
ω
i

s.t.
∑
i∈I

cωi,t x
ω
i ≤ bωt , t ∈ T, ω ∈ Ω

yi,i′ ≥ xωi − xωi′ , ω ∈ Ω, i < i′, i, i′ ∈ I

1− yi,i′ ≥ xωi′ − xωi , ω ∈ Ω, i < i′, i, i′ ∈ I

xωi ∈ {0, 1} i ∈ I, ω ∈ Ω

yi,i′ ∈ {0, 1} i 6= i′, i, i′ ∈ I

(4.4)

4.1.3 Implementation

We solve Koc et al. [46]’s model (4.1) and our suggested prioritizing model (4.4) using ILOG

CPLEX version 12.1 for the full-size problem data given in Koc et al. [46]. Both problems hit the

time limit which is set to 100,000 seconds. However, our suggested problem solution was at 0.13%

of optimality, while Koc et al. [46]’s solution was at 37.20% of optimality. [46] does not provide run

time statistics but only state the model was ultimately solved within 1% of optimality. Figure 4.1

shows the optimality gap and objective function values for both problems with respect to simplex

iterations. As it is seen from the figure, revised stochastic problem quickly reduces the optimality

gap to within 1% of optimality. Although Problem (4.1)’s initial lower bound (around 47) is bigger,

it finds it later than the time when revised model improves the lower bound to above 60. Solving

Model (4.4) gives us the y variables, from which we derive a priority list for the projects in seconds.

We compare the two models for two subproblems provided in [46], when the number of projects

is 10 and 15, respectively. For both subproblems we get the same objective function value and

the same xω in all scenarios. There were some differences in the priority lists of the two models.

The fact that there were some pairwise reversed priorities can be explained by the existence of ties

between projects, which the computer breaks arbitrarily.
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Figure 4.1: Comparison of Koc et al. [46]’s model with its revised model (4.4)

4.2 The Multi-Range Robust Optimization Model

4.2.1 High-Level Modeling

The stochastic programming problem provided by Koc et al. [46] does not provide any optimal

solution within a reasonable time frame. While our stochastic model (4.4) performs significantly

better, we feel that the run times still raise issues in terms of large-scale tractability of the stochastic

approach. Therefore, in this section, we derive the multi-range robust counterpart of Problem (4.4).

The formulation will be solved in the next section to demonstrate the potential of robust optimization

in terms of solution time and quality.

The approach proposed by Düzgün and Thiele [37] enables us to incorporate all the possible

values that uncertain parameters can take into the optimization problem, and thus addresses the lim-

itations of the traditional robust optimization framework. Specifically here, an uncertain parameter

will be allowed to take any of the pessimistic, most likely or optimistic values. We have two uncer-

tainty ranges for each uncertain NPV and cost parameter: low and high. Figure 4.2 summarizes how

we construct our low and high uncertainty ranges for the NPV parameters. For cost parameters, the

place of optimistic and pessimistic values will be switched, so that the optimistic value for a cost

will be the worst-case value of the low range.
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4.2. THE MULTI-RANGE ROBUST OPTIMIZATION MODEL

Figure 4.2: Construction of low and high ranges for the uncertain NPV parameters

The intervals are defined by using the fact that at optimality, the uncertain parameters in the

robust optimization approach with two ranges will take one of four possible values:

i. The nominal value of the low range,

ii. The nominal value of the high range,

iii. The worst-case value of the low range,

iv. The worst-case value of the high range.

Because we only want three values, we will define the uncertainty intervals so that the nominal value

of the low range coincides with the worst-case value of the high range. Again, it is not possible in

traditional one-range robust optimization to consider three possible values for the data given. With

the help of multi-range robust optimization approach, we are able to construct the uncertainty sets

such that we can incorporate these multiple values and yet obtain a robust solution without having

to consider many scenarios.
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4.2. THE MULTI-RANGE ROBUST OPTIMIZATION MODEL

Let P1 and P2 be the uncertainty sets for NPV factors and cost factors, respectively. The robust

problem that we are going to solve has the structure of Problem (5.1) below:

max
x

min
npv∈P1

npvx

s.t. max
c∈P2

cx ≤ B

x ∈ {0, 1}n

(4.5)

4.2.2 Inner Optimization Problems

Inner minimization problem for NPVs.

We assign separate budgets of uncertainty for low-risk projects (with superscript L) and medium-

risk projects (with superscriptM) because projects in those groups have different probabilities of

attaining their pessimistic, most likely and optimistic values. Superscript or subscript l denotes low-

range coefficients, while superscript or subscript h denotes high-range coefficients. The rest of the

notation is identical to that in Section 4.1.1.

min
ul,uh,y

n∑
i=1

xi

[
NPV

l
i y
l
i − N̂PV

l

i u
l
i +NPV

h
i y

h
i − N̂PV

h

i u
h
i

]
s.t. uli ≤ yli, ∀i ∈ I,

uhi ≤ yhi , ∀i ∈ I,

yli + yhi = 1, ∀i ∈ I,∑
i∈L

yli ≤ ΓLl ,∑
i∈M

yli ≤ ΓMl ,∑
i∈L

(uli + uhi ) ≤ ΓL,∑
i∈M

(uli + uhi ) ≤ ΓM,

yji ∈ {0, 1}, ∀i ∈ I, ∀j ∈ {l, h},

uli, u
h
i ≥ 0, ∀i ∈ I.

(4.6)
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4.2. THE MULTI-RANGE ROBUST OPTIMIZATION MODEL

Inner maximization problems for cost factors.

In year t, we have:

max
ul,uh,y

n∑
i=1

xi

[
cli,t y

l
i − ĉli,t uli,t + chi,t y

h
i − ĉhi,t uhi,t

]
s.t. uli,t ≤ yli, ∀i ∈ I,

uhi,t ≤ yhi , ∀i ∈ I,

yli + yhi = 1, ∀i ∈ I,∑
i∈L

yli ≥ ΓLl ,∑
i∈M

yli ≥ ΓMl ,∑
i∈L

(uli,t + uhi,t) ≥ ΓL,∑
i∈M

(uli,t + uhi,t) ≥ ΓM,

yji ∈ {0, 1}, ∀i ∈ I, ∀j ∈ {l, h},

uli,t, u
h
i,t ≥ 0, ∀i ∈ I.

(4.7)

Note that we have greater-than-or-equal-to constraints for the uncertainty budgets because the inner

problem is now a maximization problem. Thus, we will have exactly ΓLl and ΓMl values in the low

range among low-risk and medium-risk projects, respectively. Similarly, exactly ΓL low-risk and

ΓM medium-risk projects will take the worst case values in the range they fall into.

From Düzgün and Thiele [37], we know that the constraint sets of Problems (4.6) and (4.7) are

totally unimodular. Therefore, we can relax the integrality of the y variables and still obtain an

integer optimal solution, given that the right-hand-sides of the constraints are integer. This allows

us to use strong duality and convert Problem (5.1) into one large maximization problem.
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4.2. THE MULTI-RANGE ROBUST OPTIMIZATION MODEL

4.2.3 The Formulation

The objective function of our robust optimization problem comes from the objective function of

the dual problem of Problem (4.6):

max
∑
i∈I

pi −
∑
i∈I

(
zli + zhi

)
− ΓLl γ

L
l − ΓMl γMl − ΓL γL − ΓM γM

The constraints of the dual problem are added to the constraint set of our robust optimization prob-

lem. Dual constraints associated with variables yli and yhi for low-risk and medium-risk projects

are:

pli + pi − γLl − zli ≤ NPV
l
i xi i ∈ L

phi + pi − zhi ≤ NPV
h
i xi i ∈ L

pli + pi − γMl − zli ≤ NPV
l
i xi i ∈M

phi + pi − zhi ≤ NPV
h
i xi i ∈M

Similarly, dual constraints associated with variables uli and uhi for low-risk and medium-risk projects

are:

pli + γL ≤ N̂PV
l

i xi i ∈ L

phi + γL ≤ N̂PV
h

i xi i ∈ L

pli + γM ≤ N̂PV
l

i xi i ∈M

phi + γM ≤ N̂PV
h

i xi i ∈M

For the uncertain cost parameters, we have a maximization problem in the constraint set of Prob-

lem (5.1) but invoke strong duality and thus insert the dual problem of Problem (4.7) into our robust

counterpart problem. The objective function of the dual of Problem (4.7) will form our new budget
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4.2. THE MULTI-RANGE ROBUST OPTIMIZATION MODEL

constraint for t ∈ T :

∑
i∈I

cpi,t +
∑
i∈I

(
czli,t + czhi,t

)
+ cΓLl cγ

L
l,t + cΓMl cγMl,t + cΓL cγLt + cΓM cγMt ≤ B(t)

Then, we will have the dual constraints to be added to the robust counterpart problem. The dual

constraints corresponding to yli and yhi for low-risk and medium-risk projects in Problem (4.7) are:

−cpli,t + cpi,t + cγLl,t + czli,t ≥ cli,t xi i ∈ L, t ∈ T

−cphi,t + cpi,t + czhi,t ≥ chi,t xi i ∈ L, t ∈ T

−cpli,t + cpi,t + cγMl,t + czli,t ≥ cli,t xi i ∈M, t ∈ T

−cphi,t + cpi,t + czhi,t ≥ chi,t xi i ∈M, t ∈ T

Similarly, the dual constraints associated with variables uli and uhi in Problem (4.7) for low-risk

and medium-risk projects are:

cpli,t + cγLt ≤ −ĉli,t xi i ∈ L, t ∈ T

cphi,t + cγLt ≤ −ĉhi,t xi i ∈ L, t ∈ T

cpli,t + cγMt ≥ −ĉli,t xi i ∈M, t ∈ T

cphi,t + cγMt ≥ −ĉhi,t xi i ∈M, t ∈ T

In addition to these constraints, we have the constraints that were originally in the problem before

reformulation and sign constraints:

xi ∈ {0, 1}n, i ∈ I,

pli, p
h
i , cp

l
i,t, cp

h
i,t ≥ 0, i ∈ I, t ∈ T,

zli, z
h
i , cz

l
i,t, cz

h
i,t ≥ 0, i ∈ I, t ∈ T,

γLl , γ
M
l , γLl , γ

M
l ≥ 0, i ∈ I, t ∈ T,
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4.2. THE MULTI-RANGE ROBUST OPTIMIZATION MODEL

The complete formulation is given by:

max
∑
i∈I

pi −
∑
i∈I

(
zli + zhi

)
− ΓLl γ

L
l − ΓMl γMl − ΓL γL − ΓM γM

s.t. max
c∈P2

c′x ≤ B

pli + pi − γLl − zli ≤ NPV
l
i xi i ∈ L

phi + pi − zhi ≤ NPV
l
i xi i ∈ L

pli + γL ≤ N̂PV
l

i xi i ∈ L

phi + γL ≤ N̂PV
h

i xi i ∈ L

pli + pi − γMl − zli ≤ NPV
l
i xi i ∈M

phi + pi − zhi ≤ NPV
l
i xi i ∈M

pli + γM ≤ N̂PV
l

i xi i ∈M

phi + γM ≤ N̂PV
h

i xi i ∈M

x ∈ {0, 1}n.

(4.8)

Note that we no longer have any y binary variable establishing pairwise priorities because deter-

mining an appropriate priority order is straightforward once we have obtained the optimal solution:

any order that ranks the selected ones above the non-selected ones will work. Our robust model is

a deterministic model and finds a single portfolio unlike the stochastic programming model, which

finds separate portfolios for different scenarios but a single ordering for all. Imposing a single pri-

ority order in that problem is, therefore, meaningful in the stochastic programming problem but

redundant in the robust optimization one, since a priority can be inferred from the optimal solution.

Therefore, for the multi-range problem we solve only the Knapsack problem without prioritizing

projects (Model (5.1)) and obtain the priority list through post-processing.
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4.3 Numerical Study

4.3.1 Setup

We follow the setup described in Koc et. al. [46] and have 26 low-risk projects and 15 medium-

risk projects. In the stochastic programming approach, the cost and NPV of a low-risk project are

assigned the pessimistic value with probability 1
6 , the optimistic value with probability 1

6 , and the

most likely value with probability 4
6 . For medium-risk projects these three probabilities become

2
6 , 1

6 and 3
6 , respectively. We use these probabilities to determine the budgets of uncertainty. On

the average 4 or 5 projects out of 26 low-risk projects (26
6 = 4.33) would take the pessimistic

values. Similarly, 4 or 5 of them would take the optimistic values. 5 out of 15 medium-risk projects

(15 · 2
6 = 5) would take the pessimistic values, 2 or 3 of them (15

6 = 2.5) would take the optimistic

values. Because the ranges are constructed so that the nominal value of the low range and the worst-

case value of the high range coincide, we have one degree of freedom in setting the parameters.

We have 10 possible budgets: from $2.5M to $7M, in increments of $0.5M. For each of these

possible budgets, we solve Model (5.1) for three model settings, which can be seen on Table 4.1.

The nominal model is the model where all NPV and cost components will take the most likely

values.

Parameters Model Setting
Project Model Nominal Robust1 Robust2

NPV

ΓLl 26 8 13
ΓMl 15 5 7
ΓL 0 18 13
ΓM 0 13 11

Cost

ΓLl 26 14 13
ΓMl 15 8 8
ΓL 0 8 13
ΓM 0 4 4

Table 4.1: Uncertainty budget combinations.

In the Robust 1 combination, we have 8 low-risk projects in the low range, and the remaining

69



4.3. NUMERICAL STUDY

18 low-risk projects will be in the high range. We want 4 low-risk project to take the pessimistic

values, in line with the probabilities mentioned above. Then, 4 of 8 projects in low range should be

able to deviate from the nominal value. Also, 4 projects might take the optimistic values. It suffices

to assume that 18-4 = 14 projects can deviate from the optimistic value (nominal value of the high

range) and be at the lowest value of the high range, which is also the most likely value. Thus, we set

ΓL = 4 + 14 = 18. Other values and the value in Robust 2 are also assigned in a similar manner,

recalling that we have one degree of freedom to set the budget parameters.

4.3.2 Results

Our focus is to determine whether the multi-range robust optimization approach has potential as a

computational alternative to stochastic programming for this real-life problem. Figure 4.3 compares

the objective function values for Nominal and Robust 1 settings. Right most column on the figure

shows the expected value of the objective function over all budget scenarios. Circle on the rightmost

column is the stochastic model solution reported by Koc et al. [46]. The triangle indicates the

stochastic model solution (4.1) when the solver hit the time limit at 100,000 seconds. We see that

our expected objective function value is very close to the given stochastic model’s. We were able

to reflect the expert knowledge given by the company and got robust solutions which are not very

conservative. Moreover, robust optimization problem gives an optimal solution in less than a second,

while in stochastic case, we could not get the optimal solution in a reasonable time frame. Tables

4.2, 4.3 and 4.4 display the objective function and model statistics for each budget values for three

model settings Nominal, Robust 1 and Robust 2, respectively. The expected NPV is also given for

each setting at the last row of the tables. Expected values are calculated using the probabilities of

each budget and objective of that budget. We see that the nominal setting has the highest expected

return, as expected. The Robust 1 and Robust 2 settings yield an expected NPV as 61.46% and

61.33%, respectively. [46] reports an expected NPV of 60.18%. We observe that our model

solves to optimality in less than a second. Koc et. al. [46] does not report their model’s statistics.

Furthermore, if we do add constraints, such as constraints that create a priority list as part of the
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Figure 4.3: Objective function values of nominal and robust solutions for different budget scenarios.

Budget Objective Time (sec) Iterations Nodes
2.5 52.38 0.51 699 50
3.0 56.34 0.39 618 15
3.5 59.51 0.30 604 12
4.0 60.66 0.23 645 16
4.5 60.95 0.31 653 10
5.0 62.73 0.27 630 29
5.5 64.71 0.20 613 12
6.0 65.16 0.25 631 21
6.5 77.34 0.37 639 20
7.0 80.38 0.22 578 5

Average 66.75

Table 4.2: Model results for Nominal uncertainty budget combinations

optimization problem, our solution time is only of the order of 1-2 seconds, as shown in Table 4.5.
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Budget Objective Time (sec) Iterations Nodes
2.5 50.91 0.17 538 42
3.0 52.43 0.38 708 67
3.5 57.31 0.21 464 11
4.0 58.89 0.22 435 12
4.5 59.69 0.11 431 8
5.0 59.92 0.19 436 9
5.5 61.53 0.17 460 31
6.0 63.22 0.22 399 6
6.5 63.88 0.21 382 6
7.0 64.13 0.20 412 16

Average 61.46

Table 4.3: Model results for Robust 1 uncertainty budget combinations.

Budget Objective Time (sec) Iterations Nodes
2.5 50.82 0.27 636 44
3.0 52.31 0.40 1050 108
3.5 57.19 0.41 681 13
4.0 58.76 0.18 547 21
4.5 59.56 0.25 452 8
5.0 59.78 0.26 477 9
5.5 61.40 0.26 538 37
6.0 63.09 0.44 634 10
6.5 63.73 0.26 377 5
7.0 63.97 0.21 485 19

Average 61.33

Table 4.4: Model results for Robust 2 uncertainty budget combinations.

4.4 Robust Pricing

4.4.1 Introduction

Firms discount for many reasons. To increase sales and profit or to attract customers are among

these reasons. Increasing profit might be in the form of reducing loss here. The relationship between

price and demand of a good leads to classification of goods into substitutes or complements. If a

company increases the price of a substitutable good, it is going to loose some of its customers

to a competitor. In other words, an increase in price will result in an increase in demand for its

substitute goods. Therefore, companies may choose to go to discounts on prices of these good. In
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Budget Objective Time (sec) Iterations Nodes
2.5 50.82 1.16 1725 30
3.0 52.31 1.48 3354 81
3.5 57.19 0.75 1379 15
4.0 58.76 0.75 1667 17
4.5 59.56 0.54 1582 11
5.0 59.78 0.53 1367 8
5.5 61.40 2.42 2449 43
6.0 63.09 1.04 1472 19
6.5 63.73 1.11 1245 17
7.0 63.97 0.62 1089 6

Average 61.33

Table 4.5: Model with prioritization results for Robust 2 uncertainty budget combinations.

this chapter, we consider this pricing problem that firms face from a robust optimization point of

view and formulate mathematical models that rely on our multi-range robust optimization, which

was explained in Chapter 3.

We can divide this chapter into two parts: In the first part there are n substitutable goods we

are selling and we have a one competitor that sells the same goods. We do not know how much

discount our competitor will do and our demand depends on our price and our competitor’s price.

We are trying to set our price such that our revenue is maximized. In the second part of the section,

we are selling n substitutable goods and we have m competitors. One important point here is that

we do not assume strategic response on the part of the competitors. We are interested in a worst

case analysis.

4.4.2 N Goods, 1 Competitor

We mentioned that our goal is to maximize our revenue. Let linear market demand be represented

by:

Di = ai − βipi + αiqi + εi

where βi and αi are the sensitivity of the demand function for a given price for good i and qi is our

competitor’s price of good i. Di is demand we see for our good i and εi is the uncertainty on our
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Figure 4.4: Change in demand and revenue with respect to price change

demand that is affected by competitors price. In Figure (4.4), we see how our demand and revenue is

affected by our price and our competitors price. Our objective function is to maximize our revenue,

which is

max
pi

n∑
i=1

Dipi = max
pi

n∑
i=1

(ai − βipi)pi +
n∑
i=1

(αiqi + εi)pi

Competitors’ selling prices are uncertain. Assume that we expect the competitor would have |K|

possible values to discount and for each price setting, there is some uncertainty on how our demand

will be affected. Competitors low price would decrease our sales. Then, our robust counterpart

problem can be defined as:

max
pi

 n∑
i=1

(ai − βipi)pi + min
y,z∈Q

n∑
i=1

pi

|K|∑
k=1

(αi qi,k yi,k − εi,k zi,k)

 (4.9)

where y ∈ {0, 1} and 0 ≤ z ≤ 1. qi,k is the the selling price of good i in kth price setting or range.

εi,k indicates the uncertain effect of this price setting on demand of i.
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Only one discount setting can be realized at the same time. Therefore we should have

|K|∑
k=1

yi,k = 1 (4.10)

in our constraints set. Moreover, total deviation (uncertainty) is expected to be less than Γ, which is

expressed by the equation

n∑
i=1

|K|∑
k=1

zi,k ≤ Γ (4.11)

and we also assume that Γk products is expected to be sold at price qi,k. That is:

n∑
i=1

yi,k ≤ Γk (4.12)

Equations (4.10), (4.11) and (4.12) forms the constraints set of Q. We can formulate the inner

minimization problem as:

min
∑n

i=1 pi
∑|K|

k=1(αi qi,k yi,k − εi,k zi,k)

s.t.
∑n

i=1 yi,k ≤ Γk, ∀k∑n
i=1

∑|K|
k=1 zi,k ≤ Γ∑|K|

k=1 yi,k = 1, ∀i

zi,k ≤ yi,k, ∀i, k

y ∈ {0, 1}

0 ≤ z ≤ 1

(4.13)

As we have proved in section (3), the constraint set of the problem is Totally Unimodular. We can

use strong duality theorem to re-formulate our robust optimization problem.

We insert the dual of Problem (4.13) into the robust counterpart problem and get the following

75



4.4. ROBUST PRICING

robust pricing model:

max
n∑
i=1

aipi −
n∑
i=1

βip
2
i +

n∑
i=1

ηi −
n∑
i=1

|K|∑
k=1

zi,k −
|K|∑
k=1

γk Γk − Γ γ0

s.t. πi,k + γ0 ≥ pi εi,k, ∀i, k,

πi,k + ηi − γk − zi,k ≤ pi αi qi,k, ∀i, k,

pi, γ
k, γ0, πi,k, zi,k ≥ 0 ∀i, k.

(4.14)

4.4.3 N Goods, M Competitors

In the previous section, we were considering only one competitor. Here, we assume that we have

M competitor and our goal is to set price of N substitutable goods such that it will maximize our

revenue. Our demand function then becomes:

Di = ai − βipi +
m∑
j=1

(αi,jqi,j + εi,j)

Competitor j can decide on how much to discount on product i:

qi,j =

|K|∑
k=1

qi,j,k yi,j,k (4.15)

Thus, our robust counterpart problem in this setting is:

max
pi

 n∑
i=1

(ai − βipi)pi + min
y,z∈Q

n∑
i=1

pi

m∑
j=1

|K|∑
k=1

(αi,jqi,j,k yi,j,k − εi,j,k zi,j,k)

 (4.16)

Normal price range of the product is also among these |K| ranges. Therefore, we say that only one

range (k) should be realized for all goods and for all competitors. That is:

|K|∑
k=1

yi,j,k = 1 ∀i, j (4.17)

76



4.4. ROBUST PRICING

In order to avoid over conservativeness, we assume that a product i will be sold at price level k at

most by ΓCompi,k competitors:

m∑
j=1

yi,j,k ≤ ΓCompi,k ∀i, k (4.18)

We think that parameters ΓCompi,k can be computed using historical data on sold products. In addition

to (4.18) and (4.17), we also have a budget constraint on the total deviation around the expected

demand:

n∑
i=1

m∑
j=1

|K|∑
k=1

zi,j,k ≤ Γ (4.19)

All these constraints (4.17, 4.18, 4.19) constitutes our inner minimization problem (4.20) and they

construct a totally unimodular constraint matrix.

min
∑n

i=1 pi
∑m

j=1

∑|K|
k=1(αi,jqi,j,k yi,j,k − εi,j,k zi,j,k)

s.t.
∑m

j=1 yi,j,k ≤ ΓCompi,k , ∀i, k∑n
i=1

∑m
j=1

∑|K|
k=1 zi,j,k ≤ Γ∑|K|

k=1 yi,j,k = 1, ∀i, j

zi,j,k ≤ yi,j,k, ∀i, k

y ∈ {0, 1}

0 ≤ z ≤ 1

(4.20)

77



4.5. NUMERICAL EXAMPLE

With the replacement of inner minimization model in Problem (4.16) with its dual problem, we get

our robust optimization problem (4.21):

max
n∑
i=1

αipi −
n∑
i=1

βip
2
i +

n∑
i=1

m∑
j=1

ηi,j −

n∑
i=1

m∑
j=1

|K|∑
k=1

zi,j,k −
n∑
i=1

|K|∑
k=1

γi,k ΓCompi,k − Γ γ0

s.t. πi,j,k + γ0 ≥ pi εi,j,k ∀i, j, k,

πi,j,k + ηi,j − γCompi,k − zi,j,k ≤ pi αi,j qi,j,k, ∀i, j, k,

pi, γ
Comp
i,k , γ0, πi,j,k, zi,j,k ≥ 0 ∀i, j, k.

(4.21)

4.5 Numerical Example

4.5.1 N Goods, 1 Competitor

For the N Goods, 1 Competitor setting, we have price levels for N products and we only consider

1 competitor. Our competitor can have k different price setting for a product, representing different

sale or promotion levels. In this case, we have 10 products and each product has 4 price levels. We

first randomly generated the market price of the products, then we generated 4 different sale prices.

Not all the price levels are smaller then the market prices. We also set one lever that is higher than

the market price level. We assume βi is 1 for all products and we randomly generated α values

between 0.5 and 2. We found a values by taking the derivative of the revenue function and equating

it to zero after replacing competitor prices by the randomly generated market values.

We wrote the model in GAMS and solved it using the solver CONOPT. Figure (4.5) shows the

histogram of revenues compared for the nominal case (when the competitor matches the market

prices for all products, that is we assume known competitor prices) and the robust case. In robust

case, we have a Γ value that indicates the number of products that will appear in a given price level.

We see that both histogram plots are very close to each other. Nevertheless, robust solution has

higher revenue in the lower percentiles. For example, robust solutions offers 0.3 and 0.2 percent
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Figure 4.5: Histogram of revenues in N Goods 1 Competitor setting

higher revenue at 5th and 10th percentiles. This increase is important depending on the size of

revenue. Moreover, note that this increase is the result of setting prices and it does not incur extra

cost.

Figure (4.6) displays our and competitor’s prices for each product. Small circles represents the

price levels for the products. We see that we mostly set prices to their low values and most of

the time we either match or be under the competitors price. For products 3 and 10 however, our

prices are higher than the competitor’s. We found the robust price that maximized our revenue, and

sometimes, this may correspond to higher prices.

4.5.2 N Goods, M Competitors

In this case we haveN goods andM competitors. Each competitor has different price levels for their

each product. We have 10 goods, 10 competitors and 3 price levels. All parameters are randomly

generated except a, which is found by taking the derivative of the revenue function and setting it to

zero. Figure (4.7) shows the histogram of revenues. Robust problem offers 0.7%, 0.5% and 0.4%
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Figure 4.6: Price matching in N Goods 1 Competitor setting
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Figure 4.7: Histogram of revenues in N Goods M Competitor setting

higher revenue at 1st, 5th and 10th percentiles, respectively. Figure (4.8) displays the competitors’s

and ours price for the optimal robust solution. For clarity of the graph, we did not display the
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Figure 4.8: Price matching in N Goods M Competitor setting

possible price levels for each competitor and product. The squares represents the competitors’ price

and the circles are our price.

4.6 Conclusion

In this section, we show two possible applications of multi range robust optimization. First, we have

shown how to implement multi-range robust optimization as a tractable alternative to stochastic

programming, by selecting the budgets of uncertainty appropriately to match (the rounded values

of) the expected number of times that the uncertain parameters will take their optimistic, most likely,

pessimistic values. We have also shown how to improve solution time of the stochastic programming

approach by using post-processing. Numerical results are very encouraging.

Second, we have shown how to apply multi range robust optimization on pricing decisions,

when our demand depends on a linear function of our price and our competitors’ price. We have
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shown two examples; where we have N goods and 1 competitor, and N goods and M competitors.

In both cases, we were able to increase our revenue slightly compared to deterministic approach.
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Chapter 5

Robust Optimization with Chance

Constraints

5.1 Introduction

So far, we have used robust optimization techniques to represent the uncertainties in parameters;

specifically, we have extended the robust optimization approach with polyhedral sets of Bertsimas

and Sim [24] to the case where parameters can belong to disjoint ranges and the number of pa-

rameters that can belong to a type of range (e.g., low or high) is bounded. Intuitively, polyhedral

uncertainty sets are more appealing in robust integer optimization because robust counterparts of

linear problems remain linear (Bertsimas and Sim [23]), while ellipsoidal sets lead to nonlinear

formulations (Ben-Tal and Nemirovski [9]), with clear drawbacks in an integer framework. On the

other hand, it is legitimate to ask whether some of these sets offer a close connection to real-life ran-

domness, and in particular probabilistic statements, which would further strengthen the relevance

of the robust optimization methodology.

Providing an intuitive interpretation of uncertainty sets has always been of importance to oper-

ations researchers: for instance, Bertsimas and Sim [23] connects the choice of a key parameter in

their approach called the budget of uncertainty with a probability of constraint violation, which has
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played a significant role in the adoption of their approach by practitioners. More recently, Ben-Tal

et. al. [6] have described in detail a process where a “safe tractable approximation” of probabilistic

constraints leads to a robust optimization approach where the uncertainty set is determined by the

chosen approximation and the probability level.

Safe tractable approximations, the most famous of which is the Bernstein approximation, are

motivated by the fact that incorporating a chance constraint to a problem usually creates significant

computational difficulties if the random variables do not obey a Normal distribution, as it requires

multivariate integration within the optimization problem. Ben-Tal et. al. [6]’s idea is that the proba-

bilistic constraint should be replaced by a more tractable constraint that, when satisfied, guarantees

that the original probabilistic statement is satisfied too (hence, is “safe”). While we will study the

case of jointly Normal distribution for comparison purposes, a key assumption of our setup is that

we do not know precisely the underlying distributions of the random variables, so we will study

tractable bounds which approximate the chance constraints, using the safe tractable approximation

framework. Our goal in the present paper is to investigate the theoretical and algorithmic insights

we gain from this approach in the special case where decision variables are binary.

The contributions of this paper are as follows:

• We show that the safe tractable approximation (called Bernstein approximation) to binary op-

timization problems is equivalent to a deterministic problem with modified cost coefficients,

which only depend on problem data and one extra coefficient.

• We consider two cases: (i) when the uncertain parameters obey a jointly Normal distribution,

which allows us to demonstrate the insights we can gain in the simplest setting when we

know, in closed form, both the distributions of the uncertain parameters and of the objective

function, (ii) when we only know the first two moments and the support of the distributions

of the uncertain parameters. Our conclusions are valid for both.

• We investigate an iterative approach to address the risk of over-conservatism of the safe
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5.2. THE SAFE TRACTABLE APPROXIMATION

tractable approximation approach, which arises because the methodology uses Markov’s In-

equality for non-negative random variables, admittedly an unsophisticated bound connecting

tail percentile with expected value.

• We compare our approach in numerical experiments with the one proposed by Bertsimas and

Sim [23], also for binary optimization problems with uncertain coefficients but for a different

modeling of uncertainty when probability distributions are not known, and argue that, while

solution quality is comparable, the solution times in our approach are substantially smaller.

The remainder of this chapter is structured as follows: in Section 5.2, we investigate the problem-

specific formulations and properties that result from having binary decision variables in the one-

range case, while Section 5.5 extends our framework to the case with multiple ranges. Finally,

Section 5.6 contains concluding remarks.

5.2 The Safe Tractable Approximation

Consider the following maximization problem where the objective function parameters are uncer-

tain:

max c′x

s.t. x ∈ X ⊆ {0, 1}n,
(5.1)

Because the vector c is not known precisely, our goal here will be to maximize the greatest parameter

A such that:

P

(
n∑
i=1

cixi < A

)
≤ ε, (5.2)

for 0 < ε < 1/2. We will assume at first that the random coefficients are independent, and will

relax this assumption in Section 5.5.

When distributions are continuous, A can be interpreted as the ε-quantile of c′x. We use a strict

inequality in Eq. (5.2) to better align ourselves with the approach description in Ben-Tal et. al. [6].
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5.2.1 Special Case: Normally Distributed Parameters

Exact Reformulation

Theorem 5.1 (Exact Reformulation for Gaussian uncertainty) Assume c ∼ N (µ,Σ). Then Prob-

lem (5.1) can be reformulated as:

max µTx+ Φ−1(ε)||Σ
1
2x||2

s.t. x ∈ X ⊆ {0, 1}n.
(5.3)

Proof. Since c ∼ N (µ,Σ), we have c′x ∼ N (µTx, xTΣx). Eq. (5.2) can then be reformulated as:

Φ

(
A− µTx√
xTΣx

)
≤ ε.

This yields:

µTx−A ≥ −Φ−1(ε)||Σ
1
2x||2. (5.4)

The greatest such A is then:

Amax = µTx+ Φ−1(ε)||Σ
1
2x||2,

which yields Problem (5.3). This is a nonlinear binary problem, for which we discuss solution

techniques in Section 5.2.1.

Bernstein Approximation

We can use the exact reformulation (5.3) to gain insights into the quality of the Bernstein approxi-

mation framework described in Ben-Tal et. al. [6]. Specifically, we have:
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Theorem 5.2 (Bernstein Approximation for Gaussian uncertainty) A lower bound on the opti-

mal objective of Problem (5.1) is provided by the optimal objective of:

max
θ≥0

ln ε

θ
+ max

x

n∑
i=1

(
µi −

1

2
θσ2

i

)
xi

s.t. x ∈ X ⊆ {0, 1}n,

(5.5)

which, at θ given, is a binary optimization problem.

Proof. In line with Ben-Tal et. al. [6], Eq. (5.2) can be written as, with θ > 0:

P

(
−θ

n∑
i=1

cixi > −θA

)
= P

(
exp

{
−θ

n∑
i=1

cixi

}
> exp{−θA}

)
≤ ε. (5.6)

Since the exponential function is a nonnegative and nondecreasing function, we can invoke Markov’s

Inequality, leading to:

P

(
exp

{
−θ

n∑
i=1

cixi

}
> exp{−θA}

)
≤
E[exp{−θ

∑n
i=1 cixi}]

exp{−θA}
. (5.7)

Under the assumption that the random parameters are independent, the right-hand side of Eq. (5.7)

can be reformulated as:

exp{θA}
n∏
i=1

E[exp{−θcixi}] = exp{θA}
n∏
i=1

exp

{
−θµixi +

1

2
θ2σ2

i xi

}
,

where we have used the expression of the moment generating function for Gaussian random vari-

ables and the fact that xi is binary for all i, so that x2
i = xi for all i.

Therefore, it is sufficient for Eq. (5.2) to be satisfied to have:

θA+

n∑
i=1

(
−θµixi +

1

2
θ2σ2

i xi

)
≤ ln ε. (5.8)

Reinjecting the upper bound on A yields Problem (5.5).
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Comments:

• The robust model (5.5) can be interpreted as a deterministic problem with modified cost co-

efficients with only one extra parameter, θ, and no new constraints.

• The coefficients in Problem (5.5) decrease from their nominal value by an amount propor-

tional to the parameter variance, rather than standard deviation.

• The advantage of Problem (5.5) is that it is linear and thus more tractable than Problem (5.3)

due to its structure. It is legitimate, however, to ask how good (tight) of an approximation this

leads to, since Markov’s inequality is a very simple bound. We explore this topic in Section

5.2.3.

Solution Approaches

We can solve Problem (5.5) in several different ways:

i. as a mixed integer nonlinear problem.

ii. as a sequence of integer linear problems, by solving iteratively and updating θ values. We

start (step 0) with θ = θ0 (small but positive); at each step, we solve Problem (5.5) at θ given,

obtaining the optimal solution xk. Then, using the first derivative condition at xk given and

using the fact that f(·, xk) is concave, we derive the next θk+1 value in closed form:

θk+1 =

√√√√√ −2 ln ε∑
i

σ2
i x

k
i

.

We inject θk+1 back into Problem (5.5) and find the new solutions xk+1. We continue until

we get the same solution in two consecutive iterations. While we cannot formally prove that

this scheme converges to the global optimal solution, it converges very rapidly to the solution

we get when we solve the problem as a mixed integer nonlinear problem and as a piecewise

linear problem.
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iii. as a piecewise linear approximation to the original problem, by considering a piecewise linear

approximation to
ln(ε)

θ
and modeling the full problem as a mixed integer linear problem.

Assume we have m linear sections and sj is the slope of section j = 1, . . . ,m. (We can

increase the tightness of the approximation by increasing the number of pieces, m.) Model

(5.9), explained below, is a mixed integer approximation to Problem (5.5).

max

m∑
j=1

sjuj +
ln(ε)

θmin
+

n∑
i=1

µixi −
1

2

n∑
i=1

yiσ
2
i

s.t. x ∈ X ⊆ {0, 1}n,

yi − θ ≥ −M(1− xi), ∀i

θ =
m∑
j=1

uj + θmin

0 ≤ uj ≤ θj − θj−1, ∀j

θ ≥ 0,

yi ≥ 0 ∀i.

(5.9)

θj indicates the breakpoints of linear sections. θmin is the smallest value θ can take. We

replaced θ · xi by yi in the objective function to linearize. M in the constraints indicates a

large value. For instance, we can assign M =

√
−2 ln(ε)

σmin
with σmin the smallest variance

in the data set. When xi = 1, yi will take the value of θ. When xi = 0, yi will take value 0

since we are maximizing and y has a negative sign in the objective function.

Example. We solved Problem (5.5) as a nonlinear problem, as a piecewise mixed integer problem

(Problem (5.9)) and iteratively using randomly generated data with different sizes for a knapsack

problem. The data is generated using normal or uniform generation functions with different mean

and standard deviations. Table (5.1) shows the sizes of each different data sets and their respective

solution time for each solution method. For all data sets the solutions converged to the same (x, θ)

at each solution method. We used CPLEX for the piecewise MIP and iterative MIP models and

BARON for nonlinear model, We observe that, in every instance we generated, iterative model finds
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n Nonlinear Piecewise Iterative
Data Set 1 80 0.74 0.19 0.05
Data Set 2 100 2.12 0.27 0.06
Data Set 3 100 0.58 0.22 0.16
Data Set 4 100 2.89 0.61 0.33
Data Set 5 200 3.03 0.23 0.17
Data Set 6 300 1431 0.50 0.25
Data Set 7 400 81.18 0.34 0.19
Data Set 8 500 3696.10 0.50 0.18

Table 5.1: Average solution time in seconds

the optimal θ in the second iteration and total time elapsed for both iterations is less than the solution

time for both the nonlinear and piecewise models.

5.2.2 General Case: Formulation Based on Moment Information

We now are interested in deriving a deterministic tractable counterpart to the binary optimization

problem with binary optimization when only a limited amount of information is known: the mean,

distribution and support of each uncertain parameter. We use the linear semi-infinite optimization

approach of Bertsimas and Popescu ([21], [22]) in order to find bounds on the right-hand side of Eq.

(5.7) after invoking the independence of the coefficients. Therefore, we are interested in a (tight)

bound for E[exp{−θc}] for all probability distributions of given mean, variance and support.

Theorem 5.3 The random parameter c comes from a symmetric uncertainty set with c̄ = µ, ĉ =

mσ for m > 0. Then,

max
f∈π

Ef [exp{−θc}] = exp{−θc̄} exp{−θĉ}
(

1 + θĉ+
(m2 + 1)

m2

θ2ĉ2

2

)
. (5.10)

Proof. The expected value of c with probability distribution function f(c) is given by

E[c] =

∫ c+

c−
cf(c)dc
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Then, we have

E[exp{−θc}] =

∫ c+

c−
exp{−θc}f(c)dc

The upper bound problem of E[exp{−θc}] can be formulated as the following optimization prob-

lem:

max
∫ c+
c− exp{−θc}f(c)dc

s.t.
∫ c+
c− f(c)dc = 1∫ c+
c− cf(c)dc = µ∫ c+
c− c

2f(c)dc = µ2 + σ2

f(c) ≥ 0, ∀c ∈ [c−, c+]

(5.11)

µ and µ2 + σ2 are the first two moments of the distribution. We write the dual of Problem (5.11):

min α+ µβ + (µ2 + σ2)γ

s.t. α+ cβ + c2γ ≥ exp{−θc} ∀c ∈ [c−, c+]
(5.12)

This is a minimization problem with “greater-than-or-equal-to” inequality constraints. We look for

a feasible solution that will make our bound as tight as possible. Let the constraint will be tight at

c− and c̃, where c̃ ∈ [c−, c+] and c̃ = c̄ + aĉ where −1 ≤ a ≤ 1. The slopes of the two functions

α+ cβ + c2γ and exp{−θc} will be equal either at c− or at c̃. Thus:

α+ c−β + (c−)2γ = exp{−θc−}

α+ c̃β + (c̃)2γ = exp{−θc̃}

Case 1: The tangency condition at c− is written as:

β = −θ exp{−θc−} − 2c−γ

We write α and β in terms of γ and θ and inject them in the objective function to get the objective
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function when the constraint is tight at lower bound;

Objc− = exp{−θc−} − θĉ exp{−θc−}+
m2 + 1

m2 ĉ2γ

Case 2: When the functions are tangent at c̃, we obtain:

Objc̃ = exp{−θc̃}+ θĉ exp{−θc̃}+
m2a2 + 1

m2 ĉ2γ

We get the following objective function when we insert the value of γ in terms of c− and c̃;

Obj = exp{−θc̄} exp{−θaĉ}{1 + θaĉ+
m2a2 + 1

m2 ĉ2γ}

Since we are minimizing the dual problem (5.12), we take an a value that minimizes the function

above, which is a = 1.

The objective function at the lower point of the range will provide the tightest bound for our

probability, yielding Eq. (5.10).

Let define the function F as:

Fθ(m, ĉ) =

(
1 + θĉ+

(m2 + 1)

m2

θ2ĉ2

2

)
, (5.13)

so that:

max
f∈π

Ef [exp{−θc}] = exp{−θc+}Fθ(m, ĉ).

Theorem 5.4 (Robust Problem with Bernstein Approximation) The robust counterpart of Prob-

lem (5.1) is:

max
θ≥0

ln ε

θ
+ max

n∑
i=1

(
c+
i −

1

θ
ln Fθ(m, ĉi)

)
xi

s.t. x ∈ X ⊆ {0, 1}n.
(5.14)
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where F is defined in Eq. (5.13) and c+
i = ci + ĉi is the upper bound of the uncertainty range.

Proof. Follows directly from injecting Eq. (5.10) of Theorem 5.3 into Eq. (5.7):

exp{θA}
n∏
i=1

E[exp{−θcixi}] ≤ exp{θA}
n∏
i=1

exp{−θc+
i xi}Fθ(m, ĉi xi) ≤ ε. (5.15)

Our new objective function becomes (using that the xi are binary and Fθ(m, 0) = 1 for all m):

f(θ) =
ln ε

θ
+

1

θ

n∑
i

[
θc+
i − ln Fθ(m, ĉi)

]
xi.

Problem (5.14) is a mixed integer nonlinear problem and it is a hard problem to solve in a rea-

sonable time frame. It suffers from computational difficulties when we try to optimize in x and

θ simultaneously, so we solve Problem (5.14) as a line search problem by computing the optimal

objective for iterated values of θ. An appealing feature of this problem is that for a given θ, the prob-

lem becomes a mixed integer linear problem and it provides the insight that the robust optimization

problem is a nominal problem with modified objective coefficients, specifically, the nominal coeffi-

cients are shifted by an amount proportional to Fθ(m, ĉi) for all i.

5.2.3 An Alternative Formulation for the Knapsack Problem

We mentioned that when the uncertain parameters comes from Normal distribution, we can write

the exact formulation of the uncertainty as in (5.3). In order to test the quality of our approxima-

tion method, after solving Problem (5.5) we computed the objective function of Problem (5.3) and

compared the objective function values. The table below show the objective function values with

respect to each model and the percentage difference between the values. We see that although our

approximation has a close value, due to approximation technique, we might be more conservative

than what we actually want to be. Therefore, we provide an alternative formulation for the problem

and have a better control on the conservativeness of our solutions. When the underlying problem

is a knapsack problem with a single constraint, interpreted as a project selection problem with a
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5.2. THE SAFE TRACTABLE APPROXIMATION

Approximation Exact Formulation % Difference
Data Set 1 5447 5597 2.68
Data Set 2 22068 22380 1.40
Data Set 3 28855 29199 1.18
Data Set 4 29772 30122 1.16

Table 5.2: Objective function values of Model (5.5)–(B&S) and (5.3)–(Exact Formulation)

budget constraint, we can approach the problem from a different perspective and try to minimize

the required investment spending. In this case we will have the chance constraint in the constraint

set. The threshold A we do not want to exceed will be given. This allows us to study the quality of

the Bernstein approximation and adjust the values of εM in the mathematical formulation, so that

the real protection threshold ε is achieved without over-conservatism.

Our problem becomes:

min B

s.t. P

(
n∑
i=1

cixi < A

)
≤ ε

n∑
i=1

CDixi ≤ B

xi ∈ {0, 1},∀i.

(5.16)

The main conclusion is that we can use a higher (sometimes substantially so) uncertainty parameter

εM in the mathematical model to achieve a good protection level (the actual probability of falling

below the threshold A, i.e., the actual ε). This motivates the following procedure: solve the math-

ematical problem, compute the resulting actual ε (protection level), update the model parameter

εM ≥ ε (decreasing it if the actual ε is higher than desired).
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Gaussian case

For the case when we assume the NPV obey a jointly Gaussian distribution, Problem (5.16) can be

approximated (using the Bernstein framework) as:

min B

s.t.
ln ε

θ
+

n∑
i=1

µixi −
1

2
θ

n∑
i=1

σ2
i xi ≥ A

n∑
i=1

CDixi ≤ B

xi ∈ {0, 1}

θ ≥ 0.

(5.17)

The solution methods applied to Problem (5.5) can be applied to Problem (5.17), as well.

If the distribution is Normal, we can compute the actual (realized) protection level after solving

Problem (5.17) to optimality as follows:

εR = Φ

A−∑n
i µixi√∑n

i σ
2
i xi

 .

According to the actual tolerances we compute, we might need to iterate over ε to reduce the over

conservativeness of the model. For example, Table 5.3 shows how different εM values affect the

optimal solution and what real tolerances we obtain for that given εM . Bernstein approximation

framework is protecting the constraint more than desired and it yields over-conservatism. If we set

εM = 0.05 the realized tolerance is 0.00605, which is far smaller than what the decision-maker was

trying to plan for. For tolerances 0.05 or 0.01, εM = 0.3 and 0.05 can be used, respectively. By

using a larger εM , we get smaller objective functions, which means that we are using less budget.

As you can see in Figure 5.1, as we become less conservative, as in case εM = 0.3, we minimize the

required budget. Revenues we get from the εM = 0.3 solution has a mean of 1042.9 and standard

deviation 63.2, while the εM = 0.05 solution hase 1074.91 mean and 62.8 standard deviation.

95



5.2. THE SAFE TRACTABLE APPROXIMATION

εM 0.0004 0.006 0.05 0.08 0.1 0.3 0.4
εR 0.00001 0.00048 0.00605 0.01085 0.01441 0.04286 0.05925
i=1 1 0 1 1 1 1 1
i=2 1 0 0 1 0 1 1
i=3 1 0 1 0 1 0 0
i=4 0 1 0 1 0 0 0
i=5 1 1 0 1 0 1 0
i=6 1 1 1 0 1 0 1
i=7 0 0 0 0 0 0 0
i=8 0 1 1 0 0 1 0
i=9 0 0 0 0 0 0 0
i=10 0 0 0 0 1 0 1
Obj. 516 445 413 410 403 390 445

Table 5.3: Tolerance computations for different εM values: realized tolerances εR and optimal
solutions.
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Figure 5.1: Simulated solutions,
∑n

i=1 cixi for ε = 0.3 and ε = 0.05

General case

We reformulate the problem based on moment information (Problem (5.14)) for this case:

min B

s.t.
ln ε

θ
+

n∑
i

(
c+
i −

1

θ
ln Fθ(m, ĉi)

)
xi ≥ A

n∑
i=1

CDixi ≤ B

xi ∈ {0, 1}

θ ≥ 0.

(5.18)
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In this case, we do not know the distribution that would help us calculate the real tolerances. For

this reason, we use the probability bound (5.15) to see whether the solution we get from Problem

(5.18) satisfies the tolerance we wanted.

Using the solution we get from Problem (5.18), we can compute the mean
n∑
i

c̄ixi and measure

of uncertainty
n∑
i

ĉixi, so we can use the bound below to find an upper bound for the realized

probability:

Ef [exp{−θc}] = exp

{
−θ

n∑
i=1

c̄ixi

}
exp

{
−θ

n∑
i=1

ĉixi

}
Fθ

(
m,

n∑
i=1

ĉixi

)
.

where we have a new value for m, which is;

m =

n∑
i

ĉixi√√√√ n∑
i

σ2
i xi

.

Thus, an upper bound for the realized protection level is

εUp = exp{θ A}Ef [exp{−θc}]

Table 5.4 shows that the bound we get for the corresponding solution lead to smaller realized

tolerances than the decision-maker was willing to have. To reduce the over-conservativeness of the

model, we can set higher εM values than the desired tolerance level and reduce them iteratively.

5.3 Comparison with Bertsimas-Sim model

5.3.1 Setup

Our robust optimization model (5.14) has the appealing feature of being a deterministic linear prob-

lem with modified objective coefficients; however, the approach proposed by Bertsimas and Sim
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εM 0.05 0.1 0.15 0.175 0.2
εUp 0.0092 0.0178 0.0394 0.0473 0.0711
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 1
4 0 0 1 1 1
5 1 1 1 1 0
6 1 1 0 0 1
7 0 0 0 0 0
8 0 0 0 0 0
9 1 1 1 1 0
10 0 0 0 0 0
Obj. 348 348 346 346 338

Table 5.4: Tolerance computations for different ε values for formulation based on moment informa-
tion.

[23] also prove, for a different modeling of the uncertainty based on uncertainty sets, that robust

binary optimization problems with uncertain cost coefficients can also be solved either as a mixed-

integer linear problem (with new constraints and variables) or as a series of binary optimization

problems with modified cost coefficients. Therefore, it is natural to wonder about the relative per-

formance of our approach compared to the Bertsimas and Sim framework.

Bertsimas and Sim [23] model the uncertain coefficients as uncertain parameters in the range

forecast [ci− ĉi, ci+ ĉi] for each i and define Γ ∈ {0, . . . , n}, also called budget of uncertainty, as a

measure of the decision-maker’s conservatism by capturing the number of coefficients that can take

their worst-case values simultaneously. The robust counterpart of the problem in their framework

is:

max

n∑
i=1

c̄i xi − Γz0 −
n∑
i=1

zi

s.t.
n∑
i=1

cdi xi ≤ B

x ∈ X

zi + z0 ≥ ĉi xi, ∀i,

zi, z0 ≥ 0 ∀i.

(5.19)
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We tested the models with 6 sets of randomly generated data using Normal or Uniform distribution.

Size of each data set can be seen on Table (5.5).

5.3.2 Results

We ran model (5.19) for all Γ values from 0 to n for each data set. We ran model (5.14) for 500

iterations where θ values start at 0.01 and are increased by 0.001 in each iteration. Unlike Problem

(5.5), objective function of Problem (5.14) is unbounded for a given x solution (see Figure 5.4).

Therefore, finding an optimal θ is not as easy as in Problem (5.5). We modeled the problems in the

mathematical modeling software GAMS and used IPM ILOG CPLEX 12.2 as our solver. Table 5.5

shows the average solution times of each problem. Problem (5.14) – which we call the D&T model

– takes a shorter time to solve the problem in each data set. This is not surprising since Problem

(5.19) – which we call the B&S model – increases the problem size whereas Problem (5.14) does

not. Solving Problem (5.19) as a series of binary problems increases solution time substantially

further and those numbers are omitted here.

n B&S D&T
Data Set 1 100 0.10 0.07
Data Set 2 100 0.08 0.07
Data Set 3 300 55.59 18.00
Data Set 4 500 78.27 14.36
Data Set 5 1000 176.26 15.64
Data Set 6 100000 Time Limit 119.07

Table 5.5: Average solution time of Models (5.19)–(B&S) and (5.14)–(Non-Gaussian) with respect
to different data sets

We simulated 10,000 instances where each revenue component independently deviates from the

nominal value to lower bound with probability 0.4. Figures 5.2 and 5.3 compare the simulation

results for different solutions on a histogram and cumulative probability distribution. In Figure

5.2 we see that the B&S solution reduces the downside risk the most; however, it is also the most

conservative solution. The D&T solution also reduces the downside risk to some degree but it is

not conservative. As we look at the cumulative distributions of the solutions in Figure 5.3, we
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Figure 5.2: Histogram of Revenues

see that even if the B&S solution had a histogram with small variance, it does not dominate the

nominal solution for all values. The D&T solution dominates the nominal solution and the break

point suggests that it is better than B&S solution 70% of the time.
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Figure 5.3: Cumulative Probability Distributions

We now analyze the sensitivity on θ. Figure 5.4 shows the change in objective function as a

function of θ for Model (5.14). If we look at the sensitivity analysis for θ, we see that it changes

the objective function value significantly when it is small. Numerical results show that the solution
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is not very sensitive to the changes in θ. We observed that we get only 2 or 3 different solutions

in 500 iterations. Therefore, the decision maker is advised to search for different solutions and

chose the one that dominates the nominal solution and other solutions. In the examples we solve,

we see that very small θ values gives the nominal solution, and very large θ values do not always

dominate all the other solutions. A sensitivity analysis would be helpful to find the solution that is

not conservative yet robust.
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Figure 5.4: Sensitivity Analysis for θ

5.4 Chance Constraints for Correlated Data

So far we have assumed that the uncertain data are independent. We now relax this assumption. Let

parameter ci be defined as ci = ci+
∑

j di,jzj where zj’s are independent with mean 0 and standard

deviation 1, and d represents the square root of the covariance matrix of c. This yields:

n∑
i=1

cixi =

n∑
i=1

cixi +

n∑
j=1

(

n∑
i=1

di,j xi) zj . (5.20)

We assume that independent random variables zi fall within a given range [−bi, bi]. Both robust

optimization models (with and without Gaussian assumption) can easily extended to the case where
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we have data correlation.

5.4.1 Correlated Data with Gaussian Assumption

We reformulate the right hand side of Eq. (5.7):

E[exp{−θ
∑n

i=1 cixi}]
exp{−θA}

= exp{θA}
n∏
i=1

E[exp{−θxi(ci +
∑
j

di,jzj)}] (5.21)

= exp{θA}
n∏
i=1

exp{−θxici}
∏
j

E[exp−θxi di,j zj ] (5.22)

≤ exp{θA}
n∏
i=1

exp{−θxici}
∏
j

exp{0 +
1

2
θ2 xi d

2
i,j} (5.23)

= θA−
∑
i

θxici +
∑
i

∑
j

(
1

2
θ2 xi d

2
i,j

)
≤ ln ε (5.24)

Eq. (5.24) is due to the (0, d2
i,j) mean and variance of random variable di,j zi.

Then the objective function f(θ, x) becomes:

f(θ, x) =
ln ε

θ
+
∑
i

ci xi −
θ

2

∑
i

∑
j

di,j xi. (5.25)

5.4.2 Correlated Data without Gaussian Assumption

Theorem 5.3 shows that:

max
f∈π

Ef [exp{−θc}] = exp{−θc̄} exp{−θĉ}
(

1 + θĉ+
(m2 + 1)

m2

θ2ĉ2

2

)
.

where c is a random variable that comes from a symmetric uncertainty set with mean c, range

[c−, c+] and ĉ = c− c−. Consider Eq. (5.22). From Theorem 5.3, we know that

max
f∈π

Ef [exp{−θdz}] = exp{−θd̄z} exp{−θd̂z}

(
1 + θd̂z +

(m2 + 1)

m2

θ2d̂z
2

2

)
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where d̄z = 0, d̂z = db and m =
b

d
. In other words, we have

max
f∈π

Ef [exp{−θdz}] = exp{−θdb}
(

1 + θdb+ (b2 + d2)
θ2d2

2

)
.

Let

Fθ(
b

d
, dz) =

(
1 + θdb+ (b2 + d2)

θ2d2

2

)
If we continue to Equation (5.22)

E[exp{−θ
∑n

i=1 cixi}]
exp{−θA}

= exp{θA}
n∏
i=1

exp{−θxici}
∏
j

E[exp−θxi di,j zj ] (5.26)

≤ exp{θA}
n∏
i=1

exp{−θxici}
∏
j

exp{−θdij bjxi}Fθ(
bi
dij
, dijzj) (5.27)

= θA− θ
n∑
i=1

xici +
n∑
i=1

n∑
j=1

[
−θdijbj + ln

(
Fθ(

bi
dij
, dijzj)

)]
xi

(5.28)

Then, the objective function of the robust problem when data are correlated becomes:

f(θ, x) =
ln ε

θ
+

n∑
i=1

ci xi +

n∑
i=1

n∑
j=1

[
di,j bj −

1

θ
Fθ(

bi
dij
, dijzj)

]
xi (5.29)

5.5 Chance Constraints for Multi-Range Uncertainty

Now, we will extend our model to multiple ranges of uncertainty. We keep the same notation as in

the previous chapter; in particular, range k for coefficient i is denoted [ck−i , ck+
i ]. The probability

of the i-th coefficient falling into the k-th range (high, low, medium) is denoted pki .
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5.5.1 Special Case: Normally Distributed Parameters

Assume that the parameters are independent and Normally distributed. Consider the Markov’s

Inequality exp{θA}
∏n
i=1E[exp{−θcixi}] ≤ ε but this time we have

E[exp{−θcixi}] =

K∑
k=1

pkiE[exp{−θcki xi}|ci = cki ], (5.30)

where the conditioning occurs over the K possible ranges. This can be bounded by (using xi

binary):

E[exp{−θcixi}] ≤
K∑
k=1

pki exp

(
−θµki xi +

1

2
θ2σ2

i,kxi

)
.

We substitute this bound in place of E[exp{−θcixi}] and get a new equation;

θA+
n∑
i

ln

[
K∑
k=1

pki exp

(
−θµki xi +

1

2
θ2σ2

i,kxi

)]
≤ ln ε

Our robust optimization model becomes:

max
ln ε

θ
− 1

θ

n∑
i=1

xi ln

[
K∑
k=1

pki exp

(
−θµki +

1

2
θ2σ2

i,k

)]
s.t. x ∈ X ⊆ {0, 1}n,

θ ≥ 0.

(5.31)

Again, at θ given, the robust model is a nominal model with modified objective coefficients.

Figure 5.5 below shows the graph of coefficients when i = 1, 2, 3 as a function of θ. For all

coefficients, we find θi that minimizes the coefficient in front of xi. This yields n values of θ. We

solve Model (5.31) for all these θ values and determine the θ that maximizes our model, which is

denoted θ̃. If the solution (in x) did not change between θ̃ and its 2 neighbor θ values, then we

found the optimal solution. If the solution changes, we resolve the model using the average of 2

consecutive θ values as our new θ. We continue to resolve the model using the average of θ that

maximizes the model and its 2 consecutive values until we obtain the same solution.
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Figure 5.5: Coefficient of xi when i = 1, 2, 3.

5.5.2 General Case: Formulation Based on Moment Information

We can easily extend inequality (5.30) to find bounds using Theorem 5.3. If we combine the bound

found in Theorem 5.3 with Eq. (5.30), we obtain:

E[exp{−θcixi}] ≤
K∑
k=1

pki exp{−θcki }F (m, ĉki ).

Now, we insert this equation into Markov’s Inequality:

exp{θA}
n∏
i=1

(
K∑
k=1

pki exp{−θcki }F (m, ĉki )

)
≤ ε,

or equivalently, using xi binary for all i:

max
ln ε

θ
− 1

θ

n∑
i

xi ln

(
K∑
k=1

pki exp{−θcki }F (m, ĉki )

)
s.t. x ∈ X ⊆ {0, 1}n.

(5.32)

Histogram 5.7 illustrates the benefit of using a finer description of uncertainty, as allowed by a
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Figure 5.6: Comparison of histograms for robust and nominal models.

two-range robust optimization model, rather than a single-range one.

Figure 5.7: Comparison of histograms for one-range and two-range models.
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5.6 Conclusions

In this chapter, we have investigated the connection between robust optimization and probabilistic

models when decision variables are binary, incorporating various amounts of distributional infor-

mation into the problem formulation. The approach further motivates the use of robust optimiza-

tion problems with a linear structure; we have shown that the robust counterparts are deterministic

problems with modified objective coefficients, which depend on a new parameter introduced in the

Bernstein approximation. We could easily incorporated the case when there is a correlation be-

tween projects. The comparison between our approach and the robust discrete optimization model

of Bertsimas and Sim shows that our solution quality is comparable to theirs while our approach is

significantly faster.
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