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ABSTRACT

In this study, the basic axisymmetric crack problem in a nonhomogeneous semi-
infinite medium with continuously varying elastic properties is examined. The problem is
encountered in studying the fracture mechanics of functionally graded materials which are
mostly two-phase particulate composites with continuously varying volume fractions. The
objective of this study is to determine the effect of the material nonhomogeneity
parameters on the stress intensity factors in functionally graded materials containing an

axisymmetric crack parallel to the surface.

Using Hankel] integral transforms for the displacements in the axisymmetric crack
problem, the mixed boundary conditions are analytically reduced to a system of dual
integral equations, and then, by a systematic approach, to a system of singular integral
equations. After converting the system of singular integral equations to a system of
functional equations, such physically important quantities as stress intensity factors and
crack opening displacements are obtained numerically by using certain approximate

techniques.




Chapter 1

Intljoduction

1.1 Introduction

The various forms of composites and bonded materials have always been widely
used in technological applications such as power generation, transportation, aerospace,
and microelectronics. However, for the demands of future technologies, the use of
homogeneous materials and standard composites is becoming more and more difficult so
that a greater emphasis in current research is placed on material design; more specificaly,
on developing new materials or material systems tailored for specific applications.
Increasing concerns with mechanical failure initiating at the interfacial regions require a
better understanding of the interaction between flaws that may exist in these regions and
applied loads and the other enviromental factors. The conventional approach of studying
the thermomechanics of such materials is based on the assumption that the composite
medium is piecewise homogeneous and the flaws may be represented by plane cuts or

cracks. On the other hand, in most bonded materials the interfacial region appears to have
2




a structure which is generally different than that of the adjacent materials. In many cases,
such as in plasma spray coating, sputtering, ion plating and in some diffusion bonded
materials, the thermomechanical properties of the region are graded in the sense that the
interfacial region is a nonhomogeneous continuum of finite thickness with very steep

property gradients.

In the 1980's the concept of functionally graded materials (FGMs) was proposed in
Japan to process thermal barrier coatings that may be used to shield the high temperature
components of the space plane. FGMs for this application are composite materials with a
gradual compositional variation from ceramic to metal from one surface to the other.
These continuous changes result in property gradients which can be adjusted by
controlling the composition. In this sense, material property grading is just another means
to get optimal performance from the material. Generally, the objective of the optimal
design is to provide such properties as sitiffness, strength, toughness, ductility, hardness
and wear, corrosion and temperature resistance wherever needed in the structural
component. In this respect the concept of FGM provides the engineer with a highly
versatile tool. One of the important potential applications of FGMs is, for example, their
use as an interfacial zone in bonding dissimilar materials. By eliminating the abrupt change
in thermomechanical properties along the interface through property grading, it is possible
not only to reduce or eliminate the stress concentrations but also to increase the bonding

strength quite considerably. [1]-[9]

In this study the axisysmetric crack problem for a nonhomogeneous elastic half
space is considered. It is assumed that the external loads as well as geometry are

axisymmetric. A brief review of the fracture problems in conventional composite materials

3




may be found in [10]. Delale and Erdogan considered the crack problem for a
nonhomogeneous plane [11] and the interface crack in a nonhomogeneous medium [12].
The axisymmetric crack problem for a nonhomogeneous infinite medium and two semi-
infinite homogeneous half-spaces bonded through a nonhomogeneous interfacial zone

were considered by Ozturk and Erdogan [13]-[14].

In this study, it is assumed that the shear modulus is a function of 2 approximated
by
p(z) = poexp(ez).

This is a simple simulation of materials and interfacial zones with intentionally or naturally
graded properties. With the application to fracture mechanics in mind, the main result
given in this study are the stress intensity factors as a function of the nonhomogeneity
parameter o and the dimensionless length parameter i /a for various loading conditions.

Some sample results showing the crack opening displacements are also given.

1.2 The Organization

The statement of the problem and the description of the geometric and material
parameters used in this study are given in Chapter 2 which includes formulation of the
problem by using the governing differential equations and the boundary conditions. The
solution of the differential equations and the derivation of the dual integral equations are
given in Chapter 3. In Chapter 4 the numerical procedure used in this study is described.

The results of this study which consist of crack opening displacements, normalized stress

4




intensity factors and the effect of Poisson's ratio on stress intensity factors are given in
Chapter 5. Finally, some analytical details, including the asymptotic examination of the

kernels are given in the Appendices.




Chapter 2

Formulation of the Problem

p=poexp(az)

Figure 2.1: Crack geometry and notation
Consider the axisymmetric crack problem in a nonhomogeneous semi-infinite medium. It is
assumed that the elastic moduli are functions of z only and are given by
1(z) = poexp(az), A(2) = Aoexp(0z). (2.1)

From the kinematic relations and the Hooke's law for the axisymmetric problem the

nonzero stress components may be expressed as
6



= 2u+ )= gu + A( - ?‘:) (22)
ow = (2 + ,\) + A(Z“ %Z’) (2.3)
O = (2p+/\)%—j +/\(_g_ﬁ+%>’ (2.4)
o, = u(Z—: + %%). (2.5)

where p and A are Lame's constants. In cyclindrical coordinates , the equilibrium

equations are

60'7-,- +laar€ + a0'1':1."
or r 00 0z

1
+ "7:(0-1"7' - 000) + fr = Oa (26)

60’,-9 1 3099 adaz 2
or +,,. o0 + 9z +Tar0 +fr—0 (27)

00,, 10gy, 0o, 1 .
o +r 50 + 57 + orz+fz 0. (2.8)

In the absence of body forces , the equilibrium equations for the axisymmetric problem can

be reduced to

R A G O (29)
0o,, 00, 1 _
S+ 2+ ~on, = 0. (2.10)

Substituting stresses which are found from equations (2.2)-(2.5) into the equilibrium

equations (2.9) and (2.10), the following system of equations can be obtained

v 10u u O*w ou Ow
(’“+1)<F+rar = T 3ron >+(”_ De (5_+'67>

7




v Bw

(k- 1)<6z2 B 6r6z> =0, @11)
%u  1ou OB*w ou u
“*”(araz Tt 5—2) —6- ”">°‘(a_+ :)
ow &%y 0w
et L, - <“‘1><m - %)
B (k—1)[0u _3w _

r 0z or) (212)

where kK =3 — 4y, A/p = 2v/(1 — 2v), v being the Poisson's ratio. Now , to solve the

differential equations (2.11) and (2.12) we use the following Hankel transforms
FGap)= [ ulr,arsi(re)do, 2.13)
0
G(z,p) = / w(r, 2)rJo(rp) dp. (2.14)
0

The functions u(r, ) and w(r, z) are the rand zcomponents of the displacement vector

which are given by the following inverse transformations [15]:
u(r,2) = /0 F(z,p)pJi(rp)dp, . (2.15)
w(r,2) = [ Glapodn(re)do. 216)

where Jp and Jy are the Bessel functions of the first kind. Substituting (2.15) and (2.16)
into (2.11) and (2.12) yields the following system of differential equations with constant

coefficients.




d’F

(k+1)== +a(k— 1)E — (k+1)p*F - 2")%% —a(k —1)pG =0,

dz2 dz

d’G dG
(Iﬁ:+1)d7 +Ol(f€ +1)E —

where the following relationships have been used :

<d2 1d 1 >J1(7.p) = — p2Ji(rp),

dr?  rdr r?

&%+%>h&ﬁ=phﬁm’

d? p 2
g2 J0(rp) = ~(rp) = p°Jo(rp)-

Assuming a solution of the form
F(zp) = Alp)e™,
G(z,p) = B(p)e™,

after substituting (2.22) and (2.23) into (2.17) and (2.18) , we obtain

4
F(z,p) = Ai(p)e™,
k=1

4
G(z,p) = kX_IIBk (p)em™,

where my, (k = 1,2, 3,4) satisfies the following characteristic equation :

(m® +am — p2)2 + (6ap)? =0,

3— K
6—,{_}_1.

The roots of the characteristic equation are given by

my = -;—(—oz+\/oz?+4p2 +4iabp),

dF
(k — 1)p*G + 2p$ +a(3—k)pF =0.

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)




Mo = %( — o —y/a? + 4p? + diabp), (2.28)
mg = —;-( — a++v/a? +4p? — 4iabp), (2.29)
my = %( —a—+/a? +4p? — diabp). (2.30)

From (2.27)-(2.30), it may be seen that

my =g = = (— a+ /a2 +4p? + 4iabp), - (2.31)

my =y = = (— a—1/a? +4p? + 4iabp). (2.32)

N = ORI

The arbitrary unknown functions A (p) and Bi(p) are not independent of each other. The

relationship between them can be found by substituting (2.24) and (2.25) into (2.18) as

follows:

Bk(p) = ak(P)Ak(P), (k =1,2,3, 4) (233)
where

2my + (3 - k)
= — k = 1 .

ak(p) 2P+ZOZ(1+K,)5’ ( ’27374) (2 34)

and
a =43 , Gy =0yq. (2.35)

Using the relationship between Ax(p) and By (p), we find

4
F(z,p) =Y Ai(p)e™, (2.36)
k=1
4
G(2,0) = Y _ar(p)Ar(p)e™* . (2.37)
k=1

10



By observing that R(my,mg) > 0and R(m,,m4) < 0,since both v and wvanish as

r? + 2% — 00, we must delete terms involving As and A4 for z < 0. Thus (2.36) and

(2.37) reduce to

4
Fi(z,p) = ) _Au(p)e™,
k=1

4
Gy (z7 P) = Za‘k (P)Alk (p)emkz’
k=1

Fy(2,p) = As1(p)e™* + Ags(p)e™”,

Ga(2,p) = a1(p)Ag1(p)e™* + as(p) Ags(p)e™*

0<z<h, (2.38)

0<z<h, (2.39)
—00< 2<0, (2.40)
~00< 2<0. (2.41)

The coefficients Ay, and Agj, (k=1,2,3,4), (j = 1, 3), can be obtained by using the

following boundary and continuity conditions
o) (r,h) =0,
oD (r, k) =0,
oD (r,0) = ag) (r,0),

o (r,0) = a2 (r,0),

wD(r,0) —w®(r,0) =0,
u®(r,0) —u®(r,0) =0,
a2 (r,0) = P (r), 0<r<a,
o2 (r,0) = By(r), 0<r<a.

From (2.42),(2.43),(2.4) and (2.5) it follows that

11

a<r<oo,

a<r < oo,

(2.42)
(2.43)
(2.44)
(2.45)
(2.46)

(2.47)
(2.48)

(2.49)




Similarly, from the equality of stresses at 2 = 0 and |r| > 0, it can be shown that
0
(6 +1)5-(G1 = Ga) +p(3 ~ K)(F1 — F2) =0,
Q—(F — F)—p(G1—G2) =0
EYASE 2) = p\Ly 2) =V.

Now, by substituting from (2.38)-(2.41) into (2.46)-(2.49) we obtain

4
Z(mkak(ﬂ +1) 4 p(8 — k))Axe™ = 0,
k=1

4
Z(mk — pay)Ajxe™" =0,
k=1

4
Y (miar(s +1) + p(3 — ) Ark
k=1

— (m1a1 (I‘& + 1) +p(3 — Iﬁ:))Agl — (m3a3(l<& + 1) =+ ,0(3 — K,))Agl =0,

4
> (mi — pa)Ar — (m1 — par) Agy — (mg — pag) Agg = 0.
k=1

The solution of this system of equations is,

A11 = (A1E16—2§h +-X3E28—(£+z)h)A21
+ (AlE‘ge_th +X3E’16—(§+E)h)A23,

A1p = EyAgy + EqAgs,

12

(2.50)

2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)



A13 = (X1E26_2zh + )\3E1€_(5+E)h)A21
+ (XIE‘le—?_E—h + )\3E26_(§+z)h) Ags, (2.60)

A1y = EyAyy + EqAgs. (2.61)
where the expression for Agy, Ags, E1, Eg, A1, Ag and £ are given in the Appendix A. The

unknowns Ag; and Ags may be determined from the mixed boundary conditions (2.46)-
(2.49)
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Chapter 3

The Integral Equations

3.1 Derivation of the Integral Equations

Referring to the previous chapter, the two remaining unknown functions Ag;(p)and
Ags(p) must be obtained by using the following mixed boundary conditions:

u(r, +0) = u®(r, - 0), (a <r < o00), (3.1)
wD (r, +0) = w@(r, - 0), (a < r < 00), (3.2)
o (r,0) = 02 (r,0) = A(r), 0<r<a), (3.3)
oD (r,0) = 6@ (r,0) = By(r), 0<r<a) (3.4)

To reduce these conditions to a system of integral equations, we first define the following

new unknown functions:

h1(r) = o-(wlr, +0) — w(r, ~0), Osr<c), G

14




$o(r) = ——(ru(r +0) — ru(r, —0)), (0<r <o), (3.6)

where v
0
win={30 =T 6
0
o {80 9551

After substituting the equations (2.38)-(2.41) into (3.7) and (3.8), ¢1and ¢ may be

expressed as

$1(r) = —aa—(/ G1(0 p)pJo(rp Ydp — / G2(0,p)pJo(rp) dp) (3.9)

ho(r) = 2~ ( / Fy(0, p)prdo(rp) dp /0 OOF2(0,P)P7‘J0(7‘P)dP)- (3.10)

By using the following properties of Bessel functions [16]

)

EJO(T'D) = — pJi(rp), (.11)
19

= [rae)] = p3o(re) (3.12)

it can be shown that

¢1(r) = /000 {Gz(O,p) — G4(0, p)}p2J1(rp) dp, (3.13)

0lr) = [ {Fi0.0)= Ral0.0) o Toer) . G314
Using inverse Hankel transformation, from (3.13) and (3.14) we find
G2(0,p) — G1(0,p) = / ¢1(r)rdi(rp)dr, (3.15)

15



R0.0) - R(0.p) = /0 " ba(r)rdo(rp) dr.

Also by defining

o) =~ u(rdi(rp) dr,

1

®a(p) = /0 (P do(rp) dr.

from (3.7),(3.8),(3.15) and (3.16) it follows that
G2(0, p) — G1(0, p) = ®1(p),

Fl(o’ ,0) - FQ(O’ P) = @z(P)-

Now, by substituting from (2.38)-(2.41) into (3.19) and (3.20) it may be seen that

ar1Ag; +T1Ags — a1 A1y — agAye — T A1z — To A1y = @1(p),

Ay + A +As + Ay — Agy — Agz = B9(p).

Thus, from (2.54)-(2.57), (3.21) and (3.22), we obtain
b1 Aoy + 01493 = ®1(p),
by Agy +boAss = B5(p),

or

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

where the functions b; and bo are defined in Appendix A. Now, by using the stress-

displacement relations, (3.5) and (3.6) may be written as

16




zl_igl()((kz + 1)%%2- +(3-k) (%‘; + 3;)) = (""M_O 1)P1('r), (3.27)

z@()(% + %%) = Elan(r).' | (3.28)
Then, from (2.15),(2.16),(3.27) and (3.28) it follows that

s [ ((n +152 13- R)PF2)PJ0(7‘P) =" "Upw, @29

Jim /0°° (‘_96_1:2_ - PG2> pJi(rp)dp = %Pz(r)- (3.30)

Now, by substituting from (2.40) and (2.41) into equations (3.29) and (3.30), after some

manipulations we obtain

k—1)

[ @(o)2: + dao)@)pn(re) do = E=Dp ), (331)

/0 oo(dm(p)@l + doa (p)®2)pJ1(rp) dp = iPz(r), (3.32)

where the function d;;are given in Appendix A. Referring to (3.17) and (3.18), from
(3.31) and (3.32) we finally obtain the following integral equations for the unknown

functions ¢; and ¢9 as follows :

Py (r), (0<r<a), (3.33)

/G(Kn(s,r)m (8) + K1a(s, 7)o (s))s ds = (k—1)
° Ho

fo a(Km(s,r)%(S) + Koa(8,7)¢a(8))s ds = ‘50'132(7‘), 0<r<a), (3.34)
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Ki1(s, 1) =/0 d11(p)Jo(rp)Ji(sp) dp, (3.35)

Kio(s,1) =/0 di2(p)Jo(rp)Jo(sp) dp, (3.36)
Ka(orr) = [ o) 1(re)1 o9) . (3.37)
Kzz(S,’I‘)=A doo(p)J1(rp)Jo(sp) dp. (3.38)

To make the asymptotic expansions somewhat more convenient we define d;; = pd;j

, (1,7 = 1,2). The kernels of the integral equations may then be written as

Ku(err) = [ dalo) o) i(oplpde, (3.39)
Kis(orr) = [ dalo)ora)n(eplpde, (3.40
Ky (s,r) = /0 oodél (p)J1(rp)J1(sp)pdp, (3.41)
Knlor) = [ da(o)h(ro)(ap)pd. (342

where d'.j, (i, = 1,2), are defined in Appendix B. Now, by using the asymptotic results

?

given in Appendix B the kernels of the integral equations (3.33) and (3.34) may be

expressed as
Ku(s,r) =

ol (4 % |
a3 ( /0 (_—:;% - 1) Jo(rp)J1(sp)odp + /0 Jo(rp)Ji(sp)p dp), (3.43)

18




/

| [d
Kiz(s,7) = d7) /0 —:%S.QJo(rp)Jo(sp)pdp,
11

o4
Kulor) =3 [ B o) or)odo

Koo (s,r) =

o0} o d,

45 (/0 Jl(TP)Jl(Sp)pdp-;-/O (-Zggop)

22
o o(K=1)
1= 2(,“_1),
foo _ 1

d22 - (ff'i'l)

Dy1(p) = dl:il,%p) -1,
Dig(p) = dl:;%p ) )
Da1(p) = dlzl,g) ;
Das(p) = d%;gop) -1,

equations (3.33) and (3.34) become

/Oa < /0 ooDu(P)Jo (rp)Ji(sp)p dp> s¢1(s)ds

19

- 1) Ji(rp)Jo(sp)p dp) \

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)



+ /: (/OOOD12(p)J0(rp)J0(sp)p d,0> s¢y(s)ds

a o) B (K,+ 1)
+ /0 ( /0 Jo(rp)Jl(sp)pdp>s¢1(8)ds = o P(r), (3.53)

/0 ’ ( /0 °°D21(p)J1 (rp)J1(sp)p dp) sp1(s) ds
+ /0 ( /0 ooDaz(/J)Jl('r'p)Jo(ISP)p dp>8¢2 (8)ds

+ /0 ( /0 Jl(rp)Jo(sp)pdp>s¢2(s)dsf - RO G5Y

By examining the singular behaviour of the kernels and by separating the leading terms,

the integral equations (3.53) and (3.54) may now be expressed as (see Appendix C)

l/‘“ 1 + 1
TJo \8—r 8+7T

a 2
)¢1(s) ds + % /0 > ki(s,r)ei(s) ds

J=1

Py(r), (3.55)

%/Oa(sir - sir>¢2(s)ds + %/{)‘azkza'(s,"‘)¢j(3) ds

Jj=1
(k41
" o R(r), (3.56)
where
My(s,7)—1 My(s,7)—1 *
bu(e,r) = 22BN =1 M -1, / Du(p)Jo(rp)Ji(sp)pdp,  (3.57)
s—r s+ 0
ki (s,r) =7s /0 D1a(p)Jo(rp)Jo(sp)p dp, (3.58)
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Foa(s,7) = s /0 D1 ()1 (rp) Ji(s0)p dp, (3.59)

My(s,r) =1 My(s,r) — 1
s—r s+r

Faa(s,r) = s /0 Das(p)di(ro)Ta(sp)pdp;  (3.60)

and My(s,r)and Mjy(s,r)are defined in Appendix C. Note that the dominant kernels of
the system of integral equations (3.55) and (3.56) are of the generalized Cauchy type [17].
The domain of integration can be extended from (0, a)to ( — a, a) by using the following

symmetry properties of functions ¢1(s) and ¢q(s)

$1(s) = —d1(—s), (3.61)
¢2(s) = ¢o(— 3). (3.62)
Thus, by observing that
1/ 1 1 1 [ ¢ui(s)
;L (S—T+3+T>¢1<s)ds_; _a;:'ds. (363)
1/ 1 1 1/
;_/0 (s —r 3 +r>¢2(8)ds B _a-fl—(—sgds' (364)

The integral equations (3.55) and (3.56) may be expressed as follows :

g 2 Zm](w@(e) s TN PEPPRErS

_as—'r' 2up

gl f ZszST¢J(3) - - hm, 0cr<a 9

_as—r 2p0
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where the Fredholm kernels k;;(s,r), (i, j = 1,2), are given by (3.57)-(3.60). In solving
equations such as (3.65) and (3.66), the accuracy is very higly dependent on the correct
evaluation of the kernels k;;, (¢, =1,2). For this, it is necessary that the asymptotic
behavior of k;;for s—rbe examined and the weak singularities, if any, be separated.
Referring to Appendix C, the complete elliptic integral of the first kind has the behavior
[18]

4
1-7n2

K(n) =log for n—=1. (3.67)

Thus, as s—r, it was shown in Appendix C that the kernels k;; have logarithmic

singularities which may be extracted as follows :

M. -1 1 1

Mysr)—1_ _ —log|s — 7| — =(1 — logy/8r) +maa(s, 1), (3.68)
g—r 2r r

M -1 1 1 /o

-_—__4(:’_:"?" = Er-logls —r|+ ;(2 —logy/8r) +mga(s,r), (3.69)

kia(s,7) = WS/OOO (Dm (p)p — %) Jo(rp)Jo(sp) dp

+7T8%/ Jo(rp)Jo(sp) dp, (3.70)
0

koi(s,r) = WS/OOO (D21(P)f’ - g') Ji(rp)Ja(sp) dp

sl ] Jy(rp)Jy(sp) dp, (3.71)
0
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where the integrals of Bessel functions are given in Appendix C which, by virtue of (3.67),
are also seen to have logarithmic singularities and mgg and my4 are known functions

which are bounded in the closed interval 0 < (s,7) < a.
3.2 The Fundamental Function

In equations (3.65) and (3.66), ¢; and k;;, (i, j = 1,2), are H-continuous functions [19].
Also second terms in equations (3.65) and (3.66) are bounded functions of r. Hence, the
singular behavior of ¢ mﬁy be obtained by studying only the dominant part of (3.65) and
(3.66), namely

1
- Mds:P(r), L=(—a,a), recL, (3.72)
where P(r) contains the input function P;, (j = 1,2), and the terms coming from the part

of the integral equations with Fredholm kernels. Let

1 [ $(s)

®(2)

The boundary values of the sectionally holomorphic function, ®(z), are related by the

following Plemelj formulas [19]:

& (r) - @7 (r) = ¢(), (3.74)
t(r)+@ (r) = le L-‘;ﬁ’(‘% ds. (3.75)

From the equation (3.72)-(3.75) it may be seen that

T (r)+ @ (r) = —iP(r), L= (-a,a), r € L. (3.76)
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The solution of the Riemann-Hilbert problem vanishing at infinity may easily be expressed
as

_X() P(r)

) = 21 Jp(s—r)X*(s)

ds + Cph(2)X(2), (3.77)

where X(z) is the fundamentalsolution of the problem satisfying the following

homogeneous boundary conditions
Xt(r)—X(r) =0, (7] > a), (3.78)

Xt(r)+ X (r) =0, (Ir| < a). | (3.79)

The solution for X(z), is found to be

X(z) = (z = ) th (s 4 q)ortiat, (3.80)
. loge™ 1 ) loge ™" 1
ay +if = 2gm. =9 ay +ifh = gm’ =~ 3 (3.81)

where X (2) will be taken as the branch for which 2=, X (2)—1 as z—00. The index of

the problem, k, is given by [20]

2
==Y Am, (3.82)
m=1

where A's are integers. For this problem index x = 1. As z tends to infinity,

X(2)~ 1, (3.83)

meaning that C,,(2)is a constant, C. On the other hand, from equations (3.74) and (3.77)
the solution of the integral equation (3.72) is found to be
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8(r) = B+ (r) — & (r) = 20X*(r) X:r(’) /ﬂ e — )(jg+ Sde rel (89

where from equations (3.80) and (3.81) for x =1, the fundamental function of the

singular integral equation is seen to be

B

X(2) = (2% - a®) 2. (3.85)
After the nonnalization of the problem the real function may be obtained by
w(s) = i( = )M XF(s) = (1 — )™ (1 + )75 %, (3.86)
Since the function ¢ has integrable singularities at ends, then A; = —1,As =0in
equation (3.80). Hence, equation (3.82),(3.84) and (3.86) lead to
k=1, X(z) = (-1, w(s) = (1—8%)7L. (3.87)
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Chapter 4

Numerical Procedure

The integral equations (3.63) and (3.64) can be solved by using the properties of
Chebyshev polynomials of the first and the second kind, T;, and U,, respectively. In the

previous chapter, the fundamental function X (z) was found as

X(2) = (2* - a2)—%, 4.1)
or
X(s) = iv/a? — &2, (42
To use Chebyshev polynomials for solving the integral equations (3.63) and (3.64), the
interval of integral from — a to a should be converted to from — 1to 1. Let
8 = as, r = ar, and ap=>p. (4.3)

Then, from ( 3.87)
w=Vv1-% (4.4)

becomes the corresponding weight function and the unknown functions ¢;(s) and ¢q(s)

may be expressed as follows:
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Fi(3)

¢1(3) = \/]T-—A—Q, (_ 1<s< 1), (4.5)
— 8
210 (-1<3<1). (4.6)

$2(8) = T

The bounded functions F;(8) and F5(8) may be expressed as

2 — ZAme (/8\), . (47)
m=0

Fy(3) =) BnTn(3), (4.8)
m=0

where A,, and B, are unknown coefficients. By using the following conditions of

compatibility
1
[ s@a=o “9)

1 .
/ 362(3) 5 = 0, (4.10)
-1

and substituting, for example, the following representation of the density function ¢ (s) in

terms of Chebychev polynomials

al Tm(s) |
An 4.11
r;) v1- 32 ( )

into (4.9), and noting that Ty(s) = 1, we obtain

Tn(5) To(3)
An ds = 0.
g::o r___ ~ (4.12)
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Since the Chebychev polynomial of the first kind are orthogonal with respect to the weight

) 1
function \/——=2_, we conclude that
1-73

Ay =0. (4.13)

Similarly, substituting

526 = > B mE) (414)
m=0 1- 3

into (4.10), noting that T (3) = 3, we obtain

T(3) Th(s)
B, ds =0. 4,15
;O T — (4.15)

Then, because of the orthogonality we obtain
B; =0. (4.16)

By using symmetry considerations the bounded functions Fi(s) and Fy(8) may be

expanded as

3) =Y Asn1Ton-1(3), (4.17)
n=1

=Y B3.T(3). (4.18)
n=0

28



Now substituting (4.17) and (4.18) into (3.65) and (3.66), truncating the series at Nth
term, the first part of the integral equations, which have the Cauchy type of singularity,

becomes

LA /1 s (3)
== A n ds, 4.19

¢2 (03) d’\ ZBQn T2n (g) d’s‘. (4‘20)

1
1 8-T M=o »/1(3—?)V1—§2

The integrals in (4.19) and (4.20) are given by [18]

(0, j=0, -1<7<1,
1 Ui-1(7), 7>0, -1<7<1,
T'/\
1 / i(3) _ 5= (4.21)
13 -P)V1-73 | (?_V_I,/—)
- , —1<7<1.
L mV7r\2—1
~

For the second part of, for example, the integral equation (3.63), it can be shown that

1 .
a -~ ~~ P o~ ~ ~~ S -~
2 [ (Rua(ad, 7)o ) + (B, aF)gu(a)) 3
1 ~ ~
a ~ ~ o~ Fl(S) o~ ~ o~ F2(3)
= - k11 (a3, ar) + k19(as, ar) ds, (4.22)
W/o ( V1-3° V1-§°
where
~ — M ) b 1 M A, T - 1
akii(as,ar) = 2(d3, ar) 2((29 a:)




a3 /0 D11(p)Jo(aTp)J1(asp)p dp, (4.23)

M2 (3,7‘) = M2 (a’§, a?) (4-24)
Let
Dy (§> = Du(p). (4.25)
Then
- MO WS
5 /0 Dot (3)Jo(79) 1 (3)p dp (4.26)

Simlarly, if we let

Dy (g) = D(?), (4.27)
it may be seen that
(a8, 0) = [ Du(®)h(FEHGEPRE. 429)
0

Also, we observe that

1 T o~
% /0 (kn(aE, ar)p1(as) + koo (as, ar)gs (ag)) ds

1/1 ~ o BB~ o BB
== | | koi(ds,ar) + ko (a8, aT) ———= | d3, 4.29
where

G (68,67) = 15 | D (p) (@) (aBp)p dp (430)
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a%?(ag’ o) = My(as,ar) =1  My(ds,ar) -1 N

-7 34T
a27r§/0 Das(p)J1(aTp)Jo(a3p)p dp, (4.31)
My(s,r) = My(as, ar). (4.32)
Thus by letting
AR
Doy (Z) = Da1(p), (4.33)
A
Dy <E> = Do (p), (4.34)
it may be seen that
ol (63,7) = 1 [ Dua B F) 1 GPP 0. @)
0

My(as,ar) -1 B My(as,ar) — 1

akss (a3, a7) =

s—7 347
w ~~
s /0 Dos (31 (79) o (GP)7 47 . (4.36)

Referring to (3.66) and (3.67), the kernels ’l;ij, (4,7 = 1,2), have the following asymptotic

behavior :
== = — 2a?log|a.st —ar| - = (1 —logV/8ar) + mgs (a3, ar), (4.37)

4( ) = a?loglas —ar| + ;,7‘:(2 — logV/8ar) + mas(as, ar), (4.38)

§-T 2
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e (65, F) = 73 /0 (Dmp)p — 5)«70(7’/0)«70(3/)) a7
+735 [ )00 5, (439)
0

~

~ A ~ (s ~ « SO
ako1(ds,ar) = 7f8/0 <D21(P)P - 5) Ji1(rp)J1(sp)dp

SN SN
+7T3-2‘/0 Ji(rp)J1(sp)dp, (4.40)

where

o)}
I
o
Q

Now, by using the equation (4.17) and (4.18), the integral equations may be approximated
by

Ton—1(3
ZAZn—l Uon—9 +ZA2n 1 / k11(d3, ar) 16 2)d§

1-7
~ AN TTI, A. 1 o~
+Zan / k12(as,a )_L“"A)ng = (K;_ )P1(a7‘), (4.41)
n=0 1-73 Fo

n-1(8)
BonUgp-1+ ) Agn 1—/ ko1(a8, aT) Lon1 ds
> > Vs

+ZB2n / Buo(as, )28, 5= - D p ) (442
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Because of the nature of the problem it is necessary to increase the density of the
collocation points near the ends r = F1. Thus, these points may be selected as follows
[17]:

Ty(r;)) =0, r= cos((z%Nlﬁ), i=1,2,..,N. (4.43)

Using the definition of Chebyshev polynomial, T, ()
T, (z) = cos(narccos(z)), (4.44)

and letting

s = cos b, 0<8<m), (4.45)

equations (4.31) and (4.32) may be written as

N
> Ao 1Usn-(r)

n=1

m

2

k11(acos®, ar)cos|(2n — 1)6] df

N 1
+ ZAQn—l '7?/(;
n=1

N x
1 ~ ~ A~
+ Zan = [ k12 (acos 6, ar)cos(2nb) db = Py (aT), (4.46)
n=0 TJo

N
> " Bin Uzn1(r)
n=1
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+ ZAgn_l ;T_/o kg1 (acos 8, ar)cos[(2n — 1)6] db

n=1

us

N
L - 1
+Zan ;/Ozk2z(acos 8, ar)cos(2nb) df = — (+1)

210

Py(a7) (4.47)

Finally, after evaluating the integrals O to g in (4.46) and (4.47), the problem

reduces to a system of algebraic equations of the form

N
Y Agn10in(7) + ZBQ,, in(Fi) = P1(72), (=1,2,....N),  (4.48)
n=1 n=0
ZA%.——ICm Tz + ZB%, in 7'1 132 (?1,)1 (z = 1) 2’ ----- ,N)) (449)
n=0

where 7, (1 = 1,2, ...., N) are appropriate collocation points. In order to obtain a 2N by
2N system of linear algebraic equations , the coefficient By should be defined in terms of

By;, (i =1,2,3,...,N). Thus, by using the following equality :

ZB% T\}i_f; ds = Zan< > (4.50)

from (4.15) it follows that
N
(="
By(— 1)+ Bpprm—rte =0, (4.51)
; dn? -1
and
N
_ (=1
By = ;B% R (4.52)
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Finally, we obtain the following system of linear algebraic equations such that

(="
4n? — 1

M=

I:A2n—lain(?i) + B2n< bio + bin("'i)):l =P(7), (i=1,..,N), (453

Il
=t

n

N — 1\ ~
E[Azn—lcm(n ) + Ban (4(n2 }_)1d¢0 +din(7‘i)>] = Py(r3), (i=1,.,N), (454

n=1

i (T3) = Uan—o (i) + % /0 %7511(@008 8, ar)cos[(2n — 1)6] df, (4-55)
bin (7)) = ;lr- /0 %Elg (acos 8, aT)cos(2n) d6, (4.56)
cin(T) = % /0 %/Iégl(acos 8, ar)cos|[(2n — 1)8] d6, (4.57)
din (7)) = Ugpn—1 () + % /0 %/1522 (acos b, ar)cos(2nb) db. (4.58)

The solution of this system of algebraic equations would then give the coefficients Ay,

and an.

From the derivation of integral equations (3.65) and (3.66), we observe that the
right hand side of these integral equations represent o,,(r, 0) and 7,.,(r,0)for a < r < 00

as well as for 0 < r < a. Thus, defining the modes I and II stress intensits factors by [9]

k1 =71.i_12 Z(T - G)O'ZZ(T, O)a ke = }i_l;% 2(T - CL)O'.,.Z('I’, 0)7 (4.59)

and by using the properties of Chebychev polynomials and (3.65),(3.66) it can be shown
that
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k= -2 Ao, k= —V2a) B (4.60)
1 0

For a homogeneous infinite medium modes I and II crack problems are uncoupled and the

stress intensity factors are given by

2 @ TP]('I’)
ki = — d 4.61
1 ’ﬂ'\/a 0 /—-0,2 ) Ty ( )
2 ¢ p2
by = r*By(r)

75, mdr. (4.62)
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Chapter 5

The Results

The main results of this study are the stress intensity factors calculated for various
loading conditions as functions of the nonhomogeneity constant o defined by
p(z) = poexp(az),and h/awhich is the basic dimensionless length parameter in the

problem. Table 5.1 shows the six different loading conditions used in the calculation.

Table 5.1: " Loading conditions used and the corresponding stress intensity factors for the
homogeneous infinite medium (a = 0).

) 1 '
AN | -» | -n(5) | -m(3) | o 0 0
3 3
RO 0 | 0 0 -] -a(3) | -2()
2 4 16
kl ;r'po a 3—7}'})1\/5 E}FPZ a ' 0 : 0 0
6 32
ko 0 0 0 é;%\/a 57;111\/5 3—5'7?‘12\/6_1

This table also shows the corresponding modes I and II stress intensity factors in a
homogeneous medium containing a penny-shaped crack of radius a obtained from (4.61)

and (4.62). Comparing the results given in Table 5.2 and Table 5.3 with the results of
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axisysmetric crack problem in a nonhomogeneous infinite medium obtained by Ozturk and
Erdogan [13], it may be seen that the stress intensity factors k; and ks obtained from the

two solutions are almost the same for large values of the length parameter h/a.

For the problem under consideration the normalized stress- intensity factors
calculated for constant Poisson's ratio (v =0.3) and different h/a values such as
(h/a =10.,2.,1.,0.75,0.50, 0.25,0.10) are shown in Tables 5.2 — 5.17. Note that the
results given in these tables may be used to obtain the stress intensity factors for arbitrary
crack surface tractions by superposition to the extent that the tractions may be

approximated by a second degree polynomials in 7.

After determining the coefficients Asg,-1 and By, shown in (4.53) and (4.54), the

crack opening displacements may be obtained from (3.5) and (3.6) as follows:

$1(r) = 'g—r{w("’, +0) —(r, - }= H+1Z Agn— 1\%1__:% (5.1)

(w(3,+0)—w(s,—0)r =ﬁ+1z Agn 1/ jTjg—zjz (5.2)

k+1 - /e a'T2n—1 (g)
wlr, +0) —w(r, —0)=——) Ag,_ ————ds, 5.3
( ) — w( ) 2%;21_1 = (5.3)
by defining a new variable
3=cosf, w<0<arccos(r/a), (5.9

right side of the equation (5.3) becomes
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1) & arccos(r/a)
w(r, +0) — w(r, —0) = — 9(_’;#—‘;—) S Aot / cos(2n —1)8d8,  (5.5)
1 T

then

2n — 1)arccos(r/a)}

o ak+1) & sin{ (
w(r, +0) —w(r, —0) = — o ;Agn_l Pr— (5.6)
Note that Ay has the dimension of stress. By using the relation
U, () = sin{(n + 1)arccos t} , 57

~ sin(arccos t)

it can be shown that z-component of the normalized crack opening displacement is,

W(r) = w(r, +0) —w(r, - 0) — nyq%—l U2n—2(7'/a)’ (5.8)

wo — D 2n—1

where
_(+1)
20

Wy ap;, (Z =0,1, 2) (5.9)

Similarly, by using the equation (3.6) we find

a2 (r) = %-:—r{ru(r, + 0) — ru(r, — 0)} (K + 1)§:an__TL(7La)_ (5.10)

(’ru(g, +0) — ru(s, — 0))

o 2w & I (sfap -11)

r{u(r, +0) —u(r, _0)} — a_z(itl)_BO/r/a 3 8 s



rla o
’”1 ZBgn/ sTE )2d§. (5.12)

1-7

By using the relation
2tT, (t) = Tn+1 (t) + Th (t)’ (5.13)

it may be shown that

a®(k +1)

r{u(r, +0) —u(r, - 0)} = — 20

Byy/1—(r/a)?

a®(k +1) sin{(2n + 1)arccos(r/a)}  sin{(2n — 1)arccos(r/a)}
S ;Bgn{ T + o 1 } (5.16)

We again note that By, has the dimension of stress. From (5.7) and (5.16) it then follows

that
U(r) = u(r, +0)u—0u('r, - 0) _
\/1—(7‘/(1)2 2B0 B2n Ugn('l'/a) Ugn_g(’r‘/a)
~ 2(r/a) ¢ +Z g ( 2n +1 * 2n—1 ) » GA7)
where
up = (12:0")%-, (=0,1,2). (5.18)

For different values of ca and h/a, 2- and - components of normalized crack opening
displacements are given in Figures 5.11 — 5.30.
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Table 5.2: The variation of stress intensity factors with aa for various loading conditions
shown in Table 5.1, for the value of v = 0.3, h/a = 10.

0.2(r,0) = Pi(r), 0.(r,0)=0
ky ko ky ko k1 ko

mya | mya | py/a | pve | mva | my/e
0.0} .6369 | .0000 | .4245) .0000 | .3396 | .0000
0.1 .6381| .0106 | .4250 | .0042 | .3399 | .0024
02| .6414 | .0212 | .4263 | .0085 | .3406 | .0048
0.3 | .6465 | .0319 | .4284 | .0127 | .3418 | .0073
0.41 .6531 | .0425 | .4310 | .0170 | .3433 | .0097
0.5 .6608 | .0532 | .4341 | .0213 | .3451{ .0121
0.6 | .6695 | .0639 | .4376 | .0255 | .3470 | .0146
0.7 | .6790 | .0747 | .4414 | .0298 | .3492 | .0170
0.8 .6893 | .0855 | .4455 | .0341 | .3616 | .0195
0.9 .7001 | .0963 | .4498 | .0384 | .3541 | .0219
1.0} .7115| .1073 | .4544 | .0428 | .3567 | .0244
1.5 7741 | .1628 | .4795 | .0647 | .3710 | .0368
20| .8435) .2202 | .6073 | .0872 | .3869 | .0495
3.0 9943 | .3412 | .5676 | .1339 | .4214 | .0757
40| 1.1561 | .4712 | .6320 | .1833 | .4581 | .1031
5.0 1.3266 | .6101 | .6996 | .2353 | .4965 | .1316

aa

Table 5.3: The variation of stress intensity factors with aa for various loading conditions
shown in Table 5.1, for the value of v = 0.3, h/a = 10.

022(r,0) =0, 0p(r,0) = By(r)
k k

e ky 2 1 ko ky ko
q0va | /e | /e | aiv/a | @/a | /e
0.0 | .0000 | .4244 | .0000 | .3395 | .0000 | .2910

0.1 1 .0000 | .4245 | .0000 { .3396 | .0000 | .2910
0.2'| .0000 | .4246 | .0000 | .3396 | .0000 | .2911
0.3 | .0000 | .4249 | .0000 | .3398 [ .0000 | .2912
0.4 | .0000 | .4252 ; .0000 | .3400 | .0000 | .2913
0.5 .0000 | .4256 | .0000 | .3402 | .0000 | .2915
0.6 | .0000 | .4262 | .0000 | .3405 | .0000 | .2917
0.7 | .0000 | .4268 | .0000 | .3409 | .0000 | .2919
0.8 | .0000 | .4275 | .0000 | .3413 | .0000 | .2922
0.9 | .0000 | .4282 | .0000 | .3417 | .0000 | .2925
1.0 | .0000 | .4290 { .0000 | .3422 | .0000 | .2928
1.5 | .0000 | .4341 | .0000 | .3451 | .0000 | .2947
2.0 | .0000 | .4403 | .0000 | .3487 | .0000 | .2971
3.0 { .0000 | .4550 | .0000 | .3571 | .0000 | .3028
4.0 | .0000 | .4712| .0000 | .3666 | .0000 | .3092
5.0 | .0000 | .4881 | .0000 | .3765 | .0000 [ .3159
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Table 5.4: The variation of stress intensity factors with aa for various loading conditions
shown in Table 5.1, for the value of v = 0.3, h/a = 5.

Uzz(r, 0) = P]_(T'), 0’,-2(7', 0) =0
k1 kg ky ko k1 ko

mye | m/e | e | p/a | e | my/e
0.0 .6392| —.0002 | .4254 | .0000 | .3401 | .0000
0.1] .6402 .0104 | .4258 | .0041 | .3403 | .0024
0.2 .6431 0210 | .4270 | .0084 | .3410 | .0048
0.3 ] .6478 0317 | .4289 ) .0127 | .3421 | .0072
0.4 .6540 0424 | 4314 .0169 | .3435 | .0098
051 .6614 0631 | .4343 | .0212 | .3452 (| .0121
06| .6699 0638 | 4377 | .0255 | .3471 | .0146
0.71 .6793 0746 | .4415 | .02908 | .3493 | .0170
0.8 | .6895 0855 | .4456 | .0341 ( .3516 | .0195
0.9 .7001 .0063 | .4498 | .0384 | .3541 | .0219
1.0 .7115 1073 | .4544 | .0428 | .3567 | .0244
1.5 7742 1628 | 4795 [ .0647 | .3710 ( .0368
2.0 | .8435 2202y .5073 | .0872 | .3869 | .0495 |
3.0] .9943 3412 | 6676 | 1339 | 4214 | .075H7
4.0 1.1561 4712 | .6320 | .1833 | .4581 | .1031
5.0 ] 1.3266 .6108 | .6996 | .2353 | .4965 | .1316

aq

Table 5.5: The variation of stress intensity factors with aa for various loading conditions
shown in Table 5.1, for the value of v = 0.3, h/a = 5.

022(r,0) =0, or,(r,0) = B(r)

w k1 ky ky ky ky ko
qovae | wve | ave | ave | @ve | @/a
0.0 | —.0001 | .4244 | .0000 | .3395 | .0000 | .2910
0.1 ] —.0001 | 4245 | .0000 | .3396 | .0000 | .2911
0.2 | —.0001 | 4246 | .0000 | .3397 | .0000 | .2911
0.3 | —.0001 | .4249 | .0000 | .3398 | .0000 | .2912
0.4 | —.0001 | .4252 | .0000 | .3400 | .0000 | .2013
0.5| .0000 | 4257 | .0000 | .3402 | .0000 | .2915
0.6 | .0000 | .4262 | .0000 | .3405 | .0000 | .2017
0.7 ] .0000 | .4268 | .0000 | .3409 | .0000 | .2919
0.8 | .0000 | .4275 | .0000 | .3413 | .0000 | .2022
09| .0000 | .4282 | .0000 | .3417 | .0000 | .2925
1.0] .0000 | .4290 | .0000 | .3422 | .0000 | .2928
15| .0000 | .4341 | .0000 | .3451 | .0000 | .2947
2.0| .0000 | .4403 | .0000 | .3487 | .0000 | .2971
3.0| .0000 | .4550 | .0000 | .8571 | .0000 | .3028
40| .0000 | .4712 | .0000 | .3666 | .0000 | .3092
50| .0000 | .4881 | .0000 | .3765 | .0000 | .3159
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Table 5.6: The variation of stress intensity factors with ac for various loading conditions
shown in Table 5.1, for the value of v = 0.3, h/a = 2.

02(r,0) = Py(r), or,(r,0) =0
ky ko k1 ko k1 ko

mve | myve [ mva| myve | m/e | mye

0.0 .6673 | —.0070 | .4364 | —.0027 | .3463 | —.0015
0.1| .6679 .0037 | .4367 0016 | .3464 .0009
0.2 | .6698 .0145 | .4374 .0059 | .3469 .0034
03] .6730 .02563 | .4387 .0102 | .3476 .0059
04| .6773 .0363 | .4405 0146 | .3436 .0084
0.5 .6828 0473 | 4427 0190 | .3499 .0109
0.6 | .6893 .0584 | .4453 0234 | .3514 .0134
0.7 | .6967 0695 | .4483 .0278 | .3531 .0159
0.8 | .7049 .0807 | .4516 .0323 | .3550 .0185
0.9 .7139 .0920 | .4552 .0368 | .3571 .0210
1.0} .7236 1033 | .4591 0412 | .3593 .0235
1.5 .7803 1604 | .4818 .0638 { .3723 0363
2.0 .8465 2189 | .5084 .0867 | .3875 .0493
3.0 | .9949 3409 | .b678 1338 | 4215 0756
4.0 | 1.1562 4711 | 6321 1833 | .4581 1031
5.0 | 1.3266 .6101 | .6996 2353 | 4965 | .1316

aa

Table 5.7: The variation of stress intensity factors with ac for various loading conditions
shown in Table 5.1, for the value of v = 0.3, h/a = 2.

042(r,0) =0, or,(r,0) = Pa(r)

. ky ko ky ko ky ko

wve | ova | ave |ave | eve | eve
0.0| —.0025 | .4253 | —.0014 | .3400 | —.0009 | .2913
0.1 —.00256 | .4254 | —.0014 | .3401 | —.0009 | .2914
0.2| —.0026 | .4255 | —.0014 | .3401 | —.0009 | .2914
0.31 —.0024 | .4257 | —.0013 | .3403 | —.0009 | .2915
0.4 —.0023 | .4260 | —.0013 | .3405 | —.0009 | .2916
0.5 —.0022 | .4265 | —.0012 | .3407 | —.0008 | .2918
0.6 —.0020 | .4269 | —.0011 | .3410{ —.0008 | .2920
0.7] —.0019 | .4275 ] —.0011 | .3413 ] —.0007 | .2922
0.8 —.0017{ .4281 | —.0010 | .3417 | —.0007 | .2924
0.9 —.0016 | .4289 { —.0009 | .3421 | —.0006 | .2927
1.0 —.0015 | .4296 | —.0008 | .3425 | —.0005 )} .2930
1.5| —.0009 | .4345| —.0005 | .3453 | —.0003 | .2949
2.0 —.0005 | .4406 | —.0003 | .3488 | —.0002 | .2972
3.0{ —.0001 1 .4550 ) —.0001 | .3572 .0000 | .3028
4.0 .0000 | .4712 .0000 | .3666 .0000 | .3092
5.0 .0000 | .4881 .0000 | .3765 .0000 | .3159
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Table 5.8: The variation of stress intensity factors with ac for various loading conditions
shown in Table 5.1, for the value of v = 0.3, h/a = 1.

0.:(r,0) = Pi(r), ov2(r,0)=0
ky ko ky ko k1 ko

mya | mya | mva| my/a | mya| py/a

0.0 .7781 | —.0b620 | .4783 | —.0186 | .3694 | —.0100
0.1 .7782 | —.0410| .4783 | —.0143 | .3695 | —.0075
0.2 .7790 | —.0299 | .4787 | —.0099 | .3697 | —.0050
03] .7806 | —.0187 | .4794 | —.0054 | .3701 | —.0025
0.4 .7829 | —.0073 | .4804 | —.0009 | .3707 | —.0001
0.5 .7860 .0043 | .4817 .0037 | .3715 .0027
0.6 ] .7899 .6060 | .4333 .0083 | .3724 .0053
0.7 .7944 .0278 | .4852 .0130 | .3735 .0080
0.8 .7995 .0398 | .4873 0177 | .3747 .0106
0.9 | .8053 .0519 | .4897 .0224 | .3761 .0133
1.0 .8117 .0640 | .4923 0272 | 3776 .0160
1.5 .8513 1264 | .5085 0516 | .3870 .0298
2.0 .9018 1905 | .5290 .0765 | .3989 .0437
3.0 | 1.0262 3230 | .5794 1274 4278 0722
4.011.1729 4607 | .6382 1796 | .4615 1011
5.0 ) 1.3351 6044 | .7027 2333 | .4982 1306

ac

Table 5.9: The variation of stress intensity factors with aa for various loading conditions
shown in Table 5.1, for the value of v = 0.3, h/a = 1.

0,2(r,0) =0, 0r.(r,0) = B(r)

- k ko ky ko k1 ko
QO\/E QO\/E QI\/E 41\/5 QZ\/E 42\/5
00| —.0163 | .4342 | —.0086 | .3449 | —.0057 | .2945
0.1 —.0153 | .4342 | —.0086 | .3449 | —.0056 [ .2945
0.2 0152 { .4344 ) —.0085 | .3450 | —.0056 | .2945
0.3 ) —.0151 | .4345| —.0085 | .3451 | —.0056 | .2946
0.4 | —.0149 ] .4348 | —.0084 | .3452 | —.0055 | .2947
0.5 | —.0147 | .4351 | —.0082 | .3454 | —.0054 | .2948
0.6 { —.0144 ( 4355 —.0081 | .3456 | —.0053 | .2950
0.7| —.0141 | .4360 | —.0079 | .3459 | —.0052 [ .2952
0.8 | —.0138 1 .4365 | —.0077 | .3462 | —.0051 | .2954
09| —.0135 | .4371 | —.0076 | .3465 | —.0050 [ .2956
1.0 | —.0131 43771 —.0073 | .3469 | —.0048 | .2959
1.5 | —.0111§ .4417 ! —.0062 | .3492 | —.0041 | .2974
2.0 | —.0001 | .4467 | —.0051 | .3521 | —.0033 | .2994
3.0| —.0056 | .4591 | —.0031 | .3594 | —.0020 | .3043
40| —.0032 | 4737 | -.0018 | .3679 | —.0012 | .3101
50| —.0018 { .4895 | —.0010 | .3772 | —.0006 | .3164
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Table 5.10: The variation of stress intensity factors with aa for various loading
conditions shown in Table 5.1, for the value of v = 0.3, h/a = 0.75.

0,.(r,0) = P(r), 0r(r,0)=0
ky ko ky ko ky ko

mye | mva [pval mva | myo| mva

0.0 .8763 | —.1013 | .5150 | —.0352 | .3896 | —.0185
0.1 .8763 | —.0901 | .5150 | —.0308 | .3896 | —.0160
0.2 .8766 | —.0788 | .5152 | —.0264 | .3897 | —.0135
03| .8776 | —.0672 | .5156 | —.0218 | .3900 | —.0109
0.4 .8791 | —.0655 | .5163 { —.0172 ( .3904 | —.0083
0.5 .8813 | —.0436 | .5173 | —.0125 | .3910 | —.0057
0.6 .8841| —.0315| .5185 | —.0078 | .3917 j — .0030
0.7 .8874 ] —.0193 | .5199 | —.0030 | .3926 | — .0003
0.8 | .8913 | —.0070 | .5216 .0018 | .3935 .0024
0.9 .8958 .0055 | .5234 .0067 | .3946 .0051
1.0 | .9007 .0181 | .5255 .0116 | .3959 .0079
1.5 .9324 .0831 | .b387 .0368 | .4035 .0221
20| .9741 .1503 | .5559 .0627 | .4135 .0366
3.011.0813 2902 | .5996 1161 | .4388 .0663
4.0 | 1.2127 4355 | .6526 1709 | .4692 0965
5.0 1 1.3626 5861 | .7125 .2270 | .5035 1273

ac

Table 5.11: The variation of stress intensity factors with aa for various loading
conditions shown in Table 5.1, for the value of v = 0.3, h/a = 0.75.

0,:(r,0) =0, or,(r,0) = Po(r)
| _E ks 2 % 2 %2
wve | ovae | ave | ave | ave | @ye
0.0 | —.0258 | .4445 | —.0146 | .3504 | —.0096 | .2981
0.1 —.0258 | .4445 | —.0146 | .3505 | —.0096 | .2981
0.2 | —.0257 | 4446 | —.0145 | .3505 | —.0096 | .2981
0.3 | —.0256 | 4448 | —.0145 | .3506 | —.0096 | .2982
0.4 | —.0254 | 4450 | —.0144 | .3507 | —.0095 | .2983
0.5 | —.0252 | .4453 | —.0142 | .3500 | —.0004 | .2084
0.6 | —.0240 | .4456 | —.0141 | .3511 | —.0093 | .2085
0.7 | —.0246 | .4460 | —.0139 | .3513 | —.0092 | .2088
0.8 | —.0243 | .4465 | —.0137 | .3516 | —.0001 | .2089
0.9 | —.0230 | .4470 | —.0135 | .3519 | —.0089 | .2091
1.0 | —.0235 | .4476 | —.0133 | .3522 | —.0088 | .2993
15| —.0213 | .4511 | —.0120 | .3543 | —.0079 | .3007
2.0 | —.0188 | .4555 | —.0105 | .3569 | —.0069 | .3024
3.0 | —.0130 | .4665 | —.0078 | .3634 | —.0051 | .3068
40 | —.0098 | .4795 | —.0055 | .3711 | —.0036 | .3121
5.0 | —.0067 | .4938 | —.0037 | .3796 | —.0024 | .3179
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Table 5.12: The variation of stress intensity factors with ac for various loading
conditions shown in Table 5.1, for the value of v = 0.3, h/a = 0.50.

022(r,0) = P(r), 0r,(r,0) =0
k1 ko ky ko ky ko
mve | myve | mve | nva | my/a| my/a
0.0 | 1.1061 | —.2297 | .6005 | —.0777 | .4362 | —.0400 |
0.1 | 1.1052 | —.2179 | .6003 | — 0731 | .4361 | —.0374
0.2 | 1.1047 | —.2060 | .6002 | — .0685 | .4361 | — .0348
0.3 | 1.1048 | —.1938 | .6004 | —.0638 | .4363 | — .0321
0.4 | 1.1053 | —.1815 | .6007 | — .0590 | .4365 | — .0295
0.5 | 1.1062 | —.1689 | .6012 | — .0542 | .4368 | — .0268
0.6 | 1.1077 | —.1562 | .6010 | —.0493 | .4373 | — .0240
0.7 | 1.1095 | —.1434 | 6028 | — 0443 | .4378 | — .0212
0.8 [1.1118 | —.1303 | .6038 | — .0393 | .4385 | — .0184
0.9 | 1.1145 | —.1171 | .6051 | —.0342 | 4392 | —.0156
1.0 | 1.1176 | —.1038 | .6064 | —.0201 | .4400 | —.0127
15| 1.1390 | —.0350 | .6156 | —.0027 | .4455 | .0019
2.0 | 1.1689 | .0369 | .6282 | .0246 | .4520 | .0171
3.0 | 1.2501 | .1875| .6618 | .0814| .4725| .0485
40| 1.3551 | 3452 | 7046 | .1403 | .4972| .0808
5.0 | 1.4800 | 5088 | .7550 | .2008 | .5262 | .1138

aq

Table 5.13: The variation of stress intensity factors with aa for various loading
conditions shown in Table 5.1, for the value of v = 0.3, h/a = 0.50.

022(,0) =0, or;(r,0) = Py(r)

e ky ky ky ks ky ko

ove | wve | ave | ava | eva | @/e
0.0 | —.0456 | .4685 | —.0264 | .3637 | —.0176 | .3068
0.1 —.0456 | .4686 { —.0263 { .3637 | —.0176 | .3067
0.2 | —.0455 | .4687 | —.0263 | .3638 | —.0176 | .3067
0.3 | —.0454 | .4688 | —.0262 | .3639 | —.0176 | .3068
0.4 | —.0453 | .4690 | —.0261 | .3640 | —.0175 | .3068
0.5] —.0451 | .4692 | —.0260 | .3641 | —.0174 | .3069
0.6 | —.0448 | .4695 | — .0259 | .3643 | —.0173 | .3070
0.7 —.0445 | .4698 | — .0257 | .3645 | —.0172 | .3072
0.8 | —.0442 | .4702 | —.0265 | .3647 | —.0171 | .3073
0.9 | —.0439 | .4706 | —.02563 | .3649 | —.0170 | .3075
1.0 | —.0435 | .4711 | —.0251 | .3652 { —.0168 | .3077
1.5] —.0413 | .4740 | —.0238 | .3669 | —.0159 | .3089
20| —.0387 § .4777| —.0223 | .3691 | —.0149 | .3103
3.0 —.0330 | .4869 | —.0190 ( .3746 | —.0126 | .3141
40| —.0274 | 4977 | —.0157 | .3810 | —.0104 | .3185
5.0 —.0223 | .5096 | —.0127 | .3882 | —.0084 | .3235
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Table 5.14: The variation of stress intensity factors with aa for various loading
conditions shown in Table 5.1, for the value of v = 0.3, h/a = 0.25.

02:(r,0) = Pi(r), or,(r,0) =0
s ky ko ky ky ky ko
myve | myve | mve| myve | myva| mye

0.01]1.9620 | —.7704 | .9160 | —.2562 | .6069 [ —.1289
0.111.9599 | —.7568 | .9154 | —.2511 | .6066 [ —.1261
0.2 ]1.9580 | —.7430 | .9149 | —.2460 | .6064 | —.1232
0.3]1.9564 | —.7290 | .9145 | —.2407 | .6063 | —.1204
0.411.9551 | —.7149 | 9142 | —.2355 | .6062 | —.1175
0.5 1.9542 | —.7006 | .9140 | —.2301 | .6061 | —.1145
06| 19535 | —.6862 | .9139 | —.2247 | .6062 | —.1116
0.7 11.9531 | —.6716 | .9140 | —.2193 | .6063 | —.1086
0.811.9530| —.6568 | .9141 [ —.2137 | .6064 | —.1056
0919531 | —.6418 | .9144 | —.2082 | .6066 { —.1025
1.0 | 1.9536 | —.6267 | .9147 | —.2025 | .6069 | —.0994
1.5 1.9597 | —.5490 | .9181 | —.1737 | .6001 | —.0836
2.0 1.9720 | —.4679 | .9238 | —.1436 | .6127 | —.0673
30120129 | —.2973 | .9416 | —.0807 | .6234 ] —.0331
4020729 | —.1173 | .9667 | —.0148 | .6382 .0026
5.0 | 2.1500 .0705 | .9983 .0536 | .6566 .0394

Table 5.15: The variation of stress intensity factors with aa for various loading
conditions shown in Table 5.1, for the value of v = 0.3 , h/a = 0.25.

0:(r,0) =0, or,(r,0) = Pa(r)
ky ky ky ks ky ko
QO\/E qO\/C_I ql\/c_l 41\/5 q?.\/a Q2\/5
0.0 —.0925 | .5411| —.0559 | .4061 | —.0386 | .3351
0.1 —.0925 | .5412 | —.0559 | .4061 { —.0386 { .3351
0.2 —.0925 | .5412 | —.0559 | .4062 | — .0386 | .3351
03] —.0924 | .5b413 | —.05b8 | .4062 | —.0385 | .3352
0.4 —.0923 | .5414 | —.0558 | .4063 { —.0385 | .3352
0.5} —.0921 | .5b416 | —.0557 | .4064 | —.0384 | .3353
0.6 | —.0920 | .5418 | —.0556 | .4065 [ —.0383 | .3354
0.7 —.0918 | .5421 | —.0555 { .4067 | —.0383 | .3355
0.81 —.0915 | .5423 | —.05563 | .4068 | —.0382 | .3356
09| —.0913 | .5426 | —.0552 | .4070 [ —.0381 { .3357
1.0} —.0910 | .5430 | —.0550 [ .4072 | —.0380 | .3353
1.5| —.0893 | .5461 | —.0540 | .4084 | —-.0373 | .3367
20| —.0872 | .5b478 | —.0527 | .4100 [ —.0364 | .3378
3.0 —.0823 | .5b46 | —.0497 | .4140 ( —.0343 | .3405
40| —.0768 | .5626 | —.0464 | .4188 [ —.0320 | .343%
501 —.0712 | .5714 | —.0430 | .4241 | —.0296 | .3475
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Table 5.16: The variation of stress intensity factors with ac for various loading
conditions shown in Table 5.1, for the value of v = 0.3, h/a = 0.10.

02:(r,0) = Pi(r), o..(r,0)=0
ky ko ky ko ky ko
wyve | mya | myal| myae | myal| mya
0.0 { 5.5317 | —3.2759 | 2.1875 | —1.0886 | 1.2795 | — .5435
0.1 5.5271 | —3.25679 | 2.1860 | — 1.0821 | 1.2788 [ — .5401
0.2 | 5.5228 | —3.2397 | 2.1847 | — 1.0756 | 1.2782 | — .5366
0.3 | 5.56186 | —3.2215 | 2.1834 ] —1.0690 | 1.2776 | — .5331
0.4 155146 | —3.2030 ] 2.1822 | —1.0624 | 1.2770 | — .5296
0.5} 5.5107 | —3.1845 ) 2.1810 | —1.0557 | 1.2765 | — .5260
0.6 1 55071 | —3.1658 | 2.1799 | —1.0490 { 1.2760 | — .5225
0.7 | 5.5036 | —3.1469 | 2.1789 | —1.0423 | 1.2755 | — .5189
0.8 | 5.5003 | —3.1280 | 2.1779 | —1.0355 1 1.2751 | — .5153
0.9 | 54972 [ —3.1088 | 2.1770 | —1.0286 | 1.2747 | — .5116
1.0 | 5.4942 | —3.0896 | 2.1762 | —1.0217 | 1.2743 | —.5079
1.5(5.4820 | —2.9914 | 2.1729 —.9866 | 1.2730 | — .4893

ac

2.0 5474 | —2.890 217 —.9504 | 1.273 | —.470
3.0 5469 | —2679 |2.172 —-.8752 | 1.274 | — .430
4.0 | 5.476 | —2.459 |2.177 —.7967 | 1.277 | —.389
5.0 | 5,497 | —2.230 |2.187 —.7155 | 1.284 | —.346

Table 5.17: The variation of stress intensity factors with aa for various loading
conditions shown in Table 5.1, for the value of v = 0.3, h/a = 0.10.

022(r,0) =0, 0r5(r,0) = By(r), h/a=0.10

" k1 ko k1 ko ky ko

QO\/E QO\/E 41\/5 Q1\/5 Q2\/E Q2\/5
00| —.1856 | .7173 | —.1167 | .5157 | —.0832 | .4122
01| —.1856 | .7173 | —.1167{ .b157 | —.0831 | .4122
0.2 | —.1856 | .7174 | —.1166 | .5167 | —.0831 | .4122
03| —.1855 | .7174 | —.1166 | .5167 | —.0831 | .4123
04| —.1855 | .7175 | —.1166 | .5158 .0831 | .4123
0.5 —.1854 | .7176 | —.1165 | .5159 .0831 | .4123
06| —.1853 | .7178 | —.1165 | .5159 | —.0830 | .4124
0.7| —.1852 | .7179 | —.1164 | .5160 | —.0830 | .4124
08| —.1850 | .7181 ( —.1163 | .5161 [ —.0829 | .4125
09| —.1849 | .7183 [ —.1162 | .5162 | —.0829 | .4126
1.0 | —.1847 | .7185 | —.1161 | .b163 | —.0828 | .4127
1.5 —.1837{ .7198 { —.1155 | .5171 | —.0824 | .4132
20 —.1824 7216 { —.1147 | .5183 | —.0818 | .4139
3.0 —.1791 | .7261 | —.1128 | .5207 | —.0805 | .4156
40| —.1752 | .7314 | —.1105| .5239 | —.0789 | .4178
50| —.1711 ) 7374 | —.1079 | .5274 | —.0771 | .4202
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Table 5.18: The variation of stress intensity factors with v for various loading conditions
shown in Table 5.1, h/a = 10.0, 0,,(r,0) = — py, 0.,(r,0) =0.

0.00 | .6376 | .0106 | .6522 [ .0532 | .6880 | .1069 | .7355( .1619
0.10 | .6378 | .0106 | .6545 | .0532 | .6945 | .1070 | .7463 | .1621
0.20 | .6379 | .0106 | .6573 | .0532 | .7021 | .1071 | .7589 | .1624
0.30 | .6381 | .0106 | .6608 | .0532 | .7115 | .1073 | .7741 | .1628
0.40 | .6384 | .0106 | .6652 | .0632 | .7231 | .1074 | .7929 | .1633
0.45 | .6385 | .0106 | .6679 | .05632 | .7301 | .1075 | 0.8041 | .1635

0.00 | .7908 | .2183 | .9173 | .3369 | 1.05695 | .4638 | 1.2138 | .5995
0.10 | .8055  .2188 | .9390 | .3381 | 1.0867 | .4659 [ 1.2455 | .6025
0.20 | .8229 | .2194 | .9643 | .3395 | 1.1184 | .4683 | 1.2824 | .6060
0.30 | .8435 | .2202 | .9943 | .3412 | 1.1561 | .4712 | 1.3266 | .6101
0.40 | .8689 | .2211 | 1.0309 | .3434 | 1.2020 | .4747 { 1.3803 | .6151
0.45 | .8839 ( .2216 | 1.0526 | .3446 ; 1.2292 | .4768 | 1.4122 | .6180

Table 5.19: The variation of stress intensity factors with v for various loading conditions
shown in Table 5.1, h/a = 10.0, 0,(r,0) = 0, o,,(r,0) = — go.

0.00 | .0000 | .4244 { .0000 { .4253 | .0000 | .4278 | .0000 | .4316
0.10 { .0000 | .4245( .0000 | .4254 | .0000 | .4281 ) .0000 | .4323
0.20 | .0000 | .4245| .0000 | .4255 [ .0000 | .4285 | .0000 | .4331
0.30 | .0000 | .4245 | .0000 | .4256 | .0000 | .4290 | .0000 | .4341
0.40 | .0000 | .4245 | .0000 | .4258 | .0000 | .4297 | .0000 | .4353
0.45 | .0000 | .4245 | .0000 | .4260 | 0000 | .4301 | .0000 | .4361

0.00 | .0000 | .4367 | .0000 | .4492 | .0000 [ .4638 | .0000 { .4796
0.10 { .0000 | .4377 | .0000 ( .4508 | .0000 | .4659 ; .0000 | .4820
0.20 { .0000 | .4389 | .0000 | 4527 | .0000 | 4683 | .0000 | .4848
0.30 { .0000 | .4403 | .0000 | .4550 | .0000 | .4712 | .0000 | .4881
0.40 | .0000 | .4422 | .0000 | .4578 | .0000 | .4747 | .0000 | .4921
0.45 | .0000 | .4433 | .0000 | .4595 | .0000 | .4768 | .0000 | .4944




Table 5.20: The variation of stress intensity factors with v for various loading conditions
shown in Table 5.1, h/a = 2.0, 0,,(r,0) = — py, 0,(r,0) =0.

0.00 | .6676 | .0037 | .6769 | .0469 | .7041 | .1021 |- .7451 | .1585
0.10 | .6677 | .0037 | .6784 | .0470 | .7094 | .1024 | .7547 | .1591
0.20 | .6678 | .0037 | .6804 | .0471 ( .7157 | .1028 | .7662 | .1597
0.30 | .6679 | .0037 | .6828 | .0473 | .7236 | .1033 | .7803 | .1604
0.40 { .6681 | .0037 | .6860 | .0475 | .7337 | .1038 | .7978 | .1613
0.45 | .6681 | .0037 | 0.6880 | .0476 | 0.7398 | .1041 | 0.8084 | .1618

0.00 | .7962 | .2162 | .9188 | .3361 | 1.0598 | .4636 | 1.2138 | .5994
0.10{ .8101 | .2170 | .9402 | .3375 | 1.0870 | .4657 | 1.2455 | .6024
0.20 | .8266 | .2179 | .9652 [ .3391 | 1.1186 | .4682 | 1.2825 | .6059
0.30 | .8465 | .2189 | .9949 | .3409 { 1.1562 | .4711 | 1.3266 | .6101
0.40 | .8710 | .2201 | 1.0313 | .3431 { 1.2021 | .4747 | 1.3804 | .6151
0.45 | .8857 [ .2208 | 1.0529 | .3445 | 1.2292 | .4768 | 1.4122 | .6180

Table 5.21: The variation of stress intensity factors with v for various loading conditions
shown in Table 5.1, h/a = 2.0, 0,,(r,0) =0, 0,,(r,0) = — q.

aa =01 aa=0.5 aa=1.0 aa=15

ky ko k1 ko ky ky ky ky
ovae | wve | wve | @ve | wve | wve | wve | av/a
0.00 | —.0025 | .42563 | —.0023 | .4261 | —.0018 | .4285 ] —.0012 ] .4322
0.10 | —.0025 | .4264 } —.0023 | .4262 ) —.0017 | .4288 | —.0011 | .4328
0.20 | —.0025 | .4254 | —.0022 | .4263 | —.0016 | .4292 | —.0010 | .4336
0.30 | —.0025 | .4254 1 —.0022 | .4265 | —.0015 | .4296 | —.0009 | .4345
0.40 | —.0025 | .4254 | —.0021 | .4266 | —.0013 | .4303 | —.0007 | .4357
0.45 | —.0025 | .4254 | —.0020 | .4267 | —.0012} .4307 | —.0006 [ .4364

aa =2.0 aa=3.0 aa =4.0 aa = 5.0

ky ko ky ko
wve | wve | ave |@ve | ave | wve | ayve | ave
0.00 [ —.0008 | .4370 | —.0003 | .4493 | —.0001 | .4638 | —.0000 | .4796
0.10 | —.0007 | 4380 | —.0002 | .4509 | —.000L | .4659 | .0000 | .4820
0.20 | —.0006 | .4391 | —.0002 | .4528 | .0000 | .4683 | .0000 | .4848
0.30 | —.0005 | .4406 | —.0001 | .4550 | .0000 | .4712| .0000 | .4881
0.40 | —.0004 | .4423 | —.0001 | .4578 | .0000 | .4747 | .0000 | .4921
0.45 | —.0003 | .4434 | —.0001 | .4595| .0000 | .4768 | .0000 | .4944




Table 5.22: The variation of stress intensity factors with v for various loading conditions
shown in Table 5.1, h/a = 1.0, 0,,(r,0) = — py, 0,,(r,0) =0.

0.00 ] .7780 | —.0411 | .7825| .0035| .7989 | .0614 | .8264 | .1215
0.10 | .7781 | —.0411| .7834| .0037 | .8023 | .0621 | .8331 | .1229
0.20 | .7781 | —.0410 | .7846 | .0040 | .8065 | .0630 | .8412 ) .1244
0.30 | .7782 | —.0410 | .7860 | .0043 | .8117 | .0640 | .8513 | .1264
0.40 | .7783 | —.0410 | .7880 | .0047 | .8184 | .0654 | .8642 | .1287
0.45| .7783 | —.0410 | 0.7892 | .0050 | 0.8226 | .0662 | 0.8721 | .1301

0.00 | .8634 1836 | .9616 | .3130 | 1.0852 | .4485 | 1.2281 | .5903
0.10 | .8739 1856 | L9795 | .3159 | 1.1095 | .4521 | 1.2579 | .5944
0.20 | .8864 1878 | 1.0006 | .3192 | 1.1383 | .4561 | 1.2930 | .5991
0.30 | .9018 1905 | 1.0262 | .3230 | 1.1729 | .4607 | 1.3351 | .6044
0.40 | .9211 1937 | 1.0582 | .3274 | 1.2157 | .4661 | 1.3870 | .6106
0.45 | .9329 1956 | 1.0773 | .3299 | 1.2413 | .4691 | 1.4179 | .6142

Table 5.23: The variation of stress intensity factors with v for various loading conditions
shown in Table 5.1, h/a = 1.0, 0,,(r,0) =0, 0..(r,0) = — qo.

ca=0.1 aa=0.5 aa=1.0 aa=15

” ky ko k1 ko ky ko ky ko
ove | ove | wve |ove| ave | ove ! ove | @y
0.00 ) —.0153 | .4342 | —.0149 ) 4349 —.0139 | .4368 | —.0124 | .4399
0.10 | —.0153 | .4342 | —.0149 | .4349 ) —.0137 | .4371 | —.0121 | .4404
0.20 | —.0163 | .4342 | —.0148 | .4350 | —.0134 | .4373 | —.0116 | .4410
0.30 | —.0153 ) .4342 | —.0147 | .4351  —.0131 | .4377 | —.0111{ .4417
0.40 { —.0153 | .4342 | —.0146 | .4353 | —.0127 | .4382 | —.0105 | .4426
0.45 | —.0153 | .4343 | —.0145 | .4363 | —.0125 .4385 | —.0101 | .4432
ca =20 aa=3.0 aa=4.0 aa =5.0

ky ko k1 ko
ovae | wve | ove | ave | wve | ove | qve | ave
0.00 (| —.0108 | .4440 | —.0075} .4545 | —.0049 | .4673 | —.0029 | .4818
0.10 | —.0103 | .4447 | —.0069 | .4557 { —.0043 | .4691 | —.0025 | .4839
0.20 | —.0097 | .4456 } —.0063 | .4573 | —.0038 | .4712 | —.0021 | .4865
0.30 | —.0091 | .4467 | —.0056 | .4591 | —.0032 | .4734 | —.0018 | .4895
0.40 | —.0084 { .4481 | —.0049 § .4615 | —.0027 | .4768 | —.0014 | .4032
0.45 ] —.0079 ) .4490 | —.0045 } .4629 | —.0024 | .4787 | —.0012 | .4954




Table 5.24: The variation of stress intensity factors with v for various loading conditions

shown in Table 5.1, h/a = 0.50, 0,,(r,0) = — py, or,(r,0) = 0.

aa=0.1 aa=0.5 aa=1.0 aa=1.5
y ky ko k1 ko ky ko ky ko
mve | mve | mva| mye | mya | mva | mya | mye
0.00 ; 1.1051 | —.2180 | 1.1043 | —.1698 | 1.1101 | —.1070 { 1.1236 | — .0414
0.10 | 1.1051 | —.2180 | 1.1048 | —.1696 | 1,1121 | —.1062 | 1.1277 | —.0396
0.20 | 1.1051 | —.2180 [ 1.1054 { —.1693 | 1.1146 | —.1051 { 1.1327 | —.0375
0.30 | 1.1052 | —.2179 | 1.1062 | —.1689 | 1.1176 | —.1038 | 1.1390 | ~ .0350
0.40 { 1.1052 | —.2179 1 1.1073 | —.1684 | 1.1217 | —.1021 | 1.1471 | —.0317
0.45 | 1.1052 | —.2179 | 1.1080 | —.1681 | 1.1242 | —.1010 | 1.1520 | —.0297
aa=2.0 aa=3.0 aa=4.0 aa = 5.0
B k1 ko ky ko k1 ko ky ko
myvae | mye | myve| mya | mya | mye | mya| my/e
0.00 | 1.1442 .0269 | 1.2053 1709 | 1.2902 .3233 | 1.3963 .4830
0.10 | 1.1508 0297 | 1.2175 1755 | 1.3081 3206 | 1.4194 .4904
0.20 { 1.1589 .0329 | 1.2322 1810 | 1.3293 .3368 | 1.4467 .4989
0.30 | 1.1689 .0369 | 1.2501 1875 | 1.3551 .3452 1 1.4800 .5088
0.40 | 1.1816 0418 | 1.2727 .1954 | 1.3875 3554 | 1.5215 5205
0.45 1 1.1894 .0448 | 1.2865 .2001 | 1.4070 3614 | 1.5465 5273

Table 5.25: The variation of stress intensity factors with v for various loading conditions

shown in Table 5.1, h/a = 0.50, 0,,(r,0) =0, 0.,(r,0) = — g.

aa=0.1 aa=0.5 aa=1.0 aa =15
) ky ko ki ko k1 ko ky ko
wve | ova | ova |wve | ove | wva | ave | g/a
0.00 | —.0456 | .4686 | — .0453 | .4690 | —.0443 | .4704 | —.0427 | .4727
0.10 ; —.0456 | .4886 | —.0452 | .4691 | —.0441 ) .4706 | —.0423 | .4731
020 | —.0456 | .4886 | —.0461 | .4691 | —.0438 | .4708 | —.0418 | .4735
0.30 | —.0456 | .4686 | —.0451 | .4692 | —.0435 | .4711 | —.0413 | .4740
0.40 | —.0456 | .4686 | —.0449 | .4693 | —.0431 | .4715 | —.0406 | .4747
0.45 | —.0456 | .4686 | —.0449 | .4694 | —.0429 | .4717 | —.0401 | .4751
aa=2.0 aa=3.0 aa=4.0 aa=25.0
” ky ko k1 ko ky ko ky ko
qove | myva| wve | mya| ove [ mye | qve | my/e
0.00 [ —.0407 | .4757 | —.0359 | .4836 | —.0308 | .4933 | —.0257 | .5043
010 —.0401 | .4763 | —.0351 | .4845 | —.0298 { .4945 | — .0247 [ .5058
0.20 | —.0395 | .4769 | —.0341 | .4856 | —.0287 | .4959 | —.0236 | .5075
0.30 ] —.0387 | .4777 ) —.0330 | .4869 | —.0274 | .4977 | —.0223 [ .5096
0.40 | —.0377 | .4787 | —.0316 | .4885 | —.0259 | .4999 | —.0208 | .5123
045 —.0371 | .4793 | —.0308 | .4895 | —.0250 | .5012 | —.0200 | .5138




Table 5.26: The variation of stress intensity factors with v for various loading conditions
shown in Table 5.1, h/a = 0.25, 0,,(r,0) = — py, 0r,(r,0) =0.

0.00 | 1.9598 .| —.7568 | 1.9530 | —.7014 | 1.9490 | —.6297 | 1.9502 | — .5553
0.10 | 1.9598 | —.7568 | 1.9533 | —.7012 | 1.9502 | —.6289 | 1.9527 | — .5536
0.20 | 1.9598 | —.7568 | 1.9537 [ —.7010 | 1.9517 | — .6280 | 1.9558 | — .5515
0.30 | 1.9599 | —.7568 | 1.9542 | —.7006 | 1.9536 | — .6267 | 1.9597 | —.5490
0.40 | 1.9599 | —.7567 | 1.9548 | —.7002 | 1.9560 | —.6251 | 1.9648 | — .5457
0.45 | 1.9599 [ —.7567 | 1.9552 | —.6999 | 1.9576 | — .6241 | 1.9679 | — .5437

0.00 | 1.9564 | —.4780 | 1.9832 | —.3156 | 2.0285 | —.1435 | 2.0911 0375
0.10 | 1.9606 | ~.4753 | 1.9913 | —.3106 | 2.0407 | —.1362 | 2.1073 0467
0.20 | 1.9657 | —.4720 | 2.0010 | —.3046 | 2.0552 | —.1276 | 2.1265 .0576
0.30 { 1.9720 | —.4679 { 2.0129 } —.2973 | 2.0729 | —.1173 | 2.1500 .0705
0.40 | 1.9802 | —.4627 | 2.0280 | —.2881 | 2.0952 | —.1045 | 2.1793 .0864
0.45 | 1.9852 | —.4596 | 2.0372 | —.2827 | 2.1088 | —.0969 | 2.1971 .0957

Table 5.27: The variation of stress intensity factors with v for various loading conditions
shown in Table 5.1, h/a = 0.25, 0,,(r,0) =0, 0,,(r,0) = — go.

aa=0.1 aa=0.5 aa=1.0 aa=15
) ky ko ky ky k; ko ky ko
ove | ova | wva | Ve | wve | Ve | ava | qoy/e
0.00} —.0925 ] .5412 | —.0923 | .5415 | —.0915 | .5425 | —.0903 | .H441
0.10 | —.0925 | .b412 ! —.0922 | .5415 | —.0914 | .5426 | —.0901 | 5444
0.20 | —.0925 | .5412 | —.0922 | .5416 | —.0912 | .5428 | —.0897 | .5447
0.30 | —.0925 ] .5412 | —.0921 ) .5416 | —.0910 | .5430 | —.0893 | .5451
0.40 | —.0925 | .5412 | —.0920 | .5417 | —.0907 | .5432 | —.0888 | .5456
0.45 | —.09256 | .b412 [ —.0920 | .5417 | —.0906 | .5434 | —.0885 | .545H9
aa=2.0 aa=3.0 aa = 4.0 aa=5.0
) ky ko k1 ko
dova | 9va | wve |ave | wve | ave| wva | wy/e
0.00 | —.0887 | .5463 | —.0847 | 5520 | —.0799 | .5591 | —.0746 | .5673
0.10 | —.0883 | .5467 | —.0840 | .B527 | —.0790 | .5601 | —.0736 | .5684
0.20! —.0878 | .5472 | —.0832 | .6635 | —.0780 ! .5612 | —.0725 | .5698
0.30 | —.0872 ( .5478 | —.0823 | .5546 | —.0768 | .5626 | —.0712 | .5714
0.40 { —.0865 | .b486 | —.0811 | .5558 | —.07564 | .5642 | —.0696 | .5733
0.45| —.0860 | .5490 | —.0804 | .5566 | —.0745 | .5652 | — .0687 [ .5745
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Figure 5.1: Normalized stress intensity factors for various h/a values when
0.2(r,0) = — py, 0r,(r,0) =0.
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Figure 5.2: Normalized stress intensity factors for various h/a values when
0.2(r,0) =0, 0n,(r,0) = — .
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Figure 5.3: Normalized stress intensity factors for various h/a values when
02(r,0) = —po, 0rs(r,0) =0.
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Figure 5.4: Normalized stress intensity factors for various A /a values when
ozz(r’ 0) = 07 O"rz('r’ 0) = —Aqo
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Figure 5.5: Normalized stress intensity factors for various k/a values when
o'zz('r’ 0) = — Do, o'rz('r’ 0) = 0.
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Figure 5.6: Normalized stress intensity factors for various h/a values when
022(r,0) =0, 0.,(r,0) = — q.
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Figure 5.7: Normalized stress intensity factors for various aa values when
0.(r,0) = — my, 0.(r,0) =0.
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Figure 5.8: Normalized stress intensity factors for various aa values when
0.(r,0) =0, 0.,(r,0) = — qp.
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Figure 5.9: Normalized stress intensity factors for various ca values when
0.:(r,0) = — py, op,(r,0) =0.
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Figure 5.10: Normalized stress intensity factors for various aa values when
05(r,0) =0, 00(r,0) = — go.

58




0.4

0.3

0.1

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.11: 7- component of the normalized crack opening displacement for various h/a
values in case of the external loading ¢, (r,0) = 0, 0,,(r,0) = — go, and ca = 0.
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Figure 5.12: 7- component of the normalized crack opening displacement for various h/a
values in case of the external loading o,(r,0) = 0, ¢,,(r,0) = — qo, and aa = 0.5.

59




0-4 I j 1 r T T l !

0.3

0.1

0.0 ] | ! | A { N |
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.13: r- component of the normalized crack opening displacement for various /2 /a
values in case of the external loading o,,(r,0) = 0, 0,,(r,0) = — ¢, and ca = 1.0.
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Figure 5.14: r- component of the normalized crack opening displacement for various k/a
values in case of the external loading 0,,(r,0) = 0, 0,,(r,0) = — gy, and aa = 1.50.

60




0.4 N R I I I
0.3

U(r) 0-2
0.1
0.0 ‘
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.15: r- component of the normalized crack opening displacement for various h/a
values in case of the external loading o,,(r, 0) = 0, o,(r,0) = — go, and ca = 2.0.
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Figure 5.16: r- component of the normalized crack opening displacement for various h/a
values in case of the external loading 0..(r, 0) = 0, 0r,(r,0) = — qp, and ca = 3.0.
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Figure 5.17: r- component of the normalized crack opening displacement for various ca

values in case of the external loading ¢,,(r,0) = 0, ¢,,(r,0) = — ¢, and h/a = 5.0.
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Figure 5.18: 7- component of the normalized crack opening displacement for various aa
values in case of the external loading ., (r,0) = 0, or,(r,0) = — gp, and h/a = 1.0.
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Figure 5.19: - component of the normalized crack opening displacement for various aa
values in case of the external loading ,,,(r,0) = 0, 0,,(r,0) = — go, and h/a = 0.75.
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Figure 5.20: r- component of the normalized crack opening displacement for various aa
values in case of the external loading 0,(r,0) = 0, 0,,(r,0) = — ¢o, and h/a = 0.50.
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Figure 5.21: 2- component of the normalized crack opening displacement for various 7 /a
values in case of the external loading ,,(r,0) = — py, 0r,(r,0) = 0, and @a = 0.

Figure 5.22: 2- component of the normalized crack opening displacement for various & /a
values in case of the external loading 7,,,(r,0) = — py, 0,,(r,0) = 0, and aa = 0.50.
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Figure 5.23: 2- component of the normalized crack opening displacement for various k/a

values in case of the external loading ¢,,(r,0) = — py, 0r,(r,0) =0, and aa = 1.0.
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Figure 5.24: 2- component of the normalized crack opening displacement for various k/a
values in case of the external loading o,,(r,0) = — py, 0,(r,0) =0, and ca = 1.50.
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Figure 5.25: 2- component of the normalized crack opening displacement for various h/a
values in case of the external loading 0.,,(r,0) = — py, 0,(r,0) =0, and ca = 2.0.

Figure 5.26: - component of the normalized crack opening displacement for various k/a
values in case of the external loading 0,,(r, 0) = — m, or,(r,0) = 0, and ca = 3.0.
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Figure 5.27: 2- component of the normalized crack opening displacement for various c:a
values in case of the external loading 0,,(,0) = — p, 0,,(r,0) =0, and h/a = 5.0.
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Figure 5.28: 2- component of the normalized crack opening displacement for various aa
values in case of the external loading 0,,(r,0) = — py, 0r,(r,0) =0, and h/a = 1.0.
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Figure 5.29: 2- component of the normalized crack opening displacement for various aa
values in case of the external loading o,,(r,0) = — py, 0,(r,0) =0,and h/a = 0.75.
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Figure 5.30: r- component of the normalized crack opening displacement for various ca
values in case of the external loading 0,.(r,0) = — py, 0,,(r,0) =0, and h/a = 0.50.
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Conclusions and Future Works

In this study stress intensity factors and the crack opening displacements for
different values of non-homogeneity parameter o and length parameter h have been
_ investigated. Also studied is the effect of the Poisson's ratio v on the stress intensity

factors. The main conclusions may be summarized as follows :

(a) — For large h/avalues, the calculated stress intensity factors agree with the
results given in [13] within at least three digits. |

(b) — When there was only normal loading (0,.(r,0) = — py, 0..(r,0) = 0), it
was observed that for large values of h/a, normalized stress intensity factor k; increases
slowly as the non-homegeneity parameter o increases. However, for small values of h/a,
(such as h/a = 0.10), the normalized stress intensity factor k; first decreases and then
slowly increases with increasing a (Figure 5.1). Under the same loading k; increases with
increasing a for all values of h/a. On the other hand for shear loading (o.,(r,0) =0,
0r,(r,0) = — qo), stress intensity factor k; increases for all values of h/a with increasing
«, however, the values of k; are small. Similarly, ko increases for all values of h/a with

increasing «, but the values of ky were small compared to k; under the normal loading.
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Also it was observed that for negative o values k; under normal loading and k, under
shear loading were almost symmetric for the large values of 4 /a.

Since the stress intensity factors do not depend on the magnitude of the shear modulus pg
for a crack in an infinite medium, this result is expected.

(c) — It was observed that stress intensity factors k; and kg under respectively
normal and shear loading tend to certain limiting values as h/a increases. On the other
hand as expected, same stress intensity factors tend to infinity when h/a goes to zero. For
large values of h/a the results agree with [13]. Also, for fixed values of « the stress
intensity factors kjand ko under shear and normal loading, respectively, tend to certain
limiting values which are, however, negligibly small.

(d) — It was observed that under shear loading r-componént of the normalized
crack opening displacements U(r) increases slowly when the length parameter h/a
decreases. On the other hand, it is easy to see that under normal loading z-component of
the normalized crack opening displacement W(r) increases rather significantly with
decreasing values of h/a. In both cases the results agree with [13] for large values of h/a.

(e) — It was observed that stress intensity factors are relatively insensetive to
variations in the Poisson's ratio for the small values of non-homogeneity parameter o and
for all values af h/a. But for large o and small h/a the effect of Poisson's ratio may not be
negligible. Some results are presented in Tables 5.18 — 5.27 to give an idea about the
influence of the variations in v on the stress intensity factors. It may be seen that,
generally, the influence of v on the stress intensity factors is not very significant.

Among the possible continuation of this research one may mention the
investigation of the axisymmetric interface crack problem in a FGM coating bonded to a

homogeneous substrate and the spallation phenomenon resulting from the buckling
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instability. The in-plane compression that may cause buckling of the coating may be

mechanical or thermal in nature.
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Appendix A

Expressions for various functions that appear
in chapter 2 and chapter 3.

8—k)
Wk Al
(k+1) 4D
¢ = %\/aQ + 4p% + 4iapb, (A.2)
= %\@2 4% — fiaps, (A3)
1
m = - Sate, (A4)
1
my =~ Sa-¢, (A5)
1
M= —sa+l, (A.6)
_ 1 =
m = - sa-E, (A7)
_ 2mp+a3-K)
“ 20 +iab(k +1)’ (A.8)
_ 2my+a(83-k)
= T tiab(k+1)’ (8.9)



_2mi + o3 —k)
20 +iab(k+1)’

aq

_ 2My + o3 - k)
20 +iab(k +1)’

D)

n1 = (8- kK)p+ (k+1)aymy,
ng = (3 —kK)p + (k +1)agma,
m = (3 —k)p+ (k + 1)@y,

fig = (83— K)p + (k + 1)@o g,

Ay = n(T; — V17, A= - A
T1U9 — UMy
METTR
1
- n1V9 — V179
METTE
1
NV — UMy
A3 = A ¥
: 1
- ToU1 — VoMl
Ag =

Gl =Ty + TblAle—?{h +ﬁ1A3e_(§+_€)h y
G2 =y + ’Ul)\le_%h +7)'1)\3e_(£+_€)h )

él = Tg +ﬁ1X1€—2Eh + nlx3e_(£+z)h )
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(A.10)

(A.11)

(A.12)
(A.13)
(A.14)
(A.15)
(A.16)
(A.17)
(A.18)
(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)
(A.26)

(A27)




@2 =Tq +71/\16_2—Eh +’01X36_(§+€)h ,

Ay = G1Gy — G1Gy, Ay = — Ay
E, = n1@2A—2v1(_}’1’

B = — anz:- '01G1,

B, = angﬁ—zlel,

B, — ——ﬁlf%:—'ﬁl(jl’

Es = A E1e %" 4 XgEpe C+Oh,
E4 = X1E26_2_§—h + )\3E16_(€+3)h,
E3 = XlEle—th + /\3E2€_(§+z)h,

E'4 = )\1E26_2§h +X3E1€_(§+z)h,

by =a1 —apE) —Q9FEy — a1 E3 — a1 By,

b =Ey+Ey + Es+ Ey — 1,

<

1—089F1 —agEy —a1E3 — a1y,

0|

1=

-b—2 =FE, +E2 +E3+E’4 -1,

Az = biby — b1bs, Az = — Ag
dy; = n132;3ﬁ1b2,
- n131 +71bq
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(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)
(A.35)
(A.36)

(A.37)

(A.38)
(A.39)
(A.40)
(A.41)

(A.42)

(A.43)

(A.44)



bo —Tiby
v1bg

(A.45)
(A.46)
BT
31 +51b1 ’
doo = A,
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Appendix B

Asymptotic Analysis of Kernels

By defining a new variable
oY
R - 2_p" 3
from
1
my= — =+ /a2 + 452 + diapb = — = +¢
2 "2 2
my = pMj,
we find

Similarly,

Defining

M; = — R++/1+2i6R+ R2.

my = pMp, M; = —R—+/1+2i6R + R?,
my = pMy, M;= —R++/1-26R+R?,
Mg = pMo, My= —R-+/1-2i6R + R,

n=+/1+2i6R + R,

fi=1/1-2i6R + R2,
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(B.1)

(B2)

(B.3)
(B.4)
(B.5)

(B.6)

(B.7)

(B.8)

(B.9)



we have

£ = pn, & = .

By substituting the value of m;in terms of M;, (j = 1,2) into (2.34) we find

M;+(3—-%)R
ar = — . )
1+i(k+1)6R
0 — _M2+(3—I£)R
2T T 14i(k+1)6R’
a) =03 and ay=17y.

Expressing (A.12)-(A.19) as

ny = pNy, Ny = (83— &)+ (k + L)a1 My,
ng = pNa, Ny =(3—k)+ (k+ 1)agMs,
7, = pNy, Ni=0@B-k)+(k+1)a, My,
Tig = pNo, No = (3 - k) + (k+ 1)@y My,
v = pWi, Vi=M —a,

ve = pls, Vo = M — ay,

71 = pV1, 71=Mi—51,

Ty = pVa, Vo=M;-1a,

(A.20) becomes
Ay = p*(N1V1 — NV4), All =NV - NV
A = — A,
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(B.10)

(B.11)

(B.12)

(B.13)

(B.14)
(B.15)
(B.16)

(B.17)

(B.18)
(B.19)
(B.20)

(B.21)

(B.22)

(B.23)




Define the coefficients A1; and Aqs in terms of M;, a;, N;and V;, (i = 1,2), as

A = A 2Ph ALy + Xge(TTPR 4, (B.25)
Az = Age M MPh Ap 4 X1 2MPR Ay, (B.26)
where
NVs — VN
M = YaVe = Vale (B.27)
A,
NoVi — Vo N
A3 = _“AI# (B.28)

Referring to (A.25)-(A.27), we may write

G, = Ny + Nihje 2% 4 Nydge (et (B.29)
G, = Ny + NiX1e 210 4 Ny X ge (rmeh, (B.30)
Gy = Vo + Vidie Pk 4 T ge= (M, (B.31)
Gy = Vo + VX1 Pt 4 ViR ge (TiMoh, (B.32)
and
A, =p*(6,G, - G,G,), A, =G,G, - GG, (B.33)
A, = - A, (B.34)

Then, the coefficients Ao and A4 may be expressedin terms of M;, a;, N;, V; and G;-,
(i=1,2), asfollows:

Ay = E1 Ay + EyAgg, (B.35)

Ay = EyAgy + E1 Ags, (B.36)

where

. (M8, - E))

) , (B.37)
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B, = _ , (B.38)

By = - , , (B.39)

7 . (B.40)

As a result, all four coefficients A1;,(j=1,2,3,4), can be expressed in terms of Agy

and A22, as

Ay = (/\1E16—217ph +X3E26_(77+77)ph) Agy
+ (AlEge_%ph +X3E16—(n+ﬁ)ph)A23, (B.41)

Ajp = Ey Agy + Ey Ags, : (B.42)

Az = (N1 Epe 5Pt 4 N3 Be~(mHek) Ay

+ (XlEle—Qﬁph + >\3E26_(§+?)h)A23, (B.43)
A1y = EyAg; + By Ags, (B.44)
where
E3 = A\ Eje ™t - X3 Eye=(ntmoh, (B.45)
E3 = XlEle_anh + )\3E26_("+T7)ph, '(B.46)
E, = XlEge"Qm’h + /\3Ele‘(’7+’7)”h, (B.47)
E4 = AIE’?e—?nph +"X3E16—(n+ﬁ)ph, (B48)
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~ Whén p goes to infinity, R will goto 0 and d

'0

dy; =2
2

d11 =2

di =2

bi = a1 —a1E3 — ap By — @By — a0 Fy,
by =a; —a1E3 —@E; — a1 Ey — ag B,
by =FE; +Ey+E3+ Es — 1,

_52 =E1+E’2 +E3 +E4—1,

Az =bibg —biby, Az = — As,

d,n(R) = Aig((ﬁ + 1)(M1a132 — Mlﬁlbg) + (3 - K)(Fg - bg)),

dyy(R) = Alg((ﬂ + 1)(M1@1by — Myaih1) + (3 — ) (b1 — b1)),

dy (R) = AL3((M1 —ay)by — (M1 —G1)bo),

dyy (R) = "Als_((Ml —@1)by — (My —a1)by).

!

15’

' X 1k
k=0

(k—1)
(k+1)°

(k= 1)(k - 9)
(k+12 7

-+

(k — 1)(k* — 26k + 99)
(k +1)3 ’
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(i, =1,2), can be expressed as :

(B.49)
(B.50)
(B.51)

(B.52)

(B.53)

(B.54)
(B.55)
(B.56)

(B.57)

(B.58)
(B.59)

(B.60)




(k — 1)(k® — 51k% + 489k — 1175)

'6

db =2 CESY, ,

45— 9 (k — 1)(k* — 843 + 1458k% — 8268k + 14499)
1 (k +1)5 ’
o (6 —1)(k® — 125k + 3390x% — 33270k2 + 132735k — 183195)

dy =2 (k+ 1)

1 '3 '5 "7 '9 11
dyy =djy =djy =dyy =dy; =dy; =0.
1 _ o (k—1)
2% (k+1)
s (k—1)(k—9)
45— (k — 1) (k% — 26K + 99)
12 =2 (k+1)3 ’

i1 o (k — 1)(K® — 51k2 + 489k — 1175)
2z (k+1) ’

40 =9 (k — 1) (k" — 84K3 + 14582 — 8268k -+ 14499)
12 (K, + 1)5 '
n1 o (k= 1)(K° — 125k* + 3390k° — 33270k% + 132735k — 183195)

dyy =2 (K +1)8

'0 2 4 '6 '8 '10
dyy =dyg =dpy =djy =djy =dy, =0.
, 1
1 —
d21 - 2 (K’ + 1) '

84

)

’

(B.61)
(B.62)

(B.63)

(B.64)

(B.65)
(B.66)
(B.67)
(B.68)
(B.69)

(B.70)

(B.71)

(B.72)



(k—9)

dy = —2 T (B.73)
ds = - G (":E'; ;; %9) (B.74)
d’271 " (K3 — 51&(1—:418)2/& - 1175), (B.75)
& - 2(54 — 84k3 + 14(5:121;58268& + 14499), (B76)
di - 2 (K5 - 125k4 4 3390%° —( ::irz";()):? + 132735k — 183195), BT

dlzo1 = dl221 = dl241 = dl261 = d’281 = dlzllo =0. (B.78)
d) = ~2 S (B.79)

(k+1)

dp = - 2((:;11))2, (B.30)
dh = -2 (x (,: 10’1‘);“ 3) (B.81)
d'262 _ 2(ﬂ3 _ 2*222 :1;05;5 + 1), (B.82)
dE =~ (k* — 52x3 + ?28:21)—5 1132k — 253), (B3)
0 — (k° — 85k" +1470x° — 8070x 4 12255k + 5085) (B.84)

(k+1)8 ’
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"1 _ 48 _ 45 _ 47T _ 49 _ J11 __
d22—d22—d22—d22_d22_d22 =0.

!

When p tends to infinity dln, dyos d,21 and d;Q behave as follows :

=3 A (E) o),
G =253 (5) 2 T () +o5)
40 =1 (5) - (5) ()

dalp) = =2 —2((;“;19)’2 <%>2 +O(l%)'

(B.85)

(B.86)

(B.87)

(B.88)

(B.89)

Also, dividing dy, and d, by dy, and d,, and d,, by d3, it can be shown that (see

o= E29(5) + 522 +o(3)
mu= () + 3 (5) - e ) o)
< |

3> N Em;?§<a>3+ (K% — 26K + 99) (g

2 (k+1)2

= (58 (5) T (8) o)
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(B.90)

(B.91)

(B.92)

(B.93)



Appendix C

Examination of the Logarithmic Kernels

C.1 Elliptic Integrals

The expressions of the integrals giving the kernels contain complete elliptic

integrals of the first and the second kind [21] which are defined by

m 2 do
K=K(k)=F|=,k =/ , ' (C.1.1)
®) (2 ) 0 V11— k?sin?f
E=E) = F(g k) - /2\/1 — k2sin?6 dd. (C.12)
0
derivatives with respect to modulus & are given by
K E-KK i
dk - kkﬂ ’ ( o de )
@ _L-X C.l4
k- E (C.1.4)
where k' is the complementary modulus
k =v1-k (C.1.5)
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When the modulus % tends to 1,the complete elliptic integrals have the following

asymptotic properties:
K(k) = log 4 kE—1 (C.1.6)
1-k )’ h
E(k) =1, k—1. ‘ (C.1.7)

By using the properties of the complete elliptic integrals, we now examine parts of the

kernels that can be expressed in closed form.

C2 K3i(en) = [ h(ro)Ai(enods

In equation (3.53) the third integral, namely K] (s, 7), may be expressed in terms

of the complete elliptic integrals as follows :

1 1
T LB+ 1k(D), aen
82 —r2  \p rs  \r

*® 2
/ Jo(rp)J1(sp)p dp = = (C2.1)
0 T 1 r
32—7'2E<;)’ S>r.
Rewriting (C.2.1) for s < r, we have
1 T_ (8 gt —r? 38
g2 —r2 (;E(;) + r8 K(;))’ (C2.2)

adding the expression,
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l 1+1
:F2 s—r g+r)’

and by using the identity

1 _1(1 1
2—12 28\s—r s+r)’

for s < r, the integral (C.2.1) becomes

1 1 + 1
28\8—1r g8+r
2 2

1| QR G) -t PG

23 g—r s+r

Similarly, for s > r we find

E(f)—1 E(f _1
%(sir sj—r)+2_1s 38—7' i ss-l)—r 2T
or, by defining
() + 2520, o<
My(s,r) =
E(g), s>,

the integral , K77 (s, ), becomes,

© — —
sKll(s,r) ==

89

1( 1 + 1 +M2(3,'r)—1+M2(s,'r)—1
s—r 8+r7r s—r s+r

)

(C.2.3)

(C.2.4)

(C.2.5)

(C.2.6)

(C.2.7)

(C.2.8)




C3 K(e,r)= [ hre)do(splods
0

Referring to (3.54), the third integral, namely K5 (s, ), may be expressed as

.
s 1 T 1 T
m [t @) - 1), oo
JREICONICTEIE (©3.1)
0 ! E(2) <
L r2—g2" " \r/’ s
Following the procedure described in (C.2) and defining
st _/r r?—g% /7
E(G)+ =K (5) oo
My(s,7m) = (C3.2)
8 /3
;E(;), 8>,
it can be shown that
1/ 1 1 My(s,r) —1  My(s,r)—1
K® - = _ _ ’ ' 3.
sKap(er) w(s—r s+r §—r s+r (€3.3)
(o o]
C4 H11(8, ’l‘) = / JQ(’l‘p)Jo(Sp) dp
0 .
By adding
Q (o9}
:l:7rs§/0 Jo(rp)Jo(sp) dp, (C4.1)
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from (3.58), it can be shown that

Fua(s,7) = 79 /0 " (Do) — ) do(re) ofoe) do

+7rsg— / Jo(rp)Jo(sp) dp, (C.4.2)
0
where
a (k=9 (a\31 (K —265+99) a5 1 1
Dys(p)p - 5= (K—Jr_l)<§) 2 + SN (§> i +O(p—6>- (C.43)

The second integral in (C.4.2) or Hy1(s,7), has a closed-form expression given by

lK(i), s<r,
0 92 T T :
[ atennio dp= 2 (C44)
° IO
P P y ] T

Hence, referring to (C.1.6) it is seen that at 7 = 8 kyo(r, ) has a logarithmic singularity .
o0
C.b H22(3,7‘) = / Jl(’l’p)Jl(Sp)p dp
0

Similarly, by adding and subtracting the integral
Q [o9]
srS [ Ioo) (o0, ©5.1)
0
the kernel kp; (7, 8) may be expressed as
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(6

balor) = s [ (Dulodo— 5) Boo) o) dp

4155 [ eo)iop) e, (©52)
0
where
D _g_(n—9)<g_)3l+(52—26/ﬁ+99)(g)51 0 1 C53
21(p)p 2= krD\2) 2 IS 5 ?+ %) (C.5.3)

The second integral in (C.5.2),namely Hoy(s,7),has a closed-form expression which is

given by,

%0 2
/ Ji(rp)Ji(sp) dp = — (C5.4)
0 T .

Also, referrring to (C.1.6) it is seen that at r = s ky; (7, ) has a logarithmic singularity .
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