Lehigh University Lehigh Preserve

Theses and Dissertations

1996

The axisymmetric crack problem in a semi-infinite nonhomogeneous medium

Ali Sahin Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Recommended Citation

Sahin, Ali, "The axisymmetric crack problem in a semi-infinite nonhomogeneous medium" (1996). Theses and Dissertations. Paper 451.

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Sahin, Ali The Axisymmetric **Crack Problem in** a Semi-Infinite Nonhomogeneous Medium

January 12, 1997

THE AXISYMMETRIC CRACK PROBLEM IN A SEMI-INFINITE NONHOMOGENEOUS MEDIUM

by

Ali SAHIN

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Applied Mathematics

Department of Mechanical Engineering and Mechanics

Lehigh University

December 1996

This thesis is accepted in partial fulfilment of the requirements for the degree of Master of Science

Nov. 27, 1996 (Date)

Prof. Fazil Erdogan (Thesis Advisor)

Prof. Charles R. Smith (Chairman of Department)

Acknowledgements

First of all, I would like to express my thanks to Professor Fazil Erdogan and his outstanding guidance and support during my graduate studies and of my thesis research.

I want to thank to Dr. Murat Ozturk for his assistance and consideration. Also, I want to especially mention the support of my wife and my family from back home during my graduate studies.

Contents

Acknowled	gements	iii
List of Tables		
List of Figures		
Abstract	·	1
Chapter 1	Introduction	2
1.1	Introduction	2
1.2	The Organization	4
Chapter 2	Formulation of the Problem	6
Chapter 3	The Integral Equations	14
3.1	Derivation of the Integral Equations	14
3.2	The Fundamental Function	
Chapter 4	Numerical Procedure	26
Chapter 5	The Results	37
Chapter 6	Conclusions and Future Work	69

References

Appendix	Α	Expressions for Various Functions that Appear in Chapter 2		
		Chapter 3	75	
Appendix	B	Asymptotic Analysis of Kernels	79	
Appendix	С	Examination of the Logaritmic Kernels	87	
Vita			93	

72

List of Tables

5.1 Loading conditions used and the corresponding stress intensity factors for the 37 homogeneous medium ($\alpha = 0$). 5.2 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 10, $\sigma_{zz}(r, 0) = P_1(r)$, $\sigma_{rz}(r, 0) = 0$ 41 5.3 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 10, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = P_2$ 41 5.4 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 5, $\sigma_{zz}(r,0) = P_1(r)$, $\sigma_{rz}(r,0) = 0$ 42 5.5 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, $\nu = 0.3$, h/a = 5, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = P_2$ 42 5.6 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 2, $\sigma_{zz}(r, 0) = P_1(r)$, $\sigma_{rz}(r, 0) = 0$ 43 5.7 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 2, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = P_2$ 43 5.8 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 1, $\sigma_{zz}(r, 0) = P_1(r)$, $\sigma_{rz}(r, 0) = 0$ 44 5.9 The variation of stress intensity factors with $a\alpha$ for various loading conditions

shown in Table 5.1,
$$\nu = 0.3$$
, $h/a = 1$, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = P_2$ 44

- 5.10 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 0.75, $\sigma_{zz}(r, 0) = P_1(r)$, $\sigma_{rz}(r, 0) = 0$ 45
- 5.11 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 0.75, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = P_2$ 45
- 5.12 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 0.50, $\sigma_{zz}(r, 0) = P_1(r)$, $\sigma_{rz}(r, 0) = 0$ 46
- 5.13 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 0.50, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = P_2$ 46

5.14 The variation of stress intensity factors with
$$a\alpha$$
 for various loading conditions
shown in Table5.1, $\nu = 0.3$, $h/a = 0.25$, $\sigma_{zz}(r, 0) = P_1(r)$, $\sigma_{rz}(r, 0) = 0$ 47

- 5.15 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 0.25, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = P_2$ 47
- 5.16 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 0.1, $\sigma_{zz}(r, 0) = P_1(r)$, $\sigma_{rz}(r, 0) = 0$ 48
- 5.17 The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table5.1, $\nu = 0.3$, h/a = 0.1, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = P_2$ 48
- 5.18 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 10, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$. 49
- 5.19 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 10, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$. 49
- 5.20 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 2, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$. 50
- 5.21 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 2, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$. 50

- 5.22 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 1, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$. 51
- 5.23 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 1, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$. 52
- 5.24 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 0.50, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$. 52
- 5.25 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 0.50, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$. 52
- 5.26 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 0.25, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$. 53
- 5.27 The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 0.25, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$. 53

List of Figures

2.1 Problem Geometry

5.1 Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, $\frac{k_1}{p_0\sqrt{a}}$ vs $\alpha a \ (\alpha > 0)$. 54

6

5.2 Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0, \frac{k_1}{q_0\sqrt{a}}$ vs $\alpha a \ (\alpha > 0)$. 54

5.3 Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, $\frac{k_2}{p_0\sqrt{a}}$ vs $\alpha a \ (\alpha > 0)$. 55

5.4 Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0, \ \frac{k_2}{q_0\sqrt{a}}$ vs $\alpha a \ (\alpha > 0)$. 55

- 5.5 Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, $\frac{k_1}{p_0\sqrt{a}}$ vs $\alpha a \ (-5 < \alpha < 5)$. 56
- 5.6 Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0, \ \frac{k_2}{q_0\sqrt{a}}$ vs $\alpha a \ (-5 < \alpha < 5)$. 56
- 5.7 Normalized stress intensity factors for various αa values when $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, $\frac{k_1}{p_0\sqrt{a}}$ vs h/a. 57

5.8 Normalized stress intensity factors for various αa values when $\sigma_{zz}(r, 0) = 0$,

$$\sigma_{rz}(r,0) = -q_0, \quad \frac{k_1}{q_0\sqrt{a}} \quad \text{vs} \quad h/a.$$
 57

5.9 Normalized stress intensity factors for various αa values when $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, $\frac{k_2}{p_0\sqrt{a}}$ vs h/a. 58

- 5.10 Normalized stress intensity factors for various αa values when $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$, $\frac{k_2}{q_0\sqrt{a}}$ vs h/a. 58
- 5.11 *r*-component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, $\alpha a = 0$. 59
- 5.12 *r*-component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$, $\alpha a = 0.50$. 59
- 5.13 *r*-component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, $\alpha a = 1.0$. 60
- 5.14 *r*-component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, $\alpha a = 1.5$. 60
- 5.15 *r*-component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, $\alpha a = 2.0$. 61
- 5.16 *r*-component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, $\alpha a = 3.0$. 61
- 5.17 *r*-component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, h/a = 5.0. 62
- 5.18 *r*-component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$, h/a = 1.0. 62
- 5.19 *r*-component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$, h/a = 0.75. 63

- 5.20 *r*-component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, h/a = 0.50. 63
- 5.21 z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, $\alpha a = 0$. 64
- 5.22 z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, $\alpha a = 0.5$. 64
- 5.23 z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, $\alpha a = 1.0$. 65
- 5.24 z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, $\alpha a = 1.5$. 65
- 5.25 z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, $\alpha a = 2.0$. 66
- 5.26 z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, $\alpha a = 3.5$. 66
- 5.27 z- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, h/a = 5.0. 67
- 5.28 z- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, h/a = 1.0. 67
- 5.29 z- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, h/a = 0.75. 68
- 5.30 z- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, h/a = 0.50. 68

xi

ABSTRACT

In this study, the basic axisymmetric crack problem in a nonhomogeneous semiinfinite medium with continuously varying elastic properties is examined. The problem is encountered in studying the fracture mechanics of functionally graded materials which are mostly two-phase particulate composites with continuously varying volume fractions. The objective of this study is to determine the effect of the material nonhomogeneity parameters on the stress intensity factors in functionally graded materials containing an axisymmetric crack parallel to the surface.

Using Hankel integral transforms for the displacements in the axisymmetric crack problem, the mixed boundary conditions are analytically reduced to a system of dual integral equations, and then, by a systematic approach, to a system of singular integral equations. After converting the system of singular integral equations to a system of functional equations, such physically important quantities as stress intensity factors and crack opening displacements are obtained numerically by using certain approximate techniques.

Chapter 1

Introduction

1.1 Introduction

The various forms of composites and bonded materials have always been widely used in technological applications such as power generation, transportation, aerospace, and microelectronics. However, for the demands of future technologies, the use of homogeneous materials and standard composites is becoming more and more difficult so that a greater emphasis in current research is placed on material design; more specificaly, on developing new materials or material systems tailored for specific applications. Increasing concerns with mechanical failure initiating at the interfacial regions require a better understanding of the interaction between flaws that may exist in these regions and applied loads and the other environmental factors. The conventional approach of studying the thermomechanics of such materials is based on the assumption that the composite medium is piecewise homogeneous and the flaws may be represented by plane cuts or cracks. On the other hand, in most bonded materials the interfacial region appears to have a structure which is generally different than that of the adjacent materials. In many cases, such as in plasma spray coating, sputtering, ion plating and in some diffusion bonded materials, the thermomechanical properties of the region are graded in the sense that the interfacial region is a nonhomogeneous continuum of finite thickness with very steep property gradients.

In the 1980's the concept of functionally graded materials (FGMs) was proposed in Japan to process thermal barrier coatings that may be used to shield the high temperature components of the space plane. FGMs for this application are composite materials with a gradual compositional variation from ceramic to metal from one surface to the other. These continuous changes result in property gradients which can be adjusted by controlling the composition. In this sense, material property grading is just another means to get optimal performance from the material. Generally, the objective of the optimal design is to provide such properties as sitiffness, strength, toughness, ductility, hardness and wear, corrosion and temperature resistance wherever needed in the structural component. In this respect the concept of FGM provides the engineer with a highly versatile tool. One of the important potential applications of FGMs is, for example, their use as an interfacial zone in bonding dissimilar materials. By eliminating the abrupt change in thermomechanical properties along the interface through property grading, it is possible not only to reduce or eliminate the stress concentrations but also to increase the bonding strength quite considerably. [1]-[9]

In this study the axisysmetric crack problem for a nonhomogeneous elastic half space is considered. It is assumed that the external loads as well as geometry are axisymmetric. A brief review of the fracture problems in conventional composite materials may be found in [10]. Delale and Erdogan considered the crack problem for a nonhomogeneous plane [11] and the interface crack in a nonhomogeneous medium [12]. The axisymmetric crack problem for a nonhomogeneous infinite medium and two semiinfinite homogeneous half-spaces bonded through a nonhomogeneous interfacial zone were considered by Ozturk and Erdogan [13]-[14].

In this study, it is assumed that the shear modulus is a function of z approximated by

$$\mu(z) = \mu_0 \exp(lpha z)$$
 .

This is a simple simulation of materials and interfacial zones with intentionally or naturally graded properties. With the application to fracture mechanics in mind, the main result given in this study are the stress intensity factors as a function of the nonhomogeneity parameter α and the dimensionless length parameter h/a for various loading conditions. Some sample results showing the crack opening displacements are also given.

1.2 The Organization

The statement of the problem and the description of the geometric and material parameters used in this study are given in Chapter 2 which includes formulation of the problem by using the governing differential equations and the boundary conditions. The solution of the differential equations and the derivation of the dual integral equations are given in Chapter 3. In Chapter 4 the numerical procedure used in this study is described. The results of this study which consist of crack opening displacements, normalized stress

intensity factors and the effect of Poisson's ratio on stress intensity factors are given in Chapter 5. Finally, some analytical details, including the asymptotic examination of the kernels are given in the Appendices.

Chapter 2

Formulation of the Problem

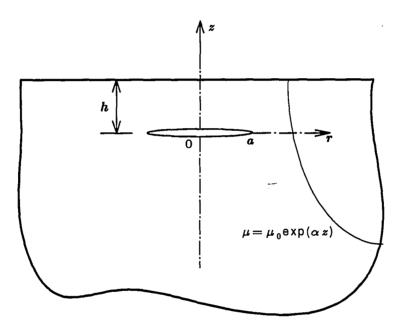


Figure 2.1: Crack geometry and notation

Consider the axisymmetric crack problem in a nonhomogeneous semi-infinite medium. It is assumed that the elastic moduli are functions of z only and are given by

$$\mu(z) = \mu_0 \exp(\alpha z), \qquad \lambda(z) = \lambda_0 \exp(\alpha z). \qquad (2.1)$$

c,

From the kinematic relations and the Hooke's law for the axisymmetric problem the nonzero stress components may be expressed as

$$\sigma_{rr} = (2\mu + \lambda)\frac{\partial u}{\partial r} + \lambda \left(\frac{u}{r} + \frac{\partial w}{\partial z}\right), \qquad (2.2)$$

$$\sigma_{\theta\theta} = (2\mu + \lambda)\frac{u}{r} + \lambda \left(\frac{\partial u}{\partial r} + \frac{\partial w}{\partial z}\right), \qquad (2.3)$$

$$\sigma_{zz} = (2\mu + \lambda)\frac{\partial w}{\partial z} + \lambda \left(\frac{\partial u}{\partial r} + \frac{u}{r}\right), \qquad (2.4)$$

$$\sigma_{rz} = \mu \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right). \tag{2.5}$$

where μ and λ are Lame's constants. In cyclindrical coordinates , the equilibrium equations are

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\theta}}{\partial \theta} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{1}{r} (\sigma_{rr} - \sigma_{\theta\theta}) + f_r = 0, \qquad (2.6)$$

$$\frac{\partial \sigma_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta\theta}}{\partial \theta} + \frac{\partial \sigma_{\theta z}}{\partial z} + \frac{2}{r} \sigma_{r\theta} + f_r = 0, \qquad (2.7)$$

$$\frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta z}}{\partial \theta} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{1}{r} \sigma_{rz} + fz = 0.$$
(2.8)

In the absence of body forces, the equilibrium equations for the axisymmetric problem can be reduced to

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{1}{r}(\sigma_{rr} - \sigma_{\theta\theta}) = 0, \qquad (2.9)$$

$$\frac{\partial \sigma_{rz}}{\partial r} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{1}{r} \sigma_{rz} = 0.$$
(2.10)

Substituting stresses which are found from equations (2.2)-(2.5) into the equilibrium equations (2.9) and (2.10), the following system of equations can be obtained

$$(\kappa+1)\left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} - \frac{u}{r^2} + \frac{\partial^2 w}{\partial r \partial z}\right) + (\kappa-1)\alpha\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r}\right)$$

$$+ (\kappa - 1) \left(\frac{\partial^2 u}{\partial z^2} - \frac{\partial^2 w}{\partial r \partial z} \right) = 0, \qquad (2.11)$$

$$(\kappa+1)\left(\frac{\partial^2 u}{\partial r \partial z} + \frac{1}{r}\frac{\partial u}{\partial z} + \frac{\partial^2 w}{\partial z^2}\right) - (3-\kappa)\alpha\left(\frac{\partial u}{\partial r} + \frac{u}{r}\right)$$
$$(\kappa+1)\alpha\frac{\partial w}{\partial z} - (\kappa-1)\left(\frac{\partial^2 u}{\partial r \partial z} - \frac{\partial^2 w}{\partial r^2}\right)$$
$$-\frac{(\kappa-1)}{r}\left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial r}\right) = 0.$$
(2.12)

where $\kappa = 3 - 4\nu$, $\lambda/\mu = 2\nu/(1 - 2\nu)$, ν being the Poisson's ratio. Now , to solve the differential equations (2.11) and (2.12) we use the following Hankel transforms

$$F(z,\rho) = \int_0^\infty u(r,z) r J_1(r\rho) \, d\rho, \qquad (2.13)$$

$$G(z,\rho) = \int_0^\infty w(r,z) r J_0(r\rho) \, d\rho. \tag{2.14}$$

The functions u(r, z) and w(r, z) are the r and z components of the displacement vector which are given by the following inverse transformations [15]:

$$u(r,z) = \int_0^\infty F(z,\rho)\rho J_1(r\rho) \,d\rho, \qquad (2.15)$$

$$w(r,z) = \int_0^\infty G(z,\rho)\rho J_0(r\rho) \,d\rho. \tag{2.16}$$

where J_0 and J_1 are the Bessel functions of the first kind. Substituting (2.15) and (2.16) into (2.11) and (2.12) yields the following system of differential equations with constant coefficients.

$$(\kappa+1)\frac{d^2F}{dz^2} + \alpha(\kappa-1)\frac{dF}{dz} - (\kappa+1)\rho^2F - 2\rho\frac{dG}{dz} - \alpha(\kappa-1)\rho G = 0,$$
(2.17)

$$(\kappa+1)\frac{d^2G}{dz^2} + \alpha(\kappa+1)\frac{dG}{dz} - (\kappa-1)\rho^2G + 2\rho\frac{dF}{dz} + \alpha(3-\kappa)\rho F = 0.$$
(2.18)

where the following relationships have been used :

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{1}{r^2}\right)J_1(r\rho) = -\rho^2 J_1(r\rho), \qquad (2.19)$$

$$\left(\frac{d}{dr} + \frac{1}{r}\right)J_1(r\rho) = \rho J_0(r\rho), \qquad (2.20)$$

$$\frac{d^2}{dr^2}J_0(r\rho) = \frac{\rho}{r}J_1(r\rho) - \rho^2 J_0(r\rho).$$
(2.21)

Assuming a solution of the form

.

$$F(z,\rho) = A(\rho)e^{mz}, \qquad (2.22)$$

$$G(z,\rho) = B(\rho)e^{mz}, \qquad (2.23)$$

after substituting (2.22) and (2.23) into (2.17) and (2.18) , we obtain

$$F(z,\rho) = \sum_{k=1}^{4} A_k(\rho) e^{m_k z},$$
(2.24)

$$G(z,\rho) = \sum_{k=1}^{4} B_k(\rho) e^{m_k z},$$
(2.25)

where m_k , (k = 1, 2, 3, 4) satisfies the following characteristic equation :

$$(m^{2} + \alpha m - \rho^{2})^{2} + (\delta \alpha \rho)^{2} = 0, \qquad (2.26)$$
$$\delta = \frac{3 - \kappa}{\kappa + 1}.$$

The roots of the characteristic equation are given by

$$m_{1} = \frac{1}{2} \left(-\alpha + \sqrt{\alpha^{2} + 4\rho^{2} + 4i\alpha\delta\rho} \right), \qquad (2.27)$$

$$m_2 = \frac{1}{2} \left(-\alpha - \sqrt{\alpha^2 + 4\rho^2 + 4i\alpha\delta\rho} \right), \qquad (2.28)$$

$$m_3 = \frac{1}{2} \left(-\alpha + \sqrt{\alpha^2 + 4\rho^2 - 4i\alpha\delta\rho} \right), \tag{2.29}$$

$$m_4 = \frac{1}{2} \left(-\alpha - \sqrt{\alpha^2 + 4\rho^2 - 4i\alpha\delta\rho} \right). \tag{2.30}$$

From (2.27)-(2.30), it may be seen that

$$m_1 = \bar{m}_3 = \frac{1}{2} \left(-\alpha + \sqrt{\alpha^2 + 4\rho^2 + 4i\alpha\delta\rho} \right),$$
 (2.31)

$$m_2 = \overline{m}_4 = \frac{1}{2} \left(-\alpha - \sqrt{\alpha^2 + 4\rho^2 + 4i\alpha\delta\rho} \right). \tag{2.32}$$

The arbitrary unknown functions $A_k(\rho)$ and $B_k(\rho)$ are not independent of each other. The relationship between them can be found by substituting (2.24) and (2.25) into (2.18) as follows:

$$B_k(\rho) = a_k(\rho)A_k(\rho),$$
 (k = 1, 2, 3, 4) (2.33)

where

$$a_k(\rho) = -\frac{2m_k + \alpha(3-\kappa)}{2\rho + i\alpha(1+\kappa)\delta}, \qquad (k = 1, 2, 3, 4)$$
(2.34)

and

$$a_1 = \overline{a}_3 \quad , \quad a_2 = \overline{a}_4. \tag{2.35}$$

Using the relationship between $A_k(\rho)$ and $B_k(\rho)$, we find

$$F(z,\rho) = \sum_{k=1}^{4} A_k(\rho) e^{m_k z}, \qquad (2.36)$$

$$G(z,\rho) = \sum_{k=1}^{4} a_k(\rho) A_k(\rho) e^{m_k z}.$$
 (2.37)

By observing that $\Re(m_1, m_2) > 0$ and $\Re(m_2, m_4) < 0$, since both u and w vanish as $r^2 + z^2 \to \infty$, we must delete terms involving A_2 and A_4 for z < 0. Thus (2.36) and (2.37) reduce to

$$F_1(z,\rho) = \sum_{k=1}^4 A_{1k}(\rho) e^{m_k z}, \qquad 0 \le z < h, \qquad (2.38)$$

$$G_1(z,\rho) = \sum_{k=1}^4 a_k(\rho) A_{1k}(\rho) e^{m_k z}, \qquad 0 \le z < h, \qquad (2.39)$$

$$F_2(z,\rho) = A_{21}(\rho)e^{m_1 z} + A_{23}(\rho)e^{m_3 z}, \qquad -\infty < z \le 0, \qquad (2.40)$$

$$G_2(z,\rho) = a_1(\rho)A_{21}(\rho)e^{m_1z} + a_3(\rho)A_{23}(\rho)e^{m_3z}, \qquad -\infty < z \le 0.$$
 (2.41)

The coefficients A_{1k} and A_{2j} , (k = 1, 2, 3, 4), (j = 1, 3), can be obtained by using the following boundary and continuity conditions

$$\sigma_{zz}^{(1)}(r,h) = 0, \tag{2.42}$$

$$\sigma_{rz}^{(1)}(r,h) = 0, \tag{2.43}$$

$$\sigma_{zz}^{(1)}(r,0) = \sigma_{zz}^{(2)}(r,0), \qquad (2.44)$$

$$\sigma_{rz}^{(1)}(r,0) = \sigma_{rz}^{(2)}(r,0), \qquad (2.45)$$

$$w^{(1)}(r,0) - w^{(2)}(r,0) = 0, \qquad a < r < \infty,$$
 (2.46)

$$u^{(1)}(r,0) - u^{(2)}(r,0) = 0,$$
 $a < r < \infty,$ (2.47)

$$\sigma_{zz}^{(2)}(r,0) = P_1(r), \qquad \qquad 0 \le r < a, \qquad (2.48)$$

$$\sigma_{rz}^{(2)}(r,0) = P_2(r), \qquad 0 \le r < a.$$
(2.49)

From (2.42),(2.43),(2.4) and (2.5) it follows that

÷.,

$$(\kappa+1)\frac{\partial G_1}{\partial z} + \rho(3-\kappa)F_1 = 0, \qquad (2.50)$$

$$\frac{\partial F_1}{\partial z} - \rho G_1 = 0. \tag{2.51}$$

Similarly, from the equality of stresses at z = 0 and $|r| \ge 0$, it can be shown that

$$(\kappa+1)\frac{\partial}{\partial z}(G_1 - G_2) + \rho(3 - \kappa)(F_1 - F_2) = 0, \qquad (2.52)$$

$$\frac{\partial}{\partial z}(F_1 - F_2) - \rho(G_1 - G_2) = 0.$$
(2.53)

Now, by substituting from (2.38)-(2.41) into (2.46)-(2.49) we obtain

$$\sum_{k=1}^{4} (m_k a_k(\kappa+1) + \rho(3-\kappa)) A_{1k} e^{m_k h} = 0, \qquad (2.54)$$

$$\sum_{k=1}^{4} (m_k - \rho a_k) A_{1k} e^{m_k h} = 0, \qquad (2.55)$$

$$\sum_{k=1}^4 (m_k a_k (\kappa+1) + \rho(3-\kappa)) A_{1k}$$

$$-(m_1a_1(\kappa+1)+\rho(3-\kappa))A_{21}-(m_3a_3(\kappa+1)+\rho(3-\kappa))A_{21}=0, \quad (2.56)$$

$$\sum_{k=1}^{4} (m_k - \rho a_k) A_{1k} - (m_1 - \rho a_1) A_{21} - (m_3 - \rho a_3) A_{23} = 0.$$
(2.57)

The solution of this system of equations is,

$$A_{11} = (\lambda_1 E_1 e^{-2\xi h} + \overline{\lambda}_3 E_2 e^{-(\xi + \overline{\xi})h}) A_{21} + (\lambda_1 \overline{E}_2 e^{-2\xi h} + \overline{\lambda}_3 \overline{E}_1 e^{-(\xi + \overline{\xi})h}) A_{23}, \qquad (2.58)$$

$$A_{12} = E_1 A_{21} + \overline{E}_2 A_{23}, \tag{2.59}$$

$$A_{13} = \left(\overline{\lambda}_{1}E_{2}e^{-2\overline{\xi}h} + \lambda_{3}E_{1}e^{-(\xi+\overline{\xi})h}\right)A_{21} + \left(\overline{\lambda}_{1}\overline{E}_{1}e^{-2\overline{\xi}h} + \lambda_{3}\overline{E}_{2}e^{-(\xi+\overline{\xi})h}\right)A_{23},$$
(2.60)

$$A_{14} = E_2 A_{21} + \overline{E}_1 A_{23}. \tag{2.61}$$

where the expression for A_{21} , A_{23} , E_1 , E_2 , λ_1 , λ_2 and ξ are given in the Appendix A. The unknowns A_{21} and A_{23} may be determined from the mixed boundary conditions (2.46)-(2.49)

Chapter 3

The Integral Equations

3.1 Derivation of the Integral Equations

Referring to the previous chapter, the two remaining unknown functions $A_{21}(\rho)$ and $A_{23}(\rho)$ must be obtained by using the following mixed boundary conditions:

$$u^{(1)}(r, +0) = u^{(2)}(r, -0), \qquad (a < r < \infty), \qquad (3.1)$$

$$w^{(1)}(r, +0) = w^{(2)}(r, -0), \qquad (a < r < \infty), \qquad (3.2)$$

$$\sigma_{zz}^{(1)}(r,0) = \sigma_{zz}^{(2)}(r,0) = P_1(r), \qquad (0 \le r < a), \qquad (3.3)$$

$$\sigma_{rz}^{(1)}(r,0) = \sigma_{rz}^{(2)}(r,0) = P_2(r), \qquad (0 \le r < a). \tag{3.4}$$

To reduce these conditions to a system of integral equations, we first define the following new unknown functions:

$$\phi_1(r) = \frac{\partial}{\partial r} (w(r, +0) - w(r, -0)), \qquad (0 \le r < \infty), \qquad (3.5)$$

$$\phi_2(r) = \frac{1}{r} \frac{\partial}{\partial r} (ru(r, +0) - ru(r, -0)), \qquad (0 \le r < \infty), \qquad (3.6)$$

where

$$\phi_1(r) = \begin{cases} \phi_1(r) & 0 \le r < a \\ 0 & a < r < \infty. \end{cases}$$
(3.7)

$$\phi_2(r) = \begin{cases} \phi_2(r) & 0 \le r < a \\ 0 & a < r < \infty. \end{cases}$$
(3.8)

After substituting the equations (2.38)-(2.41) into (3.7) and (3.8), ϕ_1 and ϕ_2 may be expressed as

$$\phi_1(r) = \frac{\partial}{\partial r} \left(\int_0^\infty G_1(0,\rho) \rho J_0(r\rho) \, d\rho - \int_0^\infty G_2(0,\rho) \rho J_0(r\rho) \, d\rho \right),\tag{3.9}$$

$$\phi_2(r) = \frac{1}{r} \frac{\partial}{\partial r} \left(\int_0^\infty F_1(0,\rho) \rho r J_0(r\rho) \, d\rho - \int_0^\infty F_2(0,\rho) \rho r J_0(r\rho) \, d\rho \right). \tag{3.10}$$

By using the following properties of Bessel functions [16]

$$\frac{\partial}{\partial r}J_0(r\rho) = -\rho J_1(r\rho), \qquad (3.11)$$

$$\frac{1}{r}\frac{\partial}{\partial r}\Big[rJ_1(r\rho)\Big] = \rho J_0(r\rho). \tag{3.12}$$

it can be shown that

$$\phi_1(r) = \int_0^\infty \left\{ G_2(0,\rho) - G_1(0,\rho) \right\} \rho^2 J_1(r\rho) \, d\rho, \tag{3.13}$$

$$\phi_2(r) = \int_0^\infty \Big\{ F_1(0,\rho) - F_2(0,\rho) \Big\} \rho^2 J_0(r\rho) \, d\rho.$$
(3.14)

Using inverse Hankel transformation, from (3.13) and (3.14) we find

$$G_2(0,\rho) - G_1(0,\rho) = \frac{1}{\rho} \int_0^\infty \phi_1(r) r J_1(r\rho) \, dr, \qquad (3.15)$$

.

$$F_1(0,\rho) - F_2(0,\rho) = \frac{1}{\rho} \int_0^\infty \phi_2(r) r J_0(r\rho) \, dr.$$
(3.16)

Also by defining

$$\Phi_1(\rho) = \frac{1}{\rho} \int_0^a \phi_1(r) r J_1(r\rho) \, dr, \qquad (3.17)$$

$$\Phi_2(\rho) = \frac{1}{\rho} \int_0^a \phi_2(r) r J_0(r\rho) \, dr.$$
(3.18)

from (3.7),(3.8),(3.15) and (3.16) it follows that

$$G_2(0,\rho) - G_1(0,\rho) = \Phi_1(\rho), \tag{3.19}$$

$$F_1(0,\rho) - F_2(0,\rho) = \Phi_2(\rho). \tag{3.20}$$

Now, by substituting from (2.38)-(2.41) into (3.19) and (3.20) it may be seen that

$$a_1 A_{21} + \overline{a}_1 A_{23} - a_1 A_{11} - a_2 A_{12} - \overline{a}_1 A_{13} - \overline{a}_2 A_{14} = \Phi_1(\rho), \qquad (3.21)$$

$$A_{11} + A_{12} + A_{13} + A_{14} - A_{21} - A_{23} = \Phi_2(\rho).$$
(3.22)

Thus, from (2.54)-(2.57), (3.21) and (3.22), we obtain

$$b_1 A_{21} + \overline{b}_1 A_{23} = \Phi_1(\rho), \tag{3.23}$$

$$b_2 A_{21} + \overline{b}_2 A_{23} = \Phi_2(\rho), \tag{3.24}$$

or

$$A_{21} = \frac{\overline{b}_2 \Phi_1 - \overline{b}_1 \Phi_2}{\Delta_3},\tag{3.25}$$

$$A_{23} = \frac{b_1 \Phi_2 - b_2 \Phi_1}{\Delta_3}.$$
(3.26)

where the functions b_1 and b_2 are defined in Appendix A. Now, by using the stressdisplacement relations, (3.5) and (3.6) may be written as

$$\lim_{z \to 0} \left((\kappa+1) \frac{\partial w^2}{\partial z} + (3-\kappa) \left(\frac{\partial u^2}{\partial r} + \frac{u^2}{r} \right) \right) = \frac{(\kappa-1)}{\mu_0} P_1(r),$$
(3.27)

$$\lim_{z \to 0} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right) = \frac{1}{\mu_0} P_2(r).$$
(3.28)

Then, from (2.15),(2.16),(3.27) and (3.28) it follows that

$$\lim_{z \to -0} \int_0^\infty \left((\kappa+1) \frac{\partial G_2}{\partial z} + (3-\kappa)\rho F_2 \right) \rho J_0(r\rho) \, d\rho = \frac{(\kappa-1)}{\mu_0} P_1(r), \tag{3.29}$$

$$\lim_{z \to 0} \int_0^\infty \left(\frac{\partial F_2}{\partial z} - \rho G_2 \right) \rho J_1(r\rho) \, d\rho = \frac{1}{\mu_0} P_2(r). \tag{3.30}$$

Now, by substituting from (2.40) and (2.41) into equations (3.29) and (3.30), after some manipulations we obtain

$$\int_0^\infty (d_{11}(\rho)\Phi_1 + d_{12}(\rho)\Phi_2)\rho J_0(r\rho)\,d\rho = \frac{(\kappa - 1)}{\mu_0}P_1(r),\tag{3.31}$$

$$\int_0^\infty (d_{21}(\rho)\Phi_1 + d_{22}(\rho)\Phi_2)\rho J_1(r\rho)\,d\rho = \frac{1}{\mu_0}P_2(r),\tag{3.32}$$

where the function d_{ij} are given in Appendix A. Referring to (3.17) and (3.18), from (3.31) and (3.32) we finally obtain the following integral equations for the unknown functions ϕ_1 and ϕ_2 as follows :

$$\int_{0}^{a} (K_{11}(s,r)\phi_{1}(s) + K_{12}(s,r)\phi_{2}(s))s \, ds = \frac{(\kappa - 1)}{\mu_{0}}P_{1}(r), \qquad (0 \le r < a), \quad (3.33)$$
$$\int_{0}^{a} (K_{21}(s,r)\phi_{1}(s) + K_{22}(s,r)\phi_{2}(s))s \, ds = \frac{1}{\mu_{0}}P_{2}(r), \qquad (0 \le r < a), \quad (3.34)$$

$$K_{11}(s,r) = \int_0^\infty d_{11}(\rho) J_0(r\rho) J_1(s\rho) \, d\rho \,, \tag{3.35}$$

$$K_{12}(s,r) = \int_0^\infty d_{12}(\rho) J_0(r\rho) J_0(s\rho) \, d\rho \,, \tag{3.36}$$

$$K_{21}(s,r) = \int_0^\infty d_{21}(\rho) J_1(r\rho) J_1(s\rho) \, d\rho \,, \tag{3.37}$$

$$K_{22}(s,r) = \int_0^\infty d_{22}(\rho) J_1(r\rho) J_0(s\rho) \, d\rho \,. \tag{3.38}$$

To make the asymptotic expansions somewhat more convenient we define $d_{ij} = \rho d'_{ij}$, (i, j = 1, 2). The kernels of the integral equations may then be written as

$$K_{11}(s,r) = \int_0^\infty d'_{11}(\rho) J_0(r\rho) J_1(s\rho) \rho \, d\rho \,, \tag{3.39}$$

$$K_{12}(s,r) = \int_0^\infty d'_{12}(\rho) J_0(r\rho) J_0(s\rho) \rho \, d\rho \,, \tag{3.40}$$

$$K_{21}(s,r) = \int_0^\infty d'_{21}(\rho) J_1(r\rho) J_1(s\rho) \rho \, d\rho \,, \tag{3.41}$$

$$K_{22}(s,r) = \int_0^\infty d'_{22}(\rho) J_1(r\rho) J_0(s\rho) \rho \, d\rho \,. \tag{3.42}$$

where d'_{ij} , (i, j = 1, 2), are defined in Appendix B. Now, by using the asymptotic results given in Appendix B the kernels of the integral equations (3.33) and (3.34) may be expressed as

$$K_{11}(s,r) = d'_{11}^{\infty} \left(\int_0^\infty \left(\frac{d'_{11}(\rho)}{d'_{11}^{\infty}} - 1 \right) J_0(r\rho) J_1(s\rho) \rho \, d\rho + \int_0^\infty J_0(r\rho) J_1(s\rho) \rho \, d\rho \right), \quad (3.43)$$

$$K_{12}(s,r) = d'_{11}^{\infty} \int_0^\infty \frac{d'_{12}(\rho)}{d'_{11}^{\infty}} J_0(r\rho) J_0(s\rho) \rho \, d\rho \,, \tag{3.44}$$

$$K_{21}(s,r) = d'_{22}^{\infty} \int_0^\infty \frac{d'_{21}(\rho)}{d'_{22}^{\infty}} J_1(r\rho) J_1(s\rho) \rho \, d\rho, \qquad (3.45)$$

$$K_{22}(s,r) = d'_{22}^{\infty} \left(\int_0^\infty J_1(r\rho) J_1(s\rho) \rho \, d\rho + \int_0^\infty \left(\frac{d'_{22}(\rho)}{d'_{22}^{\infty}} - 1 \right) J_1(r\rho) J_0(s\rho) \rho \, d\rho \right), \quad (3.46)$$

$$d'_{11}^{\infty} = 2 \frac{(\kappa - 1)}{(\kappa + 1)},$$
 (3.47)

$$d'_{22}^{\infty} = -2\frac{1}{(\kappa+1)}.$$
 (3.48)

Also, defining the functions D_{ij} , (i, j = 1, 2) by (see Appendix B)

$$D_{11}(\rho) = \frac{d'_{11}(\rho)}{d'_{11}^{\infty}} - 1, \qquad (3.49)$$

$$D_{12}(\rho) = \frac{d'_{12}(\rho)}{d'_{11}^{\infty}},$$
(3.50)

$$D_{21}(\rho) = \frac{d'_{21}(\rho)}{d'^{\infty}_{22}}, \qquad (3.51)$$

$$D_{22}(\rho) = \frac{d'_{22}(\rho)}{d'^{\infty}_{22}} - 1, \qquad (3.52)$$

equations (3.33) and (3.34) become

$$\int_0^a \left(\int_0^\infty D_{11}(\rho) J_0(r\rho) J_1(s\rho) \rho \, d\rho \right) s \phi_1(s) \, ds$$

$$+ \int_{0}^{a} \left(\int_{0}^{\infty} D_{12}(\rho) J_{0}(r\rho) J_{0}(s\rho) \rho \, d\rho \right) s\phi_{2}(s) \, ds \\ + \int_{0}^{a} \left(\int_{0}^{\infty} J_{0}(r\rho) J_{1}(s\rho) \rho \, d\rho \right) s\phi_{1}(s) \, ds = \frac{(\kappa+1)}{2\mu_{0}} P_{1}(r), \quad (3.53)$$

$$\int_{0}^{a} \left(\int_{0}^{\infty} D_{21}(\rho) J_{1}(r\rho) J_{1}(s\rho) \rho \, d\rho \right) s\phi_{1}(s) \, ds$$

+
$$\int_{0}^{a} \left(\int_{0}^{\infty} D_{22}(\rho) J_{1}(r\rho) J_{0}(s\rho) \rho \, d\rho \right) s\phi_{2}(s) \, ds$$

+
$$\int_{0}^{a} \left(\int_{0}^{\infty} J_{1}(r\rho) J_{0}(s\rho) \rho \, d\rho \right) s\phi_{2}(s) \, ds = -\frac{(\kappa+1)}{2\mu_{0}} P_{2}(r).$$
(3.54)

By examining the singular behaviour of the kernels and by separating the leading terms, the integral equations (3.53) and (3.54) may now be expressed as (see Appendix C)

$$\frac{1}{\pi} \int_0^a \left(\frac{1}{s-r} + \frac{1}{s+r} \right) \phi_1(s) \, ds + \frac{1}{\pi} \int_0^a \sum_{j=1}^2 k_{1j}(s,r) \phi_j(s) \, ds$$
$$= \frac{(\kappa+1)}{2\mu_0} P_1(r), \qquad (3.55)$$

$$\frac{1}{\pi} \int_0^a \left(\frac{1}{s-r} - \frac{1}{s+r}\right) \phi_2(s) \, ds + \frac{1}{\pi} \int_0^a \sum_{j=1}^2 k_{2j}(s,r) \phi_j(s) \, ds$$
$$= -\frac{(\kappa+1)}{2\mu_0} P_2(r), \qquad (3.56)$$

where

$$k_{11}(s,r) = \frac{M_2(s,r) - 1}{s - r} + \frac{M_2(s,r) - 1}{s + r} + \pi s \int_0^\infty D_{11}(\rho) J_0(r\rho) J_1(s\rho) \rho \, d\rho, \qquad (3.57)$$

$$k_{12}(s,r) = \pi s \int_0^\infty D_{12}(\rho) J_0(r\rho) J_0(s\rho) \rho \, d\rho, \qquad (3.58)$$

$$k_{21}(s,r) = \pi s \int_0^\infty D_{21}(\rho) J_1(r\rho) J_1(s\rho) \rho \, d\rho, \qquad (3.59)$$

$$k_{22}(s,r) = \frac{M_4(s,r) - 1}{s-r} - \frac{M_4(s,r) - 1}{s+r} + \pi s \int_0^\infty D_{22}(\rho) J_1(r\rho) J_0(s\rho) \rho \, d\rho, \tag{3.60}$$

and $M_2(s,r)$ and $M_4(s,r)$ are defined in Appendix C. Note that the dominant kernels of the system of integral equations (3.55) and (3.56) are of the generalized Cauchy type [17]. The domain of integration can be extended from (0, a) to (-a, a) by using the following symmetry properties of functions $\phi_1(s)$ and $\phi_2(s)$

$$\phi_1(s) = -\phi_1(-s), \tag{3.61}$$

$$\phi_2(s) = \phi_2(-s). \tag{3.62}$$

Thus, by observing that

$$\frac{1}{\pi} \int_0^a \left(\frac{1}{s-r} + \frac{1}{s+r} \right) \phi_1(s) \, ds = \frac{1}{\pi} \int_{-a}^a \frac{\phi_1(s)}{s-r} \, ds. \tag{3.63}$$

$$\frac{1}{\pi} \int_0^a \left(\frac{1}{s-r} - \frac{1}{s+r} \right) \phi_2(s) \, ds = \frac{1}{\pi} \int_{-a}^a \frac{\phi_2(s)}{s-r} \, ds. \tag{3.64}$$

The integral equations (3.55) and (3.56) may be expressed as follows :

$$\frac{1}{\pi} \int_{-a}^{a} \frac{\phi_{1}(s)}{s-r} \, ds + \frac{1}{\pi} \int_{0}^{a} \sum_{j=1}^{2} k_{1j}(s,r) \phi_{j}(s) \, ds = \frac{(\kappa+1)}{2\mu_{0}} P_{1}(r), \qquad 0 \le r < a \tag{3.65}$$

$$\frac{1}{\pi} \int_{-a}^{a} \frac{\phi_2(s)}{s-r} \, ds + \frac{1}{\pi} \int_{0}^{a} \sum_{j=1}^{2} k_{2j}(s,r) \phi_j(s) \, ds = -\frac{(\kappa+1)}{2\mu_0} P_2(r), \quad 0 \le r < a$$
(3.66)

where the Fredholm kernels $k_{ij}(s,r)$, (i, j = 1, 2), are given by (3.57)-(3.60). In solving equations such as (3.65) and (3.66), the accuracy is very highly dependent on the correct evaluation of the kernels k_{ij} , (i, j = 1, 2). For this, it is necessary that the asymptotic behavior of k_{ij} for $s \rightarrow r$ be examined and the weak singularities, if any, be separated. Referring to Appendix C, the complete elliptic integral of the first kind has the behavior [18]

$$K(\eta) = \log \frac{4}{\sqrt{1 - \eta^2}} \qquad \text{for } \eta \to 1.$$
(3.67)

Thus, as $s \rightarrow r$, it was shown in Appendix C that the kernels k_{ij} have logarithmic singularities which may be extracted as follows:

$$\frac{M_2(s,r)-1}{s-r} = -\frac{1}{2r}\log|s-r| - \frac{1}{r}(1-\log\sqrt{8r}) + m_{22}(s,r),$$
(3.68)

$$\frac{M_4(s,r)-1}{s-r} = \frac{1}{2r}\log|s-r| + \frac{1}{r}(2-\log\sqrt{8r}) + m_{22}(s,r),$$
(3.69)

$$k_{12}(s,r) = \pi s \int_0^\infty \left(D_{12}(\rho)\rho - \frac{\alpha}{2} \right) J_0(r\rho) J_0(s\rho) \, d\rho + \pi s \frac{\alpha}{2} \int_0^\infty J_0(r\rho) J_0(s\rho) \, d\rho,$$
(3.70)

$$k_{21}(s,r) = \pi s \int_0^\infty \left(D_{21}(\rho)\rho - \frac{\alpha}{2} \right) J_1(r\rho) J_1(s\rho) \, d\rho + \pi s \frac{\alpha}{2} \int_0^\infty J_1(r\rho) J_1(s\rho) \, d\rho,$$
(3.71)

where the integrals of Bessel functions are given in Appendix C which, by virtue of (3.67), are also seen to have logarithmic singularities and m_{22} and m_{44} are known functions which are bounded in the closed interval $0 \le (s, r) \le a$.

3.2 The Fundamental Function

In equations (3.65) and (3.66), ϕ_j and k_{ij} , (i, j = 1, 2), are H-continuous functions [19]. Also second terms in equations (3.65) and (3.66) are bounded functions of r. Hence, the singular behavior of ϕ may be obtained by studying only the dominant part of (3.65) and (3.66), namely

$$\frac{1}{\pi} \int_{\mathcal{L}} \frac{\phi(s)}{s-r} \, ds = P(r), \qquad \qquad \mathcal{L} = (-a, a), \qquad r \in \mathcal{L}, \qquad (3.72)$$

where P(r) contains the input function P_j , (j = 1, 2), and the terms coming from the part of the integral equations with Fredholm kernels. Let

$$\Phi(z) = \frac{1}{2\pi i} \int_{\mathcal{L}} \frac{\phi(s)}{s-z} \, ds. \tag{3.73}$$

The boundary values of the sectionally holomorphic function, $\Phi(z)$, are related by the following Plemelj formulas [19]:

$$\Phi^{+}(r) - \Phi^{-}(r) = \phi(r), \qquad (3.74)$$

$$\Phi^{+}(r) + \Phi^{-}(r) = \frac{1}{\pi i} \int_{\mathcal{L}} \frac{\phi(s)}{s-r} \, ds.$$
(3.75)

From the equation (3.72)-(3.75) it may be seen that

$$\Phi^+(r) + \Phi^-(r) = -iP(r), \qquad \mathcal{L} = (-a, a), \qquad r \in \mathcal{L}.$$
 (3.76)

The solution of the Riemann-Hilbert problem vanishing at infinity may easily be expressed as

$$\Phi(z) = -\frac{X(z)}{2\pi} \int_{\mathcal{L}} \frac{P(r)}{(s-r)X^+(s)} \, ds + C_n(z)X(z), \tag{3.77}$$

where X(z) is the fundamental solution of the problem satisfying the following homogeneous boundary conditions

$$X^{+}(r) - X^{-}(r) = 0,$$
 $(|r| > a),$ (3.78)

$$X^{+}(r) + X^{-}(r) = 0,$$
 (|r| < a). (3.79)

The solution for X(z), is found to be

$$X(z) = (z - a)^{\alpha_1 + i\beta_1 + \lambda_1} (z + a)^{\alpha_2 + i\beta_2 + \lambda_2},$$
(3.80)

$$\alpha_1 + i\beta_1 = \frac{\log e^{i\pi}}{2\pi i} = \frac{1}{2}, \qquad \qquad \alpha_2 + i\beta_2 = \frac{\log e^{-i\pi}}{2\pi i} = -\frac{1}{2}, \qquad (3.81)$$

where X(z) will be taken as the branch for which $z^{-\lambda_1-\lambda_2}$, $X(z) \rightarrow 1$ as $z \rightarrow \infty$. The index of the problem, κ , is given by [20]

$$\kappa = -\sum_{m=1}^{2} \lambda_m, \tag{3.82}$$

where λ 's are integers. For this problem index $\kappa=1.$ As z tends to infinity,

$$X(z) \to 1, \tag{3.83}$$

meaning that $C_n(z)$ is a constant, C. On the other hand, from equations (3.74) and (3.77) the solution of the integral equation (3.72) is found to be

$$\phi(r) = \Phi^+(r) - \Phi^-(r) = 2CX^+(r) - \frac{X^+(r)}{\pi} \int_{\mathcal{L}} \frac{P(s)}{(s-r)X^+(s)} \, ds, \qquad r \in \mathcal{L}, \quad (3.84)$$

where from equations (3.80) and (3.81) for $\kappa = 1$, the fundamental function of the singular integral equation is seen to be

$$X(z) = \left(z^2 - a^2\right)^{-\frac{1}{2}}.$$
(3.85)

After the normalization of the problem the real function may be obtained by

$$w(s) = i(-1)^{\lambda_1} X^+(s) = (1-s)^{\frac{1}{2}+\lambda_1} (1+s)^{-\frac{1}{2}+\lambda_2}.$$
(3.86)

Since the function ϕ has integrable singularities at ends, then $\lambda_1 = -1, \lambda_2 = 0$ in equation (3.80). Hence, equation (3.82),(3.84) and (3.86) lead to

$$\kappa = 1,$$
 $X(z) = (z^2 - 1)^{-1},$ $w(s) = (1 - s^2)^{-1}.$ (3.87)

Chapter 4

Numerical Procedure

The integral equations (3.63) and (3.64) can be solved by using the properties of Chebyshev polynomials of the first and the second kind, T_n and U_n , respectively. In the previous chapter, the fundamental function X(z) was found as

$$X(z) = (z^2 - a^2)^{-\frac{1}{2}},$$
(4.1)

or

$$X(s) = i\sqrt{a^2 - s^2} \,. \tag{4.2}$$

To use Chebyshev polynomials for solving the integral equations (3.63) and (3.64), the interval of integral from -a to a should be converted to from -1 to 1. Let

 $s = a\hat{s}, \qquad r = a\hat{r}, \qquad \text{and} \qquad a\rho = \hat{\rho}.$ (4.3)

Then, from (3.87)

$$w = \sqrt{1 - \hat{s}^2} \tag{4.4}$$

becomes the corresponding weight function and the unknown functions $\phi_1(s)$ and $\phi_2(s)$ may be expressed as follows:

$$\phi_1(\hat{s}) = \frac{F_1(\hat{s})}{\sqrt{1 - \hat{s}^2}}, \qquad (-1 < \hat{s} < 1), \qquad (4.5)$$

$$\phi_2(\widehat{s}) = \frac{F_2(\widehat{s})}{\sqrt{1-\widehat{s}^2}}, \qquad (-1<\widehat{s}<1). \tag{4.6}$$

The bounded functions $F_1(\widehat{s})$ and $F_2(\widehat{s})$ may be expressed as

$$F_1(\widehat{s}) = \sum_{m=0}^{\infty} A_m T_m(\widehat{s}), \qquad (4.7)$$

$$F_2(\widehat{s}) = \sum_{m=0}^{\infty} B_m T_m(\widehat{s}), \qquad (4.8)$$

where A_m and B_m are unknown coefficients. By using the following conditions of compatibility

$$\int_{-1}^{1} \phi_1(\widehat{s}) \, d\widehat{s} = 0, \tag{4.9}$$

$$\int_{-1}^{1} \widehat{s} \phi_2(\widehat{s}) \, d\widehat{s} = 0, \tag{4.10}$$

and substituting, for example, the following representation of the density function $\phi_1(\hat{s})$ in terms of Chebychev polynomials

$$\phi_1(\hat{s}) = \sum_{m=0}^{N} A_m \frac{T_m(\hat{s})}{\sqrt{1 - \hat{s}^2}},$$
(4.11)

into (4.9), and noting that $T_0(\widehat{s}) = 1$, we obtain

$$\sum_{m=0}^{N} A_m \int_{-1}^{1} \frac{T_m(\widehat{s}) T_0(\widehat{s})}{\sqrt{1-\widehat{s}^2}} \, d\widehat{s} = 0.$$
(4.12)

Since the Chebychev polynomial of the first kind are orthogonal with respect to the weight function $\frac{1}{\sqrt{1-\hat{s}^2}}$, we conclude that

)

$$A_0 = 0.$$
 (4.13)

Similarly, substituting

$$\phi_2(\widehat{s}) = \sum_{m=0}^N B_m \frac{T_m(\widehat{s})}{\sqrt{1-\widehat{s}^2}}$$
(4.14)

into (4.10), noting that $T_1(\widehat{s}) = \widehat{s}$, we obtain

$$\sum_{m=0}^{N} B_m \int_{-1}^{1} \frac{T_m(\widehat{s}) T_1(\widehat{s})}{\sqrt{1-\widehat{s}^2}} \, d\widehat{s} = 0.$$
(4.15)

Then, because of the orthogonality we obtain

$$B_1 = 0.$$
 (4.16)

By using symmetry considerations the bounded functions $F_1(\hat{s})$ and $F_2(\hat{s})$ may be expanded as

$$F_1(\widehat{s}) = \sum_{n=1}^{\infty} A_{2n-1} T_{2n-1}(\widehat{s}), \tag{4.17}$$

$$F_2(\hat{s}) = \sum_{n=0}^{\infty} B_{2n} T_{2n}(\hat{s}).$$
(4.18)

Now substituting (4.17) and (4.18) into (3.65) and (3.66), truncating the series at Nth term, the first part of the integral equations, which have the Cauchy type of singularity, becomes

$$\frac{1}{\pi} \int_{-1}^{1} \frac{\phi_1(a\widehat{s})}{\widehat{s} - \widehat{r}} \, d\widehat{s} = \frac{1}{\pi} \sum_{n=1}^{N} A_{2n-1} \int_{-1}^{1} \frac{T_{2n-1}(\widehat{s})}{(\widehat{s} - \widehat{r})\sqrt{1 - \widehat{s}^2}} \, d\widehat{s},\tag{4.19}$$

$$\frac{1}{\pi} \int_{-1}^{1} \frac{\phi_2(a\hat{s})}{\hat{s} - \hat{r}} \, d\hat{s} = \frac{1}{\pi} \sum_{n=0}^{N} B_{2n} \int_{-1}^{1} \frac{T_{2n}(\hat{s})}{(\hat{s} - \hat{r})\sqrt{1 - \hat{s}^2}} \, d\hat{s}.$$
(4.20)

The integrals in (4.19) and (4.20) are given by [18]

$$\frac{1}{\pi} \int_{-1}^{1} \frac{T_{j}(\widehat{s})}{(\widehat{s} - \widehat{r})\sqrt{1 - \widehat{s}^{2}}} d\widehat{s} = \begin{cases} 0, & j = 0, & -1 < \widehat{r} < 1, \\ U_{j-1}(\widehat{r}), & j > 0, & -1 < \widehat{r} < 1, \\ -\frac{\left(\widehat{r} - \frac{|\widehat{r}|}{\widehat{r}}\sqrt{\widehat{r}^{2} - 1}\right)^{j}}{\frac{|\widehat{r}|}{\widehat{r}}\sqrt{\widehat{r}^{2} - 1}}, & -1 < \widehat{r} < 1. \end{cases}$$
(4.21)

For the second part of, for example, the integral equation (3.63), it can be shown that

$$\frac{a}{\pi} \int_0^1 \left(\widehat{k}_{11}(a\widehat{s}, a\widehat{r}) \phi_1(a\widehat{s}) + \widehat{k}_{12}(a\widehat{s}, a\widehat{r}) \phi_2(a\widehat{s}) \right) d\widehat{s}$$
$$= \frac{a}{\pi} \int_0^1 \left(\widehat{k}_{11}(a\widehat{s}, a\widehat{r}) \frac{F_1(\widehat{s})}{\sqrt{1-\widehat{s}^2}} + \widehat{k}_{12}(a\widehat{s}, a\widehat{r}) \frac{F_2(\widehat{s})}{\sqrt{1-\widehat{s}^2}} \right) d\widehat{s},$$
(4.22)

where

$$a\widehat{k}_{11}(a\widehat{s},a\widehat{r})=rac{M_2(a\widehat{s},a\widehat{r})-1}{\widehat{s}-\widehat{r}}+rac{M_2(a\widehat{s},a\widehat{r})-1}{\widehat{s}+\widehat{r}}+$$

$$a^2 \pi \widehat{s} \int_0^\infty D_{11}(\rho) J_0(a \widehat{r} \rho) J_1(a \widehat{s} \rho) \rho \, d\rho, \qquad (4.23)$$

$$M_2(s,r) = M_2(a\widehat{s},a\widehat{r}). \tag{4.24}$$

Let

$$D_{11}\left(\frac{\widehat{\rho}}{a}\right) = \widehat{D}_{11}(\widehat{\rho}). \tag{4.25}$$

Then

$$a\widehat{k}_{11}(a\widehat{s},a\widehat{r}) = \frac{M_2(a\widehat{s},a\widehat{r}) - 1}{\widehat{s} - \widehat{r}} + \frac{M_2(a\widehat{s},a\widehat{r}) - 1}{\widehat{s} - \widehat{r}} + \\\pi\widehat{s}\int_0^\infty \widehat{D}_{11}(\widehat{\rho})J_0(\widehat{r}\widehat{\rho})J_1(\widehat{s}\widehat{\rho})\widehat{\rho}\,d\widehat{\rho}\,.$$
(4.26)

Simlarly, if we let

$$D_{12}\left(\frac{\widehat{\rho}}{a}\right) = \widehat{D}_{12}(\widehat{\rho}),\tag{4.27}$$

it may be seen that

$$a\widehat{k}_{12}(a\widehat{s},a\widehat{r}) = \pi\widehat{s}\int_0^\infty \widehat{D}_{12}(\widehat{\rho})J_0(\widehat{r}\widehat{\rho})J_0(\widehat{s}\widehat{\rho})\widehat{\rho}\,d\widehat{\rho}\,.$$
(4.28)

Also, we observe that

$$\frac{a}{\pi} \int_{0}^{1} \left(\widehat{k}_{21}(a\widehat{s}, a\widehat{r})\phi_{1}(a\widehat{s}) + \widehat{k}_{22}(a\widehat{s}, a\widehat{r})\phi_{2}(a\widehat{s}) \right) d\widehat{s}$$
$$= \frac{1}{\pi} \int_{0}^{1} \left(\widehat{k}_{21}(a\widehat{s}, a\widehat{r}) \frac{F_{1}(\widehat{s})}{\sqrt{1-\widehat{s}^{2}}} + \widehat{k}_{22}(a\widehat{s}, a\widehat{r}) \frac{F_{2}(\widehat{s})}{\sqrt{1-\widehat{s}^{2}}} \right) d\widehat{s},$$
(4.29)

where

$$a\widehat{k}_{21}(a\widehat{s},a\widehat{r}) = a^2\pi\widehat{s}\int_0^\infty D_{21}(\rho)J_1(a\widehat{r}\rho)J_1(a\widehat{s}\rho)\rho\,d\rho.$$
(4.30)

$$a\widehat{k}_{22}(a\widehat{s},a\widehat{r}) = \frac{M_4(a\widehat{s},a\widehat{r}) - 1}{\widehat{s} - \widehat{r}} - \frac{M_4(a\widehat{s},a\widehat{r}) - 1}{\widehat{s} + \widehat{r}} + a^2\pi\widehat{s}\int_0^\infty D_{22}(\rho)J_1(a\widehat{r}\rho)J_0(a\widehat{s}\rho)\rho\,d\rho, \qquad (4.31)$$

$$M_4(s,r) = M_4(a\widehat{s}, a\widehat{r}). \tag{4.32}$$

Thus by letting

$$D_{21}\left(\frac{\widehat{\rho}}{a}\right) = \widehat{D}_{21}(\widehat{\rho}),\tag{4.33}$$

$$D_{22}\left(\frac{\widehat{\rho}}{a}\right) = \widehat{D}_{22}(\widehat{\rho}),\tag{4.34}$$

it may be seen that

$$a\widehat{k}_{21}(a\widehat{s},a\widehat{r}) = \pi\widehat{s} \int_0^\infty \widehat{D}_{21}(\widehat{\rho}) J_1(\widehat{r}\widehat{\rho}) J_1(\widehat{s}\widehat{\rho})\widehat{\rho} \, d\widehat{\rho}, \qquad (4.35)$$

$$a\widehat{k}_{22}(a\widehat{s},a\widehat{r}) = \frac{M_4(a\widehat{s},a\widehat{r}) - 1}{\widehat{s} - \widehat{r}} - \frac{M_4(a\widehat{s},a\widehat{r}) - 1}{\widehat{s} + \widehat{r}} + \\\pi\widehat{s}\int_0^\infty \widehat{D}_{22}(\widehat{\rho})J_1(\widehat{r}\widehat{\rho})J_0(\widehat{s}\widehat{\rho})\widehat{\rho}\,d\widehat{\rho}\,.$$
(4.36)

Referring to (3.66) and (3.67), the kernels \hat{k}_{ij} , (i, j = 1, 2), have the following asymptotic behavior :

$$\frac{M_2(a\widehat{s},a\widehat{r})-1}{\widehat{s}-\widehat{r}} = -\frac{1}{2a\widehat{r}}\log|a\widehat{s}-a\widehat{r}| - \frac{1}{a\widehat{r}}(1-\log\sqrt{8a\widehat{r}}) + m_{22}(a\widehat{s},a\widehat{r}), \quad (4.37)$$

$$\frac{M_4(a\widehat{s},a\widehat{r})-1}{\widehat{s}-\widehat{r}} = \frac{1}{2a\widehat{r}}\log|a\widehat{s}-a\widehat{r}| + \frac{1}{a\widehat{r}}(2-\log\sqrt{8a\widehat{r}}) + m_{22}(a\widehat{s},a\widehat{r}),$$
(4.38)

$$\begin{split} a\widehat{k}_{12}(a\widehat{s},a\widehat{r}) &= \pi\widehat{s} \int_0^\infty \left(\widehat{D}_{12}(\widehat{\rho})\widehat{\rho} - \frac{\widehat{\alpha}}{2}\right) J_0(\widehat{r}\widehat{\rho}) J_0(\widehat{s}\widehat{\rho}) \, d\widehat{\rho} \\ &+ \pi\widehat{s}\frac{\widehat{\alpha}}{2} \int_0^\infty J_0(\widehat{r}\widehat{\rho}) J_0(\widehat{s}\widehat{\rho}) \, d\widehat{\rho} \,, \end{split} \tag{4.39}$$

$$a\widehat{k}_{21}(a\widehat{s},a\widehat{r}) = \pi\widehat{s}\int_{0}^{\infty} \left(\widehat{D}_{21}(\widehat{\rho})\widehat{\rho} - \frac{\widehat{\alpha}}{2}\right) J_{1}(\widehat{r}\widehat{\rho}) J_{1}(\widehat{s}\widehat{\rho}) \, d\widehat{\rho} + \pi\widehat{s}\frac{\widehat{\alpha}}{2}\int_{0}^{\infty} J_{1}(\widehat{r}\widehat{\rho}) J_{1}(\widehat{s}\widehat{\rho}) \, d\widehat{\rho} \,, \tag{4.40}$$

where

 $\widehat{\alpha} = a\alpha.$

Now, by using the equation (4.17) and (4.18), the integral equations may be approximated by

$$\sum_{n=1}^{N} A_{2n-1} U_{2n-2} + \sum_{n=1}^{N} A_{2n-1} \frac{1}{\pi} \int_{0}^{1} \widehat{k}_{11}(a\widehat{s}, a\widehat{r}) \frac{T_{2n-1}(\widehat{s})}{\sqrt{1-\widehat{s}^{2}}} d\widehat{s} + \sum_{n=0}^{N} B_{2n} \frac{1}{\pi} \int_{0}^{1} \widehat{k}_{12}(a\widehat{s}, a\widehat{r}) \frac{T_{2n}(\widehat{s})}{\sqrt{1-\widehat{s}^{2}}} d\widehat{s} = \frac{(\kappa+1)}{2\mu_{0}} P_{1}(a\widehat{r}), \qquad (4.41)$$

$$\sum_{n=0}^{N} B_{2n} U_{2n-1} + \sum_{n=1}^{N} A_{2n-1} \frac{1}{\pi} \int_{0}^{1} \widehat{k}_{21}(a\widehat{s}, a\widehat{r}) \frac{T_{2n-1}(\widehat{s})}{\sqrt{1-\widehat{s}^{2}}} d\widehat{s}$$

$$+\sum_{n=0}^{N} B_{2n} \frac{1}{\pi} \int_{0}^{1} \widehat{k}_{22}(a\widehat{s}, a\widehat{r}) \frac{T_{2n}(\widehat{s})}{\sqrt{1-\widehat{s}^{2}}} d\widehat{s} = -\frac{(\kappa+1)}{2\mu_{0}} P_{2}(a\widehat{r}).$$
(4.42)

Because of the nature of the problem it is necessary to increase the density of the collocation points near the ends $r = \pm 1$. Thus, these points may be selected as follows [17]:

$$T_N(r_i) = 0, \quad r_i = \cos\left(\frac{(2i-1)\pi}{2N}\right), \qquad i = 1, 2, ..., N.$$
 (4.43)

Using the definition of Chebyshev polynomial, $T_n(t)$

$$T_n(x) = \cos(n\arccos(x)), \tag{4.44}$$

and letting

$$\widehat{s} = \cos \theta,$$
 $(0 < \theta < \pi),$ (4.45)

equations (4.31) and (4.32) may be written as

$$\sum_{n=1}^{N} A_{2n-1} U_{2n-2}(r) + \sum_{n=1}^{N} A_{2n-1} \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \widehat{k}_{11}(a\cos\theta, a\widehat{r}) \cos[(2n-1)\theta] \ d\theta + \sum_{n=0}^{N} B_{2n} \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \widehat{k}_{12}(a\cos\theta, a\widehat{r}) \cos(2n\theta) \ d\theta = \frac{(\kappa+1)}{2\mu_{0}} P_{1}(a\widehat{r}),$$
(4.46)

$$\sum_{n=1}^{N} B_{2n} U_{2n-1}(r)$$

$$+\sum_{n=1}^{N} A_{2n-1} \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \widehat{k}_{21}(a\cos\theta, a\widehat{r}) \cos[(2n-1)\theta] d\theta$$
$$+\sum_{n=0}^{N} B_{2n} \frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \widehat{k}_{22}(a\cos\theta, a\widehat{r}) \cos(2n\theta) d\theta = -\frac{(\kappa+1)}{2\mu_{0}} P_{2}(a\widehat{r})$$
(4.47)

Finally, after evaluating the integrals 0 to $\frac{\pi}{2}$ in (4.46) and (4.47), the problem reduces to a system of algebraic equations of the form

$$\sum_{n=1}^{N} A_{2n-1} a_{in}(\widehat{r}_i) + \sum_{n=0}^{N} B_{2n} b_{in}(\widehat{r}_i) = \widehat{P}_1(\widehat{r}_i), \qquad (i = 1, 2, \dots, N), \qquad (4.48)$$

$$\sum_{n=1}^{N} A_{2n-1} c_{in}(\widehat{r}_i) + \sum_{n=0}^{N} B_{2n} d_{in}(\widehat{r}_i) = \widehat{P}_2(\widehat{r}_i), \qquad (i = 1, 2, \dots, N), \qquad (4.49)$$

where \hat{r}_i , (i = 1, 2, ..., N) are appropriate collocation points. In order to obtain a 2N by 2N system of linear algebraic equations, the coefficient B_0 should be defined in terms of B_{2i} , (i = 1, 2, 3, ..., N). Thus, by using the following equality :

$$\sum_{n=0}^{N} B_{2n} \int_{0}^{1} \frac{T_{n}(\widehat{s}) T_{1}(\widehat{s})}{\sqrt{1-\widehat{s}^{2}}} \, d\widehat{s} = \sum_{n=0}^{N} B_{2n} \left(\frac{(-1)^{n}}{4n^{2}-1} \right), \tag{4.50}$$

from (4.15) it follows that

$$B_0(-1) + \sum_{n=1}^N B_{2n} \frac{(-1)^n}{4n^2 - 1} = 0,$$
(4.51)

and

$$B_0 = \sum_{n=1}^{N} B_{2n} \frac{(-1)^n}{4n^2 - 1}.$$
(4.52)

Finally, we obtain the following system of linear algebraic equations such that

$$\sum_{n=1}^{N} \left[A_{2n-1} a_{in}(\widehat{r}_i) + B_{2n} \left(\frac{(-1)^n}{4n^2 - 1} b_{i0} + b_{in}(r_i) \right) \right] = \widehat{P}_1(\widehat{r}_i), \quad (i = 1, ..., N), \quad (4.53)$$

$$\sum_{n=1}^{N} \left[A_{2n-1} c_{in}(\hat{r}_i) + B_{2n} \left(\frac{(-1)^n}{4n^2 - 1} d_{i0} + d_{in}(r_i) \right) \right] = \hat{P}_2(\hat{r}_i), \quad (i = 1, ..., N), \quad (4.54)$$

$$a_{in}(\hat{r}_i) = U_{2n-2}(r_i) + \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \widehat{k}_{11}(a\cos\theta, a\hat{r}) \cos[(2n-1)\theta] \, d\theta,$$
(4.55)

$$b_{in}(\widehat{r}_i) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \widehat{k}_{12}(a\cos\theta, a\widehat{r})\cos(2n\theta) \, d\theta, \tag{4.56}$$

$$c_{in}(\widehat{r}_i) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \widehat{k}_{21}(a\cos\theta, a\widehat{r}) \cos[(2n-1)\theta] \, d\theta, \qquad (4.57)$$

$$d_{in}(\hat{r}_i) = U_{2n-1}(r_i) + \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \widehat{k}_{22}(a\cos\theta, a\hat{r})\cos(2n\theta) \, d\theta.$$
(4.58)

The solution of this system of algebraic equations would then give the coefficients A_{2n-1} and B_{2n} .

From the derivation of integral equations (3.65) and (3.66), we observe that the right hand side of these integral equations represent $\sigma_{zz}(r,0)$ and $\sigma_{rz}(r,0)$ for $a < r < \infty$ as well as for $0 \le r < a$. Thus, defining the modes I and II stress intensits factors by [9]

$$k_1 = \lim_{r \to a} \sqrt{2(r-a)} \sigma_{zz}(r,0), \qquad k_2 = \lim_{r \to a} \sqrt{2(r-a)} \sigma_{rz}(r,0), \qquad (4.59)$$

and by using the properties of Chebychev polynomials and (3.65),(3.66) it can be shown that

$$k_1 = -\sqrt{2a} \sum_{1}^{\infty} A_{2n-1}, \qquad k_2 = -\sqrt{2a} \sum_{0}^{\infty} B_{2n}.$$
 (4.60)

For a homogeneous infinite medium modes I and II crack problems are uncoupled and the stress intensity factors are given by

$$k_1 = -\frac{2}{\pi\sqrt{a}} \int_0^a \frac{rP_1(r)}{\sqrt{a^2 - r^2}} dr,$$
(4.61)

$$k_2 = -\frac{2}{\pi\sqrt{a^3}} \int_0^a \frac{r^2 P_2(r)}{\sqrt{a^2 - r^2}} dr.$$
(4.62)

Chapter 5

The Results

The main results of this study are the stress intensity factors calculated for various loading conditions as functions of the nonhomogeneity constant α defined by $\mu(z) = \mu_0 \exp(\alpha z)$, and h/a which is the basic dimensionless length parameter in the problem. Table 5.1 shows the six different loading conditions used in the calculation.

Table 5.1: Loading conditions used and the corresponding stress intensity factors for the homogeneous infinite medium ($\alpha = 0$).

$P_1(r)$	$- p_{0}$	$-p_1 \Big(rac{r}{a}\Big)^2$	$-p_2 \Big(rac{r}{a}\Big)^4$	0	0	0
$P_2(r)$	0	0	0	$-q_0\left(rac{r}{a} ight)$	$- q_1 \Big(rac{r}{a}\Big)^3$	$- q_2 \Big(rac{r}{a} \Big)^5$
k_1	$rac{2}{\pi}p_0\sqrt{a}$	$rac{4}{3\pi}p_1\sqrt{a}$	$rac{16}{15\pi}p_2\sqrt{a}$	0	0	0
k_2	0	0	0	$rac{4}{3\pi}q_0\sqrt{a}$	$rac{16}{15\pi}q_1\sqrt{a}$	$rac{32}{35\pi}q_2\sqrt{a}$

This table also shows the corresponding modes I and II stress intensity factors in a homogeneous medium containing a penny-shaped crack of radius a obtained from (4.61) and (4.62). Comparing the results given in Table 5.2 and Table 5.3 with the results of

axisysmetric crack problem in a nonhomogeneous infinite medium obtained by Ozturk and Erdogan [13], it may be seen that the stress intensity factors k_1 and k_2 obtained from the two solutions are almost the same for large values of the length parameter h/a.

For the problem under consideration the normalized stress intensity factors calculated for constant Poisson's ratio ($\nu = 0.3$) and different h/a values such as (h/a = 10., 2., 1., 0.75, 0.50, 0.25, 0.10) are shown in Tables 5.2 – 5.17. Note that the results given in these tables may be used to obtain the stress intensity factors for arbitrary crack surface tractions by superposition to the extent that the tractions may be approximated by a second degree polynomials in r.

After determining the coefficients A_{2n-1} and B_{2n} shown in (4.53) and (4.54), the crack opening displacements may be obtained from (3.5) and (3.6) as follows:

$$\phi_1(r) = \frac{\partial}{\partial r} \Big\{ w(r, +0) - w(r, -0) \Big\} = \frac{\kappa + 1}{2\mu_0} \sum_{1}^{\infty} A_{2n-1} \frac{T_{2n-1}(r/a)}{\sqrt{1 - (r/a)^2}},$$
(5.1)

$$\left(w(s, +0) - w(s, -0)\right)\Big|_{-a}^{r} = \frac{\kappa + 1}{2\mu_{0}} \sum_{1}^{\infty} A_{2n-1} \int_{-a}^{r} \frac{T_{2n-1}(s/a)}{\sqrt{1 - (s/a)^{2}}} ds,$$
(5.2)

$$w(r, +0) - w(r, -0) = \frac{\kappa + 1}{2\mu_0} \sum_{1}^{\infty} A_{2n-1} \int_{-1}^{r/a} \frac{aT_{2n-1}(\widehat{s})}{\sqrt{1 - \widehat{s}^2}} d\widehat{s},$$
(5.3)

by defining a new variable

$$\hat{s} = \cos \theta, \qquad \pi \le \theta \le \arccos(r/a),$$
(5.4)

right side of the equation (5.3) becomes

$$w(r, +0) - w(r, -0) = -\frac{a(\kappa + 1)}{2\mu_0} \sum_{1}^{\infty} A_{2n-1} \int_{\pi}^{\arccos(r/a)} \cos(2n - 1)\theta \, d\theta, \tag{5.5}$$

then

$$w(r, +0) - w(r, -0) = -\frac{a(\kappa + 1)}{2\mu_0} \sum_{1}^{\infty} A_{2n-1} \frac{\sin\{(2n-1)\arccos(r/a)\}}{2n-1}.$$
 (5.6)

Note that A_k has the dimension of stress. By using the relation

$$U_n(t) = \frac{\sin\{(n+1)\arccos t\}}{\sin(\arccos t)},\tag{5.7}$$

it can be shown that z-component of the normalized crack opening displacement is,

$$W(r) = \frac{w(r, +0) - w(r, -0)}{w_0} = -\sqrt{1 - (r/a)^2} \sum_{1}^{\infty} \frac{A_{2n-1}}{p_i} \frac{U_{2n-2}(r/a)}{2n-1},$$
 (5.8)

where

$$w_0 = \frac{(\kappa + 1)}{2\mu_0} a p_i, \quad (i = 0, 1, 2).$$
 (5.9)

Similarly, by using the equation (3.6) we find

$$\phi_2(r) = \frac{1}{r} \frac{\partial}{\partial r} \left\{ r u(r, +0) - r u(r, -0) \right\} = \frac{(\kappa + 1)}{2\mu_0} \sum_{0}^{\infty} B_{2n} \frac{T_n(r/a)}{\sqrt{1 - (r/a)^2}},$$
(5.10)

$$\left(ru(s, +0) - ru(s, -0)\right)\Big|_{-a}^{r} = \frac{(\kappa+1)}{2\mu_{0}} \sum_{0}^{\infty} B_{2n} \int_{-a}^{r} \frac{sT_{n}(s/a)}{\sqrt{1 - (s/a)^{2}}} ds,$$
(5.11)

$$r\Big\{u(r,\,+\,0)-u(r,\,-\,0)\Big\}=rac{a^2(\kappa+1)}{2\mu_0}B_0\!\int_{-1}^{r/a}\!rac{\widehat{s}}{\sqrt{1-\widehat{s}^2}}d\widehat{s}$$

$$+\frac{a^{2}(\kappa+1)}{2\mu_{0}}\sum_{1}^{\infty}B_{2n}\int_{-1}^{r/a}\frac{\widehat{s}\,T(\widehat{s})}{\sqrt{1-\widehat{s}^{2}}}d\widehat{s}.$$
(5.12)

By using the relation

$$2tT_n(t) = T_{n+1}(t) + T_{n-1}(t), (5.13)$$

it may be shown that

$$r\{u(r, +0) - u(r, -0)\} = -\frac{a^2(\kappa+1)}{2\mu_0}B_0\sqrt{1 - (r/a)^2} - \frac{a^2(\kappa+1)}{4\mu_0}\sum_{1}^{\infty}B_{2n}\left\{\frac{\sin\{(2n+1)\arccos(r/a)\}}{2n+1} + \frac{\sin\{(2n-1)\arccos(r/a)\}}{2n-1}\right\}.$$
 (5.16)

We again note that B_k has the dimension of stress. From (5.7) and (5.16) it then follows that

$$U(r) = \frac{u(r, +0) - u(r, -0)}{u_0} = -\frac{\sqrt{1 - (r/a)^2}}{2(r/a)} \left\{ \frac{2B_0}{q_i} + \sum_{1}^{\infty} \frac{B_{2n}}{q_i} \left(\frac{U_{2n}(r/a)}{2n+1} + \frac{U_{2n-2}(r/a)}{2n-1} \right) \right\}, \quad (5.17)$$

where

$$u_0 = \frac{(1+\kappa)}{2\mu_0} aq_{i}, \qquad (i=0,1,2).$$
(5.18)

For different values of αa and h/a, z- and r- components of normalized crack opening displacements are given in Figures 5.11 - 5.30.

	$\sigma_{zz}(r,0) = P_1(r), \ \sigma_{rz}(r,0) = 0$									
aα	$\frac{k_1}{\sqrt{k_1}}$	$\frac{k_2}{\sqrt{2}}$	$\underline{-k_1}$	$\frac{k_2}{\sqrt{k_2}}$	$\frac{k_1}{\sqrt{k_1}}$	$\frac{k_2}{\sqrt{k_2}}$				
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_1 \sqrt{a}$	$p_1 \sqrt{a}$	$p_2\sqrt{a}$	$p_2\sqrt{a}$				
0.0	.6369	.0000	.4245	.0000	.3396	.0000				
0.1	.6381	.0106	.4250	.0042	.3399	.0024				
0.2	.6414	.0212	.4263	.0085	.3406	.0048				
0.3	.6465	.0319	.4284	.0127	.3418	.0073				
0.4	.6531	.0425	.4310	.0170	.3433	.0097				
0.5	.6608	.0532	.4341	.0213	.3451	.0121				
0.6	.6695	.0639	.4376	.0255	.3470	.0146				
0.7	.6790	.0747	.4414	.0298	.3492	.0170				
0.8	.6893	.0855	.4455	.0341	.3516	.0195				
0.9	.7001	.0963	.4498	.0384	.3541	.0219				
1.0	.7115	.1073	.4544	.0428	.3567	.0244				
1.5	.7741	.1628	.4795	.0647	.3710	.0368				
2.0	.8435	.2202	.5073	.0872	.3869	.0495				
3.0	.9943	.3412	.5676	.1339	.4214	.0757				
4.0	1.1561	.4712	.6320	.1833	.4581	.1031				
5.0	1.3266	.6101	.6996	.2353	.4965	.1316				

Table 5.2: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 10.

Table 5.3: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 10.

١

	$\sigma_{zz}(r,0) = 0, \; \sigma_{rz}(r,0) = P_2(r)$									
aα	$\underline{k_1}$	k_2	k_1	k_2	k_1	$\underline{k_2}$				
, au	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_1\sqrt{a}$	$q_1\sqrt{a}$	$q_2\sqrt{a}$	$ q_2\sqrt{a} $				
0.0	.0000	.4244	.0000	.3395	.0000	.2910				
0.1	.0000	.4245	.0000	.3396	.0000	.2910				
0.2	.0000	.4246	.0000	.3396	.0000	.2911				
0.3	.0000	.4249	.0000	.3398	.0000	.2912				
0.4	.0000	$.4\overline{2}52$.0000	.3400	.0000	.2913				
0.5	.0000	.4256	.0000	.3402	.0000	.2915				
0.6	.0000	.4262	.0000	.3405	.0000	.2917				
0.7	.0000	.4268	.0000	.3409	.0000	.2919				
0.8	.0000	.4275	.0000	.3413	.0000	.2922				
0.9	.0000	.4282	.0000	.3417	.0000	.2925				
1.0	.0000	.4290	.0000	.3422	.0000	.2928				
1.5	.0000	.4341	.0000	.3451	.0000	.2947				
2.0	.0000	.4403	.0000	.3487	.0000	.2971				
3.0	.0000	.4550	.0000	.3571	.0000	.3028				
4.0	.0000	.4712	.0000	.3666	.0000	.3092				
5.0	.0000	.4881	.0000	.3765	.0000	.3159				

	$\sigma_{zz}(r,0) = P_1(r), \ \sigma_{rz}(r,0) = 0$									
aα	k_1	k_2	k_1	k_2	k_1	k_2				
uu	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_1\sqrt{a}$	$p_1\sqrt{a}$	$p_2\sqrt{a}$	$p_2\sqrt{a}$				
0.0	.6392	0002	.4254	.0000	.3401	.0000				
0.1	.6402	.0104	.4258	.0041	.3403	.0024				
0.2	.6431	.0210	.4270	.0084	.3410	.0048				
0.3	.6478	.0317	.4289	.0127	.3421	.0072				
0.4	.6540	.0424	.4314	.0169	.3435	.0098				
0.5	.6614	.0531	.4343	.0212	.3452	.0121				
0.6	.6699	.0638	$.4\overline{3}77$.0255	.3471	.0146				
0.7	.6793	.0746	.4415	.0298	.3493	.0170				
0.8	.6895	.0855	.4456	.0341	.3516	.0195				
0.9	.7001	.0963	.4498	.0384	.3541	.0219				
1.0	.7115	.1073	.4544	.0428	.3567	.0244				
1.5	.7742	.1628	.4795	.0647	.3710	.0368				
2.0	.8435	.2202	.5073	.0872	.3869	.0495				
3.0	.9943	.3412	.5676	.1339	.4214	.0757				
4.0	1.1561	.4712	.6320	.1833	.4581	.1031				
5.0	1.3266	.6108	.6996	.2353	.4965	.1316				

Table 5.4: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 5.

Table 5.5: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 5.

	$\sigma_{zz}(r,0) = 0, \; \sigma_{rz}(r,0) = P_2(r)$									
aα	k_1	k_2	k_1	k_2	k_1	k_2				
au	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_1\sqrt{a}$	$q_1\sqrt{a}$	$q_2\sqrt{a}$	$q_2\sqrt{a}$				
0.0	0001	.4244	.0000	.3395	.0000	.2910				
0.1	0001	.4245	.0000	.3396	.0000	.2911				
0.2	0001	$.4\overline{2}46$.0000	.3397	.0000	.2911				
0.3	0001	.4249	.0000	.3398	.0000	.2912				
0.4	0001	.4252	.0000	.3400	.0000	.2913				
0.5	.0000	.4257	.0000	.3402	.0000	.2915				
0.6	.0000	.4262	.0000	.3405	.0000	.2917				
0.7	.0000	.4268	.0000	.3409	.0000	.2919				
0.8	.0000	.4275	.0000	.3413	.0000	.2922				
0.9	.0000	.4282	.0000	.3417	.0000	.2925				
1.0	.0000	.4290	.0000	.3422	.0000	.2928				
1.5	.0000	.4341	.0000	.3451	.0000	.2947				
2.0	.0000	.4403	.0000	.3487	.0000	.2971				
3.0	.0000	.4550	.0000	.3571	.0000	.3028				
4.0	.0000	.4712	.0000	.3666	.0000	.3092				
5.0	.0000	.4881	.0000	.3765	.0000	.3159				

	$\sigma_{zz}(r,0) = P_1(r), \ \sigma_{rz}(r,0) = 0$								
aα	$\frac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$\frac{k_1}{p_1\sqrt{a}}$	$\frac{k_2}{p_1\sqrt{a}}$	$rac{k_1}{p_2\sqrt{a}}$	$rac{k_2}{p_2\sqrt{a}}$			
0.0	.6673	0070	.4364	0027	.3463	0015			
0.1	.6679	.0037	.4367	.0016	.3464	.0009			
0.2	.6698	.0145	.4374	.0059	.3469	.0034			
0.3	.6730	.0253	.4387	.0102	.3476	.0059			
0.4	.6773	.0363	.4405	.0146	.3486	.0084			
0.5	.6828	.0473	.4427	.0190	.3499	.0109			
0.6	.6893	.0584	.4453	.0234	.3514	.0134			
0.7	.6967	.0695	.4483	.0278	.3531	.0159			
0.8	.7049	.0807	.4516	.0323	.3550	.0185			
0.9	.7139	.0920	.4552	.0368	.3571	.0210			
1.0	.7236	.1033	.4591	.0412	.3593	.0235			
1.5	.7803	.1604	.4818	.0638	.3723	.0363			
2.0	.8465	.2189	.5084	.0867	.3875	.0493			
3.0	.9949	.3409	.5678	.1338	.4215	.0756			
4.0	1.1562	.4711	.6321	.1833	.4581	.1031			
5.0	1.3266	.6101	.6996	.2353	.4965	.1316			

Table 5.6: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 2.

Table 5.7: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 2.

	$\sigma_{zz}(r,0) = 0, \sigma_{rz}(r,0) = P_2(r)$									
aα	k_1	k_2	k_1	k_2	k_1	k_2				
	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_1\sqrt{a}$	$q_1\sqrt{a}$	$q_2\sqrt{a}$	$q_2\sqrt{a}$				
0.0	0025	.4253	0014	.3400	0009	.2913				
0.1	0025	.4254	0014	.3401	0009	.2914				
0.2	0025	.4255	0014	.3401	0009	.2914				
0.3	0024	.4257	0013	.3403	0009	.2915				
0.4	0023	.4260	0013	.3405	0009	.2916				
0.5	0022	.4265	0012	.3407	0008	.2918				
0.6	0020	.4269	0011	.3410	0008	.2920				
0.7	0019	.4275	0011	.3413	0007	.2922				
0.8	0017	.4281	0010	.3417	0007	.2924				
0.9	0016	.4289	0009	.3421	0006	.2927				
1.0	0015	.4296	0008	.3425	0005	.2930				
1.5	0009	.4345	0005	.3453	0003	.2949				
2.0	0005	.4406	0003	.3488	0002	.2972				
3.0	0001	.4550	0001	.3572	.0000	.3028				
4.0	.0000	.4712	.0000	.3666	.0000	.3092				
5.0	.0000	.4881	.0000	.3765	.0000	.3159				

	$\sigma_{zz}(r,0) = P_1(r), \ \sigma_{rz}(r,0) = 0$								
aα	$\frac{k_1}{\sqrt{2}}$	$\frac{k_2}{\sqrt{2}}$	$\frac{k_1}{\sqrt{2}}$	$\frac{k_2}{\sqrt{2}}$	$\underline{k_1}$	$\frac{k_2}{\sqrt{2}}$			
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_1\sqrt{a}$	$p_1\sqrt{a}$	$p_2\sqrt{a}$	$p_2\sqrt{a}$			
0.0	.7781	0520	.4783	0186	.3694	0100			
0.1	.7782	0410	.4783	0143	.3695	0075			
0.2	.7790	0299	.4787	0099	.3697	0050			
0.3	.7806	0187	.4794	0054	.3701	0025			
0.4	.7829	0073	.4804	0009	.3707	0001			
0.5	.7860	.0043	.4817	.0037	.3715	.0027			
0.6	.7899	.6060	.4833	.0083	.3724	.0053			
0.7	.7944	.0278	.4852	.0130	.3735	.0080			
0.8	.7995	.0398	.4873	.0177	.3747	.0106			
0.9	.8053	.0519	.4897	.0224	.3761	.0133			
1.0	.8117	.0640	.4923	.0272	.3776	.0160			
1.5	.8513	.1264	.5085	.0516	.3870	.0298			
2.0	.9018	.1905	.5290	.0765	.3989	.0437			
3.0	1.0262	.3230	.5794	.1274	.4278	.0722			
4.0	1.1729	.4607	.6382	.1796	.4615	.1011			
5.0	1.3351	.6044	.7027	.2333	.4982	.1306			

Table 5.8: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 1.

Table 5.9: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 1.

[$\sigma_{zz}(r,0) = 0, \sigma_{rz}(r,0) = P_2(r)$									
aα	k_1	k_2	$\underline{k_1}$	k_2	k_1	k_2				
l ua	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_1\sqrt{a}$	$q_1\sqrt{a}$	$q_2\sqrt{a}$	$q_2\sqrt{a}$				
0.0	0153	.4342	0086	.3449	0057	.2945				
0.1	0153	.4342	0086	.3449	0056	.2945				
0.2	0152	.4344	0085	.3450	0056	.2945				
0.3	0151	.4345	0085	.3451	0056	.2946				
0.4	0149	.4348	0084	.3452	0055	.2947				
0.5	0147	.4351	0082	.3454	0054	.2948				
0.6	0144	.4355	0081	.3456	0053	.2950				
0.7	0141	.4360	0079	.3459	0052	.2952				
0.8	0138	.4365	0077	.3462	0051	.2954				
0.9	0135	.4371	0076	.3465	0050	.2956				
1.0	0131	.4377	0073	.3469	0048	.2959				
1.5	0111	.4417	0062	.3492	0041	.2974				
2.0	0091	.4467	0051	.3521	0033	.2994				
3.0	0056	.4591	0031	.3594	0020	.3043				
4.0	0032	.4737	0018	.3679	0012	.3101				
5.0	0018	.4895	0010	.3772	0006	.3164				

	$\sigma_{zz}(r,0) = P_1(r), \ \sigma_{rz}(r,0) = 0$								
aα	k_1	k_2	k_1	k_2	$\underline{k_1}$	k_2			
1 44	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_1\sqrt{a}$	$p_1\sqrt{a}$	$p_2\sqrt{a}$	$p_2\sqrt{a}$			
0.0	.8763	1013	.5150	0352	.3896	0185			
0.1	.8763	0901	.5150	0308	.3896	0160			
0.2	.8766	0788	.5152	0264	.3897	0135			
0.3	.8776	0672	.5156	0218	.3900	0109			
0.4	.8791	0555	.5163	0172	.3904	0083			
0.5	.8813	0436	.5173	0125	.3910	0057			
0.6	.8841	0315	.5185	0078	.3917	0030			
0.7	.8874	0193	.5199	0030	.3926	0003			
0.8	.8913	0070	.5216	.0018	.3935	.0024			
0.9	.8958	.0055	.5234	.0067	.3946	.0051			
1.0	.9007	.0181	.5255	.0116	.3959	.0079			
1.5	.9324	.0831	.5387	.0368	.4035	.0221			
2.0	.9741	.1503	.5559	.0627	.4135	.0366			
3.0	1.0813	.2902	.5996	.1161	.4388	.0663			
4.0	1.2127	.4355	.6526	.1709	.4692	.0965			
5.0	1.3626	.5861	.7125	.2270	.5035	.1273			

Table 5.10: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 0.75.

Table 5.11: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 0.75.

[$\sigma_{zz}(r,0) = 0, \ \sigma_{rz}(r,0) = P_2(r)$									
aα	$\underline{k_1}$	$\underline{k_2}$	k_1	k_2	$\underline{k_1}$	$\underline{k_2}$				
	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_1\sqrt{a}$	$q_1\sqrt{a}$	$q_2\sqrt{a}$	$q_2\sqrt{a}$				
0.0	0258	.4445	0146	.3504	0096	.2981				
0.1	0258	.4445	0146	.3505	0096	.2981				
0.2	0257	.4446	0145	.3505	0096	.2981				
0.3	0256	.4448	0145	.3506	0096	.2982				
0.4	0254	.4450	0144	.3507	0095	.2983				
0.5	0252	.4453	0142	.3509	0094	.2984				
0.6	0249	.4456	0141	.3511	0093	.2985				
0.7	0246	.4460	0139	.3513	0092	.2988				
0.8	0243	.4465	0137	.3516	0091	.2989				
0.9	0239	.4470	0135	.3519	0089	.2991				
1.0	0235	.4476	0133	.3522	0088	.2993				
1.5	0213	.4511	$01\overline{20}$.3543	0079	.3007				
2.0	0188	.4555	0105	.3569	0069	.3024				
3.0	0139	.4665	0078	.3634	0051	.3068				
4.0	0098	.4795	0055	.3711	0036	.3121				
5.0	0067	.4938	0037	.3796	0024	.3179				

		$\sigma_{zz}(r,0)$	$=P_1(r),$	$\sigma_{rz}(r,0)$ =	= 0	
aα	$rac{k_1}{p_0\sqrt{a}}$	$\frac{k_2}{p_0\sqrt{a}}$	$\frac{k_1}{p_1\sqrt{a}}$	$\frac{k_2}{p_1\sqrt{a}}$	$\frac{k_1}{p_2\sqrt{a}}$	$rac{k_2}{p_2\sqrt{a}}$
0.0	1.1061	2297	.6005	0777	.4362	0400
0.1	1.1052	2179	.6003	0731	.4361	0374
0.2	1.1047	2060	.6002	0685	.4361	0348
0.3	1.1048	1938	.6004	0638	.4363	0321
0.4	1.1053	1815	.6007	0590	.4365	0295
0.5	1.1062	1689	.6012	0542	.4368	0268
0.6	1.1077	1562	.6019	0493	.4373	0240
0.7	1.1095	1434	.6028	0443	.4378	0212
0.8	1.1118	1303	.6038	0393	.4385	0184
0.9	1.1145	1171	.6051	0342	.4392	0156
1.0	1.1176	1038	.6064	0291	.4400	0127
1.5	1.1390	0350	.6156	0027	.4455	.0019
2.0	1.1689	.0369	.6282	.0246	.4529	.0171
3.0	1.2501	.1875	.6618	.0814	.4725	.0485
4.0	1.3551	.3452	.7046	.1403	.4972	.0808
5.0	1.4800	.5088	.7550	.2008	.5262	.1138

Table 5.12: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 0.50.

Table 5.13: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 0.50.

		$\sigma_{zz}(r,0)$	$=0, \sigma_{rz}(r)$	$(,0) = P_2$	r(r)	
aα	$\frac{k_1}{\sqrt{2}}$	$\frac{k_2}{\sqrt{k_2}}$	$\frac{k_1}{\sqrt{k_1}}$	$\frac{k_2}{\sqrt{k_2}}$	$\frac{k_1}{\sqrt{2}}$	$\frac{k_2}{\sqrt{2}}$
	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_1\sqrt{a}$	$q_1\sqrt{a}$	$q_2\sqrt{a}$	$q_2\sqrt{a}$
0.0	0456	.4685	0264	.3637	0176	.3068
0.1	0456	.4686	0263	.3637	0176	.3067
0.2	0455	.4687	0263	.3638	0176	.3067
0.3	0454	.4688	0262	.3639	0176	.3068
0.4	0453	.4690	0261	.3640	0175	.3068
0.5	0451	.4692	0260	.3641	0174	.3069
0.6	0448	.4695	0259	.3643	0173	.3070
0.7	0445	.4698	0257	.3645	0172	.3072
0.8	0442	.4702	0255	.3647	0171	.3073
0.9	0439	.4706	0253	.3649	0170	.3075
1.0	0435	.4711	0251	.3652	0168	.3077
1.5	0413	.4740	0238	.3669	0159	.3089
2.0	0387	.4777	0223	.3691	0149	.3103
3.0	0330	.4869	0190	.3746	0126	.3141
4.0	0274	.4977	0157	.3810	0104	.3185
5.0	0223	.5096	0127	.3882	0084	.3235

		$\sigma_{zz}(r,0)$	$=P_1(r),$	$\sigma_{rz}(r,0)$ =	= 0	
laα	$\underline{k_1}$	k_2	k_1	k_2	k_1	$\underline{k_2}$
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_1\sqrt{a}$	$p_1\sqrt{a}$	$p_2\sqrt{a}$	$p_2\sqrt{a}$
0.0	1.9620	7704	.9160	2562	.6069	1289
0.1	1.9599	7568	.9154	2511	.6066	1261
0.2	1.9580	7430	.9149	2460	.6064	1232
0.3	1.9564	7290	.9145	2407	.6063	1204
0.4	1.9551	7149	.9142	2355	.6062	1175
0.5	1.9542	7006	.9140	2301	.6061	1145
0.6	1.9535	6862	.9139	2247	.6062	1116
0.7	1.9531	6716	.9140	2193	.6063	1086
0.8	1.9530	6568	.9141	2137	.6064	1056
0.9	1.9531	6418	.9144	2082	.6066	1025
1.0	1.9536	6267	.9147	2025	.6069	0994
1.5	1.9597	5490	.9181	1737	.6091	0836
2.0	1.9720	4679	.9238	1436	.6127	0673
3.0	2.0129	2973	.9416	0807	.6234	0331
4.0	2.0729	1173	.9667	0148	.6382	.0026
5.0	2.1500	.0705	.9983	.0536	.6566	.0394

Table 5.14: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 0.25.

Table 5.15: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 0.25.

	$\sigma_{zz}(r,0) = 0, \ \sigma_{rz}(r,0) = P_2(r)$										
aα	$\frac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_1\sqrt{a}}$	$\frac{k_2}{q_1\sqrt{a}}$	$rac{k_1}{q_2\sqrt{a}}$	$\frac{k_2}{a_2\sqrt{a}}$					
0.0	0925	.5411	0559	.4061	0386	$\frac{q_2\sqrt{a}}{.3351}$					
0.1	0925	.5412	0559	.4061	0386	.3351					
0.2	0925	.5412	0559	.4062	0386	.3351					
0.3	0924	.5413	0558	.4062	0385	.3352					
0.4	0923	.5414	0558	.4063	0385	.3352					
0.5	0921	.5416	0557	.4064	0384	.3353					
0.6	0920	.5418	0556	.4065	0383	.3354					
0.7	0918	.5421	0555	.4067	0383	.3355					
0.8	0915	.5423	0553	.4068	0382	.3356					
0.9	0913	.5426	0552	.4070	0381	.3357					
1.0	0910	.5430	0550	.4072	0380	.3353					
1.5	0893	.5451	0540	.4084	0373	.3367					
2.0	0872	.5478	0527	.4100	0364	.3378					
3.0	0823	.5546	0497	.4140	0343	.3405					
4 .0	0768	.5626	0464	.4188	0320	.3438					
5.0	0712	.5714	0430	.4241	0296	.3475					

.

		$\sigma_{zz}(r,0)$	$=P_1(r),$	$\overline{\sigma_{rz}(r,0)} =$	0	
aα	$\frac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$rac{k_1}{p_1\sqrt{a}}$	$rac{k_2}{p_1\sqrt{a}}$	$rac{k_1}{p_2\sqrt{a}}$	$rac{k_2}{p_2\sqrt{a}}$
0.0	5.5317	- 3.2759	2.1875	-1.0886	1.2795	5435
0.1	5.5271	- 3.2579	2.1860	-1.0821	1.2788	5401
0.2	5.5228	- 3.2397	2.1847	- 1.0756	1.2782	5366
0.3	5.5186	-3.2215	2.1834	-1.0690	1.2776	5331
0.4	5.5146	- 3.2030	2.1822	-1.0624	1.2770	5296
0.5	5.5107	-3.1845	2.1810	- 1.0557	1.2765	5260
0.6	5.5071	- 3.1658	2.1799	-1.0490	1.2760	5225
0.7	5.5036	- 3.1469	2.1789	-1.0423	1.2755	5189
0.8	5.5003	-3.1280	2.1779	-1.0355	1.2751	5153
0.9	5.4972	-3.1088	2.1770	-1.0286	1.2747	5116
1.0	5.4942	-3.0896	2.1762	-1.0217	1.2743	5079
1.5	5.4820	-2.9914	2.1729	9866	1.2730	4893
2.0	5.474	-2.890	2.171	9504	1.273	470
3.0	5.469	- 2.679	2.172	8752	1.274	430
4.0	5.476	- 2.459	2.177	7967	1.277	389
5.0	5.497	- 2.230	2.187	7155	1.284	346

Table 5.16: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 0.10.

Table 5.17: The variation of stress intensity factors with $a\alpha$ for various loading conditions shown in Table 5.1, for the value of $\nu = 0.3$, h/a = 0.10.

	$\sigma_{zz}(r,0) = 0, \ \sigma_{rz}(r,0) = P_2(r), \ h/a = 0.10$											
aα	$\underline{k_1}$	$\underline{k_2}$	$\underline{k_1}$	k_2	k_1	k_2						
<u>u</u> u	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_1\sqrt{a}$	$q_1\sqrt{a}$	$q_2\sqrt{a}$	$q_2\sqrt{a}$						
0.0	1856	.7173	1167	.5157	0832	.4122						
0.1	1856	.7173	1167	.5157	0831	.4122						
0.2	1856	.7174	1166	.5157	0831	.4122						
0.3	1855	.7174	1166	.5157	0831	.4123						
0.4	1855	.7175	1166	.5158	0831	.4123						
0.5	1854	.7176	1165	.5159	0831	.4123						
0.6	1853	.7178	1165	.5159	0830	.4124						
0.7	1852	.7179	1164	.5160	0830	.4124						
0.8	1850	.7181	1163	.5161	0829	.4125						
0.9	1849	.7183	1162	.5162	0829	.4126						
1.0	1847	.7185	1161	.5163	0828	.4127						
1.5	1837	.7198	1155	.5171	0824	.4132						
2.0	1824	.7216	1147	.5183	0818	.4139						
3.0	1791	.7261	1128	.5207	0805	.4156						
4.0	1752	.7314	1105	.5239	0789	.4178						
5.0	1711	.7374	1079	.5274	0771	.4202						

	αa =	= 0.1	<u>α</u> a =	= 0.5	<i>α</i> a =	= 1.0	<i>α</i> a =	= 1.5
ν	k_1	k_2	k_1	k_2	$\underline{k_1}$	k_2	k_1	k_2
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$
0.00	.6376	.0106	.6522	.0532	.6880	.1069	.7355	.1619
0.10	.6378	.0106	.6545	.0532	.6945	.1070	.7463	.1621
0.20	.6379	.0106	.6573	.0532	.7021	$.107\bar{1}$.7589	.1624
0.30	.6381	.0106	.6608	.0532	.7115	.1073	.7741	.1628
0.40	.6384	.0106	.6652	.0532	.7231	.1074	.7929	.1633
0.45	.6385	.0106	.6679	.0532	.7301	.1075	0.8041	.1635
	αa =	= 2.0	αa =	= 3.0	αa =	= 4.0	<u>αa</u> =	= 5.0
ν	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$
0.00	.7908	.2183	.9173	.3369	1.0595	.4638	1.2138	.5995
0.10	.8055	.2188	.9390	.3381	1.0867	.4659	1.2455	.6025
0.20	.8229	.2194	.9643	.3395	1.1184	.4683	1.2824	.6060
0.30	.8435	.2202	.9943	.3412	1.1561	.4712	1.3266	.6101
0.40	.8689	.2211	1.0309	.3434	1.2020	.4747	1.3803	.6151
0.45	.8839	.2216	1.0526	.3446	1.2292	.4768	1.4122	.6180

Table 5.18: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 10.0, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$.

Table 5.19: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 10.0, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$.

ĺ	<i>α</i> a =	= 0.1	<u>αa</u> =	= 0.5	<i>α</i> a =	= 1.0	αa =	= 1.5
ν	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$
0.00	.0000	.4244	.0000	.4253	.0000	.4278	.0000	.4316
0.10	.0000	.4245	.0000	.4254	.0000	.4281	.0000	.4323
0.20	.0000	.4245	.0000	.4255	.0000	.4285	.0000	.4331
0.30	.0000	.4245	.0000	.4256	.0000	.4290	.0000	.4341
0.40	.0000	.4245	.0000	.4258	.0000	.4297	.0000	.4353
0.45	.0000	.4245	.0000	.4260	0000	.4301	.0000	.4361
	<u>αa</u> =	= 2.0	<u>αa</u> =	= 3.0	<i>α</i> a =	= 4.0	αa =	= 5.0
ν	k_1	k_2	$\underline{k_1}$	k_2	$\underline{k_1}$	k_2	k_1	k_2
ľ	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$
0.00	.0000	.4367	.0000	.4492	.0000	.4638	.0000	.4796
0.10	.0000	.4377	.0000	.4508	.0000	.4659	.0000	.4820
0.20	.0000	.4389	.0000	4527	.0000	4683	.0000	.4848
0.30	.0000	.4403	.0000	.4550	.0000	.4712	.0000	.4881
0.40	.0000	.4422	.0000	.4578	.0000	.4747	.0000	.4921
0.45	.0000	.4433	.0000	.4595	.0000	.4768	.0000	.4944

	αa =	= 0.1	αa =	= 0.5	$\alpha a =$	= 1.0	αa =	= 1.5
ν	k_1	k_2	k_1	k_2	$\underline{k_1}$	k_2	k_1	$\underline{k_2}$
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$\overline{p_0\sqrt{a}}$
0.00	.6676	.0037	.6769	.0469	.7041	.1021	.7451	.1585
0.10	.6677	.0037	.6784	.0470	.7094	.1024	.7547	.1591
0.20	.6678	.0037	.6804	.0471	.7157	.1028	.7662	.1597
0.30	.6679	.0037	.6828	.0473	.7236	.1033	.7803	.1604
0.40	.6681	.0037	.6860	.0475	.7337	.1038	.7978	.1613
0.45	.6681	.0037	0.6880	.0476	0.7398	.1041	0.8084	.1618
	<i>αa</i> =	= 2.0	<u>αa</u> =	= 3.0	<u>αa</u> =	= 4.0	<i>α</i> a =	= 5.0
	k_1	k_2	$\alpha a = k_1$	k_2	$\alpha a = \frac{k_1}{k_1}$	k_2	k_1	k_2
ν								
ν 0.00	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$rac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$rac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$rac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$rac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$
0.00	$\frac{k_1}{p_0\sqrt{a}}$.7962	$\frac{k_2}{p_0\sqrt{a}}$.2162	$\frac{k_1}{p_0\sqrt{a}}$.9188	$\frac{\frac{k_2}{p_0\sqrt{a}}}{.3361}$	$\frac{k_1}{p_0\sqrt{a}}$ 1.0598	$\frac{k_2}{p_0\sqrt{a}}$.4636	$\frac{k_1}{p_0\sqrt{a}}$ 1.2138	$\frac{\frac{k_2}{p_0\sqrt{a}}}{.5994}$
0.00	$ \frac{k_1}{p_0 \sqrt{a}} .7962 .8101 $	$ \frac{\frac{k_2}{p_0\sqrt{a}}}{.2162} .2170 $	$ \frac{k_1}{p_0 \sqrt{a}} .9188 .9402 $	$ \frac{k_2}{p_0 \sqrt{a}} \frac{3361}{.3375} $	$\frac{\frac{k_1}{p_0\sqrt{a}}}{1.0598}$ 1.0870	$rac{k_2}{p_0\sqrt{a}}$.4636 .4657	$\frac{\frac{k_1}{p_0\sqrt{a}}}{1.2138}$ 1.2455	$\frac{\frac{k_2}{p_0\sqrt{a}}}{.5994}$
0.00 0.10 0.20	$ \frac{k_1}{p_0\sqrt{a}} \frac{.7962}{.8101} \frac{.8266}{.8266} $	$ \frac{k_2}{p_0 \sqrt{a}} \frac{1}{2162} \frac{1}{2170} \frac{1}{2179} $	$ \frac{k_1}{p_0\sqrt{a}} .9188 .9402 .9652 $	$ \frac{k_2}{p_0\sqrt{a}} \frac{3361}{.3375} \frac{3391}{.3391} $	$\frac{k_1}{p_0\sqrt{a}} \\ 1.0598 \\ 1.0870 \\ 1.1186 \\ $	$ \frac{k_2}{p_0\sqrt{a}} .4636 .4657 .4682 $	$\frac{\frac{k_1}{p_0\sqrt{a}}}{1.2138}$ 1.2455 1.2825	$ \frac{k_2}{p_0\sqrt{a}} .5994 .6024 .6059 $

Table 5.20: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 2.0, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$.

Table 5.21: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 2.0, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$.

	$\alpha a =$	0.1	$\alpha a =$	0.5	$\alpha a =$	1.0	$\alpha a =$	1.5
ν	$\underline{k_1}$	k_2	$\underline{k_1}$	k_2	k_1	$\underline{k_2}$	k_1	$\underline{k_2}$
	$\overline{q_0}\sqrt{a}$	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$
0.00	0025	.4253	0023	.4261	0018	.4285	0012	.4322
0.10	0025	.4254	0023	.4262	0017	.4288	0011	.4328
0.20	0025	.4254	0022	.4263	0016	.4292	0010	.4336
0.30	0025	.4254	0022	.4265	0015	.4296	0009	.4345
0.40	0025	.4254	0021	.4266	0013	.4303	0007	.4357
0.45	0025	.4254	0020	.4267	0012	.4307	0006	.4364
	αa =	2.0	$\alpha a =$	3.0	$\alpha a =$	4.0	$\alpha a =$	5.0
	k_1	k_2	$\alpha a = \frac{k_1}{k_1}$	3.0 k ₂	k_1	$\frac{4.0}{k_2}$	$\alpha a = k_1$	k_2
ν								
ν 0.00	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$
0.00	$\frac{k_1}{q_0\sqrt{a}} \\0008$	$\frac{k_2}{q_0\sqrt{a}}$.4370	$\frac{k_1}{q_0\sqrt{a}} \\0003$	$\frac{k_2}{q_0\sqrt{a}}$.4493	$\frac{k_1}{q_0\sqrt{a}}0001$	$\frac{k_2}{q_0\sqrt{a}}$.4638	$\frac{k_1}{q_0\sqrt{a}} \\0000$	$\frac{k_2}{q_0\sqrt{a}}$.4796
0.00	$\frac{\frac{k_1}{q_0\sqrt{a}}}{0008}$	$\frac{k_2}{q_0\sqrt{a}} \\ .4370 \\ .4380$	$\frac{k_1}{q_0\sqrt{a}}0003 \\0002$	$\frac{k_2}{q_0\sqrt{a}} \\ .4493 \\ .4509$	$\frac{\frac{k_1}{q_0\sqrt{a}}}{0001}$	$\frac{k_2}{q_0\sqrt{a}} \\ .4638 \\ .4659$	$\frac{\frac{k_1}{q_0\sqrt{a}}}{0000}$	$\frac{\frac{k_2}{q_0\sqrt{a}}}{.4796}$.4820
0.00 0.10 0.20	$\frac{k_1}{q_0\sqrt{a}}0008 \\0007 \\0006$	$\frac{k_2}{q_0\sqrt{a}} \\ .4370 \\ .4380 \\ .4391 \\ \end{array}$	$\frac{k_1}{q_0\sqrt{a}}0003 \\0002 \\0002$	$ \frac{k_2}{q_0\sqrt{a}} .4493 .4509 .4528 $	$ \frac{k_1}{q_0\sqrt{a}}0001 \\0001 \\0000 $	$ \frac{k_2}{q_0\sqrt{a}} .4638 .4659 .4683 $	$ \frac{k_1}{q_0\sqrt{a}}0000 \\ .0000 \\ .0000 $	$ \frac{k_2}{q_0\sqrt{a}} $.4796 .4820 .4848

1	αα	= 0.1	$\alpha a =$	= 0.5	$\alpha a =$	= 1.0	$\alpha a =$	= 1.5
ν	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$\overline{p_0\sqrt{a}}$	$\overline{p_0\sqrt{a}}$	$\overline{p_0\sqrt{a}}$	$p_0\sqrt{a}$	$\overline{p_0\sqrt{a}}$	$p_0\sqrt{a}$	$\overline{p_0\sqrt{a}}$	$\overline{p_0\sqrt{a}}$
0.00	.7780	0411	.7825	.0035	.7989	.0614	.8264	.1215
0.10	.7781	0411	.7834	.0037	.8023	.0621	.8331	.1229
0.20	.7781	0410	.7846	.0040	.8065	.0630	.8412	.1244
0.30	.7782	0410	.7860	.0043	.8117	.0640	.8513	.1264
0.40	.7783	0410	.7880	.0047	.8184	.0654	.8642	.1287
0.45	.7783	0410	0.7892	.0050	0.8226	.0662	0.8721	.1301
	na.	= 2.0	αa =	- 3 0	αa =	- 1 0	<u>αa</u> =	- 50
		- 2.0	- uu -	- 0.0	$\alpha u =$	- 4.0	<u> </u>	- J.U
	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
ν		$\frac{\frac{k_2}{p_0\sqrt{a}}}$				k_2		k_2
ν 0.00	k_1	k_2	k_1	k_2	k_1		k_1	1
	$rac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$rac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$rac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$rac{k_1}{p_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$
0.00	$\frac{k_1}{p_0\sqrt{a}}$.8634	$\frac{\frac{k_2}{p_0\sqrt{a}}}{.1836}$	$\frac{\frac{k_1}{p_0\sqrt{a}}}{.9616}$	$\frac{k_2}{p_0\sqrt{a}}$.3130	$\frac{k_1}{p_0\sqrt{a}}$ 1.0852	$\frac{k_2}{p_0\sqrt{a}}$.4485	$\frac{\frac{k_1}{p_0\sqrt{a}}}{1.2281}$	$\frac{\frac{k_2}{p_0\sqrt{a}}}{.5903}$
0.00	$\frac{k_1}{p_0\sqrt{a}}$.8634 .8739	$\frac{\frac{k_2}{p_0\sqrt{a}}}{.1836}$.1856	$ \frac{\frac{k_1}{p_0\sqrt{a}}}{.9616} .9795 $	$ \frac{k_2}{p_0 \sqrt{a}} .3130 .3159 $	$\frac{k_1}{p_0\sqrt{a}} \\ 1.0852 \\ 1.1095$	$\frac{k_2}{p_0\sqrt{a}} \\ .4485 \\ .4521$	$ \frac{\frac{k_1}{p_0\sqrt{a}}}{1.2281} \\ 1.2579 $	$rac{k_2}{p_0\sqrt{a}}$.5903 .5944
0.00 0.10 0.20	$\frac{k_1}{p_0\sqrt{a}} \\ .8634 \\ .8739 \\ .8864$	$\frac{k_2}{p_0\sqrt{a}} \\ .1836 \\ .1856 \\ .1878 \\ $	$ \frac{\frac{k_1}{p_0\sqrt{a}}}{.9616} \\ \frac{.9795}{1.0006} $	$ \frac{k_2}{p_0 \sqrt{a}} \frac{3130}{.3159} \frac{3192}{.3192} $	$\frac{k_1}{p_0\sqrt{a}} \\ 1.0852 \\ 1.1095 \\ 1.1383 \\ $	$\frac{k_2}{p_0\sqrt{a}} \\ .4485 \\ .4521 \\ .4561 \\ \end{array}$	$\frac{\frac{k_1}{p_0\sqrt{a}}}{1.2281}$ 1.2579 1.2930	$\frac{k_2}{p_0\sqrt{a}} \\ .5903 \\ .5944 \\ .5991 \\ $

Table 5.22: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 1.0, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$.

Table 5.23: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 1.0, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$.

1	$\alpha a =$	0.1	$\alpha a =$	0.5	$\alpha a =$	1.0	$\alpha a =$	$\overline{1.5}$
ν	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$
0.00	0153	.4342	0149	.4349	0139	.4368	0124	.4399
0.10	0153	.4342	0149	.4349	0137	.4371	0121	.4404
0.20	0153	.4342	0148	.4350	0134	.4373	0116	.4410
0.30	0153	.4342	0147	.4351	0131	.4377	0111	.4417
0.40	0153	.4342	0146	.4353	0127	.4382	0105	.4426
0.45	0153	.4343	0145	.4353	0125	.4385	0101	.4432
	αa =	2.0	$\alpha a =$	3.0	$\alpha a =$	4.0	$\alpha a =$	5.0
ν	k_1	k_2	k_1	k_2	k_1	k_2	k_1	ka
								k_2
	$\overline{q_0\sqrt{a}}$	$\frac{1}{q_0\sqrt{a}}$	$\frac{1}{q_0\sqrt{a}}$	$\frac{1}{q_0\sqrt{a}}$	$\frac{n_1}{q_0\sqrt{a}}$	$\frac{n_2}{q_0\sqrt{a}}$	$\frac{n_1}{q_0\sqrt{a}}$	$\frac{n^2}{q_0\sqrt{a}}$
0.00					$\frac{\overline{q_0\sqrt{a}}}{0049}$			$\frac{\frac{\kappa_2}{q_0\sqrt{a}}}{.4818}$
0.00	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$	$\overline{q_0\sqrt{a}}$	$q_0\sqrt{a}$
	$\frac{\overline{q_0\sqrt{a}}}{0108}$	$\frac{\overline{q_0}\sqrt{a}}{.4440}$	$\frac{\overline{q_0}\sqrt{a}}{0075}$	$\overline{q_0\sqrt{a}}$.4545	$\frac{q_0\sqrt{a}}{0049}$	$\overline{q_0\sqrt{a}}$.4673	$\frac{q_0\sqrt{a}}{0029}$	$q_0\sqrt{a}$.4818
0.10	$\overline{q_0\sqrt{a}}$ 0108 0103	$ \frac{\overline{q_0 \sqrt{a}}}{.4440} .4447 $	$ \frac{\overline{q_0}\sqrt{a}}{0075} $ 0069	$\overline{q_0\sqrt{a}}$.4545 .4557	$ \frac{q_0\sqrt{a}}{0049} $ 0043	$ \frac{q_0\sqrt{a}}{.4673} $.4691		$ \frac{q_0\sqrt{a}}{.4818} .4839 $
0.10 0.20	$\overline{q_0\sqrt{a}}$ 0108 0103 0097		$\overline{q_0 \sqrt{a}}$ 0075 0069 0063	$q_0\sqrt{a}$.4545 .4557 .4573		$ \frac{q_0\sqrt{a}}{.4673} $.4691 .4712		$ \begin{array}{r} q_0 \sqrt{a} \\ .4818 \\ .4839 \\ .4865 \end{array} $

	αα	= 0.1	αa	= 0.5	αα	= 1.0	aa :	= 1.5
ν	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$\overline{p_0\sqrt{a}}$	$p_0\sqrt{a}$
0.00	1.1051	2180	1.1043	1698	1.1101	1070	1.1236	0414
0.10	1.1051	2180	1.1048	1696	1,1121	1062	$1.\overline{12}77$	0396
0.20	1.1051	2180	1.1054	1693	1.1146	1051	1.1327	0375
0.30	1.1052	2179	1.1062	1689	1.1176	1038	1.1390	0350
0.40	1.1052	2179	1.1073	1684	1.1217	1021	1.1471	0317
0.45	1.1052	2179	1.1080	1681	1.1242	1010	1.1520	0297
	<u>α</u> a =	= 2.0	αa	= 3.0	αα	= 4.0	αα	= 5.0
ν	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$\overline{p_0\sqrt{a}}$	$\overline{p_0\sqrt{a}}$	$\overline{p_0\sqrt{a}}$	$\overline{p_0\sqrt{a}}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$\overline{p_0\sqrt{a}}$	$\overline{p_0\sqrt{a}}$
0.00	1.1442	.0269	1.2053	.1709	1.2902	.3233	1.3963	.4830
0.10	1.1508	.0297	1.2175	.1755	1.3081	.3296	1.4194	.4904
0.20	1.1589	.0329	1.2322	.1810	1.3293	.3368	1.4467	.4989
0.30	1.1689	.0369	1.2501	.1875	1.3551	.3452	1.4800	.5088
0.40	1.1816	.0418	1.2727	.1954	1.3875	.3554	1.5215	.5205
0.45	1.1894	.0448	1.2865	.2001	1.4070	.3614	1.5465	.5273

Table 5.24: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 0.50, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$.

Table 5.25: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 0.50, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$.

1	$\alpha a = 0.1$		$\alpha a = 0.5$		$\alpha a = 1.0$		$\alpha a = 1.5$	
ν	k_1	k_2	k_1	k_2	k_1	k_2	$\underline{k_1}$	k_2
	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$\overline{q_0\sqrt{a}}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$	$q_0\sqrt{a}$
0.00	0456	.4686	0453	.4690	0443	.4704	0427	.4727
0.10	0456	.4886	0452	.4691	0441	.4706	0423	.4731
0.20	0456	.4886	0451	.4691	0438	.4708	0418	.4735
0.30	0456	.4686	0451	.4692	0435	.4711	0413	.4740
0.40	0456	.4686	0449	.4693	0431	.4715	0406	.4747
0.45	0456	.4686	0449	.4694	0429	.4717	0401	.4751
	$\alpha a = 2.0$		$\alpha a = 3.0$		$\alpha a = 4.0$		$\alpha a = 5.0$	
	$\alpha a =$	2.0	$\alpha a =$	3.0	$\alpha a =$	4.0	$\alpha a =$	5.0
	k_1	k_2	$\alpha a = \frac{k_1}{k_1}$	k_2	$\alpha a = \frac{k_1}{k_1}$	$\frac{4.0}{k_2}$	k_1	$\frac{5.0}{k_2}$
ν								
ν 0.00	k_1	k_2	k_1	k_2	k_1	k_2	k_1	k_2
	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$\frac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$	$\frac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{p_0\sqrt{a}}$
0.00	$\frac{\frac{k_1}{q_0\sqrt{a}}}{0407}$	$\frac{k_2}{p_0\sqrt{a}}$.4757	$\frac{k_1}{q_0\sqrt{a}} \\0359$	$\frac{k_2}{p_0\sqrt{a}}$.4836	$\frac{k_1}{q_0\sqrt{a}}0308$	$\frac{k_2}{p_0\sqrt{a}}$.4933	$\frac{k_1}{q_0\sqrt{a}} \\0257$	$\frac{k_2}{p_0\sqrt{a}}$.5043
0.00	$ \frac{\frac{k_1}{q_0\sqrt{a}}}{0407} \\0401 $	$\frac{k_2}{p_0\sqrt{a}} \\ .4757 \\ .4763 \\ \end{cases}$	$\frac{\frac{k_1}{q_0\sqrt{a}}}{0359}$ 0351	$\frac{k_2}{p_0\sqrt{a}} \\ .4836 \\ .4845$	$\frac{k_1}{q_0\sqrt{a}}0308 \\0298$	$\frac{k_2}{p_0\sqrt{a}} \\ .4933 \\ .4945$	$\frac{k_1}{q_0\sqrt{a}}0257 \\0247$	$rac{k_2}{p_0\sqrt{a}}$.5043 .5058
0.00 0.10 0.20	$ \frac{k_1}{q_0\sqrt{a}}0407 \\0401 \\0395 $	$\frac{k_2}{p_0\sqrt{a}} \\ .4757 \\ .4763 \\ .4769 \\ \end{cases}$	$ \frac{k_1}{q_0\sqrt{a}} \\0359 \\0351 \\0341 $	$\frac{k_2}{p_0\sqrt{a}} \\ .4836 \\ .4845 \\ .4856$	$\frac{k_1}{q_0\sqrt{a}}0308 \\0298 \\0287$	$ \frac{k_2}{p_0\sqrt{a}} .4933 .4945 .4959 $	$\frac{k_1}{q_0\sqrt{a}}0257 \\0247 \\0236$	$ \frac{k_2}{p_0 \sqrt{a}} .5043 .5058 .5075 .$

	$\alpha a = 0.1$		$\alpha a = 0.5$		$\alpha a = 1.0$		$\alpha a = 1.5$	
ν	k_1	k_2	k_1	k_2	k_1	k_2	$\underline{k_1}$	$\underline{k_2}$
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$
0.00	1.9598	7568	1.9530	7014	1.9490	6297	1.9502	5553
0.10	1.9598	7568	1.9533	7012	1.9502	6289	1.9527	5536
0.20	1.9598	7568	1.9537	7010	1.9517	6280	1.9558	5515
0.30	1.9599	7568	1.9542	7006	1.9536	6267	1.9597	5490
0.40	1.9599	7567	1.9548	7002	1.9560	6251	1.9648	5457
0.45	1.9599	7567	1.9552	6999	1.9576	6241	1.9679	5437
	$\alpha a = 2.0$		$\alpha a = 3.0$		$\alpha a = 4.0$		$\alpha a = 5.0$	
ν	k_1	k_2	k_1	k_2	k_1	k_2	$\underline{k_1}$	k_2
	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$	$p_0\sqrt{a}$
0.00	1.9564	4780	1.9832	3156	2.0285	1435	2.0911	.0375
0.10	1.9606	4753	1.9913	3106	2.0407	1362	2.1073	.0467
0.20	1.9657	4720	2.0010	3046	2.0552	1276	2.1265	.0576
0.30	1.9720	4679	2.0129	2973	2.0729	1173	2.1500	.0705
0.40	1.9802	4627	2.0280	2881	2.0952	1045	2.1793	.0864
0.45	1.9852	4596	2.0372	2827	2.1088	0969	2.1971	.0957

Table 5.26: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 0.25, $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$.

Table 5.27: The variation of stress intensity factors with ν for various loading conditions shown in Table 5.1, h/a = 0.25, $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$.

	$\alpha a = 0.1$		$\alpha a = 0.5$		$\alpha a = 1.0$		$\alpha a = 1.5$	
ν	$\frac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$\left rac{k_2}{q_0\sqrt{a}} ight $	$rac{k_1}{q_0\sqrt{a}}$	$\frac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$
0.00	0925	.5412	0923	.5415	0915	.5425	0903	.5441
0.10	0925	.5412	0922	.5415	0914	.5426	0901	5444
0.20	0925	.5412	0922	.5416	0912	.5428	0897	.5447
0.30	0925	.5412	0921	.5416	0910	.5430	0893	.5451
0.40	0925	.5412	0920	.5417	0907	.5432	0888	.5456
0.45	0925	.5412	0920	.5417	0906	.5434	0885	.5459
	$\alpha a = 2.0$		$\alpha a = 3.0$		$\alpha a = 4.0$		$\alpha a = 5.0$	
	$\alpha a =$	2.0	$\alpha a =$	3.0	$\alpha a =$	4.0	$\alpha a =$	5.0
	k_1	k_2	$\underline{k_1}$	k_2	k_1	$\frac{4.0}{k_2}$	$\underline{k_1}$	k_2
ν								1
ν 0.00	k_1	k_2	$\underline{k_1}$	k_2	k_1	k_2	$\underline{k_1}$	k_2
	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$	$rac{k_1}{q_0\sqrt{a}}$	$rac{k_2}{q_0\sqrt{a}}$
0.00	$\frac{k_1}{q_0\sqrt{a}} \\0887$	$\frac{k_2}{q_0\sqrt{a}}$.5463	$\frac{k_1}{q_0\sqrt{a}} \\0847$	$\frac{k_2}{q_0\sqrt{a}}$.5520	$\frac{k_1}{q_0\sqrt{a}}$ 0799	$\frac{k_2}{q_0\sqrt{a}}$.5591	$\frac{\overline{k_1}}{q_0\sqrt{a}} \\0746$	$\frac{k_2}{q_0\sqrt{a}}$.5673
0.00	$\frac{\frac{k_1}{q_0\sqrt{a}}}{0887}$	$rac{k_2}{q_0\sqrt{a}} \\ .5463 \\ .5467$	$\frac{\frac{k_1}{q_0\sqrt{a}}}{0847}$	$\frac{k_2}{q_0\sqrt{a}} \\ .5520 \\ .5527$	$\frac{\frac{k_1}{q_0\sqrt{a}}}{0799}\\0790$	$ \frac{k_2}{q_0\sqrt{a}} .5591 .5601 $	$ \frac{k_1}{q_0\sqrt{a}}0746 \\0736 $	$rac{k_2}{q_0\sqrt{a}}$.5673 .5684
0.00 0.10 0.20	$\frac{k_1}{q_0\sqrt{a}}0887 \\0883 \\0878$	$\frac{k_2}{q_0\sqrt{a}} \\ .5463 \\ .5467 \\ .5472$	$\frac{k_1}{q_0\sqrt{a}}0847 \\0840 \\0832$	$\frac{k_2}{q_0\sqrt{a}} \\ .5520 \\ .5527 \\ .5535$	$\frac{k_1}{q_0\sqrt{a}}0799 \\0790 \\0780$	$ \frac{k_2}{q_0 \sqrt{a}} .5591 .5601 .5612 $	$\frac{k_1}{q_0\sqrt{a}}0746 \\0736 \\0725$	$ \frac{k_2}{q_0\sqrt{a}} .5673 .5684 .5698 $

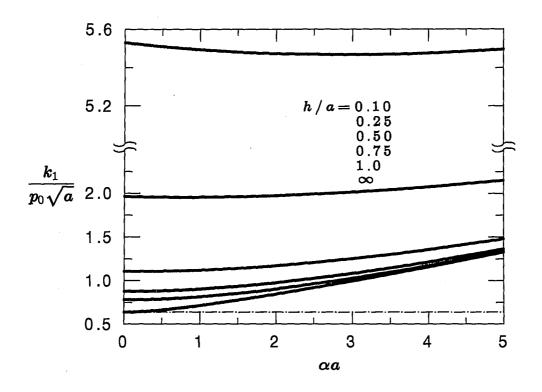


Figure 5.1: Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r,0) = -p_0, \ \sigma_{rz}(r,0) = 0.$

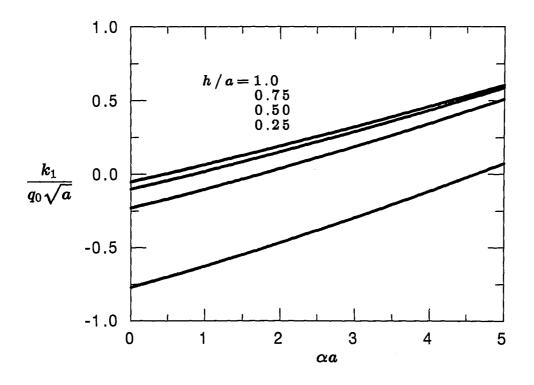


Figure 5.2: Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$. 54

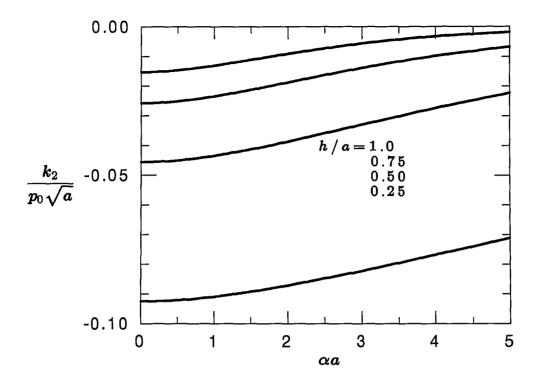


Figure 5.3: Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r,0) = -p_0, \ \sigma_{rz}(r,0) = 0.$

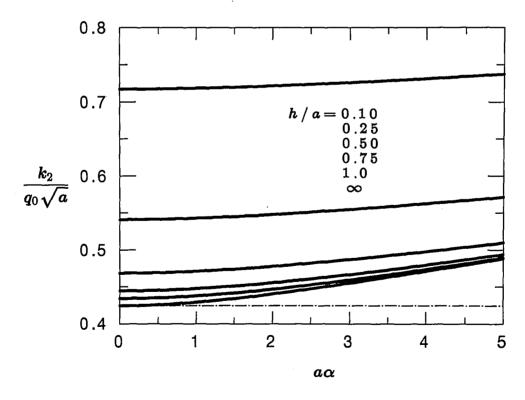


Figure 5.4: Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$.

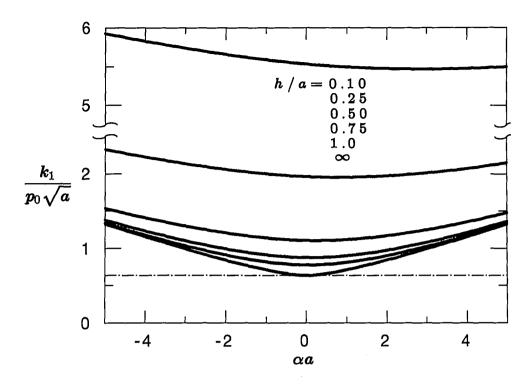


Figure 5.5: Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r,0) = -p_0, \ \sigma_{rz}(r,0) = 0.$

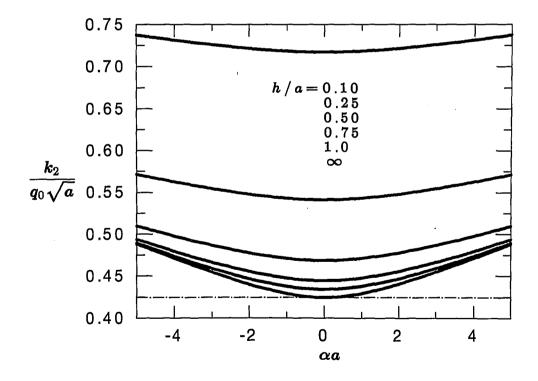


Figure 5.6: Normalized stress intensity factors for various h/a values when $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$.

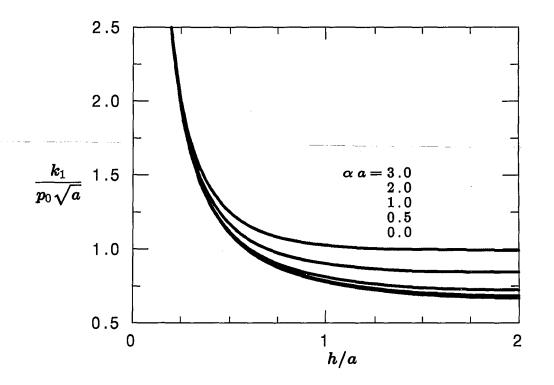


Figure 5.7: Normalized stress intensity factors for various αa values when $\sigma_{zz}(r,0) = -p_0, \ \sigma_{rz}(r,0) = 0.$

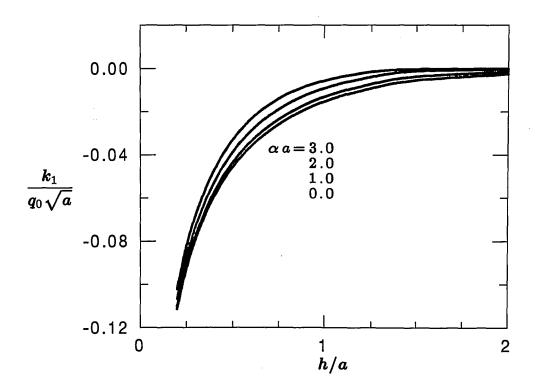


Figure 5.8: Normalized stress intensity factors for various αa values when $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$.

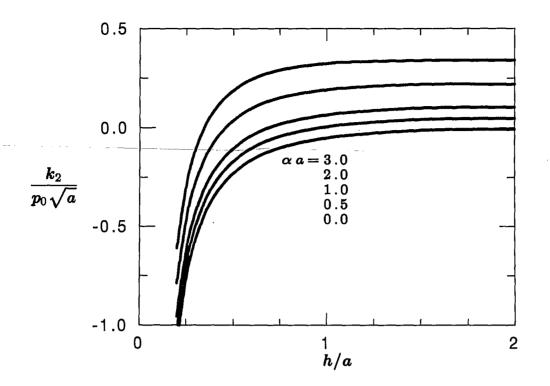


Figure 5.9: Normalized stress intensity factors for various αa values when $\sigma_{zz}(r,0) = -p_0, \ \sigma_{rz}(r,0) = 0.$

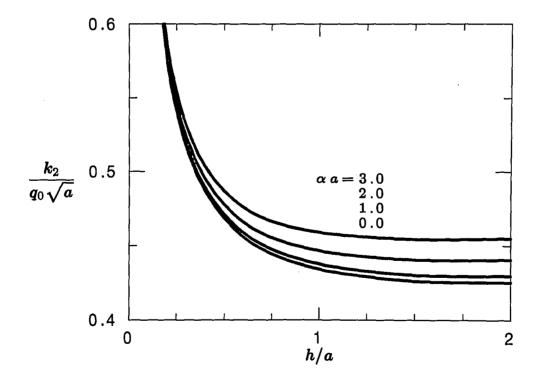


Figure 5.10: Normalized stress intensity factors for various αa values when $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$.

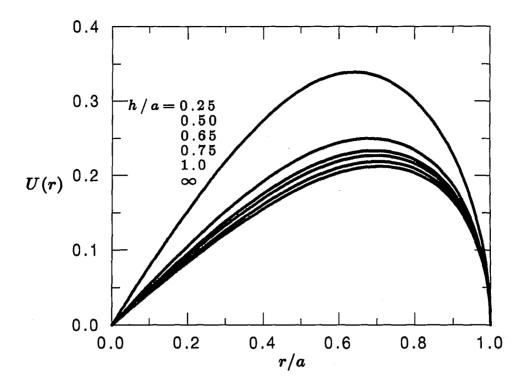


Figure 5.11: *r*- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, and $\alpha a = 0$.

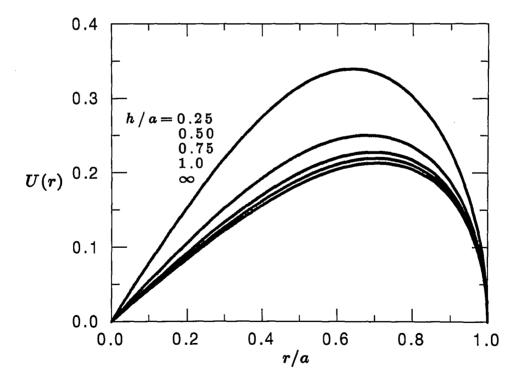


Figure 5.12: *r*- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, and $\alpha a = 0.5$.

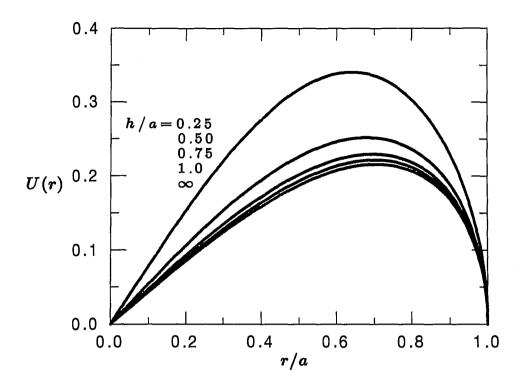


Figure 5.13: r- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$, and $\alpha a = 1.0$.

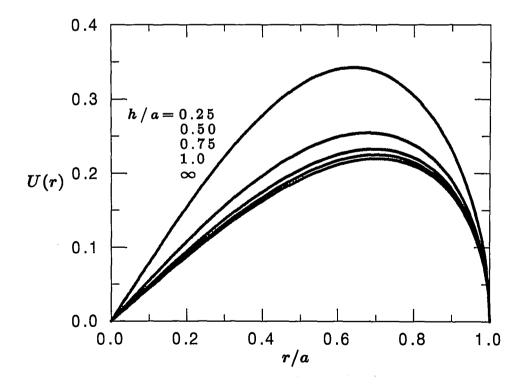


Figure 5.14: r- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$, and $\alpha a = 1.50$.

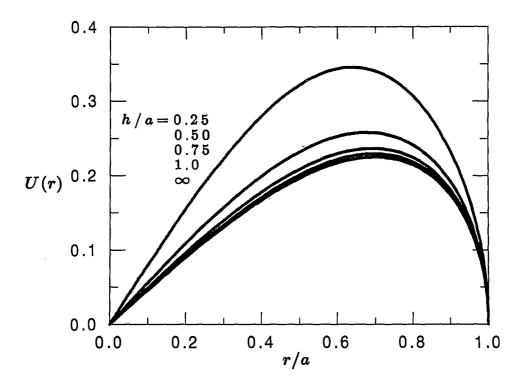


Figure 5.15: r- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, and $\alpha a = 2.0$.

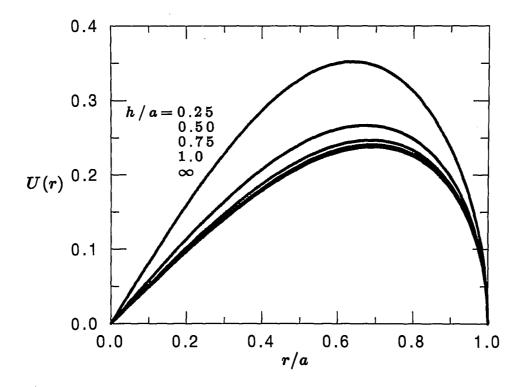


Figure 5.16: r- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, and $\alpha a = 3.0$.

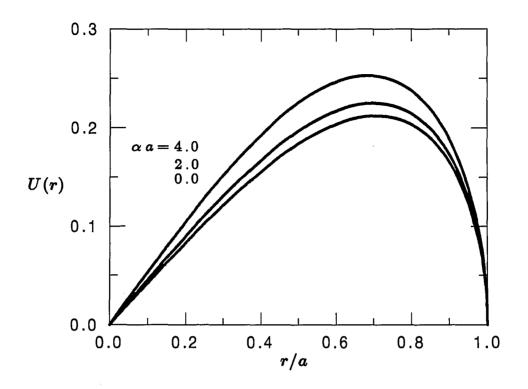


Figure 5.17: r- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, and h/a = 5.0.

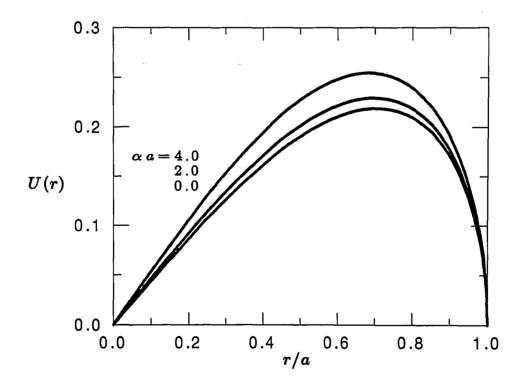


Figure 5.18: r- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$, and h/a = 1.0.

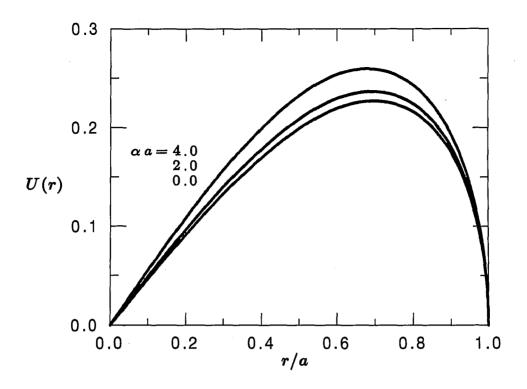


Figure 5.19: r- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = 0$, $\sigma_{rz}(r, 0) = -q_0$, and h/a = 0.75.

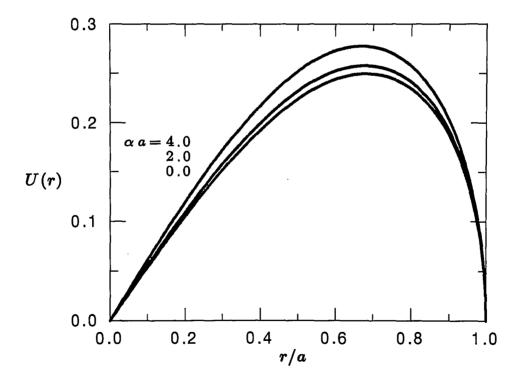


Figure 5.20: r- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r,0) = 0$, $\sigma_{rz}(r,0) = -q_0$, and h/a = 0.50.

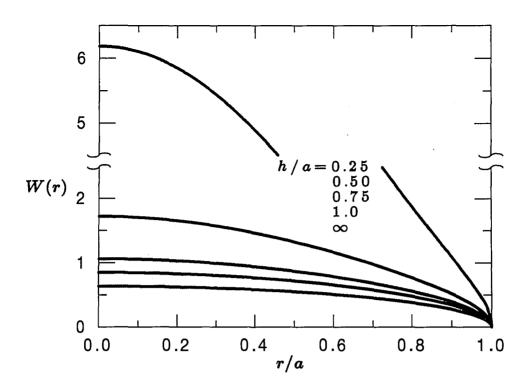


Figure 5.21: z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, and $\alpha a = 0$.

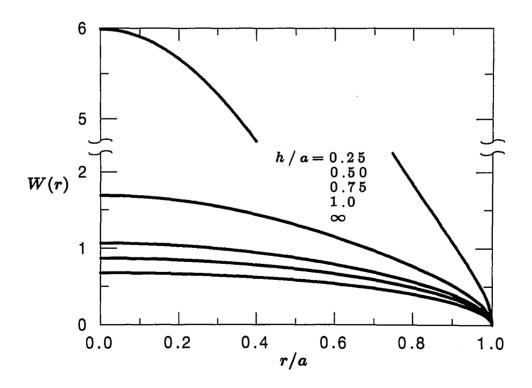


Figure 5.22: z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, and $\alpha a = 0.50$.

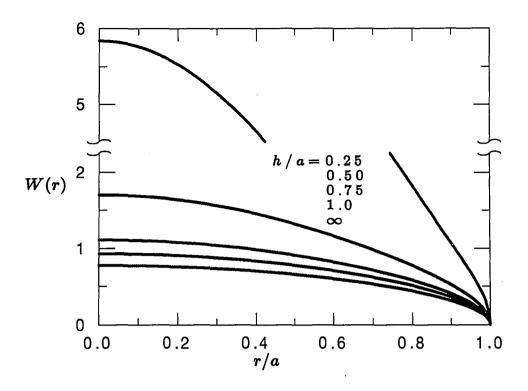


Figure 5.23: z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, and $\alpha a = 1.0$.

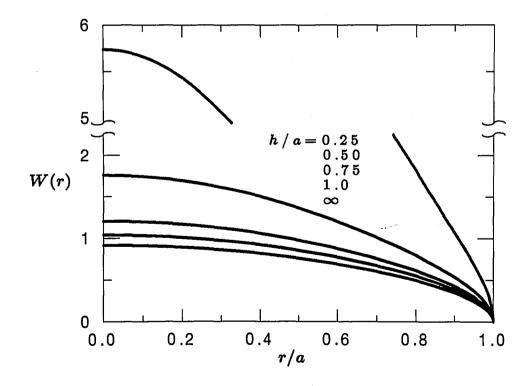


Figure 5.24: z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, and $\alpha a = 1.50$.

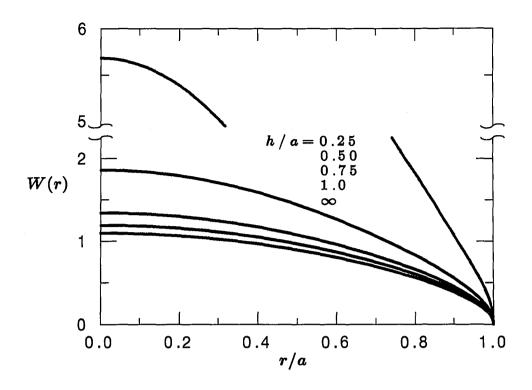


Figure 5.25: z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, and $\alpha a = 2.0$.

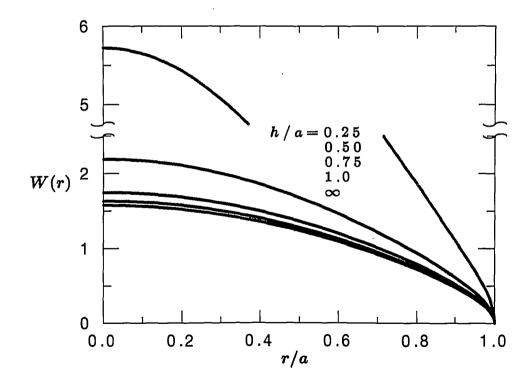


Figure 5.26: z- component of the normalized crack opening displacement for various h/a values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, and $\alpha a = 3.0$.

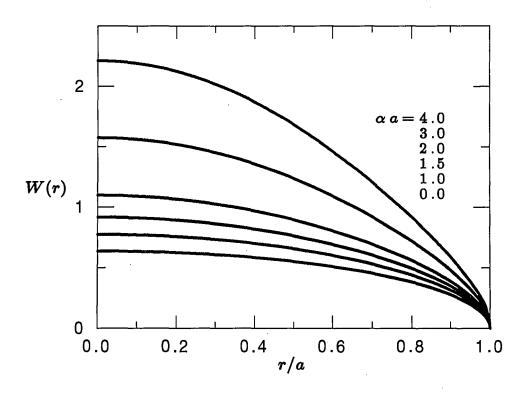


Figure 5.27: z- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r, 0) = -p_0$, $\sigma_{rz}(r, 0) = 0$, and h/a = 5.0.

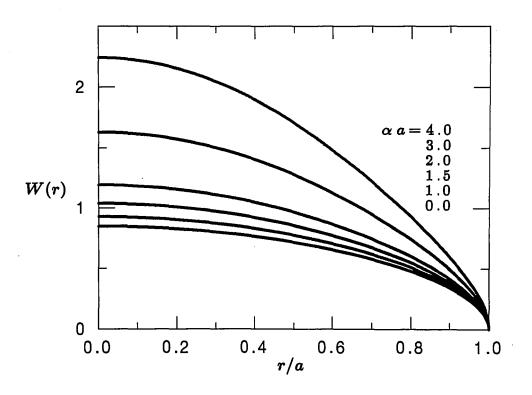


Figure 5.28: z- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, and h/a = 1.0.

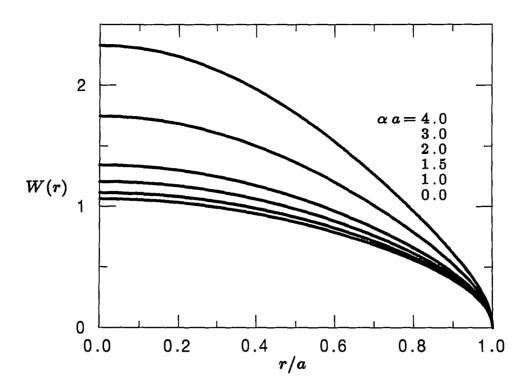


Figure 5.29: z- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, and h/a = 0.75.

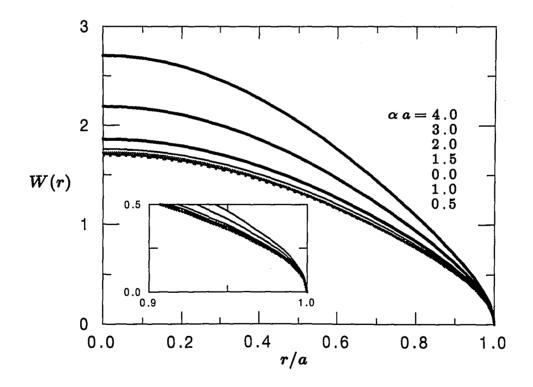


Figure 5.30: r- component of the normalized crack opening displacement for various αa values in case of the external loading $\sigma_{zz}(r,0) = -p_0$, $\sigma_{rz}(r,0) = 0$, and h/a = 0.50.

Conclusions and Future Works

In this study stress intensity factors and the crack opening displacements for different values of non-homogeneity parameter α and length parameter h have been investigated. Also studied is the effect of the Poisson's ratio ν on the stress intensity factors. The main conclusions may be summarized as follows :

(a) – For large h/a values, the calculated stress intensity factors agree with the results given in [13] within at least three digits.

(b) — When there was only normal loading $(\sigma_{zz}(r,0) = -p_0, \sigma_{rz}(r,0) = 0)$, it was observed that for large values of h/a, normalized stress intensity factor k_1 increases slowly as the non-homegeneity parameter α increases. However, for small values of h/a, (such as h/a = 0.10), the normalized stress intensity factor k_1 first decreases and then slowly increases with increasing α (Figure 5.1). Under the same loading k_2 increases with increasing α for all values of h/a. On the other hand for shear loading $(\sigma_{zz}(r,0) = 0, \sigma_{rz}(r,0) = -q_0)$, stress intensity factor k_1 increases for all values of h/a with increasing α , however, the values of k_1 are small. Similarly, k_2 increases for all values of h/a with increasing α , but the values of k_2 were small compared to k_1 under the normal loading. Also it was observed that for negative α values k_1 under normal loading and k_2 under shear loading were almost symmetric for the large values of h/a.

Since the stress intensity factors do not depend on the magnitude of the shear modulus μ_0 for a crack in an infinite medium, this result is expected.

(c) – It was observed that stress intensity factors k_1 and k_2 under respectively normal and shear loading tend to certain limiting values as h/a increases. On the other hand as expected, same stress intensity factors tend to infinity when h/a goes to zero. For large values of h/a the results agree with [13]. Also, for fixed values of α the stress intensity factors k_1 and k_2 under shear and normal loading, respectively, tend to certain limiting values which are, however, negligibly small.

(d) – It was observed that under shear loading r-component of the normalized crack opening displacements U(r) increases slowly when the length parameter h/adecreases. On the other hand, it is easy to see that under normal loading z-component of the normalized crack opening displacement W(r) increases rather significantly with decreasing values of h/a. In both cases the results agree with [13] for large values of h/a.

(e) – It was observed that stress intensity factors are relatively insensetive to variations in the Poisson's ratio for the small values of non-homogeneity parameter α and for all values af h/a. But for large α and small h/a the effect of Poisson's ratio may not be negligible. Some results are presented in Tables 5.18 - 5.27 to give an idea about the influence of the variations in ν on the stress intensity factors. It may be seen that, generally, the influence of ν on the stress intensity factors is not very significant.

Among the possible continuation of this research one may mention the investigation of the axisymmetric interface crack problem in a FGM coating bonded to a homogeneous substrate and the spallation phenomenon resulting from the buckling instability. The in-plane compression that may cause buckling of the coating may be mechanical or thermal in nature.

References

- [1] M.Yamanouchi, M.Koizumi, T.Hirai and I.Shiota, ed. FGM '90, Proc. of 1st Int. Symp. on Functionally Gradient Materials, Functionally Gradient Materials Forum, Sendai, Japan, 1990.
- [2] A.Kumakawa, M.Sasaki, M.Takahashi, M.Niino, N.Adachi and H.Arikawa, "Experimental Study on Thermomechanical Properties of FGMs at High Heat Fluxes", FGM '90, pp.291-295, 1990.
- [3] M.Niino and S.Maeda, "Recent Development Status of Functionally Gradient Material", *ISIJ International*, Vol. 30, pp. 699-703, 1990.
- [4] Y.Fukui, "Fundamental Investigation of Functionally Gradient Manufacturing System Using Centrifugal Force", JSME International Journal Series III, Vol. 34, pp. 144-148, 1991.
- [5] T. Hirai and M.Sasaki, "Vapor-deposited Functionally Gradient Materials", JSME International Journal Series I, Vol.34, pp.123-129, 1991.
- [6] T.Hirai, "Functional Gradient Materials", Material Science and Technology, Processing of Ceramics, Part 2, R,J.Brook (ed.), VCH Verlagsgesellschaft mbH, Germany, 1996.
- [7] L.M.Sheppard, "Enhancing Performance of Ceramic Composites", American Ceramic Society Bulletin, Vol. 71, No. 4, 1992

- [8] W.Y.Lee, Y.W.Bae, C.C.Berndt, F.Erdogan, Y.D.Lee and Z.Mutasim, "The Concept of FGMs for Advanced Thermal Barrier Coating Applications; A Review", *Journal of American Ceramic Society*, March 1996.
- [9] G.C.Sih, R.P.Wei, F.Erdogan, (ed.), *Linear Fracture Mechanics*, Envo Publishing Co., Inc., 1975
- [10] F.Erdogan, "Fracture Problems in Composite Materials", J. Engng. Fracture Mechanics, Vol. 4, pp. 811-840, 1972.
- [11] F.Delale and F.Erdogan, "The Crack Problem For A Nonhomogeneous Plane", ASME J. Appl. Mech., Vol. 50, pp. 609-614, 1983.
- [12] F.Delale and F.Erdogan, "Interface Crack In A Nonhomogeneous Medium", Int. J. Engng. Sci., Vol. 26, pp. 559-568, 1988.
- [13] M.Ozturk and F.Erdogan, "Axisymmetric Crack Problem in a Nonhomogeneous medium", ASME J. Appl. Mechanics, Vol. 60, pp. 406-414, 1993.
- [14] M.Ozturk and F.Erdogan, "An Axisymmetric crack in Bonded Materials With a Nonhomogeneous Interfacial Zone Under Torsion", ASME J. Apll. Mechanics, Vol. 62, pp. 116-125, 1995.
- [15] Sneddon, I.H., *The Use of Integral Transforms*, McGraw-Hill, New York, 1972.
- [16] Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, London, 1966.
- [17] Erdogan, F., Gupta, G.D. and Cook, T.S., "Numerical Solution of Singular Integral Equations", *Method of Analysis and solution of Crack Problems*, G.C.Sih (ed.), Noordhoff Int. Publ., pp. 368-425, Leyden(1973).
- [18] Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1972.

- [19] Muskhelishvili, N.L., *Singular Integral Equations*, P. Noordhoff Int. Publ., The Netherlands, 1953.
- [20] Erdogan, F. "Mixed Boundary Value Problems in Mechanics", *Mechanics Today*, Nemat Nasser (ed.), Pergamon Press, Oxford, 1975.
- [21] Byrd, P.F., Friedman, M.D. Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971.
- [22] Ozturk, M. Private communication on certain unpublished crack problems.

Appendix A

Expressions for various functions that appear in chapter 2 and chapter 3.

$$\delta = \sqrt{\frac{(3-\kappa)}{(\kappa+1)}},\tag{A.1}$$

$$\xi = \frac{1}{2}\sqrt{\alpha^2 + 4\rho^2 + 4i\alpha\rho\delta}, \qquad (A.2)$$

$$\overline{\xi} = \frac{1}{2}\sqrt{\alpha^2 + 4\rho^2 - 4i\alpha\rho\delta}, \qquad (A.3)$$

$$m_1 = -\frac{1}{2}\alpha + \xi, \qquad (A.4)$$

$$m_2 = -\frac{1}{2}\alpha - \xi, \qquad (A.5)$$

$$\overline{m}_1 = -\frac{1}{2}\alpha + \overline{\xi} , \qquad (A.6)$$

$$\overline{m}_2 = -\frac{1}{2}\alpha - \overline{\xi} , \qquad (A.7)$$

$$a_1 = -\frac{2m_1 + \alpha(3 - \kappa)}{2\rho + i\alpha\delta(\kappa + 1)}, \qquad (A.8)$$

$$a_2 = -\frac{2m_2 + \alpha(3 - \kappa)}{2\rho + i\alpha\delta(\kappa + 1)},$$
(A.9)

$$\overline{a}_1 = -\frac{2\overline{m}_1 + \alpha(3 - \kappa)}{2\rho + i\alpha\delta(\kappa + 1)},\tag{A.10}$$

$$\overline{a}_2 = -\frac{2\overline{m}_2 + \alpha(3-\kappa)}{2\rho + i\alpha\delta(\kappa+1)},\tag{A.11}$$

$$n_1 = (3 - \kappa)\rho + (\kappa + 1)a_1m_1, \tag{A.12}$$

$$n_2 = (3 - \kappa)\rho + (\kappa + 1)a_2m_2, \tag{A.13}$$

$$\overline{n}_1 = (3 - \kappa)\rho + (\kappa + 1)\overline{a}_1\overline{m}_1, \tag{A.14}$$

$$\overline{n}_2 = (3-\kappa)\rho + (\kappa+1)\overline{a}_2\overline{m}_2, \tag{A.15}$$

$$v_1 = m_1 - a_1 \rho,$$
 (A.16)

$$v_2 = m_2 - a_2 \rho,$$
 (A.17)

$$\overline{v}_1 = \overline{m}_1 - \overline{a}_1 \rho, \tag{A.18}$$

$$\overline{v}_2 = \overline{m}_2 - \overline{a}_2 \rho, \tag{A.19}$$

$$\Delta_1 = n_1 \overline{v}_1 - v_1 \overline{n}_1, \qquad \Delta_1 = -\overline{\Delta}_1 \qquad (A.20)$$

$$\lambda_1 = \frac{\overline{n}_1 v_2 - \overline{v}_1 n_2}{\Delta_1},\tag{A.21}$$

$$\overline{\lambda}_1 = \frac{n_1 \overline{v}_2 - v_1 \overline{n}_2}{\overline{\Delta}_1},\tag{A.22}$$

$$\lambda_3 = \frac{n_2 v_1 - v_2 n_1}{\Delta_1},$$
(A.23)

$$\overline{\lambda}_3 = \frac{\overline{n}_2 \overline{v}_1 - \overline{v}_2 \overline{n}_1}{\overline{\Delta}_1},\tag{A.24}$$

$$G_1 = n_2 + n_1 \lambda_1 e^{-2\xi h} + \overline{n}_1 \lambda_3 e^{-(\xi + \overline{\xi})h}, \qquad (A.25)$$

$$G_2 = v_2 + v_1 \lambda_1 e^{-2\xi h} + \overline{v}_1 \lambda_3 e^{-(\xi + \overline{\xi})h}, \qquad (A.26)$$

$$\overline{G}_1 = \overline{n}_2 + \overline{n}_1 \overline{\lambda}_1 e^{-2\overline{\xi} h} + n_1 \overline{\lambda}_3 e^{-(\xi + \overline{\xi})h}, \qquad (A.27)$$

$$\overline{G}_2 = \overline{v}_2 + \overline{v}_1 \lambda_1 e^{-2\overline{\xi}\,h} + v_1 \overline{\lambda}_3 e^{-(\xi + \overline{\xi})h} \,, \tag{A.28}$$

$$\Delta_2 = G_1 \overline{G}_2 - \overline{G}_1 G_2, \qquad \qquad \Delta_2 = -\overline{\Delta}_2 \qquad (A.29)$$

$$E_1 = \frac{n_1 \overline{G}_2 - v_1 \overline{G}_1}{\Delta_2},$$
 (A.30)

$$E_2 = \frac{-n_1 G_2 + v_1 G_1}{\Delta_2},\tag{A.31}$$

$$\overline{E}_1 = \frac{\overline{n}_1 G_2 - \overline{v}_1 G_1}{\overline{\Delta}_2},\tag{A.32}$$

$$\overline{E}_2 = \frac{-\overline{n}_1 \overline{G}_2 + \overline{v}_1 \overline{G}_1}{\overline{\Delta}_2},\tag{A.33}$$

.

$$E_3 = \lambda_1 E_1 e^{-2\xi h} + \overline{\lambda}_3 E_2 e^{-(\xi + \overline{\xi})h}, \tag{A.34}$$

$$E_4 = \overline{\lambda}_1 E_2 e^{-2\overline{\xi}h} + \lambda_3 E_1 e^{-(\xi + \overline{\xi})h}, \qquad (A.35)$$

$$\overline{E}_3 = \overline{\lambda}_1 \overline{E}_1 e^{-2\overline{\xi}h} + \lambda_3 \overline{E}_2 e^{-(\xi + \overline{\xi})h}, \tag{A.36}$$

$$\overline{E}_4 = \lambda_1 \overline{E}_2 e^{-2\xi h} + \overline{\lambda}_3 \overline{E}_1 e^{-(\xi + \overline{\xi})h}, \tag{A.37}$$

$$b_1 = a_1 - a_2 E_1 - \overline{a}_2 E_2 - a_1 E_3 - \overline{a}_1 E_4, \qquad (A.38)$$

$$b_2 = E_1 + E_2 + E_3 + E_4 - 1, (A.39)$$

$$\overline{b}_1 = \overline{a}_1 - \overline{a}_2 \overline{E}_1 - a_2 \overline{E}_2 - \overline{a}_1 \overline{E}_3 - a_1 \overline{E}_4, \qquad (A.40)$$

$$\overline{b}_2 = \overline{E}_1 + \overline{E}_2 + \overline{E}_3 + \overline{E}_4 - 1, \tag{A.41}$$

$$\Delta_3 = b_1 \overline{b}_2 - \overline{b}_1 b_2, \qquad \Delta_3 = -\overline{\Delta}_3 \qquad (A.42)$$

$$d_{11} = \frac{n_1 \overline{b}_2 - \overline{n}_1 b_2}{\Delta_3},\tag{A.43}$$

$$d_{12} = \frac{-n_1 \overline{b}_1 + \overline{n}_1 b_1}{\Delta_3},$$
 (A.44)

$$d_{21} = \frac{v_1 \overline{b}_2 - \overline{v}_1 b_2}{\Delta_3},\tag{A.45}$$

$$d_{22} = \frac{-v_1\overline{b}_1 + \overline{v}_1 b_1}{\Delta_3},\tag{A.46}$$

۰.

.

Appendix B

Asymptotic Analysis of Kernels

By defining a new variable

$$R = \frac{\alpha}{2\rho},\tag{B.1}$$

from

$$m_1 = -\frac{\alpha}{2} + \frac{1}{2}\sqrt{\alpha^2 + 4\rho^2 + 4i\alpha\rho\delta} = -\frac{\alpha}{2} + \xi$$
 (B.2)

$$m_1 = \rho M_{1,} \tag{B.3}$$

we find

$$M_1 = -R + \sqrt{1 + 2i\delta R + R^2}.$$
 (B.4)

Similarly,

$$m_2 = \rho M_2, \qquad M_2 = -R - \sqrt{1 + 2i\delta R + R^2}, \qquad (B.5)$$

$$m_1 = \rho \overline{M}_1, \qquad \overline{M}_1 = -R + \sqrt{1 - 2i\delta R + R^2},$$
 (B.6)

$$\bar{m}_2 = \rho \bar{M}_2, \qquad \bar{M}_2 = -R - \sqrt{1 - 2i\delta R + R^2}.$$
 (B.7)

Defining

$$\eta = \sqrt{1 + 2i\delta R + R^2},\tag{B.8}$$

$$\overline{\eta} = \sqrt{1 - 2i\delta R + R^2},\tag{B.9}$$

we have

$$\xi = \rho \eta, \qquad \overline{\xi} = \rho \overline{\eta}. \qquad (B.10)$$

By substituting the value of m_j in terms of M_j , (j = 1, 2) into (2.34) we find

$$a_1 = -\frac{M_1 + (3 - \kappa)R}{1 + i(\kappa + 1)\delta R},$$
(B.11)

$$a_2 = -\frac{M_2 + (3 - \kappa)R}{1 + i(\kappa + 1)\delta R},$$
(B.12)

$$a_1 = \overline{a}_3$$
 and $a_2 = \overline{a}_4$. (B.13)

Expressing (A.12)-(A.19) as

$$n_1 = \rho N_1,$$
 $N_1 = (3 - \kappa) + (\kappa + 1)a_1 M_1,$ (B.14)

$$n_2 = \rho N_2,$$
 $N_2 = (3 - \kappa) + (\kappa + 1)a_2 M_2,$ (B.15)

$$\overline{n}_1 = \rho \overline{N}_1, \qquad \overline{N}_1 = (3 - \kappa) + (\kappa + 1)\overline{a}_1 \overline{M}_1, \qquad (B.16)$$

$$\overline{n}_2 = \rho \overline{N}_2, \qquad \overline{N}_2 = (3-\kappa) + (\kappa+1)\overline{a}_2 \overline{M}_2, \qquad (B.17)$$

$$v_1 = \rho V_1,$$
 $V_1 = M_1 - a_1,$ (B.18)

$$v_2 = \rho V_2, \qquad V_2 = M_2 - a_2,$$
 (B.19)

$$\overline{v}_1 = \rho \overline{V}_1, \qquad \overline{V}_1 = \overline{M}_1 - \overline{a}_1, \qquad (B.20)$$

$$\overline{v}_2 = \rho \overline{V}_2, \qquad \qquad \overline{V}_2 = \overline{M}_2 - \overline{a}_2. \tag{B.21}$$

(A.20) becomes

$$\Delta_{1} = \rho^{2} (N_{1} \overline{V}_{1} - \overline{N}_{1} V_{1}), \qquad \Delta_{1}^{'} = N_{1} \overline{V}_{1} - \overline{N}_{1} V \qquad (B.22)$$

$$\Delta_1' = -\overline{\Delta}_1'. \tag{B.23}$$

Define the coefficients A_{11} and A_{13} in terms of M_i , a_i , N_i and V_i , (i = 1, 2), as

$$A_{11} = \lambda_1 e^{-2\eta\rho h} A_{12} + \overline{\lambda}_3 e^{-(\eta + \overline{\eta})\rho h} A_{14}, \tag{B.25}$$

$$A_{13} = \lambda_3 e^{-(\eta + \bar{\eta})\rho h} A_{12} + \bar{\lambda}_1 e^{-2\bar{\eta}\rho h} A_{14},$$
(B.26)

where

$$\lambda_{1} = \frac{\bar{N}_{1}V_{2} - \bar{V}_{1}N_{2}}{\Delta_{1}'},\tag{B.27}$$

$$\lambda_3 = \frac{N_2 V_1 - V_2 N_1}{\Delta_1'}.$$
(B.28)

Referring to (A.25)-(A.27), we may write

$$G_{1}^{'} = N_{2} + N_{1}\lambda_{1}e^{-2\eta\rho h} + \overline{N}_{1}\lambda_{3}e^{-(\eta+\eta)\rho h}, \qquad (B.29)$$

$$\overline{G}_{1}^{\prime} = \overline{N}_{2} + \overline{N}_{1}\overline{\lambda}_{1}e^{-2\eta\rho h} + N_{1}\overline{\lambda}_{3}e^{-(\eta+\eta)\rho h}, \qquad (B.30)$$

$$G_{2}' = V_{2} + V_{1}\lambda_{1}e^{-2\eta\rho h} + \overline{V}_{1}\lambda_{3}e^{-(\eta+\overline{\eta})\rho h}, \qquad (B.31)$$

$$\overline{G}_{2}' = \overline{V}_{2} + \overline{V}_{1}\overline{\lambda}_{1}e^{-2\overline{\eta}\rho h} + V_{1}\overline{\lambda}_{3}e^{-(\eta+\overline{\eta})\rho h}, \qquad (B.32)$$

and

$$\Delta_{2} = \rho^{2} \left(G_{1}^{'} \overline{G}_{2}^{'} - \overline{G}_{1}^{'} G_{2}^{'} \right), \qquad \Delta_{2}^{'} = G_{1}^{'} \overline{G}_{2}^{'} - \overline{G}_{1}^{'} G_{2}^{'}, \qquad (B.33)$$

$$\Delta_2' = -\overline{\Delta}_2'. \tag{B.34}$$

Then, the coefficients A_{12} and A_{14} may be expressed in terms of M_i , a_i , N_i , V_i and G'_i , (i = 1, 2), as follows:

$$A_{12} = E_1 A_{21} + \overline{E}_2 A_{23}, \tag{B.35}$$

$$A_{14} = E_2 A_{21} + \overline{E}_1 A_{23}, \tag{B.36}$$

where

$$E_{1} = \frac{\left(N_{1}\overline{G}_{2}^{'} - V_{1}\overline{G}_{1}^{'}\right)}{\Delta_{2}^{'}},$$
(B.37)

$$\overline{E}_1 = \frac{\left(\overline{N}_1 G_2' - \overline{V}_1 G_1'\right)}{\overline{\Delta}_2'},\tag{B.38}$$

$$E_2 = -\frac{\left(N_1 G_2' - V_1 G_1'\right)}{\Delta_2'},\tag{B.39}$$

$$\overline{E}_2 = -\frac{\left(\overline{N}_1 \overline{G}_2' - \overline{V}_1 \overline{G}_1'\right)}{\overline{\Delta}_2'}.$$
(B.40)

As a result, all four coefficients A_{1j} , (j=1,2,3,4), can be expressed in terms of A_{21} and A_{22} , as

$$A_{11} = \left(\lambda_1 E_1 e^{-2\eta\rho h} + \overline{\lambda}_3 E_2 e^{-(\eta+\overline{\eta})\rho h}\right) A_{21} + \left(\lambda_1 \overline{E}_2 e^{-2\eta\rho h} + \overline{\lambda}_3 \overline{E}_1 e^{-(\eta+\overline{\eta})\rho h}\right) A_{23},$$
(B.41)

$$A_{12} = E_1 A_{21} + \overline{E}_2 A_{23}, \tag{B.42}$$

$$A_{13} = \left(\overline{\lambda}_1 E_2 e^{-2\overline{\eta}\rho h} + \lambda_3 E_1 e^{-(\eta+\overline{\eta})\rho h}\right) A_{21} + \left(\overline{\lambda}_1 \overline{E}_1 e^{-2\overline{\eta}\rho h} + \lambda_3 \overline{E}_2 e^{-(\xi+\overline{\xi})h}\right) A_{23}, \qquad (B.43)$$

$$A_{14} = E_2 A_{21} + \overline{E}_1 A_{23}, \tag{B.44}$$

where

$$E_3 = \lambda_1 E_1 e^{-2\eta\rho h} + \overline{\lambda}_3 E_2 e^{-(\eta+\overline{\eta})\rho h},\tag{B.45}$$

$$\overline{E}_3 = \overline{\lambda}_1 \overline{E}_1 e^{-2\eta\rho h} + \lambda_3 \overline{E}_2 e^{-(\eta+\eta)\rho h}, \tag{B.46}$$

$$E_4 = \overline{\lambda}_1 E_2 e^{-2\overline{\eta}\rho h} + \lambda_3 E_1 e^{-(\eta + \overline{\eta})\rho h}, \tag{B.47}$$

$$\overline{E}_4 = \lambda_1 \overline{E}_2 e^{-2\eta\rho h} + \overline{\lambda}_3 \overline{E}_1 e^{-(\eta+\eta)\rho h}, \tag{B.48}$$

82

$$b_1 = a_1 - a_1 E_3 - a_2 E_1 - \overline{a}_1 E_4 - \overline{a}_2 E_2, \tag{B.49}$$

$$\overline{b}_1 = \overline{a}_1 - \overline{a}_1 \overline{E}_3 - \overline{a}_2 \overline{E}_1 - a_1 \overline{E}_4 - a_2 \overline{E}_2, \tag{B.50}$$

$$b_2 = E_1 + E_2 + E_3 + E_4 - 1, (B.51)$$

$$\overline{b}_2 = \overline{E}_1 + \overline{E}_2 + \overline{E}_3 + \overline{E}_4 - 1, \tag{B.52}$$

$$\Delta_3 = b_1 \overline{b}_2 - \overline{b}_1 b_2, \qquad \qquad \Delta_3 = -\overline{\Delta}_3, \qquad (B.53)$$

$$d_{11}'(R) = \frac{1}{\Delta_3} ((\kappa + 1)(M_1 a_1 \overline{b}_2 - \overline{M}_1 \overline{a}_1 b_2) + (3 - \kappa)(\overline{b}_2 - b_2)), \tag{B.54}$$

$$d'_{12}(R) = \frac{1}{\Delta_3} ((\kappa + 1)(\overline{M}_1 \overline{a}_1 b_1 - M_1 a_1 \overline{b}_1) + (3 - \kappa)(b_1 - \overline{b}_1)), \tag{B.55}$$

$$d_{21}'(R) = \frac{1}{\Delta_3} ((M_1 - a_1)\overline{b}_2 - (\overline{M}_1 - \overline{a}_1)b_2), \tag{B.56}$$

$$d'_{22}(R) = \frac{1}{\Delta_3} ((\overline{M}_1 - \overline{a}_1)b_1 - (M_1 - a_1)\overline{b}_1).$$
(B.57)

When ρ goes to infinity, R will go to 0 and $d_{ij}^{'}$, (i, j = 1, 2), can be expressed as :

$$d_{ij}^{'}(R)=\sum_{k=0}^{\infty}d_{ij}^{\prime^k}R^k$$
 .

where

$$d_{11}^{'0} = 2\frac{(\kappa - 1)}{(\kappa + 1)},$$
(B.58)

$$d_{11}^{'2} = 2\frac{(\kappa - 1)(\kappa - 9)}{(\kappa + 1)^2},$$
(B.59)

$$d_{11}^{\prime 4} = 2 \frac{(\kappa - 1)(\kappa^2 - 26\kappa + 99)}{(\kappa + 1)^3},$$
(B.60)

$$d_{11}^{'6} = 2 \frac{(\kappa - 1)(\kappa^3 - 51\kappa^2 + 489\kappa - 1175)}{(\kappa + 1)^4},$$
(B.61)

$$d_{11}^{'8} = 2\frac{(\kappa - 1)(\kappa^4 - 84\kappa^3 + 1458\kappa^2 - 8268\kappa + 14499)}{(\kappa + 1)^5},$$
(B.62)

$$d'_{11}^{10} = 2\frac{(\kappa - 1)(\kappa^5 - 125\kappa^4 + 3390\kappa^3 - 33270\kappa^2 + 132735\kappa - 183195)}{(\kappa + 1)^6},$$
 (B.63)

$$d_{11}^{'1} = d_{11}^{'3} = d_{11}^{'5} = d_{11}^{'7} = d_{11}^{'9} = d_{11}^{'11} = 0.$$
 (B.64)

$$d_{12}^{'1} = 2\frac{(\kappa - 1)}{(\kappa + 1)},\tag{B.65}$$

$$d_{12}^{'3} = 2\frac{(\kappa - 1)(\kappa - 9)}{(\kappa + 1)^2},\tag{B.66}$$

$$d_{12}^{'5} = 2 \frac{(\kappa - 1)(\kappa^2 - 26\kappa + 99)}{(\kappa + 1)^3},$$
(B.67)

$$d_{12}^{\prime 7} = 2 \frac{(\kappa - 1)(\kappa^3 - 51\kappa^2 + 489\kappa - 1175)}{(\kappa + 1)^4},$$
(B.68)

$$d_{12}^{'9} = 2\frac{(\kappa - 1)(\kappa^4 - 84\kappa^3 + 1458\kappa^2 - 8268\kappa + 14499)}{(\kappa + 1)^5},$$
(B.69)

$$d_{12}^{'11} = 2\frac{(\kappa - 1)(\kappa^5 - 125\kappa^4 + 3390\kappa^3 - 33270\kappa^2 + 132735\kappa - 183195)}{(\kappa + 1)^6},$$
(B.70)

$$d_{12}^{\prime 0} = d_{12}^{\prime 2} = d_{12}^{\prime 4} = d_{12}^{\prime 6} = d_{12}^{\prime 8} = d_{12}^{\prime 10} = 0.$$
 (B.71)

$$d_{21}^{'1} = -2\frac{1}{(\kappa+1)},\tag{B.72}$$

$$d_{21}^{'3} = -2\frac{(\kappa - 9)}{(\kappa + 1)^2},\tag{B.73}$$

$$d_{21}^{'5} = -2\frac{(\kappa^2 - 26\kappa + 99)}{(\kappa + 1)^3},$$
(B.74)

$$d_{21}^{\prime 7} = -2 \frac{(\kappa^3 - 51\kappa^2 + 489\kappa - 1175)}{(\kappa + 1)^4},$$
(B.75)

$$d_{21}^{'9} = -2\frac{(\kappa^4 - 84\kappa^3 + 1458\kappa^2 - 8268\kappa + 14499)}{(\kappa+1)^5},$$
(B.76)

$$d_{21}^{'11} = -2 \frac{(\kappa^5 - 125\kappa^4 + 3390\kappa^3 - 33270\kappa^2 + 132735\kappa - 183195)}{(\kappa + 1)^6},$$
 (B.77)

$$d_{21}^{\prime 0} = d_{21}^{\prime 2} = d_{21}^{\prime 4} = d_{21}^{\prime 6} = d_{21}^{\prime 8} = d_{21}^{\prime 10} = 0.$$
 (B.78)

$$d_{22}^{\prime 0} = -2\frac{1}{(\kappa+1)},\tag{B.79}$$

$$d_{22}^{'2} = -2\frac{(\kappa-1)}{(\kappa+1)^2},\tag{B.80}$$

$$d_{22}^{'4} = -2\frac{(\kappa^2 - 10\kappa + 3)}{(\kappa + 1)^3},$$
(B.81)

$$d_{22}^{'6} = -2 \frac{(\kappa^3 - 27\kappa^2 + 105\kappa + 1)}{(\kappa + 1)^4},$$
(B.82)

$$d_{22}^{'8} = -2 \frac{(\kappa^4 - 52\kappa^3 + 498\kappa^2 - 1132\kappa - 253)}{(\kappa + 1)^5},$$
(B.83)

$$d_{22}^{'10} = -2 \frac{(\kappa^5 - 85\kappa^4 + 1470\kappa^3 - 8070\kappa^2 + 12255\kappa + 5085)}{(\kappa+1)^6},$$
 (B.84)

$$d_{22}^{'1} = d_{22}^{'3} = d_{22}^{'5} = d_{22}^{'7} = d_{22}^{'9} = d_{22}^{'11} = 0.$$
 (B.85)

When ρ tends to infinity $d_{11}^{'}, d_{12}^{'}, d_{21}^{'}$ and $d_{22}^{'}$ behave as follows :

$$d_{11}'(\rho) = 2\frac{(\kappa-1)}{(\kappa+1)} + 2\frac{(\kappa-1)(\kappa-9)}{(\kappa+1)^2} \left(\frac{\alpha}{2\rho}\right)^2 + O\left(\frac{1}{\rho^4}\right),\tag{B.86}$$

$$d_{12}'(\rho) = 2\frac{(\kappa - 1)}{(\kappa + 1)} \left(\frac{\alpha}{2\rho}\right) + 2\frac{(\kappa - 1)(\kappa - 9)}{(\kappa + 1)^2} \left(\frac{\alpha}{2\rho}\right)^3 + O\left(\frac{1}{\rho^5}\right),$$
(B.87)

$$d_{21}'(\rho) = -2\frac{1}{(\kappa+1)} \left(\frac{\alpha}{2\rho}\right) - 2\frac{(\kappa-9)}{(\kappa+1)^2} \left(\frac{\alpha}{2\rho}\right)^3 + O\left(\frac{1}{\rho^5}\right), \tag{B.88}$$

$$d_{22}'(\rho) = -2\frac{1}{(\kappa+1)} - 2\frac{(\kappa-9)}{(\kappa+1)^2} \left(\frac{\alpha}{2\rho}\right)^2 + O\left(\frac{1}{\rho^4}\right).$$
(B.89)

Also, dividing d'_{11} and d'_{12} by d'^0_{11} and d'_{21} and d'_{22} by d'^0_{22} , it can be shown that (see equations (3.49)-(3.52)).

$$D_{11}(\rho) = \frac{(\kappa - 9)}{(\kappa + 1)} \left(\frac{\alpha}{2\rho}\right)^2 + \frac{(\kappa^2 - 26\kappa + 99)}{(\kappa + 1)^2} \left(\frac{\alpha}{2\rho}\right)^4 + O\left(\frac{1}{\rho^6}\right),\tag{B.90}$$

$$D_{12}(\rho) = \left(\frac{\alpha}{2\rho}\right) + \frac{(\kappa - 9)}{(\kappa + 1)} \left(\frac{\alpha}{2\rho}\right)^3 + \frac{(\kappa^2 - 26\kappa + 99)}{(\kappa + 1)^2} \left(\frac{\alpha}{2\rho}\right)^5 + O\left(\frac{1}{\rho^7}\right), \quad (B.91)$$

$$D_{21}(\rho) = \left(\frac{\alpha}{2\rho}\right) + \frac{(\kappa - 9)}{(\kappa + 1)} \left(\frac{\alpha}{2\rho}\right)^3 + \frac{(\kappa^2 - 26\kappa + 99)}{(\kappa + 1)^2} \left(\frac{\alpha}{2\rho}\right)^5 + O\left(\frac{1}{\rho^7}\right), \quad (B.92)$$

$$D_{22}(\rho) = \frac{(\kappa - 9)}{(\kappa + 1)} \left(\frac{\alpha}{2\rho}\right)^2 + \frac{(\kappa^2 - 10\kappa + 3)}{(\kappa + 1)^2} \left(\frac{\alpha}{2\rho}\right)^4 + O\left(\frac{\tilde{1}}{\rho^4}\right).$$
(B.93)

Appendix C

Examination of the Logarithmic Kernels

C.1 Elliptic Integrals

The expressions of the integrals giving the kernels contain complete elliptic integrals of the first and the second kind [21] which are defined by

$$K = K(k) = F\left(\frac{\pi}{2}, k\right) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k^2 \sin^2\theta}},$$
 (C.1.1)

$$E = E(k) = F\left(\frac{\pi}{2}, k\right) = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \sin^2\theta} \, d\theta.$$
(C.1.2)

derivatives with respect to modulus k are given by

$$\frac{dK}{dk} = \frac{E - {k'}^2 K}{k{k'}^2},$$
(C.1.3)

$$\frac{dE}{dk} = \frac{E - K}{k},\tag{C.1.4}$$

where k' is the complementary modulus

$$k' = \sqrt{1 - k^2}.$$
 (C.1.5)

When the modulus k tends to 1, the complete elliptic integrals have the following asymptotic properties:

$$K(k) = \log\left(\frac{4}{\sqrt{1-k^2}}\right), \quad k \to 1$$
(C.1.6)

$$E(k) = 1,$$
 $k \to 1.$ (C.1.7)

By using the properties of the complete elliptic integrals, we now examine parts of the kernels that can be expressed in closed form.

C.2
$$K_{11}^{\infty}(s,r) = \int_{0}^{\infty} J_{0}(r\rho) J_{1}(s\rho) \rho \, d\rho$$

In equation (3.53) the third integral, namely $K_{11}^{\infty}(s, r)$, may be expressed in terms of the complete elliptic integrals as follows :

$$\int_{0}^{\infty} J_{0}(r\rho) J_{1}(s\rho) \rho \, d\rho = \frac{2}{\pi} \begin{cases} \frac{r}{s} \frac{1}{s^{2} - r^{2}} E\left(\frac{s}{r}\right) + \frac{1}{rs} K\left(\frac{s}{r}\right), & s < r, \\ \frac{1}{s^{2} - r^{2}} E\left(\frac{r}{s}\right), & s > r. \end{cases}$$
(C.2.1)

Rewriting (C.2.1) for s < r, we have

$$\frac{1}{s^2 - r^2} \left(\frac{r}{s} E\left(\frac{s}{r}\right) + \frac{s^2 - r^2}{rs} K\left(\frac{s}{r}\right) \right),\tag{C.2.2}$$

adding the expression,

$$\mp \frac{1}{2} \left(\frac{1}{s-r} + \frac{1}{s+r} \right),\tag{C.2.3}$$

and by using the identity

$$\frac{1}{s^2 - r^2} = \frac{1}{2s} \left(\frac{1}{s - r} + \frac{1}{s + r} \right),$$
(C.2.4)

for s < r, the integral (C.2.1) becomes

$$\frac{1}{2s} \left(\frac{1}{s-r} + \frac{1}{s+r} \right) + \frac{1}{2s} \left(\frac{\frac{r}{s}E\left(\frac{s}{r}\right) + \frac{s^2 - r^2}{rs}K\left(\frac{s}{r}\right) - 1}{s-r} + \frac{\frac{r}{s}E\left(\frac{s}{r}\right) + \frac{s^2 - r^2}{rs}K\left(\frac{s}{r}\right) - 1}{s+r} \right). \quad (C.2.5)$$

Similarly, for s > r we find

$$\frac{1}{2s}\left(\frac{1}{s-r} + \frac{1}{s+r}\right) + \frac{1}{2s}\left(\frac{E\left(\frac{r}{s}\right) - 1}{s-r} + \frac{E\left(\frac{r}{s}\right) - 1}{s+r}\right), s > r,$$
(C.2.6)

or, by defining

•

$$M_{2}(s,r) = \begin{cases} \frac{r}{s}E\left(\frac{s}{r}\right) + \frac{s^{2} - r^{2}}{rs}K\left(\frac{s}{r}\right), & s < r, \\ E\left(\frac{r}{s}\right), & s > r, \end{cases}$$
(C.2.7)

the integral , $K^\infty_{11}(s,r)$, becomes,

$$sK_{11}^{\infty}(s,r) = \frac{1}{\pi} \left(\frac{1}{s-r} + \frac{1}{s+r} + \frac{M_2(s,r) - 1}{s-r} + \frac{M_2(s,r) - 1}{s+r} \right).$$
(C.2.8)

C.3
$$K_{22}^{\infty}(s,r) = \int_{0}^{\infty} J_{1}(r\rho) J_{0}(s\rho) \rho \, d\rho$$

Referring to (3.54), the third integral, namely $K^{\infty}_{22}(s,r)$, may be expressed as

$$\int_{0}^{\infty} J_{1}(r\rho) J_{0}(s\rho) \rho \ d\rho = \frac{2}{\pi} \begin{cases} \frac{s}{r} \frac{1}{(r^{2} - s^{2})} E\left(\frac{r}{s}\right) + \frac{1}{rs} K\left(\frac{r}{s}\right), & s > r, \\ \\ \frac{1}{r^{2} - s^{2}} E\left(\frac{s}{r}\right), & s < r, \end{cases}$$
(C.3.1)

Following the procedure described in (C.2) and defining

.

$$M_{4}(s,r) = \begin{cases} \frac{s^{2}}{r^{2}}E\left(\frac{r}{s}\right) + \frac{r^{2} - s^{2}}{r^{2}}K\left(\frac{r}{s}\right), & s > r, \\ \frac{s}{r}E\left(\frac{s}{r}\right), & s > r, \end{cases}$$
(C.3.2)

it can be shown that

$$sK_{22}^{\infty}(s,r) = \frac{1}{\pi} \left(\frac{1}{s-r} - \frac{1}{s+r} + \frac{M_4(s,r) - 1}{s-r} - \frac{M_4(s,r) - 1}{s+r} \right).$$
(C.3.3)
C.4 $H_{11}(s,r) = \int_0^\infty J_0(r\rho) J_0(s\rho) d\rho$

By adding

$$\pm \pi s \frac{\alpha}{2} \int_0^\infty J_0(r\rho) J_0(s\rho) \, d\rho,\tag{C.4.1}$$

from (3.58), it can be shown that

$$k_{12}(s,r) = \pi s \int_0^\infty \left(D_{12}(\rho)\rho - \frac{\alpha}{2} \right) J_0(r\rho) J_0(s\rho) \, d\rho + \pi s \frac{\alpha}{2} \int_0^\infty J_0(r\rho) J_0(s\rho) \, d\rho,$$
(C.4.2)

where

$$D_{12}(\rho)\rho - \frac{\alpha}{2} = \frac{(\kappa - 9)}{(\kappa + 1)} \left(\frac{\alpha}{2}\right)^3 \frac{1}{\rho^2} + \frac{(\kappa^2 - 26\kappa + 99)}{(\kappa + 1)^2} \left(\frac{\alpha}{2}\right)^5 \frac{1}{\rho^4} + O\left(\frac{1}{\rho^6}\right).$$
(C.4.3)

The second integral in (C.4.2) or $H_{11}(s, r)$, has a closed-form expression given by

$$\int_0^\infty J_0(r\rho) J_0(s\rho) \ d\rho = \frac{2}{\pi} \begin{cases} \frac{1}{r} K\left(\frac{s}{r}\right), & s < r, \\\\ \frac{1}{s} K\left(\frac{r}{s}\right), & s > r. \end{cases}$$
(C.4.4)

Hence, referring to (C.1.6) it is seen that at $r = s \ k_{12}(r,s)$ has a logarithmic singularity .

C.5
$$H_{22}(s,r) = \int_0^\infty J_1(r\rho) J_1(s\rho) \rho \, d\rho$$

Similarly, by adding and subtracting the integral

$$\pm \pi s \frac{\alpha}{2} \int_0^\infty J_1(r\rho) J_1(s\rho) \, d\rho, \qquad (C.5.1)$$

21

the kernel $k_{21}(r, s)$ may be expressed as

91

$$k_{21}(s,r) = \pi s \int_0^\infty \left(D_{21}(\rho)\rho - \frac{\alpha}{2} \right) J_1(r\rho) J_1(s\rho) \, d\rho + \pi s \frac{\alpha}{2} \int_0^\infty J_1(r\rho) J_1(s\rho) \, d\rho,$$
(C.5.2)

where

$$D_{21}(\rho)\rho - \frac{\alpha}{2} = \frac{(\kappa - 9)}{(\kappa + 1)} \left(\frac{\alpha}{2}\right)^3 \frac{1}{\rho^2} + \frac{(\kappa^2 - 26\kappa + 99)}{(\kappa + 1)^2} \left(\frac{\alpha}{2}\right)^5 \frac{1}{\rho^4} + O\left(\frac{1}{\rho^6}\right).$$
(C.5.3)

The second integral in (C.5.2), namely $H_{22}(s, r)$, has a closed-form expression which is given by,

$$\int_{0}^{\infty} J_{1}(r\rho) J_{1}(s\rho) d\rho = \frac{2}{\pi} \begin{cases} \frac{1}{s} \left(K\left(\frac{s}{r}\right) - E\left(\frac{s}{r}\right) \right), & s < r, \\ \\ \frac{1}{r} \left(K\left(\frac{r}{s}\right) - E\left(\frac{r}{s}\right) \right), & s > r. \end{cases}$$
(C.5.4)

Also, referring to (C.1.6) it is seen that at $r = s k_{21}(r, s)$ has a logarithmic singularity.

Vita

Ali Sahin was born in Istanbul, Turkey on the 25th of June, 1968. After graduating from Haydarpasa Technical High School in 1986, he had woked in Northern Telecommunication as a quality control expert. In 1987, he had started his undergraduate study in Department of Engineering Mathematics of Yildiz University, Istanbul, Turkey. After receiving his B.S. degree, he had worked as a teaching assistant in the same University. In 1993, he had worked as a research assistant in Gebze Advanced Institute of Technology. He joined Lehigh University in 1994.

I

END OF TITLE