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Chapter 1: Introduction

The portfolio selection problem is a well-known financial and mathematical problem

where an investor uses quantitative measures of risk and expected return to create a

portfolio. The simplest form of the problem is to construct a collection of securities that

cannot be outperformed by any other collection in the market, under the same conditions.

An investor must first choose a relationship between risk and return, known as a utility

function, before a solution can be found. With that in mind, the real problem is to

strategically select securities based on the utility function into proportions that minimize

risk for a given expected return. The efficient portfolio is the optimal solution and the

efficient frontier is the set of all optimal portfolios for all possible expected returns.

Markowitz [7] pioneered the portfolio selection problem in the early 1950's. He

quantified the need to diversify a portfolio ofrisky assets. Markowitz described risk as

the variance of returns about an expected return (this was later modified to minimizing

variance below expected return, or semivariance). Based on his theory, the covariance of

the returns on the securities selected must be at a minimum in order to increase the

certainty of attaining an expected return. His model for selecting optimal portfolios

consisted ofthe objective minimizing (semi) variance (as a function of covariance) of

returns for any given expected return subject to several constraints. This concept of

mean-variance optimization was a breakthrough in portfolio selection and is widely

recognized even today.

Soon after the seminal work of Markowitz, Sharpe [9] derived an equilibrium model that

described expected return and risk of securities as a function of the expected return and

risk of the market. This Capital Asset Pricing Model (CAPM) has a major influence on
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the behavior of the portfolio selection model and is incorporated into the portfolio

selection model.

Based on the nonlinear objective function that describes an investor's utility, solutions to

the portfolio selection model are determined through quadratic programming. Quadratic

programming problems with a large number of variables can be difficult to solve

efficiently. Sharpe [10] [11] (and Stone [12]) later developed a linear programming

approximation method that efficiently solves the portfolio selection problem for many

variables.

By incorporating the previous methods together, an efficient portfolio can be created for a

single period. Unfortunately, the selected portfolio may not remain efficient as the market

changes over time. Efficient portfolios that dominate the initial model are sure to arise

when the market changes.

For multiperiod investing, an investor must adhere to new objectives, constraints, and

penalties1 to maintain favorable returns over time. Penalties include transaction costs for

buying and selling assets, and taxes on capital gains earned from selling an asset.

Modeling a multiperiod portfolio that considers these penalties is a complex subject

related to the original portfolio selection problem. To the author's knowledge, little effort

has been made on this subject.

The purpose of this paper is to introduce an approach to maximize the returns from a

portfolio in multiple periods that include taxes and transaction costs. Since most models

ignore such penalties, the approach will enhance the practicality of the portfolio selection

model. The concept behind the approach is simple: after an efficient portfolio is presented

1 By penalties, we are referring to the combination of transaction costs from buying and selling shares and
the taxes from capital gains, where applicable.
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in a subsequent period, the objective would be to adjust the securities that benefit more

from the transaction that the actual cost of the transaction. The portfolio would be

allowed to go off course from the efficient set for a short period, and then converge back

to efficiency after a specified time interval. The result will be a less efficient portfolio

that will outperform the efficient portfolio when subject to multiperiod constraints. The

portfolio may be considered inefficient under terms of single period portfolio selection,

but it will be efficient to all other portfolios that consider the effect of transaction

penalties. We find a solution with the use of a mixed integer knapsack program.

This paper is outlined as follows. Next we review the literature relevant to generating a

single period portfolio. In chapter 2, the investment environment is described and

modeled while a delineation of alternative strategies are discussed and compared to a

three period investment horizon. Chapter 3 will detail the solution approach to the

multiperiod model. In chapter 4, models of the alternative. strategies over a 35 period

investment horizon are compared to the stock market. The paper is finally summarized

and further work is discussed in chapters 5 and 6. Chapter 7 contains the appendix.

Literature Review

1.1 Markowitz: Portfolio Selection

Markowitz developed a program that, based on a given risk measure and investor utility

function, would select an efficient portfolio. With N decision variables X; and JV as the

proportions of the total wealth allocated to assets i andj (j =F i), the solution is to

apportion wealth into a pool of assets in a manner that minimizes the variance of returns

for a given expected return. The program is as follows:
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mm.

N N

Vp = LLX;XjO"ij (1)
;=1 j=1

s.t.

N

Ep =LX,p;
;=1

N

Ix = 1
i=l j

(2)

(3)

(4)

The objective is to minimize the variance (1), stated as a function of the covariance, for a

given expected return (2). The expected return of the portfolio is the sum of returns of the

individual assets

(5).

The objective function is subject to the constraints that the wealth of the investment be

exhausted in the portfolio (4) and that all proportions of the investment be nonnegative

(5), disallowing short sales. Based on the objective function, the solution is found with

the use of a quadratic program. The optimal solution offers no lower risk for every given

return and no higher return for a given risk. Other portfolios may be attainable, but the

efficient portfolios created through the program have a dominant relationship between

mean-variance of returns. The returns on the assets are simply the proportions of the

wealth multiplied by the change in price of the asset r; = X;R;, and the return on the

portfolio is the sum of the returns of the assetsrp =I:1 X;R; .

The assumptions behind the theory of the model include:
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• Risk is defined by the variance of the returns of the securities in the portfolio.

• Decisions on portfolio are based on risk and expected return only.

• Risk Aversion: Investors must be averse to risk.

For a given expected return, an investor prefers the least amount of risk. An

investor is expected to want a less risky portfolio. This way, two investors

devoting the same amount of wealth into the same market would have

different portfolios only if their measures of risk were different.

"Variance is an undesirable thing."-Markowitz

• No short sales are allowed.

• Portfolio includes the entire wealth of assets.

• Taxes and transactions costs are omitted.

The portfolio generated from this program has an expected return close to the expected

return for every individual security, at a lower degree of risk. Computing all optimal

portfolio combinations based on all possible expected rates of return generates the

efficient frontier (see figure 1.1.1). Each investor is expected to hold one portfolio on the

efficient frontier based on their utility function.
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Expected
Return

Variance

Figure 1.1.1
The surface of the graph represents the
efficient frontier. The shaded region
represents the set of feasible portfolios.

Before Markowitz's work on portfolio selection, investing in areas such as the stock

market was by no means an exact science. Diversification of assets was the rule at the

time, but the reason for diversification was unknown. Markowitz revealed that in a

portfolio of risky assets, risk is dependent not only on the returns of individual assets but

the covariance of the returns of assets as well. Therefore to minimize risk, one must

minimize the covariance of assets. Diversification thus becomes most effective when the

types of assets are varied and have low correlations of returns.

The reason why diversifying assets is effective is because mathematically increasing a

pool of random variables will theoretically decrease the variance of random variables. By

exploiting the covariance of returns, as opposed to simply diversifying by investing in

multiple securities, the best possible portfolio can be selected. Markowitz stated, "Not

only does the hypothesis imply diversification, it implies the "right kind" of

diversification for the "right reason." The adequacy of diversification is not thought by
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investors to depend solely on the number of securities held. Similarly in trying to make

variance small is not enough to invest in many securities. It is necessary to avoid

investing in securities with high covariances among themselves. We should diversify

across industries because firms in different industries, especially industries with different

economic characteristics, have lower covariances than firms within an industry."[7]

1.2 Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk

Based on Markowitz's portfolio selection model, diversification for the purposes of

minimizing the covariance between returns of assets will minimize the risk incurred on a

portfolio. One would assume through this method that risk could be virtually eliminated

through efficient diversification. In the real world, however, risk cannot be eliminated so

easily because of other factors that influence the returns of a security. Sharpe developed a

model in 1964 to better describe this behavior of a security with respect to the market.

His method reinforces Marowitz's model in terms of the relationship between risk and

expected return, but posits that the returns on the market (not just the assets alone) has a

role in the performance of a portfolio. Sharpe's theory was that the total risk (and thus,

return) of an asset does not determine the price, and the remaining risk of an asset, known

as the systematic risk, cannot be completely diversified away. He proposed that the risk

on each asset in the market (or a portfolio) could be related to the return of a common

index. The valuation model developed by Sharpe describing the relationship between the

market and securities is known as the Capital Asset Pricing Model.

The assumptions of this model include:

• Partial shares are allowed in the investment.

• Transactions are instantaneous and all orders are fulfilled.
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• The riskless rate is the same for all investors.

Other Assumptions Similar to the Markowitz Model:

• No arbitrage or short sales: arbitrage is the near simultaneous purchase and sale of

a security for the purpose ofmaking a profit from the asset in another market. A

short sale is the sale of a security sale that was borrowed and paid for after the

price has fallen. If short sales and arbitrage were accepted, most optimization

programs would exploit these opportunities with little regard for the main agenda

of the portfolio.

• Risk Aversion.

• Mean Variance decisions.

• No taxes or transaction costs.

Sharpe proposes that by separating returns of assets into two basic components, a

portfolio can be created with a superior risk and expected return profile than that of

Markowitz's original efficient frontier. The components of the returns are either

independent of the market, or based on the market.

Assets that are considered free of risk make up the independent component (and by

definition can be diversified away). The changes in the risk free asset's returns are

uncorrelated with the changes in the general market.

The theory behind the Capital Asset Pricing Model (CAPM) is that investors are

rewarded by the market for taking on risk. The level of risk taken on by the investor is

dependent on how sensitive their investment is to changes in the market (system). This

systematic risk is quantified by the parameter beta, ~. The total returns on an asset, R j , as

a function of the riskless asset and beta are:
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(1)

where ai is the riskless (non-market) asset, Rm is the return on the market and Gi is the

non-market residual return. pis determined by linearly regressing the returns of a security

or portfolio verses the returns on the market for a period of observations (t = 1...N). The

slope of the regression line is the value ofbeta (see figure 1.2.1).

Return on
Asset i (Ri)

ai ~;...;.;..;..;.,-=---=.;.;......o..=-,-,-,-........;,;.-..:...----,----,-~.;.;......o.._-":,,,----,-__---,

Return on Combination 9 (Rg)

Figure 1.2.1
Beta is found through linear regression.
Alpha is equal to the regression line as
it intercepts the y-axis.

The equation for beta,

(2)

is the covariance of returns between the market and the security divided by the variance

of returns on the market. a is a constant (variance =0) found by setting the trend

component of the regression line equal to zero. E is the set of residual values, with a mean

equal to zero, that keep a constant.

CAPM is an equilibrium model that describes the pricing of assets, as well as derivatives.

The expected return of an asset (or derivative) equals the riskless return plus a measure of
9



the assets non-diversifiable risk, beta, times the market-wide risk premium (excess

expected return of the market portfolio over the riskless return).

(3)

where Rm is the average return on the market.

The variance of a security based on CAPM is equal to

(4)

where 0-; is the variance of the market return, and 0-; is the variance of the non-market,

residual return.

Using Sharpe's Capital Asset Pricing Model to describe returns and their derivatives will

improve the risk function ofMarkowitz's Portfolio Selection problem. The optimization

method, however, is still difficult to solve for large variables when the risk measure

(objective ofthe program) is a quadratic function such as (semi)variance.

1.3 Sharpe: A Linear Programming Approximation for the General Portfolio

Analysis Problem

In this paper, Sharpe reformulates Markowitz's quadratic program as a linear program

using an approximation of the quadratic objective function. The general portfolio

selection problem is solved with the use of a quadratic program (QP) since the objective,

minimum variance, is a squared function defined by the covariance of returns. As the

number of decision variables (n) increases, the number of values (equations) in the

covariance matrix increases quadratically (n(n-I)/2). As of today, few computational

packages exist that can derive an efficient solution for a QP with a large number of

10



decision variables (n> 20). By expressing the variance as a piecewise linear function2

approximate solutions can be found for large numbers of decision variables. As a result

of this linear approximation, the number of equations needed to solve the program is

reduced significantly and the solution is guaranteed for convex functions.

Example 1.3.1

Markowitz's Portfolio Selection problem will be approximated as an example to further

explain this process. The objective is, of course, to minimize variance. Portfolio variance

Vp =I:I2:;=1 XiX j (J"ij is defined by the product sum of each pair of asset proportions

multiplied by the covariance of their returns. Before this nonlinear function can be

approximated, it must be expressed as a separable set of variables.

To separate, the function must first be restated as a sum of one squared term (and not the

product of two), according to Sharpe [10] and Hillier and Lieberman [4].

Start by defining a new set ofvariables, Yi , such that

I N ,
}'; = (j .. X·

I j=i lJ J
(1)

where (j~ is the transformed set of entries along and above the main diagonal ofthe

original covariance matrix (Sharpe provides an algorithm for transforming the covariance

matrix, the algorithm is presented in the appendix 7.1). Yi is a linear function of the

original variables and the variance of this function can be expressed as a sum of squared

I N 2terms V = D.}';
P i=1 I I

and

(2)

2 Piecewise linear function- a continuous function with linear segments so that its graph comprises of a
polygon.
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(3)

where

(4)

Di is the inverse of each asset's covariance unto itself (or inverse of the each asset's

variance). Vi is asset i's contribution to the portfolio's variance (one stock in a portfolio).

The relationship between Vi and Yj is shown below

o
Figure 1.3.1

True variance as a function of
single variable Yi

Now that variance is expressed as a separable (quadratic) function of some set of decision

variables, this function can now be separated and approximated. Start by choosing a

number ofbreakpoints for the piecewise linear function. These breakpoints determine the

ranges of linear segments and where the slope of the segments change. Let mj be the

number ofbreakpoints for the approximating function. Let bj"bj, +bj2 ,... ,L;~bji be the

values of Yi where the breakpoints occur. The slopes at the breakpoints are found by

taking the change in Vi (~Vi) over the distance (bjl+I - bji, l<m). Yi then decomposes into

auxiliary variables (Yi/) that use the breakpoints as bounds. The auxiliary variables can be

defined as
12



0,

I k- 1
Y - bOI'

I 1=1 J

"k "k-l
L..JI=1 bjl - L..JI=1 bjl

(5)

The segments that separate Yi into parts (Yi/) are restricted to the range of the segments

and sum back to Yi • Di is also broken into parts (Di/) that represent the slope of the line

segments for respective values of Yi/.

Figure 1.3.2
Piecewise linear approximation of variance

As a result, the piecewise linear function approximating variance V; =DjY/ , is now a

sum of the linear terms

(6).

The auxiliary variables substitute for the squared term and the linear sum approximates

the original variance of each asset.

Once the approximation is completed, the objective function for the portfolio of N assets

is now to minimize the sum of linear approximations

13
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The number ofbreakpoints determines the approximation error and number of equations

in the objective function. The two measures of error that are considered are the maximum

possible error and the expected error. Expected error of each piece, or average area

between the approximation segment and the original function, is found by integrating the

difference between the two functions between each bj/+l- bjt, l<m. The maximum

possible error for each approximation segment is the greatest available deviation from the

original function. Figure [] gives a visual depiction of the two forms of error.

I
I
I
I
Il'b I1 I

"j+b 2'A '
Figure 1.3.3

Two types of approximation error

There are several ways of minimizing approximation error. Setting the approximation

segments to equal lengths, or making the breakpoints over Yi equal, can initially minimize

expected error. A greater number ofbreakpoints will decrease the maximum

approximation error. The tradeoff between minimizing approximation error is that the

number of equations increases as the number ofbreakpoints increases, thus increasing the

complexity of the model. The creator of the model must determine a limiting error value

14



that is satisfactory for the model; and thus the number of line segments used to

approximate the original function is inversely proportional to this limiting error.

Sharpe then applied this approximation method to his single index model. This model

will be described in detail later.

In Markowitz's model, the risk function, accepted as variance, is expressed as a nonlinear

function ofmultiple decision variablesVp =I:II;=IXiXjO"ij . The same risk function,

using CAPM variance, is expressed as:

N N

V =" X~ R~0"2 + " X~0"2P L..J I f/, m L..J L Cj

i=1 i=l
(8),

where a2
m is the variance of the market return and 0";. is the variance of the non-market,

residual return Gj.

15



Chapter 2: Multiperiod Environment

The portfolio selection methods described thus far will create an efficient single period

portfolio. The efficiency obtained from using these methods, however, will not last

forever. In one month, one week, or even less, the market can change enough to render

the selected portfolio inefficient. Rebalancing the portfolio periodically is necessary for

maintaining efficiency. Unfortunately, in a real world investment, adjustments made to a

portfolio are accompanied by mandatory penaltJ: charges that reduce returns and

complicate the time dependent model. Additional strategies that are independent of the

utility function are necessary to properly maintain a portfolio in a multiperiod

environment. In the following sections of this chapter we discuss several possible

strategies for approaching the multiperiod investment, describe any inefficiencies that

these strategies may face, and provide examples for each strategy.

2.1 Delineation of Strategy Alternatives for Multiperiod Investment

We present several strategies that an investor could follow to maintain a portfolio over an

investment horizon:

1. Continue to use the initial optimal portfolio and track its returns.

The advantage with holding the initial portfolio proportions throughout the

investment is that there are no penalty costs, as no transactions take place. The

problem with this method is that the static portfolio may no longer be efficient

over time and eventually lose its edge when the market changes.

2. Rebalance the portfolio periodically.

After a specified period, a new portfolio model is generated and the proper

adjustments are implemented into the old model. This method will ensure that the

16



portfolio is efficient throughout the investment horizon. Two major problems

arise when executing this method.

1. A new model may suggest too many costly changes be made to maintain

efficiency. The cost of the transactions could offset the benefits from

making the changes to the portfolio.

2. Changes may be recommended too soon: A model may recommend

changes in consecutive periods that, in a sense, contradict the previous

period's recommendation. Had the model been left alone, the same

outcome would have resulted, but in the absence of costly transactions.

3. Combination of the first two strategies on an asset-by-asset basis in order to

maximize returns and minimize penalties with the expectation of becoming

efficient at a later time.

This method combines each of the previous alternatives. If the investor has the

option of choosing which stocks to adjust and which stocks to hold, unnecessary

penalties can be avoided and decisions can be aggregated. This method can be

incorporated through programming techniques and heuristics.

We show examples of these alternative strategies by creating stock portfolios from a pool

of 27 of the 30 most popular stocks available on the market. The results of each

alternative are compared to one another and compared to the S & P 500. The example

investment horizon ran from March 1 to May 31, 2000. We used the portfolio selection

methods from chapter 1 to create the portfolios with return characteristics based on

CAPM. Beta, alpha, and the non-market residual were created for each stock by

regressing the previous month's prices to the prices of the market (see appendix 7.2 for a
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sample of regression and other statistical values). The utility function minimized variance

with an expected return of 2%. The upper bound on the proportion of allocation to each

stock was 10%. The model was approximated using Sharpe's piecewise linear

approximation method, with the number of linear segments set to four. The description of

the formulation of the approximation method is available in appendix 7.3. Strategy 3

requires additional formulation that will be described later. Microsoft Excel's solver add­

in was the software used to find our solutions.

Example 2.1

Strategy 1: Holding Portfolio for the Duration of the Investment

Table 2.1.1 lists the results of the model with respect to the first strategy. Table 2.1.2 lists

the returns on the respective stocks over the investment ho~zon. The monthly returns for

the portfolio were -3.91%, -1.36% and -3.18% for March, April, and May, respectively.

This portfolio lost 8.2% over the three-month horizon. The S & P 500 gained 1.43% over

the same horizon, with returns of 8.7%, -3.6% and'-3.2% over the respective periods.

The problem with the investment was that it began to lose interest toward the end of the

horizon. We suspect the decrease in interest to be a result of changes to the efficient

market portfolio that were not incorporated into the portfolio.
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Table 2.1.1
Portfolio of stocks created for
a three-month investment
based on strategy 1

Example 2.2

Table 2.1.2
Stock returns over three­
month investment horizon.

Strategy 2: Adjusting Portfolio to the Efficient Set Every Period

Table 2.2.1 lists the stock proportions if the model followed the second strategy. The

portfolio selection model was run three times over the investment horizon and adjusted to

the efficient set at the end of each period. The stock proportions per period of this

multiperiod portfolio are listed below.
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Month /Mar 00 ~Dr 00 l1av 00

\Val~l\1al1·'· ~:-=,:iO•.::..:02~5-E----t:-".1'----l
PM"·,...,· :0.025
j\iicrris~ft .:""°=.°=25--+'------1"-------1

Merck '0.05 .1
McDonaids .70.705:---E-:-.1---E-".1:----l

~&J '. 0.D25 .1
Paper . .:'::':'0.';':02'.::-5-E--:-.1---E'-''---l

~Iltel\: :..;..;0...:.;;05_+-_+-_-1

~~t~~:·: :::,.::.:.~:.::..:~~:=-5-E-:":"::---E--,.1--l

~be~:Colll ..... :..;..;0...:.;;02:..:...5-F:..:...1_--I'-'-'.I=----I
~~terpillar 'ii'" .,.. . .1..::,:0..:::,:05=----E-_--E--,_-l
Proctor8iGaiiible~ :° .1
SB!: .,. <> ..•....••70.':":02'-:-5---E----t:-:-=--l

Iiontel)ep~t:..:•..::.;0..;.:05'-=--E-_--E'-'.1'----l
Unite~TechriologiesJ._='0..::..:02~5-E--:-----t:---l
l!oelng . 0.025.1
3M .:'..;.;0.=05:..:....--+'-'-'-.1--+---1

A)'&T . :...;.;0...:.;;02:..:...5-F---+'-----I
GE ·.::.:.0..::.:.05=----E-_-E-_-l
GM' ,0.05
Eix~nM ..:·-='0.'::":02=-=-5-E..,..I---E-:.1:----l

~Mii~ga:.n, .. '. ':".::.;0..::.:.05=----E-_-E-_-l
~ll1erlcal1X .', ...," ·.:_='0..::.:.05:---E---E----l
Am~rlca~~' ".'..' =0...:.;;05=---+-_-+=-_-1
p,.ipo~t:· '.' ..·.::.;0..::.:.02=.::,5--E.:..:..1_-E-:---l
'BM "0.025.1 .1

Table 2.2.1
Multiperiod portfolio based on
strategy 2.

Theoretically, this portfolio would have lost 1.77% (with returns of-4.61%,2.83%, and

.14% for March, April and May, respectively) based on the returns from table 2.1.2. As

promising as this strategy may seem, the penalty costs associated with altering the

portfolio were left out. We describe the penalty costs in full before they are incorporated

Transaction Costs

Transaction costs are the costs ofbuying and selling shares of stock. It is attributed

mostly to a combination of the commissions and fees that a brokerage firm charges for

executing a trade of shares. The fixed cost can be either a dollar value, such as $20 a

trade, or a percentage of the total transaction. Since the model used in this paper is not
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based on dollar figures (it is based on the interest accrued on the investment), there will

be charge of 1% per transaction.

Capital Gains Tax

The difference between the price of an asset when purchased and sale price when

terminated is the capital gain of the asset. U.S. law currently states that capital gains on

assets held for less than one year are taxed at a rate of39.6%, while capital gains on

assets held for more than one year are taxed at a rate of20%. These taxes are payable

when shares are partially or entirely sold and if the gains are favorable to the investor

(there is a common strategy that investors practice to save on capital gains taxes in

appendix 7.4). If an asset fails to make a gain, no capital gains taxes are due from the

asset.

If the results of the model from the second strategy were implemented in an investment

without regard for the penalties, the charges on transactions and capital gains would

consume the interest (if any) and possibly the investment.

Table 2.2.2 tallies the total number of transactions that would take place ifwe invested

using the second strategy.

21



Stock
Transaction at

period end
MarOO AprOO

!Will-Marl ., 2 I
Pl\f',.:» ")----'2,--+--....:..0-1
IMlc~osoft: '. . I 2
Merck:.) 0 I
Mcpon~i4s' I 0
~~J. . I 2
~llll~r. .... 1--0~+--..::.2-1
~riter '. '. I 0

~~daK; 2 I
lDi.s,ney,.<' .. 1--7-'1-+----=1---1
K:oC~~~OIIi I 2
k;aterpiil#'. ' 0 I
iI'roCtor&Gllmbl~ 0 2
siJG:.-' ." ••.•••.......... 1--0'--+--....:.0--;
Home:o~pot'•...... '.:' .1--:::-2-+----=1---1
Unlt~d,Technologles; 1---,-1-+-----,,-2-1
Bpelng,', . 0 0

31\1 0 I
AI&T ,'1--0:--+---=0---1

GE,:' 0 2
hl' '.-liM •... 0 I
ExxonM. 0 2
J.PlVl,?rgall. 0 0
AmericallX 0 0
AnlericanA 2 I
DUPlIWF 2 0
BM'; .... .. 0 2

Total Transactions 19 27

Table 2.2.2
Transactions associated with trading each
stock in strategy 2. Buying stocks require a
transaction cost, and selling stocks require
both a transaction cost and a tax on capital
gains, where applicable.

The investment consisted of 16 buys and 15 sales, including 6 instances (out of a possible

15) where a gain in capital was made. If a transaction cost of 1% of the value of the

transaction were applied in addition to taxes on capital gains, the portfolio would have

actually lost 3.19% (with returns of-6.29, 1.13, .014 for March, April, and May,

respectively). In only three months, the penalty charges as a result of strategy 2

accumulated to 1.42% of the wealth of the investment and significantly reduced the value

of the portfolio. A portfolio containing more securities over a longer investment horizon

could potentially suffer a worse fate if it followed portfolio strategy 2.

22



Example 2.3

Strategy 3: Combination of Previous Strategies

Strategy 3 uses the best attributes from the previous two strategies by making the

adjustment available (Ex. 2.2), while leaving the option to hold (Ex. 2.1). During the

second period of the 3-period investment, the investor's strategy is to logically decide

which stocks to alter and which to hold in order to maximize returns. This strategy is best

described and modeled as an acyclic staged network.

Multiperiod Network

Figure 2.3.1 below depicts a network of all possible decisions for one stock (Wal-Mart)

over several periods (Jan 2000 through June 2000) in a portfolio, had the model run

repeatedly as in alternative 2. The nodes represent proportions ofwealth allocated to the

stock and are connected by arcs that represent the decisions that must be made to attain

the proportions at the period's end (normally, arcs pointing up, d<;>wn, or hori:~ontal

indicate buy, sell, or hold, respectively). Basically, a new model is created at the period's

end (t +1) and is compared to proportions of the previous period (t). Each period after the

creation of the original portfolio (l < t < m, m =the investment horizon), the investor has

the option of either adjusting the stock to the proportion of the next period's efficient set,

or holding the stock at the present proportion. There will be a penalty cost associated with

each arc that is not horizontal. sp represents the set of stock i's proportions in each path

from period 1 to m. Path Pt represent the set of choices made from period 1 to period m

for each stock. Let the path *Pt be the path that represents only efficiently derived

proportions of the stock each period. Also let *sp be the set ofproportions that belong to

path *Pt. Path *Pt is represented by dashed lines in the figure.
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Period 1 m

all carry less penalty and possibly higher returns.

Figure 2.3.1
Network of security proportions over g periods. The
Network represents one security in a portfolio. Arcs
directed up, down, or straight represent buys, sells and
holds, respectively. The efficient set of proportions is
represented by the path of dashed lines.

Based on the network in figure 2.3.1, there exist 5 paths that contain less efficient sets of

choices but also contain the efficient proportion at end period m5
• More importantly, the 5

paths accumulated less penalty charges while they "traveled" the path. These less than

efficient paths will outperform *Pt unless the efficient path produces.returns greater than

the margin of its excess penalty charges. The significance of these less efficient paths is

that we can use these paths to gain higher returns.

We also assign a period g (1 < g < m) to the network. At period g all proportions

converge back to the efficient set. The purpose of the convergence period is to give the

network a destination. With a destination, a state space can be determined, and the

network can be traversed computationally. Since the interval that the investment

5 *SIP = (0,0,.025,0,0.1,.025) is the efficient set

(0,0,0,0,0,0.025)

(0,0,0,0,0.1,.025)

Spl = (0,0,0.025,0,0.1,0.025)

(0,0,0.025,0.025,0.1,0.025)

(0,0,0.025,0.025,0.025,0.025)
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converges to efficiency every g periods, and the investment horizon is m periods, there

will exist T = r~1periods of convergence. The state space is all possible paths that can

reach the efficient proportion from origin to the period of convergence, as shown in

Destination
Node
~

g

State Space

\.

Origin 0

figure 2.3.2.
r---........,-'T""""T-T'""'T"-r--------,---,--------,

Period

Figure 2.3.2
State Space created by destinations made
from groups ofg periods in investment
horizon m

Decisions will be made in period t (1 < t < g, gem, m = the investment horizon).

Choosing the Best Combination

There are several ways to exploit this strategy now that we know the portfolio is

represented by a staged network. The three techniques that we will look at are methods

used to optimally traverse a network. The first example is a routing heuristic developed

by Clark and Wright [2]. The second method (the method used in the paper) is a mixed

integer knapsack program [1][8].
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Clark-Wright Savings Heuristic

The Clark-Wright savings heuristic for vehicle routing (see appendix) works by

combining the routes that a fleet ofvehicles were scheduled to travel in an effort to

reduce total travel. From an origin (sO) a setof destinations (1, ... ,i, j) must be visited.

The lengths are known from the origin to each destination (dsO-si, .•. , dsO-si, dso-sj) and

between each destination (dsi-sj)' Combining a pair of destinations in a route will save a

total distance of the difference of returning to the origin from both destinations (dsO-si , dso-

s2) and the distance from one destination to the other (dsi-s2) (see figure 2.3.2). The

savings from all pairs of destinations are then computed, ranked, and selected such that

the total tour length is minimized.

Figure 2.3.3
Clark-Wright Savings Heuristic.
Path (sO, sl, s2, sO) will save
dSO-s2 + dsO-si - ds1-s2 in total travel versus
traveling to s1 and s2 separately

This theory can be applied, in part, to the multiperiod portfolio optimization problem. By

adopting this strategy of ranking and savings in our multiperiod portfolio, we can choose

proportions based on the least penalties. In our model, the arcs represent the cost to

"travel" from one proportion to another. We can consider a path to be the set of decisions

made from an initial proportion to a destination proportion at some period in the future.
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Decision

Hold2 4
Hold 3 6

Savings

2 Transactions + Possible Capital Gain
3 Transactions + 2 Possible Capital Gains

Figure 2.3.4
Model of *Pts. Aggregating
decisions for the future will save on
penalty charges

Since the costs of the penalties can be determined before the transactions, and thus the

savings from avoiding penalizing decisions, we can choose proportions based on the most

savings. If the investors could see several periods ahead, they would want to reach that

proportion as early as possible and hold throughout to save the most money from

penalties throughout the interval. Even if the investors could see as little as two periods.

ahead, they would still choose that period's efficient set immediately. Next period's

decision can be made at the present period in order to save on transaction costs or

possible taxes on capital gains. Also, aggregating multiple transactions in a single period

instead of making transactions in multiple periods will save additional transaction costs.

We can see that minimizing penalties is no different than holding stocks at the previous

period's proportions, as in example 2.2.1.

The returns on the investment, however, are just as dependent on the interest rate as they

are on the savings from penalties. Therefore a savings heuristic alone may not be

sufficient to maximize the returns. Also, in the environment where the savings heuristic is
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most effective, all the destinations are known. In the investment, the final destination is

not known from the origin and thus no savings can be calculated.

Mixed Integer Knapsack

Ifwe assign 0-1 logical decision variables to each node, with the objective of maximizing

the returns (penalties included) on the investment, the network can be solved using a

mixed integer program. The decisions can be made for pairs ofperiods, or the set of

periods that end at the convergent period (although solving for more than two periods at a

time will be more complicated). We want as much of the wealth as possible to be

allocated into the investment (LXi - f: = 1), making the problem a knapsack.

Solving Example 2.3 with MIP

We maximize returns of the three-period example, using the approach of alternative

strategy 3 (combination of adjustments and holds). To correspond with parameter g, the

third period must converge to the efficient set.

The problem is formulated using a mixed integer program and solved with excel solver.

Table 2.3.1 lists a subset of the results.

A B C D E F
Returns less

Returns Efficient Set Decisions Proportions PenallY

Mar-OO Apr-OO May-OO Mar-OO APr-OO May-OO Mar-OO Apr-OO May-OO Mar-OO APr-OO May-OO Mar-OO Apr-OO May-OO

0.1530 I Mar-OO I,,;> ~: 0.025 I 0 0 0.025 0.0038

1-0.0941 Apr-OO
.........

0 1 0 0 0

1.0.005 May-OO
...... .:/.i

0.1 I 0.1 -0.001

0.01511 Mar-OO "i~M\ 0.025 I 1 0 0.025 0.0003

1.0.041 I Apr-OO 1-'· ".
0 0 0 0,025 -0.0012

l:-o.TOS- May-OO 0 1 0 0.0027

0.1700 I Mar-OO
'.,.'\,'

0.025 1 0 0 0.025 0.0042

1-0.23241 Apr-OO Ii 0 1 0 0 -0.0019

1-0.148
I.····. :.c. 0 1 0May-OO .... 0

Table 2.3.1
Three-period investment solved using binary
decisions on stocks to invest based on
transaction costs and taxes on capital gains
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Section C of table 2.3.1 represents the proportions of each period's efficient set through

the course of the investment. The 0-1 decision variables were made in section D of the

table. The decisions for the first and last periods are a mere formality since the efficient

set and recommended adjustment must be chosen in those periods respectively. During

the second period, a decision is made on whether to continue with the previous

proportion or make the recommended adjustment for April. The adjustments are based on

the stock returns for March and are penalized transaction costs and taxes on capital gains.

If the decision is made to hold the previous proportion in April, 1 will be placed in the

March row of the April column (meaning that March's proportion was chosen for April).

If the decision is made to adjust to the April proportion, I will be placed in the April row

of the column. Each column in section D sums to 27 since I decision must be made on

every stock in the portfolio. Section E represents the proportions based on the decisions

made in each period. Each column in section E must sum to one.

The formulation of this problem is reserved to the next chapter.

This portfolio had returns of -3.91%,3.47% and .032% for March, April and May,

respectively. The portfolio lost .8% over the 3 period investment horizon, outperforming

the other strategies. The full results from this example are displayed in appendix 7.6.
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Chapter 3: Solving a Thirty-Five Period Stock Portfolio

Three portfolios were created from the same pool ofpossible stocks from the previous

examples. The portfolios followed the three strategies discussed earlier and are compared

to the S & P 500. The same utility function (minimum variance at expected return of2%)

is used throughout the investment horizon3
• The efficient frontier is updated monthly for

just under 3 years using the data from the closing prices of the stocks and the market

from January 3, 2000, to November 15,2002. For strategy 3, the network will converge

to the efficient set every 6 periods (g = 6, T = 6). The staged network is created for each

stock using the previous algorithm.

The formulations for the first two strategies are in the appendix (7.3). The formulation for

the mixed integer program follows:

Variables

Xit -Proportion of wealth invested in stock i in period t

fit -Decision to invest in stock i in period t

Parameters

Rit -Return on stock i in period t

Cit,t+i -Transaction cost for buying or selling shares = 0.01 *IX;t+1 - Xit I

Git,t+i -Capital Gains Tax = max{0,,396Rit }* max}O, Xii - Xii }
C buy seU

Maximize

I N It+1 ~( ) ~ )}R. Y. X. - Y. C. +G.;=1 I II II II It It,t+1 IIbuy ,lsell
(1)

3 Nonnally, an investor's utility function will change over the course of the investment. This would not
increase the complexity of the network or model since the objective can be easily adjusted to fit the
investor's utility each period
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Subject to

"N "",1+1 X. = 1
LJi=l~1 II

I:+I Yil Xii =1 for every i in N

"N "",1+1 Y X. = 27
LJi=1 ~I II II

x Y~ °
Y:·I E {O,l}

(2)

(3)

(4)

(5)

(6)

Because of constraint (2), the problem is a mixed-integer knapsack. Realistically, we

allow the wealth proportions to sum to 1 - E, where E is a nonnegative value that makes a

solution easier to find (equality constraints are not recommended for knapsack problems).

E would be allocated to a risk free investment such as a treasury bond. The results from

the portfolios are listed in the next chapter.
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Chapter 4: Computational Results

Each solution for the mixed integer knapsack problem from strategy 3 took

approximately one minute to solve. Excel solver uses branch and bound to solve MIP

problems and is most successful when solving for a small variables (around 20). The 0-1

knapsack is NP-complete, but can be solved in pseudo-polynomial time with dynamic

programming. Solutions for strategies 1 and 2 were linear and found quickly. No

multiperiod decisions were made for strategy 1 and strategy 2 was simply the

incorporation of transaction costs and capital gains taxes.

An unforeseen advantage of the piecewise linear approximation was the simplicity of the

range of transactions. Since there were few proportions available (0,0.025,0.05,0.075,

0.1), few adjustments could be made.

All portfolios, including the market lost wealth over the course of the investment.

Strategy 1 lost less than the other portfolios, but Strategy 3 had the smallest variance of

returns. The strategy to hold throughout the investment had the best results, but the

strategy involving the MIP also performed strong. The final results are listed in table 4.1.

Combination Efficient Holding
Portfolio Portfolio Portfolio lMarket

Final Wealth 0.705133159 0.5339466 0.81709347 0.61827613
Mean -0.009262404 -0.0173005 -0.0043969 -0.0116813
Variance 0.001955345 0.00199875 0.0030979 0.00231155

Table 4.1
Final Results ofMultiperiod Portfolios using 3 Alternative
Strategies. Portfolio returns compared to the S & P 500

Figures 4.1 tracks the returns of the portfolios versus the market over the investment.

Figure 4.2 tracks the proportional wealth of the portfolios versus the market.
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Figure 4.1
Monthly Returns over the Investment
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Figure 4.2
Portfolio Growth over

By the end of the first year of the investment, the strategy using the MIP outperformed all

other strategies significantly. The wealth of the portfolio using the combination strategy

(strategy 3) was greater than the theoretically efficient portfolio (strategy 2) and the

holding portfolio (strategy 1) by 32.61% and 8.95%, respectively.
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By the end of the second year, both strategies 1 and 3 significantly outperformed the

market, while the static efficient portfolio continued to plummet in value. With a total

loss of8.91 %, the portfolio following strategy lout performed strategy 3 by 4.28%. Both

strategy 1 and 3 were some 20% above the market at the time.

The final values from the four portfolios revealed that the MIP strategy outperformed

both the market portfolio and the constant rebalancing efficient portfolio. One particular

result, the overall performance of the holding portfolio, was unexpected. The returns on

the initial period of the holding portfolio example were non-complementary at the time

and gave the best possible portfolio without satisfying every constraint. Nonetheless, the

portfolio following strategy 1 reached the investment horizon with a value 20.79%

greater than strategy 3 and 32.15% greater than the market. The efficient portfolio

performed worse than both the market and the other strategies throughout the investment.

The results from the program reveal that in order to maximize the return, transactions

should be reserved for significant changes in the portfolio. Negligible changes in the

model (such as buying and selling a small amount of shares) from period to period are not

necessary; these changes are actually detrimental to the investment. It is not necessary to

achieve the theoretically efficient portfolio every period. When maintaining efficiency,

the penalty costs that are incurred consumed the interest of the portfolio.

Corrections to the Model

There were several issues that affected the integrity of the model. The first issue was with

capital gains. Capital gains were not accurately calculated in the model. The taxes were

subtracted from gains made in consecutive periods and not from the gains made from

when the stocks were purchased. Also, taxes on capital gains are only assessed if gains
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were recorded for the year, not from consecutive periods. According to our model,

situations can exist where stocks that lose money over the course of a year incur a tax

simply because it sold after a gaining period.

The first mistake was a result of incorrectly implementing the formulation of capital

gains taxes into the model. The formulation for capital gains tax is correct:

Git•t+] = max{O,.396Ri/ }*max}O,Xi/ - XiI ~,(3.1)
C buy sell J

but the formulation was not accurately applied to the model. Correcting the first mistake

is simply a matter of calculating the appropriate gains made from the period when the

stocks were purchase to the period the stocks are recommended for sale. This does

require more nodes in the acyclic network, but should be manageable.

The second mistake would be difficult to correct. Since decisions are made over

consecutive periods, an investor would not know if a stock will make a gain by the end of

the year. A conservative approach would be to leave the model as it were and refund

taxes ifno gains were made. This decision could also change throughout the year since,

as more information on the stock's performance would be available.

Another issue was with the convergent period g. This parameter was introduced to the

model so that a solution could be found with a dynamic program, which requires a finite

horizon. The parameter was also added so the model would return to an efficient state (at

least) periodically. If the convergent period were not added to the model, the portfolio

using strategy 3 would have performed slightly better.

The main problem with our initial model was in our constraint matrix. The initial

constraint to sum proportions ofwealth to one (Eq. 4.2) was invalid. The total wealth

would be less than one if any penalty costs took place in the investment. It would have
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been wiser to incorporate the effect of transaction costs and taxes paid to both the wealth

of the investment and the objective function, and not the objective function alone.

Most every facet of a multiperiod investment is influenced by transaction costs. If an

investor expects to make the same returns from a portfolio that lost wealth paying

transaction costs than before, (s)he must accept a higher amount of risk to do so. The

investor's wealth becomes dependent on the transaction costs pulled from the investment.

Unfortunately, this methodology was not incorporated in the model.
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Chapter 5: Conclusion

This paper assessed several strategies to maximize the returns of a portfolio subject to

capital gains taxes and transactions, over an investment horizon. An investor initially

provides an investment objective that describes a measure of risk for an expected return.

A model is developed that chooses securities whose performance follows the investor's

utility function. Markowitz and Sharpe's methods are chosen for the single period

investment. Over time, changes in the market will undoubtedly ~call for adjustments to a

portfolio in order to maintain efficiency. The adjustments come in the form ofbuying and

selling proportions of the portfolio. Any change in a portfolio is accompanied by

mandatory penalty charges. The penalties are substantial enough that actual returns under

perform theoretical returns as portions of the investment can be consumed altogether.

The investor needs a strategy for the length of the investment, but not for the state of the

portfolio for every moment of the investment. Some stocks may be more volatile,

providing incentive to adjust frequently, while other stocks may perform better if left

alone. Therefore, adjusting portions of the portfolio appears to be more beneficial than

adjusting the entire portfolio constantly.

We presented a method to increase the practicality and realism of a portfolio selection

model. The multiperiod objective is to create paths for each security that combine to

create a portfolio with the highest after tax returns. Through this method, we find less

efficient portfolios that make better returns that the theoretically efficient portfolio.

The market is uncertain and the future can never be predicted with absolute certainty. We

use advanced techniques with present data to make decisions on the future with

promising results.
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Chapter 6: Future Research

There are many implementations in portfolio selection that were left out of this model.

Hopefully, in the future, these topics can be integrated into a more realistic model.

The inclusion of actual dollar figures would have been an important amendment to make

the model more realistic. A wide array of applications can be implemented into the model

such as stock shares and cash transaction costs if actual dollar values were involved.

The model could have also been developed using better software than Microsoft Excel.

Checking our model's results to varying parameters such as expected return, convergence

interval g, or transaction costs, with the use ofbetter software, would provide insightful

information on the performance of our multiperiod models. The expected return would

have been a most useful parameter to vary in order to observe the efficient frontiers of the

stocks over the investment horizon.

The risk measure that was used in the model is outdated. The two reasons why variance

was the accepted risk measure in this paper was (1) out of respect for Markowitz and

Sharpe, and (2) variance is easy to approximate. The use of a better risk measure

(semivariance, mean absolute deviation [5]) in the future is expected.

There are also advanced utility criterion such as mean-variance-skeweness that can be

employed to minimize the uncertainty of returns, developed by Stone [12].

Mansini and Speranza [6] present heuristic methods in portfolio that include the creation

of integer shares of stocks, making the portfolio much more realistic.

Borrowing, lending and adding money to the investment are other useful transactions that

take place in a portfolio, but were left out of our model.
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Chapter 7: Appendix

7.1 Algorithm for Transforming Covariance Matrix

FORP= 1 TON

LET D(P) = l/C(P,P)

FORI=P+ 1 TON

FORJ=ITON

LET C(I,J) = (C(P,P)*C(I,J) - C(P,I)*C(P,J))/C(P,P)

J=J+1

1=1+1

P=P+1

The algorithm creates 2 outputs

1 Diagonalized two variable covariance matrix

2 New set of nonnegative values D;
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7.2 Sample Beta, Alpha Table

~arket WAL-MART !R(i) = Alpha + Beta*Rm + residual

S&P Price Stock alculated Market Market ~esidual Residual
Iv Yo Chanl!e Ending Close Yo chnl!(Y) alDha Beta*Rm Residual !Beta lR(i)*R(m) lvar(M) td(M) Ivar® std®

I I 3-Jan-00 66.81 -0.728 1.2658 2.64 1.627 5.223 2.285

2 -3.83 4-Jan-00 64.31 -3.74198 -0.728 -4.8519 1.8389 14.342

3 0.192 5-Jan-00 63 -2.03702 -0.728 0.2432 -1.5511 -0.39f

4 0.0955 6-Jan-OO 63.6Q 1.09521 -0.728 0.1209 1.7027 0.1047

5 2.7C 7-Jan-00 68.5 7.552f -0.728 3.4275 4.8529 20.452

6 1.118 10-Jan-00 67.25 -1.82485 -0.728 1.4155 -2.512~ -2.04f

7 -1.306 II-Jan-OO 66.25 -1.48698 -0.728 -1.6524 0.894< 1.949

8 -0.4381 12-Jan-00 65.0f -1.79624 -0.728 -0.5552 -0.512f 0.788

9 1.2163 13-Jan-OO 65. L: 0.09226 -0.728 1.5391 -0.7197 0.113
I( 1.0671 14-Jan-00 64.5 -0.95205 -0.728 1.3509 -1.5749 -1.01(

II -0.6835 18-Jan-00 65.5f 1.64349 -0.728 -0.8641 3.2361 -1.129

12 0.052 19-Jan-00 64.0f -2.28795 -0.728 0.066 -1.625S -0.1 I(

13 -0.7098 20-Jan-00 63.38 -1.06158 -0.728 -0.8975 0.5649 0.757

1< -0.2916 21-Jan-00 62.44 -1.48317 -0.728 -0.3682 -0.3867 0.43<

15 -2.7634 24-Jan-00 59.38 -4.90077 -0.728 -3.496< -0.6753 13.542

16 0.6061 25-Jan-00 61.13 2.94712 -0.728 0.767f 2.9083 1.78

17 -0.4216 26-Jan-00 61.94 1.3255 -0.728 -0.5338 2.5862 -0.55C

18 -0.393~ 27-Jan-00 59.13 -4.53664 -0.728 -0.4985 -3.3105 1.78f

19 -2.7453 28-Jan-00 55.13 -6.76476 -0.728 -3.4741 -2.5626 18.57f

20 2.5211 31-Jan-00 54.75 -0.68929 -0.728 3.1901 -3.151 -1.73C

7.3 Piecewise Linear Approximation for the Capital Asset Pricing Model

Recall the return function of a security based on CAPM

Rj = aj + fJjRIIl + 8j, where aj is the riskless asset, fJj is the asset's sensitivity to the market,

Rill is the return on the market, 8j is the residual return with mean = O. Through linear

regression a and fJ can be found

Variables based on the single index model

In a portfolio with asset proportions J{;, the return for the asset becomes:

The return for the portfolio ofN stocks

Rp = "N X.(a. + R. +&.)
~i=l I I 1-'1 I
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Since the riskless asset (a) is constant and the average residual (f:) is zero, the expected

return of a stock based on the single index model is:

Ei = Xi (ai +Pi Rm )where Rm is the average return on the market.

The expected return of the portfolio based on the CAPM

The actual variance of a stock is equal to

V 2 R2 2 2 2
i = Xi Pi O"m + Xi U e_

I

where 0";1 is the variance of the market return, and 0"; is the variance of the non-market
I

residual return. The actual variance of the portfolio

The piecewise linear approximation of variance for the single index model is simple since

the actual variance is already a sum of squared terms. Therefore Yi = Ri = (J.j +PRm +Ci.

The upperbound on the investment for each stock is 10% or 0.10. Four breakpoints were

chosen (m = 4), and the breakpoints are equally separated.

o~ bi! ~ 0.025

0.025 ~ bi!i ~ 0.05

0.05 ~ bi! ~ 0.075

0.075 ~ bi! ~ 0.1

Therefore the range (bj [) of the auxiliary variables (fil) are:

o~ 1';\ ~ bi!

o~ 1';2 ~ bi2 - bi!

o~ 1';3 ~ bi3 - bi2

o~ Y,-4 ~ bi4 -bi3
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Y;, ,
Y;2 ,
Y;3 ,
Y;4 ,

if 0 ~ Y; ~ 0.025

if 0.025 ~ Y; ~ 0.05

if 0.05 ~ Y; ~ 0.075

if 0.075 ~ Y; ~ 0.1

The auxiliary variables sum to Yi :

Recall that Di is the inverse of each asset's actual variance. The values for the slopes Dil

depend on the contribution V; and the auxiliary variable Yi!.

Dil = /1Vi / (bjl+l - bjl), l<m

The approximating functions are obtained by plugging the auxiliary variables and slopes

into the single index model functions. Therefore:

is the variance approximation of each stock and

is the variance approximation of the portfolio.

(7)

Thus for the piecewise linear approximation model, with four chosen breakpoints and

utility function ofminimum variance for an expected return of 2%, the objective function

is as follows. For every

Minimize
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Subject to

2::1 (Y;1 + Y;2 + Y;3 + Y;4) =1

2:;=1 Y;/ ~ 0.1 for all in N

Y;/ ~ 0

7.4 Common Practice to Save on Capital Gains Tax

Suppose an investor buys 50 shares of a stock at $100 a share, and buys another 50 shares

of the same stock, at a later period, at $120 a share. Say the stock gains another $15 per

share and allures the investor to sell 50 shares. The investor would sell shares from the

second investment and suffer the least loss in capital gains (thus the least loss on capital

gains tax). This method is common practice among investors and a description of the

savings is shown below.

Bought Sold Gain Less Tax Loss from Taxes

50 shares at $100 50 shares at $135 ($135 -$1005* 50 = $1,750 $1,750 * .396 $693

50 shares at $120 50 shares at $135 ($135 - $120)*50 = $750 $ 750 * .396 $297

Savings in taxes $396

Modelmg thIS practIce on a spreadsheet can be dIfficult because an investor would have

to computationally assess all prices of shares purchased before deciding to sell.
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7.5 Sample ofMIP

Decision

R(i) Jan-OO Feb-OO Jan-OO Feb-OO sum prop elums
-0.16936447

-0.03857142

-0.13182434

-0.19859525

-0.13293984

-0.14787525

-0.22961808

0.11442191

-0.05423039

-0.05568116

-0.16354558

-0.18816385

-0.11674752

-0.10924797

-0.07246614

-0.04773911

-0.15281754

-0.06308226

-0.05944186

-0.02675899

-0.1 0217443

-0.09462729

-0.04924848

-0.20609571

-0.04707603

-0.15116494

-0.06590599

L~j~:~ ..••.• 0 0
WVl'i; .f---+----i

r<."( <,1-_0_+-_0---\
~~•• < 0 0
~~_ •• ".:,,,.,:.,' t--0---1f-0-.1---i

"c'...., 0.1 0

m~:::l\1fi)rl:~'air ..·,f--O-t--O---i

:':"'" 0 0
'.,. 1---1---

k\~inl,erlc:~n.J\·<. 0.1 0.1L........•......,.
lUu~~,nr ; 0.1 0
~M ./ 1--0.-1 -1--0-.1-

o
o
o
o
o
1

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
1

o
1

o
o
o

1

1

1

1

1

o
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

o
1

o
1

1

1

o C

0.1 -0.0038571

o C

o a
o c
o c
o c
o C

0.1 -0.005423

0.1 -0.0055681

0.1 -0.0163546

o -0.001

0.1 -0.0126748

o a
o a
o a

0.1 -0.0152818

o a
o c
o C

0.1 -0.0112174

0.1 -0.009462/

o C

o c
-f--------,

0.1 -0.0047076Isum Y 27

o -0.001 DIal p 1

0.1 -0.006590( DIal r -0.0931377

7.6 Clarke Wright Savings Heuristic

The algorithm is concerned with minimizing a total distance traveled in a vehicle routing

network. The objective is to find a set of tours for each vehicle to minimize sum of tour

lengths. This is found by aggregating routes to eliminate costly and needless trips. The

algorithm works by selecting the routes with the highest savings. The optimal solution

consists of the path with the largest total savings. sO is the origin (depot) with destinations

s(1, .. .iJ). Route s(l) is implied as traveling from origin to destination 1 (at a destination
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dsO-s1) and back to origin. Route s(ij) means to travel from origin to destination i then to

destination j, and back to origin.

The heuristic works as follows:

Step 1 Compute the savings s(ij) for all pairs of customers

Step 2 Sort the savings into descending order

Step 3 Select the highest savings and determine if it is feasible. If so, construct a new

route by joining them. Ifnot, discard this possibility and choose the next savings.

Step 4 Continue with Step 3 as long as the savings are positive.

7.7 Example 2.3 Results

o.ooe

O.OOC

0.015

0.005

O.OOC

-0.008

0.003

0.005

0.000

0.000

0.002

-0.008

0.002

0.004

-0.006

-0.001

-0.001

o

o

0.1

0.1

0.1

0.1

o

0.1

0.05

0.025

0.025

0.05

0.05

Mar-DO M:' .." 0.025 1 I 0 0.025
Apr-OO\: DOC

0.005 MaY-DO '.,,'y',,-., , ..:. 0 I
Mar-DO 0.025 I 0 C 0.025

0.105 Apr-DC', •.•. •..•. 0 0 0
0.058 May-OOi ,/ 0.1 I

Mar-DO 0.05 1 0 C

0.105

0.08f

-0.148 Ann:":,; 0 I 0
,0.239 Mav.On .... ':.,<; 0 I

Mar·O ,. 0.05 I I C

-0.075 Apr-O>::·.·. 0.1 I C
1-'=.:..:+-.0~.0:'::7c:15~M::"ay.:..._O:-=t,.··..X. 0.1 I

---o.i4" Mar-O J&J . .• 0.025 1 I 0 0.025
Apr-D.; :., 0 0 C

0.16 May-O:e"'"'' 0.1 I

0.000

-0.007

-0.001

0.007

0.004

-0.001

-0.001

-0.001

-0.001

-0.004

-0.002
o

o

0.1

0.1

0.05

0.025

0.05

Mar-O"!,,, ,-.' 0.025 I I Co 0.025
ADr.O·''''·:;.·· 0.1 0 0.025

-0.123 May-O· 0 I

O.l5~

-0.053

.-O.Og

Apr-O ~'.' -' ..', 0.1 0 C

0.08 May.OC:.':>':.:. 0.1 I 0.1 0.00

~~~[:]M~ar~-0~0~~fITCOi:ii.0i55---:-~r:II-~1 -~(rOO:O'055 ~:---=..:r-=OO:o.0~03~:~~J
~ -0.015 Apr-D' 0 0 0 0.05 -0.001

-0.14 May-O ?oL,'" .. " C I 0 -0.001

Mar-O :el< 0.05 I 0 0
ADr-O" :..,: 0 I C

0.031 May-O<,·',.·' 0 I
-=0:023 Mar-O '-UUl11\. .,.. ' 0.075 I 0 C 0.075

1--'0=.0-,-7~"'I-~~A=~p.:..lr.0~:,:',:t, .', 0.1 I C

1-'-0=.0;,:.;1tM~ay~,-0~"ili;-~<'r:'·110.0:5~--1C-l-?-11I--o.05-~-----'°lo:Oci2~~--'=":0'':'':0011000 j Mar-O 0.05 I 0 C 0.05 0.002
t--=-~f--,-:-0.-:-:00:-:l5 Apr-O i·..... c 0.1 I 0 0.1 0.000

-0.070 MaY-O ".', 0.1 I
U~r_ 0.025 I I (0.025

~ P&Cr 0 I 0 0 o 0.000
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---o:ti4 Apr-O:'::'\ 0 1 0 0 0.000

I -O.Olf
-0.135 Mav-O;;';}: 0.1 1 0.1 -0.015

Mar-O '", ,,' <; 0.025 1 1
~

0.Q25 0.000
-0.021 Apr-O " 0 0 0.025 -0.001

I -0.16S
0.000 May-O >,' C 1 0 O.OOC
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~

0.05 -0.008
-0.12 Apr-O "",}L 0 1 0 -0.001
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f---

0.005 Mar-O ,'x 0.025 1 0
~

0.Q25 0.000
-0.022 Apr-O : "":,, :..' 0 1 0.025 -0.001

-0.04e May-O i', ''':: :,' " C 1 C O.OOC
I 0.06'7 Mar-O

"",
0.025 1 0

~
0.025 0.002

O.OO~ Apr-O , 0.1 1 0.1 0.000
0.Q3~ May-O ,KOr;,

" c 1 C -0.003
~ Mar-O :", 0.05 1 1

~
0.05 -0.003

-0.00 Apr-O ,y " :i', 0.1 0 0.05 0.000
-0.02 May-O ·f iL, c 1 C -0.001--=o:w Mar-O lrr ',.',< 0.025 1 0

~
0.025 -0.005

-0.28 Apr-O

••
0 1 0 0.000

-0.391 May-O " C 1 C O.OOC
r-:o:on Mar-OO

~:",/'i
0.05 1 1

~
0.05 -0.001

-0.009 Apr-OO " 0 0 0.05 0.000
0.01 May-OO 0 1 C -0.001

I 0.104 Mar-OO' '<c;-.; 0.05 1 1
~

0.05 0.005
-0.234 Apr-O 13 ',," 0 0 0.05 -0.012

-0.168 May-O I:: v '// 0 1 C -0.001
I -0.035 Mar-O 0.025 1 0

~
0.025 -0.001

0.068 Apr-O 0.1 1 0.1 0.006

1_0.2H
-0.O5~ May-O ,.:T",'.".',: 0.1 1 0.1 -0.005

Mar-O 0.05 1 C 0.05 -0.011
0.013 Apr-O ':C'.

c,
0 1 C 0 -0.001

"i;;',-O.lO~ May-O I,;',; 0 1 C O.OOC
I -0.03 Mar-O "'-, 0.05 1 0

~
0.05 -0.002

0.070 Apr-O i·'f:;;. ;;({ 0 1 0 -0.002

I -O.09f
-0.Q3 May-O <:( ~<) 0 1 C O.OOC

Mar-O 0.05 1 0 0 0.05 -0.005
-0.Q75 Apr-O ,,?:,.o,;>. 0 1 C 0 -0.001

0.005 May-O :!.: ~fi,,';.· 0 1 C O.OOC
I -o.m Mar-O ,'i,i' 0.025 1 1 C 0.025 -0.004

0.046 I Apr-O : <",••'.' 0.1 0 C 0.025 0.001
-0.111 May-O :/·:2] 0 1 C O.OOC

I -0.08f Mar-O nn'
,

0.025 1 1 C 0.025 -0.002',.

-0.04 Apr-O;): pi.,' 0.1 0 C 0.025 -0.001
0.034 May-O " ;':".,.,'. 0.1 1 0.1 0.003

Totals 1 1 1 27 27 27 1 1 1 -0.048 -0.002 -0.013
Final Return I 0.965
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7.8 Results from 35-Period Investment

Strategy 1 Strategy 2 Strategy 3
Holding Efficient Combination S&P500
Portfolio Accum. Portfolio Accum. Portfolio Accum. Market Accum.

Period Returns Interest Returns Interest Returns Interest Returns Interest
Jan-OO - - - - - - -0.04175 0.95824
Feb-OO -0.01370 0.98630 -0.01084 0.98916 -0.09314 0.90686 -0.03041 0.92910
Mar-OO -0.10118 0.88650 -0.10750 0.88282 0.06985 0.97021 0.08657 1.00953
Apr-OO 0.04395 0.92546 0.04337 0.92111 -0.05338 0.91842 -0.03555 0.97364

May-OO -0.04383 0.88490 -0.03402 0.88977 0.01267 0.93006 -0.03245 0.94204
Jun-OO 0.03269 0.91383 -0.04024 0.85397 -0.02597 0.90590 0.00400 0.94581
Jul-00 -0.02301 0.89281 -0.03163 0.82696 -0.00187 0.90421 -0.02634 0.92089

Aug-OO 0.00780 0.89977 -0.01492 0.81462 0.01360 0.91651 0.05534 0.97185
Sep-OO 0.05264 0.94714 0.00245 0.81662 -0.01461 0.90312 -0.05541 0.91801
Oct-OO -0.07504 0.87606 -0.05720 0.76991 0.04046 0.93966 -0.00476 0.91364

Nov-OO 0.05568 0.92484 0.00933 0.77709 0.01648 0.95515 -0.07477 0.84532
Dec-OO -0.01655 0.90954 -0.03842 0.74724 0.03748 0.99094 0.00384 0.84857
Jan-Ol 0.03994 0.94587 0.03314 0.77200 -0.01077 0.98027 0.06448 0.90328
Feb-Ol 0.03541 0.97936 -0.04875 0.73437 -0.03984 0.94121 -0.09722 0.81546
Mar-Ol -0.01537 0.96431 -0.05015 0.69754 -0.05657 0.88797 -0.06518 0.76232
Apr-Ol -0.05212 0.91404 -0.06492 0.65226 0.08773 0.96587 0.09040 0.83123

May-Ol 0.11330 1.01760 0.09182 0.71215 0.00140 0.96722 -0.00839 0.82426
Jun-Ol 0.01841 1.03634 -0.01006 0.70499 -0.02716 0.94095 -0.02879 0.80053
Jul-01 -0.03674 0.99826 -0.03494 0.68036 -0.03078 0.91199 -0.02061 0.78403

Aug-Ol -0.02159 0.97671 -0.06770 0.63430 -0.08685 0.83278 -0.06773 0.73093
Sep-Ol -0.14569 0.83441 -0.10615 0.56697 -0.00628 0.82756 -0.08120 0.67158
Oct-Ol 0.01182 0.84428 -0.00720 0.56289 0.04826 0.86749 0.02044 0.68531

Nov-Ol 0.05433 0.89015 0.04677 0.58922 0.01333 0.87906 0.05106 0.72030
Dec-Ol 0.02326 0.91085 0.02900 0.60631 -0.00972 0.87052 0.01609 0.73189
Jan-02 -0.00898 0.90266 -0.02996 0.58814 -0.02112 0.85213 -0.02119 0.71638
Feb-02 0.10918 1.00122 0.02971 0.60561 0.00553 0.85684 -0.01379 0.70650
Mar-02 0.00378 1.00500 -0.00753 0.60105 -0.02895 0.83203 0.01379 0.71624
Apr-02 -0.03064 0.97421 -0.02623 0.58529 -0.00832 0.82511 -0.06072 0.67275

May-02 -0.00947 0.96498 -0.00222 0.58399 -0.05862 0.77674 -0.01778 0.66079
Jun-02 -0.04858 0.91810 -0.04188 0.55953 -0.07735 0.71667 -0.04887 0.62850
Jul-02 -0.04500 0.87678 -0.04609 0.53375 0.00747 0.72202 -0.05888 0.59149

Aug-02 0.00797 0.88377 0.02377 0.54643 -0.08873 0.65795 0.03551 0.61249
Sep-02 -0.09509 0.79973 -0.07466 0.50563 0.05643 0.69508 -0.04311 0.58609
Oct-02 0.04840 0.83844 0.04728 0.52954 0.00735 0.70019 0.04464 0.61225

Nov-02 -0.02546 0.81709 0.00832 0.53395 0.00706 0.70513 0.00985 0.61828

M:ean -0.00440 0.92180 -0.01730 0.68752 -0.00926 0.86629 -0.01168 0.78239

wariance 0.00310 0.00355 0.00200 0.01729 0.00196 0.00864 0.00231 0.01627
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