
Lehigh University
Lehigh Preserve

Theses and Dissertations

1992

Parallel algorithms for Hough transform
Fevzi Oktay Ozbek
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Ozbek, Fevzi Oktay, "Parallel algorithms for Hough transform" (1992). Theses and Dissertations. Paper 73.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lehigh University: Lehigh Preserve

https://core.ac.uk/display/228642344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/73?utm_source=preserve.lehigh.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

. AUTHOR:

Ozbek, Fevzi Oktay

TITLE:

Parallel Algorithms for

Hough Transform

DATE: May 31, 1992

PARALLEL ALGORITHMS FOR

HOUGH TRANSFORM

by

FEVZI OKTAY OZBEK

A Thesis

Presented to the Graduate Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science in Electrical Engineering

Lehigh University

Bethlehem, Pennsylvania

1992

Acknowledgements

I would like to acknowledge the guidance and support of my

advisor, Professor Meghanad D. Wagh. This thesis was possible

because of his patience and great knowledge.

I would also like thank to all my friends in Lehigh University.

iii

Table of Contents

Abstract
1. Introduction

1.1. Overview
1.2. Organization of the Thesis

2. Hough Transform and Parallel Processing
2.1. Hough Transform
2.2. Various Applications of the Hough Transform
2.3. Parallel Processing
2.4. Hypercube Parallel Computers
2.5. NCUBE/10 Parallel Computer
2.6. Communication in NCUBE/10
2.7. Binary Images Used

3. Implementations on a Linear Array
3.1. Introduction
3.2. Embedding a Linear Array in Hypercube
3.3. Implementation
3.4. Results

4. Implementations on a Mesh
4.1. Introduction
4.2. Embedding a Mesh in Hypercube
4.3. Implementation
4.4. Results

5. Implementations on a Hypercube
5.1. Introduction
5.2. Implementation
5.3. Results

6. Conclusion
6.1. Discussion
6.2. Future Directions

References
Vita

iv

1
2
2
5
6
6
10
12
14
18
20
20
22
22
23
25
30
38
38
40
41
46
53
53
54
58
6i
64
65
m
m

List of Figures

Figure 2.1.(a). 3 collinear points in the image space. 8
Figure 2.1.(b). Parameter space generated by 9

3 colinear points.
Figure 2.2.(a). Hypercubes of degree 0,1 and 2. 15
Figure 2.2.(b). Hypercube of degree 3. 15
Figure 2.2.(c). Hypercube of degree 4. 16
Figure 3.1. Linear Array with n processors. 22
Figure 3.2. Allocation of processors used in 28

Linear Array.
Figure 3.3.(a). Implementation of 28

4 processor Linear Array.
Figure 3.3.(b). Implementation of 28

7 processor Linear Array.
Figure 3.3.(c). Implementation of 29

11 processor Linear Array.
Figure 3.3.(d). Implementation of 29

16 processor Linear Array.
Figure 3.3.(e). Implementation of 29

31 processor Linear Array.
Figure 3.4.(a). Dependence of Time on image distribution 30

Standard Linear Array / 31 processors.
Figure 3.4.(b). Dependence of Time on image distribution 31

Modified Linear Array / 31 processors.
Figure 3.5.(a). Dependence of Speed-up on number of 33

processors. Image densities: 5%, 10%, 15%.
Figure 3.5.(b). Dependence of Speed-up on number of 34

processors. Image densities: 20%, 25%.
Figure 3.6. Dependence of efficiency on image density 36

Modified Linear Array Algorithm.
Figure 4.1. Mesh with NxN processors. 39
Figure 4.2.(a). Implementation of 42

the Algorithm with 4 processors.
Figure 4.2.(b). Implementation of 43

the Algorithm with 7 processors.
Figure 4.2.(c). Implementation of 43

the Algorithm with 11 processors.
Figure 4.2.(d). Implementation of 44

the Algorithm with 16 processors.
Figure 4.2.(e). Implementation of 45

the Algorithm with ~31 processors.
Figure 4.3.(a). Dependence of Time on image distribution 46

Standard Mesh / 31 processors.

v

Figure 4.3.(b). Dependence of Time on image distribution 47
Modified Mesh / 31 processors..

Figure 4.4.(a). Dependence of Speed-up on number of 48
processors for image densities: 5%,10%,15%.

Figure 4.4.(b). Dependence of Speed-up on number of 49
processors for image densities: 20%,25%.

Figure 4.5. Dependence of efficiency on image density 52
Mesh / Modified Algorithm.

Figure 5.1.(a). Implementation of 54
Algorithm with 4 processors.

Figure 5.1.(b). Implementation of 55
Algorithm with 7 processors.

Figure 5.1.(c). Implementation of 55·
Algorithm with 11 processors.

Figure 5.1.(d). Implementation of 56
Algorithm with 16 processors.

Figure 5.1.(e). Implementation of 57
Algorithm with 31 processors.

Figure 5.2.(a). Dependence of Time on image distribution 58
Hypercube / Standard Algorithm /
31 processors.

Figure 5.2.(b). Dependence of Time on image distribution 59

'-..../
Hypercube / Modified Algorithm /
31 processors.

Figure 5.3.(a). Dependence of Speed-up on number of 00
processors. Image densities: 5%,10%,15%.

Figure 5.3.(b). Dependence of Speed-up on number of 61
processors. Image densities: 20%, 25%.

Figure 5.4. Dependence of efficiency on image density 63
Hypercube / Modified Algorithm.

vi

Table 3.1.

Table 3.2.

Table 4.1.

Table 4.2.

Table 5.1.

List of Tables

8 node Linear Array mapping for a hypercube
of degree 3 using Gray Code.
Percent Improvement in Speed-up
due to modified Algorithm.
Embedding 16 node mesh array
in hypercube of degree 4.
Percent Improvement in Speed-up
due to modified Algorithm.
Percent Improvement in Speed-up
due to modified Algorithm

vii

25

35

41

51

62

Abstract

This Thesis describes two parallel algorithms for Hough·

Transform and analyzes the performance of these algorithms on three

different architectures, linear array, mesh and hypercube. The

experiments were performed on the NCUBE/10 hypercube at Lehigh

University. The results show that the performance of the algorithms

are not liable to asynchronism overheads, which result from

nonhomogeneous distribution in the images. The dynamic image

partitioning scheme developed in this work is shown to outperform the

static partitioning in all architectures and for all images.

1

Chapter 1

Introduction

1.1. Overview.

Image processing and pattern recognition techniques are

finding more and more applications in industrial automation, health

care and military. Hough Transform is one of the most popular forms

of Pattern Recognition Technique. When used to detect straight lines,

it transforms 2-dimensional image space into 2-dimensional

parameter space. Depending on the parameters chosen to represent a

straight line, the basic equation used for Hough Transform varies.

Hough Transform is extremely computation intensive because it

generates a curve in the parameter space for each point in the image

space. For an average image size, it is usually required to evaluate the

basic equation and update the parameter space more than a million

times. This puts a great stress on the computational mechanism. It

should be also noted that some applications like motion guidance

systems in robots require a stream of image frames to be processed

instead of one frame, thus increasing the need for computational

power even more.

In recent years, several efforts have been made to perform

Hough Transform faster. Li, Lavin and Le Master reported a Fast

Hough Transform using a hierarchical approach [1]. The method they

2

presented divides the parameter space into hypercubes. The feature

points "vote" for these hypercubes and actual Hough Transform is

performed only on the hypercubes exceeding a 'selected threshold. This

algorithm is sequential, thus it is limited in the speed-up it can

provide.

Most of the current work on improving the speed of the Hough

Transform makes use of the Parallel processing techniques [25]. A

literature survey about Parallel Hough Transform techniques shows

that all the published research concentrates on a given architecture

and gives results on that particular topology. Performance of the

single algorithm on more than one topology is missing. Load

balancing techniques are not mentioned or inadequate. Asynchronism

overhead due to nonhomogeneous distribution of edge pixels in a

binary image is a very important factor that decreases the

performance of a parallel Hough Transform algorithm. Partial

elimination of asynchronism overhead is reported by Ranka and

Sahni [4]. Other published material lack the method to eliminate

asynchronism overhead and some even claim that it is not possible to

eliminate it without a priori knowledge about the distribution of pixels

in the image [5].

This thesis develops two parallel Hough transform algorithms

that eliminate asynchronism overhead and illustrates the results

obtained on three different architectures which are linear alTay, mesh

and hypercube. Elimination of asynchronism overhead in the

algorithms do not require additional computational task, thus they are

3

achieved by the very nature of the algorithms. Algorithms presented in

this thesis accept binary image as input as against many other

algorithms in literature that assume a predigested image with a

linked list of all the "black pixels".

Our first "standard" algorithm separates the task of scanning

the binary image from the task of generating the parameter space.

One of the processors in the MIMD architecture is assigned the task of

scanning the image, extracting the coordinates of the edge pixels and

communicating these coordinates to the remaining processors. The

original algorithm uses static partitioning of the image, i.e., it

generates and communicates coordinate messages after scanning a

fixed number of pixels. Our second "modified" algorithm uses

dynamic partitioning of the binary image and adjusts the size of the

current coordinate message according to the size of the previous

coordinate message. It is shown that this modified algorithm is better

than the standard algorithm in almost all cases.

1.2. Organization ofthe Thesis

Chapter two of this thesis covers the fundamentals of Parallel

Processing and supplies detailed information about the operation of

Hough Transform. Information about the experiment environment,

NCUBE/IO hypercube computer is provided.

Chapter three, four and five are devoted to the implementation of

the algorithms in a linear array, a m~sh and a hypercube respectively.

We used the same host machine, a large NCUBE/IO hypercube with

4

128 processors for all the implementations so that the architectural

overheads are similar. The architecture sizes were varied from as few

as three processors to as many as 31. The binary images used to

characterize the performance of the algorithms had densities ranging

from 0 to 25% and the distribution of black regions was also varied a

great deal.

Chapter SIX summanzes the results obtained and possible

future extensions.

5

Chapter 2

Hough Transform
and

Parallel Processing

2.1. Hough Transform

-\--

In many image understanding applications one has to

recognize objects with predetermined shapes. Examples of such

applications range from detection of missiles and planes for military

purposes to the recognition of parts of specific shapes in an automated

manufacturing situation.

Hough Transform CHT) is a well-known, and very efficient

method for pattern recognition in digital images. Hough Transform

dates back to a patent by P. V. C. Hough granted in 1962 [6]. Hough

Transform can detect straight lines, circles and other curves that can

be expressed through parametric equations. Recently Hough

Transform has also been generalized to detect analytic curves and

arbitrary shapes [7]. Hough transform can also be used to detect "filled

in" or shaded objects. However, because the shape of an object is a

property of its perimeter, in these cases one typically has to use an

edge extracting operator to accentuate the object perimeter before one

applies the actual Hough Transform.

6

Hough Transform has shown a good performance even in the

presence of image noise and occlusion. This is a very important

property in real applications since it is virtually impossible to get an

uncorrupted image. Farther, removal of noise by say, low pass

filtering, has a very adverse effect on edge detection since it smears the

edges.

When using Hough Transform to detect straight lines in a

binary image, one has to decide which parametrization will be used for

the straight line. One of the options is, using slope-intercept

parameters and expressing the line with the equation y = mx +c,

where m is the slope and c is the intercept. The problem with this

parametrization is that it leads to a parameter space boundless on both

dimensions. It is possible to get around this problem by using the (p,S)

parameters of the normal where,

p=xcosS + ysinS. (2.1)

This parametrization leads to a finite-sized parameter space. If one

restricts S to [0, 1t), then it is possible to represent each straight line by

its corresponding (p,S) parameters uniquely.

Hough transform works by examining the image one pixel at a

time and for each pixel that is black, determining all the lines that

may contain that pixel: If the lines are characterized by their (p,S)

parameters, then a black pixel at (xo,Yo) may be part of any line whose p

and S parameters are related by

p =xocosS + yosinS. (2.2)

7

Thus each pixel in the image space generates a sinusoidal curve in

the parameter space.

Corresponding to each black image pixel, the Hough transform

increments the count of each (p,e) cell that is on this sinusoidal curve

in the parameter space. After the entire image is scanned, the Hough

Transform examines the parameter space to identify the cell that has

the highest ~ount. This point corresponds to the line to which the

maximum number of image points fitted.

As an example, consider 3 collinear points in the image space

Figure 2.1.(a). As seen in Figure 2.1.(b), each of these three points

generates a sinusoidal curve in the parameter space and they will

intersect each other at a common point (Po,SJ. Returning to

Figure 2.1.(a)., one recognizes that (po,eJ is the ·parameter pair for the

line containing these three collinear points.

y

o x

Figure 2.1.(a). 3 collinear points in the image space.

8

/~

/

p

o e

Figure 2.1.(b). Parameter space generated
by 3 colinear points.

In practice, parameter space is quantized and basically consists

of a 2-dimensional array in the case of straight line detection. As each

point in the image is processed, (2.1) is used to find the radius values

for each e value and the corresponding cell count is incremented.

After all the points in the image are processed, the parameter space is

searched for cells exceeding a certain threshold value. Cells over the

threshold value are picked up as parameters of the straight lines in

the image. This is called the "Cluster detection". "Cluster detection" is

complicated because in practical noisy images, straight lines tend to

create clusters of high-count cells instead of stand-alone high-count

singular cells. Depending on the application, various methods of

cluster detection could be used once the parameter space is generated.

The generation of parameter space is extremely computation

intensive. Assume that the image dimensions are NxN pixels,

parameter space is MxM, and the average image density (ratio of black

9

to total number of pixels) is ~. One can see that this implies that one

should examine W image pixels, a task requiring O(N2
) time. Farther

for each of the ~~2 black pixels one should update the parameter space

by ev~.luating (2.1) for M different e values. This task therefore

requires a time O(MW). Thus the complexity order of the parameter

space generation is O(M~). In real practice when the images have a

typical size of 1024x1024 pixels and the e parameter range is divided

into,say, 90 slots, one can see that even for moderate image density of

5%, (2.1) will have to be evaluated for more than four million times for

generation of a parameter space. One should also note that this

estimate has to be farther increased because it does not include either

the time required to scan the image or the time required to update the

counts in the parameter space. Because of the enormous

computational complexity, the problem of parameter space. generation

deserves new solutions. In this Thesis, we examine this problem in

tne light of parallel processing technology.

2.2. Various Applications of the Hough Transform

Hough Transform has many applications in industry, medical

arena and the military. Depending on the requirements of the specific

application, various modified versions of Hough Transform can be

used. Although there are many of these modified Hough Transforms,

one can group them into two broad groups.

The first group consists of modified Hough Transforms where

accuracy of the transform is emphasized. These are generally used in

10

medical applications pr other delicate applications where precision

has the top priority and computation time is not a big concern [8-11].

Most of the Hough Transforms in this group are generated by taking

the nature of the problem into account and modifying the Hough

Transform accordingly. After these modifications, the resultant

Hough Transform could be very powerful for a specific problem but not

very suitable for others. Thus, precision is increased at the expense of

losing generality and increasing processing time. Other algorithms

may use iterative methods to gain precision. This approach increases

accuracy at the expense of increasing processing time dramatically.

In general, complexity of the algorithms in this group is much greater

than the complexity of the original Hough Transform algorithm.

The second group of modified Hough Transforms includes

methods where reducing the time needed for Transformation is the

most important goal. These methods try to compute Hough Transform

with a pre-determined level of accuracy as fast as possible [1-4]. Most of

these modified Hough Transforms make use of parallel processing

techniques to achieve high performance. Usually, these algorithms

leave the basic equation (2.1) unchanged and try to devise parallel

algorithms for its evaluation. Here, one should note that some parallel

algorithms may be specific to a pa,rallel machine architecture. In

designing these algorithms several factors should be taken account

such as scalability, speed-up, efficiency, accuracy, etc. Applications

for this group range from detecting military objects like missiles,

11

tanks, etc. to· robot guidance systems, industrial automation and

quality control.

2.3. Parallel Processing

The ever-increasing need for computing power has forced rapid

progress in parallel processing in recent years exploiting the advances

in electronics technology. Parallel processing involves partitioning a

computation into several concurrently executing tasks. A parallel

computer consists of several processors connected together for purpose

of jointly executing the parts of the same computational task. Parallel

computer characteristics vary widely from each other. Number of

processors can range from as few as four to several thousands.

Parallel computers with processor numbers in the order of hundreds

are usually called massively parallel computers.

In recent years, many commercial massively parallel

computers have been introduced. By using thousands of

mIcroprocessors, massively parallel computers reach the

supercomputer performance level with a much lower cost than a

traditional supercomputer. Traditional supercomputers are designed

to rely on very fast components and pipelined operations. As a result,

the incremental performance improvement of these traditional

supercomputers is increasingly expensive. On the other hand,

performance of a massively parallel supercomputer can be increased

by increasing the number of processing elements (nodes).

12

Parallel computers can be grouped iQto MIMD (Multiple

instruction and Multiple data) or SIMD (Single instruction and

Multiple data) machines. In MIMD computers, each processor

asynchronously executes its own program. In SIMD computers, a

central controller processor broadcasts the instructions to all the

processors and forces them to synchronously execute identical sets of

instructions. Node processors for MIMD machines tend to be more

complex than the node processors for SIMD machines. MIMD

machines support a variety of algorithms and multiple users, while

the SIMD machines are typically single user machines that can

execute a limited class of algorithms.

One other important factor in the design of parallel computers is

the method of sharing results and data between the processors. One

:approach is to use global memory. In this scheme, each processor has

access to a global memory space and data sharing is achieved through

the global memory. Thus if processor A needs to send data to

processor B, it writes it in the global memory and processor B retrieves

the data by reading the memory This scheme solves the problem of

sharing data between the processors but creates a new memory

contention problem. Memory contention occurs when two or more

processors try to use the same memory location at the same time and

may result in serious performance loss.

On the other hand, in the distributed memory systems each

processor node has its own local memory holding local variables. Data

sharing is achieved by sending messages between the nodes. In such

13

message passing architectures, the connection network between

processors is a very important design criterion of the parallel

computer. Although it is desirable to provide communication links

from each processor to every other, this is usually not possible because

of practical limits on the number of connections. Therefore each

processor is directly connected to only a few other processors and

messages to the rest are routed through these intermediate nodes.

Some of the widely used interconnections are mesh, ring, binary tree

ancf hypercube. Amongst these, the hypercube is the most popular

because by using its few selective links, it is possible to simulate binary

trees, linear arrays and meshes in hypercubes. The hypercube

parallel computers are discussed in greater detail in the next section.

2.4. Hypercube Parallel Computers

A hypercube is a collection of processors interconnected by a

communication network to provide a good performance/cost ratio. An

n-dimentional hypercube can be recursively defined by duplicating the

(n-I)-dimensional hypercube and connecting the corresponding nodes.

(A degree 0 hypercube is a single processor). Thus an n-dimensional

hypercube will have 2" nodes and each node is connected to its n

neighbors. By using the recursive definition, one can label each node of

an n-dimensional hypercube by a unique binary n-tuple such that

nodes whose n-tuples differ in only one bit are neighbors. A few

hypercube examples are shown in Figure 2.2.

14

o 10 11

o

O-dimensional
hypercube.

I-dimensional
hypercube.

Figure 2.2.(a).

(0-8
2-dimensional
hypercube.

Hypercubes of degree 0,1 and 2.

Figure 2.2.(b). Hypercube of degree 3.

15

Figure 2.2.(c). Hypercube of degree 4.

Hypercube topology has many advantages. It is homogeneous in

the sense that all nodes are identical. In an n-dimensional hypercube,

each node has n links to manage. So the total number of links is equal

to nN/2 , where N = 2° represents the total number of nodes.

Diameter is the maximum distance between any nodes of a

network which sets an upper bound on the maximum message

communication time. Diameter of hypercube topology with 2°

processors is just n.

In most of the hypercubes, each node has its own memory and

communicates with other nodes by passing messages. In 1983, the 64­

node Cosmic Cube at Caltech became the first working hypercube

16

computer [12]. Since then many commercial versions of hypercube

have become available.

One of the consequences of the recursive hypercube topology is

that it can be partitioned into smaller degree subcubes, which are

hypercubes themselves. Thus a hypercube can be easily used as a

multiuser system. Most operating systems in commercial hypercubes

use this feature and can simultaneously allocate, for example, a

degree 6 hypercube to one user, and degree 5 hypercubes to two users

from an available degree 7 hypercube.

Parallel algorithm implementations are evaluated with the help

of two performance criteria, speedup and efficiency. Suppose one has a

parallel algorithm that uses p processors. Let Ts be the optimal serial

time to solve a problem and Tp be the time required to solve the same

problem using p processors. Then speedup, SP(p) and efficiency, E(p)'

of this parallel algorithm are defined as,

E(p) =SP(p) / p

(2.3)

(2.4)

Speedup describes the speed advantage of the parallel algorithm

over the best serial algorithm. Ideally, SP(p) = p. Efficiency is a

measure of what fraction of ideal speed-up has been achieved. Note

that E(p) < 1 in practice because of the overheads involved in parallel

algorithms.

17

2.5. NCUBFllO Parallel Computer

NCUBE/I0 is a commercial MIMD hypercube manufactured by

NCUBE Corporation. A fully configured NCUBE/I0 system can

accommodate up to 1024 nodes, each based on a 32-bit custom

processor. Each processor has a peak performance of 0.5 MFLOPS, so

that fully configured system has a potential throughput of

approximately 500 MFLOPS. Each node processor has 11 bidirectional

DMA channels. 10 of these 11 channels are used for connection to

other nodes and remaining 1 is used for connection to an I/O board. 64

processors, each with a RAM size of 128K form a 16 x 22-inch board.

There is no global memory in NCUBE/IO. In the full configuration, 16

of these boards are connected to 16 front-end processors (connected as a

hypercube themselves) for communication between boards. These

front end processors also act as the "host" processors to provide I/O

capabilities through a multiuser Unix-based operating system called

AXIS.

Communication between the processors is managed by sending

messages. Augmented C and FORTRAN compilers allow the

programmer to send messages between the nodes with the help of

additional functions. Some of special C functions are "nopenO",

"nloadmO", "whoamiO", "nwriteO", "nreadO" and "ntimeO".

"nopen(n)" is used in the host program and it allocates a

subcube of degree n and returns a channel number which is used as a

reference number for the subcube allocated. "nloadmO" is used in the

18

host program to load node programs to the specified nodes.

"whoamiO" is used in the node program and it returns node number

of the calling processor and id number for communicating with the

host. "nwriteO" sends the message along with its length and type to

the specified node or to the host. "nreadO" accepts the next available

message w~th the suitable source and type. "nreadO" is a blocking

function, so it doesn't return the control until the message is received.

"nreadO" and "nwriteO" functions are used both in node programs

and host programs. The time since the node was initialized is

returned by function "ntimeO". To convert the "ticks" returned by

"ntimeO" into seconds, one needs to multiply it with (10241N) where N

is the clock frequency.

The programs and data is loaded into the nodes using the host

processors. Once this is accomplished, each node works on its own

data independently. Thus host does not have control over the nodes

once they start working and there is no global clock to synchronize the

nodes. This asynchronous operation actually provides more flexibility

because if needed, the task execution can be synchronized by

appropriate message passing.

The NCUBE/IO at Lehigh does not allow the nodes to

communicate directly with external peripherals such as the file

system, terminal, etc. Thus all such interactions have to go through

the host processor.

Users of NCUBE/IO can open subcubes of various sizes at the

same time, thus it has a high degree of flexibility. Subcubes of the

19

main hypercube are completely isolated from one another. To provide

communication between the nodes, each of the NCUBE/10 nodes

contains a small monitor system called VERTEX.
j

2.6. Communication in NCUBEllO

Time required to pass B bytes to a neighbor node, tc , is given

by (2.5) in NCUBE/10.

(2.5)

In (2.5), a. represents the rate of transfer and ~ represents the

communication set-up time. Our experiments showed that a. = 0.017

[ticks I bytes] and ~ =4 ticks. As an example, sending 2000 bytes from

node 0 to node 1 will be completed in 38 ticks. A tick corresponds to 1024

clock cycles and for a 6MHz system NCUBE/10, it is approximately

0.171 msecs.

2.7. Binary Images Used

Images with size of 64x64 pixels were used in this work. These

binary images were described by mainly two parameters, the image

density and the image distribution. Image density of a binary image is

defined as,

Image density =(# of black_pixels) 1(# of total pixels) (2.6)

20

Image density is a measure of the blackness of the image.

Generally this translates to the number. of edges contained in the

image. The image densities examined in this thesis virtually cover the

entire range of practical interest. Note that the amount of computation

required increases linearly with the number of black pixels, or the

image density.

Another factor related to the digital images is the distribution of

the black pixels in the binary image. Since the image distribution can

be varied in a multitude of continuous ways, we limited our

experimentation to a somewhat preconstrained setting. We let the

image be divided vertically in two equal halves with uniform densities

in each half. We then varied the distribution of black pixels between

the two halves. The images with 10% image distribution have 10% of

their total number of black pixels in the first half of the image and 90%

of their total number of black pixels in the second half of the image.

For each of the images considered, image distribution was varied from

0% to 100%. 0% image distribution implies all the black pixels in the

second half of the image and 100% image distribution means that all

the black pixels are in the first half of the image. The distribution of

black pixels are taken into account with the criterion described above

rather than, say, variance criterion, because examining the image

always start from one end of the image and it is important to know if

the black pixels are encountered at the beginning of the image or at the

end of the image.

21

Chapter 3-

Implementations on a Linear Array

3.1. Introduction

In this Chapter, the results of Hough Transform execution on a

linear array are presented. As mentioned earlier, it is possible map a

linear array onto a hypercube topology. The results presented here are

obtained by mapping linear arrays of different lengths on hypercube

NCUBE/IO.

A linear processor array consists of n processors numbered 0,1,

... ,(n-2),(n-l) with a bidirectional communication link between every

pair of successive processors. Thus node i, where 0 < i < (n-l), is

connected to nodes (i-I) and (i+l). The maximum distance between any

pair of processors of the linear array is (n-l). Figure 3.1. shows a

linear array with n processors.

Figure 3.1. Linear Array with n processors_

Linear Arrays draw considerable interest because

implementation of parallel algorithms is relatively simple and

uniform on them. Even though there are no references to the execution

22

of Hough Transforms on Linear Array, they have been used to host a

variety of parallel algorithms in the past [13-16].

3.2. Embedding a LinearArray in Hypercube

A linear array may be mapped onto a hypercube In such a

manner that the connected processors of linear array get assigned .~

connected processors of a hypercube. Although a multitude of such

mappings are possible, it is desirable to use a systematic approach to

this mapping problem. One such systematic method is called the gray

code (or reflected gray code) mapping.

Gray code mapping is generated as follows: assume that one

has a hypercube of degree m, then one will have n=2m nodes. Each

node will have an m bit label, p, where 0 ~ p ~ (n-1). Let each processor

~ in the linear array be represented by another m bit string,s.

Thus p is the "host" processor number (in the hypercube) and s

is the "guest" processor number (in the linear array). Define function

g as follows;

g(s) = s s", (3.1)

where, denotes an ExOR operation and s" stands for Ls/2J. In

general s"o represents (S"(o-l))", i.e., n applications of the operation ".

One can easily show that g(s) can be used as the host processor

number p because g(s) g(s+l) is a vector of weight 1. Thus the

23

processors to which linear processor sand s+l map are connected in

the host (as demanded by the linear array geometry).

(3.2) gives the expression for g-t, inverse function of g, which can

be used to obtain s, given p.

s =g-i(p) =P pi\ pi\2. .. pi\(m-l). (3.2)

(3.1) and (3.2) define a gray code mapping and give a direct and

easy method to map linear array onto a hypercube. Note that this does

not restrict the size of the linear array. If the total number of

processors in the linear array is s_total, one can always map it onto a

hypercube of degree r log2 s_total l.
A sample gray code mapping of a size 8 linear array on a degree

3 hypercube -is shown in Table 3.1. The sand p values in Table 3.1.

satisfy (3.1) and (3.2). One can verify from this table that the processors

directly connected in the linear array are also directly connected in the

hypercube.

24

Table 3.1. 8 node Linear Array mapping for a hypercube
of degree 3 using Gray code.

s p s (decimal) p(decimal)

000 000 0 0

001 001 1 1

010 011 2 3

011 010 3 2

100 110 4 6

101 111 5 7

110 101 6 5

111 100 7 4

3.3. Implementation

One of the advantages of the Gray Code mapping is its algebraic

expression. It is possible for each node to compute other nodes directly

connected using this expression. To illustrate this, consider that node

number Po, uses variable next_proc for the node number of the next

processor and uses prev_proc for the node number of the previous

processor. In this case, next_proc and prev.:....proc could easily be

calculated with (3.3) and (3.4) as

next-proc =g(g-l(po) + 1),

prev-proc = g(g-l(po) - 1).

25

(3.3)

(3.4)

As explained in Chapter 2, the NCUBE/10 requires message

source or destination node numbers in nwriteO and nreadO

statements. At the beginning of the node program, each node can get

its node number p, using the command whoamiO and then using (3.3)

and (3.4), it can compute the node numbers of its neighbors.

Most of the Parallel Hough Transform algorithms discussed in

the literature assume that the coordinates of the pixels are provided to

the processors. In real life situations, one has to process the original

binary image and obtain the coordinates the black pixels. This is a task

that should be taken into account when designing the algorithm. In

fact, for a large image size this task could be very time consuming. In

the analysis throughout this Thesis, the time required for extracting

the coordinates of the black pixels is considered as part of the total

execution time.

A binary image is obtained by applying an edge extracting

operator to original digital image. Black pixels in a binary image tend

to be distributed very unevenly because there may be lots of edges in

one part of the image while another part may have none or few edges.

This unevenness in distribution of black pixels causes asynchronism

overhead in parallel Hough Transform algorithms which use the

method of distributing image space over the processor nodes. In the

algorithms used in this Thesis, obtaining the the coordinates of the

black pixels from the binary image and generating the Hough

Transform parameter space is handled independently.

26

In linear array algorithms, processor 0 examines the binary

image and extracts the coordinates of the black pixels. It creates a

message containing the entire array of these pixels and then sends it

through the array touching processors 1,2, ... ,Cn-l). These processors

are expected to generate parameter space split equally between them.

In our first algorithm, Ccalled the "standard algorithm"), processor 0

generates a message after examining 1/8 of the image. Thus in this

algorithm, which follows static partitioning, the message generation

is independent of the image data and each processor receives exactly

eight coordinate messages.

In our second algorithm, Ccalled the "modified algorithm"), the

message generation times are unknown. The modified algorithm

adjusts the time current message will be sent according to the size of

the last message. In general, a new message is generated at a time so

as to arrive at the next processor just as it finishes working with the

data in the o\d message. This dynamic message generation eliminates

idle time of processors 1 through Cn-l).

Figure 3.2. shows the allocation structure in the case of (M+l)

total processors. The structure is same for both standard and modified

algorithms while the algorithm for generating the messages is

different. In Figure 3.2., the direction of the arrows shows the

direction the coordinate messages travel.

27

v

Examines
......----- the image

---------@
I

M processors
generate the parameter space

Figure 3.2. Allocation of processors used
in Linear Array.

In the actual implementation of Linear Array Hough

Transform algorithms on NCUBE/I0, the total number of processors

used were 4, 7, 11, 16 or 31. In each case, one processor was allocated

to examining image and the rest were assigned to the task of

generating parameter space. The mapping of the chosen linear arrays

on the NCUBE/I0 is shown in Figure 3.3.

Figure 3.3.(a). Implementation of 4 processor Linear Array.

Figure 3.3.(b). Implementation of 7 processor Linear Array.

28

Figure 3.3.(c). Implementation of 11 processor Linear Array.

Figure 3.3.(d). Implementation of 16 processor Linear Array.

Figure 3.3.(e). Implementation of 31 processor Linear Array.

As discussed earlier, the range for parameter e is [O,n). This

range was quantized into 90 slots and was distributed among the

generator processors so that each processor has (901M) slots where

(M+1) was the total number of processors in the linear array. Each slot

corresponds to 2 degrees or 0.0349 radians. For example, for 31

29

processor .linear array, one processor examined the image and 30

processors updated parameter space, each for 'their assigned 3 angle

slots.

3.4. Results

Figure 3.4.(a). gives the times obtained from Linear Array

standard algorithm working with 31 processors. Figure 3.4.(b). is the

corresponding graph for Linear Array modified algorithm. The

percentage numbers on the lines indicates the image density of the

image processed.

6000

5500

~
5000

u
E== 4500.....
0

~ 4000

Z 3500

3000

2500

I , I I
I I I I

~ 25%---=-

~ ~-
20%-

r---.. -
15%---

~
--

10%
-I- -
I--

5%
0%

I I I I
J I I I

o 20 40 60 80 100
Image distribution

Figure 3.4.(a). Dependence of Time on image distribution
Standard Linear Array / 31 processors,

30

4500

4000

3500

~u 3000
E=....
0 2500'"
~ 2000:l
Z

1500

1000

I I I ,
I' I I I

~ -
25%

~ -
20%

-I- -
15%

-I- --
10%

-,... -
5%

I- --
0%

I , I I
I I I I

o 20 40 60 80 100
Image distribution

Figure 3.4.(b). Dependence of Time on image distribution
Modified Linear Array / 31 processors.

From the results of Figure 3.4., one can easily see that the

curves are almost flat for each case. This means that the number of

ticks does not vary greatly with varying image distribution. This is a

very desirable quality in an algorithm because it implies that the

image distribution does not affect the performance of our two

algorithms. Another even more important fact is that dependence on

distribution would have suggested inefficiency because higher times

obtained for oddly distributed images could be traced to asynchronism

overheads. Figure 3.4. shows that even the standard algorithm

eliminates the asynchronism overheads while modified algorithm

improves the performance of the standard algorithm by reducing the

total time and also by making it even less dependent on the image

distribution. The experiments carried out with linear arrays of other

sizes, namely 16, 11, 7, 4, also showed that the total time required to

31

complete Hough Transform is independent of image distribution.

Thus, by showing that both of the algorithms presented are

independent of image distribution, the othez: related data are given

based on random binary image at the particular image density.

As explained in Chapter 2, Speed-up and Efficiency are two of

the important criteria used in parallel algorithm performance

evaluations. Figure 3.5.(a). and Figure 3.5.(b). give the speed-up

numbers attained in both Linear standard and Linear modified

algorithms.

32

353025201 5105o

4

2-+---+---t----+----i----t-----....,!----+_

• 15% / modified

1 8 --Li-15% / standard

• 10% / modified

16 --0-10% / standard

• 5% / modified
14

-0--5% / standard

1 2

c. 1 09
'0
33c.

8(/)

6

Figure 3.5.(a).

Number of processors

Dependence of Speed-up on number of
processors. Image densities: 5%, 10%, 15%.

33

• 20% / modified

• 25% / modified

-0-- 25% / standard

20 -+---..-+---..-+---..-+---..-+----+---+---i-

5

1 5

-0- 20% / standard

o
o 5 10 15 20 25 30 35

Number of processors

Figure 3.5.(b). Dependence of Speed-up on Number
of Processors. Image densities 20%, 25%.

Examining Figure 3.5.(a). and Figure 3.5.(b)., one can

immediately realize that the speed-up attained by Linear Modified

algorithm is much better that the Linear Standard algorithm in every

case presented. It is important to note that Linear Modified Algorithm

outperforms Standard Algorithm in all linear array sizes and all

image density values possible. This stems from the fact the modified

algorithm adjusts the size and sending of coordinate messages

intelligently to utilize the processing power of the calculating nodes.

34

Table 3.2. gives the improvements achieved by using the modified

algorithm instead of using the standard algorithm.

Table 3.2. Percent improvement in speed-up
due to Modified Algorithm.

I~
density

5% 10% 15% 20%No. of 25%
processors

4 2.9 1.2 0.7 0.5 0.3

7 10.4 5.0 3.2 2.1 1.6

11 26.5 14.5 10.0 7.2 5.7

16 45.5 28.9 21.5 16.3 13.0

31 93.1 69.3 55.8 46.4 40.0

35

The efficiency of the Linear Modified Array as image density

changes is illustrated in Figure 3.6.

--O-p=31

----fr-- p=4

3025

• p=16

• p=7

o p=ll

201 5105

0.8

0.7

0.6

0.5

....
Co)
c:: 0.4<U....
Co)

~
~ 0.3

0.2

0.1

0

0

Figure 3.6.

Image density

Dependence of efficiency on Image density
Modified Linear Array Algorithm.

It is seen from Figure 3.6. that efficiency increases linearly with

small image density and saturates after a while. This saturation value

of the efficiency is dependent upon the size of the array. As one can see

from Figure 3.6. efficiency of 4 processor Linear array saturates at 5%

image density to about 0.7. As seen from Figure 3.6., efficiency of 31

36

processor Linear array is lower than the others and keeps on

increasing in the range of image densities considered. On the other

hand, a 16 processor linear array performance saturates at image

density of 15% to a value of0.75.

37

Chapter 4

Implementations on a Mesh

4.1. Introduction

In this Chapter, the results of Hough Transform execution on a

two dimensional mesh are presented. The results presented here are

obtained from meshes of various sizes mapped on hypercube

NCUBE/IO.

An n-processor mesh consists of n=N2 processors arranged on a

square grid of size NxN. There is a direct communication link between

nearest neighbors. Each processor, including the processors on the

borders and edges, has 4 links to manage with its neighbors. The

number of links each processor has to manage does not depend on the

total number of processors present. Figure 4.1. shows a mesh with n

processors.

Meshes can have either wraparound or non-wraparound

communication links. Diameter of a wraparound mesh is roughly half

the diameter of non-wraparound mesh. Thus, wraparound mesh has

better communication performance than a non-wraparound mesh.

For example, processor (0,0) is connected to processors (0,1), (1,0), CO,N)

and (N,O) in a wraparound mesh while it is only connected to (0,1) and

(1,0) in a non-wraparound mesh. The meshes considered in this

Chapter are all wraparound meshes.

38

A wraparound mesh of size NxN has a diameter of N when N is

even and (N-1) when N is odd. Comparing a mesh with linear array,

one can easily see that mesh has better connectivity than linear array.

o 1 2
I

N-l

0-

1-

2-

N-l -

Figure 4.1.

I
I
I
I
I
I

------+--
Mesh with NxN processors.

Mesh is one of the most popular architectures used for

implementing parallel algorithms. There are many articles published

about meshes used in parallel processing [17-19]. Meshes are

especially suitable for problems closely tied to the geometry of physical

space. For example, meshes are widely used in parallel image

39

processing algorithms because mapping an image onto a mesh is

relatively simple.

Kannan and Chuang [20] have reported a Fast Hough

Transform implementation using meshes. The data from the actual

implementation is not given in their paper. Their algorithm has two

versions. First version is for the case when coordinates of the edge

pixels are provided as input. As explained earlier, this approach does

not take into account the time required for extracting the coordinates

from image. Their second version of the algorithm accepts the actual

image as input but this version is liable to asynchronism overhead

because processors hitting the blank parts of the image remains

"'dl II1 e.

4.2. Embedding a Mesh in Hypercube

It is possible to embed a mesh with NxN processors in a

hypercube of degree d, where N=2d12 and d is even. In this case, "host"

processor number in the hypercube, p, is a d bit string. First d/2 bits of

p are used to find the row number and the last d/2 bits of p determine

the column number of the processor in the mesh according to the gray

code ordering. Processor 0 is at row 0 and column O. Embedding a

16 node mesh in hypercube of degree 4 is given in Table 4.1.

40

Table 4.1. Embedding 16 node mesh array
in hypercube of degree 4.

~
Number

0 1 2 3
Row
Number

0 0000 0001 0011 0010

1 0100 0101 0111 0110

,

2 1100 1101 1111 1110

3 1000 1001 1011 1010

4.3. Implementation

Standard and modified algorithms were implemented in

meshes with 4, 7,11,16 and 31 processors. The basic structure of the

algorithms was the same as the linear array algorithms. Processor 0

examines the binary image and extracts the coordinates of the black

pixels and remaining processors generate parameter space split

equally between them. The main distinction of the mesh algorithm

from the linear algorithm is that each processor passes the coordinate

41

message to a list of processors instead of passing it to only one

processor. Thus mesh algorithms are more general than linear

algorithms. In linear algorithms the list of destination processors was

not used because there was only one destination processor in each case

and using the list approach reduces the efficiency unnecessarily in

this case. The actual allocation of processors is shown in Figure 4.2.

The dashed circle denotes the processor examining the image, the

regular circle denotes the parameter space generator processors. The

direction of the arrows indicate the direction the coordinate messages

travel. The numbers in the circles indicate, p, the "host" processor

number in the hypercube.

Figure 4.2.(a). Implementation of the algorithm
with 4 processors.

42

Figure 4.2.(b). Implementation of the algorithm
with 7 processors.

,"

Figure 4.2.(c). Implementation of the algorithm with
11 processors.

43

1 . .
..., 0 ' --f1\ --0
,;~

Figure 4.2.(d). Implementation of the algorithm with
16 processors.

44

Figure 4.2.(e). Implementation of the algorithm with
31 processors.

Unlike linear arrays, it is possible to arrange communication

paths in various ways in meshes. The communication paths in the

algorithms used here are arranged so that no node gets the same

message twice from different sources. The paths are also designed to

minimize the longest distance from processor O. Minimizing the

longest distance is very important because the processor that is most

45

distant from processor 0 receives the coordinate messages last and it is

the last one to complete its task. Hence minimizing the longest

distance in a given architecture increases efficiency.

4.4. Results

Figure 4.3.Ca). gives the times obtained from mesh standard

algorithm working with 31 processors. Figure 4.3.Cb) is the

corresponding graph for mesh modified algorithm. Image density of

the binary image processed is indicated by the percentage numbers on

the lines.

I 1 I ~, I I I

~25% -......

P'--20%
-

P'---15%
-r

t---- -r
10% _

-I==- -r
-5%-

0%
I I I I

4500

4000

.fAu 3500E::.....
0... 3000

~::s
2500Z

2000

1500
o 20 40 60 80 100

Image distribution

Figure 4.3.(a). Dependence of Time on image distribution
Standard Mesh / 31 processors.

46

4500

4000
25%

3500.s 20%
E= 3000....
0 15%
'"' 2500
~ 10%

i 2000
5%
0%

1500

1000-t----t----+----f----+-----f-
o 20 40 60 80 100

Image distribution

Figure 4.3.(b).Dependence of Time on image distribution
Modified Mesh / 31 processors.

Figure 4.3. reveals that the curves are almost flat for each image

density shown. Thus, similar to the linear array, the image

distribution does not affect the total time required to complete the

generation of parameter space. As discussed earlier, this is a

desirable property and indicates that algorithm is not liable to

asynchronism overheads resulting from image distribution. Results

obtained from programs using meshes with 4, 7, 11, 16 process,ors also

exhibited the independence from image distribution. Because the

times obtained are independent from image distribution the result of

other experiments are given based only on random binary image at the

particular image density.

Figure 4.4.(a). and Figure 4.4.(b). give the speed-up attained by

standard and modified algorithms in meshes.

47

353010 15 20 25

Number of processors
5

-0-- 10% / standard

• 5% / modified

:......-0-5% / standard

o

4

8

6

2-+--~---+----I----+-----+---I----+-

• 15% / modified

1 8 --lr-15% / standard

• 10% / modified

1 2

14

1 6

Figure 4.4.(a). Dependence of Speed-up on number of
processors for image densities 5%, 10%, 15%.

48

25

" • 25% / modified

-b-- 25% / standard

20 • 20% / modified

--0- 20% / standard

1 5

0.

~
0

&
10fI)

5

o
o 5 1 0 1 5 20 25 30 35

Number of processors

Figure 4.4.(b). Dependence of Speed-up on number of
processors for image densities 20%, 25%.

Examining Figure 4.4. one can notice that the speed-up values

increase as number of processors increase. This is a desirable quality

because it means that one can decrease the total execution time simply

by using more processors. There is a limit where additional processors

increase the speed-up values. After a certain number of processors

speed-up values does not increase. This phenomenon can be observed

from the curve that belongs to 5% image density. As one can realize

from Figure 4.4.(a)., speed-up does not increase when one moves from

49

16 processors to 31 processors. The reason for this is that the savings

in computational time is offset by increased communication time for

this image density. So for 5% image density, one may conclude that it

is best to use 16 instead of 31 processors because going up to 31

processors does not change speed-up. For other image densities, going

from 16 processors up to 31 processors increases the speed-up because

they have more computational task than 5% image density. These

image densities do not reach their flat portion of the curve in the

processor range covered here.

Examining Figure 4.4.(a) and Figure 4.4.(b), one notices that the

efficiencies for modified algorithm are uniformly more than those for
~

standard algorithm in every image density. Thus one comes to the

conclusion that the modified algorithms perform better than standard

algorithms.

50

The improvement in speed-up values are given in Table 4.. 2.

Table 4.2. Percent improvement in speed-up
due to Modified Algorithm.

~
density

5% 10% 15% 20%No. of 25%
processors

4 2.4 1.1 0.7 0.5 0.3

7 4.9 2.3 1.5 1.0 0.7

11 6.6 3.0 1.8 0.9 0.5

16 14.3 7.7 5.1 3.3 2.5

31 -1.6 8.3 6.5 4.2 3.5

Examining Table 4.2., one can notice that percent improvement

decreases as image density increases. In a given image density,

percent improvement increases with increasing number of processors

used.

Figure 4.5. gives the efficiency of the mesh modified algorithm.

Note that efficiency increases with increasing image density for each

case depicted. After a certain value of image density the efficiency no

longer increases and remains flat. It is seen from Figure 4.5. that

efficiency of the 31 node algorithm is the slowest to recover followed by

16 node algorithm. In general, Figure 4.5. shows that algorithms

employing more processors need higher image densities to reach the

51

stable efficiency point. Algorithms with high number of processors

spend more on communication, thus the calculation task should be big

enough to justify the communication time lost.

l-+----+-----l----+-----l----+----_+_

302520

.. p=31

tl p=16

• p=ll

--o-p=7

• p=4

1 5105o
o-+---I-----+----I-----+---~I-----+-

0.2

0.4

0.8

>. 0.6

5.....
c..>

t+::
ttJ

Image density

Figure 4.5. Dependence of efficiency on image density
Mesh / Modified algorithm.

52

Chapter 5

Implementations on a Hypercube

5.1. Introduction

In this Chapter, the performance of the algorithms

implemented on hypercubes of various sizes are presented. The results

presented here are obtained by implementing algorithms on subcubes

of NCUBE/10 hypercube.

A detailed description of hypercube topology was gIVen in

Chapter 2. Hypercube is extremely popular in parallel algorithms

because of their versatility [21,22]. As mentioned earlier, it is possible

to embed many structures in hypercubes. Linear array and mesh used

in Chapter 3 and Chapter 4 were also embedded in subcubes of

NCUBE/10 which are hypercubes. In this chapter, the algorithms are

implemented on the hypercube itself.

Ranka and Sahni [4] have previously reported on a method to

compute Hough Transform on hypercubes. Their method assumes

that coordinates of pixels are already known, while the method

presented here takes the binary image as input.

53

5.2. Implementation

Standard and modified algorithms were implemented in

hypercubes with 4, 7, 11, 16 and 31 processors. The main idea behind

the algorithms is similar to the linear array and mesh case. Processor

o is assigned to the task of examining the image and sending the

coordinate messages. The communication paths shown in

Figure 5.1. make use of the hypercube structure. The dashed circle

represents the image examining processor, the regular circle

represents the parameter space generating processor and the

coordinate messages travel in the direction of the arrows.

As has been mentioned earlier, hypercube topology has many

superior characteristics. As a consequence, the communication paths

shown in Figure 5.1. are the best of the three topologies considered in

this thesis.

Figure .5.1.(3). Implementation of algorithm
with 4 processors.

54

Figure S.l.(b). Implementation of algorithm
with 7 processors.

Figure S.1.(c). Implementation of algorithm
with 11 processors.

55

Figure 5.l.(d). Implementation of algorithm
with 16 processors.

56

Figure 5.1.(e). Implementation of algorithm
with 31 processors.

As one can notice from Figure 5.1.(e)., 31 node algorithm is

implemented such that the maximum distance between processor 0

and any processor is 4. The comparable implementation of 31 node

algorithm in linear array results in maximum distance of 30 as

demonstrated in Chapter 2. Shorter communication path between

processor 0 and the processor that is farthest from processor 0 means

that the farthest processor receives the first coordinate message

earlier which reduces the total Hough Transform time greatly because

the farthest processor is completely idle before it receives the first

57

coordinate message. One should also note that Hough Transform ends

when the farthest processor finishes processing its last coordinate

message.

5.3. Results

Figure 5.2.(a). gives the times obtained from Hypercube

standard algorithm working with 31 processors. Figure 5.2.(b). is the

corresponding graph for Hypercube modified algorithm.

I I I I
I I I I

-~ -
25%

-~20% -

-1---- 15 %
c-

-1'----10%
c-

-- I-

- 5%_

- 0% l-

I I 1 I
I I I I

4500

4000

~ 3500
u

E::::
'- 30000

.8 2500§
Z

2000

1500

1000
o 20 40 60 80 100

Image distribution

Figure 5.2.(a). Dependence of Time on image distribution
Hypercube I Standard algorithm I 31 processors.

58

20% ---------------L
15% --1

25% --------------J

10%

0---5%
1---- 0% ::===============1

4500

4000

~
3500

u
E:: 3000.....
0....

i 2500

Z 2000

1500

1000

0 20 40 60 80 100
Image distribution

Figure 5.2.(b). Dependence of Time on image distribution
Hypercube / Modified algorithm / 31 processors.

Figure 5.2. demonstrates that times obtained do not depend on

image distribution as was the case with the other topologies. This very

important characteristics of the algorithms presented in this thesis is

also valid for the hypercube topology. Examining Figure 5.2. closely,

one can notice that the times for image distribution cases where the

most of the black pixels are in the second half of the binary image are a

little higher. At this point, one should remember that 0% image

distribution corresponds to the binary image whose first half is

completely empty. In an algorithm that makes use of image

distribution among processors this image results in half of the

processors remaining "idle" so it nearly doubles the total time. In the

algorithms presented here, it only leads to a increase of about 10%,

which represents an enormous improvement.

59

Figure 5.3. illustrates the speed-up achieved by using the

hypercube topology. The graphs look similar to the speed-up graphs in

the previous Chapters as one expects. Here it should be noted that the

algorithms implemented in hypercube topology produced the highest

speed-up. This is due to the fact that the communication paths of the

hypercube topology is the most efficient.

353025201 5105o
2

.. 15% / modified

1 8
---6-- 15% / standard

• 10% / modified

1 6 -0--10% / standard-',-' • 5% / modified
1 4

-D-- 5% / standard

1 2

0..
T

1 0"0
Q)

8.
C/')

8

6

4

Figure 5.3.(a).

Number of processors

Dependence of Speed-up on
processors. Image densities:

number of
5%, 10%, 15%.

60

24 -+---j----l----l----+----+----l---_j_

20

1 6

8

4

~ 25% / modified

Di 25% / standard

• 20% / modified

-0- 20% / standard

o

o 5 10 , 1 5
I

20 25 30 35

Figure 5.3.(b).

Number of processors

Dependence of Speed-up on number of
processors. Image densities: 20%, 25%.

Table 5.1. gives the percent improvement in speed-up achieved

by using modified algorithm instead of using standard algorithm. The

numbers in Table 5.1. resembles the numbers in the corresponding

table for algorithms implemented in mesh. The numbers in Table 5.1.

are generally lower than the numbers in the corresponding table for

algorithms implemented in linear array. Algorithms implemented in

linear array are not as efficient as the algorithms implemented in

hypercube and consequently there is more room for improvement.

61

Table 5.1. .Percent improvement in speed-up
due to Modified Algorithm.

.~
density

5% 10%No. of 15% 20% 25%
processors

4 2.6 1.0 0.7 0.4 OJ

7 3.8 1.6 1.0 0.5 0.4

11 4.8 2.0 1.1 OJ 0.0

16 13.0 6.9 4.6 2.9 2.1

31 -0.7 8.9 6.2 3.6 2.6

Table 5.1. illustrates that the difference between modified and

standard algorithms are more emphasized in the case where

processors are over-burdened with image. For example, 25% image

density and 16 processor case represents a case where most of the time

processors are busy with processing the previous message when the

next coordinate message arrives. So in this case , there is no room for

much improvement. However, if 16 processors and 5% image density

case is considered, the improvement is noticed to be 13% much higher

than 2.1% improvement for 25% image density.

Figure 5.4. illustrates the dependence of efficiency on image

density in hypercube modified algorithm.

62

I-t----+---+--~+_--_+--___1r_--_t_

302520

• p=31

• p=16

-D--p=ll

.. p=7

-----tr--p=4

1 5105o
o-+---t----+---t----+----+---_+_

0.8

0.6

0.2

»u
5....
u

~ 0.4

Image density

Figure 5.4. Dependence of efficiency on image density
Hypercube / Modified algorithm.

63

Chapter 6

Conclusion

6.1. Discussion

In this thesis, two parallel algorithms for computing Hough

Transform were developed and implemented on three different MIMD

architectures, linear array, mesh and hypercube. Experiments were

carried out by embedding these arcnitectures in NCUBEIlO parallel

machine at Lehigh University.

The results showed that the algorithms developed are not liable

to asynchronism overheads, which result from nonhomogeneous

distribution of edge pixels in binary images. Elimination of the

asynchronism overheads was possible by the very nature of the

algorithm structures without introducing additional computational

effort. In literature, asynchronism overheads were reported to be

responsible for 40% increase in total execution time, thus elimination

of the asynchronism overheads proved to be a major achievement.

Our second "modified" algorithm using dynamic partitioning of

the image proved to perform better than our "standard" algorithm in

almost every case presented. The analysis of the algorithms on three

different popular architectures provided a broader evaluation of the

algorithm performances.

64

6.2. Future Directions

Separating the task of scanning the binary image from the task

of generating the parameter space proved to provide a natural way to

eliminate asynchronism overhead in Hough Transform. This idea

behind the algorithms may be tried in other pattern recognition

techniques.

Allocation of one processor to scan the image may be

generalized to allocating m processors to scan the image, where m can

be adjusted according to the requirements of the application.

Using dynamic partitioning of the binary image scanned also

proved to useful in the modified algorithm provided in this thesis. The

concept of dynamic partitioning may be generalized to dynamic task

scheduling and it may be tried in a pattern recognition algorithm in

the future.

65

References

[1] HUNGWEN Li, LAVIN Mark A., LE MASTER Ronald J.
"Fast Hough Transform: A Hierarchical Approach" Computer
Vision, Graphics, and Image Processing 36, 1986, pp 139-161.

[2] BEN-TZVI D., NAQVI A. A., SANDLER M. "Efficient
Parallel Implementation of the Hough Transform on a distributed
memory system" Image and Vision Computing, Vol 7, No 3,
August 1989.

[3] KANNAN, C. S. CHUANG, Henry Y. H. "Fast Hough
Transform on a Mesh Connected Processor Array" Information
Processing Letters 33, January/l0/1990, pp 243-248.

[4] RANKA, Sanjay SAHNI, Sartaj "Computing Hough
Transforms on Hypercube Multicomputers" The Journal of
Supercomputing 4,1990, pp.169-190.

[5] THAZHUTHAVEETIL, Matthew J. SHAH, Anish V.
"Parallel Hough Transform Algorithm Performance" Image and
Vision Computing Vol 9 No 2 April1991

[6] HOUGH, P. V. C. "Methods and means for recognizing
complex patterns" US patent no. 3069654 (1962).

[7] BALLARD, D. H.
Detect Arbitrary Shapes"
pp.111-122 1981

"Generalizing The Hough Transform to
Pattern Recognition Vol 13 No 2

[8] QUAN, Long MOHR, Roger "Determining perspective
structures using hierarchical Hough Transform"
Pattern Recognition Letters, May 1989, pp. 279-286.

[9] DAVIES, E. R. "Occlusion Analysis for Object Detection
using the Generalized Hough Transform" Signal Processing 16,
1989, pp. 267-277.

[10] TSUI, H. T. CHAN C. K. "Hough Technique for 3D Object
Recognition" lEE Proceedings, Vol. 136, Pt. E ,No 6, November 1989.

[11] DAVIES, E. R. "A Modified Hough Scheme for general
circle location" Pattern Recognition Letters 7, 1988, pp. 37-43.

66

"Fast Hough
Information

[12] SEITZ, C. L. "The Cosmic Cube," Comm. ACM, Vol. 28,
No.1, January, 1985, pp.22-33. .

[13] KUMAR, Prasanna V. K. TSAI, Yu-Chen "Designing
Linear Systolic Arrays" Journal of Parallel and Distributed
Computing Volume 7, pp.441-463 1989.

[14] o'HALLARON, David R. "Uniform Approach for Solving
Some Classical Problems on a Linear Array" IEEE Transactions on
Parallel and Distributed Systems Volume 2, No.2, April1991.

[15] LEE, P. KEDEM, Z. "Synthesizing Linear Array
Algorithms from Nested For Loop Algorithms" IEEE Transactions on
Computers Volume 37, pp. 1578-1598, December 1988.

[16] BARETI, R. S. O'HALLARON, D. R. ITZKOWITZ, H. R.
"Mapping Extended Kalman Filters onto Linear Arrays" IEEE
Trans. Automat. Contr., 1990.

[17] DEHNE, Frank HASSENKLOVER, Anne-Lise SACK,
Jorg-Rudiger . "Computing the configuration space for a robot on a
mesh-of-processors" Parallel Computing Vol 12 pp.221-231 1989

[18] HOLEY, Andrew J. OSCAR, H. Ibarra "Iterative
algorithms for the planar convex hull problem on mesh-connected
arrays." Parallel Computing Vol18 pp.281-296 1992

[19] SCHERSON, Isaac D. CORBETT, Peter F.
"Communications Overhead and the Expected Speedup of
Multidimensional Mesh-Connected Parallel Processors" Journal of
Parallel and Distributed Computing Vol. 11 pp.86-96 1991

[20] KANNAN, C. S. CHUANG, Henry Y. H.
Transform on a Mesh Connected Processor Array"
Processing Letters Vol. 33 pp.243-248 1990.

[21] RANKA, Sanjay SAHNI, Sartaj "Image Template
Matching on MIMD Hypercube Multicomputers" Journal of Parallel
and Distributed Computing Vol 10 pp.79-84 1990.

[22] CHEN, Ming-Syan SHIN, Kang G. "Subcube Allocation
and Task Migration in Hypercube Multiprocessors" IEEE
Transactions on Computers Vol39 No 9 September/1990.

67

Vita

The author was born on January/01/1967 in Mugla, Turkey. He

is the son of Mehmet Ali OZBEK and Hosgun OZBEK.

In June-1985 , he received his high school diploma from Ankara

Fen Lisesi, Ankara, Turkey. On July/03/1992, he received Bachelor of

Science degree in Electrical Engineering from Bogazici University,

Istanbul, Turkey. In Fall of 1989, he started his studies in Lehigh

University pursuing Master of Science degree in Electrical

Engineering.

The author is a member of IEEE and ACM.

68

	Lehigh University
	Lehigh Preserve
	1992

	Parallel algorithms for Hough transform
	Fevzi Oktay Ozbek
	Recommended Citation

	00346
	00347
	00349
	00350
	00351
	00352
	00353
	00354
	00355
	00356
	00357
	00358
	00359
	00360
	00361
	00362
	00363
	00364
	00365
	00366
	00367
	00368
	00369
	00370
	00371
	00372
	00373
	00374
	00375
	00376
	00377
	00378
	00379
	00380
	00381
	00382
	00383
	00384
	00385
	00386
	00387
	00388
	00389
	00390
	00391
	00392
	00393
	00394
	00395
	00396
	00397
	00398
	00399
	00400
	00401
	00402
	00403
	00404
	00405
	00406
	00407
	00408
	00409
	00410
	00411
	00412
	00413
	00414
	00415
	00416
	00417
	00418
	00419
	00420
	00421
	00422

