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Abstract

This thesis presents TransUCP, a general framework for transformational analogy. The

particulars and working of this framework are further explained with relevant working

examples. It is proved, using TransUCP, that transformational analogy does not meet the

worst-case complexity scenario of Nebel and Koehler (1995). By generating counter­

examples, the framework is also used to prove that their results about plan adaptation

being harder than planning from first principles do not apply to it. The implementation

details of TransUCP and the results derived from the experimentation are also explained.

A synopsis of the TransUCP framework has been accepted for publication at the

upcoming European Conference for Case-Based Reasoning (ECCBR-06).



1 Introduction

Planning can be defined as the process generating a solution for a well-defined problem.

More precisely, it can be defined as generating a set of actions to be executed to achieve a

specified set of goals, given the initial conditions (Bergmann el al., 1996). Case-based

planning is a classical planning technique where in solutions of previously solved

problems are reused to solve new ones. Two main approaches of case-based planning are

derivational analogy and transformational analogy.

Over the years, derivational analogy, a problem-solving technique that advocates reusing

the sequence of derivations that led to a solution plan rather than the plan itself, gained

prominence among the case-based planning community. Part of the reason for this

prominence is the interest in problem solving by combining first-principles planners and

case-based reasoning. If the first-principles planner is used to generate plans. then it is

straightforward to annotate the derivations that these planners followed to obtain the

plans (Veloso, 1994). Thus. derivational analogy is a good fit for this line of research.

There has been recent work on developing DerUCP. a framework using derivational

analogy (Au el 01.. 2002). It enhances the universal classical planning (UCP) framework

to build a generic, domain-independent plan adaptation algorithm. An analysis of

DerUCP demonstrates that it does not fall under the worst-case complexity scenario by

Nebel and Koehler (1995). and therefore. their results about plan adaptation being

computationally harder than plan adaptation does not apply to it.

'1



In this thesis, TransUCP, a general framework for transformational analogy built on top

of the universal classical planning model is presented. Transformational analogy is a

problem-solving technique in which a pre-selected plan, defined as a sequence of actions,

is modified to solve a new problem (Carbonell, 1983). Possible modifications to the plan

include removing actions, adding new actions, and changing the parameters from actions.

Interest on transformational analogy started from early case-based reasoning systems. In

particular, the CHEF system constructs cooking recipes, which are plans because recipes

are sequenccs of cooking stcps such as boiling a certain amount of watcr (Hammond,

1990). Thcsc rccipes are modified depending on factors such as the ingredients currently

available.

Despite some well-documented applications of derivational analogy, a major difficulty of

using this technique is the requiremcnt about thc availability of thc dcrivational tracc that

lcd to a solution. Evcn whcn a domain thcory is availablc, wc might not know how a

particular plan was crcatcd. For cxamplc, the rulcs for playing chcss arc known but wc

might not know thc rcasoning bchind a player making a sequencc of movcs. This

knowledgc cnginecring rcquircment of dcrivational analogy is well known (Cunningham

ct af.. 1996). Perhaps for this rcason. application-oriented papcrs in case-based rcasoning

confercnces that use somc fonn of adaptation frequently usc transfonnational analogy.

Yet. despite this interest no gencral framcwork for analyzing transfonmnional analogy

exists to date.
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Using the TransUep framework, it is demonstrated that transformational analogy does

not meet the worst-case complexity results of Nebel and Koehler (1995), and therefore,

their results about plan adaptation been computationally harder than plan adaptation does

not apply to it. This is proved by constructing a counter-example in which a crucial

condition is not met. Furthermore, experiments are performed that demonstrate that this

counter-example is not en exception. Rather, these experiments show that it is very

unlikely that transformational analogy falls under the scenario described in Nebel and

Koehler (1995).
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2. Preliminaries and Related Work

In this section, we touch upon those topics and definitions which form the basis of case­

based planning and related topics. TransUCP, the transformational planner and the

primary focus of this document, being introduced in later sections as, is built upon

universal classical framework, whose underlying concepts and the data structures used

are explained in this chapter. Our general framework enhances the SPA system (Hanks

and Weld, 1995), to other forms of planning by taking advantage of the universal

classical planning (UCP) framework.

2.1 Logistics Domain

In this section, we describe the logistics domain which is used to explain the tem1S and

concepts defined and used in the following sections. The same domain will be used to

through out the length of this document to explain various concepts and to illustrate

examples.

In the domain being currently used. there are different packages located initially at

various geographic locations or cities and some or all of these packages have to be

transported to specific locations. There are also means of transportation such as trucks

located at various cities and these are used to move the packages. Table 1 shows thc sct

of availablc operators in this domain. their descriptions. their pre-conditions and cffects.

A description of the steps and the convcntions followed in their usc are givcn belo\\':



• The action L (P, V, Le) indicates that the vehicle V is loading the package P from

location Le.

• UL (P, V, Le) indicates that P is unloaded from V onto location Lc.

• MV (V, LI, L2) indicates that V is moved from LI to L2.

Operator Pre-conditions Effects Description
MV(truck, The truck is The truck is at Moves the truck with its contents
locl,loc2) initially at loc I loc2 from loc I to loc2

L(package, The truck is at The package is Loads the package in to the truck
truck, loc I) loci in the truck at

AND loci.
The package is
at loc I

UL(package. The truck is at The package is Unloads the package from the
truck, loc I) loci at loc 1. truck

AND
The package is
in the truck

Table 1: Operators in the transportation domain

2.2 Partial Order Plan

The algorithm proposed in this thesis uses to a large extent similar representation fom1at

and data structures as of that used in the UCP algorithm as proposed by Kambhampati

and Srivastava, (1995).

A partial plan is represented by the 4-tuple < T. 0. B. L> where:

• T is the set of all the steps in the partial plan.

• 0 is the setal' ordering constraints between the steps of T.

• B is the set of binding (co-designation constraints. which require variables to take

6



the same value) and prohibitive bindings (non co-designation constraints, which

requires variables not to take the same value) in the preconditions and post­

conditions of the operators, and,

• L is the set of auxiliary constraints, which are of 3 types:

o Ordering constraints are of the form (t l -7 tJ) indicating that step tl

precedes step tj.

o Interval Preservation Constraints which are the form (ti -70 tJ) which

means that the condition Q has to be true between the steps t, and tJ of T.

This is a "causal link" used in partial-order planners such as SNLP. If (t l

-70 tJ) holds, it implies that (t l -7 tJ) also holds.

o Contiguity constraints, which are the form (t l * tJ) which means that the

step t, has to be followed by step tJ.

Using the above mentioned definition of a partial plan, we define the following terms

related with a partial plan problem:

Initial Step: The stcp to, callcd the initial step has no preconditions and has as effects the

conditions that are true in the opening state.

Final Step: The step tt. which has no effects and has as pre-conditions the goals to be

achiewd. is called the filial step.

Null-Plan: A null-plan can be defined as a plan where

7



T = {to, too},

o = {(to< too)}, and,

B = L = null

Condition: Operators have a set of preconditions which must be satisfied before the step

can be applied and a set of post-conditions which are true after the step has been applied.

When an operator is applied it is added to a plan as a step. For, example, in the logistics

domain, MY and L are operators and MY (Y I, B, C) is a step. A cOllditioll has the form

(~Q tk) indicating that the condition Q has to be satisfied for step tJ• Each step tJ in the

plan can produce effects (tm ~Q) which can be used to satisfy conditions. A condition

~Q tk is satisfied by adding an interval preservation constraints tm ~Q tk, such that tm ~Q

holds. For example, for the operator L (package, truck, locI), which loads the package at

location loc 1 into the truck, the preconditions (that both the truck and the package must

be at location loc 1) have to be satisfied.

Open condition: If a condition that needs to be true for the execution of a step has not

been satisfied, it is said to be an opell cOllditioll. An open condition is a constraint of the

form (~Q tJ) where the condition Q has to be true for step tJ and there is no step before tJ

whose post condition satisfies Q.

Threat: A t!treat is a 3-tuplc (tk. t1 ~Q tJ) where tk can be inserted between t1 and tJ and the

post condition of 11. can negate or add Q. Threats occur as a result of the partial ordering

s



between steps. So for example, the condition Qmight use a truck to satisfy a condition in

tj, but another step tk might use the same truck. Threats are solved by adding constraints

to the plan such as ordering relations between steps. For instance, one might reorder the

steps to make sure that the truck is used only once at any point of time.

Flaws: Open conditions and threats in a partial plan are together referred to as flaws of

the plan.

Planning Problem: A planning problem is a 2-tuple (Initial, Goa/), where Initial is the

set of initial conditions and Goal is the set of desired goal conditions.

Solution Plan: If every safe ground linearization of a plan takes the initial state to the

goal state, and the plan has no open conditions or threats, it is said to be a sollltion plan

for the given problem.

We now illustrate a planning problem and its partial plan with an example in the logistics

transportation domain. In the problem sho\\11 in Figure 1. there are four locations.

namely: Location A. Location B. Location C and Location D. There is a package PI

located at Location A and another package P2 at Location D. The planning problem

requires package PI in location A. and package P2 in location B. to be relocated 111

location C. The figure also shows two trucks V1 and V2 at locations A and 0

rcspecti\'c1y.
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Figure 2 shows a solution plan for the problem depicted in Figure 1. Arrows denote either

ordering or interval preservation constraints. The plan consists of 11 steps, denoted by tk.

It can be seen that after t3 is executed, there are two possible orderings of execution of

steps as depicted below.

OR

Both these sequences satisfy the partial ordering constraints of the plan. Under these

conventions PI is loaded in V1 and P2 into V2. P2 is relocated in Busing V2, where it is

picked by VI, which has moved from A to B. VI continues to C, where both packages

are unloaded.

Location A Location U Location (' Location ()

Goal: PJ at Locatioll C, P2 at Locatioll C

Figure 1: Planning problem in the logistics domain

tb : L(P2, \'1, B)

1
t~: :\1\'(\'1, B. C)

/1

to· t l : L(PI, \'l,A)· t l : L(P2, \'2, D)

\ ", >IV (\'I. A."I

t s: :\I\' (\'2. D. B)

I" UL(I'I. \ 72.VI.CI

t T

Figure 2: Partial plan solving the problem in Figure 1
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2.3 Total Order Planning

Having looked at partial order plans, we now describe an alternative kind of planning

called total order planning. Total ordering planning can be represented by the 4-tuple < T.

0, E, L>, which is similar to the definition mentioned in Section 2.2, except that the set

of constraints, L, here has only contiguity constraints. That is, total order plans specify a

linear sequence of steps and the order of execution of these steps have to be maintained in

accordance with the sequence. For example, a total order solution plan for the planning

problem mentioned in Figure I is shown in Figure 3 below.

Figure 3: Total order solution plan for the planning problem in Figure 1

2.4 Universal Classical Planning

In this section, we define a popular planning framework called the Universal Classical

Planner. upon which we build to form the TransUCP planner.

The Universal Classical Planner (UCP) takes a partial plan and perfom1s refinements to it

in an iterative manner until a solution plan is generated. During each pass. the refinement

done to the plan can be addition of steps or constraints to the existing partial plan. The

possible types of refinements that a UCP planner can choose to pcrform on the partial

plan on each itcrativc pass arc:

I. Fonrard State Space Plan Refinement

11



ii. Backward State Space Plan Refinement

iii. Plan Space Plan Refinement

2.4.1 Fonvard state space plan refinement

A head step of a partial plan is defined as a step tj of the plan where to* tl * '" * tJ and

there is no step l' such that tJ * 1'. The sequence of steps to* tl * ... * tJ is called the

header of the plan. The set of all states tl that can immediately follow the head step tJ is

called the head fringe. Forward state space plan refinement involves selecting a new step

or a step from the head fringe of a plan and appending it to its header. Figure 4 shows the

pseudo-code for a forward state space planner.

Function RefinePlanFon\'llrdStateSpace (Plan P)
Returns: Plan

//Operator Selection
Non-detenninistically select one of the following:

Non-detern1inistically select a step t. from head-fringe of P, such that all
preconditions of the operator 0 (that takes the head fringe to tl ) are satisfied in head
fringe ofP.

OR

Non-detern1inistically select an operator 0 from the operator library. such that all
preconditions of the operator 0 are satisfied in head state t of the plan. Create a new
step name tJ.

//Operator Application
Let tJ be the stcp sclcctcd abo\'c. Add thc contiguity constraint (t l * tJ) to P whcrc tJ is
the currcnt head stcp and associatc this stcp with thc purposc (Step Added. t,. forward
statc).

Rcturn P

Figure 4: Fom'ard State Space Planning
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2.4.2 Backward state space plan refinement

A tail step of a partial plan is defined as the step of tJof the plan where tJ '" tJ.I'" ... * k

and there is no step t' such that l' * tJ. The sequence of steps tJ '" tJ.1 * ... * 1.00 is called the

trailer of the plan. The set of all states tl that can immediately precede the tail step tJ is

called the tail fringe. Backward state space plan refinement involves selecting a new step

or a step from the tail fringe of a plan and putting it immediately before its trailer. Figure

5 shows the pseudo-code for a backward state space planner.

Function RefinePlanBackwardStateSpace (Plan P)
Returns: Plan

//Operator Selection
Non-detern1inistically select one of the following:

Non-deterministically select a step t, from tail-fringe of P, such that
a. None of the effects of the operator 0 (that takes the tl to the tail state) negate the

facts in the tail state, and,
b. At least one effect of the operator 0 is present in the tail state

OR

Non-detern1inistically select an operator 0 from the operator library, such that
a. None of the effects of the operator 0 negate the facts in the tail state and
b. At least one effcct of the operator 0 is present in thc tail statc of P.

Creatc a ncw stcp namc t\.

//Operator Application
Lct tl be the stcp sclcctcd abovc. Add the contiguity constraint (ti '" tJ) to P where tJ is
thc current tail stcp and associatc this step with the purpose (Step Addcd. 11' backward
statc ).

Return P

Figure 5: Backward State Space Planning



2.4.3 Partial plan space refinement

During plan space refinement, a flaw is selected at random from the current plan. This

flaw could be either an open condition or a threat. Once a flaw is selected, it is rectified

using the following methods.

If it is an open condition (-70 t), it is resolved by

• Selecting an existing step t' in the plan and ordering it before t such that, t' has Q

as a subset of its post-conditions.

• Selecting one of the available operators and adding it to the plan as a new step t'

and ordering it before t such that, l' has Qas a subset of its post-conditions.

There can be more than one way to reorder the existing steps and, similarly, there can be

more than one step that can be added to satisfy the open condition. Therefore, resolving

the open condition can result in multiple partial plans. all of which have that particular

flaw rectified. As a result. the RefinePlanSpace algorithm. shown in Figure 6, returns a

list of plans as opposed to a single plan. After the constraints to be added are decided, the

corresponding binding constraints also have to be added to the plan. This again. can be

done in more than one way and results in multiple plans. Figure 7 shows this

AddLinksAndBindings function.

14



Function RefinePlanSpace (Plan P, Flaw F)
Returns: List of plans

Define L: a local list of plans
If F = null THEN

F = Select a flaw from P

IF F is an open precondition of the form (-.7 Q tj)
THEN

For each step t, currently in P
Do

IF t, can be ordered before tJ, and t, adds a condition unifying with QTHEN
Add the plans returned by AddLinksAndBindings (t" Q, tJ, P) to a local list L

For each operator 0 whose post conditions contains a condition unifying with
Q
Do

Add a step tk, which applies the operator 0 to P with the purpose (Step
Added, tk, plan space)
Add the constraints (tk > tJ), (tk > t~) and (to> tk) to P.
Add the plans returned by AddLinksAndBindings (tk, Q, tJ, P) to a local list L

Return all the plans in the lists L

Else return ResolveThreat (F, P)

Figure 6: Plan Space Planning - Resolving an open condition

If the selected flaw is a threat. it is handled by a "Resolve Threat" function. Given a

threat of the forn1 (tk. ti-.7 Q tJ). this function resolves it by either

• Ordering tk before t, consistently. or.

• Ordering tk after tJ consistently. or.

• Adding thc appropriatc binding constraints to the plan so as to negatc thc thrcat.

Figure S shows thc pscudo-codc for the Resoh'cThrcat function.

15



Function AddLinksAndBindings (Step tl , Condition Q, Step tJ, Plan P)
Returns: List of plans

Define L: a local list of plans
For each set of bindings B causing tl to assert Q
DO

Po = a copy ofP
Add a new link t l -7 Q tJ to Po
Add the ordering constraint tl < tJ to Po, associated with purpose (establish link, tl

-7 Q tJ)

Add B to Po, tagged with R
Add the plan Po to local list L

Return all the plans in the list L

Fil!ure 7: Plan Smlce Planninl! - Addinl! the appropriate constraints

Function ResolveThreat (Threat (tk, ti-7\.l tJ), Plan P)
Returns: List of plans

Define L: a local list of plans
IF tk can be consistently ordered before tl

THEN
Po = a copy ofP
Add the constraint tk < tl to Po, associated with the purpose (protect «tk. ti-7 Q t.l)))
Add the plan Po to local list L

IF tk can consistently be ordered after tJ
THEN

Po = a copy ofP
Add the constraint tJ < tk to PO, associated with the purpose (protect ((tk. ti-7 Q tJ)])

Add the plan Po to local list L

For each set of bindings B that prevents tk' s effects from unifying with Q
DO

Po = a copy ofP
Add constraints tl < tk and 11-; < t, to Po. both associated \\"ith the purpose (protect «(tk.
ti-7 Q t.l)) .
Add B to Po. tagged with R
Add the plan Po to local list L

Return all new plans in the list L

Figure 8: Plan Space Planning - Resolying a threat
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In the pseudo-codes illustrated in figures 4 through 7, we have introduced the tenn

"purpose" and mentioned "associating a purpose" with steps or constraints. These tenns

will be explained in the ensuing chapters of this document. .

Figure 9 illustrates the working of a universal classical planner. The plan is represented

using a directed graph, where each node (shown as a dashed circle) is a partial plan.

Dashed arrows indicate ordering constraints while solid arrows indicate contiguity

constraints. The figure shows us the first four refinements done on the plan.

The planner initially starts with a null plan (containing only the initial and final state). As

mentioned previously, during each iteration, the UCP can choose one of the above three

refinements and modify the partial plan according to the selected refinement strategy.

In the figure below (Figure 9), the planner performs plan space refinement in the first

iteration. Subsequent iterations perfom1 backward state space, forward state space and

plan space refinements. in the specified order. to the plan. The nodes in the figure are

numbered to specify the sequence in which they were added to the partial plan.

17



~1
Plan space
refinement

Initial State

l'

Final State Backward state space refinement ~

Plan spaceL '.1 ;@ Fd space

refinement 5 W- -~ -~ 3 refinement
4

Figure 9: Universal Classical Planning

2.5 Transformational Analogy

Cased-based planning. in general. is viewed upon as to be done using two different

approaches - transformational analogy and derivational analogy. It is important to

understand the underlying ideas and paradigms of these approaches as they are

instrumental to fully comprehend the results of the work done. which are explained in

later sections of this documcnt.

Transfonllational analogy is a problem-solving technique in which a pre-selected plan is

moditied to solvc a new problem (Carbonell. 1983). By looking for a similar

18



solution and copying it to the new situation, making suitable substitutions where

appropriate, transformational analogy transforms it into the target solution. Possible

modifications to the plan include

• Removing step(s) from the plan

• Adding new step(s) to the plan

• Changing the parameter(s) of the steps in the plan (binding constraints)

• Addition/removal of ordering/contiguity constraints in the plan

Since the starting point of a planner adopting transformational analogy method is the

retrieved solution plan for a previously solved planning problem from the case-base, a

transformational planner does not build a plan solution "from scratch". That is, given a

solution plan, it starts modifying and refining it until it solves the current planning

problem at hand. The modification and refinement techniques followed may vary from

one planner to the other. The SPA system (Hanks and Weld, 1995) is a gencral purpose

algorithm for transformational analogy. SPA takes advantage of the partial-order plan

representation of partial-order planners to modify an existing plan. TransUCP, the

planner which is the primary focus of this thesis, is a transformation planner and can be

looked upon as an extcnded vcrsion of the SPA systcm.

To illustratc thc idea bettcr. considcr thc following cxamplc. If \\'c havc a solution plan

for transporting the packagc PI from New York to Boston and solution uses thc route

New 'I'ork -7 Rhode Island -7 Boston. Now. if a ncw packagc nceds to be transported

19



from New York to some city in New Hampshire, a planner using transformational

analogy would most probably reuse the original solution and would build the plan (route)

from Boston to New Hampshire. The figure below (Figure 10) illustrates this example.

The route on the left is the solution plan retrieved from the case-base and the one on the

right is what a planner, adopting transformational analogy methods, would have come up

with as a solution plan. The last leg of this route (shown as a dotted connector), could

have been generated from first principles.

New Hampshire 0 New Hampshire 9
,,

Rhode Island Rhode Island

,,,

New York New York

Figure 10: Transformational Analogy Example

2.6 Derivational Analogy

The second methodology used with case-based planning is derivational analogy.

Derivational analogy stores problem solving decisions and their justifications in the

source plan and replays them for the target (Carbonell. 1986; Veloso. 1994). That is.

given a planning problem and a solution plan to a previous problem. a derivational

planner looks at the history of the problem solution. the steps invol\'Cd and the decisions

taken at every stage that led into those steps being added into the solution plan.
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Derivational analogy makes use of this information to arrive at a solution for the current

planning problem.

Unlike a transformational planner, which starts from the solution plan from the case-base,

a derivational planner has, as starting point, a nuB-plan and starts building from there on.

It tries to reuse the same decisions as those used in the case-plan, thereby probably

replicating some of the steps used in the plan. But it does not copy or reuse the steps from

the solution plan directly.

As opposed to transformational analogy. which only looks at the final solution of the

case-plan, a derivational planner looks at how the problem was solved. To further

elucidate, derivational planners makes use of solution derivation, also known as

derivational traces, which are sequences of planning decisions that have led to previous

solution plans, and are reused when solving a new problem (Veloso & Carbonell, 1993).

Derivational traces are decision sequences that point towards the decision choices that the

planner must make to generate the solution plans (Muiioz-Avila. Nau & Au, 2002).
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3 TransUCP

In this chapter, we explain the details of the TransUCP algorithm and its constituent

elements and sub-functions. The main idea behind the TransUCP algorithm is to solve the

planning problem by using transformational analogy with the Universal Classical

Planning framework. The inputs to the algorithm are a planning problem and the case

library. TransUCP returns the solution plan or a failure message if it could not generate

one.

3.1 Purpose Tags

The TransUCP algorithm generates and modifies a partial plan in an iterative manner

doing one refinement (progressive or non-progressive) in each pass. During each pass, a

step and/or a set of constraints are added or deleted to/from the plan. We associate each

set modifications done to the plan in each pass is with a data structure called the purpose

tug which indicates the purpose of these modifications. These tags are primarily used

when we retract the plan backwards i.e. when we dclcte stcps or constraints from a plan.

The diffcrcnt types of tags uscd in TransUCP arc:

I. Purposc (Stcp Addcd. tJ• forward statc): This tag is addcd to a stcp tJ which is

addcd to thc plan during forward statc space refincment.

II. Purposc (Step Added. tJ• backward state): This tag is added to a step t) which is

added to the plan during backward statc space refinemcnt.

III. Purpose (protect ((tl-. ti~O tJ))): This tag is added to an ordering/binding



constraint which has been added to the plan to resolve the threat ((tk, ti -7 Q tj)).

IV. Purpose (establish link, tj -7 Q tj): This tag is added to an ordering constraint which

has been added to the plan to satisfy the open condition (-7Q tJ).

For example, in the plan shown in Figure 16, the step t2: L (P 1, VI, A), which is added to

the plan during forward space refinement, has the purpose tag Purpose (Slep Added, 12.

forward slale).

In the plan shown in the figure, the goal is to move the packages PI and P2 at location D.

Therefore, one of the open conditions that the final state too had was (-7 Q too) where Q is

the condition that the package PI should be in location D. To nullify this open condition,

the step 14: UL (P 1, VI, C) has been added during the plan space refinement. Therefore,

this step 14 has the following purpose tag Purpose (eslablish link. I~ -)Q lex).

3.2 The Algorithm

The inputs to the algorithm: the planning problem and the case library. are given to the

starting function. TransUCP. This function returns the solution plan or a failure message

if it could not generate one. The planning problem is specified by a 2-tuple <Inilial Slate,

Goal State>. where the initial state is the set of conditions which are true at the start of

the problem and the goal state is the set of all the desired conditions that need to be true

in final state of the problem. Figure II shows the pseudo code of this function.



TransUCP first retrieves a case from the case library that is the best match for the current

problem in terms of most similar initial and goal states. Though this suggests a probable

heuristic for case retrieval from the case library, the actual logic to be used for this is not

discussed in this document as it is not the primary focus.

The plan returned from the case library, LibraryPlan, is adjusted so as to make its initial

and goal states the same as Initial and Goal, through the function AdjustExactly. This

process includes adding sub-goals of Initial and Goal that are not present in the initial and

goal states of the LibraryPlan and deleting those sub-goals that are not present in Initial

and Goal and are present in their counterparts of LibraryPlan. During this process of

addition and deletion, some steps of the partial plan along with their ordering, binding

and auxiliary constraints might have to be deleted. As a result, the plan returned by

AdjustExactly, called here as AdjustedPlan, might have open conditions and threats. The

TransUCP algorithm tries to remove these open conditions and threats to make the plan a

solution plan.

Thc plan returned by thc AdjustExactly function, AdjustedPlan. is thcn checkcd to sec if

it is a solution to thc current problcm. 1fit is not. wc add the plans. <AdjustedPlan. UP>

and <AdjustedPlan. DOWN> to thc PlanPool. The purposc of the direction indicators. UP

and DOWN is discussed in detail in momcntarily. This collection of plans. PlanPool. is

passcd to thc function TransfonnPlan, which returns the solution plan. Figurc 12
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illustrates the pseudo code of the function TransformPlan.

TransformPlan function is called recursively until a solution plan is arrived at or a failure

is returned, which happens when the PlanPool is extinguished. This function makes non-

deterministic choices at various points. It takes PlanPool as an argument and chooses a

plan from it non-deterministically and deletes it from the PlanPool. It then checks if it is a

solution, and ifso, returns it. Ifnot, it checks for the direction pointer of the plan P.

Function TransUCP (Initial, Goal, Library)
Returns: Final Plan P or Failure

LibraryPlan = select the plan from the Library with the most similar initial and goal
states

AdjustedPlan = AdjustExactly (LibraryPlan. Initial, Goal)

IF AdjustedPlan is a solution
THEN

Return AdjustedPlan

PlanPool = {<AdjustedPlan, UP>, <AdjustedPlan, DOWN>}

FinalPlan =TransfonnPlan (Initial, Goal, PlanPool)

IF FinalPlan = fai/ure
THEN

Returnfai/lire

Return FinalPlan

Figure 11: TransUCP Algorithm

Progressiyc Refinements

Progressiye refinements are defined as those modifications made to the plan which

increase its possible number of ground linearisations or increase the total number of steps
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in the plan. The three kinds of refinements used in the universal classical planning

algorithm (Section 2.2) constitute the progressive refinements. Each progressive

refinement done to a plan has a purpose tag associated with it.

Function TransformPlan (Initial, Goal, PlanPool)
Returns: Final Plan P or Failure

If PlanPool is empty
THEN

Return failure.

<P, 0> = select an element from PlanPool.
Delete <P, 0> from PlanPool

If P is a solution THEN Return P

//Progressive Refinements
If 0== DOWN
THEN

Non-deterministically, select anyone of

1. P' = RefinePlanForwardStateSpace (P)
Check if P' is a solution. If yes, return P'.
Add <P', DOWN> and <P', UP> to PlanPool

2. P' = RefinePlanBackwardStateSpace (P)
Chcck if P' is a solution. If yes, return P'.
Add <P', DOWN> and <P', UP> to PlanPool

3. RcfincPlanSpacc (P)
For cach plan PI rcturncd by RcfincPlan (P. /lull) do

Chcck if P, is a solution. If ycs, rcturn P"
Add <PI' DOWN> to PlanPool

/fNon-progressive Refinements
ELSE IF (0 = UP)
THEN

Add all c1emcnts of RctractRcfincmcnt (P) to PlanPool

/lReeursin Invocation
TransfonnPlan (Initial. Goal. PlanPool)

Figure 12: Pseudo code - TransformPlan
26



In the TransUCP function, all plans with direction indicators DOWN would go through

progressive refinements and all those which have UP as direction pointers are refined

non-progressively.

If the direction pointer of the plan selected in TransfonnPlan is DOWN, it performs

progressive refinements on it. It does this by non-detenninistically choosing one of the

three possible refinements to be applied. The three kinds of refinements used in the

universal classical planning algorithm (Section 2.4) constitute the progressIve

refinements.

Once a particular refinement strategy is chosen, all the plans returned by that refinement

function are added to the PlanPool. These plans have the appropriate purpose tags

associated with the refinements done on them. TransfonnPlan is then called in a recursive

fashion until a solution plan or a failure is encountered.

Non-progressive Refinements

All refinements made to a plan that arc not progressive refinements arc termed as non-

progressive. Non-progressive refinements basically undo one or more of the progressive

refinements done to the plan previously. All those plans in PlanPool that have UP as the

direction pointer go through non-progressive refinements.



If the direction pointer is UP, TransformPlan calls the function RetractRefinement with

the selected plan as an argument. RetractRefinement selects, non-deterministically, one

of the purpose tags in the plan and retracts the refinement associated with that purpose

tag. Basically, this function selects a step from the current partial plan and removes it

from the plan. The RetractRefinement function takes as argument the plan P and selects a

purpose tag from it.

Having chosen the tag to retract, it undoes the progressive refinement associated with this

tag. The exact criteria to be followed in choosing the purpose tag to be retracted are not

dealt in this thesis. A good heuristic to be followed for this selection process can be found

in Hanks and Weld (1996). The progressive refinements to undo can be any of the three

kinds of refinements used in the universal classical planning algorithm (Section 2.4).

In all of the three cases, the function removes the steps, constraints or bindings which

were associated with this tag and added to the plan. If the tag selected was associated

with forward state space refinement, then the step added is removed, through a call to

RemoveStep, and all other ways of perfomling forward state space refinement to the plan

are returned to be added to the plan pool. Before adding the plan PI to PlanPool. it is

made sure that it does not map onto the original retracted plan P. This is to ensure that we

do not add the same plan back to the pool again. By saying that one plans maps onto

another plan. wc mean that there is a 1: 1 mapping between their steps. links. binding

constraints and purposc tags.
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Similar processing is done for backward and partial plan space refinement tags. When the

refinement to be retracted is a partial plan space refinement, the step associated with the

purpose tag selected is retracted and the flaw that originally caused this refinement to be

made to the plan is also returned to RefinePlanSpace. This is done to ensure that only

those partial plans formed by resolving this particular flaw through RefinePlanSpace are

added to the plan pool. In essence, we are constricting RefinePlanSpace from selecting a

flaw to be resolved at random.

RetractRefinement function.

Figure 13 shows the pseudo-code of the
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Function RetractRefinement (Plan P):
Returns: List of (Plan, Direction) pairs

Define L: a local list of plans

R == select a purpose
(F, Po) == RemoveStep(R, P)
Add the tuple (Po. UP) to local list L

IF purpose in R was forward state space refinement
THEN

For each plan PI returned by RefinePlanForwardStateSpace (Po)
Do

If PI does not map onto P, add <PI, DOWN> to list L.

Else IF purpose in R was forward state space refinement
THEN

For each plan PI returned by RefinePlanBackwardStateSpace (Po)
Do

If PI does not map onto P,add <PI, DOWN> to list L.

Else IF purpose in R was partial plan space refinement
THEN

For each plan PI returned by RefinePlanSpace (Po, F)
Do

If PI does not map onto P, add <PI, DOWN> to list L.

Return all plans, direction pairs collected in list L.

Figure 13: Pseudo code - RetractRefinement

Figure 14 clearly illustrates the flow of the TransUCP planner. TransUCP takes a plan

from the case base. adjusts it and adds it to the plan pool. Only when the plan pool is

empty is when the planner reports failure. Otherwise. it selects a plan from the pool and

depending upon the direction pointer. perfonm the appropriate rctinement. If it is

DOWN. it perfonns a progressi\'e refinement. selecting non-deterministically from the

three. If not. it calls RetractRefinement. refining non-progressively. In both cases. the

resulting plans arc added to the plan pool. This process is called recursi\'cly until a
30



solution plan is found when success is reported and the planner terminates.

This completes the explanation of the TransUCP algorithm. In the subsequent section, the

working of the algorithm is elucidated with examples.
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e
Select a plan from the case-base and adjust it
Check if it solves the problem
Add <AdjustedPlan, UP> & <AdjustedPlan, DOWN> to
PlanPool IfY~

--If PlanPool empty, fail!
l.----

I Select a plan <P, D> from PlanPool I

I Check if it solves the problem
I

I
Yes

No

I Delete <P, D> from PlanPool I
J

<2>
1 DOWN Non-deterministic choice

IJP 1
Add all elements of ~
RetractRefinemcnt 1to PlanPool

Refine Plan Refine Refine
Space Forward Forward

State Space State Space

~ ~

I Add the new plan(s) to Frontier

Figure 1~: Transl1CP Flow Chart
J~



3.3 Example of TransUCP

In this section, we explain the working of the TransUCP with an example. We take a

planning problem and the solution plan returned when the UCP algorithm (Kambhampati

& Srivastava; 1996) solves it. For this example, we use the problem (shown in Figure 15)

and its solution plan described in Figures 16. We take this as the input case retrieved

from the case library and try to solve the new planning problem, shown in Figure 17.

using TransUCP.

Location A Location II Location C Location U

VI 1'1

Goal: PJ at Location C, P2 at Location C

Figure 15: Planning problem in the logistics transportation domain

16: L{P2, VI, B)

", ""t. o. C)

/1
I., VL(P1,~ /,(Pl. \'1. q

10 • t1: L{PI, VI,A) • I): L{P2, V2, D)

\ I,' 'IV (\'1. A. 0)

IT

Figure 16: OCP generated solution plan for the problem in Figure 15

Thc solution plan show in Figurc 16 has bccn gcncratcd by UCP. In thc ncw problem to
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be solved, shown in Figure 17, we have the same goals, i.e. to relocate package pi and p2

into location C. The difference is that this time there is no truck in location D.

Location A

N\.
VI PI

Location B Location C Location D\.
P2

Goal: PI at Location C, P2 at Location C

Figure 17: Planning problem to be solved by TransUCP

When this problem is passed to TransUep, it retrieves a plan from the case library, a

planning problem and its solution that is similar to the current problem at hand. Let us

assume that the ones retrieved are those shown in Figure 15 and 16.

The AdjustExactly function takes this plan and modifies it so as to match the initial and

goal states of the new problem and of the case. In our example, the goals happen to be the

same but the initial states are different. Since the truck V2 is not available in the new

problem, we remove V2 from the initial state and all those steps and constraints that

involve V2. In doing so, we get the partial incomplete plan as shown in Figure 18. It can

be seen that steps t3, t7, ts and t9 have been deleted. The open threats and conditions that

result from this modification and that need to be resolved are also ShO\\11 in the figure.

Let us denote this plan by PI. Since this is not a solution plan. we add the direction

pointer pairs <PI. UP> and <PI. DOWN> to the PlanPool and this pool is passed to

TransfonnPJan. Let us assume that Transfon11Plan non-deten11inistically chooses the pair
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<PI, DOWN> from the plan pool to refine. Since the direction pointer is DOWN, it ha to

perform a progressive refinement on the plan PI. That is, it can choose between forward

state, backward state and plan space refinements to perform on PI.

to· t2: L(PI, VI,A)---------------------.~t6: L(P2, VI, B)

1
"'II, B, C)

'.'UL(P~,7" VI, C)

Open conditions:
i. (~Q t6), where Q = at (B, 1'2)

ii. (~Qtd.whereQ=at(B,VI)

Figure 18: Partial plan PI after initial adjusting

Assuming without the loss of generality that the refinement strategy chosen is forward

state space refinement. the control is now passed on to the RefinePlanFonvardStateSpace

function. It has to choose an existing step within the head fringe (in this case only step t6)

or add a new step, such that. the preconditions of the step to be added are satisfied in the

header of the plan. If it is chosen to add a new step. a new step t8 MV (V 1. A. D) can be

appended to the current head step t2 with the contiguity constraint t2 * t8 as all the

preconditions of t8 are satisfied at t2. The resulting plan. labeled as P2. is shown in Figure

19 and the 2-tuplc <P2• DOWN> is added to the PlanPool. After t8 has been added to P2•

the !laws of P2 are analyzed and these are also shown in Figure 19.
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During the second pass of TransUCP, the PlanPool contains the pairs «PI, UP>, <Pz,

DOWN>, <Pz, UP». If the pair chosen by TransUCP to refine was <Pz, DOWN> and the

progressive refinement chosen was partial plan space refinement, the control is now

passed to the RefinePlanSpace function.

Let us assume that the flaw selected by this function to resolve is (-7 Q t6). where Q = at

(B, truck). It can resolve this open condition by either reordering steps, i.e. by adding

ordering constraints to the plan or by adding a new step to the plan and ordering it before

t6. Either way, the condition Q has to be made true before t6 is carried out. We can

assume that a new step t9 : MY (Y I, A, B) was added and ordered before t6 with the

ordering constraint t8 < t9 < t6. This resolves the flaw and results in plan P3 shown in

Figure 20. By adding the step t9, the open condition (-7Q t9), where Q = at (A, truck), is

introduced and is added to the set of flaws of the plan and is shown in the figure.

10 'Il: L(PI, V1,A)' II:\lV (VI, A, 0) --------------.. 16: L(P2, VI, B)

1/"'r8

,CI

I,. l'I.(1'~ .17" \", C)

Opcn conditions:
i. (7Q

16), whcrc Q= :It (8, P2)

ii. (7 Q t6).whcrc Q = at (8, \'I)

Figure 19: Partial plan P2
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Continuing in this manner TransUCP continuously keeps refining the partial plan and

searches for the first solution node. During each pass, it may choose to perform

progressive refinements and add steps or it may choose to perform non-progressive

refinements and retract some of the decisions previously made. It reports the first partial

plan that it encounters that satisfies the required conditions for being a solution plan and

returns it. Figure 21 shows one of the possible solution plans returned by TransUCP.

I. • I., l(PI, VI ,A)' I, >IV (V I, A,D~

Open conditions:
i. (~Q t6), where Q= at (8, PI)

ii. (~Q t6), where Q = at (A, truck)

Figure 20: Partial plan PJ
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til: L (P2, VI, D) t9: MV(VI, A, B)

I",J(VI, D,AJ/

to· t 2: L(PI, VItA)· taMV (VI, A, D)

1
t lO : UL (P2, VI, B)

r
t6: L(P2, VI, B)

1
t~: MV(V I, B, C)

t4: UL(PI, VI, C) t ,:UL(P2, V\, C)

~/

Figure 21: Solution plan generated by TransUCP
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4 Complexity Results and Search Space

In this section, we explain how the TransUCP performs and explores the search space to

find the solution nodes. Further, the performance of the algorithm is analyzed and it is

proved that this framework does not satisfy the conditions of being a conservative

planner. By doing so, it is also proved that transformational analogy does not come under

the worst-case complexity of Nebel and Koehler (1995).

4.1 Search space

TransUCP generates a solution for a given planning problem by treating the solving

procedure in effect as a searching problem. It searches through the plan search space,

defined below, to find the solution nodes.

State Search Space

A state search space can be defined as necessarily being a graph (Weld, 1994). where:

• Each node represents a state of the world

• Arcs between nodes A and B indicate that there is an operator which takes the

world from one state (represented by A) to the next (represented by B). The edges

would be in-directed if the actions are reversible: else. they would be directed.

• The solution plan to a planning problem represented thus would be a path (a

sequence of connected nodes). starting from the initial node and ending at the

final node.
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One of the advantages of solving a planning problem using a state search space is that a

variety of search algorithms can be used: breadth first search or A* search to name a few.

Another observation to be made is that all the possible combinations of valid states that

the world can be are represented as nodes in the graph. This would make the graph very

large.

Figure 22 shows a sample state search space. The domain used is that of the STRIPS

system (Weld, 1994). In this domain there are three blocks, named A, Band C, and they

are originally in the initial state as shown in the figure. The desired final state is to place

them as A on top of Band B on top of C and C is on the table, as shown in figure.

Individual nodes in the graph show the different states of the world and the solution plan

is any path from the initial state node to the final state node. One such solution path is

shown in dashed lines.

'- ~( ..~ ... ':

(~2 /-......., -----....... /(--~A-....... )
,~JtI- '---CIA] 1iJ) (~ [g'f ,J:'}L,

-------=-=--. ---- --:.">------~-----:?_-----~-~_. --. .------:---

( ~)~ [B; )(~[ill~([Al ~r)(~)
----- .'..- -- _., - - - -" . --_. --'-

InilialSlalc -' -~~~ .-~--~ FhH.IStnlc

_(~ [g\- ~Jill lE ')
...... -

Fi~ure 22: State Search Space of STRIPS (figure taken from Weld, 1994)
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Plan Search Space

A plan search space can be defined as necessarily being a directed graph, where:

• Each node represents a partial plan

• A directed edge from node A to node B represents that the partial plan B results

by performing one or more refinements on partial plan A.

• The solution plan to a planning problem represented thus would be a node, which

represents a partial plan that solves the planning problem.

One of the advantages of using plan search space as a representation format is that

domain dependent heuristics can be applied in the search process for the solution nodes.

Like state search space, the plan search space graph can also be very large.

4.2 Traversal of the search space by TransUCP

Plan adaptation as done by TransUCP to find a solution plan is carried out in a similar

fashion as searching through a partial plan space. The entire process is comparable to

searching for a solution plan node in a graph, in which, each node represents a partial

plan. Edges between the nodes represent refinements between the plans represented by

the nodes - progressive or non-progressive.

The nodes resulting from perfom1ing non-progressive refinements on a nodc are, for the

purposes of this document. referred to as the parents of the node and similarly. the nodes

resulting from perfonning progressive refinements arc referred to as the children of the

node.
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It is to be noted that the graph being searched does not necessarily have to be a tree

because, given a node, non-progressive refinements on it can be performed in more than

one way, thus producing multiple parents for a given node.

Given a plan from the case library and the problem (initial and goal states) to be solved,

TransUCP first modifies the case plan so as to match its initial and goal states to those of

the given problem. Once this plan adaptation has been done, it starts the process of

searching for the solution plan in the plan space. The modified input plan would be the

starting point of the search (see Figure 23). This node would be an inner node in the

graph. In the figure, nodes marked Node A, Node B and Node C are shown as the

probable solution nodes which represent plans that qualify to be solutions.

In the TransUCP function, when the direction pointer chosen is UP, the planner browses

upwards into the parents of the current node by performing non-progressive refinements,

i.e. by deleting some steps or constraints from the current plan. When thc direction

pointcr chosen is DOWN, it scales the graph "downward", into thc children nodcs of thc

node by performing progressive refinements, i.e. by adding stcps or constraints. It

performs this process of traversing the graph until it hits the first nodc that satisfies thc

conditions of being a solution pian for the givcn problem. It is to be notcd that the planncr

takes care never to visit a node more than once during its execution.
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@ Input plan node

® Null plan node

~ Possible solution plan nodes

@,

Node B

1
",

.-.-.-.-. ~'". ,
.' ,

Figure 23: Graph Traversal by TransUCP

4.3 Properties

We shall now analyze the properties of TransUCP and check if it is conservative in the

sense of (Nebel & Koehler. 1995). We will make use of the definitions belo\\', taken

directly from (Nebel & Koehler. 1995). for this analysis.

Definition 1: PLANSAT is the follo\\"ing dccision problem: givcn an instancc of the

planning problcml7. does there cxist a plan .1 that solvcs n?
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Definition 2: A conservative approach to plan modification is one that solves the

following plan modification problem: given a planning-problem instance fl, and a plan

.1 that solves another instance [f, produce a plan .1, that solves [J, by minimally

modifying L1.

Definition 3: MODSAT is the following decision problem: Given a planning-problem

instance [J" a plan .1 that solves another instance fl, and an integer k, does there exist a-.

plan L11 that solves nl and contains a sub plan of L1 of at least length k?

We intend to show that TransUCP does not use a conservative plan modification

approach, as defined above, to find the solution plan for a given planning problem.

Before proceeding, the following property or TransUCP is brought into focus. The three

possible ways in which TransUCP traverses the search space and finds the solution plan

node are:

I. The planner finds the solution plan node without having to retract beyond the

starting node (input plan node in Figure 23). That is. it never visits the parents of

the input plan node. This is the case when Node A in Figure 9 is returned as the

solution node by the planner.

11. The planner, in search of the solution plan node, retracts all the way back to the

null plan node and starts planning frol11 first principles thereon.

111. The planner retracts. but not all the way until the null plan node. This is the case

when Node B in Figure 23 is returned as the solution node by the planner.
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The primary claim of this thesis is now proved.

Theorem: In each of the three cases mentioned above, TransUCP does not necessarily

produce minimal modifications of the given case plan .1..

Proof: The proof is by contradiction.

Let us consider the first case above where the planner does not retract beyond the starting

node (input plan node in Figure 23). Let us assume that TransUCP always produces

solution plans that are minimal modifications of the given case plans. We shall provide a

counter example to show that this is not true.

Location A

~'.VI PI

Localion 8 Location C Location D

'.1'2

Goal: PI at Location C, P2 at Location C

Figure 24: Planning problem to be solved by TransUCP

Consider the planning problem instance shown above in Figure 24 and its solution

generated by TransUCP in Figure 25 below. The case plan used by TransUCP is shown

in Figure 26. The solution plan generated by TransUCP certainly comes under the first

case because the planner does not retract beyond the input plan node at any point during

thc execution of thc algorithm. If TransUCP wcre to always producc solution plans that

are minimally modificd. thcn no othcr plan which solvcs the samc instance of thc
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planning problem should contain a sub plan of the original case plan which is greater in

size (number of steps) than the sub plan of solution produced by TransUep.

But the plan shown in Figure 27 solves the planning problem in Figure 24 and is

minimally modified from the case plan shown in Figure 26. The highlighted steps show

those that have been reused from the original plan.

to· t2: L(PI, VI,A) • taMV (VI, A, D)

1
tiD: UL (P2, VI, B)----..~ t6: L(p2, VI, B)

r 1
''''Lr'VI'DI/''''V(VI''\'81

Ill: MV (V I. D. A)

Is: I\1V(VI, B, C)

14: UL(PI, VI, C) 1.:UL(P2. VI. C)

~/

Figure 25: Solution plan generated by TransUCP

to· t2: L(PI, VI.A) • tJ : L(P2, V2, D)

\ I" \IV (\'1, A, OJ

la: :\1\' (Y!. D. Il) --.... 19: l'L (P2. n.B)

t6: L(P2. VI, B)

'" ,,,,J,, 8, C)

/1
I" R(PI.~ /,W2, \'1, C)

Figure 26: Case plan solution reused by TransUCP
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to· t2: L(PI, Vl,A)· t,MV (VI, A, B)

1
t lO: UL (P2, VI, B) • t6: L(P2, VI, B)

I 1
t 12 : I\1V(V1, D, B) ts: MV(VI, B, C)

/1
t4: UL(PI, VI, C) tt:UL(P2, VI, C)

~/
t,

Figure 27: Minimally modified solution plan

It is to be noted that only those steps that have been directly taken from the original plan

are taken into account as reused steps and those that have been derived from first

principles are not. If this plan is compared to the solution plan generated by TransUCP

(Figure 25), also in which the reused steps have been highlighted, it can be seen that it is

not minimally modified from the original case plan. This is a contradiction to our initial

assumption.

We can similarly produce counter examples for the remaining two cases and show that

TransUCP does not necessarily always generate solution plans that are minimally

modified from the original case plans. I-lence we can conclude and prove that TransUCP

is not a conservative planner in the sense of as per the definitions of Nebel and Koehler

(1995). ~I

Therefore. TransUep does not fall under the category of ~10DSAT as defined earlier in
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this section. It has been proved by Nebel and Koehler that answering the MODSAT

decision problem can be computationally harder than PLANSAT. Since TransUCP does

not satisfy the requirement for being a MODSAT problem, as it does not guarantee to

generate a minimally modified plan, its complexity would not fall in this worst case

scenario, i.e. problem solving with TransUCP will be computationally harder than

problem solving from scratch.

4.4 Completeness

Completeness, in the sense of a planner. can be defined as consisting of the condition that

every solution to the planning problem is found. It means that the planner will eventually

find a solution plan for the particular planning problem, if there exists one. The

completeness of TransUCP is proved with a key assumption that the partial plan search

has finite boundaries, i.e. the number of nodes of the graph, N, is finite.

TransUCP searches the plan space looking for the first solution node. More importantly.

it makes sure that each node is not visited more than once. It does this by verifying that

the new nodes to be visited do not map on to the nodes visited previously. This in effect.

means that the planner scans the nodes. in both the upward dircction (mcaning the parents

of nodes) and in the downward directions (children of nodes). Thcrcforc. if thc planner is

lcft to scan thc nodes of thc graph. givcn enough time. it will cvcntually end up on a

solution node. given that hcrc exists one and the graph is finitcly boundcd. TransUCP

stops as soon as it finds the tirst solution nodc. It can be modified d so as to not stop
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after finding the first solution node and keep scaling the graph till all the solution nodes

are found. This proves the completeness ofTransUCP under the given assumptions.

4.5 Non-determinism in TransUCP

There are "decision points" at various stages of the implementation where choices are

made non-detenninistically, without any heuristic being used. The selection of a plan

from the plan pool and the choice of progressive or non-progressive refinements to be

made to the plan constitute some of these decision points. Forward state space and

backward state space planning further contains points where random choices are made.

The TransUCP framework. as proposed here, is meant as a generic domain-independent

framework for a planner. Hence there is non-determinism at various decision points. It is

expected that, when the planner is used in a particular domain, appropriate domain

dependent heuristics would be added and used at these decision points to improve the

perfonnance and efficiency of the planner. One of the most likely places where heuristics

could help the most are when selecting a plan from the PlanPool. where by assigning

weights based on heuristics to each plan. the choice of the next plan to be chosen for

refined can be altered. This would ensure that the search of the plan space is carried out

in a morc guidcd and cfficicnt fashion. Thereforc. it is quitc logical that non-detemlinism

is replaced by heuristics in the actual implementation of this planner.
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5 Implementation and Experimental Results

In this section, the implementation details of TransUCP and the results that were drawn

from the experimentation are explained.

5.1 Implementation

In this section, the details of the implementation of TransUCP are described and its

results are elucidated. The purpose of these experiments was to show that the counter­

example shown in Section 4.3 is not an exception and that that TransUCP very rarely

behaves like a conservative planner. Therefore it is unlikely that transformational analogy

fits in the worst-case complexity scenario of Nebel and Koehler (1995).

The TransUCP algorithm was implemented to generate solutions in the logistics

transportation domain. The code was developed and executed in Java. Planning problems

in the transportation domain were generated in a random fashion by the code. In the

experiments performed. the problems were randomly generated; meaning each of the

planning problems contained an arbitrary number of each of the clements in the domain

such as trucks and locations. Once the number of trucks and packages were decided

randomly. the location of each of these clements was also decided randomly. This was

done to ensure that there was no bias of any sort.

Once the planning problem was properly fomllllated. it was gl\'en to the TransUCP

planning system to be soh-cd. In all nms of the planner. a single solution plan was
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provided as case plan. The case plan to be reused is the one from Figure 26.

The graph being searched is infinitely large and, therefore, the searching process for the

solution node had to be "guided" at certain levels, owing to memory and space

constraints. Guiding refers to adding appropriate heuristics so that the searching process

is carried out in a more effective manner.

After running TransUCP giving as input 10 randomly generated problems and the case

plan, non-minimal solution plans were generated in every run.

5.2 Experimental Results

The empirical observations and summary of the experiment perfonned are explained in

this sun-section.

It was noticed that as the number of clements were increased the increase in the plan

search space to be searched was very large. Figure 28 shows the average number of nodes

in the plan space graph that were traversed before the solution node was found versus the

number of clements (trucks. cities and packages) in the problem. For example. 6 clements

mean that there were 4 locations and 2 trucks in the problem.

From the figure we can see that even for a small problem with just 6 clements. the size of
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the search space is very large. This further reinforces the claim that it is very unlikely that

the solution plan node found by TransUep for a given solution plan would be a

minimally modified.

Graph Traversal

500
(J)
Q)

"C 400 -
0
c-0 300
'-
Q)

.c
E 200 -
::J
C

C, 100
>«

0

1 2 3 4 5 6

Number of Elements in the Problem

Figure 28: Number of nodes traversed in the graph
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6 Conclusion

This thesis has presented TransUCP, a general and domain independent framework for

transformational analogy. This framework has been built on top of the universal classical

planning framework and extends the SPA system by Hanks and Weld (1996) to

transformational analogy.

The framework has been implemented in Java and tested by using it to solve planning

problems in the logistics domain. Using this framework, it is demonstrated that

transformational analogy does not always perform conservative plan adaptation and

generate minimally modified plans. This is proved by carefully constructing an example

where conservative plan adaptation does not occur. Through this, it is proved that

transfomlational analogy does not fall under the worse case scenario of Nebel & Koehler

(1995). Furthemlore, we perform experiments that demonstrate that it is unlikely that any

plan adaptation with transformational analogy will be conservative.

6.1 Future Work

A possible extension to the work done would be to develop a domain independent

algorithm for the AdjustExactly function (Section 3.2). so that the case-plan solution

which is reused can be "adjusted" can be done in a pre-defined manner. irrespective of

the domain. Currently this function is dependent on the domain and the framework

introduced can profit from making it domain independent.
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Another avenue for extending the current work is to develop domain independent criteria

to prune the plan space being searched so as to expedite the process of finding a solution

node.
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