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Abstract

In this thesis, we study the problem of using parallel genetic algorithms (PGAs) .for

solving the protein-folding problem on the 2-D HP model. Theoretical analysis of

running time is derived for several well-known types of PGAs including: master-
I

slave, fine-grained, coarse-grained and their variants based on LogP, a portable

parallel model. From performance data gathered, the theoretical analysis presented

have been shown to successfully predict the running times. Two new variants of

coarse-grained PGAs, which based on a very simple topology (ring) are designed

based on the intention of rapidly spreading valuable solutions. The implementation

results have shown that they achieve the similar results as the classic coarse-grained

PGAs which are based on completed connected graph.

f
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Chapter 1

IntrOuuction

Currently, one of the most important open problem in biochemistry is the problem of

protein native structure prediction. A protein is a linear polymer molecule formed

by 20 different kinds of natural amino acids. Under certain circumstances, the

sequence of amino acids can be rotated and folded into different conformations. The

protein molecule will continue transforming until it reaches a stable conformation,

which is called a native structure, then it will be capable of performing its biological

functions [11] (Dill 1995). Hence, the ability to foresee the native structure of a

protein molecule simply by knowing its amino acids sequence is quite rewarding in

the biochemical and biomedical areas.

The folding process is very complicated and the details of the folding are still not

completely known,but it is believed that the native structure of a protein molecule

corresponds to its minimum fre.e energy state (the thermodynamic hypothesis [1]

2



(Anfinsen 1973) ). So one way to approach predicting native structure of a protein

molecule is to compute and· find the global minimum free energy conformation.

However, the processing is complicated and it has been shown that finding the

lowest free energy conformation of a protein is an NP-Hard Problem [28] (Unger

1993).

Therefore, several models have been presented for the protein folding problem.

Perhaps the most successful, best-studied model [8] (Chan and Dill 1993), is the

well-known two-dimensional hydrophobic hydrophilic model, or 2D-HP model [18]

(Dill 1990). In the 2-D HP model, a protein molecule is assumed to consist of only

two kinds of amino acids: H (hydrophobic) and P (hydrophilic). All the amino acids

have the same size and each of them is represented as a "bead" placed upon a crossing

point on a 2-D lattice. The connection bonds have identical bond lengths and are

perpendicular to each other. Each connection within the molecule is represented

as a line. Thus, the conformation of the amino acid chain can be represented as a

self-avoiding walk in the 2-D lattice.

To find the stable native state of a protein, ideally, we should compute all the

possible conformations of the protein molecule, calculate the sum of the free ener­

gies and determine the global lowest free energy conformation. However, it is not

practicable to do such an exhaustive search [12] ( FraenkeI1993). Since the number

of conformations grows exponentially with the increasing chain length, it has been

proven that protein folding on the 2-D HP model is NP-complete [9] (Crescenzi 1998)

[2] (Berger 1998). Thus, the question is "How should one find the global optirimm

3
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1.1. PROTEIN FOLDING .oN 2D-HP MODEL

without a thorough global search on the protein's conformation energy landscape?"

Several approximate algorithms were presented, such as the chain growth algorithm

[4] (Bomberg-Bauer 1997), fast protein folding approximate algorithms [15] (Hart

1995). The common methods for the protein folding problem utilize Monte Carlo

techniques [26] (Shakhnovich 1991) [13] ( Ming-Hong Hao 1995), simulated anneal­

ing, and genetic algorithms [29] (Unger 1993).

Among these methods, genetic algorithms have been found to be more effective

than the rest on a simple lattice model [23] (Patton 1995). A genetic algorithm (GA)

is an efficient search technique based on natural selection and population genetics.

During the evolution processing, a GA tries to accumulate good solutions and reject

poor ones to achieve better approximate results in a limited time period. Due to

the huge amount of computation a GA needs to perform, parallel genetic algorithms

(PGAs) were implemented in order to achieve more efficient running times.

The focus of this thesis is the run-time analysis of PGAs for protein folding on

2-D HP. Preliminary results will be published in [24] (Santos 2000).

The following sections are intended to provide further motivation of the research

work in this thesis while also providing some essential backgrounds.

1.1 Protein Folding on 2D-HP Model

The 2D HP lattice model represents the general properties of globular proteins. It

captures essential biochemical characters of protein molecules while still maintaining

4



1.1. PROTEIN FOLDING ON 2D-HP MODEL

simplicity. By assuming that the hydrophobic interaction is the dominant force in

protein folding, a protein in the HP modal is simply symbolized as a specific sequence

of 2 kinds of amino acids: hydrophobic (H) and hydrophilic (P) monomers, instead

of the 20 amino acids which exist in nature. A protein conformation is represented

by a self-avoiding walk on the 2D lattice with the restriction that no two amino acids

can occupy the same position on the lattice. The folding movement of the chain

is represented as a sequence of moves where each is encoded relative to the prior

movement. The computation of the conformational energy is also simplified. Each

interaction between two H monomers which are adjacent in space but not adjacent

in the sequence, called an H-H bond, will be counted as providing a contact energy

of -1. All interactions between any other bands will be counted as O. Thus the total

free energy of a protein molecule is the sum of the contact energy between every

H-H bond.

Therefore, conceptually, in a 2D-HP model [16] (Hart 1996),

(1) all the types of amino acids are represented by a set A={H,P},

(2) protein instances are represented" by a binary sequence consisting of Hand

P.

(3) an energy formula specifying how the conformational energy is computed by

E = L(e(a, b))

Let e(a, b) stand for the contact energy between amino acid a and b, and label(a)

stand for amino acids a's position in the sequence. Then, we have

5
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1.1. PROTEIN FOLDING ON 2D-HP MODEL

Figure 1.1: An example of one conformation on 2-D HP. This protein molecule
has an amino acid sequence of HPHPHHPHHHPHPPH. Here dot represents Hand
small circle represents P: '

{

-I
e(a, b) = 0

if a = b = H, and /label(a) -label(b) 1# 1

otherwise

(4) the conformation structure is presented as a self-avoiding walk on a 2D-

lattice.

In this thesis, a movement walk is represented by a string consisting of E, S, W,

N (standing for the four different directions on the 2-D lattice: east, south, west

and north). Thus the example conformation shown in figure LIon 2D-HP model

can be represented by ENENWNENWWWSSE. Free energy of this conformation is

3.

6



1.2. GENETIC ALGORITHM AND PARALLEL GENETIC ALGORITHM

GA Operations
Crossover Mutation Duplication

Solution Pool

Figure 1.2: Main GA processing in a Genetic Algorithm

1.2 Genetic Algorithm and Parallel Genetic AI-

gorithm

Genetic algorithms (GAs) utilize the same optimization procedures as natural ge-

netic evolution. The whole process consists of a number of generations. In each

generation, three phases are executed. These phases are called selection, genetic

operation (duplication, crossover or mutation), and evaluation. There is no specific

restriction on the number of generations. There have been several papers[17] (Hart

1995) which focus on evaluating the parameters in GAs in order to achieve more

efficient overall run-times and faster convergence.

Genetic algorithms rely on appropriate encodings of potential solutions via string

representations. At the beginning of the algorithm, an initial population which has

a large amount of potential solutions has,\en created. Specific types of genetic

operators are applied to this population. These genetic operators are typically the

7



1.2. GENETIC ALGORITHM AND PARALLEL GENETIC ALGORITHM

common operators of crossover, mutation and replication. After those genetic op-

erators are applied, new potential solutions will be produced. In order to set a

criterion for choosing appropriate results, a fitness function will be computed. Solu-

tions with the higher fitness function value will have a higher chance of reproducing.

Apparently, the diversity of the population is important in order to maintain a large

-amount of individual solutions to ensure that many combined features may emerge

and that solutions will not be trapped by local optima results. In order to keep a

population's diversity, the genetic operators should be carefully chosen.

Since our goal is to utilize GAs to solve the protein folding problem, we will

discuss standard GA operators as they are applied to protein folding on 2-D HP.

Preliminary results have been presented in [24] (Santos 2000). For the protein

folding problem, the potential solutions are the conformations of a protein molecule

structure. In our implementation, a self-avoiding walk on the 2D-HP model is

represented by a string consisting of E, W, N, S, (E-east, W-west, N-north, S-

south), showing the direction for the each step of the walk on the 2-D lattice. The

fitness function computes the free energy of the conformation. Hence, in a crossover

operation, two parents' conformation strings are combined to make a child. Figure

1.3 provides an example in crossover. The digits in the string are not changed.

Instead, the digits may be rearranged in different ways. The digit in the child

sequence will keep the same position as the digit in the parent sequence. It is

common knowledge that crossover is responsible for most of the diversity within the

population. .

8



1.2. GENETIC ALGORITHM AND PARALLEL GENETIC ALGORITHM

ENENW-NENWWWSSE

WSSWW-SSWNWSWSE

1--0_.--, 0--4

Crossover til
L__----l--.0L .o-e~ssing

WSSWW-NENWWWSSE

Figure 1.3: Crossover processing in a Genetic Algorithm (single-point crossover).

Mutation is another way to maintain the diversity of a population. It is a·

random change in a given digit in a string. Unlike crossover, it changes the digit of

the string. Mutation is important for a genetic algorithm. It prevents the algorithm

from getting trapped at a local optimal answer.

Utilizing the operations described above, we see that the basic steps of a genetic

algorithm are comprised of the following [22, 21] (Muhlenbein 1991):

1. Generate an initial population of potential solutions.

2. Create new individuals by using crossover, and/or mutation genetic operators.

9
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1.2. GENETIC ALGORITHM AND PARALLEL GENETIC ALGORITHM

... Mutation
--~

~ Processing

ENENWNENWWW-S-SE ENENWNENWWW-W-SE

Figure 1.4: Mutation processing in a Genetic Algorithm

3. Determine the fitness value of each individual in the population.

4. If an acceptable solution is reached (based on its fitness value), report the

solution and terminate. If better solutions are reached, update the solutions

utilizing the new, better solutions in the population pool.

5. If the number of iterations exceeds a given value, report this and· report the

best solution that was reached. Otherwise return to step 2.

GAs have been successfully applied to solving several NP-complete problems,

such as traveling salesman problem, scheduling in a job shop, mapping east Asia

languages onto conventional keyboards etc. We note that genetic algorithms are not

guaranteed to find an optimal solution. However, by choosing proper population ~ize

[22] (Giguere 1998) and utilizing more generations, it is clear that the good enough

potential results may be achieved. However, more time will be needed. In order to

get better results in a limited time, in the past few years, parallel genetic algorithms

10



1.2. GENETIC ALGORITHM AND PARALLEL GENETIC ALGORITHM

have started to be utilized. GAs have been able to demonstrate an ability towards

achieving better computational results with less overall computational time.

When we parallelize sequential GAs (sGAs) into Parallel Genetic Algorithms

(PGAs), difficult problems can potentially be solved with less processing time [27]

(Shonkwiler 1993) [22] (Muhlenbein 1991).

Due to different population storage methods, PGAs can be classified to multi­

population PGA and global population PGA [6] (Cantu-Paz, Erick 1998). It also

can be classified into three categories (based on different grain sizes): Master-slave,

Fine-grained and Coarse-grained. In this thesis, we utilized the latter categorization.

1. In master-slave PGAs, only the process of computing fitness value is par­

allelized. Processors are· divided such that there are a master and multiple

slaves. The master processor assigns the fitness computation tasks to slaves

and collects the results after the slaves finish computation. In this thesis, in

order to solve the protein folding problem on 2-D HP, we will analyze and

implement three different types of master-slave PGAs.

• non-overlapping master-slave PGAs. (single-population storage and clearly

division)

• overlapping master-slave PGAs. (single-population storage, no clearly

division)

• overlapping multi master-slave PGAs. (multi-population storage, no

clearly division)

11



1.2. GENETIC ALGORITHM AND PARALLEL GENETIC ALGORITHM

2. In fine-grained PGAs, all three processes in sequential GA (selection, GA op­

eration, evaluation) are parallelized. The population storage can be either

shared (single population) or distributed ( multiple population). In the dis­

tributed case, each processor can only perform GA operations either within

its own subpopulation or from the sub-solution sent from its neighbors. Be­

cause of this restriction, strictly speaking, fine-grained PGA is not a typical

GA. In this thesis, we analysis and implement the fine-grained PGA based on

distributed memory on a 2D torus.

3. In coarse-grained PGAs, each processor runs sGA on its own subpopulation

independently [19] (Shyh-Chang Lin 1994). In order to spread the results, data

immigration among all the processors can occur every several generations.

In this thesis, we analysis and implement three types of coarse-grained PGA.

• Offset coarse-grained PGA: in immigration generation, one processor creates

an offset randomly and broadcasts it to all the other processors. Each pro­

cessor will communicate with the processor with the proper rank. (based on

completed connected graph).

• Token coarse-grained PGA: the immigration data run through the whole dis­

tributed system like tokens. (based on a ring.)

• Loosely-coupled and tightly-coupled coarse-grained PGA: processors are binded

to several tightly-coupled groups. Immigration happens frequently within the

12



1.3. LOGP MODEL

tightly-coupled group, and less between the groups. There is a sender proces-

sor and a receiver processor in each group in charge of communicating with

other groups (based on a ring).

There are also hybrid PGAs [20] (Merkle 1996), which combine the characteristics

from those three PGAs.

In order to ensure that our analysis will be portable from one parallel/distributed

machine/model/network to another, we must utilize a portable parallel machine

model. In the next subsection, we discuss the parallel model we will use for our
.•J ,"

analysis.

1.3 LogP model

LogP [10] (Culler 1996) is a model of a distributed-memory multiprocessor in which

processors communicate by point-to-point messages. The model specifies the perfor-

mance characteristics of the interconnection network, without describing the struc-

ture of the network. The main parameters of the model are:

L: an upper bound on the latency, or delay, incurred in communicating a message

containing a numerical value from its source module to its target module.

0: the overhead, defined as the length of time that a processor is engaged in the

transmission or reception of each message; during this time, the processor can not

perform arithmetic operations.

g: the gap, defined as the minimum time interval between consecutive message

13



1.3. LOGP MODEL

transmissions or consecutive message receptions a message.

P: "the number of processor/memory modules

Therefore, on the LogP model, sending a fixed sized message from one processor

to another processor will require 20 + L time steps. All our protein folding PGAs

will be analyzed on LogP.

14



Chapter 2

Sequential GA analysis

2.1 Analysis Notation

In order to analyze the various running times, we have assumed several nota­

tions provided below. Moreover, assuming a protein length of n, in our algo­

rithm/implementation, we have been able to determine values dependent on n. And

they are provided in square brackets, i.e. [].

• Po -- population size;

• g(p) - # of individuals selected per generation

.. i-individual i E P;

• size(i)-[n]- length of individual encoding;

• Sp-[O(l)]- running time of selecting one inqividual;

15



2.2. SEQUENTIAL GA ANALYSIS

• Fo-[O(n)]- running time of a GA operation;

• Gf-[O(n)]- running time of calculating fitness function for one individual;

• G - the number of generations;

• B(l, Po)-[Po]-time of determining the best solution out of whole popul~tion.

We note that we assume g(p) » n.

2.2 Sequential GA Analysis

.The traditional sequential GA (denoted by sGA) operates on a fixed population.

The main phases in an sGA include: selection, GA operations (crossover, mutation,

duplication), and evaluation.

Hence, in a sequential GA the following steps are performed:

1) For each generation, the running time includes:

the time to select individual

the time to perform one GA operation Fo ;

the time to call the fitness function Gf .

2) After all the generations, the time of finding best solution so far should

also be included B(l, Po)

Therefore, the running time of a sequential GA is :

T(sGA) = ((Sp+ Fo + Gf)g(p))G + B(l, Po) = O(ng(p)G +Po).

16



Chapter 3

Running-Time of Parallel Genetic

Algorithms

In this chapter, we will design PGAs based on the three categories (master-slave,

fined-grained, coarse-grained) discussed previously or on variants based on these

categories. We will also provide analysis of parallel run-time under the LogP model.

For ease of analyzing, we assume L >> 9 and 9(p) >> L where L is the latency

and 9 is the gap as described in the LogP model.

3.1 Master-Slave Parallel Genetic Algorithms

For master-slave PGAs (ms-PGAs), one processor works as the "master" while the

remaining work as "slaves." The master selects individuals, and executes GA oper­

ations sequentially. Slaves evaluate fitness functions of the individuals in parallel.

17



3.1. MASTER-SLAVE PARALLEL GENETIC ALGORITHMS

The master is also in charge of distributing individuals to slaves and collecting results

from the slaves.
\

~

For all analysis in this section, when a master assigns individuals to slaves, it

delivers a message of size size(i). However, when master collects fitness values from

slaves, it delivers a message of size 1 ( simply the fitness value).

3.1.1 Non-overlapped Single Master ms-PGAs

The first Master-slave PGA that we analyze is the non-overlapped, single-master ms­

PGA. All the population is sf~ed only in the master's memory. For each generation,

the master finishes both selections, and GA operations on all the selected individuals.

It then assigns them to the slaves. The master will be idle until all the slaves fin~sh

their fitness computations. Hence, slaves work concurrently, but master and slaves

never do computation simultaneously. (There is some overlapped communication

time between master and slaves).

Vlfe denote this GA by msOlPGA. Since there is explicit division between two

generations, running time of each generation is identical. There are G iterations in

the algorithm. In each generation, the master will select all the sampling individuals

from the population pool and perform GA operations on them and assign them to

all the slayes. Since the last slave ((P-1) th slave) is the last slave both for starting

and ending computation, we will focus on the computation on the (P-l)th slave.

Assumption: master will assign the individuals to the slaves equally proportionally.

18



3.1. MASTER-SLAVE PARALLEL GENETIC ALGORITHMS

Hence each slave will receive r(~(~L1individuals.

ALGORITHM:

G loops:

Master:

1) select individual Sp x g(p)

2) do GA operation Fo x g(p)

3) assign P-2 individuals to P-2 slaves L + 20 + 9 x ((P - 2)size(i) - 1)

Slave(P-lth):

r~(~i1loops:

1) recieve individuals from master L + 20 + 9 x (size( i) - 1)

2) compute the fitness values of the individuals

3) send fitness value to master

Master:

1) find the best result to output

So, the running time is:

B(l, Po)

T(ms01PGA) = G x [g(p) x (Sp + fo) + L + 20 +9 x ((P - 2) x size(i) - 1)

+r~l(C! + 9 x (size(i) - 1) + 2L + 40)] + B(l,Po)

= O(g(p)Gn + g(p1
LG + Po)

19



3.1. MASTER-SLAVE PARALLEL GENETIC ALGORITHMS

3.1.2 OverIapped Single Master ms-PGAs

The second master-slave PGA that we will analyze is the single population over­

lapped ms-PGA. All the population is stored in the master processor. The com­

putation phases will be overlapped with communication phases. Hence, there is no

explicit generation here. When the master finishes a GA operation on a random se­

lected individual, it will send the individual to one slave immediately then continue

to select another individual to perform a GA operation. Thus, the master will not

idle while waiting for results from slaves, (except the last (P-1)individuals) and will

not wait for another generation to start. Therefore, master will not stop until it

finishes performing GA operartions on all G x g(p) selected individuls.

We denote this GA by ms02PGA.

Assume

1) (P - 1) x (g x (size(i) - 1) + 0 + Sp + fo) <= Gf ,

2) master distributes individuals to slaves equally.

ALGORITHM:

Master (part 1):

G x g(p) loops:

1) select individual

2) do GA operation

3) distribute individual to slaves

Master (after some steps):

20
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3.1. MASTER-SLAVE PARALLEL GENETIC ALGORITHMS

1) collect the results from the slaves

end G x g(p) loops:

Slave (the P-lth):

1) idle

2) r~~))1loops:

1) receive

2) evaluate

3) send

Master(part 2):

1) gets the final result

2) find the best result to output

o

L + (P - 1) x ((Sp + Fo) + 0

+g x (size(i) - 1))

0+ 9 x (size(i) - 1)

Cf

o

L+o

B(l, Po)

In this algorithm, Master(partl) works simutaneously with (P-1)th slave, running

time is:

T(ms02PGA) = (P -1) x (Sp+ fo) + rG;~(f)l x Cf + (P -1) x (0+ 9x (size(i) -1))

+rG;~r)l x (20 +9 x (size(i) - 1)) + 2L +0+B(l, Po)

= O(9(p~9n + Po)

3.1.3 Overlapped Multi-Master ms-PGAs

The last master-slave PGA that we will analyze is the overlapped, multi-master

ms-PGA. In multi-master overlapped ms-PGA, the whole population is stored in

21



3.1. MASTER-SLAVE PARALLEL GENETIC ALGORITHMS

all the master .processors distributedly. Each master processor can randomly select

individuals from its local subpopulation and perform the GA operations, then it

will make assignments to the slave processors. Since in our implementation, the

slaves can be called by any of the masters, good load balancing among slaves should

be considered. For each of the analysis, we assume distribution to slaves is again

equally proportional such that task loading can be simply a one to one mapping.

Since the total number of individuals is the same as single master mode, the slaves

will have the same amount of individuals for fitness value computation. The only

difference is that the masters' selection, GA operation, distribution and collection

will run in parallel. After the masters finish all the operations, one best result of

those masters should be chosen.

We assume Pm denotes the number of the masters. Therefore Pm X p = Po.

We denote this type of GA by ms03PGA.

Assume (P - Pm) X (g X (size(i) - 1) + 0 + Sp + fo) <= Cj ,

ALGORITHM:

Master (part 1):

G~~p) loops:

1)select individual

2)do GA operation

3)distribute individual to slaves

Master ( after some steps ):
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3.1. MASTER-SLAVE PARALLEL GENETIC ALGORITHMS

1)collect the results from the slaves 0

end G x g(p) loops:

Slave (the P - Pmth):

1) idle

2) r(;~~l)1loops:

1) receive

2) evaluate

3) send

Master(part 2):

1) gets the final result

2) find local best

3) find global best result:

The total running time is:

L + (P - Pm) X ((Sp + Fo) + 0

+g X (size(i) - 1))

0+ 9 x (size(i) - 1)

Cf

o

L+o

B(l, t)
rZog(Pm)l x (1 + L +2 x 0+

9 x (size(i) - 1))

T(ms03PGA) = (P - Pm) X (Sp + 10) + r;~;:)l x Cf + (P - Pm) X (0 + 9

X (size(i) - 1)) + rG;~r)l X (20 + 9 X (size(i) - 1)) + 2L + 0

+B(l,~) + flog(Pm)l X (1 + L + 2 xo + 9 X (size(i) - 1))

=O((g(p)Ggn +-.&)
P IPml
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3.2. FINE-GRAINED PGAS

3.1.4 Evaluation

Analyzing our results, we see that all the varient msPGAs do not provide any

significant benefit over sGA. In fact, since these are only asymptotic results, msPGAs

may be even worse than sGA for protein folding using 2D-HP. For msP03GA, we see

that there is the potential for fast running times especially when the gap g is small.

In the master-slave category, the computation of fitness function is parallelized.

However, in order to achieve overall parallelization, extra communication time may

be necessary. Hence if the fitness fU!1ction is not very difficult, or the interconnection

network has heavy traffic, it is not efficient to use this master-slave mode.

3.2 Fine-grained PGAs

3.2.1 Analysis

In fine-grained GAs, a single population is distributed among the processors. Each

processor selects individuals from itself or its neighbors, executes GA operations and

evaluates the fitness function in parallel. We denote this type of GA by fPGA.

In general, assume every processor has m neighbors (0 ::; m ::; P), and select d

individuals from each neighbor every t generations.

Using the same analysis notation defined in section 2.1, we can get that, for

each processor p, p stores Et individuals in its local memory. Moreover, in each

generation, m x d individuals are selected from remote processors, and ~. - m ~ d
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3.2. FINE-GRAINED PGAS

individuals are selected locally.

For more accurate analysis, we have two more assumptions:

1. Each processor has a receiving buffer and a sending buffer.

2. L + 20 +9 x (size(i) - 1) < (Sp + Fo +Of)

Since for every t generations, each processor will select individuals from its neigh­

bors, we consider t generations as a "super-generation". Hence, there are f super­

generations in the algorithm. Within one super-generation, there are t - 1 normal

generations and ·one generation where communication will occur. Since the selec­

tion process is also parallelized, for each processor, only r9~)1individuals need to

be selected from the local memory to perform the GA operations.

ALGORITHM:

f loops:

1) t-1 loops:

r~lloops:

1) selection from local

2) do GA operation

. 3) do evaluate

end r~lloops

end t-l loops.

2) select d individual to sent

25
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3.2. FINE-GRAINED PGAS

send/receive d individual

3) select from local

4) do GA operation

5) evaluate

end f loops.

find its local best result:

find global best result:

m x d x (0+ g x (size(i) -1))

(f~l - d) x Sp

r~l x fa

r~l x Of

B(l, ~)

flogPl x (1 + L +2 x 0

+g(size(i) - 1))

Analyzing running time, we see that:

T(JPGA) = G(fg~)l(Sp + Fa + Of) + mo% + %mg(size(i) -1)) + B(l, ljg-)

+flogPl (1 + L + 20 + g(size(i) - 1))

=O(Ggr)n + dG~nm + ljg-).

3.2.2 Evaluation

If m is quite small, the result may not be very efficient, this is due to the fact that

a good solution is not able to be spread quickly. It may more likely to be trapped

in the local optimal traps. Because of the restriction of the individual selection (i.e.

every processor can only pick the individual from itself or its neighbor), it is not a

typical GA [6] (Erick 1998). For different topology interconnection network, different

schedules of sending and receiving information are needed. If the topology is not

a regular one or the processor has different numbers of neighbors, the schedule .can
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3.3. COARSE-GRAINED PGAS

become more complex. So, the algorithms may not be portable, however it will work

well on specific parallel machines, like OM-I, Maspar MP-1. In our implementation,

fine-grainedGA is based on a 2D torus, since many massively parallel computers

utilize a 2D grid [6] (Erick 1998). It order to simplify the implementation, we utilize

2D torus to ensure every processsor will have same amount of neighbors. Thus for

each of the processor, it can either select individual from its own local storage, or

from its four neighbors' storage.

Analyzing our results against sequential GAs and multi-master-slave PGAs, we

observe that the potential for much faster running times than those from sGAs is

quite likely, especially if %< Gg~)Jl,. Moreover, further analysis shows that fPGA

should run faster than msPGAs.

3.3 Coarse-grained PGAs

In coarse-grained GAs, every processor has its own sub-population and works as an

sGA. Between any two sub-populations some solutions can be exchanged with each

other [25] (Santos Jr. 1999).

Assume the number of immigration individuals is d, and that immigration will

occur every t generations. Some parameters/factors for immigration have to be

considered:

1. The topology that connects the subpopulations. In our implementation,

the topologies are simple rings or completly connected graphs due to both
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3.3. COARSE-GRAINED PGAS

simplicity and portabity.

2. The number of immigration individuals. If immigration individuals are

randomly chosen, it may lead to slow convergence. However, at the other

extreme, if the immigration individuals are the best solutions of that sub-

. population, additional time is required to determine such best solutions. In

our implementation, in order to have a tradeoff, we immigrate only one best

solution with other randomly chosen solutions. Since we only chose one best

solution, this means only one more comparison will be added for each evalua­

tion. To simplify the analysis, we omit 0(1) running times to pick up the best

solution at this point.

3. The frequency of immigration. Typically, the first several generations re­

quire less immigration since it is not useful to spread solutions which have not

be refined. However, as time passes, more immigration will be particularly

useful in order to spread good solutions quickly. To simplify our theoretical

analysis, the frequency of immigration is constant in our analysis and imple­

mentation.

For course-grained PGAs, there has been some research focus on providing ac­

curacy of the results [14] (Hart 1996) [7] ( Erick 1997). But, there has been little in

the literature which provides in-depth discussion on how message-passing is imple­

mented in general. This is an important criteria for determining parallel efficiency.
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3.3. COARSE-GRAINED PGAS

In this chapter, we provide three different methods for course-grained message-

passing taking into account types of machines/models and/or networks.

3.3.1 Classic Coarse-grained PGAs

Our first algorithm is the 'classic coarse-grained PGA. Each processor has the pos-

sibility to communicate with any other processors. Its interconnection topology

is a completely connected graph. During the immigration processing, one of the

processors randomly creates an offset and broadcasts to all the other processors.

Afterwards, each processor exchanges the information with the processor having

the proper offset.

We denote this type of coarse-grained PGA by CPGA.
~

Similar to the case of fine-grained PGAs, we use the analysis notation in section

2.1, and assume that every t generations, d individuals are selected to immigrate.

And also, assume each processor has a receiving buffer and a sending buffer.

Since every t generations, each processor will send/recieve d individuals from

any other neighbor, we consider t generation as a super-generation. Hence, there

are f super-generations in the algorithms. Within one super-generation, there are

t - 1 normal generations and one generation where immigration occurs. Since the

selection process is also parallelized, for each processor, only rg~)1individuals need

to be selected to perform the GA operations.
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3.3. COARSE-GRAINED PGAS

ALGORITHM:

~ loops:

In immigration generation:

1) for processor 0:

create random offset 1

broadcasts offset to P-1 processors 0+ (P - 2) x 9

for rest of processors:

receive random offset

2) select d individual to sent

send/receive d individual

3) select from local (keep reserve part)

4) do GA operation

5) evaluate

t-1 loops:

1) select from local

2) do GA operation

3) evaluate

end ~ loops.

find its local best result :

find global best result:
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The running time is:

T(CPGA) = G( r~l (Sp + Fo + Cf ) + 0% + %g(size(i) - 1) + l+O+(~-2)X9)

+B(l, Ijg-) + pogPl (1 + L + 2 x 0 + g(size(i) -1))

= o(Gg~)n +~n + Ijg-).

3.3.2 Two New Coarse-grained PGAs

In this section, we introduce two new approaches for coarse-graned PGAs.

The purpose in designing these two algorithms is based on:

(1) spreading "good results" as soon as possible and as widely as possible, and

(2) efficiently communicating valuable information while still keeping the

GA's random character.

In classic coarse-grained PGA, immigration individuals are ramdomly selected.

It is quite possible that "good results" can not immigrate. Or even it immigrats

once, it is hard to continue to immigrate to more processors. Thus, we design an

algorithm, called token-ring coarse-grained PGAs, to ensure good result spreading

to all the processors.

Token-ring Coarse-grained PGAs

Our second algorithm relies on "token-passing" along a directed ring of processors,

instead of using point-to-point immigration method to transfer information. Token­

passing is to allow good results to be continually passed to proc~ssors in hopes for

a faster result convergence. When a token reaches one processor, some part of the
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3.3. COARSE-GRAINED PGAS

token

Figure 3.1: Token Ring Coarse-grained PGA

token will be updated, while the remaining portion will not be updated until it

reaches the processor from which it originated.

We choose a ring since

(1) it is a simple topology which c~n be embedded into several other topologies,

and

(2) it is straightforward to design a communication scheme among processors.

There are f tokens being passed in the interconnection network at any time.

Each token has two parts, one is "reserve part" (to be forwarded as is), the other

is "update part" (to facilitate change). For every processor, when it receives the

token, it will update the random part while keeping the reserve part to be delivered

to the next processor. In addition, we divide the reserve part equally into P parts.

When each processor receives the token, it will update its part in the reserve part.
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3.3. COARSE-GRAINED PGAS

This ensures that the reserve part will be refreshed every tP generations. Assume

the reserve part is r in the token. When the processor receives the token, it needs to

update {5+d-r of the individuals' information. We note that besides the operations

on the token, the algorithm is similar to the fine-grained GA on distributed-memory

with large t.

We refer to a token-passing course-grained PGA as TPGA.

The running time is:

-. (P-l)r

T(TPGA) = G(r~l(Sp + Fa + Cf ) + o~ + ~g(size(i) -1) - -T-)Sp)

+B(l, 1jg-) + rlogPl(l + L + 2 X 0 + g(size(i) - 1))

= O(Gg(p)n + !!:QJl(n _ Pr) + Eo.)
P t t p'

Loosely-coupled and Tightly-coupled Coarse-grained PGAs

Our third algorithm uses the concept of tightly-coupled and loosely-coupled. We

form a group of processors whose latency between each other is much smaller than

the average latency. We call this group of processors the tightly-coupled group. In

each tightly-coupled group, there is one sending and one receiving processor which

sends [receives] information to [from] other tightly-coupled groups. Communication

among the tightly-coupled group is the same as in normal coarse-grained PGAs. We

assume ~ senders and ~ receivers. Moreover, we denote Lo, 00 and go as the latency,

overhead, and gap in the tightly-coupled group. Furthermore, t l denotes the rate of

individuals exchanging between the tightly-coupled groups, and t2 denotes the rate

of individuals exchanging within a group.
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Figure 3.2: Loosely-coupled and Coarsely-coupled Coarse-grained PGA

Lastly, we denote this type of genetic algorithm by tPGA.

We combined t1 x t2 generations as a phase, hence there are tl ~t2 phases in the

algorithm. In each one of the phases, there is one communication between tightly-

coupled groups, and t2 - 1 communication within the tightly-coupled group.

ALGORITHM:

• G 1 .m tl Xt2 oops.

communication generation among tight-coupled groups:

1) select· d individual to sent

send/receive d individual

34

d x (0 + 9 x (size(i) :...- 1))



3.3. COARSE-GRAINED PGAS

2) select from local

3) do GA operation

4) evaluate

(r9lf)-1 - d) x Sp

r9lf)-l x Fa

rg~)l x CJ

end communication generation among tight-coupled groups.

t2 - 1 loops:

communicatio~ generation within tight-coupled groups:

1) select d individual to send

send/receive to group member

2) select from local

3) do GA operation

4) evaluate

-

d x (00 + go x (size(i) - 1))

(r9lf)-1 - d) x Sp

rg~)l x Fa

r9lf)-l x CJ

end communication generation within tight-coupled groups:

t1 - 1 loops:

1) select from local

2) do GA operation

3) evaluate

end tl ~t2 loops

find local best result:

. find global best result:

So in total, the running time is:
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T(tPGA) =GU~l(Sp+ fo +Cf ) -t t(o+ g(size(i) -1)) + ~(oo +go(size(i) -1)))

+B(l, 1jg-) + flogPl(l + L + 20 + g(size(i) - 1))

= O(Gg(p)n + dgnG + Gdgon + fu)
P tl t2 P

3.3.3 Evaluation

There is relatively little extra effort needed to convert a serial GA into a multiple

population GA. The key point to design a good coarse-grained GA is to try to spread

the good solution quickly and decrease the communication cost of the immigration.

We have presented several ways to achieve this:

1. Broadcast the best solutions. Choose fewer immigration individuals and

less immigration frequency. But all of them are the best solution of that

sub-population.

2. Choose some good solutions to be a "token" running in the whole

system. Every processor catches the token and replaces parts of the token .

with its good and randomly selected solutions.

3. Create clusters including "receive" processors and "send" processors

which only deal with receiving or sending during the immigration communi-

cation to the other clusters.

Analyzing our results, we see that the token-passing course-grain PGA has the

better asymptotic run-time. Therefore, the simple mechanics of.passing information
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alOng a ring seems to be efficient. When we compare the results against sGA,

master-slave and fine-grained, we see that when t is large, the running time of

fine-grained should match ~se-grained. Coarse':'grained PGAs should run more

efficiently compared to the remaining genetic algorithms analyzed.
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Chapter 4

Implementation

4.1 Performance Results

We implemented all the different PGAs we have described, using MPI on a cluster

of Sparc Ultra1Workstations. 1 We ran simulations for proteins of length 20, 36,

48, and 64. The number of processors either physically or virtually ranged from 1

to 16. For each protein length, we provided two figures representing the amount

of parallel execution time required for each PGA. The results appear in Figure4.1,

4.2, 4.3 and 4.4. We mapped a straight line in every graph to denote the run­

ning time of sGA. The test bed we used in our implementation comes from http :

/ /www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html.

As we can see, our theoretical analysis predicted which genetic algorithm would

be the most. efficient. For small numbers of proce$sors, there are shown that sGA

IThe source code.is available via email:lil3@eecs.lehigh.edu.
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is the most efficient. That is tp be expected since the message time overheads for

.small numbers of processors have increased the overall running time, which makes

a PGA potentially more inefficient than the sGA.

4.2 Evaluation

From these eight PGA's implementations, we find that:

1. Coarse-grained PGAs are much better than Master-slave PGAs and better

than fine-gained PGAs when the length of the protein molecule is long.

2. Among the three types of Master-Slave PGAs, multi-master PGA works much

better than single-master PGA. Actually, the multi-master PGA already has

some similararities to coarse-grained PGA, except for the lack of communica­

tion between the masters.

3. When we used four/eight/sixteen processors to implement coarse-grained PGA,

we found that when the length of protein molecule increased, its speedup was

nearly optimal ( in all four test cases: protein length equals 20, 36,48 and 64).

This implied that good results that are spread quickly and widely truly aid

PGAs in improvement of performance.
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Chapter 5

Conclusion and Future Work

5.1 Conelusion

Protein foldirig is a vital problem in bio-chemistry. One of the most fundemental

and well-known modIs for protein folding is the 2-D HP model. In order to obtain

solutions for protein folding on 2-D HP, several methods have been utilized. Genetic

algorithms have been shown to be one of the most effective. Therefore, the focus

of this problem has been the design and analysis of GAs, in particular parallel

GAs, for protein folding for 2-D HP. Moreover, our results are extendible to other

fundemental optimization problems.

Genetic algorithms have been implemented to solve various NP-hard problems.

Moreover, they have proven to be quite efficient [3] (Bianchini 1995). Even so, in

order to find good problem solutions, sGAs may require large amounts of time.
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Much research has been done to consider how to parallizes sGAs into PGAs.

Clearly, sGAs are complicated algorithms due to the need to consider several

parameters. Turning our attention to PGAs, we see that even more parameters

must be considered based on the different design/implementation of each PGA. In

fact, PGA designers or implementors must deal with determining the interaction of

not only sGA parameters and parallel machine parameters, but also a new host of

other parameters which include dealing with information exchange patterns across

processors as well as acquiring further parameters for each specialized PGA (i.e.

number of masters vs. number of slaves in multi-master msPGAs).

Since there is a multitude of parameters from which to consider, it is important

to only choose those parameters which are deemed to be the most important for the

PGAs at hand. This is due to the simple fact that while more parameters poten­

tially create more realism, they will also create a reduction in the degree of usability.

Furthermore, the GA community has focused their attention on a very important

.issue, mainly determining convergence rates for fast convergence of solutions. How­

ever, a key point that has been neglected is the design and theoretical analysis of

PGA run-times and efficiencies. This fundamental point is the building block of the

research presented in this thesis.

In this thesis, we theoretically designed and analyzed the running times of several

fundamental parallel PGAs for the problem of protein folding on 2D-HP. The results

,we obtained from our implementation are consistant with our theorectical results.

This shows that:
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1. To solve protein folding on 2-D HP model, among all three PGA categories,

coarse-grained PGAs are the most efficient ( based on the same amount of

processors, same test bed and same GA parameters: population size, the

amount of individual sampling, crossover rate, mutation rate and number of

generations) .

2. our asymptotic growth rate results can give a direct gudiance on the parameter

choosing for PGAs to solve protein folding on 2-D HP model.

3. researchers can predict the run-time performance of complicated parallel al­

gorithms using realistic parallel models.

We also designed two new coarse-grained PGAs: token-ring and loosely-coupled

and tightly-coupled. The motivation to design these two coarse-grained PGAs is

based on:

1. spreading "good results" as soon as possible and as widly as possible to faster

the result convergence on all the processor while still keepin the GA's random

character.

2. maintaining efficient communication while also keeping simple implementa­

tion.

These two new coarsed-grained PGAs are base on a ring topology, which can

be embedded into many other complicated toplogies. The implementation- shows
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that these two PGAs achieve as good results as the classic coarse-grained PGA

which is based on a completely connected graph ( based on same immigration rate,

immigration size and same sampling technique).

5.2 Future Work

In order to obtain a more complete picture of coarse-grained PGAs, potential im­

provements include:

1. For token-ring coarse-grained PGA, when the number of the processor in­

creases, ring become a too simple topology to spread the result because it

takes long time to finish one round. We plan to expand token-ring into a

2D-torus, on each row and each column, there is a token-ring coarse-grained

PGArunning on it.

2. For loosely-couple and tightly-coupled PGA, since we only utilized processors

which. reside on the same LAN in implementation of the tightly-coupled PGAs,

the results is very similar to the classic PGA. We plan to implement this

algorithm on different LANs and potentially a mixed LAN/WAN configuration

in the future.

Finally, since our theoretical analysis has successfully derived the run-time for

PGAs to solve protein folding on a simple model, i.e. 2-D HP, we can now focus
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5.2. FUTURE WORK

attention towards more complicated and more realistic/accurate models, such as

CHARMM (Chemistry at HARvard Macromolecular Mechanics) [5] (Brooks 1983).

48



Bibliography

[1] C. B. Anfinsen. Principles that given the folding of protein chains. Science,

181:223-230, 1973.

[2] B. Berger and T. Leighton. Protein folding in the hydrophobic-hydrophilic(hp)

model is np-complete. Journal of Computational Biology, pages 27-40, 1998.

[3] R. Bianchini, C. M. Brown, M. Cierniak, and W. Meira. Combining distributed

populations and periodic centralized selections in coarse-grain parallel genetic

algorithms. In Proceeding of the International Conference on Aritificial neural

Networks and Genetic Algorithms, April 1995.

[4] E. Bomberg-Bauer. Simple folding model for hp lattice proteins. In Proceedings

of Bioinformatics German Conference on Bioinjormatics GCB '96, pages 125­

36. Springer-Verlag, 1997.

[5] B. R. Brooks, R.E. Bruccoleri, et al. Charmm: A program for macromolecular

energy, minimization, and dynamics calulations. Journal oj Computational

Chemistry, 4(2):187-217, 1983.

49 .



BIBLIOGRAPHY

[6] E. Cantu-Pax. A survey of parallel genetic algorithms. Calculateurs Paralleles,

10(2):141-171,1998.

[7] E. Cantu-Paz and D. E. Goldberg. Predicting speedups of idealized bounding

cases of parallel genetic algorithms. In Proceedings of the Seventh International

Conference on Genetic Algorithms. Morgan Kaufmann, 1997.

[8] H. S. Chan and K. A. Dill. The protein folding problem. Physics Today, pages

24-32, February 1993.

[9] P. Crescenzi, D. Goldman, C. Papadimitriu, A. Piccolboni, and M. Yannaka­

nis. On the complexity of protein folding. Journal of Computational Biology,

5(3):423-465, 1998.

[10] D. Culler, R. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schauser,

R. Subramonian, and T. von Eicken. Logp: a practical model of parallel

computation. Communications of the Association for Computing Machinery,

39(11):78-85, November 1996.

[11] K. A. Dill, S. Bromberg, K. Vue, K. M. Fiebig, D. P. Vee, P. D. Thomas,

and H. S. Chan. Principles of protein folding-a persepctive from simple exact

models. Protein Science, 4:561-602, 1995.

[12] A. S. Fraenkel. Complexity of protein folding. Bulletin of Mathematical Biology,

55(6):1199-1210,1993.

50



BIBLIOGRAPHY

. [13] M. H. Hao and H. A. Scheraga. Computational approach to the statistical

mechanics of protein folding. In Proceedings of the 1995 ACM/IEEE Super­

computing Conference, volume 1, pages 478-505, 1995.

[14] W. E. Hart, S. Baden, and S. Belew, R. K. Kohn. Analysis of the numerical

effects of parallelisam on a parallel genetic algorithm. In The 10th International

Parallel Processing Symposium, pages 606-612, 1996.

[15] W. E. Hart and S. Istrail. Fast protein folding in the hydrophobic-bydrophilic

model within three-eighths of optimal. In Proceedings of Twenty-seventh An­

nual ACM Symposium on Theory of Computing(STOC95), pages 157-68, 1995.

[16] W. E. Hart and S. Istrail. Invariant patterns in crystal lattices: Implications

for protein folding algorithms. In 7th Combinaorial Pattern Matching Annual

Symposium, pages 288-303, 1996.

[17] W. E. Hart, T. E. Kammeyer, and R. K. Belew. The role of development in

genetic algorithms. Foundations of Genetic Algorithms, 3:215-332, 1995.

[18] K. F. Lau and K. A. Dill. A lattice statistical mechanics model of the con­

formational and sequence spaces of proteins. Macromolecules, 22:3986-3997,

1989.

[19] S. C. Lin, W.F. Punch, and E. D. Goodman. Coarse-grain parallel genetic

algorithms: ·categorization and new approach.· In Proceeding of Sixth IEEE

Symposium on Parallel and Distributed Processing, pages 28-37, 1994.

51



J3¥f3tIOGRAPHY

(2tJ] 1. D. Merkle, G. B. Lamont, G. H. Gates, and R. Pachter Jr. Hybrid genetic

algorithms for minimization of a polypeptide specific energy model. In Proceed­

ing of 1996 IEEE Internatio.nal Conference on Evoltionary Gomutation, pages

396-400, 1996.

(~J] Il Muhlenbein. Asynchronous parallel search by the parallel genetic algorithm..

In Proceeding of the third IEEE Symposium on Parallel and distributed process­

ing, pages 526-533, 1991.

(~~] B. Muhlenbein. Evolution in time and space- then parallel genetic algorithm.

Foundations of Genetic Algorithms, pages 316-337, 1991.

(~~] A. L. Patton, W. F. Punch, and E.D. Goodman. A standard ga approach to

native protein conforamtin prediction. In Proceedings of the Sixth International

Conference on Genetic Algorithms, pages 574-581, July 1995.

«J] E. E. Santos, L. Lu, and E. Santos Jr. Efficiency of parallel genetic algorithms

for protein folding on the 2-d hp model. In The Third International Workshop

on Frontiers in Evolutionary Algorithms, 2000.

«6] E. Santos Jr., S. E. Shimony, and E. Williams. Solving hard computational

problems tbrough collections (portfolios) of cooperative heterogeneous algo­

rithms. In Proceedings of the 11th International FLAIRS Conference, pages

356-360, 1999.

52



BIBLIOGRAPHY

[26] E. Shakhnovich, G. Farztdinov, A. M. Gutin, and M. Karp]us. Protein fold­

. ing bottlenecks: A lattice monte carlo simulation. Physical Review letters,

67(12):1665-1668, September 1991.

[27] R. Shonkwiler. Parallel genetic algorithms. In Proceeding of the Fifty Interna­

tional Conference on Genetic algorithms, pages 199-205, 1993.

[28] R. Unger and J. Moult. Finding the lowest free energy conformation of a protein

is an np-hard problem:proof and implications. Bulletin of Mathematical Biology,

55(6):1183-1198,1993.

[29] R. Unger and J. Moult. Genetic algorithms for protein folding simulations.

Journal of Molecule Biology, 231:75-81, 1993.

53



Biography

Lin Lu was born in Suzhou, China on July 7th, 1974, to Zhiyong Lu and Hangfan

Zhu. She began to study in East China Normal University in 1992, and got her

Bachelor Degree of Science in Computer Science in 1996. From 1996 to 1997, she

worked as a system administrator in the Financial Department of Warner-Lambert

Sino-US Suzhou Capsulgel Company. In 1997, she started her graduate program

in Lehigh University. She expect to get her Master Degree of Science in Computer

Science in January 2000.

54



E~ND OF
TITLE


	Lehigh University
	Lehigh Preserve
	1999

	Run-time analysis of parallel genetic algorithms for protein folding on the 2-D HP model
	Lin Lu
	Recommended Citation


	00013
	00014
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079

