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Abstract

The beginning is the most important part ofthe work.
- Plato

Most networking bottlenecks exist at the end client, as a result of the small bandwidths

and loss rates of that link. Performance Enhancing Proxies (PEP) have been proposed to improve

the end client performance. However existing TCP designs do not perform optimally for PEPs.

The APARNA project proposes modifications at the application layer and the transport layer to

improve TCP throughput for these resource-constrained networks. The suggestions include

modifying the TCP congestion control algorithm, network layer modifications and header

compression.

TCP/IP has been and is likely to continue for a long time as the de-facto communication

protocol standard over the Internet. TCP has been designed for communication over wired

networks. Essentially it assumes a reliable network link, with very little or no losses due to

channel errors. But in case of communication over wireless networks, it is suboptimal. End link

features such as mobility, disconnection, poor link behavior (losses) etc., are transparent above

the transport layer. This means the application itself does not provide any special measures to

handle end host behavior, and it should not be expected to do so. This means we still have to use

just TCP/IP over the wireless networks too. This is probably a bit naive. Researchers have

proposed methods to get around these problems of TCP/lP, such as the use of split connection

proxies, which allow TCP connections between the end link and the server to be separated into

two. This allows us to apply optimization features over the last link, some of which are

discussed in this thesis.
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APARNA proposes an alternative protocol stack, the lightweight protocol for weak

connections (LPWC) to be used along the last link replacing TCPIIP for a client connected to the

Internet through a split connection proxy. The LPWC covers the network and transport layers on

the end link. In the case of a PEP, all the connections from a client end at the proxy. The length

of the network is very small, about 2 to 3 hops. In such a scenario, we can improve performance

over existing Tep designs.
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Chapter 1.

Background and Related Work

Don't judge each day by the harvest you reap, but by the seeds you plant.
--Robert Louis Stevenson

Of late there have been many attempts to improve service to thinly connected clients.

This has been boosted by the success story of wireless telephone service. There have been

attempts to provide network services to hand-held wireless devices (PDA's, cellphones etc).

These attempts have not seen as much success. One reason for this failure is lack of proper

devices. Existing hand-held devices are not up to the mark to use Internet services. Another

reason is the poor quality of service. Wireless networks will probably never be able to match

wired networks in terms of bandwidth or round trip times. This raises the question as to what can

be done to improve performance on wireless networks. One answer is to extract more resources

out of the available channel. The idea is to use less channel bandwidth to send more information.

Bandwidth in the wireless world is a precious commodity, much more than in wired networks. In

wired networks bandwidth is not really an issue, if more bandwidth is needed, additional network

connections could be provided. This is not possible in the wireless world. Increasing bandwidth

means we need to increase the frequency spectrum, which is rarely possible. So the ideal means

to improve the quality situation is to reduce bandwidth wastage, pack more information into

fewer bits and try to keep the channel busy and not idle.

The ideas presented in this thesis are not just for wireless networks. They are intended to

be used in all kinds of environments where bandwidth is scarce and precious. Somehow "scarce

and precious" are two words associated with wireless networks. This probably explains why the
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background work for this thesis is centered on solutions for wireless networks.

There have been quite a few ideas proposed and some implementations are also

available, on improving performance in wireless and other networks. Some of those ideas are

presented in this section. There are three broad categories where we can classify improvements

to TCP over wireless links:

1. Local modifications; hide the wireless link from the TCP sender.

2. Make the sender aware that there exists a wireless link so it would realize some losses are

not due to congestion

3. Modify the link-layer and make it "wireless-efficient"

We discuss these further below.

1.1 Masking Channel Losses from End Server

1.1.1 Split Tep connections

The split TCP model was first proposed by Bakre and Badrinath [1-TCP]. It has over the

years been tweaked and twisted by other researchers notably [MTCP], [MOWGLI]. The goal of

splitTCP connections is to hide the channel losses on the wireless link from the end server. This

way the loss in performance when the server reduces its congestion window on detecting a lost

packet is avoided. In their original paper, Bakre and Badrinath suggested that the TCP connection

be split into two (or more) TCP connections. In essence a proxy is introduced between the server

and the end client. The proxy is implemented on the edge of the wireless domain. This way the

server is shielded from the channel losses on the wireless link and also it does not experience the

"elephant effect" of long fat networks (a large amount of time is wasted in pumping up the

congestion window of the sender during the slow-start period). [Davison02] proposed a split
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stack approach to client networking, wherein the client protocol stack is moved away from the

client to an intermediate gateway. The application runs on the client but the networking calls are

made from the gateway.

Split TCP connections found some success partly due to the fact that implementing a

split connection model was rather simple (if not trivial). The problem with split connections is

that they violate the end to end principle of the Internet [Saltzer84]. The end to end principle

states that "functions placed at low levels of a system may be redundant or of little value when

compared with the cost of providing them at that low level". A function can only be completely

and correctly implemented with the knowledge and help of the applications standing at the

communication endpoints. Split TCP connections violate the end to end principle by

acknowledging data which the end client may not have received. Violation of this principle is a

serious problem.

1.1.2 TCP Snoop

Hari Balakrishnan proposed the TCP Snoop [SNOOP] model as part of his PhD

dissertation. In the TCP Snoop model, the gateway on the edge of the wireless network holds a

cache of recently sent packets. Whenever the gateway detects a duplicate acknowledgment, it

assumes the packet has been lost on the channel and suppresses the duplicate acknowledgment

from the server. It sends out the lost packet from its own cache. This way the server never gets

the lost packet and never knows that a packet has been lost. If the packet is not found in the

gateway's cache, then the loss is a congestion loss and the dupack is passed onto the server.

Snoop is popularly implemented these days. The drawback of snoop seems to be an apparent

security flaw. If the gateway can read the transport layer headers of the packet, then so can any
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other sniffing device. This flaw may not be acceptable in all cases, but it works well for the

general case. Intuitively it can be guessed that the gateway could have a greater say in

establishing and maintaining TCP connections if it has access to the complete packet headers,

which is what I suggest in this thesis.

1.1.3 The Mowgli System

The Mowgli system [MOWGLI] is a proxy based approach to improve performance in

wireless networks. The Mowgli system was designed to overcome some of the challenges posed

by low bandwidth wireless wide-area links. It was primarily targeted at cellphones. Mowgli is

based on the split connection philosophy. It uses split connection at all layers of the protocol

stack. The basic architecture is based on split TCP connections. An application layer proxy pair

may be added between a client and server, the agent (local proxy) on a mobile host and the proxy

on an intermediate node that provides the mobile host with the connection to the outside world.

The socket architecture on the client machine is slightly modified to support existing

applications.

Mowgli also provides for an option to replace the last mile TCPIIP protocols with a

proprietary protocol architecture. This protocol may implement features such as compression,

unreliable link layer mode (which can be turned on or off depending on the circumstances).

Unfortunately Mowgli does not comply with the end to end rule (as with most split TCP

connection based ideas). This is the reason why it never really caught on. Nevertheless the

Mowgli system remains one of the most important ideas in the wireless world.
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1.1.4 Wireless Application Protocol (WAP)

WAP [WAPForum] was targeted at low power wireless devices such as pagers,

cellphones, PDAs etc. It was specifically designed to cope with the low power, low memory, low

CPU and low bandwidth constraints of these devices. The WAP model consists of a WAP client

(mobile terminal), a WAP proxy, and an origin server. In a typical scenario, a WAP client sends

an encoded WAP request to a WAP proxy. The WAP proxy translates the WAP request into a

WWW (HTTP) request, performing the required protocol conversions, and submits this request

to a standard web server on the Internet. After the web server responds to the WAP proxy, the

response is encoded into a more compact binary format to decrease the size of the data over the

air. This encoded response is forwarded to the WAP client.

Looking at just the network operation of WAP, it looks very similar to the design of

Mowgli. And it suffers from the problems of Mowgli as well, i.e. it violates the end to end

principle. Bringing an application level proxy (the WAP Proxy) into the picture violates the end

to end rule. Although HTTP proxies are all not that bad, beyond HTTP, they are not of practical

use. Thus the use of WAP is not much beyond HTTP. This is perhaps one reason why WAP has

not really caught on despite being aggressively marketed by the cellular companies.

1.2 Sender-based Methods

There have been a few sender (the end TCP server) based methods proposed to improve

the quality of service to the wireless links. These methods require the co-operation and

modification of the end TCP server. These include TCP-Reno and TCP-NewReno, Selective

Acknowledgments (SACK), Explicit loss notifications (ELNs).
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1.2.1SACK

Multiple packet losses from a window of data can have a catastrophic effect on TCP

throughput. TCP [PosteI8l] uses a cumulative acknowledgment scheme in which received

segments that are not at the left edge of the receive window are not acknowledged. This forces

the sender to either wait a round trip time to find out about each lost packet, or to unnecessarily

retransmit segments which have been correctly received [Fa1l9S]. With the cumulative

acknowledgment scheme, multiple dropped segments generally cause TCP to lose its ACK-based

clock, reducing overall throughput.

Selective Acknowledgment [SACK] [RFC20l8] is a strategy which corrects this

behavior in the face of multiple dropped segments. With selective acknowledgments, the data

receiver can inform the sender about all segments that have arrived successfully, so the sender

need retransmit only the segments that have actually been lost. The drawback with SACK is that

it needs support at both client and server ends. This makes SACK difficult to implement.

1.2.2 Explicit Loss Notifications

Explicit Loss Notification (ELN) [Balakrishnan97] is a mechanism by which the reason

for the loss of a packet can be communicated to the TCP sender. In particular, it provides a way

by which senders can be informed that a loss happened because of reasons unrelated to network

congestion (e.g. due to wireless bit errors), so that sender retransmissions can be decoupled from

congestion control. If the receiver or a base station knows for sure that the loss of a segment was

not due to congestion, it sets the ELN bit in the TCP header and propagates it to the source. In the

situation at hand, this ELN message is sent as part of the same connection (and not in a separate

way, using ICMP for instance). This simplifies the sender implementation as it receives messages
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in-band. ELN is a general concept that has applications in a wide variety of wireless topologies.

The snoop agent running at the base station monitors all TCP segments that arrive over

the wireless link. However, it does not cache any TCP segments since it does not perform any

retransmissions. Rather, it keeps track of holes in the sequence space as it receives data segments,

where a hole is a missing interval in the sequence space. These holes correspond to segments that

have been lost over the wireless link. However, it could also be the case that the packet was lost

due to congestion at the base station. To avoid wrongly marking a congestion hole as having

been due to a wireless loss, it only adds a hole to the list of holes when the number of packets

queued on the base station's input interface is not close to the maximum queue length.

When ACKs, especially duplicate ACKs, arrive from the receiver, the agent at the base

station consults its list of holes. It sets the ELN bit on the ACK if it corresponds to a segment in

the list before forwarding it to the data sender. It also cleans up all holes with sequence numbers

smaller than the current ACK, since they correspond to segments that have been successfully

received by the receiver. When the sender receives an ACK with ELN information in it, it

retransmits the next segment, but does not take any congestion control actions. The sender also

makes sure that each segment is retransmitted at most once during the course of a single round­

trip, as the snoop agent would flag an ELN for each duplicate ACK following a loss.

1.2.3 TCP Reno and TCP NewReno

TCP Reno added a fast recovery feature to traditional the TCP (Tahoe) version. With fast

recovery, TCP detects a lost packet by detecting duplicate acknowledgments. When the third

duplicate ACK is received, the Reno TCP transmitter sets slow start threshold (ssthresh) to one

half of the current congestion window (cwnd) and retransmits the missing segment (fast
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retransmission). The cwnd is then set to ssthresh plus three segments (one segment per each

duplicate ACK that has already been received). The congestion window is then increased by one

segment on reception of each duplicate ACK which continues to arrive after fast-retransmission.

This allows the transmitter to send new data when cwnd is increased beyond the value of the

cwnd before the fast-retransmission. When an ACK arrives which acknowledges all outstanding

data sent before the duplicate ACKs were received, the cwnd is set to ssthresh so that the

transmitter slows down the transmission rate and enters the linear increase phase. This way the

recovery is much faster than with Tahoe, where slow start is invoked after the lost packet is

retransmitted.

NewReno brings about a few small changes to traditional Reno algorithm. An optimal

ssthresh is calculated when the connection is about to be made. The optimal ssthresh is calculated

by determining the available bandwidth on the channel using the packet pair algorithm. If two or

more segments have been lost from the transmitted data (window), the fast retransmission and

fast recovery algorithms will not be able to recover the losses without waiting for retransmission

time out. NewReno overcomes this problem by introducing the concept of a fast retransmission

phase, which starts on detection of a packet loss (receiving 3 duplicate ACKs) and ends when the

receiver acknowledges reception of all data transmitted at the start of the fast retransmission

phase. If more than one packet is missing within the same window, a retransmission only

recovers the first lost packet from the window. The receiver then ACKs reception of the

retransmitted segment and all following segments up to the next lost segment. This ACK is called

a "partial ACK", because it has not acknowledged all the packets which were transmitted prior to

the start of the current fast retransmission phase. The transmitter assumes reception of a partial

ACK during the fast retransmission phase as an indication that another packet has been lost
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within the window and retransmits that packet immediately to prevent expiry of the

retransmission timer. NewReno sets the cwnd to one segment on reception of 3 duplicate ACKs

(i.e. when entering the Fast Retransmission Phase) and unacknowledged data are retransmitted

using the slow start algorithm. The transmitter is also allowed to transmit a new data packet on

receiving 2 duplicate ACKs. While the transmitter is in the fast retransmission phase, it continues

to retransmit packets using slow start until all packets have been recovered (without starting a

new retransmission phase for partial ACKs). Although this modification may cause unnecessary

retransmissions, it reduces transmitter time outs and efficiently recovers multiple packet loss

using partial ACKs. Reno and NewReno algorithms make it easier to cope with and recover from

packet losses. These algorithms are still designed for congestion losses. They do not cope well

with heavy channel losses are those seen in an unreliable medium. All simulations and

comparisons in this thesis are made with TCP Reno.

The problem with sender based schemes is that they cannot be depended upon. Sender

based schemes require widespread deployment to work effectively (there are more clients than

servers). Widespread deployment is usually (almost) impossible.

1.3 Link Layer methods

Another area for improving performance under wireless networks is to use link layer

schemes. Schemes such as low level retransmissions are implemented in most link layer

protocols (e.g 802.11) to reduce the number of losses seen by the upper layer. This way the losses

seen by the TCP sender are significantly reduced. Other methods such as FECIARQ

[Chockalingam99] and link layer retransmissions [Wong99] have been proposed.

The advantage of link layer methods is that they can be implemented almost

11



independently of the other methods applied to the upper layers. The disadvantage is that changes

in the link layer are expensive to implement. The whole hardware will have to be modified to

include any modifications. Of course many of these changes may be implemented in an

incremental manner. The methods suggested in this thesis may be implemented alongside any

other link layer mechanisms.
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Chapter 2.

TCP Drawbacks

Nature always sides with the hidden flaw.
Murphy's Ninth Law

Transmission Control Protocol (TCP) [RFC793] is widely used transport layer protocol.

If Internet Protocol is the heart of the Internet, TCP is the soul. Despite many inherent

drawbacks, TCP has been successfully implemented over many networks and it continues to be

and most probably will be for the foreseeable future, the most popular transport layer solution for

the Internet.

TCP has traditionally been designed to operate under a wired environment. This means

the expected losses due to the channel errors are very small. TCP's main job is to counter the

congestion and congestion related losses. TCP uses the slow start and congestion avoidance

algorithms [RFC2001] to determine its optimal sending rate. TCP starts is transmission in the

slow start phase, where it increases its congestion window at an exponential rate per round trip

time. When the congestion window reaches its maximum possible value, i.e the channel is filled,

and the loss event occurs, the congestion window is halved and TCP enters the congestion

avoidance phase. In the congestion avoidance phase the congestion window increases at a very

slow rate, about one segment per round trip time!. This leads to TCP's congestion window size

varying like a sawtooth. This saw-toothed nature of TCP flows does not all0'Y for maximum

utilization of a channel. A single TCP flow may not be fully able to use a channel. For better

channel utilization, multiple TCP flows· must be used. Even with the case of multiple TCP flows,

1. Actually the congestion window increases at the rate of segsize*segsize/CWND, where segsize is the
segment size and CWND is the congestion window size.
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the problem of global synchronization exists. All the TCP flows through a channel may back-off

simultaneously.

This phenomenon may be acceptable in a wired network. But in case of a wireless

network, the cost of bandwidth is much more than that in a wired network. It is not an

appropriate thing to under utilize this bandwidth in such a manner.

rep Performance
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Figure 2.1: TCP Performance

TCP does not perform well in networks with a high channel loss rate. TCP incorrectly

assumes channel losses to be those due to congestion and unnecessarily reduces its congestion
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window and slows down its sending rate. Figure 2.1 depicts how channel losses affect TCP

throughput. In some cases with a channel loss of 1%, TCP throughput came down by 40%.

Channel losses are particularly high in case of wireless networks, making TCP unsuitable for

wireless networks. The above figure is the result of a channel simulation. The channel

bandwidth was set to 500 Kb/sec and the round trip time to 200 msec.

TCP performs poorly on LFNs (Long Fat Networks) ([Ubik03]). This is because the

window size of the sender may not be large enough to fill the pipe. Since the window size field in

the TCP header is only 16 bits, the maximum window size can be at most 65,535 bytes. Also

because of the large size of the pipe, it may take a significantly larger amount of time to fill the

pipe.

TCPIIP has a large header size (40 bytes). Assuming the packet to of the standard TCP

segment size (536 bytes). The TCPIlP header along with the link layer header (10 byte header in

case of ethemet) account for almost 10% of the payload size. Thus 10% of the bandwidth is used

in just moving about packets. This large size appears unnecessary, given the expensive nature of

end links.

These drawbacks make TCP a non-solution for wide area wireless networks. The light

weight protocol proposed in this thesis attempts to solve many of these problems affecting

wireless last mile links.
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Chapter 3

A LightWeight Protocol for Weakly-Connected Clients

3.1 Network.layer behavior of LPWC

The light-weight protocol (LPWC) that connects the end client with the proxy, which in

turn connects to the end server using a traditional TCP/IP connection. As described earlier, the

problem with split connection proxies is that they viol,ate the end to end principle [Saltzer84] of

the Internet. What is actually needed here is a NAT-like gateway, which does not violate the end

to end semantics, but also provides the required functionality.

This functionality could be provided using the TCP-Splice technique proposed by

Bhagwat, et al. [SPLICE]. TCP-splicing provides an end-to-end acknowledgment scheme.

Figure 3.1: Connection topology

This chapter describes the network layer behavior of LPWC and how packets are routed

through the network. The topology of a client-server setup using LPWC is as in the in the figure
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described above.

The packets flowing between the client and the gateway are the LPWC packets. These

packets have smaller header sizes (the 3 byte LPWC header). The packets flowing out of the

gateway, to the server are the standard IP packets. The gateway performs the job of translating

between LPWC headers to the IP headers and vice-versa. This functionality is quite similar to the

network address translation (NAT) [RFCI631] feature commonly provided by routers. NAT is

commonly used to share one public IP address among multiple clients.

The LPWC packets arriving at the gateway are translated into the IP packets. The

gateway maintains the status of each connection and knows the source IP and destination IP,

sequence numbers, etc, of the next packet to be sent on this TCP connection. The gateway

manipulates the header and inserts the new IP headers and sends the packet on its way.

Similarly, when the gateway receives a packet, it determines to which connection it belongs, and

similarly manipulates the header and converts the IP header into the LPWC header and sends the

packet to the client. LPWC can be implemented alongside a NAT implementation, thereby

obtaining the benefits of both a NAT gateway as well as LPWC.

3.1.1 Overview of LPWC network layer behavior

LPWC's network layer issues are almost completely handled by the gateway and are to

be implemented as a stub router function. The addresses used by the stub domain are not

important. The link layer addresses itself could be used. One of our primary assumptions is that

the clients are directly connected to the router. No routing information is needed (or is already

available) to transfer the packets from the client node to the gateway.
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Link Layer header

ConnectionID (2 bytes) Header Size (3 Bits) I
Flags (1 byte) I
Seq number (2 bytes) Ack number (2 bytes) I

Optional Information
(2 bytes)

Figure 3.2: Data packet format

LPWC packet structure is shown in figure 3.2. Whenever a new connection is

established between a client and a remote server, the gateway assigns an unique connection-ID is

assigned to it. The connection-ID is 2 bytes long, which means there can be 64000 connections

flowing through a gateway. The gateway maintains state information regarding each connection

flow, just as in case of a NAT. The transformed port and IP-addresses are stored along with the

connection-ID.

3.1.2 Various Aspects of the Protocol

Address Space

The client IP address seen by the outside world is that of the gateway it is using to

communicate. The internal address the client uses to communicate with the gateway is the link

layer address (MAC address). Since the client-gateway communication is over a single hop, we

do not need anything other than the link layer address. This way another inefficiency of the

Internet, having to use two unique addresses per machine, is eliminated.
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Header Manipulations

In addition to manipulating the TCP and IP header fields, it is the Gateway's

responsibility to calculate the TCP and IP checksums. The client does send a two byte link layer

checksum while sending out its frame. The gateway uses this to verify that the packet has been

correctly received. After manipulating the TCP and IP headers the gateway will have to

recalculate the checksums of both headers and insert them.

If an ICMP message is passed through the gateway, it may require two address

modifications and three checksum modifications. This is because most ICMP messages contain

part of the original IP packet in the body. Therefore, for the gateway to be completely transparent

to the host, the IP address of the IP header embedded in the data part of the ICMP packet must be

modified, the checksum field of the same IP header must correspondingly be modified, and the

ICMP header checksum must be modified to reflect the changes to the IP header and checksum

in the ICMP body. Furthermore, the normal IP header must also be modified as already

described.

It is not entirely clear if the IP header information in the ICMP part of the body really

need to be modified. This depends on whether or not any host code actually looks at this IP

header information. Indeed, it may be useful to provide the exact header seen by the router or

host that issued the ICMP message to aid in debugging. In any event, no modifications are

needed for the echo and time stamp messages, and NAT should never need to handle a Redirect

message. SNMP messages could be modified, but it is even more dubious than for ICMP

messages that it will be necessary.
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3.2 Gateway Discovery protocol

The gateway discovery protocol works much like Mobile IP. Gateways periodically

announce their presence with advertisement packets. Clients read these advertisements and know

to which subnet they are connected to. The hardware address sent along with the gateway

advertisements is used by the client to send outgoing packets. When a node detaches from one

network and attaches to another one, there will be a handoff problem. Handoffs are a difficult

task in any split connection environment. Some techniques used to alleviate this problem are

described here.

3.2.1 Setting up a connection

The section describes the steps followed by the client to setup a connection with a remote

server. The client needs to discover its proxy to help setup connections with the outside world.

The "gateway discovery protocol" is first used to determine the gateway. Once the gateway is

known, it can be used to connect to the outside world.

Client Address (4 bytes)

Gateway Address(4 bytes)

Type{3 bytes) I Flags

Server Address (4 bytes)

Server port I Client Port

Figure 3.3: Connection request packet format
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Gateway Address (4 bytes)
.. . .

ClientAddress (4 bytes)

Type (3 bytes) I Flags·

Connection In (2 bytes)1

Figure 3.4: Connection response packet format

Once the gateway is known, the client must first request a connection-ID specifying its

port number before starting a transaction. In the connection-ID request, the client specifies the

remote server address and the remote port number. The client sends a connection request packet

to the gateway to start the connection. Connection request and response packet structure is

shown in figure 3.3 and figure 3.4.

When the connection request is sent to the gateway, it reserves some buffer space for the

client's packets on this connection. From now on, the gateway knows what to do with the

response of a particular packet sent by the client, or a packet received from the server on this

connection. The client now simply sends a normal SYN packet to the gateway which passes it on

to the server and the connection is established in normal TCP way. The connection requests have

the SYN bit turned on in the LPWC packet's flags. The client must also include inform~tion

regarding the remote server address with which it wants to connect.

3.2.2 Handoff problem

Handoffs are needed when a mobile node moves from one cell to another. Clients are

connected to the home base station by the light-weight protocol. There exist TCP connections

belonging·to the client from the base station to servers elsewhere.
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This might present a peculiar problem, since the new base station may not be ready to

serve a new client, or worse the new base station may not be supporting the new protocol.

One would expect. the network architecture to be suitably designed to handle such changing

conditions. The following section describes how the protocol handles such situations and ensures

the client remains connected.

3.2.3 Handoff Algorithm

The client, while negotiating with its home base station (HS) initially, obtains address

information about the HS and stores it. Each base station usually sends out advertisement

beacons periodically to inform new clients about the services it offers. This is specified by

mobile IP [RFC2002]. The new foreign base station (FS) mayor may not support the light­

weight protocol. It however is expected to route TCP/IP packets and provide support for mobile

IP. The mobile host (MH) on reading one of these beacons discovers it is out of the reach of HS

and sends the information of the HS to the FA. The HS meanwhile does not receive any

acknowledgment packets from the MH and consequently does not send any acknowledgments to

the server. It as usual buffers one window's worth of data.

In case the the FS does not support the new protocol, the client will generate TCP

packets, which will be routed to the new FS via the HS just as in the case of Mobile IP. We will

still be suffering from the triangle routing problem and we cannot expect major gains by using

the protocol.

If the FS supports the new protocol then the client first informs the FS about its HS. The

HS is then informed of the new location of the MH. Some authentication mechanism is needed

for credibility. Also the FS's credentials must be verified before initiating any transactions with it.
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The addressing scheme for LPWC is similar to a NAT scheme. There exists a TCP connection

between HS:portnum and server and a LPWC connection between MH:port and HS. The server

sees the HS:portnum to be the address of the client. When the client moves to a new FS, a

LPWC connection is established between the FS and the MH. The HS:portnum packets which

are received on the HS, are forwarded to the FS. Its the responsibility of the FS to send out the

ACKs for these packets.

3.2.4 Shifting Gateways

The client maintains a list of possible gateways it can use to connect to the outer world

by looking at the list of advertisements it has received. An advertisement is valid only for a

particular period of time, specified by the TTL field in the advertisement. The client may choose

its gateway or use different gateways for different connections, from this list. We assume the

client is using a particular gateway g1 for a connection c1. In the middle of a transfer lets assume

the client moves out of the range of gI and into the range of g2.
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Figure 3.5. Triangle Routing
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The client detects the presence of g2 by receiving an advertisement from it. The client detects

that g1 is no longer accessible after the TTL of gl's advertisement expires. Ideally we would

want gl's connection data and buffers to be somehow moved to g2. This way the connection

could move on seamlessly. However since the outside world only sees the IP address of the

gateway, a change in the gateway would mean a change in IP address. Thus the end machine with

whom the client was communicating would send its packets to the older gateway gl only.

A solution to this situation is to usegl's IP address for existing connections and use g2's

address for any new connections being made. After the client discovers that it is no longer in the

range of g1, it sends a message to g1 via g2, informing it of the new location of the client and

asking it to re-route all packets bound to g2. The client also informs g2 of its current connections.

When gl receives a packet bound for our client, it changes the destination IP of this

packet and sends it to g2. g2 looks at the sender-port and destination-port combination and

determines that the packet is bound for this client. The packet header is compressed and sent to

the client. All outgoing packets on this connection sent by the client are sent directly to the end

machine by g2 itself. Since g2 knows the end IP address it can route the packets by itself. The

triangle routing scenario exists in this proposed model as well. Figure 3.6 below describes

advertisement packet formats.

Gateway Address (4 bytes)

Destination Address(4 bytes)

Type (3 bytes) TTL(l byte)I

Figure 3.6: Advertisement Packet Format

The destination address is the broadcast address.
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3.3 Transport Level Behavior

LPWC is not a multi layer protocol. Its made of a single layer, but spans multiple layers.

In addition to moving data from and to the client, LPWC is also responsible for handling packet

retransmissions in the event of packet losses. The gateway is responsible for storing recently seen

packets in a cache. In previous chapters TCP's inability to handle channel losses properly and the

problems that arise out of this have been described. This section describes the loss handling

characteristics of LPWC and how it helps TCP maintain a good throughput rate.

3.3.1 Detecting Packet Loss

The gateway maintains the status of each connection that passes through it. The most

recent acknowledgment that has been sent by the client is stored. When a packet does not reach

the client, the client detects this loss by sending a duplicate acknowledgment, i.e., it resends the

acknowledgment for the last packet it received in sequence. The gateway can detect these

duplicate acknowledgments by looking at the current acknowledgment frame and the last

acknowledgment it received. If both have the same sequence numbers then some data has been

lost. The sequence of bytes that have been lost can been found by looking at the sequence

numbers of the two acknowledgment packets. Duplicate acknowledgments are the most common

method of detecting packet losses. In some circumstances though, the gateway may not receive

an acknowledgment for a considerable period. A timeout is used to detect packet losses in such a

case. The timeout maybe a calculated using the round trip times. A simple standard, such as four

RTTs could be used as a timeout period. If two timeouts occur consecutively, the gateway

assumes the client is unreachable and does not attempt to retransmit again. In any case, if the

acknowledgments are not flowing towards the TCP sender, it by default times out and slows
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down the sending rate (which is the correct thing to do). The gateway controls the TCP flow by

adjusting the advertisement window value so that the sender times out only when the client is

unable to receive or transmit.

3.3.2 Hiding Packet Losses

The gateway already maintains a cache of recently seen packets. The gateway maintains

the cache as a sequence of bytes. It also records the sequence number of the first byte of the

cache and the current size of the cache. On detecting a duplicate acknowledgment, the gateway

builds a packet or possibly multiple packets in case more than one packets were lost and sends

them to the client. These duplicate acknowledgments are discarded and not sent to the TCP

sender. This way the packet losses due to the channel bit errors are hidden from the TCP sender.

As mentioned in the previous section, the gateway also makes a retransmission in the case of a

timeout and ignores a second timeout.

pk~~friJiS~~:Chej
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Figure 3.7: Gateway Cache

3.3.3 Gateway Cache

The gateway maintains a cache of recently seen data packets sent to the client. This cache

is necessary to hide the packet loss from the TCP sender. All packets which have not yet been
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acknowledged by the client are stored in this cache. The size of the cache needed (to maintain

incoming packets) will be equal to the maximum possible size of the TCP sender (since the

maximum possible unacknowledged data at any time is equal the the window size of the TCP

sender). The gateway does not maintain a cache for the out going acknowledgment packets sent

by the client. Determining the maximum possible window size is a bit complicated. Ideally the

maximum window size would be (Channel Bandwidth * RTT). The bandwidth and round trip

times are determined during the connection setup period. However both these values keep

changing dynamically throughout the lifetime of the connection. When the client negotiates with

the gateway to request buffer space, the bandwidth and the round trip times are calculated using

the packet pair algorithm [LaiDI]. This way the gateway knows the maximum buffer size that

needs to be allocated to a particular TCP connection that flows to a client. The cache itself is

maintained as a byte queue of a particular size. When data arrives on a full queue, the front of the

queue is pushed out making space for the newly arrived data. The data which has been removed

has already been acknowledged by the client.
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Chapter 4

Simulation Setup

The protocol proposed in this thesis was tested on a simulation testbed. The testbed was

made using the NS network simulator. NS (version 2) is an object-oriented, discrete event driven

network simulator developed at DC Berkeley written in C++ and OTc!. NS is primarily useful for

simulating local and wide area networks. NS is an event driven network simulator, that simulates

variety of IP networks. It implements network protocols such as TCP and UPD, traffic source

behavior such as FIP, Telnet, Web, router queue management mechanism such as Drop Tail,

RED and CBQ, routing algorithms such as Dijkstra, and more. NS also implements multicasting

and some of the MAC layer protocols for LAN simulations. NS is now a part of the VINT project

that develops tools for simulation results display, analysis and converters that convert network

topologies generated by well-known generators to NS formats. Currently, NS (version 2) written

in C++ and OTel (Tel script language with object-oriented extensions developed at MIT) is

available.

4.1 NS Architecture

NS is written not only in OTel but in C++ also. For efficiency reason, NS separates the

data path implementation from control path implementations. In order to reduce packet and event

processing time (not simulation time), the event scheduler and the basic network component

objects in the data path are written and compiled using C++. These compiled objects are made

available to the OTel interpreter through an OTellinkage that creates a matching OTel object for
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each of the C++ objects and makes the control functions and the configurable variables specified

by the C++ object act as member functions and member variables of the corresponding OTcl

object. In this way, the controls of the C++ objects are given to OTc!. It is also possible to add

member functions and variables to a C++ linked OTcl object. The objects in C++ th'at do not

need to be controlled in a simulation or internally used by another object do not need to be linked

to OTc!. Likewise, an object (not in the data path) can be entirely implemented in OTc!. Figure

4.1 shows an object hierarchy example in C++ and GTc!. One thing to note in the figure is that

for C++ objects that have an OTcllinkage forming a hierarchy, there is a matching OTcl object

hierarchy very similar to that of C++.

Lfb
~~

OTc1
.---'-,,"" "

J / /

~
.. .. t .,

J J

, '~.., -., " .-
... ~- ':'---'

c++

Figure 4.1: C++ and OTcI duality.
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Figure 4.2: Architectural View of NS.
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Figure 4.2 shows the general architecture of NS. In this figure a general user (not an NS

developer) can be thought of standing at the left bottom comer, designing and running

simulations in Tel using the simulator objects in the OTellibrary. The event schedulers and most

of the network components are implemented in c++ and available to OTel through an OTel

linkage that is implemented using Tel. The whole thing together makes NS, which is a 00

extended Tel interpreter with network simulator libraries.

This section briefly examined the general structure and architecture of NS. At this point,

one might be wondering about how to obtain NS simulation results. As shown in Figure 4.1,

when a simulation is finished, NS produces one or more text-based output files that contain

detailed simulation data, if specified to do so in the input Tel (or more specifically, OTel) script.

The data can be used for simulation analysis (two simulation result analysis examples are

presented in later sections) or as an input to a graphical simulation display tool called Network

Animator (NAM), that is developed as a part of VINT project. NAM has a nice graphical user

interface similar to that of a CD player (play, fast forward, rewind, pause and so on), and also has

a display speed controller. Furthermore, it can graphically present information such as throughput

and number of packet drops at each link, although the graphical information cannot be used for

accurate simulation analysis. Another reason to use the NS simulator is ease with which one can

extend it. Users can write custom C/C++ modules for experimental protocols and attach them to

NS. Protocols can be added at the layers 2 ,3 or 4.

4.2 NS Modifications

For simulating the proposed protocol, I implemented a custom sender module and a

custom receiver module. The sender and receiver could be controlled from the Tel script. They
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do not send out any packets automatically unless explicitly commanded to do so by the Tel

script. The way the protocol packets are sent and received is controlled from the Tel Script. The

actual packets sent along the wireless link are UDP packets with their size modified. The

acknowledgments along the path are UDP packets as well. I used ftp at the application layer since

I was testing for bulk transfers.

-----.,
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Figure 4.3: End to End Acknowledgment Scheme

The gateway which is the sender (to the client) takes care of retransmitting lost packets.

A TCP (Reno TCP) connection is opened between the gateway and the end server. The

acknowledgments on this connection are not immediately sent. The acknowledgment is sent only

after the ack for the packet sent to the end elient is received at the gateway, thereby maintaining

an end to end acknowledgment scheme.

ariable
andwidth, loss
d delays

Figure 4.4: Simulation topology
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We used a simple network topology for our simulations. The client is directly connected

to the wireless gateway. Packets are routed from the gateway to the server via two intermediate

routers. Figure 4.4 describes the topology and parameters used.

We experimented variable bandwidths from 5 Kbps to 1Mbps on the wireless links and

loss rates of 0 to 2%. One way delay was varied between 50 to 500 msec.
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Chapter 5

Performance Comparisons

In this chapter we compare TCP and the light weight protocol's performance. As

described in earlier chapters, TCP's flaws with regards to wireless networks are:

1. Underutilization of available bandwidth.

2. Poor performance under lossy channels.

3. Poor performance in networks with a high round trip time. Wireless channels typically

have higher round trip times.

4. Large header sizes.

I have not addressed the first issue in this thesis. Since we need an end to end

acknowledgment scheme, it is still left to the TCP sender to determine the appropriate sending

rate. This is probably still an open issue although there has been at least one suggestion made to

avoid the TCP sawtooth. The TCP TEAR (TCP Emulation At Receivers) [TEAR] project has

suggested that feedback from the receiver could be used to determine the appropriate receiving

rate. TEAR receivers calculate a fair receiving rate which is sent back to the senders. There is a

congestion window maintained at the receiver end that is modified similarly to the sender's

congestion window. TEAR receiver estimates from the arriving packets when TCP would change

its congestion window size. To address the issue of TCP sawtooth, TEAR averages the rate over

an epoch, this is the period of time between two consecutive rate reductions. To prevent further

rate changes caused due to noise or loss patterns, a smooth rate is calculated over a number of

epochs for a final rate. This rate is sent to the sender. The rate calculated is the the maximum
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possible channel throughput. TCP TEAR techniques can be easily implemented along with the

light weight protocol. There are no special adjustments required to put TEAR into place.

rep vs Light weight Protocol
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Figure 5.1: Performance comparisons

TCP does not perform well under lossy channels. TCP assumes channel losses to be

caused by congestion and unnecessarily reduces its congestion window thereby reducing the

effective throughput rates. LPWC handles this issue by hiding channel errors from the sender.

The gateway holds a buffer of recently seen packets. Packets in this buffer are those which have

not yet been acknowledged by the client. The maximum size of this buffer is same as the

maximum size of the congestion window. The gateway detects channel losses by looking at

duplicate acknowledgments. Duplicate acknowledgments are not sent to the sender. The lost

packet is sent again by the gateway to the client. This way the sender never notices the lost
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packets. Part of the bandwidth is lost due to the channel losses. I have experimented with loss

rates of 2% packet loss. In my experiments I have found LPWC to demonstrate almost no change

in throughput due to the effects of channel losses. No change was found even due to increased

loss rates. This shows that TCP did not completely utilize the available bandwidth. Figure 5.1

compares the goodput values of TCP and LPWC under increasing loss rates. Goodput refers to

the measurement of actual data successfully transmitted from the sender to receiver.
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Figure 5.2: Performance comparisons

The next issue with TCP is coping with long round trip times. Long round trip times are

undesirable for two reasons. Large windows are needed at the sender end to completely utilize
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start mode. The comparison between LPWC and TCP under link with a high round trip time and

with small amount of channel losses (0.05%) is shown in figure 5.3.

Figure 5.4 compares the performance difference between TCP and LPWC with

increasing bandwidth. We find that the difference between TCP and LPWC increases with

increasing bandwidth. Figure 5.5 shows the performance difference as a percentage value. LPWC

performs much better than TCP at higher bandwidths because it is able to completely utilize the

available channel bandwidth.

RTT In msec

Figure 5.4: Performance comparisons
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The last issue tackled in this thesis is that of header sizes. The proposed framework

allows for the usage of a header compression scheme on the link between the client and the

gateway. This thesis suggested a simple algorithm which brought down the header from 40 bytes

large to about 10 bytes. Although developing a header compression scheme was not a goal of this

thesis, More importantly the goal of the thesis is to design a framework that allows for the usage

of a header compression scheme. The framework also simplifies the process of assigning

addresses to clients by using the link layer address to be used on the network level as well.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis identifies three reasons for TCP's performance degradation in a low

bandwidth network and methods to cope up with the performance loss caused by each of these

three reasons. Earlier works based on split connection models ([M-TCP], [I-TCP], [MOWGLI]

etc.) violate the end to end principle of the Internet. This thesis proposed a split connection model

that conforms to the end to end principle. The proposed protocol framework also incorporates

features such as header compression and link layer data compression.

6.1.1 Excessive packet losses caused due to bit errors in wireless networks.

TCP's performance in many wireless networks suffers due to bit error induced packet

losses, which usually occur in bursts due to the nature of wireless channels. These error induced

packet losses are misinterpreted by the TCP sender, and are assumed to be caused by network

congestion. This causes the TCP sender to invoke its congestion control algorithms and reduce its

transmission window size, and often causes long timeouts which keep the channel idle for long

periods. Thus bit errors degrade TCP's performance by a significant amount.

TCP's unsuitability for networks with high loss rates and/or low bandwidths has been

demonstrated in this thesis (as well as in other works such as [SNOOP], [M-TCP], [MOWGLI],

[I-TCP]). TCP's inherent design flaws make it unsuitable for low reliability networks. A new

protocol has been proposed to replace TCP at the last mile link. The protocol has been designed

for a small scale induction and does not require major changes in the existing network setup. The

39



new protocol aims to reduce header sizes, improve effective throughput by masking channel

losses and at the same time maintain the end to end semantics of the connection. The new

protocol shows up well in simulation against TCP. A throughput improvement of up to 30% was

found. The new protocol uses the available bandwidth in a more efficient manner than TCP.

6.1.2 Large header sizes of TCP/IP protocol stack.

The TCP/IP protocol stack needs at least 40 bytes to make up the packet header. This is

not acceptable for low bandwidth networks (CDPD, GSM etc.). The header itself makes up a

sizable part of the packet. By having a 40 byte header in addition to a link layer header, a sizable

chunk of the packet is devoted to headers itself. This thesis proposes the use of header

compression to be implemented along with this light weight protocol. Chapter 3 suggested a few

simple methods which reduce the header sizes by about 30 bytes and bring down the

transport/network layer header to about 3 bytes. More complex techniques could be put in place

to bring down the header size to an even smaller number.

6.1.3 Underutilization of the wireless channel.

This is an issue which has not been thoroughly addressed by researchers in the academic

world. The saw tooth pattern of TCP throughput does not allow it to completely utilize available

bandwidth. Ideally we would like TCP throughput to maintain a constant optimal throughput rate

that is the maximum possible throughput that the channel allows in the given circumstances. In

order to completely fill up the channel, a number of TCP connections should be open and

running at the same instance. Sivakumar, Bailey and Grossman used this idea of using multiple

parallel connections to stripe the same data transfer. They developed the Psockets library

40



[PSockets], a TCP socket library for high speed networks. By using LPWC on the last link, we

are preventing underutilization by a significant degree, but since the sender is still traditional

TCP, the "saw tooth" effect is still in place and a part of the bandwidth is being left unused. One

solution proposed was the TCP TEAR method. TCP TEAR uses feedback from the receiver to

calculate the congestion window size. The feedback obtained is used to set the optimal

congestion window size. TCP TEAR however requires widespread deployment for it to work

correctly. TCP TEAR techniques can be incorporated into LPWC quite easily. The gateway reads

the packet patterns and provides feedback to the sender. The packet format of LPWC will not

need any modifications. The task of optimal rate calculation is delegated to the gateway.

However sending feedback from the receiver may not always be possible. Sender end

modifications will be needed for such a system to work correctly. Receiver feedback may not be

the best way to achieve complete bandwidth utilization. It is just a suggestion that this thesis

makes. Future research may bring out possibilities that are unknown now.

6.2 Future Work

6.2.1 Header Compression Algorithms

There are a couple of areas where the performance of the light weight protocol can be

improved. The header compression algorithm described in this thesis is a very simple and straight

forward algorithm. The gains that are obtained by using header compression can be further

improved. Better header compression algorithms have been proposed in [JiaoOO] [Auge99] and

[LiaoOl]. By modifying one of these algorithms to suit the protocol, we can expect further gains.

The available bandwidth on the wireless link is not yet being completely utilized. By using

LPWC on the last link, we are preventing underutilization by a significant degree, but since the
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sender is still traditional TCP, the "saw tooth" effect is still in place and apart of the bandwidth

is being left unused. Solutions proposed by TCP TEAR can be incorporated into LPWC quite

easily. A proper means is still required to completely utilize the channel bandwidth.

6.2.2 Security

Another issue with the protocol is regarding security. With its current design and packet

format, it is difficult to encrypt packet headers. Although the application may use its own data

encryption method with any problems, encrypting transport and network layer headers is difficult

with the current model. An end to end encryption system like IPSec [RFC2401], that would

encrypt the headers as well as the data, cannot be put in place with the current network model.

We could have a system where the packets are encrypted from the client to the gateway,

decrypted there, and encrypted again to be sent to the TCP sender. Although this is not an end to

end encryption method, it should work well enough to provide a secure method of data

transmission.

6.2.3 Link Layer Data Compression.

Bandwidth in wireless networks will always be comparatively low. One must attempt to

send more information using less bandwidth. It would of interest to consider the possibility of

using data compression on the link layer between the client and the wireless gateway. A standard

dictionary based algorithm such as the Liv Zempel-Welch [LZW] may be used to compress the

data that is being sent by the client. The gateway and the client would be required to agree on a

particular dictionary or alternatively a dictionary is built on the fly as the data is being

transmitted. The compression algorithm would be part of the link layer. The payload of the link
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layer frame would be compressed. In [RFCI962] Rand and Novel proposed a compression

protocol for point to point links. A similar scheme could be adapted to suit the proposed protocol.

6.3 Summary

Split connection models have been shown (both in this thesis and elsewhere) to be a

useful technique to overcome the performance degradation of TCP over lossy channels. This

thesis presents a the split connection model to improve TCP performance at the last-mile. Unlike

other techniques, the proposed approach uses end to end acknowledgment scheme and adheres to

the end to end principle. The proposed framework also incorporates features such as protocol

header compression and link layer data compression. In addition to describing the protocol

architecture, this thesis has presented the results of simulation to estimate some of the

performance improvements possible under various scenarios. This framework can provide

benefits even with limited deployment, and can be implemented easily and in an incremental

fashion.
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Appendix

Packet types and their Codes

A.I Advertisement Beacon:

Packet code Ox800 I

Advertisement Beacons contain the hardware address of a gateway willing to service

clients in that region. Clients receiving a beacon may store it and use this gateway to

communicate with the outside world. A client may simultaneously utilize the services of multiple

gateways. Each beacon has a particular TTL, after the TTL expires the client must assume it is

not in the range of a particular gateway unless it receives a fresh advertisement.

Gateway Address (4 bytes)

Destination Address(4 bytes)

Type (3 bytes) TTL(l byte)I

Figure A.I: Advertisement Packet Format

A.2 Connection Requests/ Responses:

Packet code Ox8002

Connection requests are sent by clients to the gateway asking for a new channel to be set

up. Client specify the destination IP address and port number in the connection request. On

receiving a request, the gateway allocates some buffer space (of a window's worth) for this

connection. The gateway returns a connection ID to the client. All subsequent data packets sent
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by the client should be marked with this connection 10.

Client Address (4 bytes)

Gateway Address(4 bytes)

Type (3 bytes) •····1 Flags

Server Address (4 bytes)

Server port I Client Port

Figure A.2: Connection request packet format

Gateway Address{4 bytes)

Client Address (4 bytes)

Type (3 bytes) Flags

ConnectionID(2 bytes)

. Figure A.3: Connection response packet format

Gateway Address (4 bytes)

Client Address (4 bytes)

Type.(3bytes) Flags

Connection ID (2 bytes)

Figure A.4: Connection release packet format

A.3 Data Packets

These are the normal TCP packets sent out of the subnet. Its the gateway's responsibility to
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convert them from LPWC format to TCP/IP format. The packet format for an ethemet network

has been shown here.

Connection ID (2 bytes) Header Size (3 Bits)

I LinkLayer header

Flags (1 byte) I

Seq number (2 bytes) Acknumber (2 bytes)I
Optional Informatioll

(2 bytes)

Figure A.S: Data packet format
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