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Abstract

The primary focus of this dissertation is on hierarchicalisien problems, a general problem class
that allows incorporation of multiple decision-makers (MM A variety of real-world problems
involve DMs with potentially conflicting objectives, andetlassumption of a single DM limits the
utility of standard models for such applications. In pauiée, we study problems with two levels
for which a subset of the variables is required to take orgatealues.

In mathematical programming terminology, this problemastfalized as mixed integer bilevel
program (MIBLP), and the variables are divided into groupfireed by their controlling DM. A
key component of these models is the dependence of the lewalrbM'’s feasible region on the
upper-level solution. From this perspective, an MIBLP canviewed as a mixed integer linear
program (MILP) into which a second parametric MILP has beeedded. We focus our study
on the theoretical properties of MIBLPs, in order to deternhow its structure can be exploited
for algorithm design. In addition, because of the compaorteti challenges the general problem
presents, we examine special cases that are more amenalgerithmic development.

The first such case is that of the pure integer bilevel lingag@am (IBLP). In the first portion
of this work, we develop a branch-and-cut framework and am@apanying open source solver,
MibS, for this problem class. Our algorithm can be seen asnargézation of the well-known
branch-and-cut algorithm for MILP, but invokes specidlizeitting planes to separate solutions that
satisfy integrality constraints, but are bilevel infedsib

After developing our pure integer framework, we return ® gleneral case and examine its compu-
tational complexity and place it within the so-called padymal hierarchy. Next, we examine the
extent to which methods developed for the well-studied inopus version of the problem (BLP)
can be extended to MIBLP. The majority of BLP solution methoely on the assumption that all
decision variables are continuous and, thus, cannot béyesgaplied to the mixed integer case.
However, in an effort to bridge this gap, we use intuitionngai from studying the relationship be-
tween linear programs (LPs) and MILPs. In particular, wendngavily on the recently-developed
mixed integer extensions of LP duality theory to develomkerievel reformulations of MIBLP.
For some particular special cases, these methods yieldepnsiio which known methods can be
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applied, but the general reformulation requires the appba of the subadditive dual, and cannot
solved directly. In order to overcome this, we use approtiona of the lower-level value func-
tion to derive an exact algorithm reminiscent of Bendergameposition and the integer L-shaped
method. The inherent difficulty of these problem means thmatirig exact solutions to large in-
stances will likely be prohibitively expensive. Thus, wevyide two heuristic methods, each of
which attempts to balance upper- and lower-level optimatitat can be used to be find good solu-
tions to general problems with little computational effort

In the final section of this dissertation, we study an appticain critical infrastructure protection,
namely that of designing an early warning system to monherdtructural integrity of a munici-
pal water system. The Steiner arborescence problem useztdomine the optimal placement of
acoustic sensors within the system is described, and a oattgdlg plane algorithm is presented.
Then, using this model as illustrative example, we dematesthe utility of interdiction problems
in performing a type of systematic sensitivity analysis of optimal design to the underlying graph
structure. Interdiction problems, a class of MIBLPs usedntudel the effect that can be exerted
on an MILP through variable bound altercation are of paldicinterest in our work for a number
of reasons, most notably their applicability for problem$iomeland security and unique problem
structure. We describe several methods based on this bpécieture and show how one might
develop a problem-specific customization for MibS.



Chapter 1

Introduction

In this dissertation, we study the theoretical propertiekierarchical decision models, a class of
decision problems with rich application potential. Manglrevorld decision problems involve mul-
tiple, independent decision-makers (DMs), whose interast not necessarily aligned, and models
that assume centralized control are limiting in such sgstiiA hierarchical model, however, is com-
prised of several levels of DMs, whose decisions are madgesgially and may affect the options
available to those lower in the hierarchy and the payoff osthhigher in the hierarchy.

A common example of such a model is that faced by the fedenaérgment. Policy decisions
made at the federal level affect future decisions made g atad local governments, each of which
acts in its own self-interest in reaction to federal dinezgi Decisions made by the state and local
governments, in turn, affect the degree to which the fedgwaernment accomplishes its original
objective. Thus, in order to perform an accurate analyhis,féderal government must consider
the reaction of the lower-level bodies, and make policy slens accordingly. The same analysis
applies in the corporate setting, where company policytiatsthe highest level and interpreted and
applied in smaller organizational units.

Such a modeling framework also provides a natural reprasentof single-round (or static§tack-
elberg games Stackelberg games, first introduced\myn Stackelberd1934), provide the game-
theoretic foundation for modeling the behavior of econommarkets and resource competition
(Senn 1996. As in a hierarchical decision model, the defining charsstie of a Stackelberg game
is its sequential nature. Traditionally, a Stackelberg g#&played over several rounds, where each
player selects a new strategy at each iteration. The garoatismaed until an equilibrium is reached,
where no player can improve his situation by changing higeyy, or a specified number of rounds
has been played. If the game consists of a single-round, ithierknown as astatic Stackelberg
game These games are often analyzed from the perspective ofrgtelayer, whose goal is to
choose the optimal strategy, in light of the expected bahmadfi his competitors. Viewed from this
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perspective, we can see close connections between hieardecision models andlgorithmic
game theory(see, e.g.Nisan et al. 2007, an emerging subfield of game theory concerned with
methods for computing equilibria.

Of particular interest in this research are applicationeameland security and critical infrastruc-
ture protection. Traditionally, standard mathematicalgpamming frameworks, such as linear and
mixed integer linear programming, have been the modeliaméworks of choice for these disci-
plines, and can be used to model a variety of problems fabmdécision-makers charged with pro-
tecting private or public systems. In fact, one such claggablems to which we devote significant
attention is that of early warning system design. Early \iayrsystems are used to monitor criti-
cal infrastructure, in order maintain system stabilityr@rognize and react to a system disruption.
Typically, these problems involve the installation of sensghat monitor a subset of the system and
transmit data to a central hub for analysis. Thus, detengittie optimal placement of the sensors
within the system, in order to provide maximum coverage #mgs, maximum protection, becomes
of immediate interest. Sensor technology varies widelgnfegplication to application, but the gen-
eral idea remains relatively similar; placing sensors ratagic locations within the system allows
us to monitor the health of the system, and react accordiwgisn (accidental or intentional) dis-
ruption occurs. A common example of this problem class isl useprotect urban water systems
via installation of sensors designed to detect contanuinati the water network (e.gQstfeld and
Salomons2004 Berry et al, 2005 Carr et al, 2006 Berry et al, 2006gb; Krause et al.2008.

While single-level modeling frameworks are appropriatenimdeling a wide range of infrastructure
protection problems, they are not suitable for all setting® can easily imagine problems for which
none of the well-known frameworks is appropriate, and miadethoice should be made carefully.
For example, a natural question that arises in infrastracfuotection is “how vulnerable is this
system to disruption by an adversary?”. Another intergggjimestion is “how sensitive is the system
design to the (potentially dynamic) system structure?”’swaring these questions is difficult if one
is limited to the traditional mathematical programmingieworks, due to the standard assumption
that all decision variables are controlled by a single gntitowever, each can be posed directly
as aninterdiction problem a hierarchical model class that allows us to model the effeat an
external entity can exert via delay or disruption of the eyst Here, the adversarial nature of the
hierarchy members results in problems for which the objedtiinctions are in direct opposition
(i.e., zero-sum).

The majority of research on interdiction models has focumedhenetwork interdiction problem
(Wollmer, 1964 McMasters and Mustinl97Q Ghare et al.1971 Wood, 1993 Cormican et al.
1998 Israeli and Wood 2002 Held and Woodruff 2005 Janjarassuk and LindergtR008, in
which the lower-level decision-maker represents an eojfitgrating a network of some sort. The
upper-level decision-maker (or interdictor) attemptseduce the network performance as much
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1.1. MODELING WITH MULTIPLE DECISION-MAKERS

as possible via the removal (complete or otherwise) of posti(subsets of arcs or nodes) of the
network. Applications of these models are limited to profdefor which the an underlying net-
work structure can be assumed, but the range of applicadiomuch broader once one drops this
assumption. In fact, the underutilization of this probldiass provided the initial motivation for our
study of hierarchical models. We study a generalizatiorhe§¢ network interdiction models that
incorporates the “interdiction” of lower-level decisioanables in depth, and demonstrate its utility
in sensitivity and systems analysis (see Chagp}er

1.1 Modeling with Multiple Decision-makers

From a modeling perspective, traditional mathematicabms are limited by their underlying
assumptions of a single DM and a single objective. Our istereinterdiction models led us to
consider alternative extensions of linear and mixed integear programming that provide greater
flexibility with respect to competing individuals or obje&s. One way to overcome the latter
limitation is with the framework oMultiobjective programming Multiobjective programming is
a generalization of traditional mathematical programmimgvhich multiple, conflicting objective
functions can be introduced, and enables the study of tfisd@mong the multiple objectives con-
trolled by a single DM. A patrticularly relevant applicatiofthis method is given byVvatson et al.
(2009, who utilize multiobjective programming to generalize thixed integer linear programming
formulation of sensor location optimization problemBsdrry et al.(2005 and study the tradeoff
between multiple performance objectives.

While multiobjective programming relaxes the latter asptiom of a single objective, it remains
limited by the former assumption of a single DM. This limgiassumption prevents us from accu-
rately capturing the interactions among different DMs. atlie the implications of this limitation
are of particular concern for adversarial problems, a dikel/ to be encountered in problems of
homeland security.

The framework oimultilevel programmingon the other hand, allows us to model these more gen-
eral decision problems. In a multilevel program, the vddalare divided into groups, each of
which is controlled by a different DM. Under the assumptiofiperfect informatiorandindivid-

ual rationality of the DMs, the higher-level DMs will be able to predict thacgon of lower-level
DMs to decisions made above them. In this context, the asomef individual rationality im-
plies that each DM will choose the best solution with respea given objective, subject to a set
of specified constraints. That is, each DM will solve a mathtical program to optimality. Here,
perfect information means that each lower-level DM is awarthe actions taken by those above
him. Further, this assumption implies that each DM is awéatbe parameters defining the mathe-
matical programs to be solved at lower levels of the decikierarchy. This allows us to collapse
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1.2. APPLICATIONS OF BILEVEL PROGRAMMING

the entire hierarchy into a single optimization model in evhthe decisions made at the highest
level effectively determine the outcome for the entire syst The broader focus of this dissertation
is on the theoretical properties and the resulting algarichimplications of multilevel programs, a
modeling class that subsumes interdiction models, anddiizas the hierarchical decision models
in a mathematical programming setting. In particular, weufoon techniques for analyzimgixed
integer bilevel linear program@MIBLPSs), in which (1) there are two DMs, (2) the constraiate
linear functions, and (3) a subset of the variables may beired) to take on integer values.

1.2 Applications of Bilevel Programming

We have seen how one subclass of bilevel programming candzktasnodel problems involv-
ing adversarial DMs. More generally, bilevel models areaexely useful for modeling systems
designed by one entity, but controlled by another. In thsecdhe parties are not necessarily in
opposition, but may still have different objectives. Onaraple of such a system is that encoun-
tered in highway toll pricing. In a toll pricing problem, tlsgstem operator seeks to maximize the
revenue obtained from tolls imposed on a local road systeme. révenue gained depends directly
on the decisions made by the system users (drivers), ovemvitwe operator has no control. Thus,
the operator must determine the toll prices under the assomie users will maximize their own
individual utilities (Labbe et al.1998ab). Of course, the applicability of the bilevel programming
framework is not limited to highway toll pricing models, btan be applied to the more general
problem of determining how one can can influence behaviautn tariff imposition Brotcorne

et al, 2000.

As in the interdiction literature, this field of study hasiggdly been limited to road systems that
can be modeled as networks, thereby allowing convenientmeflations of the resulting bilevel
program. However, the bilevel framework has also been egpfor example, to the problem of
determining optimal tax credits for biofuel productiddafd et al, 1998 2000. In such an appli-
cation, the government provides tax credits to the petesribal industry to encourage increased
production of biofuels from farm crops, a process that iscgity more expensive than producing
fuel from hydrocarbon-based raw materials. The governrieatler) seeks to minimize the total
amount of tax credits paid out, while incentivizing the agliural sector (follower) to set aside a
certain level of its land for nonfood crops to be used for ébfproduction. Under the assumption
that the agriculture industry is neutral to the type of crppeduced as long as profit is maximized,
the government can effectively set the prices paid by imgusa the tax credit. Assumptions of
continuous production variables have again limited thktyitf bilevel programming in this ap-
plication area. For exampl&ard et al.(2000 describe an extension of their model in which the



1.2. APPLICATIONS OF BILEVEL PROGRAMMING

petro-chemical industry may choose to produce all bioftrelsy nonfood crops. The new formula-
tion requires binary variables in the upper-level probl€ne could also imagine model extensions
requiring discrete decisions in the lower-level. For extmnipthere exists a fixed cost for producing
a particular type of crop, production would occur only if gh®fit outweighed the sum of the fixed
and operational costs. In order to accurately model suctemasio, lower-level binary variables
would be necessary.

The bilevel modeling paradigm can also be used to performda wange of worst-case analyses
where the highest-level DM does not represent a true deersi@king entity, but allows the in-
clusion into the model of circumstances that cannot be othetl, such as the weather or world
events at large. The question to be answered in such casebkas is the worst that can happen?”.
Taking the opposite point of view, the same paradigm can bd tsanalyze systems in which the
upper-level DM is an individual trying to influence the caeif some natural process that operates
according to a principle of optimality because of the lawplaysics, for instance (i.e., electricity
travels by a path of least resistance). In this way, such fad®ild be used, for example, by a
participant in an electricity market to model the effect banges in their own supply of electricity
on power flows through the network in order to determine tbpiimal production levelEienstock
and Verma2009. A similar application arises in the biomedical field, wheve can model the
effect of opening and closing pathways of blood flow to therth&a the treatment of conditions
such as atrial fibrillation. This application is discussadtier in Chapteb. We also see related
applications of bilevel programming in the biotechnologgrhture. In one such application (see,
e.g.,Burgard et al.2003 Pharkya et a).2003, bilevel programming is used to determine optimal
strategies for microbial strain engineering leading toeéased production of chemicals or biochem-
icals. That is, by knocking out specific genes and, thus,ipitiiry certain cellular reactions, one
can develop microbial strains with improved productionatality. Here, the lower-level DM is
not a true decision-making entity, but rather is used toasgmt metabolic behavior, controlled by
internal cellular objectives.

Finally, there are deep connections between bilevel progriag and the decision framework that
drives the well-studied branch-and-bound algorithm. Bhaand bound is a “divide and conquer”
approach to solving mathematical programs. Fundamentaiynch and bound is a method that
enumerates the set of feasible solutions to a mathematiogkgamming problem. To improve

efficiency, a divide and conquer approach is used to elimipattions of the feasible region by
computing bounds on the optimal objective value. The féas#ygion is partitioned using branch-
ing methods based on logical disjunctions, and performalegends on both the quality of the
bounds used and the effectiveness with which branchingrditipns are chosen. The problem of
determining the disjunction whose imposition results ia targest bound improvement within a
branch-and-bound framework based on disjunctive progriagniis itself a bilevel programLdi
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1.3. DEFINITIONS AND NOTATION

and Ralphs2009. Thus, the study of bilevel programs may lead to improvethods for solving
single-level programs.

In recent years, bilevel programming has been recognized amportant field within mathematical

programming, allowing the analysis of a much broader rarigeyystems. However, in each of the
fields described above, the utility of bilevel programmirag bbeen primarily limited to systems that
can be modeled with continuous lower-level variables owngt models. Such models typically

allow for convenient single-level reformulations that dansolved by existing optimization meth-
ods. As in traditional mathematical programming, it is cléat introducing integer variables into a
bilevel program yields a much richer modeling frameworkxt\e/e formally describe our problem

framework.

1.3 Definitions and Notation

A linear program(LP) is the problem of minimizing the value of a linear objeetfunction repre-
sented by € Q™ over the polyhedral feasible region

Stp={xeR"| Az > b,z > 0},
whereA € Q™*", andb € R™. That is, the goal of linear programming is to determine

zZrp = min cx. (LP)
zeSLp

A mixed integer linear prograniMILP) is a natural generalization of an LP in which a spedifie
subset of the decision variables are required to have integjaes. Without loss of generality,

we assume this subset is indexed 1 thropgkl n. Thus, the canonical MILP instance can be
represented by the quadruglé, b, ¢, p) and has feasible region

SvriLp = {w c7ZP x R*7P ’ Ax > b}.
The goal of solving MILP is then to determine

ZMILP — min cx. (MlLP)
r€SMILP
A mixed integer bilevel linear prografMIBLP) is a generalization of a mixed integer linear pro-
gram in which some of the variables are controlled by a sesynidM. Letz € X C R’ represent
the variables controlled by thepper-level DM or leader, and lety € Y C R'? represent the vari-
ables controlled by theower-level DM or follower. X andY specify the integrality restrictions
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1.3. DEFINITIONS AND NOTATION

on the decision variables. As before, we assume the uppdrloarer-level integer variables are
indexed 1 tgp; and 1 top,, respectively, and define

X = (ZP* x R™™P1) and Y = (ZP?* x R"*7P2),
The canonical MIBLP is then the problem of determining
ZMIBLP = Mmin {clx +d'y |z ePynX,ycargmin{d’y |y e Sp(z) N Y1}, (1.1)

where
Py ={zeR™ | Alz > b',z > 0}

is theupper-level feasible region
Sp(z) = {y e R™ | Gy > b? — A%z,y > 0}

is the lower-level feasible regiomvith respect to a givem: € R™, Al ¢ Qm>™, p! ¢ R™,
A% € Qm2Xm G?2 ¢ Qm2*™2 andb® € R™2. The region obtained by dropping the optimality
requirement for the lower-level variables is given by

QO ={(z,y) e X xY)|zePy,yeSi(z)}.

0! is often referred to as theint feasible region If we also remove the conditions ¢ X and
y € Y, we obtain
Q={(z,y) € (R™ xR"™) |z € Py,y € Sp.(x)}.

In later chapters, we let = [A!A?]T, G = [0|G?]T, andb = [b!|b*]T for convenience. For each
upper-level solutiorr € (P N X), the follower’srational reaction sets

M (z) = argmin{d®y | y € Sp(z) N Y}.
Thebilevel feasible set defined as

FL = {(z,y) |z € (PunX),y € M!(z)},

and often called thénducible region (MIBLP) can be restated more simply as the problem of
determining

ZMIBLP = Min cr+ dly. (MIBLP)
(zy)eF!

Because MILP is a special case of MIBLP, it is clear that MIBikRalso anNP-hard problem.
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Since the literature dealing with the complexity of MIBLPlisiited, we examine questions of
complexity in ChapteB. In addition, we investigate special cases of MIBLP that ibayamenable
to more effective solution methodologies than the genemahfilation. That defined by = R™
andY = R"2 (i.e.,p; = p2 = 0) is one such case. This special form bfIBLP) is called a bilevel
linear program (BLP). We denote the feasible region of a BEFFawhich results from dropping
all integrality restrictions fron#’. Formally, BLP is stated as

zprp = min c'z + d'y. (BLP)
(z,y)EF
BLP is a special case of a mathematical program with equilibrconstraints (MPEC), studied
extensively byLuo et al.(1996.

In order to ensure the problem is well-posed and has a splutiome technical assumptions are
necessary. First, we assume thdtis nonempty and compact. This assumption is consistent with
the literature loore and Bargd1990 and allows us to apply Theoreinl (see, e.g.Rudin 1979,
which guarantees that an optimal solution to the standattienaatical program

min ¢tz + dly
()€

exists.

Theorem 1.1 (Weierstrass’ Theorem)If f : R®™ — R is a continuous function, and is a
nonempty, closed and bounded subsét’afthen there exists soniec S such thatf(z) < f(x)
for all z € S. Similarly, there exists somee S such thatf(z) > f(z) forall x € S.

We also assume that, for every action by the upper-level Dislproblem faced by the lower-level
DM is feasible and its LP counterpart is bounded. ThatSs,(x) NY') # () and

min d?
yeS(z) Y

has a finite optimal solution, for all ¢ X .

As noted inMoore and Bard1990, the assumption of lower-level feasibility is somewhattrie-
tive, especially in the case where the upper- and lowel-neein direct conflict (i.ed' = —d?).
For example, if the goal of the upper-level DM is to disrup tperation of system controlled by the
lower-level DM (as in an interdiction problem), decisiohgattresult in infeasible lower-level prob-
lems can be seen to be optimal. In this case, we may wish totfeaassumptioS,, (x)NY') # 0.
Methods for relaxing this assumption are discussed in @n&ptOn the other hand, in some ap-
plications, it is unlikely that this assumption restricte tset of possible solutions. For example,

It is clear that if the LP counterpart of the lower-level ph is bounded, so is its integer version.
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in both the government and corporate systems describeckatlooosing upper-level solutions that
result in an empty lower-level feasible region will likelye eliminateda priori, since it is in the
best interest of both DMs to have a functioning system. Fuytinis assumption is consistent with
the current infrastructure protection philosophy basedaa of understanding and mitigating the
effects of an inevitable attack, rather than focusing onutirealistic goal of attempting to prevent
all attacks.

We also assume the lower-level DM semi-cooperativeand will allow the upper-level DM to
choose among alternative membersidf (z), in the case that this set is not a singleton. This is
often referred to as theptimistic formulationof the problem. The main alternative in the litera-
ture is thepessimistic formulationwhere one assumes the upper-level DM chooses the lowar-lev
solution alternative corresponding to the worst outconth waspect to upper-level objective func-
tion, yielding a risk-averse formulation of the problem.eTdhoice of the optimistic formulation is
consistent with the majority of the literature and, in castrto the pessimistic formulation, allows
single-level reformulations in which the lower-level plein is replaced with appropriate equilib-
rium constraintsempe 2003. Again, one might question this assumption in the contéattauly
adversarial lower-level DM. However, we note that such anado would often be zero-sum, in
which case the two formulations would yield identical olijge values. It is, of course, possible to
imagine situations which are not zero-sum, but in which tiveer-level DM would prefer a solu-
tion that is worst with respect to the upper-level objectivethis case, the pessimistic formulation
may be more appropriate, but solving such problems remasgignéficant challenge. The reader
is referred toLoridan and Morgar(1996 for further insight on and discussion of the pessimistic
formulation. For a broader perspective of the implicationsthe level DM cooperation within a
competitive atmosphere, the reader is referred to the nsapusf Basar and Olsdg(1999.

The mixed integer interdiction probleitMIPINT) is a generalization of the network interdiction
model in which we broaden the class of lower-level systenthdse that can be described by any
MILP. In MIPINT, there exists a binary upper-level varialite each lower-level variable. These
binary variables represent the upper-level decision &rdtt the corresponding lower-level vari-
ables. Mathematically, the effect of interdiction is mamtelising a variable upper bound constraint
(VUB)

y<U(e—x)

in the lower-level problem, where € R™ is a vector of natural upper bounds on the vegtdl =
diag(u), ande is ann-dimensional column vector of ones. The model we considegisvalent to
the mixed integer linear system interdiction problem diésctinlsraeli(1999. Formally, MIPINT
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is the problem of determining

ZMIPINT = max min  dy (MIPINT)
z€PNTNB" yeSNT (z)NY

where

PN = {z eR"| Az < b}
SN () ={y e R" | G*y > b*,—y > ~Ule — ),y > 0}

andY = (ZP x R"~P) C R™. Both the network interdiction problem and MIPINT are exdesf
zero-sum bilevel programs

(MIPINT) is, in fact, a special case ofi(BLP). To see this, let! = 0, d' = —d, A’ = —A!,
bt = bl d? =d,

e
_ann

Then, we can formulateIPINT) as

ZMIPINT = min{élx +d'y|zePynX,ycargmin{d®y |y e Sy(z)N }7}} ,
where

ﬁU:{weRnl \Alwzgl,sz},
Sp(z) = {y e R™ | Gy > b — A%x,y > 0},
¢ — B
Y = (sz XR"Q_M),

>

ni = ng = n, andps = p.

As previously mentioned, the existing literature on intetidn models focuses on variations of
the network interdiction problem, where applications amated to scenarios in which the lower-
level system can be described by a network model. A commomgbeaof network interdiction is
the problem of maximizing the shortest path. In Maximum Shortest Path ProblefiMSPP), the
follower attempts to move through a network along a shoptatit. The leader’s goal is to maximize
the length of that shortest path by removing network arcd.dLe= (N, A) be a graph in which
the follower moves a commodity from the source nede N and the sink node € N. We define
6 (i) anddt (i) as the set of arcs directed out of and into nedeespectively. The length of arc
k € Ais given by0 < ¢, < oo, and the resource required to interdict this ar@ is r,. The total
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interdiction budgetwvailable to the leader ig. One formulation of this problem is

max c MSPP
e g% kY ( )

subjectto y € argmin { Z CLYk :
keA

1 fori=-s

Yoow— D =130 VieN\{st},
)

ked—(i kedt (i
=0 = —1 fori=t
Ogykguk(l—xk) VkGA},

wherePy = {z | rz < ro}. A similar formulation of this problem by studied byraeli and Wood
(2002.

1.4 Previous Work

As discussed above, the initial motivation for multilevebgramming in the literature arose from
economic models of hierarchical competition, where bil@regrams are particularly well-suited
for analyzing markets dominated by a large entityr@arket-makerBilevel programs subsequently
proved their utility in both the privateKoopmans 1951, Charnes et a1.196% Cyert and March
1955 and public Beltramq 1983 markets. Koopmans(1951) and Charnes et al(1967 study
hierarchical systems in the context of resource allocatiyrert and Marcl{1955 describe a pricing
model in a oligopolistic market, based on the behavior ofgiee-makers at different levels within
a firm’'s organizational structureBracken and McGill(1973 formalize the notion of a bilevel
program by describing a mathematical program whose cantstreontain optimization problems.
Their model is limiting, however, since only the lower-leyayoff function, rather than the set
of feasible solutions, is dependent on decisions made ahititeer level. Military applications
of this model are given iBracken and McGill(19743 and a solution algorithm is suggested in
Bracken and McGil(19748. Some geometric results have been derived for the genedélavel
programming problemBenson 1989 but, due to its inherent difficulty, finding theoretical and
computational results for even the bilevel linear model prased quite challenging. Research on
this special case composes the majority of the remaininglevdl programming literature.

1.4.1 Bilevel Linear Programs
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Falk (1973 studies the linear max-min (LMM) problem, a zero-sum hélgeroblem, and suggests
a branch-and-bound solution algorithard and Fal1982 reformulate the bilevel program as a
separable nonconvex program, when the lower-level proligeconvex for fixed upper-level vari-
ables. A branch-and-bound algorithm that yields a globdihwgd solution to its piecewise linear
approximation is described and several structural reaudtgjiven. Namely, a single-level optimiza-
tion problem is given that determines the existence of aimabtsolution to the bilevel program.
Candler and Townsle{d982 show that, if(2 is bounded and lower-level solutions are unique, solu-
tions to BLPs occur at extreme points{ef Bialas and Karwai(1982 andBard (19843 generalized
this result, assuming only boundednes$§oavard 1989 provides a further generalization, show-
ing the same result for BLPs with upper-level constrainid am assumption of2. It is important

to note that this result does not hold for quadratic or intdglevel programsBard (19840 proves
that solving the linear bilevel program is equivalent to m@xing a linear function over a piece-
wise linear constraint set and gives necessary first ordémality for general bilevel programs.
Bard (1983 gives a grid search algorithm for solving general bilewglgpams (i.e. functions are
not restricted to be linear). IBard (1988, the case defined by all convex functions is considered
and results similar to those found irard (1984 for the linear case are given.

Fortuny-Amat and McCallL981) andBard and Moor€1990 study bilevel programs with quadratic
objective functions and linear constraints. In each, aorétlym designed to exploit the optimal-
ity conditions of the lower-level LP, replacing its objetiwith appropriate Karush-Kuhn-Tucker
(KKT) conditions to yield a single-level problem, is sugges In Fortuny-Amat and McCarl
(1981, binary variables are introduced to eliminate the resgltionlinear constraints and a mixed
integer program is solved. On the other haidrd and Moore(1990 suggest a branch-and-
bound solution methodology, where the complementaritystamts are relaxed to yield an LP,
and branching is performed on the KKT multipliel8en-Ayed and Blai(1990 discuss the diffi-
culties in finding exact solutions to bilevel linear progsaamd give a shorter proof of the problem’s
complexity than those given previoushdansen et al(1992 derive necessary optimality condi-
tions on the tightness of the lower-level constraints arghest new branching rules to be used in
a branch-and-bound solution frameworkudice and Faustinl992 give an algorithm based on
solving a series of linear complementarity problems. Fanaview of bilevel linear programming
solution methods and applications, the reader is refeoddet work ofAnandalingam and Friesz
(1992.

1.4.2 Mixed Integer Bilevel Linear Programs

Although bilevel linear programming has received increlagttention recently, the literature on
MIBLPs remains scarceMoore and Bard1990 introduce a general model, describe associated
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computational challenges, and suggest a branch-and-kedgndthm, but the vast majority of the
remaining mixed integer bilevel programming literatureestricted to various special casé&sard
and Moore(1992 develop a specialized algorithm for binary bilevel progsa Dempe(2001)
considers the case in which all upper-level variables antimoous and all lower-level variables are
integer and utilizes a cutting plane approach to approxanta lower-level feasible regionien
and Yang(1990 consider the opposite case, where the lower-level proeainear program and
the upper-level problem is an integer program. Linear @ogning duality is used to derive exact
and heuristic solutions. One application of this speciakecaas noted previously, for improving
production of biochemicals. In their mod&yrgard et al(2003 utilize binary upper-level variables
to represent yes/no decisions regarding the gene knockadtseformulate the the problem using
lower-level duality. Rather than using KKT conditions, ythestead enforce lower-level primal and
dual feasibility and require the primal and dual objectitede equal. However, they neglect to
include the lower-level primal variables in the dual obiztand, thus, erroneously state that a
MILP formulation has been derived. Recent{yppe et al(2009 developed a parametric integer
programming approach for problems with pure integer loleeel problems.

1.4.3 Interdiction Problems

Interdiction problems have received a fair amount of aitberin the literature, primarily due to their
applicability in enemy network disruption planning. Thegaral motivation, however, stemmed
from an interest in performing sensitivity analysis on floatwiorks, with the goal of determining
a transportation network’s sensitivity to road closWén(imer, 1964). The interdiction model we
study in Chapte# is reminiscent of this application, but the utility of théendiction for sensitivity
analysis has been largely overlooked in the literaturetelits the majority of the research has its
roots in military or homeland security applicatioidcMasters and Mustifl970 andGhare et al.
(1971 study models for effective interdiction of a military supmetwork, whileWood (1993 and
Washburn and WoofL995 were motivated by the disruption of drug trafficking netksrin each,
the interdictor attempts to minimize the maximum achiegdlow on the underlying networkl/ood
(1993 gives an integer programming formulation of the problerd aproof ofNP—completeness.
Natural generalizations of maximum flow interdiction redayl allowing partial arc interdictiohim
and Smith(2007), multiple upper-level objectivefRpyset and Wood2007), stochastic interdiction
success @ormican et al.1998 Held and Woodruff 2005 Janjarassuk and LinderqtR008, or
uncertain network structuréviprton et al, 2007). Israeli (1999 gives a comprehensive review
of interdiction algorithms and studies deterministic $éstr path interdiction in depthsraeli and
Wood (2002 study a closely related problem, in which interdiction bg teader causes an increase
di > 0 in the length of an arc; the goal of the follower is to find thenimum length path in the
resulting network. The problem is formulated as a bilevelgpam, and a decomposition solution
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methodology is provided. More recently, deviations fromvéo-level network problems have been
studied Galmeron et al.2009 Brown et al, 2009 e.qg.,), but the treatment of general MILP in-
terdiction appears to be limited to the Ph.D. thesidsofeli (1999, in which a penalty function
reformulation is introduced and solved via decompositiathuds.

1.5 Related Problems

MPEC. A very closely related class of problems is that of Matheo#hiProgramming with Equi-
librium Constraints (MPEC). In fact, as noted above, BLP $pacial case of MPEC, in which the
equilibrium constraints arise from an optimization praobje¢he relationship between the two prob-
lem classes in detail bgolson et al(20059. MPEC generalizes BLP, by dropping the assumption
of linear constraints and objective functions and allowaggilibrium constraints arising from more
general conditions than those resulting from an LP.

Formally, letC : R” — R™ be a set-valued map such that, for eacke R", C(z) is a closed
convex subset dR™. Then, for functiong” : R"™ — R andf : R*™™ — R™, nonempty closed
setZ C R**™ the standard MPEC formulation is

min  F(z,y)
subjectto (z,y) € Z (MPEC)
y € S(x),

where, for eachr € Xvpec, S(z) is the solution set of the variational inequality (VI) definiey
(f(z,-),C(z)), andXmpec = {z € R" | (z,y) € Z for somey € R™}.

In addition to those described in the bilevel literaturearaples of MPEC can be found in robotics
(Pang and Trinkle1996 Pang et al.2009, facility location and productionMiller et al., 1992,
engineering desigrK(arbring et al, 1995 Klarbring and Rénnqvistl995 Kotvara and Outrata
1990 1995, machine learning\langasarian1996 Kunapuli 2008, trade reform flarrison et al.
1997, economics $carf 1973, electricity market modelingS§meers1997 Hobbs 2001, Hobbs
and Helman2004), structural mechanic$faier and Novati199Q Tin-Loi and Misg 1999 Tin-Loi
and Pang1993, and options pricingfluang and Pand 998 Benson et a).2006).

A variety of solution methods exist for MPECs. Active set hwets Fukushima and Tseng002
Izmailov and Solodoy2008 Fukushima and Tsen@007 Liu and Ye 2007 Chen and Goldfarb
2007 Judice et al.2007 Ralph 2009 rely on solving a series of subproblems, whose complemen-
tarity conditions have been explicitly satisfied. Constraggularization methods-&cchinei et aJ.
1999 Fukushima and Pan999 Scholtes2001) attempt to put the constraints in a more tractable
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form, often resulting in relaxations of the original pramblewhile penalty function method$/@n-
gasarian1976 Marcotte and Zhu1995 Mangasarian and Pang997 Scheel and Scholte2000
penalize constraint violation. Recently, sequential gathcl programming (SQP){u et al,, 1998
Jiang and RalpHL999 Jian 2005 Fletcher et al.20084 Liu et al., 2006 and filter methodsKletcher
and Leyffer 20023ab; Etog 2010 have been shown to be computationally effective. Othehoui,
with roots in traditional nonlinear methods include interpoint Byrd et al, 1999 Liu and Sun
2004 Benson et a).2006 and trust region$choltes and Stohd999 Colson et al.2005h algo-
rithms. Implicit programming approache®\ftrata 1994 Outrata and Zowel995 Outrata et al.
1998 have also gotten some attention in the literature, but temdquire fairly strict assumptions
on the probleml(uo et al, 1996. Unfortunately, the majority of the problems consideredhe
MPEC literature do not have integral variables and, thus,sthiiution methods are not applicable
to the discrete problems we consider here. The reader isedfto the surveys biyerris and Pang
(1997, Ferris and Kanzovw(2002, Colson et al(20053, andHu et al.(2009 and the monograph
by Luo et al.(1996 for further background on MPECs.

Multiobjective Programs. As discussed above, multiobjective programming is anofitzene-
work used to model multiple objectives. Formally, the nalljective program is defined as:

VmianS[f1($)7f2(x)a'--7fk(x)]7 (12)

where the operatormin means the goal of solvind.(2) is to find efficientsolutions in the feasible
regionS. We sayz € S is efficient if there is no other € S such thatf;(z) < fi(z) for
i=1,...,kandf;j(x) < fi(z) for somei. Thatis there is na: € S thatdominatesz. Further,
z € S is consideredtrongly efficienif it is efficient and

fi(2) < fi(x) for all 4.

Let Si denote the set of efficient solutions akig denote the image af in the outcome space
(i.e.Yp = f(Sg)). Yg is the set of Pareto outcomes.

We are particularly interested in tihéobjective mixed integer linear progra(@MILP):
viinges|ez, dzx), (1.3)

whereX =7ZP x R" P, S ={zx € X | Az > b,x > 0},¢,d € Q", b € R™, andA € Q"*".
One approach to finding efficient solutions 103) is to convert it into a single-objective problem by
taking a convex combination efandd, to yield a so-calledveighted-sum subproble(@eoffrion,
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1969

min dcx + (1 — 0)dz, (1.4)
€S

for 0 < 6 < 1. Solutions to {.4) for fixed § are guaranteed to be efficient, but the converse does
not hold. Thus, solvingl(.4) is not sufficient if we must find all efficient solutions. Hoveg, it is a
very straightforward approach and will yield, in most casesuitable number of efficient solutions.
The reader is referred t@alphs et al(2009 for a discussion of alternative methods that guarantee
generation of the entire solution set.

The primary difference between multiobjective and multleprogramming is the assumption that
a single DM controls both objectives, in the former case.sTiumultiobjective programming, the

two objectives are optimized over a common feasible reglohas been shown, for problems in
which upper-level variables appear in the lower-level ofdje, solutions to BLPs are not efficient
in general Bialas and Karwanl982 Bard, 1984h Wen and Hsp1989. It is quite easy to see, by

way of an example, that this result also applies to our gettin

Example 1. Consider the following MIBLP instance:

min  — 3(z1 + 22) — 2(y1 + y2)
zEB2

subjectto x1 + x5 <1 (1.5)

y € argmin{—4y1 —bys | —x1—y1 > —1,—x9 —y2 > -1,y € IB%Z},

Itis easy to see, by inspection, that bath, ') = ((1,0), (0,1)) and(z?,y?) = ((0,1),(1,0)) are
optimal for (L.5). While both result in an upper-level objective value-a3, they have lower-level
objective values of-5 and—4, respectively. Thugiz?, y?) cannot be efficient.

However, we also observe from the previous example thdtpadih, solutions to MIBLPS are not
efficient in general, there may be alternative upper-lesklteons that yield efficient bilevel feasible
solutions. This observation motivates a heuristic mettardMIBLP that relies on determining
efficient solutions to a related multiobjective programe(§&hapte3). Wen and Lin(1996 give a
method for obtaining efficient pair of upper- and lower-ledecisions when the DMs are willing to
cooperate, but such solutions are not guaranteed to bélieési the original bilevel problem.

Stochastic Programs with Integer Recourse. Stochastic programming is a framework for mod-
eling mathematical programs in which the data is uncertairother words, these problems arise
when a subset of the parameters in a deterministic programeplaced with random variables. One
common method for modeling problem uncertainty is throtigb-stage stochastic programming

In a two-stage stochastic program, first-stage (or anticigi decisions must be made before the
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outcomes of the random parameters are known. After the tancsr is revealed, second-stage (or
recours¢ decisions are made in reaction to the outcome. As in biler@ramming, the decisions

are sequential in theory, but the goal is to determine thesides that yield the minimum expected

objective values at the first- and second-stage “here and now

Formally, the two-stage mixed integer stochastic progrargrproblem is defined as:
zosp = min {cx + E¢Q¢(x) | 2 € PN X} (1.6)

wherec € R™,
P ={Ax > b,z > 0},

A e R™m>m e R™. For anyé,
Q¢(z) = min{dy | Wy > w(§) — T,y € Y},

wherelV € R™2*"2 andT'(¢) € R™2*™ ., The vector is a random variable from the probability
space(Z, F, P) and describes the realization of the uncertain scenariose&ché € =, w(§) €
R™2, Generally/ andT are referred to as thecourse matrixandtechnology matrixrespectively.
As before, we assume the first- and second-stage integablesiare indexetl to p; < n; and1
to po < ng, respectively, and defin& = ZP1 x R™~P1 andY = ZP2? x R™7P2, AsinKong et al.
(2009, the following assumptions are made dngj:

(Al) The random variablé follows a discrete distribution with finite support.
(A2) The first-stage feasibility sé® N X) is nonempty and bounded.

(A3) Q¢(x) isfinite forallz € (PN X) and{ € =.

We define the functions

6(8) = minfex | 2 € P(8) N X},

whereP(5) = {z | Ax > b, Tz > 3}; and
¢(B) =min{qy |y € S(B)NY},
whereS(3) = {y | Wy > 3}, for all 5 € R™2. This allows us to reformulatel (6) as:

zasp = min {$(f) + Eep(w(&) — B) | f € B}, (2SP)

whereB = {§ | Tz = 3,z € X}. Variabless are the so-calletender variablesAssumption/A1)
guarantees thaB is finite. In the continuous version of.©) (i.e.,p1 = p2 = 0), ¢ is a piecewise
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linear and convex function ofw | Az > b,z > 0,z € X} for each realizatiow(&). Thus, under
Assumption(Al), Q¢(x) is also piecewise linear and convex, implying that] is the problem

of minimizing a convex function over a set of linear consttai AssumptionA2) is a standard
assumption, and ensures ti@N X) is a finite set. The final assumption defines a property known
asrelatively complete recoursand guarantees th&}.(x) is feasible for allz € (X N P) and

¢ € Z. The reader is referred to the survey papeBohultz et al(1996, for further insight into
the implications of these assumptions, as well as an owervid¢wo-stage stochastic programming
results. A comprehensive review of the stochastic progrengriterature is provided by all and
Wallace(1994 andBirge and Louveaux1997).

Two-stage stochastic programming problems are not géyeassociated with bilevel program-
ming. However, it is easy to observe the similarities by examy the mathematical formulations.
In fact, algorithms developed for bilevel programs can bedu® solve two-stage stochastic pro-
grams. Conversely, two-stage stochastic programmingritigts are able to solve a particular
special case of the bilevel program.

Parametric Mathematical Programs. Sensitivity analysis is another method for dealing with
uncertainty in input data. The goal of sensitivity analysi® understand how the optimal solutions
and objective values change in mathematical programs ampli¢ data is varied. In particular,
once an optimal solution is found, information gleaned finelated mathematical program allows
us to predict the effects of changing the objective fungtimmstraint matrix, and right-hand-side
values. Generally, we are interested in determining camditunder which the current solution
remains optimal, despite changes to the problem data. éfugbnsitivity analysis describes how
to obtain new optimal solutions when these conditions askated, without resolving the problem
from scratch.

Parametric programming is a method for performing systensansitivity analysis. In particular,
parametric programming is used to obtain the set of optiwlakisns over a range of input values.
For example, we can formulate tharametric program

min {cz | Az > (b+0V),2 > 0,2 € X}, (1.7)

parameterized by the scal@r The goal of “solving” (.7) is to determine an optimal solution and
objective value for each value éf Similarly, we can define models based on the parametearirzati
of the objective function:

min{(c+<pc’)ac|Am2b,m20,m€X}, (1.8)
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1.6. COMPUTATIONAL CHALLENGES OF MIBLP

and the constraint matrix:
min {cz | (A+ XAz > b,z >0,z € X}, (1.9)

wherep and )\ parameterizel(.8) and (L.9), respectively. The goal of parametric programming is to
determine the global dependence on the problem paramiberig us to construct thparametric
function z, which yields the optimal value of as a function of the paremeAs we will see next,
understanding how the solutions th ) evolve as we changgis essential to developing algorithms
for MIBLPs.

1.6 Computational Challenges of MIBLP

The fact that MIBLP idNP-hard (see Sectioh.3indicates that solving MIBLPs in practice is likely
to be challenging. A natural approach to developing albor# for solving MIBLPs is to consider

generalizations of the techniques that are used for MIL®palticular, we would like to be able to

generalize the paradigm of LP-based branch and bound ussdve MILPs, by replacing the LP

relaxation with the BLP obtained from relaxing integraligstrictions. Unfortunately, as we will

see next, this method does not yield a valid relaxation, herktis no immediately apparent way to
obtain such a generalization.

In a branch-and-bound algorithm for a standard MILP, iraétyr constraints are removed and the
resulting LP, called the LP relaxation, which is easily st®he a relaxation of the original MILP,

is solved. The solution to the LP relaxation yields useftdimation about the original problem. In

particular, in algorithms for solving MILPs, we frequentige the following properties.

(P1) If the LP relaxation has no feasible solution, thenhegitioes the original problem.

(P2) If the LP relaxation has a solution, then the objecta® is a valid lower bound on the that
of the original problem.

(P3) If the solution to the LP relaxation is integral, theisibptimal for the original problem.

PropertiedP2) and (P3)result from the fact that the set of feasible solutions ferahiginal MILP
is contained in the corresponding set for the relaxationvél@r, for a MIBLP, this is not the case.
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1.6. COMPUTATIONAL CHALLENGES OF MIBLP

Figure 1.1: The feasible region of a MIBLP.

Example 2. Consider the instance ofA|BLP), from Moore and Bard1990,

:zfreuzri —x — 10y
subjectto y € argmin {y : 25z — 20y > —30
—r—2y > —10
—2x+y>-—15
2z 4+ 10y > 15

y€Z+}7

(1.10)

illustrated in Figurel.l In the figure, the polyhedron represents the(sewhile the integer points
in this polyhedron comprise the discrete 8t Within each of2 andQ’, we have indicated points

that satisfy the optimality constraint on the lower-levatigbles (i.e. the bilevel feasible solutions).

These are denoted and.F/, respectively. From the figure, it is easy to see that , 7/ C Qf,
and Q! C Q. Itis not the case, however, th&' ¢ F, which implies that the set of feasible

solutions to the MIBLP is not contained in that of the coragting BLP and, hence, that this BLP
does not yield a relaxation of the original problem. In thiample, optimizing over the continuous

regionF yields theintegersolution (8, 1), with the upper-level objective valuel8. However, the

true solution to the MIBLP i$2, 2), with upper-level objective value 22.

Example2 allows us to make two important observations:

(O1) The objective value obtained by relaxing integraliyot a valid bound on the solution value

of the original problem, since we may have

min clz+d'y > min x4 dh
(z,y)EF (z,y)eF!
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1.6. COMPUTATIONAL CHALLENGES OF MIBLP

(O2) Even when solutions tain, ,)c 7 ctz + d'y are inF!, they are not necessarily optimal.

z,y)

Thus, except in certain special cases, only Propgtiy can be generalized. This implies that we
cannot simply generalize MILP branch and bound for MIBLP blgsituting the LP relaxation with
the BLP obtained by dropping the integrality constrainta iMIBLP.

Figure 1.1 also illustrates an important difference between the oontis and integer versions of
bilevel programming. It is well-knownGandler and Townslgyl982 Bialas and Karwanl1982
Bard 19844 Savard 1989 that if a solution to BLP) exists, it occurs at an extreme pointaf This
property has been exploited to develop algorithms base@dexenumeratiorRapavassilopoulos
1982 Candler and Townsleyl982 Bialas and Karwanl1982 Dempe 1987 Chen and Florian
1992 Chen et al.1992 Tuy et al, 1994). However, we can easily see from the figure, this property
does not hold when we add integrality constraints on thelées. This is analogous to the situation
one encounters when comparing linear and integer progragimi

While Figurel.1demonstrates the difficulties of applying known algoritbnmiethods to MIBLPs,

it also offers some insight into potential novel solutionthoels. It is easy to see, by inspection, that
the setF! is equivalent to the seft(v1,v;), ..., (vg, y;)}, Wherey; is the optimal solution to the
MILP

min vy

st — 20y > —30 — 250,

2y > —10 + v, (1.11)
y > —15+ 2v;
10y > 15 — 2u;
y €Ly
and{vy,ve,...,vs} = {1,2,...,8}. In other words, if we knew the optimal solution df.{1) for

eachv, we could use this information to generafé and develop an algorithm to solvé.{0. In
fact, for this simple example, we could simply replace thedolevel optimality conditions with a
constraint of the formy = z(v; ), wherez(v;) is a function that returng; givenv,. In more general
terms, z(v;) returns the optimal value of the lower-level problem for atipalar right-hand-side.
This provides further evidence that understanding the mtdg@ce of optimal lower-level solutions
on the upper-level decision vector is crucial to designifigciive methods for solving MIBLPs,
and motivates our study of the MILP value function.

A bilevel program can be thought of as an optimization pnobleto which a second parametric
optimization has been embedded. Thus, a natural methodef@laping algorithms for bilevel
programs is to study the structure of the function that retuhe optimal solution value of the
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lower-level problem for a given upper-level solution. Tissessentially the goal of parametric
programming. Much of the work described in this dissertalias its basis in exploiting the structure
of this so-calledvalue functionof the lower-level problems to develop algorithmic methodis
Chapter3, we describe the theoretical properties of the MILP valugcfion and demonstrate its
utility in bilevel algorithm design.

1.7 Major Contributions

Over the past several decades, there have been many greatpisbments in the development

of theory and methodology for solving large-scale mixeegetr programs. In this dissertation,

our goals are to 1) continue this development and 2) levekagen results for the development

of analogous techniques for mixed integer bilevel prografmsther, we utilize knowledge gained

from comparing linear and mixed integer linear programsridge the gap between continuous and
discrete bilevel programs. The primary contributions g thissertation are:

e Development of a branch-and-cut framework for pure intdmjerel linear programs.

e Development and distribution of an open source bilevelaopackage based on our algo-
rithmic framework which allows for easy incorporation ofiittbnal algorithmic components
and problem-specific customization.

e Demonstration of solver customization using specializethmds developed for interdiction
models, a class of models which encompasses the networkliciten problem and is of
particular importance for applications in homeland seguri

e Development of a theoretical algorithm for MIBLP based @rative approximation of the
lower-level value function.

e Provision of two novel heuristic methods for MIBLP that ylejood solutions without a large
computational expense.

e Derivation of a novel branch-and-cut algorithm for a clasSteiner Arborescence Problems
with an application in infrastructure protection.

1.8 Outline

The remainder of this dissertation is as follows. In Chaptere develop and branch-and-cut frame-
work for pure integer BLPs (IBLPs). In this chapter, we alsovide the implementation details of
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our solver, generalizations of known enhancements for Milgerithms, and computational results
on a set of randomly-generated IBLPs. Then, in Chaptave return to the general formulation
of MIBLP. First, an analysis of the problem complexity is yided. Then, using the mixed-integer
extensions of LP duality theory, we provide several sidgle! reformulations of MIBLP and an
exact algorithm based on iterative approximations of tlveetelevel value function derived from
lower-level dual solutions. Due to the inherent difficultytieese problems, finding exact solutions
to large instances is a major challenge. To this end, we g@eawiio novel heuristics, which can be
used to find good solutions quickly, and demonstrate theifulizess with computational results. In
Chapterd, we focus on applications of{IPINT), beginning with a detailed study of one particular
early warning system (EWS), and an ILP used to optimize itsgie and a discussion of the util-
ity of MIPINT in a particular type of sensitivity analysisn this chapter, we also demonstrate the
foundations of problem-specific customization by wayMfRRINT) and provide several specialized
methods that exploit the problem’s structure. Finally, ma@ters we motivate further study by de-
scribing new applications of bilevel programming, provamclusions, and suggest directions for
further research.
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Chapter 2

Pure Integer Bilevel Linear
Programming

In the previous chapter, we described several applicatibdiscrete bilevel programs and illustrated
the computational challenges these problems present.cleas that developing solution methods
for (MIBLP) that are analogous to those in the MILP literature is an i@, yet ambitious, task.
In this chapter, we initially focus on the development oftsurethods for the pure integer version
of MIBLP, an important special case of the canonical problémparticular, we develop a branch-
and-cut framework for this problem class that leveragesvi@nge of the well-known branch and
cut, an algorithm of ILP, employing modifications where resaey to deal with the more general
form of the bilevel programming problem.

The pure integer version of(IBLP), referred to henceforth as tlirteger bilevel linear program
(IBLP), is the problem of determining:

ziprp = min  clz + dly, (IBLP)
(z,y)eF!
where
Fl = {(z,y) |x € (PunzZ™),y e MI(:E)},
and

M!(z) = argmin{d?®y | y € Sr.(z) N Z"},

which results from setting; = n; andny in (MIBLP). For the remainder of this chapter, we
assume that all data necessary to define an instand&Id®) is integer. That isA! € Z™*™,

bl e 7™, A2 € 7m2xm G2 ¢ 7m2x"2 andb? € Z™2. Further, we maintain the assumptions
given in Chapted.
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2.1. POLYHEDRAL APPROACHES TO IBLP
(A1) Q! is nonempty and compact;
(A2) for each upper-level solution, the follower’s ratibn@action set is nonempty; and

(A3) the linear relaxation of the lower-level problemin, ¢, d?y has a finite optimal solution,
forall x € X.

As with many classes of mathematical programs, the mosbabuioute to achieving global op-
timality is the development of bounding procedures thatlmamwsed to drive a branch-and-bound
algorithm. As discussed in Chapterhowever, the bounding, fathoming, and branching proasdur
employed in traditional LP-based branch-and-bound algms cannot be applied in a straightfor-
ward way. In Sectior2.1, we describe how to overcome these challenges to developaxaiized
branch-and-cut algorithm for IBLPs that follows the samsi®aaradigm used in ILP.

2.1 Polyhedral Approaches to IBLP

As we have seen in Sectidn6, developing a branch-and-bound method for solving IBLPads n

as straightforward as mimicking LP-based branch and boWelcannot get a valid bound simply

by dropping integrality restrictions on the variables. Hwoer, we show that the general framework
can still be applied in our setting, once suitable modifaadiare made to obtain a valid relaxation.
Further, we describe classes of inequalities that can linsebranch-and-cut framework to sep-
arate problems that are integer feasible but not bilevdlildd® The method by which we arrive at

these inequalities can be considered analogous to thoderukeP, in the sense that they are based
on disjunctions arising from the integrality restrictioms the variables.

2.1.1 Bounding
We have already observed that the BLP

(JE%?; cta + dly, (2.1)
obtained by removing the integrality restriction on all @& variables, is not a valid relaxation and
does not provide a valid bound on the original problem. Taibdcause removing the integrality
restriction on the lower-level variables may actually @sslutions that were previously bilevel
feasible to become infeasible. Further complicating maiethe fact that verifying the feasibility
of a given solution is itself atNP-hard problem that involves solving the lower-level prablea
standard ILP.
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2.1. POLYHEDRAL APPROACHES TO IBLP

Although 2.1) does not provide a valid bound, it is easy to see that thaasibility of this BLP
also implies infeasibility of the original instance. Thesult is given in the following proposition.

Proposition 2.1 If F = (), thenF! = (.

Proof. Suppose, for sake of contradiction, this is not the cases ifimplies thatF = (), but there
exists soméz, ) € F!. By definition,(z,9) € F!impliesi € (PynX) andy € M (). Clearly,
# € (Py N X)impliesz € Py, soPy is not empty. Alsoy € M (#) impliesy € (S(2) NY).
This, in turn, impliesj € Sy (&) and, thereforeSy, (&) # 0. SinceS (&) # 0, we must also have

argmin{d®y | y € Sy (&)} # 0

Combining these implie # () and we have a contradiction. 0O

Although removing the integrality restrictions on all \&sles does not result in a valid relaxation,
removing integrality conditions and the requiremegnt M (x) doesyield the relaxation

| 1
min ¢z +dy, LR
(zy)e2 Y (LR)
similar to one suggested byloore and Bard1990. The resulting bound can be used in combi-
nation with a standard variable branching scheme to yieldlgorithm that solvesIBLP). Not
surprisingly, however, the bound is too weak to be effeabirénteresting problems.

In order to improve upon the bounds yielded biRj and to avoid the potential difficulties associated
with being forced to branch when faced with an infeasibleget solution, we consider here a
branch-and-cut algorithm based on the iterative generatidinear inequalities valid forr! and
augmentation of the linear system describfdgintil an optimal member of’ is exposed or we
choose to branch. The procedures we suggest are analogthesséoused in the case of ILP but
also address the fact that integer solutions may not bebledsi this setting.

2.1.2 Generating Valid Inequalities

An inequality defined by, o, 7o) is called avalid inequalityfor 7! if 712 + moy < g for all
(z,y) € FL. Unlessconv(F!) = €, there exist inequalities that are valid 8¢, but are violated
by some members @t. Clearly, except in trivial instances, we can expestv(F’) # Q. In fact,

in contrast to ILP, even complete generatiomv () is insufficient to solve the problem. This is
illustrated in Figure2.1. In the figure, the shaded region represents convex hufi/ofThe closure
of conv(Q') is shown by the dashed line outsidenv (7). Itis clear from the picture that there
exist inequalities valid fo'! that are violated by members 6f .
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5 FI e oeoe

Figure 2.1: Comparing the convex hulls@f and 7.

In order to generate inequalities that separate membe& dfom Q and 2!, we must use infor-
mation not contained in the linear description{bfFor a point(z, ) to be feasible for alBLP), it
must satisfy three conditions:

(C1) (z,y) € 2,
(C2) (z,y) € (Z™ x Z") , and

(C3) y € MI(z).

This is in contrast to standard ILPs, where we have only thst ffivo conditions. However, the
methodology can be seen as equivalent to that used for ILPsrder to derive inequalities for
ILPs, we utilize the integrality conditions, since the Bnalescription alone is insufficient. Here,
we have an additional feasibility condition, so it is natuceassume that Conditior(€1) and(C2)
alone will not suffice.

Because the first requirement is enforced by requiring meshie in 2, we must derive valid
inequalities from the other two conditions. We start witk fhllowing straightforward, but useful
observations.

Observation 2.1 If the inequality(ry, o, 7o) is valid for Q7 it is also valid forF”.

Observation 2.2 Let (z,y) € Q such thaty ¢ M’ (x). If the inequality(m, o, mo) is valid for
QI {(z,9)}, itis also valid forF’.

Observation2.1 is derived from the relationshiF! € Q! and allows us to separate fractional
solutions to the LP resulting from removal of the lower-lemgtimality and integrality restrictions.
Observatior?.2states that we can separate points that are integer buiealdeasible. From these
observations, we can derive classes of valid inequalitiggetused in a cutting plane procedure.
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2.1. POLYHEDRAL APPROACHES TO IBLP

To initialize the cutting plane procedure, we must first edlve relaxation

Lol 1
(;I;;IEIQ cr+dy. (LR)

If the solution(z, ) to (LR) does not satisfy conditiofC2) above, we may apply standard branch-

ing techniques used to separate point®inQ! from Q! O F!. In theory, we can also employ any

standard cutting plane techniques used in ILP algorithmme {®rnuéjols(2008 for an overview)

to separate the fractional point. However, the bilevel ategation method we introduce here relies

heavily on the integrality of the data defining the problerhug, we restrict these methods to those

which result in new inequalities with only integer coeffitie. Developing methods for employing

the full set of ILP cutting plane methods in congruence witbMel programming branch and cut is

an area of future research.

If (z,7) satisfies conditior{C2), then we must check whether it satisfies conditf@3). This is
done by solving the lower-level problem

in  d? 2.2
yEST(lf)ﬂY Y (:2)
with the fixed upper-level solutioi. Let the solution to this ILP bg*. If d>g = d?y*, theng
is also optimal for 2.2) and we conclude thdt:, §) is bilevel feasible. Otherwise, we must again
generate an inequality separatifig ) from F/. In either case, howeve(i, v*) is bilevel feasible
and provides a valid lower bound on the optimal solution eaifithe original IBLP.

Now supposel?j > d?y*. In this case(, ) does not satisfy conditioC3) and is therefore not
bilevel feasible. We may still usg:, y*) to bound the original problem, but we would like to add an
inequality to (R) that is valid for! and violated by, 7). We describe one such inequality next.

Based on the above discussion, the following result dess@method for generating valid inequal-

ities for IBLPs.

Proposition 2.2 Let X = Z™ andY = Z"2. Let(#,7) € Q! be a basic feasible solution (@R).
)

(
Let I be the set of constraints that are binding(&t ), Then

max + moy > mo + 1, (2.3)

where(my, m2) = 3, (a;, g;) andmg = >, by, is valid for F7.

Proof. The fact that(z, 7) is a basic feasible implies that there exist= n; + ns linearly inde-
pendent constraints in the descriptiontdthat are binding atz, §). Thus, the systemz + ¢}y =
bi,i € I has a unique solution, namefy, ¢). This, in turn, implies thatz, ¢) is the unique point
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of intersection between the hyperplane defined by the emuatiz + my = 7 and the sef)!. It
follows that the inequalityr; = + my > 7 is valid for Q. Because the face 61 induced by this
inequality does not contain any other member§6fand there does not exit, y) € Z" x 72
such thatrz + oy € (w9 + 1, mp), this implies that the inequality; = + moy > 7o + 1 is valid for

O\ {(#,9)}. Applying Observatior?.2yields the result. 0

Example 3. An example of the cutting plane procedure is illustratedigufe 2.2 for the instance
min{—y |y € argmin{y |z —y > —-22x4+y>2,-3x+y>-3,—y> -3, 2,y €L }}.

In the figure, we can see the bilevel feasible regfon= {(0,2), (1,0), (2,3)}. Also shown in the

—el.
5

Figure 2.2: An example of the bilevel feasibility cut.

figure is the bilevel feasible regiaf of the corresponding BLP. In this example, we start with the
integer point(1, 3), an optimal solution to the LP

min{—y|z—y>-22r+y>2-3c+y>-3,—y>-3,z,y c Ry}.

It is easy to see that this point is not bilevel feasible, bseahe rational choice for the lower-level
DM would bey = 0, whenxz = 1. Thus, we require a cut that separat¢s3). Combining the
constraints active dfl, 3) yields the half-spacé(x,y) € Z™ x 22 | x — 2y > —5} and applying
the procedure described above, we obtain the new inequality

r—2y > —4,

which is valid forF!, but not satisfied byl, 3). Note that after adding this cut, the optimal solution
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is obtained in the next iteration. Without the cutting plamecedure we have just described, we

would be forced to branch after producing this solution imanlbh-and-bound framework. 0O

In order to solve problems of interesting size, additiolakses of valid inequalities derived from
Condition (C3) are necessary. In the following chapter, we describe onk slass for MIBLPs
that utilizes information from the value function of the lemlevel MILP. Then, in Chaptet, we
describe two such classes for bilevel problems with bingpet-level variables. Derivation of such
classes is another important area of future research.

2.1.3 Branching

As we have described, an important advantage of our algorither its predecessor froivioore
and Bard(1990), is the fact that, in the case of IBLP, we are not forced tmbnaafter producing an
infeasible integer solution. Therefore, we are free to empthe well-developed branching strate-
gies used in algorithms for traditional ILP, such as stroranbhing, pseudocost branching, or the
recently introduced reliability branching\¢hterberg et a).2005. Of course, it is also possible to
branch using disjunctions obtained from violations of Gtiad (C3). Examples of disjunctions on
which we can branch are described in Chagtefor MIBLPs, and in Chapte#, for interdiction
problems.

2.1.4 Branch and Cut

Putting together the procedures of the preceding thre@ssciwe obtain a branch-and-cut algo-
rithm that consists of solving the linear relaxatiarR|, iteratively generating valid inequalities to
improve the bound, and branching when necessary. In adddithe obvious advantage of produc-
ing potentially improved bounds, an advantage of this aggtoover the one proposed bjoore
and Bard(1990 is that it relies only on the solution of standard ILPs, eatthan BLPs. Further,
if we are able to obtain cutting planes to separate intedevddiinfeasible solutions, the algorithm
preserves all the usual rules of fathoming and branchirthetefore allows us to immediately lever-
age our knowledge of how to solve standard ILPs. The genemaldwork of such an algorithm is
described next.

Let

min ctz + dly. (IBLP?Y)
(zy)eF!

be the IBLP defined at nodeof the branch-and-cut tree. To process ngdee first solve the LP

Ap= min clz+dy. (LPY)
(.’L’,y)GQt

32



2.1. POLYHEDRAL APPROACHES TO IBLP

and denote its solution bit, y') (if it exists). If either the LP is infeasible or the optimailue

of (LP?) is greater than the current lower bouhg we can fathom the current node. Otherwise,
we can either generate valid inequalities to separate therusolution fromF’ or branch. If
(zt,y") € Qf, we check for bilevel feasibility. If the solution is feakibwe can stop. Otherwise,
we can either add cuts, to separate the current solution 26rqy {(zf, ")}, or branch. In the
case of an IBLP, we have the choice of adding cuts of the f@&¥),(or branching on the integer
variables as itMoore and Bard1990. On the other hand, in the mixed integer case, we can use the
disjunctions obtained from the lower-level value functiordefine a branching rule (see Chagipr

If a fractional solution is found, we either add cuts to sepmthe current solution fro@‘N (X xY")
and iterate or else we branch. A general outline of the nodegssing subroutine is given in
Algorithm 2.1 A description of our implementation of this algorithm isgn in Sectior2.3

Algorithm 2.1 Node Processing Loop
1: Solve LPY). If (LP') has an optimal solution, denote(it’, 4*). Then:

o If (LP") is infeasible, so isIBLP’) and the current node can be pruned.
e If z/p > L, the current node can be pruned.
o If (2t y') € Qf, go to Step, else go to Step.

2: Fixz < 2!, and solve
¢ . 2
L= min d7y.
LL yESL(xt)ﬂY y
If 2f, = d?y’ setL — c'z' + d'y' and prune the current node; else go to Step
3: Either set
Q1 = QN {(z,y) € R™ x R™ | mz + may > 7o},

where(ry, 72, mo) is a valid inequality forF’, sett «— t + 1, and go to Step, or branch using
a valid disjunction.

4: Add cuts valid forQ! N (X x Y)) to separate the current fractional solution. Resolve the ne
LP and let(#, §) be its optimal solution. Iz, ) € Q7 set(z?,y*) « (&,) and go to Stef;
else branch.

As described above, the combination of a cut generationepiige with the branching and bound-
ing techniques yields a full branch-and-cut algorithm. eftfiatively, in the case of IBLP, we can
view our algorithm as a pure cutting plane algorithm, whebdaak-box solver provides solutions
(z,y) € QL. Since all variables in our formulation are integer, usingting planes of the form
(2.3), yields a finite algorithm.

Theorem 2.3 Let X = Z™ andY = Z"2. Suppose the cutting plane algorithm described above
is implemented using only cuts of the fofn3). Then, the algorithm finds an optimal solution or
shows tha{IBLP) is infeasible.
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Proof. For the cutting plane algorithm to be finite, we require twaditons. First, the polyhedral
region{) must be bounded. This is taken care of by assumption. Suppose

{(wy) eXxY |Ala >0 A%2+ G2y >V C{(m,y) e X xY | Y aj+ >y <k}
JENT JEN2

whereN; = {1,...,n1} and Ny = {1,...,ny}, for some suitably large integér This implies
that the cardinality of2’ is finite (i.e., the number of feasible points,y) € QN (Z™ x Z"2) is
finite) Second, the black-box integer programming solvedus solve the relaxation

min clz + dly (2.4)
(z,y)e!
must terminate after a finite number of iterations. But, @& follows from our assumption of
boundedness and definition &f andY. Because the number of integer pointsiris finite, we
can find an optimal solution to, or prove infeasibility fonyalLP subproblem in finite time using
complete enumeration (i.e., pure branch and bound). Rughnee, by definition, each application
of the cutting plane procedure either returns a bilevelifgasolution, or cuts off the current point,

it must be called a finite number of times. The result follows. 0

Note that our algorithm can be also used as pure branch-@madb if branching is performed on
integer variables, and will be finite as longf@ss bounded.

In Section2.3, we describe the implementation of our algorithm, and tkaltmg solver, MibS, and
provide some computational results. First, however, wedtced some algorithmic enhancements
designed to improve the algorithm’s performance.

2.2 Additional Components

The procedures described in this dissertation providedhedations for development of a full algo-

rithmic framework. However, it is well-known that the addit of algorithmic enhancements, such
as primal heuristics and preprocessing techniques, catlgimprove the performance of a stan-
dard algorithm for ILPs. A full set of generalized methodpés for IBLPsS requires the addition of

heuristic and preprocessing techniques paralleling ttizatehave been developed for solving ILPs
over the last two decades. Our preliminary experimentatias shown that such methodologies
have the potential to provide significant computationalriovpment. Further, specialized methods
exploiting problem-specific structure can be used to tailoalgorithm and increase its effectiveness
on a particular problem class. In this chapter, we descidipeesheuristic and preprocessing tech-
niques for the general version of IBLP. In the Chaptewwe demonstrate methods for incorporating
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problem-specific customizations into our solver framewiankproblems with binary upper-level
variables.

2.2.1 Primal Heuristics

For IBLPs, it is quite straightforward to develop methodsdfiileding feasible solutions. For example,
we can simply find a vector that satisfies the upper-level tcaimés and solve the resulting lower-
level ILP to get a bilevel feasible solution. In fact, thiseisactly how solutions are obtained from
the bilevel feasibility check discussed in this chapteneer, our initial computational experience
suggested that these solutions are not of high quality we#pect to the upper-level objective. This
is not surprising, since the lower-level objective is nqtitally included in the relaxation problems
used in these algorithms. Further, it is unlikely that fixthg upper-level solution arbitrarily will
improve upon the solutions generated as by-products of itbeeb feasibility check. Thus, we
consider methods for improving upon the solutions obtaiimethis manner, as well as external
techniques to generate good feasible solutions throughewtourse of the algorithm.

Improving Objective Cut. Each time a bilevel feasibility check is performed, a feles@mlution
is generated. Formally, one way to determine whether a weeatio (2,7) € Q! (i.e., an integer
solution to (R)) is bilevel feasible is by solving the lower-level problem

in d%y. 2.5
yESDLa(g’l)ﬂY Y (25)

This yields the bilevel feasible solutioft, y*), wherey* is optimal for .5). Of course, if we
discover thati?j = d?y*, theny € argmin{d?y | y € (S;(2) NY)} and we potentially have two
feasible solutions (i.e., if # y*). However, althougtiz, 3) is optimal for

min clz + dly, (2.6)
(z,y)eQ]

we have no guarantee on the quality(of y*) with respect to the upper-level objective. Because,
the lower-level objective does not appear anywhere?if)( the solutions will, in general, be far
from bilevel feasible (i.e.¢%g > d%y*).

In order to improve solutions to the relaxation problem iis #ense, we can use local search meth-
ods. Using the information gained from the bilevel feagtipitheck, we add the cut

d2y S d2y*
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to the current relaxation and reoptimize over
QN {(z,y) € (X xY) | Py < Py}

This method attempts to drive the solution towards bilegekfbility, while maintaining its quality
with respect to the upper-level objective. It is importamnbte solutions to this new problem are
not guaranteed to be bilevel feasible, and a second bilewaslHility check is necessary. Due to the
nature of the bilevel feasibility check, we are always gotead to generate a feasible solution using
this method. In practice, computational experimentatiboutd be performed to ensure that the
increase in time necessary to solve the additional ILPsamésrthe use of this heuristic. However,
if the lower-level problems are relatively small, the agbgiil time should be minimal.

Lower-level Priority.  Another method for driving solutions towards feasibiligyto give tempo-
rary priority to the lower-level DM. In other words, we caremhpt to find solutiongz,y) € Qf

such thaty € M (z) by replacing the upper-level objective with that of the lowevel DM and
optimizing overQ2!. Formally, this method is based on solving problems of thefo

(xgl)glm d%y. (2.7)
Here, we are essentially allowing the lower-level DM to cé®dhe upper-level decisian that
is best with respect to the lower-level objective. Soluiaa .7) are guaranteed to be feasible.
However, it is unlikely that these solutions will be good wiespect to the upper-level objective.
Thus, we must again consider methods for balancing fedgibitd upper-level optimality. In order
to improve these solutions, we can add cuts of the form

o4 dy<L

to (2.7), whereL is the value of the best known feasible solution. Note thaeatuts are added
to the original set of linear constraints, we are not guaeahtfeasibility because we have added
an unnatural restriction to the lower-level problem. Thue,must test for bilevel feasibility after
resolving. Again, performing this check guarantees thatwilbeventually generate a feasible
solution using this heuristic.

2.2.2 Preprocessing Techniques

Preprocessing methods have proved quite useful for décgeti®e computational effort required
for solving difficult ILPs (see, e.gSavelsberglf1994)). The methods employed in the ILP litera-
ture can be directly applied to the relaxationx, ,\cq: ctx + d'y to speed up the generation of
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integer solutions. However, in order to be truly effectipegprocessing techniques should be tai-
lored to account for the special structure of IBLP. The galimation of known MILP preprocessing
techniques, as well as the creation of novel techniquedajes@ specifically for IBLP is an impor-
tant area of future research. We describe one method tatsalls to fix variables before entering
the branch-and-bound phase of our algorithm here. Thisigah utilizes information from the
optimal basis of the LP relaxation

o1 1
min ¢z +dy, LR
(z,y)eQ Y (LR)

In a manner similar to that used for MILPs, we fix variablesaohsn this basis information and a
known bound for IBLP.

Reduced cost fixing is a well-known method used in LP-basaddbr and bound for MILPs. Let
zrp be the current value of the LP relaxation (i.e., the optimredue of (R) at the current tree
node),L the best known solution, arg the reduced cost of some nonbasic varigbl&hen, if

|Ej |2L_ZLP>

variablej can be fixed to its current value. The same method can be dgpliéBLP branch and
bound, since we use an LP relaxation method. However, asl motétamturk et al.(1999, this
method is very dependent on the quality of the relaxation iandmbent solution. As we have
discussed, the bound obtained R] is fairly weak. The addition of cutting planes will improve
the quality of this bound, but we still do not expect reducest ixing to yield results as powerful
for IBLPs as those seen in MILP solvers.

2.3 Solver Implementation

A primary goal of this dissertation research was the devatq of an open source package called
the Mixed Integer Bilevel Solver (MibS) to be distributeddhgh the Computational Infrastructure
for Operations Research (COIN-OR) repositdrpgee-Heimer2003. The branch-and-cut algo-
rithm described in Sectiof.1.4was implemented in C++, utilizing standard software congus
available from COIN-OR. In particular, the implementatiases the COIN-OR High Performance
Parallel Search (CHiIPPS) describedXin et al.(2009 to perform the branch and bound, the MILP
solver framework BLIS (part of CHIPPS), the COIN-OR LP Sol¢€LP) for solving the LPs that
arise in branch and cut, the COIN-OR Branch and Cut for sgltire lower-level ILPs, the Cut
Generation Library (CGL) for generating cutting planesj #ime Open Solver Interface (OSI) for
interfacing with CHiPPS and CBC.
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2.3.1 Class Description
The primary classes the comprise MibS are as follows:

e MibSModel : The model class is derived from the virtual BLIS cl&sModel and stores
information about the original problem.

e MibSCutGenerator : The cut generation class is derived from the virtual BLI&ss!
BlisConGenerator , and is used to generate cuts of the form described in SeZtiof
when CHIPPS finds integer, bilevel infeasible solutions.

e MibSSolution : The solution class is derived from the virtual BLIS cl&isSolution
and is used to store and print integer bilevel feasible &wist

e MibSBilevel : The bilevel class is specific to MibS and is used to transfeofations re-
turned by CHIPPS into a format convenient for our settinge Wtain function of
MibSBilevel s to test bilevel feasibility of given solution, by solvitige lower-level prob-
lem at a fixed upper-level solution.

e MibSHeuristic : This class is also specific to MibS and is generate heussligtions to
improve the lower bound and increase the algorithm’s speed.

An effort has been made to keep this framework as general sshpe, allowing for easy intro-
duction of enhancements generated from future researclparticular, it is quite easy for users
to add their own heuristics, preprocessing methods, artthgytlanes. In addition, the manner
through which one defines solver parameters is intuitive deglgned to make problem-specific
tuning straightforward. As stated above, MibS will be madailable to the community via the
COIN-OR repository. The first release of MibS includes thanich-and-cut algorithm of Sec-
tion 2.1.4 as well as the algorithmic enhancements described theredhe specialized methods
provided in Chapte# are also part of MibS, and demonstrate how one might cusethi solver

a particular problem structure. We also intend to includetést sets described below, in order to
make replication of our results and comparison with futuigess relatively easy.

2.3.2 Practical Assumptions

In Chapterl, we made two basic assumptions to guarantee the problem alhpased and has a
solution. These assumptions were made to ease the exppsitibmay be prohibitive in practice.
We discuss methods for relaxing them here.

The first of these assumptions is that the feasible re@ibis nonempty and compact. This guar-
antees that a solution toBLP) exists. However, checking such the checking the validftyhis
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assumption is not straightforward. In particular, no methéor determining ifF’ is closed are
readily available. Thus, we must consider the possibiligt 1 problem fails to satisfy this assump-
tion and escapes detection. A common method for overcorhisdytpe difficulty is to replacer’
with its closure. This is the method we employ in our impletadon. That is, we effectively,
restate [BLP) as:
(x,yﬁl(i:ﬁfn cotdy.

The second assumption made ensures that the lower-level DIMave some room to react for
eachzr € X. However, as discussed in Chapiethis may be restrictive in certain applications. In
fact, for applications in which the DMs are in direct oppiosit creating an infeasible lower-level
problem may be the primary goal of the upper-level DM. One Wweaglax this is to use the standard
convention

min{d?y |y € Sp(z)NY} =00 if S)NY =0.

This, in turn, results in;prp = —oo (if d' = —d?), as desired. We can to implement this conven-
tion in practice is by introducing an artificial variable tapture the infeasibility of the lower-level
problem. By assigning this variable a sufficiently large #jnobjective function value, we can
entice the upper-level to choogesuch that the resulting lower-level problem is feasiblée@si-
ble). This is similar to the “big-M” method used in finding fill bases for LPsEertsimas and
Tsitsiklis, 1997). This is not currently a built-in feature of MibS, since iaynnot be suitable for all
applications. However, it is quite easy to modify a bilevaidal to include this artificial variable
before reading it into the solver. If this is done, MibS wileld the appropriate solution. In the
current version, the solver implicitly assumes this asdionpgs satisfied since candidate solutions
are obtained from the LP relaxation.

2.4 Computational Results

2.4.1 lllustrative Instances

To our knowledge, the only other general IBLP algorithm jusgd in the literature has been that of
Moore and Bard1990 ®. We do not have the test setldbore and Bard1990 or an implementa-
tion of their algorithm available, so a comprehensive catispa to their algorithm is not feasible.
In order to providesomebasis for comparison, we did examine the branch-and-cetctwastructed
by our algorithm on the examples given in their original gagde results below reflect thanilla
version of MibS, absent of the algorithmic enhancementsridesd above.

The algorithm ofMloore and Bard1990 is capable of solving mixed integer problems, as well, bovigles a nice
comparison nonetheless.
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Figure 2.3: lllustrating the implementation on Examgple
Example 4.
min x + 2y
€Ly
subjectto y € argmin {y : —z + 2.5y < 3.75

x + 2.5y > 3.75 (2.8)
2.5z +y < 8.75

yE Ly}

The feasible region of the IBLR2(8) and our branch-and-cut tree are shown in Figli2 In this
simple case, our algorithm generated a total of seven naaesprocessed five, while the same
example in the paper dfloore and Bard1990 required twelve nodes. Of course, this comparison
is only a single instance, but examination of the two seambstdoes provide some evidence for
our intuition that certain aspects of Moore and Bard’s atgor, such as the requirement to branch
on integer variables, result in a less efficient search.
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Example 5. We also tested our algorithm on the the IBLP examined in Girdpgrom
Moore and Bard1990:

min  —z— 10y
€Ly

subject to y € argmin {y : 25z — 20y > —30
—x—2y > —10
22 4y > 15
22 + 10y > 15

YEZLy }.

The branch-and-cut tree resulting from their algorithm wasprovided, so we are unable to per-
form a comparison as above. However, for illustration pagsp the feasible region and the resulting
branch-and-cut tree is shown in Figur€l.

—24x + 22y < 39

- x+4y <13
e/ T x4+ 5y <14
1 2 3 4 5 6 7 8 6y <11

(a) The feasible region of Exampte (b) The resulting branch-and-cut tree.

Figure 2.4: lllustrating the implementation on Example

2.4.2 Problem Generation and Results

In this section, we describe the computational experimeatiormed and the results obtained using
our solver implementation. These results demonstratethetdifficulty of the problems discussed
in this dissertation, as well as the benefits of our algorithfiramework. To our knowledge, a stan-
dard test bed for IBLPs does not exist. Thus, in order to tesalgorithm it was necessary to derive
such a test bed. As previously mentioned, all instances fasexdlir tests will be included as part of
the first MibS release through COIN-OR. Below, we presentdiselts of our algorithm on a set of
randomly-generated IBLP problem instances. Then, in @naptwe examine the computational
benefit of applying the specialized interdiction methodstiree variants of\(IPINT).
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To create the IBLP instances, we first created ILP instangistwo objectives and then randomly
chose a set of lower-level columns. All coefficients weresemin the rangé-50, 50], and it was
assumed that all ILP rows were controlled by the lower-I&¥gl (as in the examples froriloore
and Bard(1990). Five tests sets were created, categorized by the nunflietab columnstotal
rows, andlower-level columnsThe test sets are summarized in Table

Problem Class Num Rows| Num Cols| Num Lower
1 20 20 5
2 20 20 10
3 20 20 15
4 30 20 10
5 40 20 10

Table 2.1: IBLP Instance Class Description.

The results obtained using tkianilla version of MibS (i.e., without any algorithmic enhancensgnt
as well as those obtained after employing the primal hecsistf Section2.2.1, are summarized in
Table2.2. In the table, we denote the number of instances solvedmwihr limit of 30000 CPU
seconds and the average optimality gap of those instanceghfoh optimality was not proven by
No. OptimalandAvg. Gap (%) respectively. Also shown are the average number of nodesarin
search tree and the number of bilevel feasibility cuts offthe (2.3) generated during the search,
denotedAvg. No. NodesandNo. Cuts respectively. Note that only cuts of the for.g) were
used in these experiments—no generic MILP cuts were usatkllyiin the column titledAvg.
CPU (s) we provide the average CPU time required for those instaroklved to optimality. All
computational tests were performed on an AMD Opteron Peore&l 28 with 32GB of memory.

No. Optimal Avg. Gap (%) Avg. No. Nodes Avg. No. Cuts Avg. CPU (s)

Class | Vanilla | Full | Vanilla Full Vanilla Full Vanilla Full Vanilla Full
1 9 9 25.10 | 25.04 | 116755.40| 104156.40| 50168.20| 43879.70| 128.31| 198.23
2 5 5 31.88 | 34.49 | 462590.60| 294798.30| 229046.50| 135170.30| 1596.71| 3787.24
3 2 2 46.61 | 49.45 | 479245.90| 231665.80| 285278.40| 132728.10| 166.73| 600.82
4 5 5 61.32 | 61.55 | 439927.80| 286957.90| 235215.60| 153211.00f 771.89 | 3101.58
5 6 6 24.34 | 25.28 | 347703.70| 190189.10| 139005.20| 79750.50| 108.47 | 414.09

Table 2.2: Comparison of results with and without heuristethods.

From this table, we observe that the ability of our solver ol fan optimal solution appears to be
dependent on the percentage of lower-level columns in darins. In each of the tables, we can
see that the solver was able to prove optimality within theetlimit for only 2 out of 10 instances

in Test Set 3, the test set for which this percentage is high®ea the other hand, in Test Set 1,
the percentage of lower-level columns is lowest, and botkiors of the solver were able to prove
optimality 9 out of 10 times. When one compares the resull@sf Sets 1, 2, and 3, this relationship
becomes even more evident. Each of these sets has 20 tosbrmalwcolumns, but the number of
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lower-level columns increases by five from Test Set 1 to Test2Sand again from Test Set 2 to

Test Set 3. From the results, we can see that the number déprsisolved to optimality decreases

as this number increases. Further evidence of this rekdtipris found in the results of Test Sets 2,
4, and 5, each of which has 10 out of 20 lower-level columns @ight expect to see the problem

difficulty increase with the number of total rows, but thessults appear to indicate otherwise, since
roughly the same number of problems were solved in each sétbets.

In addition, we observe that the addition of our heuristi¢hrods significantly reduces the average
number of tree nodes and cuts required to solve the IBLPs.h®wther hand, the full version of
MibS is not able to solve any more instances to optimalityr thee vanilla version and, on average,
requires more computing time. The additional computingetiglikely a direct result of the time
required to find the heuristic solutions. Assuming this is ¢hse, one might question whether the
reduction in nodes and cuts required results simply becthesadditional time required for the
heuristics prevents the solver from proceeding as quicht), thus, generating as many tree nodes
and feasibility cuts within the time allotted. However, iable2.3, we provide the relevant results
for those instances for which optimality was proven, and w&e see the observation still holds.
The fact that the full version of MibS is not able to providenmoptimal solutions or a significant
change in optimality gap is evidence that improved cuttilEme methods are required for solving
larger instances. In Chaptérwe derive specialized methods for interdiction problems, the
development of methods for general IBLPs and MIBLPs is aarg&s area of future work.

No. Optimal Avg. No. Nodes Avg. No. Cuts

Class | Vanilla | Full Vanilla Full Vanilla Full
1 9 9 143309.25| 127569.25| 3877.22| 3909.33
2 5 5 484782.60| 3200059.40| 62199.00| 62093.40
3 2 2 422551.00| 311383.00| 9290.50| 9299.00
4 5 5 515762.60| 336843.20| 21359.00| 21317.00
5 6 6 281901.17| 132110.50| 3543.67| 3527.83

Table 2.3: Comparison on instances solved to optimality.

The complete set of results for the vanilla and full versiohMibS are provided in Table®.4 and
2.5 respectively. From these tables, we can see that the tiquéree to solve the instances in our
test set is quite volatile. Many of the instances failed tacheoptimality within the allotted time,
while others were solved in less than a minute. It is likettinis wide range is a result of the way
in which we generated our instances—because the coefBct#rthe upper and lower objective
functions were chosen randomly, no control was exerted thnedegree to which they coincided.
This choice was deliberate, since we sought to test the qpeaiace of our solver on a generic IBLP.
However, determining how the relationship between the thjediive functions affects the difficulty
of an MIBLP is an interesting area of future work. We consiithés issue for certain special classes
in the following chapter, but do not address the general.case
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Instance Obj. Value | No. Nodes | Depth | Gap (%) | No. Cuts | CPU (s)
miblp-20-20-50-0110-5-1 -548 20621 30 — 3846 60.62
miblp-20-20-50-0110-5-2 -558 913215 45 25.10 466498 LIM
miblp-20-20-50-0110-5-3 -477 101 10 — 3 0.14
miblp-20-20-50-0110-5-4 -753 187 14 — 3 0.22
miblp-20-20-50-0110-5-5 -392 97 17 — 3 0.11
miblp-20-20-50-0110-5-6 -1061 232185 38 — 31235 | 1091.91
miblp-20-20-50-0110-5-7 -547 213 17 — 35 0.35
miblp-20-20-50-0110-5-8 -936 271 18 — 6 0.32
miblp-20-20-50-0110-5-9 -877 205 16 — 5 0.24
miblp-20-20-50-0110-5-10 -340 459 24 — 48 0.85
miblp-20-20-50-0110-10-1 -353 741172 46 47.01 475682 LIM
miblp-20-20-50-0110-10-2 -659 5019 32 — 937 15.82
miblp-20-20-50-0110-10-3 -618 45449 39 — 6156 120.31
miblp-20-20-50-0110-10-4 -597 775159 44 25.66 291809 LIM
miblp-20-20-50-0110-10-5 -1003 31 8 — 4 0.06
miblp-20-20-50-0110-10-6 -672 586626 48 26.22 407028 LIM
miblp-20-20-50-0110-10-7 -618 827234 50 36.85 457158 LIM
miblp-20-20-50-0110-10-8 -667 75329 38 — 17236 997.46
miblp-20-20-50-0110-10-9 -256 703953 39 — 286662 | 6849.91
miblp-20-20-50-0110-10-10 -429 865934 46 23.64 347793 LIM
miblp-20-20-50-0110-15-1 -289 631835 45 60.64 422190 LIM
miblp-20-20-50-0110-15-2 -645 686790 59 23.22 421883 LIM
miblp-20-20-50-0110-15-3 -593 482219 44 20.21 159567 LIM
miblp-20-20-50-0110-15-4 -396 378201 49 36.42 287079 LIM
miblp-20-20-50-0110-15-5 -75 233108 54 90.11 167495 LIM
miblp-20-20-50-0110-15-6 -596 677582 54 40.38 468935 LIM
miblp-20-20-50-0110-15-7 -471 855197 41 27.99 360242 LIM
miblp-20-20-50-0110-15-8 -242 798795 62 73.87 546812 LIM
miblp-20-20-50-0110-15-9 -584 46307 33 — 18137 324.33
miblp-20-20-50-0110-15-10Q -251 2425 26 — 444 9.12
miblp-30-20-50-0110-10-1 -471 9533 30 — 984 22.05
miblp-30-20-50-0110-10-2 -478 84885 36 — 19902 770.26
miblp-30-20-50-0110-10-3 -678 801376 48 23.28 485021 LIM
miblp-30-20-50-0110-10-4 207 792137 44 178.03 | 460991 LIM
miblp-30-20-50-0110-10-5 -135 3 1 — 0 0.01
miblp-30-20-50-0110-10-6 -171 973272 42 60.41 695335 LIM
miblp-30-20-50-0110-10-7 -375 355485 38 — 85303 3055.75
miblp-30-20-50-0110-10-8 -461 578398 43 16.33 189672 LIM
miblp-30-20-50-0110-10-9 -672 801446 48 28.56 414342 LIM
miblp-30-20-50-0110-10-10Q -168 2743 27 — 606 11.38
miblp-40-20-50-0110-10-1 -198 265 19 — 47 0.73
miblp-40-20-50-0110-10-2 -120 738229 49 75.44 436226 LIM
miblp-40-20-50-0110-10-3 -675 56779 37 — 10051 409.27
miblp-40-20-50-0110-10-4 -270 13153 29 — 2952 52.75
miblp-40-20-50-0110-10-5 -537 697 19 — 29 1.52
miblp-40-20-50-0110-10-6 -425 4997 29 — 1207 25.00
miblp-40-20-50-0110-10-7 -975 811699 47 14.55 394306 LIM
miblp-40-20-50-0110-10-8 -849 945827 42 4.15 339321 LIM
miblp-40-20-50-0110-10-9 -800 879806 40 3.22 198937 LIM
miblp-40-20-50-0110-10-10 -398 25585 29 — 6976 161.56

Table 2.4: Results from IBLPs without heuristic methods.
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Instance Obj. Value | No. Nodes | Depth | Gap (%) | No. Cuts | CPU (s)
miblp-20-20-50-0110-5-1 -548 20573 31 — 3845 142.24
miblp-20-20-50-0110-5-2 -561 788371 45 25.04 403902 LIM
miblp-20-20-50-0110-5-3 -477 101 10 — 3 0.19
miblp-20-20-50-0110-5-4 -753 187 14 — 3 0.27
miblp-20-20-50-0110-5-5 -392 97 17 — 3 0.18
miblp-20-20-50-0110-5-6 -1061 231109 38 — 30949 1636.73
miblp-20-20-50-0110-5-7 -547 213 17 — 35 1.35
miblp-20-20-50-0110-5-8 -936 271 18 — 6 0.37
miblp-20-20-50-0110-5-9 -877 205 16 — 5 0.32
miblp-20-20-50-0110-5-10 -340 437 24 — 46 2.42
miblp-20-20-50-0110-10-1 -321 330155 46 53.16 208459 LIM
miblp-20-20-50-0110-10-2 -659 5001 32 — 937 44.87
miblp-20-20-50-0110-10-3 -618 45445 39 — 6157 309.46
miblp-20-20-50-0110-10-4 -597 506129 44 26.45 188933 LIM
miblp-20-20-50-0110-10-5 -1003 35 10 — 6 0.85
miblp-20-20-50-0110-10-6 -657 151122 45 28.97 103710 LIM
miblp-20-20-50-0110-10-7 -657 692239 48 33.16 353899 LIM
miblp-20-20-50-0110-10-8 -667 66773 38 — 15872 3637.47
miblp-20-20-50-0110-10-9 -256 710493 39 — 287495 | 14943.56
miblp-20-20-50-0110-10-10 -405 440591 45 30.72 186235 LIM
miblp-20-20-50-0110-15-1 -234 201617 43 69.21 123930 LIM
miblp-20-20-50-0110-15-2 -645 423894 57 23.63 256045 LIM
miblp-20-20-50-0110-15-3 -593 99818 43 23.71 39409 LIM
miblp-20-20-50-0110-15-4 -323 85857 47 49.83 57090 LIM
miblp-20-20-50-0110-15-5 -75 32545 46 90.46 23278 LIM
miblp-20-20-50-0110-15-6 -596 287340 50 41.73 197862 LIM
miblp-20-20-50-0110-15-7 -471 560396 40 29.34 232520 LIM
miblp-20-20-50-0110-15-8 -301 576523 61 67.69 378549 LIM
miblp-20-20-50-0110-15-9 -584 46243 33 — 18154 1164.63
miblp-20-20-50-0110-15-10Q -251 2425 26 — 444 37.01
miblp-30-20-50-0110-10-1 -471 8283 31 — 776 38. 68
miblp-30-20-50-0110-10-2 -478 85005 36 — 19902 2950.18
miblp-30-20-50-0110-10-3 -678 609115 46 23.59 331295 LIM
miblp-30-20-50-0110-10-4 207 365112 43 173.61 | 213973 LIM
miblp-30-20-50-0110-10-5 -135 3 1 — 0 0.00
miblp-30-20-50-0110-10-6 -171 766072 42 61.24 554528 LIM
miblp-30-20-50-0110-10-7 -375 349685 38 — 85301 9422.16
miblp-30-20-50-0110-10-8 -461 141237 42 20.21 48691 LIM
miblp-30-20-50-0110-10-9 -672 542324 47 29.10 277038 LIM
miblp-30-20-50-0110-10-10Q -168 2743 27 — 606 33.96
miblp-40-20-50-0110-10-1 -198 265 19 — 47 2.45
miblp-40-20-50-0110-10-2 -117 408981 47 76.52 241787 LIM
miblp-40-20-50-0110-10-3 -675 56311 37 — 9956 1649.93
miblp-40-20-50-0110-10-4 -270 12883 29 — 2952 132.49
miblp-40-20-50-0110-10-5 -537 695 19 — 29 3.96
miblp-40-20-50-0110-10-6 -425 4997 29 — 1207 104.67
miblp-40-20-50-0110-10-7 -1028 508318 45 10.81 223631 LIM
miblp-40-20-50-0110-10-8 -830 572806 42 7.44 229471 LIM
miblp-40-20-50-0110-10-9 -797 311050 41 6.33 81449 LIM
miblp-40-20-50-0110-10-10 -398 25585 29 — 6976 591.02

Table 2.5: Results from IBLPs with heuristic methods.

45



Chapter 3

Mixed Integer Bilevel Linear
Programming

In the previous chapter, we described an algorithmic fraamkvior IBLP. In theory, a branch-and-
cut framework could be used to solve the more general prololieMIBLP, if one were able to
derive suitable cutting plane methods. However, the regiMen in Chapte® rely heavily on the
assumption that all decision variables are integral and, thre not applicable to MIBLP. Deriving
cutting plane methods for the general case appears to belalpascstraightforward endeavour. It
is clear, however, that the general form allows us to ca@umeich wider range of applications and,
thus, understanding this problem is an area of importamarel. Towards this end, we consider
the general MIBLP problem in this chapter. We first review\naesults on complexity, provide
some new results on the general problem and interestinga$meses, and place MIBLP in the
overall complexity landscape. Then, we utilize dualitydhyeand value function methods to derive
several single-level reformulations that can be solveddiiact methods or provide insight into
the problem structure. Using this insight, we derive an w@tigm for the general MIBLP based
on iterative approximations of the lower-level value fuoet Finally, we suggest some heuristic
methods that are useful in finding reasonably good solutiordIBLP with little computational
effort.

Recall, from Chaptet, the canonical instance:

ZMIBLP = min clw + dly, (MlBLP)
(z,y)eF!

where the feasible regiafi’ is contained inX x Y, for X = ZP1 x R™~Pt andY = ZP? x R"27P2,
In what follows, we often further define our problem by spgaif p; andp, (i.e., settingp; = n
andp, = no yields a BLP) and introducing additional variable bounds.(iwhen combined with
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3.1. PROBLEM COMPLEXITY

integrality constraints, upper bounds of one yield binaggtrictions). Rather than providing a
complete taxonomy of all cases, however, we choose to noteeylar special cases that have
convenient properties for reformulation or algorithm desi The reader is referred to the work of
Vicente et al (1999, Dempe(2001), andH. Gumis and Flouda@009 for a comparison among

the subclasses defined by different formsfbandY .

3.1 Problem Complexity

As noted in Chaptefl, we gain insight into the complexity of MIBLP by consideriitg well-
known special cases. For example, removing integralitirioti®ns on the variables (i.e., setting
X =R™ andY = R"2) yields a BLP, a knowiNP—hard problem. Similarly, removing the lower-
level variables (i.e., setting, = 0) yields an MILP, another knowhP—hard problem. Thus,
its clear that MIBLP is alst?\P—hard. However, the computational issues discussed in €hapt
taken together with the challenges found in algorithm desigggest that MIBLP is characterized
by complexity challenges not shared by its well-known splecases. For this reason, we explore
the complexity of the general problem in some depth herealsatfocus considerable attention on
those lesser-known special cases that have computaticatathctive properties. Before beginning
this discussion, however, we define the decision problensswdral relevant problems and provide
some basic results on BLP. For the remainder of this disonssve assume all data necessary to
specify instances of our problems is rational. This imptlest we can, in theory, scale all data
appropriately and form equivalent problems using onlygetedata, simplifying the exposition.

The decision versions of several problems relevant to aoudision are defined below. We adopt
the notationll; « II,, from Garey and Johnsof1979, to denote that there exists a polynomial
transformation froml; to II,. Additionally, we letYr; denote the set of instances for which the
answer to the decision problehis yes.

BILEVEL LINEAR PROGRAMMING (DBLP)

INSTANCE: Rational vectorg' € Q™, d',d?> € Q"2, b' € Q™, b> € Q™2, rational matrices
Al e Qruxm A2 € Qr2Xm G2 ¢ QM2%"2, and integell, € Z.

(; y>0 —A l‘,yeRn },a“dC Q:—i—d y<L:

MIXED INTEGER BILEVEL LINEAR PROGRAMMING (DMIBLP)

INSTANCE: Rational vectorg' € Q™, d',d?> € Q"2, bt € Q™, b*> € Q™2, rational matrices
Al e Qmixm | A% ¢ Qm2Xm, G2 ¢ QM2X™2, and integeld. € Z.
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3.1. PROBLEM COMPLEXITY

QUESTION: Do there exist vectorse ZE! x R "P* andy € (Z7? x R}>"7?) such thatd'z > b',
y € argmin {d2y | G?y > b* — A%z, y € (Z8? x R’f_m)}, andc'z + d'y < L?

MIXED INTEGER LINEAR PROGRAMMING (DMILP)
INSTANCE: Rational vectors € Q", b € Q™, rational matrixA € Q"™*", and integeiB € Z.

QUESTION: Does there exist a vector (Z% x R}"") such thatdz > b andcz < B?

MIXED INTEGER INTERDICTION (DMIPINT)

INSTANCE: Rational vectorg € Q", v € Q", b' € Q™, b*> € Q™2, rational matricesd! ¢
Qmixn G2% ¢ Qm2*", and integel. € Z.

QUESTION: Do there exist vectors € B" andy € (Zf x R’} ?) such thatd'z < b' and
Yy € argmin {dy | G2y > b, —y > ~U(e—x),y € (ZE x Ri_p)}, anddy > L?

BINARY KNAPSACK PROBLEM (DKNAP)

INSTANCE: A finite set of items/ and, for each item, a size defined by the vectar Zf' and a
value defined by € Z‘jr”, and positive integer® € Z andB € Z.

QUESTION: Does there exist a subset®dfC .J such thathEJ, rj <R andzjeJ, vj > B?

A crucial element of our analysis is the fact that LPs can bBeesoin polynomial time via the
ellipsoid methodThis is formalized in the following result.

Theorem 3.1 Khachian (1979) (LP) with all integer data can be solved in polynomial time using
the ellipsoid method.

The following are well-known properties of BLP. However tmmpleteness, we restate them here.

Theorem 3.2 (Jeroslow (1985) BLP is in the complexity clad$P—hard.

Theorem 3.3 DBLP is in the complexity clad$P.

Proof. To show DBLPe NP, we must show that it can be solved by a nondeterministicrmotyial-
time algorithm. Letr € R"' andy € R'}* be given. Then, given an instance of DBLP, we can use
the following algorithm to check bilevel feasibility. Westrcheck the requirement$z’ +d'y’ < L
andA'z’ > b, which can be done in polynomial time. Assuming these aiisfsat, we solve the
lower-level problem (in polynomial-time via ellipsoid aldgthm) with 2 = 2’ to yield lower-level
solutiony*. If d?y’ = d?y*, thenI € YpgLp. O
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3.1. PROBLEM COMPLEXITY

Using the result above, and those giverAindet et al.(1997), allows us to establish the following
result.

Theorem 3.4 The decision version of BLP is in the complexity cldgscomplete.

This result follows from the fact that DBLP is in the clas®, by Theorem3.3 and the reformu-
lation from mixed integer binary programming (MIB) given A&udet et al.(1997, which yields

a polynomial reduction from the decision version of MIB to DBby replacing the optimization
problems with their decision counterpart.

It is also well-known, and clear from our discussion abokaf MIBLP isNP—hard, but we again
include a separate proof for completeness.

Theorem 3.5 MIBLP is in the complexity clagdP-hard.

Proof. Clearly, if we can show that DMIBLP i&lP-hard, we will also have shown MIBLP is
NP-hard. In order to show DMIBLP i8lP-hard, we show that there exists a polynomial reduction
from the decision version of MILP (DMILP), a knowkP-complete problem, to DMIBLP. Thus,
we must show that there exists a functipncomputable in polynomial time, that maps an instance
of DMILP to DMIBLP and such that an instande € Ypmp if and only if f(I) € YpwmisLp-

We can definef as follows. Suppose an instance of DMILP is definedcby Q™, A € Q"™*"
andb € Q™ and integerB. Then, we can define an instance of DMIBLP by setting= B,

Al = A, bt = b, ¢! = ¢, and all remaining problem parameter matrices and vectozeto.
This yields an instance of DMIBLP with,; = n andn, = 0 and a vacuous lower-level problem.
Clearly, this transformation can be completed in polyndriitae. Thus, it remains to show that
there exists a vector € (Z” x R"7P) such thatdz < b andcz < B if and only if there exist
vectorsz € (ZE' x R} 7Py andy € (ZB? x R?72) such thatc'z + d'y < L. Suppose that

z € (Z8 x R"?) is a vector such thatlz > b andcz < B. Then, settingr = 2 andy = 0
yields Alz = A2 > b = b. Since the lower-level problem optimality condition isviailly satisfied

for all (x,y), the vector(z,0) is feasible for DMIBLP and:'z + d'y = ¢ = ¢2 < B = L.
Conversely, supposg?, ) is a solution to DMIBLP. This impliesAz = A'z > b' = b and

ct = c'a +d'y < L = B. Thus, DMILPx DMIBLP. O

So far, we have established that both BLP and MIBLP iFe-hard. This is neither surprising,
nor terribly elucidating. The following result provides radnsight into the difference between the
continuous and mixed integer problems.

Theorem 3.6 UnlessP = NP, the decision version of MIBLP (DMIBLP) is not in the comiilex
classNP.
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Proof. SupposeP # NP and, by way of contradiction, that DMIBLP is iNP. This implies
that there exists a nondeterministic polynomial time atfor that solves DMIBLP. This, in turn,
implies that there exists a polynomial time algorithm td te condition

y € argmin {dzy | G?y > b* — A%z, y € (ZP x RT_‘”Q)} , (3.1)

for fixedz € (Z5! x R?7"?). LetOPT(z) denote the optimal lower-level objective value when the
upper-level decision is (i.e.,OPT(x) = dy for y satisfying condition§.1)). Then, this condition
can be stated as the following decision problem, which wetteREASCHECK:

Does there exist a vectgre (Z5? x R’?7?) such thatG?y > b? — A%z andd?y < OPT(z)?

We proceed by demonstrating a polynomial reduction from SENECK to the following, known
NP—complete decision problem, which is the complement of DMILP

Does there exist a vectare (Z'7? x R'*""?) such thatGz > b anddz > L?

Suppose an instance of this problem is specified by Q"2, G € Q™2*"2 andb € Q™2 and

L = —OPT(x) — ¢, for some smale > 0. Then, we can specify FEASCHECK by setting
d> = —d, G?> = G, b*> — A%z = b, which can clearly be done in polynomial time. Thus, it remsai
to show that there exists a vectere (Z"* x R'}*"") such thatGz > b andOPT(z) < dz

if and only there existy € (Z5* x R}>""?) such thatG?y > b? — A%z andd*y < OPT(z).
Let 2 € (Z'? x R}>""*) such thatGz > b anddz > L be given. Then, setting = & yields
G*y =Gz > b=10b?— A%r andd®’y = —d2 < —L = OPT(x) + ¢ < OPT(x), which clearly
implies the desired condition. Conversely, suppgsgatisfies the conditions of FEASCHECK.
Then, setting: = 7 yieldsGz = G2 > b*> — A%z = banddz = —d*) > ~OPT(x) = L+¢ > L,

as desired. Thus, FEASCHECK is at least as hard as this nmkegkr decision problem and, unless
P = NP, we have a contradiction. O

The relationship between the complexity of MIBLP and BLPllisstrated in Figure3.1 The pre-
vious result provides some explanation for the addition#iicdity of MIBLP. In order to fully
understand the differences in complexity, however, we raogiloy the notion opolynomial-time
hierarchy (P—hierarchy), defined in terms ofreondeterministic oracle Turing machinetescribed
by Meyer and Stockmeygl 972 and Stockmeyel(1977. A nondeterministic oracle Turing ma-
chine is defined as a nondeterministic Turing machine autgdesith an oracle tape. As described
in Garey and Johnsdi1979, a nondeterministic oracle Turing machine with an oractgfoblem
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NP—hard

DMIBLP

DBLP

NP—complete

Figure 3.1: The relationship between MIBLP and BLP compiexissuming® £ NP.

[] can be thought of as a nondeterministic algorithm contgirsubroutine fof | that can be

run in constant time. Following the notation $tockmeye((1977), let M (B) denote the language
accepted by the nondeterministic oracle Turing machihevith oracle B. Then, the polynomial

hierarchy can be defined as follows.

Definition 3.1 The polynomial-time hierarchyP(-hierarchy) is{ 3"V, [T,, A? : k > 0}, where
and fork > 0,
i ZZ-H = NP(EZ)-

® H£+1 = CONP(ZZ)1

o A}, =P(0).

Also, definePH = ;2 , >%.

The P—hierarchy is illustrated in Figur&.2. In the figure, the darker classes are contained in
the lighter classes, and incomparable classes are givesathe color. Note that none of these
inclusions is known to be strict. We have the following régat the binary integer bilevel linear
program(BIBLP), which results from1IBLP) if we setX = B andY = B"2.
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Figure 3.2: The polynomial-hierarchy, assumihgt NP. (Rothe 2009

Theorem 3.7 DBIBLP is in the complexity class 5.

Theorem3.7follows from the more general result d¢roslom(1985, which states that the problem
of checking optimality for a&—level binary LP is in[];. Given an upper-level objective value
and a candidate solutior this problem can be posed as the questiorOT" > z”, where OPT
denotes the optimal solution of the program, for which thewaer is yes whex is optimal. We
can ask the complementary questionO&7T < z”, for which the answer is no whenis optimal.
When, k = 2, under the assumption of rational data, this is equivalemBIBLP. SinceBIBLP

is a special case of MIBLP, we are able to state the following.

Theorem 3.8 DMIBLP is Y %.

Combining this with the results above on BLP, provides sonsight into the complexity of the
bilevel programs with integer variables.

We can show that MIPINT i&NNP—hard using the same method as in the proof of TheadBein
However, in this case, we use a transformation to the decistesion of thebinary knapsack prob-
leminstead.

Theorem 3.9 MIPINT is in the complexity clad$P-hard.

Proof. Asin the previous proof, it suffices to show that there exagtslynomial reduction from the
decision version of the knapsack problem (DKNAP) to DMIPII$Tippose an instance of DKNAP
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is defined as above. Then, we can define an instance of DMIPW3etting A' = [r | 0]7,
b'=[R|0],d=—v,U = Ixn, G*> = 0, andb?® = 0. Thus, we have an instance of MIPINT
with n = [J[, m1 = 1, andmy = 0. Also defineL = B — 3. ; v;. Suppose there exists a subset
J'C Jsuchthaty ;. r; < Rand} ;. ; v; > B. Setz; = 1forall j € J" andz; = 0 for all

j € (J\J'). Clearly, this is a feasible upper-level solution. Thee, iasulting lower-level problem

IS:
min{—py | yn < 1yy =0,y € 2/ x RVI7P}.

Sincev € Z!”I, the optimal lower-level solution is to sgt = 1forall j € (J\ J), yielding
dy = =3 ;e Vi = B —2_;e; v = L. Conversely, suppose there exists a vecter B" such
thatz; = 1forall j € K’ andz; = Oforall j € (K \ K'), forsomeK’ C K = {1,...,n}, and
rx < R. Suppose also that there exists a vector

Y € argmin{—vy | yr\r) < Lyy =0,y € ALY R\(K\K/)\}

anddy > L. If we setJ = K andJ’ = K’, clearly the conditionzjej, r; < R is satisfied.

Furtherd iy vj = 2 ics0 — Zjenun Vi = 2jes Vi +dy = 3 ;e v + L = B. Thus,

DKNAP o DMIPINT 0

Of course, the fact that the Maximum Shortest Path Proble®RM), a knowiNP—complete prob-
lem (Wood, 1993, is a special case of MIPINT implies that MIPINTN—hard, but the indepen-
dent proof may provide additional insight for the readeorfithe proof of Theorer3.6 we gained
the intuition that the nature of the lower-level problem ikey component of a bilevel program’s
complexity. Namely, when checking feasibility requiresusion of a MILP, the bilevel program is
not in NP, unlessP = NP. This intuition holds for MIPINT, as well; interdiction of BILP (or
ILP) is not inNP, but interdiction of an LP is. Below, we see the role the Icle®el problem plays
in our ability to reformulate the problem and solve it viaedit methods.

3.2 Reformulations and Exact Solution Methods

It is clear that each of the problems discussed above pog@ficant algorithm design challenges.
Thus, obtaining exact solutions for large instances of sroblems will likely require further re-
search or significant solver customization. In the follogvithapter, we demonstrate methods for
solver customization via MIPINT and our solver MibS. Latettlis chapter, we consider an alter-
native approach to finding exact solutions, namely arridhgood solutions quickly via heuristic
methods.
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In this section, we describe single-level reformulationsgible through the application of optimal-
ity conditions. Several of the reformulations given can dle@ed using existing methods, for which
solvers are readily available. However, for the genera¢ ctige reformulation we derive via op-
timality conditions yields a problem for which known metisoare not applicable. In the second
half of this section, we describe how approximations of thkie function can lead to practical
methods for this case. For each methodology, we examinéaspases of the general problem for
which a further simplification is possible. Before considgrdual reformulations, however, we first
describe one fairly trivial special case for which well-kimomethods can immediately be applied.

3.2.1 Separable Problems

Intuitively, it is clear that the presence of the lower-levariables in the upper-level objective func-
tion is the essential element that makes the analysis anghdesalgorithms for MIBLP difficult.
This is formalized in the following discussion, where we e, if these variables are not present,
we have a much closer relationship to traditional MILP. Weerthat under the assumptions made
in Chapterl, we need only consider upper-level feasibility, but thédfeing results hold without
this assumption.

Let d' = 0 in (MIBLP), a special case hereafter called MIBP = 0), and denote the optimal
value of MIBLP) by zx;r51.p. We have the following result.

Theorem 3.10 Let

ZMILp = Mmin clx. (3.2)
(z,y)eQ!

If dl =0, then we have]\/[[BLp = ZMILP-

Proof. Let (z*,y*) be an optimal solution to3(2) with value ctz*. (2*,y*) optimal implies
(z*,y*) € QL. Thus, there exists some € (Py N X), namelyz*, and somey € MI(z*),
namelyy*. So,F! # (). Since,c'z is the same for any choice gf we just need to show that*

is optimal for the upper-level DM inMIBLP). Suppose it's not. That means there exists séme
such thatt € (Py N X) with ¢!'& < clz*. But, this contradicts the optimality of* for (3.2). On
the other hand, consider some solutjef, y') that is optimal for IBLP). (z/,y’) optimal implies
(«',y") € FI, which implies(z’,y') € Q. Thus,(z2',y') is feasible for 8.2). Since, again, the
objective valuec!z is the same for any, the existence of such that:'z < c'2’ contradicts the
optimality of 2. O

In fact, in this special case, we can solve the MIBLP by singallving two MILPs. For this reason,
we refer to problems of this type agparable problemsLet (#,7) be a solution to .2), and
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consider the lower-level problem dfi(BLP):
min{d®y | G%y > b — A%¢,y € ZF? x R}>7P2}. (3.3)

Let y* be an optimal solution to3(3). Clearly, (z,y*) is feasible for IBLP).* And, since the
upper-level objective does not dependgrthis solution must also be optimal favi{BLP), since
(3.2) is a valid upper bound orMIBLP).

This sequential solution method for this class of problesrsmilar to the lexicographic method for
solving multiobjective problems (see, e.\g/altz(1967); Stadler(1988; Rentmeesters et 4[L996);
Sun et al(1999; Korhonen and Siitar(2007). In the lexicographic method, objective functions
are ranked by importance, and optimization is performedmiag to this ordering. Formally, for
the biobjective problem

VmianS[fl(w)7f2(x)]7 (34)

using the lexicographic method means first solving the j@robl

to obtain the optimal valug;. Then, a new feasible region is defined as:

St={z eS| filz) = fi}

and the second problem

iy fo(x), (3.6)

is solved. This is essentially the method described abavthi® special class of bilevel program-
ming. However, one important difference exists. In lexiegnic optimization, the underlying
feasible regiornS is the same for each objective function, regardless of réfdwever, in a bilevel
program, the lower-level feasible region does not inclueupper-level constraints.

3.2.2 MILP Duality and the Value Function

Duality theory can be thought of as the study of methods foegating lower-bounding approxima-
tions for value function of mathematical programs. Not sisipgly, evaluating the value function
z at even a single point is &P —hard problem in general. Given the difficulty of construgtihe
value function, we often focus our attention on developirgthods to find the best approximation
for z. In what follows, we use results from duality theory extgabi. LP duality is a well-studied

10f course, this relies on the assumption that no lower-lesghbles appear in the upper-level constraints.
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field and has proven invaluable in the development of effeaigorithms and sensitivity analysis
methods for LP. In theory, the majority of the results fromdiRality generalize to the MILP case,
but obtaining practical implementations of such methodgslite difficult. Historically, the impact of
duality theory has been primarily limited to problems witintinuous variables. Recently, however,
new advances have been made that demonstrate that sinaitzicpl benefits can be obtained from
dual information in discrete problems. The interested eedsl referred tdGuzelsoy and Ralphs
(2007 and Guzelsoy(2009 for a full review of duality theory and the more recent adesthat
lead to tractable MILP duality results.

In the bilevel programming literature, there is evidencexdimilar roadblock encountered when
discrete variables appear in the lower-level problems. éssdbed above, several solution methods
for BLP rely on replacing the requiremeptc argmin{d’y | y € Sp(x)} with the appropriate
optimality conditions. Typically, these optimality cotidns are derived from LP duality theory
and, thus, are not readily applied to MIBLP. However, in thigsertation, we utilize the relationship
between LP and MILP duality to bridge the gap between BLP at®lA. Following the work in the
MILP literature, we demonstrate that many of the same methbad be applied when the lower-level
variables are discrete, by applying the appropriate thieategeneralizations. Below, we describe
the primary relevant results connecting LP and MILP dudligory to provide a foundation for the
analogous connections we draw in subsequent chapters.

LP Duality. Recall the linear programming problem of determining:

Zrp = min czx, (LP)
zeSLp

where
Sep={zeR"| Ax > b,z > 0}.

Changing any member of the triplel, b, ¢) yields a perturbation of the LP. In many applications,
it is natural to consider changes to the right-hand-sideR¥ctorb, becausé can be thought of
as the resources available to the system being modeled. ilevallprogram, the upper-level DM
can indirectly alter the resources available to the loweel DM through the vectoA?z. That is,

a change in the upper-level decision vector results in aigsation of the lower-level RHS. As we
saw in Sectiorl.6, understanding the effect this has on the solution to thevéllprogram can lead
to a method for solving bilevel programs.

Consider the parameterized version loP):

zpp(v) = xe{snLi;l(v) ez, (LP(v))
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where
Srp(v) = {z e R} | Az > v},

for all v € R™. The LP value function;p : R™ — R U {+oc0} returns the optimal value of.P)
for eachv € R™. By convention, we sayy;;pp = +ooif d & Qprpp = {v € R™ | Sip(v) # 0}
andzy;rp = —oo if the objective value is unbounded.

By definition, we call a functiorf’, such that
F(v) < zpp(v), Vv € R™,

aweak dualfunction. If (LP(v)) has a finite optimal solution and for fixéde R, F'(b) = z1p(b),
we sayF’ is astrong dualfunction. This means that, for the RHWSE' yields an exact approximation
of z;,p, and can be used as a substitute for the value function. iBle#f associatedual problemis:

max{F(b) | F(v) < zpp(v),v € R, F:R™ — R}, (3.7)

which returns the “best” dual function with respect to theéo bound ab.

It is well-known Bertsimas and Tsitsikljsl997, see, e.g.,) that restricting to the class of linear
functions allows us to rewrite3(7) as a second LP:

max{ub | uA < c,u € R'}. (3.8)

Further, if the primal problem is bounded, the optimal dolubf (3.8) yields a strong dual function.
The reader is referred teuzelsoy(2009 for a full review on the implications of this result. Utilig
this relationship allows us to write the LP value function as

zpp(v) = max{uv | ud < c,u € R}, (3.9)

The functionz p is piecewise-linear and convex oy p = {v € R™ | Spp(v) # 0}, where
Srp(v) = {y € R}? | Az > v}. For a fixed right-hand-sidg, an optimal solution.* to (3.8) is a
subgradientf z; p atb. In other words,

ZLp(b) + u*(v — b) < ZLP(Q}), Yv € Qrp.

Further, for a sufficiently small neighborhood @fu* remains optimal and;p(v) = uw*v. This
relationship is illustrated in Figurg.3. One important by-product of this relationship is our apili
to approximate the value of a linear program using a set dfshiations. Suppose the dual feasible
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A

ZLP

b 2pp(b) + u* (v — b)

Figure 3.3: A slice of the value functiofy, p and the subgradient &t

set{u € R™ | uA < ¢} is a polytope and IeR be its set of extreme points. Then, we can write
zpp(v) = max{pv}, VveR™, (3.10)
PER

We refer to 8.10 as theextreme point fornof the LP value function. Maximizing over a subset of
‘R yields an approximation for the value function. This apjmtation is illustrated in Figur&.4,
where we see a slice of the LP value function and the portibiseoapproximation derived from
different dual solutions.

One application of this technique is the well-knolenders decomposition algorithmin this
context, Benders algorithm can be seen as the iterativer@téore of gradientp € R. We apply a
similar idea to MIBLP later in this chapter. The consequerafdinear programming duality results
have been used extensively for the development of efficigorithms. Unfortunately, as we will
see next, mixed integer programming does not enjoy as mamwengnt qualities.

MILP Duality.  The parameterized version dfl(LP) is defined as:

zyrpp(v) = min ez, (MILP (v))
z€SmrLp(v)

where,

Surp(v) ={z € ZE x RY™? | Az > v}

forall v € R™. Asin the LP case, the MILP value functief;;.p : R™ — R U {£o00} returns the
optimal value of the program as a function of the RHS vectarbéfore, we lety;;.p = +ocif d &
Qurrp = {v € R™ | S;p(v) # 0} andzyp = —oco if the objective value is unbounded. The
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A

ZLpP

Figure 3.4: An approximation of value functiag p.

function z,; ;. p is known to be piecewise polyhedral, buinconvex Further,Blair and Jeroslow
(1977 andBlair (1995 show thatz;, 7 p is defined by the value function of a related pure integer
program and a linear correction term obtained from the aoeffts of the continuous variables.
Their construction utilizes a special class of functioremely Gomory functionsa subset of the
class ofChvatal functions

Definition 3.2 Chvatal functions are the smallest set of functi@s such that

() If h e £™, whereL™ is the set of linear functiong : R”™ — R, thenh € C™.
(i) If hi,he € C"™ anda, B € Q4, thenah; + Bhe € C™.

(i) If h e C™, then[h] € C™.
Gomory functions are the smallest set of functighisC C™ that satisfy(i)-(iii) , and
(iv) If hy, ho € G™, thenmax{hl, hg} egm.

Let £ consist of the index sets of dual feasible bases of
n n
min Z ¢ | Z a;z; <v,x; >0,Vi€p+1,n]y, (3.11)

i=p+1 i=p+1

the linear program obtained by dropping the integral véesbrom MILP), for a fixedv € Qa7 p.
Since A is rational, we can choosk/ € Z, such that for any € &, MA'a’ € Z™ for all
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j = 1,...,p, wherea/ is the j column of A. For E € &, letup be the corresponding basic
feasible solution to the dual of

n

. 1 1 © .
min 4 - izzp;rl civy | N Zgy;rl aix; <v,w; >0,Vi€p+1,n]p. (3.12)

ForvandF, let |v| g = Ag| Az v|. Then, we have the following result.

Theorem 3.11 Blair (1995) For the MILP(MILP), there is ah € G"* such that

zurrp(d) = min h(lvlE) +up(v— [v]E) (3.13)

foranyv € Qurzp, WhereG™ is the set of Gomory functions.

Equation 8.13 is the so-calledleroslow Formula This result utilizes the value function of a pure
integer program (i.ep = n), which can be described by a particular Gomory functiBtaif and
Jeroslow 1982, but is still difficult to construct in general.

Using the notion of duality as a bounding method, we can whigeMILP dual problem:
max{F(b) | F(v) < zprrp(v),v € R™ F:R™ — R}. (3.14)
The value function of the LP relaxation dfi(LP) is given by
Frp(v) = max{uv | uA < c,v € R} (3.15)

If we define
F(U) _ FLP(’U) forve Qurrp ’
0 otherwise
whereQppp = {v € R™ | S(v) # 0}, F : R™ — R, and the LP relaxation is bounde#, is
feasible for 8.14) (i.e., a weak dual). Such a function provides the best piseelinear, convex
bounding function for ;7 p and is strong fosomeRHS, but is not necessarily strong for a given

RHS (see Figurg.5).

The dual problem3.14) as stated above is too general to be useful. Motivated bguhadditivity
of the MILP value functionJohnsor(1973 1974 1979, suggested limiting the set of dual functions
to one which is more structured. LE¥* be the set of function’ : R™ — R that are subadditivé,

2A function F is subadditiveover domain® if F'(\1) + F(X2) > F(\ -+ X2) for all A, A2, A + A2 € ©.
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ZMILP(U)
ZLP(U)

v

Figure 3.5: The value function of the LP relaxation of a MILila ;7. p.

nonincreasing, and for which(0) = 0. Thesubadditive duabf (MILP) is:

max F(b)
F(a?)<¢;, Vi=1,...,p (3.16)
F(a?)<¢j, Vj=p+1,...,n
Fel™
where
F(v) = limsup d (51})’ Vv e R™.
5ot 0

F is theupper v-directional derivativef F at zero. As noted ifGuzelsoy and Ralph@007), F

is only required in8.16) if p < n and ensures that solutions to the subadditive dual haveéegitad
that do not exceed those of the value function near zero. tbadslitive dual enjoys many of the
nice properties of the LP dual problem. We briefly review éhpsoperties next.

As with linear programming, a feasible solution ®©16 can be used to bound the objective value

of (MILP).

Theorem 3.12 (Weak Duality byJeroslow (1978 1979) If F'is feasible ta(3.16) andz is feasi-
ble to(MILP), thencz > F(b).

The following result shows thaB(16 is a strong dual forNIILP).

Theorem 3.13 (eroslow (1978 1979; Wolsey (1981) If either (MILP) or (3.16 has a finite op-
timal value, then there exists an optimal primal feasibliison =* and an optimal dual feasible
solution F* such thatez™ = F*(b). Further,

() If (MILP) is infeasible, eithe(3.16) is infeasible or unbounded from above.
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(i) If (3.16 is infeasible, eithe(MILP) is infeasible or unbounded from below.
The subadditive duaB(16 can also be used to generalize complementary slacknedgions.

Theorem 3.14 (Complementary Slackness byeroslow (1978; Johnson(1979; Wolsey (1981))
If z* is feasible taAMILP) and F™* is feasible t(3.16), thenz* and F'* are optimal if and only if

(F’k(CLJI)—c])QU;:O7 for j=1,....p (3.17)
(F*(aj)—c])x;:Q for j=p+1,...,n
and
S Fra))a + Y Fr(a))a] = F*(b) (3.18)
j=1 j=p+1
p B n
Fr(b=> da})+ F*(b— > alz}) =0

Jj=1 Jj=p+1

The first condition is analogous to the well-known LP compdetary slackness conditions. The
second condition, sometimes referred tawamplementary linearityholds trivially if F and F" are
linear (Llewellyn and Ryan1993.

In theory, appropriate optimality conditions for the lowevel problem can be applied directly to
the bilevel program, immediately yielding a single-leveflarmulation. If the resulting formulation
can be solved with an existing method, we can solve the bifpegram with a black-box method.
However, as we will see next, reformulating the problem is thanner often leads to a problem
for which no solution method is known. In this case, we caroe® lower-level optimality in-
directly through iterative approximation of the MILP valtinction. In what follows, we adopt
some additional notation, to simplify the exposition. LeIlB‘IAng a special case of the canonical
problem defined by conditions;; and Uz, on the upper- and lower-level variables, respectively.
For example, the MIBLP in which all upper-level variables &inary and all lower-level variables
continuous would be written MIBLE,;, and our canonical problem would be MIB{EP If either,

or both, of the conditions are left blank, it should be assiithat the restrictions on the variables

are as stated in{IBLP).

3.2.3 Reformulations

One well-known approach to single-level reformulationrfdun the BLP literature relies on replac-
ing the optimality constraint on the lower-level variableith appropriate KKT conditions (see e.g.
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Fortuny-Amat and McCayl1981 Bard and Moore1990. If the lower-level problem is a LP (as
in BLP), this means replacing the optimality constrainthwitimal feasibility, dual feasibility, and
complementary slackness conditions. In theory, we caryappl same method to/AIBLP) using

MILP duality theory. Below, we demonstrate how to apply amalagous technique for MIBLP,
using the subadditive dual described in the previous sechifter introducing the general reformu-
lation, we provide several special cases for which the thioaeyields more useful reformulations.

General MIBLP. As shown above, the subadditive dual has many of the samenpiexpof the
LP dual. For fixedz, the lower-level MILP is:

min{d%y | G%y > b — A%%,y € ZB? x R} P2}, (3.19)
The associated subadditive dual is then:

max F(b* — A%%)

F((g*Y) <d3, Vi=1,...,p (3.20)
F((g2)j)§dj27 vj:p2+1,...,n2
Fel™

whereg? and F are defined as in Sectidh2.2 Applying the duality results given in Secti@?2.2
yields the following result.

Proposition 3.15 If * is an optimal feasible solution fdB.19 and F* is an optimal dual feasible
solution for(3.20), theny™ and F* must satisfy

G*y* > b? — A% (3.21a)
F'(g}) <dj, Vji=1,....p (3.21b)
F(¢2)<d?, VYj=pa+1,...,ny (3.21c)
(F*(g3) —d3)y; =0, Vj=1,...,p2 (3.21d)
(F*(¢3) —d?)y; =0, Vji=po+1,....,n (3.21¢€)
P2 n9
STF gy + Y Frgy = Fr (v — A%) (3.21f)
Jj=1 Jj=p2+1
P2 no
F(0* =) (6*V)y)) + F* 0 = > (¢*)y;) =0 (3.21q)
J=1 Jj=p2+1

foranyx = z.
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Proof. If y* is feasible for 8.19 and F'* is feasible for 8.20), then ¢.219-(3.219 must be sat-
isfied. Sincey* and F** are optimal solutions for3(19 and .20, respectively, we can apply

Theorem3.14 which yields 8.219-(3.219. 0

Proposition3.15 implies that we can replace the lower-level problem withiroptity conditions

(3.21), give control of all variables to the upper-level DM, andraauce the following equivalent
single-level reformulation of\IIBLP):

max cz+dly
subjectto Alz < bt

— A% - Gy < —b?

F(g}) <di, Vj=1,...,p
F(g)<di, Vj=pa+l,....n (MIBLP-1)
(F(g?) —d¥y; =0, Yji=1,...,p
(F(g?)_d?)y] 0, Vj=p2+1,...,n9
p2 no ~
F(@)y;+ > Flghy; = F(¥* — A%)

J=1 Jj=p2+1

P2 ‘ B no '
Fo—Y () y) + Fo— Y (6°)y;) =0

j=1 J=p2+1

reZl xRIP™P? yeZB? xRP™P FeT™,
Removing the complementarity terms

(F(Q?) - d?)yj =0,Vj=1,...,p2
(F(g}) —d¥)y; =0,¥j =pa+1,...,m0
and

p2

no
S Py + Y. Flgy; = F(b* — A%%)

j=1 Jj=p2+1
p2 ) 3 n2 ]
Fb—=> (¢*Vy) + Fb— > (6°)y;) =0
Jj=1 Jj=p2+1
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from (MIBLP-1) yields thesubadditive relaxation problem

min clz 4+ dly
subjectto A'z > b
A%z + G2y* > b2 (SRP)
Flg)<di, Vi=1,...,p
F(g}) <dj, Vji=pa+1,...,n

zeZl xR yeZ2 xRPP? Fel™,
Proposition 3.16 (SRB provides a valid lower bound ofMIBLP-1).

Proof. Let (z*,y*, F*) be an optimal solution taIBLP-1). Suppose, for sake of contradiction,
cla* +d'y* < zEpp

wherezg,p is the optimal objective value oBRP). However, this immediately leads to a contra-
diction since the fact thdt:*, y*, F'*) is feasible for (IIBLP-1) implies that(x*, y*, F*) is feasible
for (SRB. O

The difficulty inherent in the employment of this formulatids that both [1IBLP-1) and SRP
involve solving an optimization problem for which one of tvariables” is a subadditive function.
There are no direct methods for solving such optimizatiablgms. If, however, we were able to
solve a problem of the forrSRP we could immediately generalize the complementarity than
and-bound algorithm given iBard and Moorg1990. If all variables in the lower-level problem
are required to be integer, we can use the linear representstthe subadditive dual to transform
(MIBLP-1) into something more amenable to traditional optimizasotvers.

Pure Integer Lower-level Problems. Suppose, for all:, the lower-level problem is a bounded
pure integer program (i.e. MIBLR, ) andb? — A%z € Q2. Then, for fixedr = 2, (3.20 reduces
to

max F(b* — A%%)
F((g*Y)<di, Vji=1,...,n (3.22)
Fel™.
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Further, suppose we scal& andb? — A2 to be integer. Then, we can reformulage??) as:

max  7(b)
n(\) + () = nA+p), YO <A<b0< p<b0<A+p<h (3.23)
n((¢®)) <dj, Vi=1,...,n
n(0) = 0.

whereb = b2 — A2¢ andy : {a | @ < b} — R. This follows from the fact that, if the primal
problem is a bounded pure integer program, we can substhetsubadditive function with the
values it takes over the finite domajn € Z'"* | A < b} and a set of constraints which ensure that
7 is subadditive Gomory, 1969 Johnson1979.

This immediately leads to a mixed integer nonlinear progmamg (MINLP) reformulation of MIBLFn.:

min ¢tz + d'y
subjectto Alz > b!
Az + Gy > b?
n(A) +n(e) = n(A + p),
VO< A< —A%2,0< pu<b?—A%2,0< A+ p<b®— A%

n(g;) <dj, Vi=1....n (MIBLP 7,-2)
(n(g?) —d2)y; =0, Vi=1,...,n
n(0) =0

zeZl xR ye 2l

In the MINLP (MIBLP 7 -2), the variableg) represent the actual values of the subadditive function
over its domain. The constraints

n(A\) + n(w) 277(/\+,LL),V0§)\§b2—A2:L',0§u§b2—A2$,0§/\+/£§b2—A21’
n(0) =0

enforce the subadditive requirement gn {« | @ < b} — R. It can be shown that the row
dimension of this MINLP can be reduced using a discrete gnafoFarkas’ Lemmal(asserre
20044gb, 2009. Applying this method may yield an MINLP reformulation ofIBLPz», that can
be solved via direct methods. Exploring the computatiomaperties of this problem is an area of
interesting future research.
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Not surprisingly, another case for which this reformulatimoethod is simplified is that of a contin-
uous lower-level problem. In fact, in this case, the metlsogréeatly simplified since we can return
to familiar LP dual for the reformulation.

Continuous Lower-level Problems. The underlying approach used in the BLP depends only on
the structure of”. Thus, we can easily apply the same approach to MIBLP, ifdéhei-level prob-
lem is continuous (i.eY = R™2). This yields the single-level MINLP reformulation of MIBRg»-:

min clz +d'y
subjectto A'z > b

A%z 4+ Gy > VP

uG? < d? (MIBLPgny-1)
u(b? — G*y — A%2) =0
(d?> —uG?)y =0

re X,yeRP? ue R

Of course, if the upper-level variables are also continuMISLPR-. is equivalent toBLP), and
the reformulation IIBLPr~»-1) reduces to thénear program with equilibrium constraini®.PEC)
reformulation of BLP) (see e.gJudice and Faustind992. A variety of solution methods have
been suggested for LPECs, including branch and bo&odiny-Amat and McCayl1981; Bard
and Falk 1982 Bard and Moorg1990, and interior point methods_(o et al, 1996. The reader
is referred tovicente and Calamdil994) andLuo et al.(1996 for a comprehensive review of such
solution methods. In fact, this reformulation method islimotted to MIBLPg=-, but only requires
Ppr(z) to be a convex polyhedral set, a property shared by a varfédP&Cs (uo et al, 1996.

Audet et al.(1997 show that a BLP can be reformulated as standard MILP, in kvhltinteger
variables are binary. Their reformulation utilizes the IPEeformulation of BLP as an intermediate
step, and a common modeling trick to replace the nonlineaapéementarity conditions. As before,
this reformulation technique does not depend on the streicitLX, but only requires continuous
variables in the lower-level. Thus, we use apply the samermgémethod for the mixed integer case,
substituting MIIBLPg~»-1) in the intermediate step.

Lete, be anmm—dimensional column vector of ones and suppose the optinhat vd (MIBLP g, -1)
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is finite. Applying the methodology afudet et al. (1997 to (MIBLP g~ -1) yields the MILP:

min ¢tz + dly

subjectto Az > b!
A’z + GPy > b
—uG? > —d? (3.24)
— A%z — G*y — LA > —Le,, — b*
—u+LA>0
uG? — Ly > d?
—y—Lp>—Lem,

reX,yeRZ ueRP NeB™, e B,
for some large finite constarit > 0. It is easy to see that when = 1, we have:

alx + gly = b7

fori =1...,mo. Alternatively, when\; = 0:

alr +gly < b+ L

U; = 0.
Since\ € B2, the combination of these constraints enforces the congaiéarity condition
u(b* — G?y — A%z) = 0.

A similar argument shows how the conditi¢d* — uG?)y = 0 is enforced. This result is stated
formally in the following proposition.

Proposition 3.17 Suppose the optimal value @#IBLPR~,-1) is bounded, and letz*, y*) be a
finite optimal solution. There exists a large finite constant 0 andu € R}, A € B™?, un € B™,
such that(z*, y*,u*, \*, u*) is an optimal solution of(3.24. On the other hand, for such an
L, if (z*, y*, u*, \*, u*) is an optimal solution of(3.24), then (z*,y*) is an optimal solution of
(MIBLPgn2-1).

If X = R™, (3.29) reduces to the MILP formulation iAudet et al.(1997 and provides a single-
level reformulation BLP).
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Audet et al (1997 also describe how to reformulate MIBLPs as BLPs, when gllemgevel integer
variables are binary and all lower-lever variables are inopus. In the following example, we

demonstrate how to extend their method to yield a MILP refdation of MIBLPZ,,*®" "

Binary upper-level and Continuous Lower-level. Let X = (BP* x R™P1) andY = R"2.
Applying the methods ohudet et al (1997 yields a BLP reformulation of MIBLE,,*®™ "

min clz +dly

subjectto A'z > b?

0 < x, Vi € [p1 + 1,nq]
0<ux; <1, Vi € [1,p1]
y=0 (3.25)
y € argmin {d*y + e}, _, v A%z + G?y > b
—Yi = —xi, Vi€ [l,p]
—y; > —(1—z;), Vi€l p]
y=0}
We can used.25 to reformulate MIBLE,, """ as a MILP.
Letz; = {x; | i € [1,p1]}. Consider the lower-level problem &.¢5), for fixed z:
min  d%y + egly
subjectto G%*y > b? — A%%
- > = (3.26)
—v=—(1—5)
y=>0.
The dual of 8.26) is given by:
max u(b® — A%%) —vtip — (1 — i)
subject to uG? < d?
—vl=e (3.27)

u,vl,v2 > 0.

Applying the reformulation method oMIBLPr~,-1), where we utilize the lower-level optimality
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conditions, to 8.25 yields:

min  c'z + d'y
subjectto Alz > b?
0<w Viep+1,n]
0<uz; <1, Vie[l,pi]
v=0
A2z 4 G2y >
vi <y, Vi€l p]
vi < (=), Vie€[l,p] (3.28)
uG? < d?
—vi=e
u(b? — G?y — A%z) =0
vy — ) =0, Vie[lp]
V(i —1+z) =0, Viel[lp]
(d?> —uG*y =0

y,u,vl,v2 > 0.

Then, applying the reformulation method &.Z4) to the complementarity problen3.28 yields
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the MILP reformulation of MIBLE,,*R" """

min ¢tz + d'y
subjectto A'z > b?
z; <1, Viel[l,pi]
v=0
APz + Gy > b
vi <, Yie[lp]
Y% < (1—ai), Vie[l,pi]

uG? < d?
—ol=e
—?=e (MIBLPE, ¥E™ 771 1)

A%z 4+ G?y + LN < Lep, + by

u—LA' <0

— i+ LN < Ley, —x, Vi€ [l,p]

vf — LA} <0 Vie[l,p]

— 4+ LN < Ley, — (1 —x;), Vi€ [l,p]
v? — LA} <0 Vi€ ([l,p]
—uG2+L,u§—d2

Y+ Lp < Lep,
xGRT,yERT,uGRmQ,UI,vzE]Rﬂl

M eB™ A2 A3 e B, e B™,
for some large finite constatit > 0.

Proposition 3.18 @udet et al. (1997) Suppose the optimal value ¢8.25 is bounded, and let
(z*,y*,v*) be a finite optimal solution. There exists a large finite canst, > 0 andu €
R™2 vl 0?2 € RE AL € B2, 02 \3 € BP!, ;i € B™2, such that

($*7y*77*71’1/*7”1*7U2*7A1*7)\2*7A3*7M*)
is an optimal solution ofMIBLP,, """ -1). On the other hand, for such ah if

* ok _x ok 1% 2* 1% 2% 3* *
("L. 7y 7’}/ 7u 71) 7v 7A 7A 7A 7”)
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is an optimal solution of MIBLP ., ™" "'-1), then(z*, y*,v*) is an optimal solution 0f3.25.

Combining the previous arguments yields the following hesu

Theorem 3.19 Let X = BP* xR™~P1 andY = R"2. If (z*, y*) is an optimal solution ofMIBLP),
then there exists a large finite constait> 0 andu € R™2, v, v? € REL, AL € B2, 02 \3 ¢
BPL, i € B™2, such that

* ok _x ok 1% 2* 1% 2% 3* *
("L. 7y 7’}/ 7u 71) 7v 7A 7A 7A 7”)

is an optimal solution ofMIBLP,.,"" " -1). On the other hand, for such ah if

* ook ko oox 1% 2% 1% (2% 3%k
($7y777uav , U 7/\ 7)\ 7/\ nu)

is an optimal solution of MIBLP ., ™" "'-1), then(i*, §*) is an optimal solution of MIBLP).

Audet et al.(2007) provide an alternative reformulation of the LPEC reforatidn of BLP that is
convenient for disjunctive cut generation. This methodss applicable to MIBLR».

Disjunctive Reformulation for Continuous Lower-level Problems. Let

up(b? — G2y — A%2), =0 1<k <mo,
CCk(w,y,U) = k( Y )k B B ’
yk_mz(ai2 —uG?) =0 1<k—mo < no.

Then, substitution yields the reformulation &IBLP g~ -1):

mmin cla 4+ dly
subjectto Az > b!
A’z + Gy > b? (MIBLPgn,-2)
uG? < d*
CCx(x,y,u) =0, k=1,2,...,mg+ no

re X, ueRP” ycRP
The reformulationsNIIBLPE,, """ -1) and MIBLP»,-2) are straightforward applications of
methods borrowed from the BLP literature. Each is usefutdrability to solve bilevel programs
via direct methods, but both are limited by their relianceaasontinuous lower-level problem. On
the other hand, the reformulatiol(BLP-1) can be applied to the general case, but may be limited
by computational difficulties in all but simple cases. Poegly, we have alluded to the potential
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utility of the lower-level value function for MIBLP algofiim design. In the next section, we de-
scribe methods for approximating the value function, athgawus to enforce optimality conditions
indirectly, and yielding the foundations of a a solutiomfi@wvork.

3.2.4 Exact Solution Methods

Here, we describe algorithms based on iterative approiemamhethods for the lower-level value
function. We begin with an exact reformulation of the problthat would be possible if we knew
the full value function. However, since this will likely nbe the case for problems of interest, we
develop iterative methods that ensure lower-level opiimébr a subset of upper-level solutions,
leading to algorithms that enforce a strong bound when secgs

In the previous section, we used the optimality conditionstlee lower-level problems to yield
single-level reformulations. Alternatively, we can use tbwer-level value function to reformulate

the problem:
min clz +d'y
subjectto Alz > b!
A%z + Gy > b2 (3.29)
d*y = zaprpp (b — A%7)
zeZ x RM™P yeZR? x RIP™P?
where
zyvip (B — A%z) = min{d®y | G* > b* — A%z,y > 0,y € ZF? x R?7P2} (3.30)

As described previously, determining the structure of thlee function is very difficult in general.
However, one may be able to discover enough of the struabucerhpute a function that approxi-
mates the value function. Next, we discuss method basedmoxamations of the value function.
The underlying idea of these methods is that, if we are abftbstrong approximations, we can
effectively represent the value function using a seriesoafnigling functions. Algorithmically, we
begin with simple approximations, then iteratively impeahem by generating new functions for
additional values of the right-hand sifi€¢ — A%x). These methods can be seen as a way of enforcing
optimality conditions indirectly. First, we describe arpep-bounding method that can be applied
to the general MIBLP. Then, we describe a special case ofrtitegam for which a lower-bounding
method can be used. Each of the algorithms presented anmeticabin nature and would require
additional research to be transformed into practical nasho
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General MIBLP. One way to obtain upper bounds on the lower-level objectaleeris to consider
restrictionsof the problem. An obvious restriction of the lower-levebplem results from fixing
the integer variables, yielding an LP with the value functio

z¢(B) = min{dgyc | GEye > B, yc > 0} (3.31)

wherel = {1,...p2}, C = {p2 + 1,...,n2}. We assume throughout that the functiéh3()
is finite. This assumption can easily be relaxed, but requirelifferent method of obtaining a
restriction.

Theorem 3.20 Guzelsoy(2009) Let (#,5%) € F! be a bilevel feasible solution t(MIBLP).
More precisely, leg® be an optimal solution to the lower-level problem when theengevel solu-
tion is fixed taz. Define the function

fE(v) = A3yt + zo(v — GFyd). (3.32)

Then, f? satisfiesf(v) > z;p(v) for all v € R™2 with f#(b> — A%3) = z;p(b> — A%3). Hence,

f* is a strong upper-bounding function.

Suppose we knew the upper-bounding functjgnfor some finite subsef C (Py N X) of the
upper-level decisions. Then, we have a relaxatioliBLP):

min ¢z +dly
subjectto Alz > bt
A%z + Gy > b? (3.33)
d*y < f2(0* — A%x), VielJ

re X,yeY.
This follows from inequality
b — A%z) =  mi P(b? — A%z) < min fF(b> — A%x).
Anee7 = A0 =, i SO - A S gy = A

It is clear that if the seV/ is large, the approximation quickly becomes unmanageah@vever,
we expect only a small subset of the constraints to be bindiraptimality. This is similar to the
rationale that supports Benders’ Reformulation for MILIBxt we consider methods based on this
intuition that employ these bounds as they are needed. Br todlerive these methods, we utilize
reformulations of .33 that result from the extreme point form of the LP value fimct
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Before proceeding, however, we note that'i= R"2, the bound 8.32 reduces to

2 (v) = 2o (v), (3.34)
which is the value function of the lower-level LP. Thus, we cawrite the inequality

d*y < min A — A%z).

as

d*y < max{p(t* — A%z)},
PER

since the seR is the same for al: € J. We now return to the general cagec Y, and consider
alternative methods for utilizing the approximations.

One way we can use the value function approximations is taimkdisjunctions to be used in
branch-and-cut framework. Consider the upper-boundingtfan for somet € (Py N X), and the
corresponding optimal lower-level solutigfi:

fi() = diyj + zc(v - Gly}), (3.35)
wherezq is defined as above. Recall that can be written
= 3.36
zc(B) I;le%{pﬂh (3.36)
whereR is the set of extreme points of the dual polyhedron

{u e R™ | uG% < d%,u > 0}. (3.37)

For fixedz € (Py N X), the upper-bounding function obtained by Theor@20is
EooN 2.0 2,
ff(v) = dyr + I;"g% { (P(U G[Z/[)} ;

wherey? € argmin{d?y | y € S(#) N Y} is the lower-level solution obtained during the bilevel
feasibility check. For each € R, we define

Ap = {v eR™ | f(v) Zd?y?er(v—G?y?)}-

In other words,A, is the set of right-hand-sides for whighis the optimal dual solution of the
continuous relaxation of the lower-level problem with= y#. Then, we have a disjunction of the
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form:

{ voc Al } \/ \/ { v € AR }
Py < &yt +p(v— G Ay < diyi+p(v-Ghi) |

whereR = {p',...pR}. This disjunction can which can be used in a branching schemeut
generation routine to separate the integer bilevel infdagioint (z,9) € Q. In theory, this dis-
junction can be applied to yield a branch-and-cut algoritbnsolving (MIBLP). However, devel-
oping practical methods for branching or cut generatiorr avdisjunction of this form remains an
open guestion.

Another way to use the upper-bounding functions is to saiexations of .33, derived by drop-
ping the bounding function for some (or all)e (PyNX), and iteratively adding constraints as they
are found to be violated. Such a method is described next. avedstrate this method using the
upper-bounding function obtained by applying Theol@20 but note that any appropriate strong
upper-approximation will suffice. In particular, alterivatmethods for restricting the lower-level
problem will yield different approximations which can raepé or augment the approximation used
here.

LetJ C (PyNX) be some finite set of feasible upper-level decisions. Asritetabove, for each
J C (Py N X), we have a relaxation of{IBLP):

min ¢z +dly
subjectto Alz > bt
A%z + Gy > b? (3.38)
d*y < fE(0* — A%z) VielJ
reX,yeY.

We refer to 8.39 as themaster problemSince the approximation is strong, we are guaranteed that
the constraint fot: € J
d?y < fE(? — A22) (3.39)

will be tight for somex € J. In particular, this constraint will be binding at the lowevel RHS
(b? — A2) for which it was obtained. Thus, for any upper-level solatioc .J, we are guaranteed
to satisfy the original constraint

d2y = ZMILP(b2 — Azi')
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This, in turn, ensures satisfaction of the conditipre M’ (%) and, thus, that bilevel feasibility
conditions are met. Becausg.g9 is a relaxation of §.33 and, thus, of MIBLP), solutions to
(3.38 are optimal for MIBLP), if they are feasible. A iterative approximation algonithusing this
relaxation is summarized in Algorithid. L

Algorithm 3.1 Iterative Upper Approximation
1: Initialization. SetJ! = () andt « 1.
2: lteration t. Solve @.39 with J = J' to obtain(z!, 3!). Setz = 2! and solve the lower-level
problem, for fixedz.

(i) If d®y' = zprrpp(b? — A22t), stop.(z, ') is an optimal solution.

(i) If d®y' > zprp(b? — A%2t), apply Theoren8.20with = z* to obtain upper-bounding
function ft. SetJ*! = Jt U {t} andt « ¢ + 1.

Algorithm 3.1 outlines a procedure for iteratively improving the valuadtion approximation.
However, 8.39 contains a piecewise linear constraint and, thus, caneatobsed by traditional
methods. However, it is possible to reformulate this pnoblas we see next.

Let3* denote the optimal lower-level solution obtained for the§4 — A% and

5 1 pe aulrgmauXPGR{p(b2 — A%)}
8 0 otherwise

for fixed & € (Py N X). Note we can model constrairt.89 with the system:

Py < 2yt + 2 (3.40)
22> pb? — A% — GHy), YpeR (3.41)
< MI(1—60) + p(b® — A%z — Giyi), YpER (3.42)

> or = (3.43)
PER
5t €B, VpeR, (3.44)

where

; 2 2 2, &
M, > xe{gg}éx){p(b — A2 — G2, peER,
or some other suitable upper bound. This follows from thetfeat 3.42 enforces

ZF < p(b® — A%z — Giyp),
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if 5;”; = 1, (3.43 ensures that will be the case for somdor all &: € J, and 8.41) forcesz? to be at
least as large asax,cr {p(b* — A% — G2y%)}. Thus, equality will hold for at least on€ € R,
and must hold for that which achieves the maximum.

Thus, we can rewrite3(38 as:

min clz+dly

subjectto Az > b!
A%e + Gy > 1P (3.45)
d*y < djyf +2°, Vield
22> p(b? — A%z — GHyt), VieJpeR
2% < Mf(l - 5;?) +p(b? — A%z — G3yY), VicJpeR
Y oi=1, VielJ
PER
zeX,yeY il eBViepeR.

Note that to solve this subproblem, as written, one wouldirteegenerate all extreme points of
the dual polyhedron, a problem known as tretex enumeration problemA survey of existing
methods and complexity can be foundAris et al. (1997). One promising algorithm is that of
Avis and Fukudg1992, which has several advantages. Namely, the algorithminesjuery little
storage space above that required to represent the dudigubn, does not produce duplicate
vertices, and has a running time that is polynomial in the sizthe dual polyhedron. Of course,
the vertex enumeration problem difficult, in general, asccamplexity is largely dependent on the
nature of the polyhedron (see, e.gukuda et al.1997 Bussieck and Libbeckd998 Goodman
and O’Rourke 2004). However, substituting an®’ C R in (3.49 yields a relaxation of the
original problem. Thus, algorithmically, we can initiadizvith someR’ C R, and apply a constraint
generation algorithm to solve the subproblem.

Single Constraint in the Lower Level. In this section, we consider the special caseMiELP)
in which the lower-level problem contains only a single digga&onstraint. That is, for fixed:, the
lower-level problem is that of determining

min{d?y | g’y = b* —d’z,y > 0,y € Y}. (3.46)
Let
C : dzz 2 . C dzz 2 .
n“ = min 7 | g7 > 0,7 € [p2+ 1,n2] and (% = max 7 | g7 <0,i€ [p2+1,n9]¢.
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0

Figure 3.6: An upper-bounding function feg; ;7 p.

Then, in this case, we have the following closed form of theangbounding function:

f(0* = a*x) = min {dgyc | goye = b* — a’z,yc > 0}
n° (% — a’x), if b2 —a’x >0

CO? —a2x), if b —a%z <0.

This bound is a special case of Theorgra(Q and effectively just the maximal subadditive extension
of the value functiorcarried to the right-hand-sid&?y} (Guzelsoy 2009. The bounding function
is illustrated in Figures.6.

In this case, the lower-level value function is defined as:

zyrop(B? — az) = min d%y
yESL(v)
whereSy (v) = {y € ZI? x R}?7"* | g%y = v}. We can apply the results Gfuzelsoy and Ralphs
(2009 to find the structure of our value function and derive disjions valid for MIBLPs.

In generalz) 11 p IS piecewise-linear and can be written as the value funatf@pure integer pro-
gram and an appropriate linear correction term (see The@réfi). Guzelsoy and Ralph@006
show how to apply this property to MILPs with a single eqyatibnstraint, to more fully character-
ize zyrnp. Letn© and¢C be defined as above and,t~ € C be such

2
c_ Gy

g+

n if ¢ < o0,

79



3.2. REFORMULATIONS AND EXACT SOLUTION METHODS

and )

a2
=" if ¢ > o0,
gi-

respectively. Also, leT’ = {tT | n° < oo} U {t~ | (¢ > —o0}.

Proposition 3.21 Guzelsoy and Ralphg2009) Let

f(v) = min{dfy; + d7yr | 97 + 9Fyr = v, ys € Z+,yT e RY b

wherel = N \ C. Thenf(v) = Z]\/[[Lp(’u) forall v € R.

This result implies sufficiency of the two continuous valésbto describe:,; ;1. p, and is used to
simplify the Jeroslow Formula

Let M € Z, be such that forany e T, gﬂ € 7, for all j € I (which exists by rationality of?).
Also, let

1
MdzzryT + z(p)w

1 2
7 9Tvr +ow =gq

yr € Zh yr € 2L, w € 7

h(q) = min d%yl +

S.t g%yl +

for all ¢ € R, whereg = —3; >, 1 ¢7. Finally, fort € T', define
d;

w(v) = h([v]:) + —g(v— [v]e)
h

forall v € R, where|v|; = Mf LM—2J Guzelsoy and Ralph2006 apply Theoren8.11, to obtain
9%

miLp(v) = ml%lwt(v) Vv € R, (3.47)
te

which yields the result thaty; 77, » can be described by a finite number of linear segments which
coincides with eithew, or w,-, and whose slope is eithef’ or (.

Figure 3.7illustrates the structure of the value function for the Engpnstraint case. With knowl-
edge of this special structure, we can derive bounds on e ed the lower-level objective func-
tion as the upper-level solution varies. As stated earfii@reach solutionz, 7) to (LR), we may
check for bilevel feasibility by solving the lower-levelgisiem with a fixed upper level solution.
Each bilevel feasibility check yields a bilevel feasiblarpa, y*), wherey* € argmin{d?y | y €
Pr(#)NY}. Inother words, each bilevel feasibility check yields tiadue ofzy; ;7 p(b? — A%2) =
d?>y*, wherez,; 11 p is the value function of the lower-level problem. Becauseuhlue function is
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Figure 3.7: The value function of a MILP.

Figure 3.8: Linear bounding functions for the value funatio

piecewise linear with segments whose gradients alterretteeen two values, we can extend this
information to determine the equation of the line on which lilevel feasible point lies.

Let o = b> — a2 and consider the affine functiorf$o, )} and f (0, ¢©) illustrated in Figure3.8
with slopesn® and(¢?, respectively, and each passing through the p@inty;;.p(9)). From the
figure, itis easy to see that, for any< o,

zurnp(v) < max{f(0,7°), f(9,¢9)} = £(2,¢9).
Similarly, for anyv > o,
zvrep(v) < max{f(0,n%), f(5,(9)} = f(0,179),

wheref (9,¢%) = ¢“0 + 2mrp () and f(0,1°) = 10 + zprrp(0). Thus, if(2,9) € (X xY)
is a solution to (R) such that) ¢ M’ (%) (i.e., (&, ) is not bilevel feasible), then after substitution,
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we obtain the valid disjunction

CL21'

> 2
- OR
CCalr+d%y < (Ca’i+ dPy* n0a2$ + d%y

a’i a“x a’i

<
< 0% + d*y*,

which is violated by(z, §), but satisfied by all members &t'. This disjunction can be used directly
as a branching rule to to be applied whenever solutigng) € (X x Y') to (LR) that are not bilevel
feasible.

Alternatively, we can use this disjunction to generate pudidive cut by considering the two poly-
hedra, denote@®! and7?, that result if we combine this disjunction with the origisat of con-

straints in:
Alg > bl
a’r + gy = 12
Pl =¢ o2z > a%%
—Calr —dy > —Ca?d — 2y
z,y > 0
and
Alxy > bt
a’z + g%y = b
P2 = —a’r > —a?%
Ca?x — d?y > —nCa%i — &2y
T,y > 0.

It is well-known that if (u’, v*, w', 2*) are multipliers for the constraints describing polyhedRn
then the following inequalities are valid f@' andP?, respectively:

WAz 4+ v'a2z + wlals — 2 ¢Cas + vl gty — 2\ d%y >
Wbl 002  wla?i — 21(CCai + dPy?)
WA s + 2% — w?aPx — 22nCd%e + v2 gy — 22dPy >

u?bt 4+ 2% — w?a?i — 22 (n%a%i + d2y).

Given inequalitiestiz + w3y > n} andnix + w3y > 72 valid for P! andP?, the disjunctive
procedure constructs an inequality + 3y > ~ that is valid forconv (P! U P?) by selectingx, 3,
and-~ such that

o > max{r}, 73}, B> max{ny, 73}, and v < min{ny,73}.
Itis then possible to formulate a linear program that wilhgeate the most-violated valid inequality
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that can be derived from a given disjunction, as in the wetvkn lift-and-project algorithm studied
by Balas et al(1993, Balas et al(1996, Balas and Perregaa(@d003, andCornuéjols(2008, and
based on the earlier work &alas(1979.

This linear program, the so-calledit generation LPis given by:

min oz + By —

st. a—u'A' —v'a® —w'a® 4+ 2'¢%a? >0
o —u?At —v?a? + w?a® + 22n%a® >0
B—vtg?+2'd? >0
B—v2g*+22d*> >0 (3.48)
v —ulbt —v'o? —wla?i + 21 (¢Ya*t — d?y*) <0
v —u?bt — 0?0 + wra?i + 22 (nYa*t — d?y*) <0
mi mi
Zu}+v1+w1+z1—|—2u?+v2+w2+z2 =1
i=1 i=1

ul,uz,vl,vz,wl,wz,zl,z2 > 0.

Recourse Problems. An interesting special case dfi(BLP) arises when the upper-level objec-
tive depends only on the value of the lower-level problemesenproblems are referred toaigec-

tive value problemsor recourse problemsContinuous recourse problems are studielimmizu

et al. (1997 andPatriksson and Wyntgl997), but the treatment of the integer version appears to
be limited to the related work in the stochastic programniitegature (see, e.gGaroe and Tingd
1998 Kong et al, 2006.

Formally, we define the recourse version of MIBLP as:

min_c'z + az(z), (3.49)

(w,y)eFT
wherez(x) is the optimal value of the lower-level problem for fixednda is a nonnegative scalar.
Intuitively, on might expect this version of the problem t® éasier to solve than the general case,
because the objectives of the upper- and lower-level DMgiieeanent. Further, problems of the
form (3.49 do not require a lower-level solution € Y, but rather only itssalug to evaluate the
upper-level objective. Because of the special structurthege problems, we are able to develop
more compact single-level reformulations and effectivgodathms. In this section, we consider
the case 0f3.49 wherea = 1, which is precisely MIBLP withd' = d?. Before addressing this
problem in detail, however, we first describe a general ntettiloounding the MILP value function
from below.

83



3.2. REFORMULATIONS AND EXACT SOLUTION METHODS

Zmrrp (V).

N
AN
/
/
/
~ /
S /
/ N ’
/ N /
/ NS
N
\

Figure 3.9: A lower-approximation of the value functiogy ;. p.

0

The bound described next is particularly convenient bex#ls generated as a natural by-product
of the bilevel feasibility check. In particular, if we useanch and bound to solve the lower-level
problem, for fixed upper-level solution € X, we obtain the bound directly from the resulting
search tree. A similar bound results if the lower-level feabis solved with branch and cut, rather
than branch and bound, but the analogous results requirgsthenption that a subadditive repre-
sentation is known for each cut generated. In practice,ishigenerally not the case. Further, it
makes the exposition quite a bit more complicated. The reiadeferred toGuzelsoy and Ralphs
(2007 for more details on the branch-and-cut case.

Suppose the lower-level MILP3(19 has a finite optimum and has been solved to optimality by
branch and bound for sonmiec (P N X). LetT be the set of feasibly pruned leaf nodes of the
resulting tree and leb¥ = (wf,w?,w?) be the solution of the dual of the LP relaxation at leaf
(i.e. that which allowed us to prune the node). Then, we hawddllowing.

Theorem 3.22 Guzelsoy and Ralphg2007) If we define the function

FEv) = rtmj]g wiv + wif —wru?, (3.50)
€
thenF%(b? — A2%) = zp1p(b® — A%%), whereu?, ¢ € 7" are the branching bounds applied to
the integer variables in the LP relaxation at

F% is, in fact, an optimal dual solution to a particular dual ®f1Q (Guzelsoy and Ralph£007).
The bounding function is illustrated in Figug9. It is clear that changing the right-hand-side of
the primal problem does not affect the constraints of thé dugblem. Thus, any function that is
optimal for the dual problem associated with a particulghtihand-side remains feasible for all
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other right-hand-sides. Further, by weak duality, the clije value of the dual problem evaluated
at any feasible solution yields a lower bound on the primablam. In other wordsF® satisfies
F2(v) < zprp(v) forallv = b2 — A%x such thatS(x) # (). We can derive a global approximation
by taking the maximum over a set of such lower-bounding fonst Suppose we knew the lower-
bounding functionf'* for all & € (P N X). Then, in theory, we could rewritd/(BLP) as:

min clz + dly
subjectto Alz > bt
A%z + Gy > b? (3.51)

d2 — F:E b2 —A2
V= e, ?)

reX,yeY.

While such a reformulation may be of theoretical intergstpes not appear to offer any immediate
assistance in the way of computation. Obtaining all sucletfuns F', requires solving the lower-
level problem for alle € (Py N X)), which already provides the solution to the original protle
Further, there is no obvious way to form a useful relaxatiof8 1), since we require equality in the
optimality constraint, thus constraint generation meshaek not immediately applicable. However,
this reformulation method may be useful for special caseb@igeneral MIBLP. For example, if
the lower-level problem is an LP3 (50 reduces to

F2(v) = w'o, (3.52)

since the problem will be solved at the root node. Note thiatesu® is the optimal dual solution
for the RHSw, (3.52) is simply the value function of the lower-level LP. Afterrdenstrating how
the reformulation §.51) can be simplified for general recourse problems, we uséittug/ledge to
reduce the problem even further for problems with contirsuiower-level variables.

When we require only the value of the lower-level objectivather than the actual lower-level
solution, @.51) reduces to:

min c'z+ 6
subjectto A'z > b!
6> F*b? — A%z), ViePynX (3.53)
e X.

Note that, in this formulation, we have dropped the low&eleconstraints and the requirement
of equality for the bounding constraint. We are able to diug lbwer-level constraints because
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we do not require the lower-level solutianexplicitly, and have assumed th&tz) # 0, for all
x € X. This assumption could easily be relaxed, since lowertimasibility will necessarily be
checked during each bilevel feasibility check, but woulguies the addition of a feasibility cut to
the algorithm below.

On the other hand, we are able to relax the bounding condit@mause it will be satisfied at op-
timality. Supposdz*,0*) is optimal for 3.53. To satisfy the original constraint, we require the
constraint

0* > max F*(b? — A%z")

zePynX

to be tight. Suppose this was not the case, and
0* > F*(b? — A%z"), ViePynX.
This contradicts the optimality dfc*, *) since, certainly, setting

6= max F(b? — A%z*)
zePynX

would yield a better upper-level objective value. By Theof&22 we have
zrnp(b? — A%x) = F* (b2 — A%z,

because the lower bound is guaranteed to be tight for the RHSHich it was obtained. Thus, at
optimality,

vrnp(0? — A%z*) =  max  FE(b* — A%z7),
ze(PunX)

as originally required.
As written, .53 still requires a bound for each upper-level solutiore (Py N X). However,

this formulation naturally lends itself to a constraint geation algorithm, starting with the obvious
relaxation that arises by substituting a subset (Py N X):

min ¢z +6
subjectto A'z > b!
6> F*b? — A%z), VielJ (3.54)
e X.

An algorithm then proceeds as follows. For each solutiord) to themaster problen{3.54), we

86



3.2. REFORMULATIONS AND EXACT SOLUTION METHODS

perform the standard bilevel feasibility check by solvihg tower-level problem

ZM[LP(b2 — AQx) = yefs?;%l)lmy d%y.
If 0 > 2y (b® — A%Z), we have found an optimal solution, else we add a cut of thva ftescribed
in Theorem3.22and iterate. This constraint generation algorithm is simib the well-known Ben-
ders’ decomposition algorithm for LP and the recent decaitipm algorithms for stochastic pro-
grams with integer recours€éroe and Tind1998 Kong et al, 2009. The method is summarized
in Algorithm 3.2

Algorithm 3.2 Iterative Lower Approximation

1: Initialization. Set.J! = () andt « 1.
2: lteration t. Solve @.54) with J = J! to obtain(z!, §!). Setz = 2! and solve the lower-level
problem, for fixedr.

(i) If 6t > zprp(b? — A22t), stop.(zf, 0¢) is an optimal solution.

(i) If 0" < zprp(b? — A22t), apply TheorenB.22with 2 = ! to obtain lower-bounding
function F'. SetJi™! = Jt U {t} andt « ¢ + 1.

Note that, dropping the assumption of lower-level feagibilvould require a third condition in
Step2 of Algorithm 3.2 to cover the possibility of infeasibility. However, the atghm would
proceed in a similar manner and, if infeasibility was degdcthe required feasibility cut would be
immediately available from the lower-level dual infornuati

As we alluded to when describing the lower-bounding metladeven further simplification is
possible whert” = R™2. Suppose this is the case and that the lower-level dualbleaset{u €
R™2 | uG? < d?} is a polytope. Recall that the LP value function can be writs:

_ R™2 3.55
zrp(v) Igle%{ﬂv}a Vo e RY7, (3.55)

whereR is the set of extreme points of the lower-level dual feasgde Using this form of the
value function allows us to define the LP analog 26Q):

min 'z + 6
subjectto Alz > bt
0> pb> — A%z) VpeR (3.56)
x e X.

Note that substituting anf®g’ C R in (3.56) yields a relaxation. Thus, algorithmically, we can
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MIBLP (4! = 0)

Figure 3.10: Relationships between integer problems.

initialize with someR’ C R, and iteratively improve our approximation, in a mannerikinto the
L-shaped Methoaf Slyke and Wetg1969, using the same general method as that described in
Algorithm 3.2

We have examined several different methods of reformgaiBLPs, with the intent of discover-
ing relationships among the problem subclasses and detiegnivhich variants may be approach-
able via direct methods. The relationships we have diseavare illustrated in Figurg.1Q Note
that the relationships shown in the figure are not meant io@ktle among complexity classes, but
rather show equivalence between variants of MIBLP and knpmblem classes. While some of
the cases discussed above may be suitable for exact solé@thods, it is likely that such difficult
problems are more effectively tackled by heuristic methedpecially as the problem dimension
grows. In the following section, we introduced two such noelh

3.3 Heuristic Methods

It should be clear from our discussions of the computatiaifficulties of solving MIBLPs and
MIBLP complexity, that solving the general problem to opmiity will be a challenge for problems
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of interesting size. As an alternative to the developmergxaict solution methods, we introduce
two heuristic methods that can be used to arrive a good enhkiiin reasonable computing time.
Both heuristic methods described in this section are based attempt to balance the upper- and
lower-objectives, which can be seen as a balance betwegnadipy and feasibility.

3.3.1 Efficient Solutions

In Chapter2, we presented several heuristics and, during this presamtaliscussed the need to
balance feasibility and optimality. In essence, we musteseha balance between the quality of the
solutions, with respect to the upper-level objective, aatdfaction of the constraint € M’ (x). In
contrast to the heuristic methods of Chapiethis method attempts to obtain this balance directly,
rather than adjusting solutions that favor one conditiotherother. To accomplish this, we borrow
technology from the multicriteria programming literattioegenerate feasible solutions derived from
efficient solutions to a related multicriteria program:

VI, el [clz + dly, d*y). (3.57)

As described in Chapte, the goal of 8.57) is to generate solutions:, y) that are nondominated,
or efficient, with the following properties:

e There is no othefz,y) € Q! such that

drt+dly<ci+dy and Py < d*g.

e Atleast one of
o +dly<cdi+dy or d’y< dy

holds.

Because solutions t&(57) are efficient, they are good candidates for providing arzadetween
the conditions discussed above.

In our implementation, we find efficient solutions 8.%7) using the weighted-sum subproblem
(Geoffrion, 1968:

min 0(ctx + dty) + (1 — 6)d?y, (3.58)
(z,y)eQ!

for 0 < ¢ < 1. Recall that solutions to3(58 for fixed ¢ are guaranteed to be efficient, but the
converse does not hold. However, for the purposes of a lieumgthod, generating a portion of
the efficient set is sufficient.
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Let P(J) denote the subproblem defined [8y57) with the objective replaced by

f=0dfi+(1-9)fo

wheref; = ¢! + d'y and f, = d?y, asin 8.59. Letr = (x,%)° denote a solution t&(5). The
outcome ofP(9) is defined as:

Let

* q
Zy T 2

8y = L (3.59)
e A+ 25— 2

*_

Y1

and N be the cardinality of the set of efficient solutions. We edll= (2!, zV) theideal point We
can then use Algorithrm3.3to generate a set of efficient solutions 857). Each member of is

Algorithm 3.3 Weighted Sums
1: SolveP(1) and P(0) to identify optimal outcomes! and=", respectively, and* = (2!, zV).
SetZ = {(z',2V)} andL = {(#', 2!,), (zV, 2M)}.
2: While Z # () do:

e Remove anyz?, z7) from I.

e Computed,, as in 3.59 and solveP(,,). If the outcome ig? or z¢, thenz? andz? are
adjacent in the listz', 22, ..., 2V).

e Otherwise, a new outcom# is generated. Ad@r", 2") to £. Add (2P, 2") and(z", 29)
toZ.

a potential candidate for a good bilevel feasible solutidowever, we must take one more step to
ensure feasibility fori(IIBLP). As in our standard bilevel feasibility check, for each e L, we

fix the upper-level portion of the solutior” and solve the resulting lower-level problem to obtain
y" . Combiningz” andy”" yields a bilevel feasible solution to the original problem.practice,
we select from among these feasible solutions that whichheabwest upper-level solution value.

The heuristic methods discussed in Chagtare primarily meant to be embedded in another algo-
rithmic framework, such as branch and cut, in order to imerits speed. This method can also be
used in the same manner. However, it can also be implemestdtand-alone heuristic algorithm.
One major advantage to this algorithm is its applicabiliyhonlinear problems. Solutions t8.58

are still guaranteed to be efficient if the objective funci@nd constraints are nonline&s(varan

et al, 1986 Geoffrion, 1968. Thus, this algorithm can be used to find feasible soluttonsixed
integer bilevelnonlinear programs (MIBNPs). One such problem is discussed in Chéaptsve
demonstrate the effectiveness of the heuristic in Setidn
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3.3.2 Stationary Point Heuristic

Rather than attempting to balance optimality and feagjllily a combined objective function, we
can instead construct solutions composed of upper- and-lewel solutions of high quality with
respect to their individual objective functions. We haversthat solutions to the underlying MILP
are typically infeasible, due to their suboptimality witkspect to the resulting lower-level problem.
On the other hand, solutions found by optimizing with respethe lower-level objective?y over
Q! are unlikely optimal for the original (upper-level) objeet Thus, we introduce a heuristic
aimed at finding an equilibrium between the dual objectibgscombining upper-and lower-level
solution components and iterating until we find a solutioriclvlcannot be improved with respect
to either objective.

Recall the lower-level problem, for fixede X:

zrr(x) = yg}gi&) d%y. (3.60)

In a similar manner, we can define tbenstrained upper-level problerfor fixedy € Y

min ¢tz + dly
subjectto A'z > b
A%z > b? — Gy (3.61)
z e X.

The main idea of the heuristic is to alternate between swiatto 8.60 and @.61) until we arrive
at a solution(z, 9) to (3.61) that is optimal for 8.60, with = = z. The heuristic is summarized in
Algorithm 3.4.

Algorithm 3.4 Stationary Point Heuristic
1. Initialization. Solve

min clz + d*y
(z,y)€Q!

to obtain an initial solutior{z?, y°). Setz = z° and solve 8.60), for fixed z, to obtainy*". If
20(2%) = d%y°, terminate with optimal solutiofz?, 4°), else fixy! = y*' and set «— 1.

2: lteration t. Solve @.61) with y = y' to obtain(x?,y'). Setx = z' and solve 8.60), for fixed
z, to obtainy*".

(i) If d?y! = zpp(2h), stop.(at,yt) is an optimal solution.

(i) If d2y' > zpp(2h), fix y'™! = y*'. Sett « t + 1.
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3.4 Computational Results

In this section, we examine the performance of our heuriséthods on the problem classes de-
scribed in Chapte®. In order to provide some insight into the quality of the $iolus generated,
we compare the objective values found by the heuristicsadaiver bound provided by solving the
underlying MILP:

min clz + dly,
(zy)eQ]

as well as upper bounds on the optimal solution value deffiad simple heuristic methods. The
first of these upper bounds is obtained by simply fixing theempgvel portion of a solution to
(3.4) and solving the lower-level problem. We get our secondilidasolution by optimizing over
Q! with respect to the lower-level objective function, justimshe Lower-level Priority Heuristic
described in Sectiof.2.1 In the tables below, these bounds are denbtdd® Bound Easy Boungd
and Lower Obj. Boundrespectively. The results from the Weighed Sums Heuratic shown
Table 3.1 and those from the Stationary Point Heuristic are in Tabk All computational tests
were performed on an AMD Opteron Processor 6128 with 32GBearhory.

Of the instances tested, the average gap between the Wightes objective value and that of the
underlying MILP is approximately 45%, while the improverhewer the best objective obtained
by the simple heuristics is approximately 41%. For the Sietiy Point Heuristic, the average gap
over the MILP bound and the improvement over the simple B&asiwas found to be approximately
54% and 10%, respectively. These results seem to implyhkatMeighted Sums Heuristic performs
better, especially when one considers the negligible rdiffee in computation time. However, for
larger instances, the required computational effort mag l@@ger consideration. In this case, one
may prefer to use the Stationary Point Heuristic, as it meguroughly half the computation time,
on average.

We also compared the objective values found by the Weightets&nd Stationary Point methods to
the best known value obtained by our solver, MibS. A full camigon is shown in Tabl&.3, where
the minimum value obtained by the heuristic methods is i bBlom the table, we can see that the
best objective value obtained by MibS is always less thanhdhtined by the heuristic methods.
However, in 11 of the 50 instances tested, at least one oféhastics performs just as well as
MibS. The average increase in objective value over the besivk MibS solution, hereaftéviibS
gap is approximately 34%, but in 24 out of 50 instances the Mibf ig less than 10%, suggesting
that a large amount of computational effort can be avoideth fairly minimal solution quality
detriment. These results demonstrate that the heuristicode find reasonably good solutions with
very little computational effort.

From Table3.3, we can also see that that Weighted Sums Heuristic obtailmdea objective value
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than that of the Stationary Point Heuristic in 25 instanedsle the reverse was true only 6 times.
Further, for those instances in which the Weighted Sums istauperformed better, it tended to
beat the Stationary Point Heuristic by approximately 74f6aeerage. On the other hand, when the
Stationary Point Heuristic yielded the better solutionydis only about 2% better than the Weighted
Sums solution, on average.

The performance profile®plan and More2002 for the MibS gap are shown in FiguBell The
results were altered slightly, to improve the effectivenekthe presentation. First, each MibS gap
was increased by a smaill to ensure that the gaps of zero would be handled accura@elyond,
all instances for which the heuristics obtained equal dijes were removed from the performance
profile, to provide a better comparison on those instanaestiich their performance differs. From
the figure, we can see that the Weighted Sums Heuristic egkinita smaller MibS gap in 80% of
the instances, and clearly dominates the Stationary Pa@ntistic, with respect to solution quality,
on our test set.

1
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WEIGHTED_ SUMS =——
STATIIONARY_-POINT -------
L 1

1 4 16 64 256 1024

Figure 3.11: Performance Profiles for the two heuristic roesh
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Instance CPU (s) | No. Subproblems| Weighted Sums Obj.| MILP Bound Easy Bound | Lower Obj. Bound
miblp-20-20-50-0110-5-1 2.92 23 -502.0 -642.0 -502.0 358.0
miblp-20-20-50-0110-5-2 1.33 15 -460.0 -863.0 -405.0 -67.0
miblp-20-20-50-0110-5-3 1.06 13 -477.0 -477.0 -477.0 60.0
miblp-20-20-50-0110-5-4 0.94 5 -753.0 -753.0 -753.0 -560.0
miblp-20-20-50-0110-5-5 1.17 15 -392.0 -392.0 -392.0 -75.0
miblp-20-20-50-0110-5-6 5.18 23 -1061.0 -1166.0 -938.0 -40.0
miblp-20-20-50-0110-5-7 0.93 17 -547.0 -551.0 -502.0 635.0
miblp-20-20-50-0110-5-8 4.23 19 -936.0 -936.0 -936.0 156.0
miblp-20-20-50-0110-5-9 0.64 13 -689.0 -889.0 -689.0 -339.0
miblp-20-20-50-0110-5-10 15 15 -290.0 -374.0 -290.0 417.0
miblp-20-20-50-0110-10-1 2.67 21 -232.0 -779.0 -119.0 -16.0
miblp-20-20-50-0110-10-2 0.66 13 -634.0 -709.0 -360.0 -269.0
miblp-20-20-50-0110-10-3 3.39 27 -451.0 -659.0 -254.0 338.0
miblp-20-20-50-0110-10-4 3.65 25 -579.0 -892.0 -579.0 -55.0
miblp-20-20-50-0110-10-5 0.91 21 -1003.0 -1003.0 -1003.0 414.0
miblp-20-20-50-0110-10-6 5.43 25 -589.0 -964.0 -589.0 17.0
miblp-20-20-50-0110-10-7 3.62 25 -591.0 -1078.0 -440.0 -199.0
miblp-20-20-50-0110-10-8 5.12 44 -231.0 -760.0 -231.0 293.0
miblp-20-20-50-0110-10-9 0.28 17 -121.0 -428.0 176.0 318.0
miblp-20-20-50-0110-10-10|  2.46 23 162.0 -721.0 162.0 623.0
miblp-20-20-50-0110-15-1 257 21 -14.0 -841.0 67.0 140.0
miblp-20-20-50-0110-15-2 7.13 19 -629.0 -874.0 -525.0 -241.0
miblp-20-20-50-0110-15-3 4.64 27 -593.0 -836.0 -321.0 -94.0
miblp-20-20-50-0110-15-4 3.66 19 13.0 -688.0 13.0 13.0
miblp-20-20-50-0110-15-5 3.57 31 373.0 -840.0 548.0 614.0
miblp-20-20-50-0110-15-6 0.64 17 -569.0 -1151.0 -569.0 -569.0
miblp-20-20-50-0110-15-7 2.99 17 -443.0 -782.0 -387.0 -131.0
miblp-20-20-50-0110-15-8 0.87 17 -158.0 -1000.0 182.0 138.0
miblp-20-20-50-0110-15-9 0.48 11 -563.0 -803.0 -544.0 -317.0
miblp-20-20-50-0110-15-10) 0.37 11 -118.0 -345.0 85.0 185.0
miblp-30-20-50-0110-10-1 0.96 7 -401.0 -528.0 -296.0 -223.0
miblp-30-20-50-0110-10-2 157 17 -169.0 -581.0 -122.0 193.0
miblp-30-20-50-0110-10-3 3.49 25 -638.0 -961.0 74.0 237.0
miblp-30-20-50-0110-10-4 1.16 19 437.0 -374.0 437.0 437.0
miblp-30-20-50-0110-10-5 0.02 2 -135.0 -135.0 -135.0 -123.0
miblp-30-20-50-0110-10-6 0.61 13 -168.0 -660.0 -90.0 426.0
miblp-30-20-50-0110-10-7 1.7 15 -361.0 -536.0 -278.0 -116.0
miblp-30-20-50-0110-10-8 6.2 19 -450.0 -646.0 -417.0 -74.0
miblp-30-20-50-0110-10-9 6.24 35 -323.0 -1028.0 -177.0 319.0
miblp-30-20-50-0110-10-10) 1.33 13 -160.0 -275.0 -104.0 87.0
miblp-40-20-50-0110-10-1 0.68 11 -198.0 -237.0 -121.0 25.0
miblp-40-20-50-0110-10-2 1.88 19 -85.0 -578.0 -58.0 -78.0
miblp-40-20-50-0110-10-3 2.35 17 -513.0 -766.0 -299.0 19.0
miblp-40-20-50-0110-10-4 1.19 13 -236.0 -371.0 -199.0 90.0
miblp-40-20-50-0110-10-5 1.48 15 -316.0 -550.0 -316.0 -50.0
miblp-40-20-50-0110-10-6 2.06 21 -372.0 -485.0 -261.0 637.0
miblp-40-20-50-0110-10-7 3.2 31 -911.0 -1275.0 -433.0 315.0
miblp-40-20-50-0110-10-8 4.14 19 -682.0 -961.0 -542.0 -411.0
miblp-40-20-50-0110-10-9 3.15 15 -603.0 -916.0 -568.0 -506.0
miblp-40-20-50-0110-10-10) 1.49 21 -395.0 -515.0 -395.0 403.0

Table 3.1: Results from the Weighted Sums Heuristic.
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Instance CPU (s) | No. Subproblems| Stationary Point Obj. | MILP Bound Easy Bound | Lower Obj. Bound
miblp-20-20-50-0110-5-1 1.43 6 -502.0 -642.0 -502.0 358.0
miblp-20-20-50-0110-5-2 1.27 3 -489.0 -863.0 -405.0 -67.0
miblp-20-20-50-0110-5-3 0.17 0 -477.0 -477.0 -477.0 60.0
miblp-20-20-50-0110-5-4 0.42 0 -753.0 -753.0 -753.0 -560.0
miblp-20-20-50-0110-5-5 0.18 0 -392.0 -392.0 -392.0 -75.0
miblp-20-20-50-0110-5-6 0.32 1 -1010.0 -1166.0 -938.0 -40.0
miblp-20-20-50-0110-5-7 0.24 2 -502.0 -551.0 -502.0 635.0
miblp-20-20-50-0110-5-8 0.49 0 -936.0 -936.0 -936.0 156.0
miblp-20-20-50-0110-5-9 0.59 7 -689.0 -889.0 -689.0 -339.0
miblp-20-20-50-0110-5-10 0.1 1 -290.0 -374.0 -290.0 417.0
miblp-20-20-50-0110-10-1 0.39 2 -152.0 -779.0 -119.0 -16.0
miblp-20-20-50-0110-10-2 0.36 2 -567.0 -709.0 -360.0 -269.0
miblp-20-20-50-0110-10-3 0.95 3 -254.0 -659.0 -254.0 338.0
miblp-20-20-50-0110-10-4 0.78 1 -592.0 -892.0 -579.0 -55.0
miblp-20-20-50-0110-10-5 0.05 0 -1003.0 -1003.0 -1003.0 414.0
miblp-20-20-50-0110-10-6 9.67 7 -589.0 -964.0 -589.0 17.0
miblp-20-20-50-0110-10-7 1.48 6 -454.0 -1078.0 -440.0 -199.0
miblp-20-20-50-0110-10-8 1.49 3 -231.0 -760.0 -231.0 293.0
miblp-20-20-50-0110-10-9 0.14 1 157.0 -428.0 176.0 318.0
miblp-20-20-50-0110-10-10] 0.57 3 162.0 -721.0 162.0 623.0
miblp-20-20-50-0110-15-1 0.49 2 67.0 -841.0 67.0 140.0
miblp-20-20-50-0110-15-2 1.49 3 -525.0 -874.0 -525.0 -241.0
miblp-20-20-50-0110-15-3 0.79 3 -357.0 -836.0 -321.0 -94.0
miblp-20-20-50-0110-15-4 0.85 1 13.0 -688.0 13.0 13.0
miblp-20-20-50-0110-15-5 0.97 2 548.0 -840.0 548.0 614.0
miblp-20-20-50-0110-15-6 0.12 1 -569.0 -1151.0 -569.0 -569.0
miblp-20-20-50-0110-15-7 5.02 3 -387.0 -782.0 -387.0 -131.0
miblp-20-20-50-0110-15-8 0.44 1 114.0 -1000.0 182.0 138.0
miblp-20-20-50-0110-15-9 0.2 1 -544.0 -803.0 -544.0 -317.0
miblp-20-20-50-0110-15-10) 0.16 1 85.0 -345.0 85.0 185.0
miblp-30-20-50-0110-10-1 0.88 2 -308.0 -528.0 -296.0 -223.0
miblp-30-20-50-0110-10-2 041 2 -122.0 -581.0 -122.0 193.0
miblp-30-20-50-0110-10-3 0.72 1 30.0 -961.0 74.0 237.0
miblp-30-20-50-0110-10-4 0.15 1 437.0 -374.0 437.0 437.0
miblp-30-20-50-0110-10-5 0.03 0 -135.0 -135.0 -135.0 -123.0
miblp-30-20-50-0110-10-6 0.06 1 -90.0 -660.0 -90.0 426.0
miblp-30-20-50-0110-10-7 0.65 2 -365.0 -536.0 -278.0 -116.0
miblp-30-20-50-0110-10-8 6.32 6 -450.0 -646.0 -417.0 -74.0
miblp-30-20-50-0110-10-9 0.94 3 -177.0 -1028.0 -177.0 319.0
miblp-30-20-50-0110-10-10 0.47 1 -104.0 -275.0 -104.0 87.0
miblp-40-20-50-0110-10-1 0.18 1 -131.0 -237.0 -121.0 25.0
miblp-40-20-50-0110-10-2 0.54 2 -85.0 -578.0 -58.0 -78.0
miblp-40-20-50-0110-10-3 0.61 1 -485.0 -766.0 -299.0 19.0
miblp-40-20-50-0110-10-4 0.6 2 -236.0 -371.0 -199.0 90.0
miblp-40-20-50-0110-10-5 0.69 2 -525.0 -550.0 -316.0 -50.0
miblp-40-20-50-0110-10-6 0.6 2 -380.0 -485.0 -261.0 637.0
miblp-40-20-50-0110-10-7 0.57 2 -693.0 -1275.0 -433.0 315.0
miblp-40-20-50-0110-10-8 1.99 2 -682.0 -961.0 -542.0 -411.0
miblp-40-20-50-0110-10-9 1.71 2 -568.0 -916.0 -568.0 -506.0
miblp-40-20-50-0110-10-10 0.18 1 -398.0 -515.0 -395.0 403.0

Table 3.2: Results from the Stationary Point Heuristic.
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Instance MibS Obj. | Weighted Sums Obj| Stationary Point Obj| Best Heuristic | Increase (%)
miblp-20-20-50-0110-5-1 -548 -502 -502 -502 8.39
miblp-20-20-50-0110-5-2 -561 -460 -489 -489 12.83
miblp-20-20-50-0110-5-3 -477 -477 -477 -477 —
miblp-20-20-50-0110-5-4 -753 -753 -753 -753 —
miblp-20-20-50-0110-5-5 -392 -392 -392 -392 —
miblp-20-20-50-0110-5-6 -1061 -1061 -1010 -1061 —
miblp-20-20-50-0110-5-7 -547 -547 -502 -547 —
miblp-20-20-50-0110-5-8 -936 -936 -936 -936 —
miblp-20-20-50-0110-5-9 -877 -689 -689 -689 21.44
miblp-20-20-50-0110-5-10 -340 -290 -290 -290 14.71
miblp-20-20-50-0110-10-1 -353 -232 -152 -232 34.28
miblp-20-20-50-0110-10-2 -659 -634 -567 -634 3.79
miblp-20-20-50-0110-10-3 -618 -451 -254 -451 27.02
miblp-20-20-50-0110-10-4 -597 -579 -592 -592 0.84
miblp-20-20-50-0110-10-5 -1003 -1003 -1003 -1003 —
miblp-20-20-50-0110-10-6 -672 -589 -589 -589 12.35
miblp-20-20-50-0110-10-7 -657 -591 -454 -591 10.05
miblp-20-20-50-0110-10-8 -667 -231 -231 -231 65.37
miblp-20-20-50-0110-10-9 -256 -121 157 -121 52.73
miblp-20-20-50-0110-10-10 -429 162 162 162 137.76
miblp-20-20-50-0110-15-1 -289 -14 67 -14 95.16
miblp-20-20-50-0110-15-2 -645 -629 -525 -629 2.48
miblp-20-20-50-0110-15-3 -593 -593 -357 -593 —
miblp-20-20-50-0110-15-4 -396 13 13 13 103.28
miblp-20-20-50-0110-15-5 -75 373 548 373 597.33
miblp-20-20-50-0110-15-6 -596 -569 -569 -569 4.53
miblp-20-20-50-0110-15-7 -471 -443 -387 -443 5.94
miblp-20-20-50-0110-15-8 -301 -158 114 -158 47.51
miblp-20-20-50-0110-15-9 -584 -563 -544 -563 3.60
miblp-20-20-50-0110-15-10 -251 -118 85 -118 52.99
miblp-30-20-50-0110-10-1 -471 -401 -308 -401 14.86
miblp-30-20-50-0110-10-2 -478 -169 -122 -169 64.64
miblp-30-20-50-0110-10-3 -678 -638 30 -638 5.90
miblp-30-20-50-0110-10-4 207 437 437 437 111.11
miblp-30-20-50-0110-10-5 -135 -135 -135 -135 —
miblp-30-20-50-0110-10-6 -171 -168 -90 -168 1.75
miblp-30-20-50-0110-10-7 -375 -361 -365 -365 2.67
miblp-30-20-50-0110-10-8 -461 -450 -450 -450 2.39
miblp-30-20-50-0110-10-9 -672 -323 -177 -323 51.93
miblp-30-20-50-0110-10-1(Q -168 -160 -104 -160 4.76
miblp-40-20-50-0110-10-1 -198 -198 -131 -198 —
miblp-40-20-50-0110-10-2 -120 -85 -85 -85 29.17
miblp-40-20-50-0110-10-3 -675 -513 -485 -513 24.00
miblp-40-20-50-0110-10-4 -270 -236 -236 -236 12.59
miblp-40-20-50-0110-10-5 -537 -316 -525 -525 2.23
miblp-40-20-50-0110-10-6 -425 -372 -380 -380 10.59
miblp-40-20-50-0110-10-7 -1028 -911 -693 -911 11.38
miblp-40-20-50-0110-10-8 -849 -682 -682 -682 19.67
miblp-40-20-50-0110-10-9 -800 -603 -568 -603 24.63
miblp-40-20-50-0110-10-1(Q -398 -395 -398 -398 —

Table 3.3: Comparison against optimal solutions.
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Chapter 4

Applications in Interdiction

In this chapter, we discuss applications of bilevel prograng. In particular, we describe the
problem class whose utility in homeland security and inftedure protection protection planning
originally lead us to study discrete bilevel programs. Tdiiss of problems can be used to model
methods aimed at attack prevention and mitigation, enemyatipns disruption, or early warning
system (EWS) design, for example, and encompasses netmterkliction models, a problem class
of crucial importance for homeland security applicatioR&call from Chaptef, the formulation

of MIPINT:

ZMIPINT = Mmax min dy (MIPINT)
z€PNTAB" yeSNT (2)NY

where

PO ={zeR"| Az <b'}
SMT(z)={y eR" | G*y > b, —y > ~U(e — x),y > 0}

andY = (ZP xR"P) C R". Aside from their wide applicability, the interdiction meld described
in this chapter are of interest because of their speciattire, which can be exploited for more
effective algorithm design. Before describing the aldomiic methods that result, however, we first
introduce a particular EWS and discuss the ILP used to optiriis design. After studying the
underlying problem in depth, we motivate a particular l@leextension of the model that can be
used to conduct a form of systematic sensitivity analy$isretby further illustrating the utility of
interdiction problems.

The EWS design problem we consider is that of optimizing ach@coustic leakage detection
system for urban water distribution networks. The systeaoimposed of detectors and transpon-
ders placed in water hydrants, with the goal of providing sirée coverage under given budget
restrictions. We model the problem as a particular PrizBeCing Steiner Arborescence (PCSA)
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4.1. LEAKAGE DETECTION SENSOR LOCATION

problem, and present a branch-and-cut-and-bound appvdaich exploits its special structure. Af-
ter presenting the exact algorithm, we demonstrate how t@irbpproximations of provably high
quality, by employing a suitable stopping criteria, and begh the exact and approximate algorithm
on series of problems composed of both real water distdhutietworks and randomly-generated
instances. Implicit in our model is the assumption that amylner of detectors may be installed, as
long as it is beneficial to do so. We test the sensitivity ofalgorithm to this assumption by intro-
ducing a detector limit and systematically altering itsuegal We then present the bilevel extension
of the model used for an alternative sensitivity analysid describe specialized methods to solve
the resulting bilevel program. Two novel classes of valiggimalities for bilevel problems with bi-
nary upper-level variables are derived, and a greedy iictéwd heuristic method is suggested. The
combination of the methods described here yields a soh&omization for interdiction problems.
This customization has been implemented in MibS. After diesg the methods, we provide results
from the customized solver for both the full customizatias,well as the heuristic as a standalone
method.

4.1 Leakage Detection Sensor Location

In this section, we describe a model whose goal is to find thet eftective strategy for monitoring
the structural integrity of a water distribution network particular, we seek to determine the op-
timal placement, with respect to installation cost and ltegubenefit, of leakage detection sensors
within the water network. This system is one example of an E#fSalarm is triggered when a
possible vulnerability in the system is discovered, allayviis the opportunity to investigate before
a major disruption occurs.

It is clear that leakages can be a major concern in urban wagibution networks - the damage
caused by a leaky pipe in the network can range from sizableri@ss to catastrophic damage to
people and buildings, depending on the size and locatioheofdak. Therefore, development of
an effective monitoring system for early detection of wdteses is of significant importance to
network managers.

Here, we consider the optimization of a network of acoustitewleakage sensors and accompany-
ing radio relays being tested by the city of Lausanne, Swérd. Various such systems have been
proposed in the past. The particular technology underlyfiggfollowing is calledLORNQ and is
composed of acoustic sensors placed at various hydrantgargponders that store and transmit
the monitored and received information from other transieos to a central station. Each acoustic
sensor “hears” problematic signals within a neighborhoefineéd by its placement and dependent
on local network topology and geometry; such a neighborhmast be estimated for each potential
placement. For each each hydrant within the system, we haveption of installing
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4.1. LEAKAGE DETECTION SENSOR LOCATION

e asensor and a transponder,
e atransponder only, or

e nothing at all.

Clearly, installing a sensor with no means of communicafi@n a transponder) is not sensible, but
supplementary transponders may be needed to carry almatn to the central station, and can
be installed at a lower cost than the full system.

For a given city, this gives rise to a family of combinatodgtimization problems. One example is:

Given the set of hydrants and the neighborhood covered by sstsor, find a minimum cost
placement of sensors covering the entire network, as wealf aansponders enabling the
corresponding information to be transmitted to a centratisi.

Another version is:

For a given budget, find a maximum utility placement of senaad transponders, where utility is
measured by the information transmitted and the locatiomfwhere it is collected.

Such optimal placement problems in a water distributionvodt have been formulated as directly
as ILPs (seeCarr et al, 2009. However, the problems we consider here are more specific an
contain a hard constraint, namely that which ensures tiatdhution induces a connected subgraph
of a given network, in order to transmit data to the centralieh. These connectivity constraints
lead us to model the problems posed above as variants oeBsdroblem and the Prize Collecting
Steiner's Problem, respectively. These problems knowretdb—hard , except for special graphs
(e.g-Margot et al, 1994, but polyhedral approaches like those describeddiynson et a2000),
Fischetti(1991), Goemans and Williamsof1995, andGoemans and Williamsof1997 may help

to find optimal or good approximate solutions.

In this section, we present a novel branch-and-bound-ah@japroach for solving these problems
and compare it with others from the literature. Our appraadhitially tested on real data from
Lausanne’s water supply network. Then, in order to provieltelo-founded empirical validation of
our approach, we also test it on specially-constructed veatigply systems, tailored to be realistic.
For a more concise description of this problem and the riegutnethodological approach, the
reader is referred to the paperffodon et al(2010.

The remainder of the section is structured as follows. Fivst give a description of theORNO
system and mathematical formulations of the optimizatimblgms. We next describe our approach
for solving the Prize Collecting Steiner Arborescence Rnob Then, we present and discuss our
computational results, both on real-world and realisiyesimulated models. Finally, we describe a
bilevel extension of the model that allows a specific typesafsitivity analysis to be performed.
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4.1.1 The Leakage Problem

The motivation for this work arises from problems expergzhby the the city of Lausanne, Switzer-
land. In the Lausanne water distribution network, wateséssof approximately 20% have been
experienced. In other cities, this loss proportion is kndwbe as high as 50%. Such losses may
have many different causes, such as leaky or broken pipewegistered utilization, resulting from
exercises performed by local fire departments. In a regioerevkvater supply is not a problem,
losses due to unregistered utilization are not crucial,biboken pipes have the potential to cause
serious damage and related cost (e.g., traffic perturhaflioods, water distribution break-down,
contamination). In a distribution system, leaks are oftemliest available sign that a pipe is not
structurally stable, making leak detection crucial for tieéwork manager.

TheLORNOsystem (inni, 2010, hereafte,ORNQ has been developed to detect leaks in a water
distribution network LORNOrelies on recognizing the unusual noises that arise in {hespilue to
the leaks. It consists of units placed in the hydrants anchaaleserver for data collection. Each
full unit is composed of an auditory component, installethini the hydrant, and a radio transmitter
installed on external portion of the hydrant. The auditenydtion is comprised of an acoustic sensor
coupled with electronic chips for signal analysis. The atioisensor is capable of receiving signals
from all pipes within a certain surrounding area, whose ditedepends on the network topology,
and measuring the amount of water drawn from the hydrant iictwh is placed. This data is
transmitted via radio signals to the central server, andlatdeport is generated if the values do not
match the stored reference data. In order to limit eletyriconsumption, low power transmitters,
capable of communicating with neighboring hydrants lodatéhin a certain distance - 200 to 500
meters, depending on the physical obstacles - are used, thieusignals must be transmitted from
hydrant to hydrant, through what we call the communicatietwork, until the server is reached.

Based on historical data and professional experience, ngmeer’s rule-of-thumb suggests that
equipping half of the hydrants in a water network with fuDRNOunits is sufficient for leak
detection, and even equipping one third of the hydrantadire@rovides good coverage. However,
if a hydrant is unable to transmit its signal to the centralae because it lies outside of the feasible
communication range, its information is lost. Thus, havingonnected communication network
is essential. In order to achieve a connected network angreeribat all data collected may be
transmitted, it is also possible to equip a hydrant with anhadio transmitter, rather than the full
installation. Thus, for each hydrant, the system operatastrdecide if he will equip it with a full
LORNOunit, a radio transmitter only, or nothing at all.

Figure4.1shows an example of a mid-sized water distribution networkausanne, Switzerland.
The network contains 173 hydrants, represented in the figitihestars. In Figurel.1(a) the physi-
cal pipe network is shown. Here, the edges correspond tacthalgipes that connect the hydrants
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(a) The physical pipe network. (b) The communication network.

Figure 4.1: A water distribution network in Lausanne, Seitand.

in the network. On the other hand, in Figutel(b) the edges indicate that two hydrants are able
to communicate, and the graph represents a mathematicalptEs of the communication ability
among the hydrants. The optimization problem facing theéesyperator is then the following:
choose a subset of hydrants to equip with a BIRNOunit and possibly a subset of hydrants
to equip with a radio transmitter only, in order to get a cartteé communication network, and
minimize (maximize) the expected cost (profit).

The cost of installing 4 ORNOsystem consists of two components. There is a fixed pricehtor t
necessary software and the overhead for the central sexvavell as a cost proportional to the
number ofLORNOunits that must be acquired. For our modeling purposes, wendpose the
cost of installing &eORNOunit into the cost of the radio transmitter plus the cost efitbst of the
installation. It is important to note that the cost of inkite eachunit is identical. To some extent,
this is due to the pricing strategy of th€ RNOproducer. However, while one could imagine that
certain below-ground installations may be more challegygamd thus more costly, it is reasonable
to assume that the cost of installing the transmitter woelddependent of location. We will see
the implications of this cost structure in the following sews.

The profit of installing aLORNOunit is more difficult to quantify. The benefit of installing a
LORNOunNit at a particular site depends on the probability of a fupEaking at that site, and the
potential damage caused by such an event. These quantaigsary depending on material and
age of the pipes and, of course, on the surrounding enviroh(peesence of residences, industry,
hospitals, electricity, or telecom cables, and so on). énréal-world data available from Lausanne,
these factors had not been evaluated, and we use only thelnassumption that the benefit of
one unit is proportional to the length of the pipes withinntighborhood. However, determining
more accurate benefit fAtORNQ and other types of sensors measuring network stabilitgnis
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interesting area of future work.

We also assume that the pipes are discretized into smalgénmeces such that each is “scanned”
entirely, or not at all, from a given hydrant. Note that sucpiece may be heard by more than
one hydrant, but the corresponding benefit should be coumtlydonce. Here, it is tacitly assumed
that redundant detection is not necessary to protect agajpgpment failure, since it tests itself
continually by sending around appropriate signals. It &hdwe noted, however, that this feature
is specific toLORNQ and if one wishes to model an alternate system, this fumality should be
verified before proceeding.

4.1.2 The LORNO Sensor Location Model

We model the optimization problem as a rooted PCSA problem divected graplz = (V, E),
constructed as follows. L&f be the set of hydrants arf@lthe set of pipe pieces. For each hydrant
h; € H we introduce two nodes; andh; and for each pipe piecg € R, a node denoted alsg.
Denote these node sets By, H and R, respectively. Then = {ro} U H U H U R, wherer is a
special node, the root. It is easier to draw these nodesfatetit levels: the roat, at level0, H at
level 1, H at level2 and R at level3. The arcs of grapli’ are decomposed into four types:

(i) Arcs (rq, h;), for h; € H, with zero cost

(i) Opposite arcs{(h;, h;), (h;,h;)} for each pair of hydrants that can communicate by radio
station (i.e., for each edge in the communication netwawdith the coste;,; ) andc(h—j )
of radio installation on hydrarit; andh;, respectively.

(i) Anarc (h;, h;) for each hydrant, with the cosfy- hy) of auditory installation (i.e. the cost of
LORNOmMminus the cost of radio installation) on Fydrafnt

(iv) Anarc (h,,7;), for each regiom; € R that can be heard by hydrahg, with costeq, ) <0
representing the benefit of hearing regign

An example of the graph can be seen in Figu The elements of the network given by the graph
and its weights have the following interpretation. Nogerepresents the central station, which
will actually be located in the vicinity of some hydrant. Tbloice of this hydrant may be free
or restricted. This is modeled by an appropriate choice o Bavingry . Level 1 represents the
communication network, while Levé@lrepresents the auditory components of LIERNOsystem.
Note that the only way to reach a nofigfrom rq is by usingh;. Finally, Level3 represents the
regions we are interested in monitoring. Note that thisllsay be further simplified by aggregating
all nodes with the same set of predecessors in a single nadehei sum of the benefits, so that the
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6 _
Above-ground hydrants (H)

12
Below-ground hydrants (H)

) @  Audible regions (R)
13 14 15 16 17 18 19 20 21

Figure 4.2: ALORNOnNetwork

complexity does not depend on the discretization used, tiytan the network’s topology. Now,
one can see that each solution to the optimization problemesjponds to an arborescencedGn
by choosing some spanning tree in the subgraph of the caanewtwork induced by the nodes
used and choosing arbitrarily whidtORNOunit hears a region in case of multiple possibilities.
Conversely, each rooted arborescenc€ imaving at most one arc leavimg defines such a solution.

Thus the problem can be formulated as that of finding an optig@ooted arborescencé =
(Vr, Er) with the property of having exactly one arc leaving' and, as an arborescence has
exactly one arc entering each of its nodes, we report theof@sich node (positive or negative) on
each of its entering arcs, thereby getting a standard PC&#emn.

4.1.3 Solving Prize-Collecting Steiner Arborescence Prdéms

Definitions and formulation. The prize-collecting Steiner problem was originally defirem an
undirected graph, with non-negative benefits associatéditsinodes and non-negative costs with
its edges, as the problem of finding an optimal connectedraphgthere will then be a tree among
the optimal solutions. The rooted version ensures a givele ng will be part of the solution.
This definition extends in a straightforward manner to aedafirected graph, in which we are
looking for an optimal Steiner arborescence, with the priypthat all costs and benefits can then
be transferred with appropriate signs on the corresponditmming arcs.

For simplicity, we discard the theoretically possible $iolu of installing nothing.
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The well-knowncut formulationof the PCSA problem is introduced kfischetti(1991):

min Z CijTij (4.18)
(i,4)eE

subjectto Y =y, Vi€V —{ro} (4.1b)
(JR)eE

£ (57(S)) >y, VEES,VSCV — {ro} (4.1¢)

> mpi=1 (4.1d)
(roji)elE

wijyi € 0,1}, Vi€V —{ro}h,V(i,j) € E (4.1€)

wherec;; is the cost of including edgg, j) in the solutionz(A) = 3 . 4 @e,

1 if (i,7) € Ep 1 ifieVyp
Tij = s Yi = s
0 otherwise 0 otherwise

and
5 (S)={(i,j) € Elic S,jecS}

Here, constraints4(1b) enforce that each nodein the solution must have exactly one incoming
arc, while constraint4.1d implies that exactly one arc leaves The constraints4.19, which we
call connectivity constraintensure that, if the solution contains nddet also contains a path from
the rootry to k£ and, thus, at least one arc in each cut induced by a node @attainingk and not
ro. Ljubic et al. (2005 use this formulation as a starting point to solve PCSA motd, and we use
their ideas extensively here. Not surprisingly, the difficinherent in this formulation is managing
the connectivity constraintst(1g. There are an exponential number of these constraintsnlgo o
those truly necessary for a given instance should be used.siracture naturally lends itself to a

cut generation algorithm.

Relaxing all but som¢S, R) connectivity constraints4(19 (i.e., selecting a subsgtof valid pairs
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(S, k)), yields the following formulation, denotezlirrent program(CP):

min Z CijTij (4.2a)
(i,7)EF
subjectto Y wji=y;, Vi€V —{rg} (4.2b)
(j)eE
Y =1 (4.2¢)
(ro,i)EF
x (5_(5)) >y, VY(S,k)eL (4.2d)
Z Tj < Z Tij, Vi RU {7‘0} (4.2e)
(ji)eE (i,4)eE
yié 1_xr’oja VZ<],{Z,]} CF (42f)
T +xj <y, (g <wi), V(0,J) € Eyi eV —{ro} (4.29)
Lijy Yi € {07 1}7 VieV — {T0}>V(i7j) € E7 (42h)

Due to the symmetric structure of the communication netwanrll to the symmetries in the cost
function, many equivalent solutions exist. In order to caitnhis symmetry, we have added some
symmetry breaking constraintg.2f), which force a connection between the root and the node of
the communication network in the solution with smallestexd

We have also added constraints29 and @.29 for strengthening the relaxed LP formulation.
The constraints4.26 ensure that there are at least as many arcs leaving as tieeseca entering
an internal node, which is valid for any arborescence. We elgperimented with both forms of
constraintst.2g the stronger formy;; +x;; < y;, avoiding cycles of length 2, and the weaker form
x;; < y;, forcing use of both end nodes with each choice of edge.

The connectivity cuts, i.e. the paif§, k), introduced at the root node are obtained in the following

way:
() Forr; € R,i = 1,...,|R| we consider the adjacent verticks € H and form the cuts
associated with the subsst = {r;, ki1, hia, ..., hir }-
(i) Forr; € R,i =1,...,|R| we consider the adjacent verticese H and their predecessors

in H and form the cuts associated with the suli&et {r;, ki1, ..., hig, hit, ..., Bt}

(iii) If the connection network is not connected, we build éach connected componéiit the set
S; = {h;|h; € H; " H} of nodes in that component and add a 8t k) for eachk € S;.

For example, in Figuret.2, for » = 15, we would haveS; = {15,7,8} for type 1, Sy =
{15,7,8,1,2} for type 2, andS; = {1,2, 3,4} for type 3. The motivation for this choice is that
these are constraints whose associated dual variablesawayalpositive value.
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4.1.4 Branch-and-bound algorithm

The approach used injubic et al. (2005 to solve PCSA is to solve the linear relaxation of the
current program, find violated connectivity constraintgétdduce them in the current program, and
iterate until all connectivity constraints are satisfiedthbg current solution. Finally, branch and
bound is used if the optimal solution found so far is not ieted-inding the most violated connec-
tivity constraint for a given terminal node can be done efficiently by solving a max flow problem.
If the maximumr — r; flow value is less thamg;, the corresponding minimum cut produces such a
violated constraint.

Unfortunately, due to two special properties of our insémthis approach is ineffective in solving
problems of interesting size. First, our instances tendite a very large number of terminal nodes,
roughly |V'|/2, meaning a lot of violated constraints are found, typicalith the same amount of
violation. We have no good criteria for choosing among thewh adding all violated constraints
to the current problem results in huge memory requireme®¢sond, the special cost structure of
the communication network (i.e. all arcs have identicalt)cglds very poor convergence when
applying the method dfjubic et al.(2005.

In order to overcome these difficulties we use an approachdbas finding integer solutions to
the current program, using standard branch-and-boundauiethf the integer solution found is an
arborescence we are done. Otherwise, the special struaftore instance allows either to find an
arborescence with the same value, and thus we are done, iod &ffiective connectivity cuts, which
we add to the current problem and iterate in the same way. grhibumay seem counterintuitive to
solve a series of ILPs, rather than LPs, this method was shmWe very effective for our problem
instances, specifically due to the following property.

Let Gsoi = (Vsor, Asor) denote the graph associated with the solution to the cupretiiem @.2),
G the LORNOnRetwork, andG(S) the subgraph of7 induced by the nodes iffi. Recall the the
special form of the networks (see Figure) we consider:

(P1) All arcs are either directed from levidio leveli + 1,7 = 0, ..., 2, or have both end nodes in
H (at level 1), thus all circuits are entirely containedGnH ).

(P2) All arcs having both end nodes ih have the same cost.

We have the following result.

Proposition 4.1 Prodon et al. (2010) If G, is not an arborescence b (V,,; N H) is a con-
nected graph, then there exists an arborescence with the saine as the current solution to the
current problem(4.2).
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13 14 15 16 17 18 19 13 14 15 16 17 18 19

(a) A disconnected solution to CP. (b) A connected solution with the same cost.

Figure 4.3: lllustrating the connection process.

Proof. From @.2b and @.20), it follows

‘%ol’zzyzzl"’_zyz:l"’_z iji:1+’Asol’-

eV ieV—r i€V —r (ji)eE

Thus, if G4, is not an arborescence, then it is disconnected. Féoai (and @.29, we have that if
the solution contains a node# r , it also contains exactly one af¢, i) and also nodg. Thus it
contains a path going (backward) franeither tory or to a nodek contained in a circuit which is,
from the precedent property, entirely contained:if¥7 ). We also have

“@olmF‘:Z Z xji=1+zzl"ji-

icH (§)EL i€H jeH

That is, the solution has it/(H) a number of arcs equal to its number of nodes minus one. If
G(V,q N H) is connected, it contains a spanning tree which has the sameenr of arcs as the
solution inG(H). Replacing the arcs of the solution @(H ) by such a spanning tree (properly

oriented) gives an arborescence with the same valdg as 0

This process is illustrated in Figure3. On the left, a solution of the current problem associated
with the network in Figuret.2is shown. This solution is not connected, but can be tramsddrin
a connected solution with the same cost, as shown on the Tigit result leads to Algorithm. L

It is important to note that one of the reasons our instancedifficult to solve is the fact that
all arcs in the communication network have the same weiglhis Teads to solutions to the LP
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Algorithm 4.1 LORNO Branch and Cut
1. Solve the current problend (2) (using branch and bound).

2: Find the connected componerds, ..., C; of G,. If G4, is connected, STOP, else go to
Steps.

3: Find the connected components@fV,,; N H). If G(V,,; N H) is connected, go to Step else
go to Stepb.

4: Find a spanning tre€ of G(V,,; N H), replace the arcs of,,; contained inG(H ) by those of
T properly oriented, prune if necessary the leaves which arénnR and terminate with this
solution.

5: Insert the cut

x(é‘(CZ)) >y, ke

into (4.2), foralli =1,...,[, and return to Stef.

relaxation that are not connected graphs. The approachiltkddiere aims at overcoming this
difficulty by searching for trees with the same weight as tingent solution. An additional benefit

of this approach is that it allows us to easily find approxiorasolutions. That is, feasible solutions
whose value is guaranteed to be at medimes the optimal one. In fact, it suffices to stop the
branch-and-bound procedure as soon as the gap firsihifthis becomes particularly important

when finding an optimal solution is no longer possible withéasonable computing time. We
investigate the potential loss of solution quality reswgtirom applying a stopping criteria as part
of our presentation of results in the following section.

4.1.5 Computational experiments

With our algorithms, we were able to successfully processethieal-world instances, stemming
from the water distribution network of the city of Lausannelaurrounding region, the largest
instance comprising 606 hydrants. While determining atgmiufor the problems facing the city
of Lausanne was the primary goal of the work, we also testeécapproach on a set of random
instances. Below we give results from fifty such instances.

Problem generation. As described above, the PCSA instances dealt with in theeptegudy
have a special structure. We were therefore led to develop@eg@ure enabling us to generate
random problem instances having the required charadtsristVe proceed as follows. First, we
generate a planar representation of a planar graph repiregséme pipe network. Then, we choose
a number of hydrants and their locations, and compute thegoptions that could be monitored by
each hydrants, IEORNOequipped. Then, we generate a communications network aild,the
correspondind ORNOnNetwork (i.e. where our Steiner arborescence lives). lemoia do this, we
first generaten uniformly-distributed points in a square of side lengthgadional to/n. Then,
the Delaunay triangulation of this set of points (a sparsmanl connected graph, containing the
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optimal spanning tree and easy to compute, seede.d@erg et al.2000 is computed, yielding

a graphGp on n nodes, in which a minimum euclidean length spanning §geis determined.
For each edge in E(Gp), a probabilityp. proportional to its length is assigned. Then, edges
e € E(Gp) — E(Sp) are randomly eliminated with probabilify., until a desired average node
degreed, is achieved. This process yields a planar grahwith » nodes and average degrée

We then add H | hydrants to randomly-chosen edges of this graph. The posii each hydrant
on the edge is also determined randomly, at a location clmsket center of the edge. For each
hydrant, a node is added to the graph and the associated s, creating two new edges and
one new node. Then, the communication network is generatedding an edge between hydrants
h1,ho € H with probability

0 d(hl, hg) > T2
Phihe = Y2 71 < d(h1,h2) <ro

p1 r1>d(hy, hg).

Finally, we determine for each edge, the set of hydrants fwdnicth it can be heard. An edge
e = (e1, e2) is audible by hydrank if d(h,e1) < rz, andd(h,e2) < rr. Results are reported below
for instances generated witH | = n/2, and

dy =23, 71 =250, 7ro=400, p; =08, and ps=0.5.

The name of each instance in the following tables followstéeing convention established by the
main data:r1-10050 means that it is a random instance, the seed of the randomag@ne/as

1, 100 points have been generated in the plane Bnhtlydrants have been placed in the resulting
graph.

Algorithms. The branch-and-cut algorithm, denoted CONN, was impleateirt C/C++, using
the libraries available from the Computational Infrastiwe for Operations Research (COIN-OR)
repository Lougee-Heimer2003. The Open Solver Interface (OSI) was used to interface thigh
integer and linear programming solvers. All results repabrhere reflect the use of OSI CPLEX
interface, where CPLEX 9.1 was used to solve the integer iaedr programming instances gen-
erated throughout the course of the algorithm. The algoritvas tested on an Intel Xeon 2.4GHz
processor with 4GB of memory.

After carefully examining our preliminary results, we ligall that a significant amount of running
time was being spent on proving the optimality of solutiam€P that would eventually be discarded
because of constraint violation.

As mentioned previously, the design of our algorithm alldiws ability to change the optimality
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requirements of CP solutions without altering the overallture of the algorithm. Aside from the
ability to get good solutions quickly, this also allows usctange our optimality gap dynamically
within the algorithm. The cut generation routine requiras/@ feasible solution to produce valid
cuts. Thus, it is possible to widen the optimality gap in the&\eiterations of the algorithm and
generate several rounds of cuts in a much smaller amount dftidfe. In order to test the benefit
of this procedure, we experimented with a slight varianthef branch-and-cut algorithm denoted
GAPCONN, where we systematically modify the optimality weggment during the course of the
algorithm. We refer to algorithms of this type dgnamic while the standard algorithms can be
described astatic As already described, the objective function comprisesasily quantifiable
component, namely the investment costs, and one which sssiescorresponding to the drawn
benefits. These are quantized by the cost of alf@RNOunit and that of a transponder unit,
respectively. Rather than using a relative gap measuredppisg criteria, we selected to use an
absolute gap. We chose to bound the gap successively by shefca full LORNOuniIt, that of

a transponder unit and ky a sufficiently small parameter to prove optimality. Notattfor our
numerical examples these values make good sense, sincadbeyp to at most a fraction of a
percent of the objective function value.

To evaluate the effectiveness of our separation routingmpiEemented an alternate algorithm sim-
ilar to that described i jubic et al. (2005. In this algorithm, denoted FLOW, a modification of
Goldberg’s maximum flow algorithmCherkassky1997) is used find violated constraints with re-
spect to solutions of the LP-relaxation of CP. In the casegbeh a solution does not violate any
constraints, an integer programming solver is called to éindnteger solution to CP. If the result-
ing integer solution is also feasible to the original proilét must be optimal. Else, new violated
inequalities are added to CP, and the algorithm continubis algorithm was also implemented in
C/C++, using COIN-OR’s libraries to interface with CPLEXL9.

As mentioned previously, in addition to the comparison pisation routines, we also experimented
with the form of the constraintgl(2g. The algorithms included in our experiments are summdrize
in Table4.1

CONN | FLOW | GAPCONN
i + 25 < yi | CONN2 | FLOW2 | GAPCONN2
z; <y | CONN4| — | GAPCONN4

Table 4.1: The algorithm variants used in the computatishaly.
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416 Results

We present here results from two classes of experimentsfirBheonsists of a series of tests where
we compare the algorithmic variants on data instances oéasing size. In each table, the set of
columns labeledterationsgives the number of number of algorithmic loops necessafintbthe
optimal solution. The group of columns label€®U secgives the running time of the algorithms
on the platform described above. Unless otherwise notetksllts presented represent a CPLEX
optimality gap ofl x 10~%. For the algorithms in which the gap is changed dynamicatiig
corresponds to a choice of= 1 x 107,

For this study, a maximum running time of 5000 CPU secondsalladed. In the tables, instances
that were not solved within this time limit are indicated hwi dash in the corresponding row of the
table. Note that the set of unsolved instances includesthote instances that exceeded the time
limit, as well as those whose memory requirements were toe IBor the resources available. We
do not differentiate between these two types of unsolve@dimgs in the presentation of our results.
However, we do note that the FLOW algorithm frequently fdil® to memory requirements. This
suggests that if this algorithm is used, unnecessary cotdégbe removed dynamically throughout
the course of the algorithm.

The complete output for the experimental study is shown bil€lé.3. From the table, we can see
that the dynamic variants of the branch-and-cut algorit@ARPCONN2 and GAPCONN4) clearly
dominate their static counterparts. Further, there is oblpm that GAPCONNZ2 is able to solve that
GAPCONN4 cannot. Thus, we can say that GAPCONNA4 is the mbsstowith respect to number
of problems solved, of all the branch-and-cut variants. ifoldally, in Section4.1.6§ we compare
the performance of GAPCONN2 and GAPCONN4 across differgtitr@lity requirements, and
see that when the optimality gap is equal to the cost of a.fOIRNOinstallation, GAPCONN4 is
able to solve all but two problems in our test set.

It is not immediately obvious, however, how the branch-antlvariants compare to FLOW?2, since
there are problems that FLOW2 is able to solve where all hramzl-cut algorithms fail. However,
a comparison between FLOW2 and GAPCONNA4 shows that thigeorily twice in the entire test
set. Additionally, the total number of problems solved bgteaf the branch-and-cut algorithms is
significantly higher than that by FLOW2.

The results are summarized in Tadl€. In this table, we report the average number of instances
solved, the average required iterations and average CRir¢iquired for each algorithm. Table2
gives further evidence that GAPCONNA4 is the most robustlalgbrithm variants, solving almost
90% of the problems in the test set, but also shows that ifinegjthe second highest average CPU
time. FLOW?2 is the fastest algorithm, on average, but sobrég 54% of the problems. CONN4
seems to yield the best balance between speed and robystaokésg 80% of the test problems,
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Success Ratigp Avg No. Iter. | Avg CPU sec
CONNZ2 0.78 7.85 249.15
CONN4 0.80 7.38 118.49
FLOW?2 0.54 66.30 154.52
GAPCONNZ2| 0.82 15.54 33141
GAPCONN4| 0.88 20.43 318.15

Table 4.2: Summary results for all algorithms.

with the second lowest average CPU time. This table alsoestgghat, for the problems we study
here, the weaker form of constraint.2g is preferable to the stronger form since, for both the
static and dynamic variants, using this form yielded a high#&ccess rate and a lower average
speed. It should be noted, however, that the results in Tallenay be somewhat misleading,

since the averages do not account for those instances thairreinsolved by each algorithm. The
performance profiles shown in Figudel provide a more equitable comparison.
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Figure 4.4: Performance profiles of each of the solvers dustr

From the figure, we can see that CONN2 achieved the minimuatisoltime on the largest number
of problems (roughly 40%). Thus, in a loose sense, we carhsaglgorithm is the fastest. Finding
points of intersection within the plot allows us to deterethose values of for which a subset of
the algorithms is equivalent with respect to running timeonk the plot, we can see that CONN2,
CONN4, GAPCONNZ2, GAPCONN4 will all solve a given problem kit a factor of 4 of the fastest
algorithm roughly 70% of the time.

In fact, for a range of values af between 3.5 and 4, the algorithms CONN2 and CONN4 are
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Iterations CPU sec

Instance CONN2 CONN4 FLOW2 GCONN2 GCONN4 CONN2 CONN4 FLOW2 GCONN2 GCONN4
r1-10050 1 3 1 2 3 0.780 0.432 0.540 1.320 0.492
r2-10050 1 2 4 1 2 0.428 1.044 0.712 0.468 1.352
r3-10050 6 8 47 6 7 8.005 16.313 3.804 8.165 16.585
r4-10050 4 5 — 41 6 2.356 2.192 — 31.550 3.216
r5-10050 2 1 28 2 1 1.160 0.720 7.708 1.360 0.988
r6-10050 1 1 19 1 1 0.340 0.324 1.832 0.428 0.408
r7-10050 20 13 168 11 15 38.994 15.877 19.881 10.553 16.281
r8-10050 2 1 3 2 1 1.000 0.300 0.524 1.080 0.360
r9-10050 — — 146 — — — — 82.513 — —

r10-10050 4 4 4 5 3 3.748 2.692 0.620 5.568 3.560
r1-200100 — — — 51 22 — — — 991.814 110.323
r2-200100 1 5 53 1 5 8.028 10.229 66.240 11.601 9.845
r3-200100 — — — — — — — — — —

r4-200100 — — — — 110 — — — — 1128.250
r5-200100 1 1 29 1 1 3.852 4.300 14.301 4.748 4.752
r6-200100 2 3 7 2 3 5.616 10.097 4.412 6.712 11.145
r7-200100 3 1 73 3 1 9.253 5.228 75.293 11.697 5.728
r8-200100 3 2 103 3 2 6.756 5.368 129.632 8.129 7.176
r9-200100 3 3 9 4 4 5.400 11.109 4.240 7.828 16.285
r10-200100 1 4 — 1 4 5.784 19.433 — 8.065 19.973
r1-300150 3 9 — 3 9 13.197 52.631 — 19.201 61.420
r2-300150 1 6 1 6 17.081 51.199 54.579 27.918 57.000
r3-300150 7 7 33 18 31 43.075 40.911 26.370 106.323 152.254
r4-300150 2 4 — 2 6 38.286 | 106.547 — 47.807 107.479
r5-300150 54 81 — 76 362 381.604 | 903.728 — 560.043 | 3850.540
r6-300150 2 5 73 4 7 25.490 44.879 128.984 41.183 55.572
r7-300150 — — — 21 23 — — — 565.779 846.493
r8-300150 3 10 — 3 7 25774 | 162.306 — 34.490 76.277
r9-300150 — — 70 — — — — 56.452 — —

r10-300150 2 9 — 5 8 22.445 | 100.690 — 45.923 73.241
r1-400200 3 1 31 6 1 47.439 27.070 58.040 67.664 33.910
r2-400200 1 6 — 2 6 46.519 59.192 — 51.271 87.137
r3-400200 1 2 35 1 4 32.934 63.120 80.733 32.546 91.018
r4-400200 — — — — — — — — — —

r5-400200 79 2 — — 2 2586.150 29.058 — — 45.847
r6-400200 8 22 186 20 37 106.175 | 229.622 535.125 238.467 516.076
r7-400200 5 7 — 6 9 79.577 215.217 — 99.922 265.701
r8-400200 9 6 89 11 15 98.942 82.037 238.915 66.496 263.248
r9-400200 — 10 — 116 9 — 94.446 — 2284.760 134.308
r10-400200 — — — — — — — — — —

r1-500250 25 12 — 29 17 2727.330 | 605.638 — 2084.730 610.334
r2-500250 2 6 — 3 10 97.542 | 251.568 — 139.333 310.511
r3-500250 15 10 186 44 23 2181.300 | 772.440 1099.330 | 1304.160 692.931
r4-500250 15 5 64 113 5 605.138 133.924 202.733 | 4192.560 222.622
r5-500250 3 2 128 3 9 73.285 80.161 474.438 90.942 160.966
r6-500250 — — — — — — — — — —

r7-500250 1 2 — 2 3 69.864 77.853 — 75.961 86.357
r8-500250 — — — — 70 — — — — 2909.050
r9-500250 6 5 — 7 7 190.108 193.848 — 186.352 293.374
r10-500250 4 9 153 4 22 106.075 | 255.872 803.998 113.095 638.072

Table 4.3: Results from all variants on the full test set.
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almost indistinguishable with respect to running time. sTisi not so surprising, since these two
solvers differ only in the form of the constraint$.2g). From the larger values af, we can see
the probability that the solvers solve a problem within asttset. GAPCONNA4 is the most likely
to solve a random instance, solving approximately 90% ofptioblems tested. GAPCONN2 and
CONN4 both solve roughly 80% of the instances, and CONN2dsessful 75% of the time. From
the plots, we can also see that the probability of success nloesignificantly increase far > 5

for any of our solvers, except GAPCONNA4. Thus, if GAPCONNEZNN2 or CONN4 is able to
solve an instance, it is likely that it will solve the instanwithin five times the speed of the fastest
solver. Figuret.4confirms our earlier assertion that the flow algorithm is dwated by all variants
of the branch-and-cut algorithm. FLOW?2 is the fastest gobvdy 15% of the time and solves only
half of the instances in the test set.

In the formulation described previously, we have assumatile are free to install as many full
LORNOinstallations as desired. However, this may not be a reaissumption, since this number
may be limited by physical or financial constraints. In ortietest the sensitivity of our algorithm
to this assumption, a second computational test was pegfibrive add the constraint

> y<B (4.3)

i€H
to the formulation and apply the solution algorithms foryilag boundsB on the number of installed
auditory components. Due the increased difficulty of thestricted problems, we chose to relax
our optimality requirements. As mentioned previously,dbsign of our algorithm allows the user to
change the desired optimality gap without alteration ofalgerithm. For this experiment, we used
an optimality gap equal to the cost of oh®RNOinstallation. These results are also presented in
tabular format, as before. Here, we have two additionalronaky labeled3 andObj, which indicate
the limit placed on the number of fulORNOInstallations and the resulting optimal objective
value, respectively. The data used for the experiment st@tsiof both a real water network from
Lausanne, as well as a randomly-generated instance wittasioharacteristics. The full results
are shown in Tablé.4. Aside from testing the sensitivity of our algorithm, thisidy allows us
to examine the inherent tradeoff that exists between thaliagon limit and the resulting benefit.
Figure4.5illustrates this relationship for both data instances. ptwions of the tradeoff curves in
Figure4.5in which we are most interested are those with a steep sldpes€elareas represent critical
points, where small increases fhyield substantial increases in the optimal benefit. Assagrttie
budget constraint4(3) is somewhat flexible, these critical points indicate whigie worthwhile
to increase the installation limit, assuming an increasphigsically possible. In Section.2.3
we perform a similar analysis on a set of interdiction proide via multicriteria programming.
Analyses of this type are particularly relevant to applmad facing government DMs. Due to
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dail r1-300150
GAPCONN2 GAPCONN4 GAPCONN2 GAPCONN4
B Iter CPU sec Obj Iter CPU sec Obj B Iter CPU sec Obj Iter CPU sec Obj
45 — — — — — — 55 — — — — — —
47 15 5166.830 | -2083350 23 2862.860 | -2083350 57 47 999.510 -3064700 64 3058.000 | -3064700
49 12 628.147 | -2117540 8 213.957 | -2117540 59 18 342.893 -3099980 9 383.148 | -3100240
51 4 174.463 | -2149400 2 81.645 -2150150 61 13 176.339 -3131050 21 978.061 | -3131320
53 1 65.984 -2180740 1 66.388 -2180740 63 19 166.990 -3157350 34 715.033 | -3157610
55 1 46.515 -2206060 1 70.976 -2206060 65 24 202.717 -3181040 7 117.647 | -3181040
57 1 47.531 -2224240 1 73.185 -2225680 67 8 33.002 -3199500 7 108.987 | -3200220
59 1 42.639 | -2242660 1 63.808 | -2243540 69 7 24.373 | -3216620 5 62.208 | -3216620
61 1 42.079 | -2258840 1 69.864 | -2258840 71 3 20.285 | -3228980 6 69.136 | -3228980
63 1 57.576 | -2271700 1 67.428 | -2271700 73 3 9.397 -3240300 3 39.331 | -3240300
65 1 51.567 | -2281670 1 68.800 | -2281670 75 3 12.941 | -3249670 2 35.974 | -3249670
67 1 59.312 | -2286980 1 60.852 | -2286980 77 5 17.605 | -3256390 2 44.183 | -3256390
69 1 52.735 | -2287640 1 55.947 | -2287640 79 5 15.209 | -3256390 3 52.935 | -3256390
Table 4.4: Results from budget study.
x10° dail x10° r1-300150
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Figure 4.5: Tradeoff between the installation budget aedthjective value.
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limited availability of funds, it is crucial to ensure thagetallocated funds are being used effectively.
On the other hand, if there is significant societal beneflizea with a slight increase in the budget,
the government may be able to allocate additional fundirertoeve this benefit.

The Cost of Optimality.  In this section, we compare the cost of proving optimality G®AP-
CONN2 and GAPCONN4. Tables5and4.6 show the full sets of results for the two algorithms.
In each table, we see the required iterations and CPU timeghss the objective value for each
value of optimality gap discussed in the previous sectioe. déhote these values hpRNQ the
cost of a fulLORNOinstallation, TRANSthe cost of installing a radio transponder only, &RS a
sufficiently small parameter that yields “true” optimalifjor GAPCONNZ2, the results indicate that,
on average, moving frorhtORNGoptimality to TRANS-optimality requires approximatelp 7%
more CPU time, while improving the objective by only 0.007Btirther, to achieve EPS-optimality,
GAPCONNZ2 requires approximately 162% more CPU time thah@RNGoptimality, and yields
only a 0.012% objective improvement. The results for GAPG@Nire less dramatic, but show
a similar tendency. For GAPCONN4, the average differenceuiime betweer ORNG and
TRANS-optimality is approximately 37% with a 0.005% objeetimprovement, and obtaining
EPS-optimality requires a 59% increase in CPU time and yial6.007% objective improvement.
Thus, we can conclude that, for these instances, employirmptimality gap does not significantly
decrease solution quality, but results in much faster cdimgdimes.

4.1.7 Sensitivity to Graph Structure

In the previous section, we conduct one type of sensitiviiglysis; namely, we analyze the sensi-
tivity of our solution quality to the number of hydrants weeable to install. In this section, we
describe another method for conducting sensitivity anglys

Suppose we seek to understand the benefit of individual htalia our monitoring system. Put
another way, suppose we wish to determine the effect of relg@/node from the communication
graph on our ability to monitor the water network. If we findattcertain hydrants within the

network are crucial to our ability to monitor the system,tpoting those crucial hydrants may be
worthwhile. This idea is illustrated in examples that falldn Example6, we consider removal an

above-ground hydrant from the network and, in Examptemoval of a below-ground hydrant is
considered.

Example 6. Removal of an above-ground hydrant.Consider theeORNOnetwork shown in Fig-
ure 4.6(a) We can find connected solution with one fulDRNOinstallation, as shown in Fig-
ure4.6(b) Letc = ¢; + ¢, be the cost of a fuLORNOinstallation. Recall that Costp, ;) <0
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LORNO TRANS EPS

Instance Iterations | CPUsec | Objective | lterations | CPUsec | Objective | Iterations | CPU sec | Objective
r1-10050 1 0.848 -960341 1 0.876 -960341 2 1.320 -961061
r2-10050 1 0.464 -890994 1 0.468 -890994 1 0.468 -890994
r3-10050 3 0.764 | -1062120 3 0.792 | -1062120 6 8.165 | -1062120
r4-10050 37 30.074 | -1139590 40 31.478 | -1140310 41 31.550 | -1141030
r5-10050 2 1.344 -957468 2 1.356 -957468 2 1.360 -957468
r6-10050 1 0.420 | -1113020 1 0.428 | -1113020 1 0.428 | -1113020
r7-10050 10 7.152 -813227 10 7.176 -813227 11 10.553 | -813227
r8-10050 2 1.072 | -1023130 2 1.080 | -1023130 2 1.080 | -1023130
r9-10050 8 6.296 -969108 8 6.316 -969108 — — —

r10-10050 5 4.772 -987484 5 4.820 -987484 5 5.568 -987484
r1-200100 7 27.214 | -2209600 51 967.125 | -2210320 51 991.814 | -2210320
r2-200100 1 9.421 | -2080110 1 9.505 | -2080110 1 11.601 | -2080110
r3-200100 14 78.121 | -1910670 — — — — — —

r4-200100 57 274.581 | -2027370 — — — — — —

r5-200100 1 4.708 | -2166220 1 4.732 | -2166220 1 4748 | -2166220
r6-200100 2 6.676 | -2017630 2 6.700 | -2017630 2 6.712 | -2017630
17-200100 3 11.665 | -2008300 3 11.689 | -2008300 3 11.697 | -2008300
r8-200100 3 5.836 -2010260 3 6.416 -2010260 3 8.129 -2010260
r9-200100 3 3.548 -2176660 4 3.892 -2177380 4 7.828 -2177380
r10-200100 1 6.552 -2086780 1 8.053 -2086780 1 8.065 -2086780
r1-300150 3 13.077 | -3256390 3 13.233 | -3256390 3 19.201 | -3256390
r2-300150 1 19.161 | -3131920 1 27.606 | -3131920 1 27.918 | -3131920
r3-300150 17 105.683 | -3133680 17 105.807 | -3133680 18 106.323 | -3134400
r4-300150 2 47.331 -2725630 2 47.487 -2725630 2 47.807 -2725630
r5-300150 76 551.646 | -3048320 76 551.802 | -3048320 76 560.043 -3048320
r6-300150 3 36.258 -3098540 4 37.302 -3099260 4 41.183 -3099260
r7-300150 21 458.725 | -3134060 21 499.796 | -3134060 21 565.780 | -3134060
r8-300150 3 16.913 -3114700 3 17.121 -3114700 3 34.490 -3114700
r9-300150 12 97.430 -3029640 12 97.586 -3029640 — — —

r10-300150 4 33.390 -3161470 5 40.239 -3162190 5 45.923 -3162190
r1-400200 5 66.032 -4290830 5 66.236 -4290830 6 67.664 -4291550
r2-400200 1 45.059 -4273880 2 51.003 -4274600 2 51.271 -4274600
r3-400200 1 32.438 -4105300 1 32.514 -4105300 1 32.546 -4105300
r4-400200 — — — — — — — — —

r5-400200 68 658.465 | -4178710 187 2132.825 | -4179430 — — —

r6-400200 15 184.216 | -3880780 15 184.440 | -3880780 20 238.467 -3881500
r7-400200 5 79.665 -4269060 6 89.642 -4269780 6 99.922 -4269780
r8-400200 11 66.416 | -4324840 11 66.468 | -4324840 11 66.496 | -4324840
r9-400200 29 303.971 | -4091240 116 2278.291 | -4091960 116 2284.763 | -4091960
r10-400200 5 70.220 | -3987600 7 108.671 | -3987600 — — —

r1-500250 15 350.346 | -5196930 16 468.133 | -5196930 29 2084.723 | -5197650
r2-500250 2 90.938 -5257910 2 91.294 -5257910 3 139.333 -5257910
r3-500250 31 685.811 | -5040440 44 1278.000 | -5041160 44 1304.158 | -5041160
r4-500250 100 3346.910 | -5420330 113 4192.203 | -5421050 113 4192.555 | -5421050
r5-500250 3 66.344 | -5236380 3 72.665 | -5236380 3 90.942 | -5236380
r6-500250 — — — — — — — — —

17-500250 1 64.088 | -5088330 2 75.521 | -5089050 2 75.961 | -5089050
r8-500250 18 399.773 | -5030270 — — — — — —

r9-500250 3 101.246 | -5154660 7 185.963 | -5155070 7 186.351 | -5155070
r10-500250 4 110.307 | -5401620 4 112.843 | -5401620 4 113.095 | -5401620

Table 4.5: Comparing the cost of optimality for GAPCONNZ2.
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LORNO TRANS EPS

Instance Iterations | CPUsec | Objective | lterations | CPUsec | Objective | Iterations | CPU sec | Objective
r1-10050 3 0.488 -961061 3 0.492 -961061 3 0.492 -961061
r2-10050 2 1.348 -890994 2 1.352 -890994 2 1.352 -890994
r3-10050 4 2.056 | -1062120 4 2.080 | -1062120 7 16.585 | -1062120
r4-10050 2 0.668 | -1140310 2 0.696 | -1140310 6 3.216 | -1141030
r5-10050 1 0.972 -957468 1 0.980 -957468 1 0.988 -957468
r6-10050 1 0.400 | -1113020 1 0.404 | -1113020 1 0.408 | -1113020
r7-10050 14 11.037 -813227 14 11.061 | -813227 15 16.281 | -813227
r8-10050 1 0.356 | -1023130 1 0.356 | -1023130 1 0.360 | -1023130
r9-10050 15 10.957 -968388 25 16.057 | -969108 — — —

r10-10050 3 2.348 -987484 3 2.372 -987484 3 3.560 -987484
r1-200100 22 86.185 | -2210320 22 89.534 | -2210320 22 110.323 | -2210320
r2-200100 5 7.020 | -2080110 5 7.140 | -2080110 5 9.845 | -2080110
r3-200100 34 253.704 | -1910670 — — — — — —

r4-200100 110 1121.570 | -2028090 110 1121.666 | -2028090 110 1128.246 | -2028090
r5-200100 1 4.732 | -2166220 1 4.744 | -2166220 1 4752 | -2166220
r6-200100 3 11.125 | -2017630 3 11.137 | -2017630 3 11.145 | -2017630
17-200100 1 5.700 | -2008300 1 5.720 | -2008300 1 5.728 | -2008300
r8-200100 2 4.764 -2010260 2 5.216 -2010260 2 7.176 -2010260
r9-200100 4 12.429 -2177380 4 12.541 -2177380 4 16.285 -2177380
r10-200100 4 18.497 -2086790 4 19.965 -2086790 4 19.973 -2086790
r1-300150 9 52.667 | -3256390 9 52.867 | -3256390 9 61.420 | -3256390
r2-300150 6 50.579 | -3131920 6 56.616 | -3131920 6 57.000 | -3131920
r3-300150 19 83.625 | -3133680 19 83.833 | -3133680 31 152.254 | -3134400
r4-300150 3 44.267 -2724910 6 107.263 | -2725630 6 107.479 -2725630
r5-300150 357 3757.180 | -3047600 361 3839.161 | -3047600 362 3850.542 | -3048320
r6-300150 5 43.099 -3098540 7 51.791 -3099260 7 55.571 -3099260
r7-300150 23 357.806 | -3134060 23 667.617 | -3134060 23 846.492 -3134060
r8-300150 7 55.731 -3114700 7 55.944 -3114700 7 76.277 -3114700
r9-300150 6 35.250 -3028920 40 347.438 | -3029640 — — —

r10-300150 8 64.168 -3162190 8 64.380 -3162190 8 73.241 -3162190
r1-400200 1 33.786 -4291550 1 33.870 -4291550 1 33.910 -4291550
r2-400200 6 86.541 -4274600 6 86.857 -4274600 6 87.137 -4274600
r3-400200 2 67.876 -4104580 3 90.242 -4104580 4 91.018 -4105300
r4-400200 — — — — — — — — —

r5-400200 2 34.474 -4180150 2 34.730 -4180150 2 45.847 -4180150
r6-400200 37 515.456 | -3881500 37 515.764 | -3881500 37 516.076 -3881500
r7-400200 7 212.777 | -4269060 9 244911 | -4269780 9 265.700 | -4269780
r8-400200 4 84.905 | -4323400 11 153.734 | -4324120 15 263.249 | -4324840
r9-400200 9 121.748 | -4091960 9 122.028 | -4091960 9 134.309 | -4091960
r10-400200 3 56.243 | -3987600 5 101.106 | -3987600 — — —

r1-500250 17 580.528 | -5197650 17 609.634 | -5197650 17 610.334 | -5197650
r2-500250 5 173.587 | -5257190 10 279.890 | -5257910 10 310.512 -5257910
r3-500250 22 482.546 | -5041160 22 482.962 | -5041160 23 692.931 -5041160
r4-500250 5 197.368 | -5421050 5 222.194 | -5421050 5 222.622 | -5421050
r5-500250 9 138.053 | -5236380 9 138.509 | -5236380 9 160.966 | -5236380
r6-500250 — — — — — — — — —

17-500250 2 63.268 | -5088330 3 83.061 | -5089050 3 86.357 | -5089050
r8-500250 68 2442.070 | -5030270 70 2505.382 | -5030990 70 2909.051 | -5030990
r9-500250 2 146.837 | -5154660 7 277.413 | -5155070 7 293.374 | -5155070
r10-500250 19 527.873 | -5400900 20 573.680 | -5400900 22 638.072 | -5401620

Table 4.6: Comparing the cost of optimality for GAPCONNA4.
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(@) TheLORNOnNetwork. (b) A connected solution with one full installation.

Figure 4.6: Thee.ORNOnetwork and corresponding solution from Exam@le

represents the benefit of hearing regjoand, is thus, the same for dl} such that(h,,r;) € E.
The solution shown in Figuré.6(b) has a total cost of

c—(cg11 +cg12 + €813 +¢814 + C3.15) -

However, if we remove the underground hydrant represenyedeliex 8, we have the resulting
network shown in Figurd.7(a) In order to maintain the same level of coverage, we requive f

41 1L A

4 15 11 12 13 14 15

11 12 13
(a) The network after a hydrant is removed. (b) A connected solution on the new graph.

Figure 4.7: The resulting network and solution after renhofa below-groundhydrant.

full LORNOinstallations. Such a solution is shown in Figdr&(b) This solution has a total cost
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of

de — (cg 11 + 7,12 + €10,13 + €914 + C10,15)

an increase o3¢ over the previous solution.

Example 7. Removal of an below-ground hydrant.Now, consider thd.ORNO network shown
in Figure4.8(a) We can find connected solution with two fllORNOinstallations and one radio

7o

(@) TheLORNOnNetwork. (b) A connected solution with 3 above-ground hydrants.

12

18

Figure 4.8: Thde ORNOnetwork and corresponding solution from Example

installation, as shown in Figure7(b) The solution shown in Figuré.9(b)has a total cost of
2¢+ ¢ — (cs11 + 812 + €813 + €814 + C8.15) -

However, if we remove the above-ground hydrant represeloyedertex3, we have the resulting
network shown in Figuré.9(a) In order to maintain the same level of coverage, we reqwice t
additional radio installationE ORNOinstallations. A solution is shown in Figure7(b) This
solution has a total cost of

2¢ + 3¢5 — (c6,11 + €712 + €10,13 + €9,14 + €10,15) 5

an increase dtc;; over the previous solution.

One way to quantify the benefit of a hydrant is to determinddks in total leak detection benefit
if it is removed from the system. Of particular interest drese hydrants whose removal results in
the largest loss in leak detection benefit. One question weseek to answer is: What are the
worst hydrants to remove, with respect to leak detectiontavieemploy the bilevel programming
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7o To
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13 14 15 16 17 18 1
(a) The resulting network after the hydrant is removed. (b) Example of a connected solution on the new graph.

18

Figure 4.9: The resulting network and solution after renho¥an above-grounchydrant.

framework to answer such a question. In particular, we wiltiel the problem as a ILP interdiction

problem.

Bilevel programs have previously been used to plan intéatiefforts against terrorist groups op-
erating on a physical network\ood, 1993 Israeli 1999 Israeli and Wood2002. In these appli-
cations, the analyst generally adopts the point of view efithiv enforcement agency attempting to
reduce the effectiveness of the terrorist group’s opanatibiowever, we can also use these models
from the opposite perspective, where we adopt the opesgboiht of view, in order to determine
the sensitivity of our leak detection abilities to the stuare of our network.

Interdicting the LORNO Network.  Suppose we have a total interdiction budgeind the cost of
interdicting each hydrant is one (i.e., we are simply irgtd in the number of hydrants interdicted).
In other words, we are interested in the effect of removingahydrants. Let

1 if hydranti is interdicted
w; = .
0 otherwise

Then, we can define an interdiction model which yields thesivoase outcome of resulting from
removal ofp hydrants from the water network. For the sensitivity analgescribed above, it may
be desirable to simply set = 1, to determine the single hydrant whose removal would hage th
greatest impact on cost (benefit). After adding the necgssterdiction constraints, we have the
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following network design interdiction formulation, an s case of [IIPINT) (and IBLP):

max min Z CijTij
(i,7)eF
subjectto Y w; <p
iced
Z Tji = Yi, VieV — {’r'o}
=2
Z wmi =1
(To,i)EE
x (5_(5)) >y, VY(S,k)eL
Z Tj; < Z zij, Vig RU{ro}
(j)eE (i,7)EF
yiél_xToja VZ<]7{Z7]}CF
zij +xj <y, (i <), V(7)€ EyieV —{ro}
yi <1 —wy, VieV —{ro}
xij7yi€{071}7 ViGV—{TO},V(i,j)EE,
w; € {0,1}, VieV —{ro}.

Here, we assume that the central server cannot be removes, tiis would effectively render
the system useless. Other than this caveat, we allow renob\ahy hydrant (above- or below-
ground) in theLORNOnNetwork, but note that several of the algorithms in this atisgion rely
on the additional assumption of feasibility on the lowerleproblem, meaning we only consider
hydrants whose removal does not prevent a connected coroationi network. In this application,
those hydrants whose removal does result in such an infedsiver-level problem is likely of
interest, but we can easily modify the algorithmic assuamgtito include this case (see Chagier

It is important to note that this formulation does not yidie resulting level of protection upon re-
moval of the hydrants from the currebiDRNGmonitored network. Rather, it provides the lowest-
cost connected communication network that can be desigitadw these hydrants available. If a
hydrant is removed from the network, and tti@RNOsensor optimization problem is not resolved,
it is possible that we are left with a disconnected netwaghdering some (or all) of the remaining
sensors useless. In Chapfmwe provided an algorithm to solve the general IBLP. In théofo-
ing section, we describe specialized methods for intaaigiroblems aimed at exploiting problem
structure meant to improve the performance of our algorittmmterdiction problems.
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4.2 General Interdiction Problems

In this section, we demonstrate methods for incorporatiadplpm-specific customizations into our
solver framework. In order to illustrate such methods, wevdeseveral methods that exploit the
structure of MIPINT), thereby leading to more effective algorithm design. Whiese methods
have important computational implications for interdictiproblems, they are also meant as an
example of how users of MibS can supplement the built-in wasHo yield better results for their
own applications.

4.2.1 Cutting Plane Methods

In this section, we describe two methods for generatingingufplanes. These methods are, in
fact, applicable to a slightly wider range of problems thamse covered byMIPINT), since their
derivation relies only on the requiremekit= B"!.

No-good Cuts. During preliminary computational experiments with MibS ioterdiction prob-
lems, we discovered that our algorithm frequently gensraggjuences of integer bilevel infeasible
solutions of the form

such thaty’ ¢ M’ (&) for i < k. In particular, the bilevel feasibility cu(3) of Chapter2 (by
design) separates only the current integer point, alloienghis type of sequence generation.

If z € B™, information obtained from the lower-level problem can kBedito avoid this problem.
While checking bilevel feasibility, we obtain an optimallgion y* and associated optimal value
zr, (%) for the lower-level problem

yEST(if?Ifl)ﬁY dzy

and, thus, a feasible solution t@®(P). This leads to the implication
r=1=d*y =2 (2).

Therefore, if we store the solutiait, y*), we can add a cut that separatésy) for y € Y from
Ql.

Let Iy :={i| 2; =0} andl; := {i | #; = 1}. Note that forz € B™, we have that

Zl’i—FZ(l—wi):O

i€l i€l
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if and only if x = 2. Otherwise,

Zwi—i-Z(l—w,-) > 1.

S i€l

Thus, adding the cut

Zwi—FinZl—’Iﬂ,

i€lp i€l

imposesr # .

Increasing Objective Cuts. LetY = Z"* x R*7"?, and
Sp(@) ={G’y> b - A’z yeY}. (4.4)
SupposeSy, (z) C S (z) for somex € (Py N X). Then, it is clear that

min d*y = zyrrp(z) < zapp(d) = min d*y
y€SL(x) yESL(%)

sincey € Si(x) impliesy € Sp(z). Thus,zyp(2) yields an upper bound on the lower-level
objective function for such an.

Note that, forS.(2) C Si(z), we only requireb® — A%z < b* — A%¢. Thus, if A2 € R7">*™,
Sp(2) C Sp(x) for anyx > 3. Alternatively, if A2 € R™*™ Sy (z) C Sp(z) for anyx < 7.
This is formalized in the following proposition.

Proposition 4.2 LetY = Z"? x R'?7"*, andS; (&) be defined as if¥.4). Then, if:

() A% e RT>*™ S; (&) C Spp(z)forall z > 2

(i) A2 € R™*™ Sp(#) C Spp(x)forall z < &
In either case, we have

min d*y = zvrnp(x) < zyrpp(2) = min d%y.
y€eSL(x) yeSL (%)

One case for which we know these conditions to holdV&(NT). Recall from Chaptet:

SPT(z)={yeR"|G?y < b*,—y > —U(e — ),y > 0}.
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Corollary 4.3 Let
arrpp(e) = min{d®y |y € (S (z) NY)}.
Then,
anrrnp(®) < 2rrpp(#),

forall x < z.

Proof. (MIPINT) satisfies Conditiortii) of Propositior4.2 0

Note that these do not depend an= B™'. However, when all upper-level variables are binary,
generating valid inequalities from these results becoma® simple. We will see this next.

Using the results above, we would like to derive a cut to sspasolutions that are integer, but not
bilevel feasible. Letz,) € Q be a solution tol(R) andy* € argmin{d?y | y € (Sp(2)NY)}

be an optimal lower-level solution determined during thiev! feasibility check. Also, suppose
that A2 € R"2*"2 2 Then, we have the following implication:

r < i = d*y < d*yr.

Itis possible to model this implication by introducing indtor variables, € Bfori =1,...,n;+1
and the set of constraints

xT; — (ml — 6)(51' >z, +e, YVi=1,...n (45)
ny

Z@' —€0py 41 <Ny —€ (4.6)
i=1

d*y + M, 41 < M + d>y”, (4.7)

wherem is a lower bound on; — #;, M is an upper bound on?y — d?y*, ande is a small
tolerance. Herem; = l; — u;, wherel; and u; are natural upper and lower bounds @ and
M = max{d?y | (z,y) € Q'} — d?y* will suffice. While, @.5-(4.7) can be used for the general
caseX = Z&' x R'"P' itis likely thatm,; < 0 for somei and M > d*y*. This may cause
computational difficulties when implemented.

However, if X = B™, we can use the special structure to derive a more “well\miaimple-
mentation. As before, lefy := {i | z; = 0} andl; := {i | #; = 1}. Forz € B™, we have
that

2Proposition4.2 also covers the casé® € R’'27™2 but we omit the results here since they are analogous.
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if and only if x < z. Otherwise, we have
i€lp
Thus, applying the results above yields the disjunction

ZZEIQ T

" OR Yefi > 1,

IN A

d2y*

which is violated by(z,7), but satisfied by all members ¢f’. Disjunctions of this type can be
applied directly as a branching rule used whenever solsifiony) € X x Y to (LR) that are not
bilevel feasible.

Alternatively, we can use this disjunction to generate pudiive cut using the same methodology
as discussed previously in Secti®r2.4 The two polyhedra, denote' andP?, that result if we
combine this disjunction with the original set of consttaim ¢2:

—Alx < —p!
—A%r -Gy < P
1
P - Zie.’o xZ; § 0
d2y S d2y*
T,y > 0
and
—Alz < —pt
P2 _ A% - G%y < —b?
- Zielo L < —1
,Yy > 0

Let (u?,v*,w’, 2*) be multipliers for the constraints definif®j. The following inequalities are valid
for Pt andP?, respectively:

—utAly — vt A%z +w! Z z; — v GPy+2 Py < ulb'—o'b? +2 %y
i€ly

—w Al — v? A% —w? Z T; — UQGZy < u?b' —v2b? — w?
i€lp
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As in Chapter3, we derive theut generation LP

min a4+ By —y
st. a+utAl + 01 A% —wlelo <0
au? Al + 02 A% +w?elo <0
B+0v'G?—2d* <0
B4+ v2G? <0 (4.8)
v+ ulbl 4 0B — 22y > 0
v+ u?bt + 0?0 4+ w? >0

m1 mo mi m2
Zull—i-g v,-l—l—wl—i-zl—FZu?—i-g v w422 =1
i=1 i=1 i=1 i=1

u17u27vl71)27w17w2721722 2 07

wheree© is a row vector such that® = 1if i € I ande; = 0 otherwise. This is formalized in the
following result.

Theorem 4.4 LetX = B™,Y =2 x R* 7, Iy == {i | & = 0} and I, := {i | &; = 1}. Let
elo ande’* be row vectors such that

1 ifiely 1 ifiel
el = and el = .
0 otherwise 0 otherwise

Finally, let (&, ) € Q' be a solution tqLR) andy* € argmin{d?y | y € Pr(2#) NY}. Then, if:
(i) A% e R?*™ and(a*, 8%, 7%, u*, v*, w*, z*) is a solution to

a+ulAl 40t A? fwleh
o+ ulAl 4% A% — w2l
B+olG? - 2 d?
B+ v*G? <0 (4.9)

yuldt — oo + | |w! — 2tdPy* >
yu?bt — 0?0 — (11| — Dw?

mi mo mi m2
2%14‘5 v}+w1+zl+2u?+g vi2+w2—|—z2:1
i=1 i=1 i=1 i=1

ul,uz,vl,vz,wl,w2,zl,z2 >0
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such thate*z + 5*y > ~*, thena*z + 5%y < ~* is a valid cutting plane separatingz, 7)
from conv (F7).

a4+ ut At + vt A% — wlelo
a4 u?Al + 02 A? F el
B4ulG? - a2

B+ v*G? <0 (4.10)

b+ 00 — Py

yu?bt + 2 +w? >0

mi mo mi m2

1 1 1 1 2 2 2 2
Zui—FZvi—Fw + 2z —i—Zui—FZvi—kw +z¢=1
i=1 i=1 i=1 i=1

u17u27vl7v27w17w2721722 Z 07
such thataz + 84 > 7, thenat + 39 < 7 is a valid cutting plane separatingg, ) from
conv(FT).

One way we can utilize these cuts is by considering maximdlraimimal upper-level solutions.
For example, ifA? € R™?*™ | let Sy, (4) such thatt is maximal with respect t§ !, ;. In other

words,
I € argmax {e;glac | Spr) # 0}

4.2.2 Greedy Interdiction

Now, we describe a heuristic method for generating feasiblations which exploits the special
structure of (IIPINT) and utilizes sensitivity information obtained from solgithe lower-level LP
relaxation. Note that finding feasible solutions for intetion problems is straightforward under
our assumptions, since we must only specify a feasibleditgon plan and solve the resulting
lower-level problem. That is, choosing a set of indi@es {1,...,n1} such thatd'z; < b! and
solving

zrgg{dzy | G?y > by <U,y; =0,i € T}

yields a feasible MIPINT solution. Of course, the choiceZoWill dictate the quality of such a
solution. Thus, a variety of heuristics could be derived b§ofving this basic framework and
specifying methods for choosirig One obvious method is to choose interdiction variableskvhi
give the greatest immediate decrease in the lower-levedctib. That is, at iteratiom of the
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algorithm, we add variablgto the current interdiction s, where
J € argmin ;e py ze—1 d?.

We must, of course, maintain upper-level feasibility thgloaut the course of the algorithm, so must
check

Za}jxi < bjl-, j=1....m

1€Tt
at each iteration. If this condition is not satisfied, we disi and move to the next-best interdiction
choice. Once an interdiction variable is chosen, it is keptlie remainder of the algorithm. This
heuristic is summarized in Algorithm.2. One potential variation of this algorithm would involve
replacing previously-chosen interdiction variables base a specified criteria. This method can

Algorithm 4.2 Greedy Interdiction
1: Set7® = (), N° = {1,...,n}, andt = 1.
2: While N # () do:

o Letj' = argmin;c x\7:-1 d7 with ties broken arbitrarily.

o If
D> aljzi > by,
eIt
foranyj =1,...,my, stop.Z!~! is a greedy solution.
o |If

1 1 i
E a;ri <bj, j=1,...,m,
€Tt

setZ! = -1 U {j'}.

also be used as a stand-alone algorithm. When embedded kaeinadgorithmic framework, it is
necessary to modify the algorithm to ensure that intemhicplans are not repeated. One way in
which to implement such a modification is to add randomneStdp?2.

4.2.3 Computational Results

As mentioned previously, determining effective methodssmlving (MIPINT) is of interest for
several reasons. First, MIPINTs have important applicatio infrastructure protection and other
in homeland security problems; especially for analyzirgiesyns where network interdiction models
are limited by their assumption on system structure. SechHBINT can be used to perform a
type of sensitivity analysis to determine the effect of reing variables from the model. Through
such an analysis, we may discover that the optimal solutiothe model itself, is heavily reliant
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on a small number of decision variables. This would sugdest perhaps a solution with less
vulnerability may be worth the potential degradation ineaive value. Further, it allows us to
examine the inherent vulnerability in the system and, ity discover ways in which it can be
made more robust. Finally, using instances of MIPINT allasso demonstrate the effectiveness
of our specialized methods for interdiction problems.

We tested our branch-and-cut algorithm on two sets of iitgoth problems with special structure.
In the first set, the lower-level problems were binary knakgaoblems with a single constraint. In
the second, the lower-level were composed of assignmerstredmts. In addition, we also tested
our algorithm on more general instances of MIPINT, wherddier-level problems are randomly-
generated MILPs. Each of these tests is discussed beloveoAlputational tests were performed
on an Intel Xeon 2.4GHz processor with 4GB of memory.

Knapsack Interdiction. For the knapsack interdiction, the goal of the upper-lev Was to
minimize the maximum profit achievable by the lower-level Wifixing a subset of the variables
in the lower-level problem to zero. A cost was associateth tie fixing of each lower-level vari-
able to zero and the upper-level problems contained a sauglstraint, representing the available
interdiction budget.

To create these instances, data files describing bicrikexg@sack problems were taken from the
Multiple Criteria Decision Makindibrary (Figueirg 2000. The first objective in each file was used
to define a lower-level objective function, while the secaijective provided a budget constraint.
We chose instances with no correlation between the two tigsc The available budget was chosen
to be [Y°" , a;/2], wherea, is the cost of interdicting lower-level variable For a knapsack
problem withn items, this construction yielded a problem wih variables and: + 2 constraints.

Summarized results of two sets of runs on the knapsack see-inowhich we used maximum
infeasibility branching to select branching candidates @me in which we used strong branching —
are shown in Tabld.7, where the results for each problem size reflect the averbge instances.

In each case, all results shown reflect the use of the spasdatnethods described in this chapter,
as well as the general heuristic methods provided in Chapter

Implicit in the formulation of the knapsack interdictiongitems described above is the assumption
that the interdiction budget is fixed. However, as suggestedir analysis of th&t ORNOsystem,
this may not be the case in a real application. Rather, we msly t8 understand the tradeoff
between the interdiction budget and the resulting effedherfollower’s objective function value.
One way to gain this understanding in the interdiction sgtts via the multiobjective framework
described in Chapterand used to motivate a heuristic in Chagger
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Table 4.7: Summary results from the knapsack interdiction.

Maximum Infeasibility Strong Branching
2n | Avg Nodes| Avg Depth | Avg CPU (s) | Avg Nodes| Avg Depth | Avg CPU (s)
20 359.30 8.65 9.32 358.30 8.65 11.07
22 658.40 9.85 18.50 658.20 9.85 18.92
24 | 1414.80 10.85 46.03 1410.80 10.75 46.46
26 | 2725.00 12.05 97.55 2723.50 12.05 100.17
28 | 5326.40 12.90 214.97 5328.60 12.95 220.26
30 | 10625.00 14.05 482.70 10638.00 14.10 538.32

Biobjective Interdiction Problems. Suppose row of upper-level constraint system represents
the interdiction budget constraint. Laf represent théth row of A! and let4! , andb’ ; represent
the upper-level constraint matrix and right hand side akenoving theith row. Then, for each
i=1,...,m1, we can define a biobjective version of MIPINT (BMIPINT):

VINAX, e pT (g yesivT [y, —Aj 2] (BMIPINT )

where
PN ={zeR" | ALz <L},

(BMIPINT;) is an example obiobjective mixed integer bilevel linear progra@MIBLP).

In order to illustrate how one might use a BMIBLP, or BMIPINT this case, to perform tradeoff
analysis, we return to our knapsack test set. Moving our &udgnstraint to the to the objective
yields an instance of BMIPINT, which can then be converted standard MIPINT instance using
the single-level reformulatiori(4). Recall that solutions to the resulting subproblem areantaed
to be efficient, and systematic variation of the weightingill yield a portion of the efficient set. In
our setting, this means that the solution that results fraaheveighting) is an efficient interdiction
plan.

Figure 4.10(a)illustrates how the optimal interdiction plans change asvasy the weightingd.

In the figure, each column represents a potential activityetaindertaken by the system operator
(lower-level DM). The rows correspond to different weiglgs ofé (indicated by the values at the
right of the figure). In each row, the black dots representisies that are interdicted by the at-
tacker and the hashed dots represent activities undertakere follower. The white dots represent
actions neither taken by the follower nor interdicted byattacker. In this example, the objectives
were to minimize the amount of resources consumed by therdgype and maximize the effect of
interdiction (on the lower-level problem). These objeetwvere given weight$and1 — ¢, respec-
tively. Examining the figure, from top to bottom, we can sew/las) increases,1(— § decreases),
decisions become more contingent on resource consumptiohess aggressive interdiction plans
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(a) Interdiction plans evolution. (b) Tradeoff curve for MIPINT.

Figure 4.10: lllustrating the tradeoff between the intetidn expense and effectiveness.

are implemented. Visually, this is seen by the appearantessblack dots, which indicates a more
passive interdiction strategy, and more hashed dots, viittates greater flexibility for the lower-
level DM. In the extreme cases, wherées on the boundary df), 1], we have placed all emphasis
on one objective or another. For example, whes 0, effectively, we are saying that money is no
object, and we are only concerned with the effect of the @i¢tion efforts. In this case, it is clear
that we should interdict all of the defender’s possible siecis, to ensure the maximum effect. On
the other hand, whef = 1, our only concern is the consumption of the resources, vatiweight
being placed on the effect of the interdiction strategyhia tase, there is no reason to take any ac-
tion, since doing nothing will provide the lowest interdtct cost. An example of the tradeoff curve
generated by the algorithm for one particular instance asvshin Figure4.10(b) From this curve,
we see the effect of the interdiction on the lower-level Distslity to achieve her objective. On the
far left side of the plot, no resources have been spent ordiot®n, the follower is allowed to act
freely, and achieves the best possible scenario for herBei$ point corresponds to the last row in
Figure4.10(a) On the other hand, the far right hand side shows the casesviieupper-level DM

is not limited by interdiction resources and can, therefammpletely prevent the defender from
operating her system. This point corresponds to the top fdvigure 4.10(a) The portions of the
curve in which we are most interested are those areas witea stope. These areas represent crit-
ical points, where small increases in the planned intéatidiudget yield very substantial increases
in effectiveness. Assuming the budget is somewhat flexthkse critical points determine where
it is worthwhile to increase the planned resources for therdiction effort. Alternatively, we may
discover that, although the full budget allocated is beisgd, a significant portion of the resources
is being used for a very small marginal increase in effentd@s. Then, we may wish to forgo this
increase and allocate the resources to alternative effehtsre they can be used more effectively.
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Assignment Interdiction. As in the knapsack interdiction described above, the gotideotipper-
level DM in assignment interdiction is to maximize the mimim cost achievable by the lower-level
DM by fixing a subset of the variables in the lower-level psoshlto zero. As before, a cost was
associated with the interdicting each lower-level vagabl'he upper-level problems contained a
single knapsack constraint, representing the availaldediction budget.

Data files obtained frorMultiple Criteria Decision Makindibrary (Figueirg 2000 were also used
to create these instances. In this case, the original prabtepresented bicriteria assignment prob-
lems. Again, the objectives were used to define a lower-lelgctive function and budget con-
straint. The budget for the assignment problems was chaoska & fixed percentage 3f , a;.
Each problem contains 50 (i.en,n = 25) variables and 45 (i.e» + n + 1, m = 20) inequality
constraints. Note that, in a loose sense, the difficulty e§éhproblems is determined by the number
of possible upper-level solutions; thus, budgets wereamts yield interesting problems that could
be handled on a single processor. The results for the assigrsat are shown in Tabie8 where
the results again reflect the same specialized interdictiethods and primal heuristics as in the
knapsack test set. All tests were performed on an AMD Optématessor 6128 with 32GB of

memory.
Instance Obj. Value | No. Nodes | Depth | Gap (%) | No. Cuts | CPU (s)
2AP05-1 -36 7045 25 — 3460 39.95
2AP05-2 -46 19607 24 — 3992 80.17
2AP05-3 -46 3431 25 — 1370 16.08
2AP05-4 -25 4313 25 — 1382 17.61
2AP05-5 -38 3743 25 — 1294 16.85
2AP05-6 -32 2355 25 — 1008 12.85
2AP05-7 -49 3391 25 — 1598 18.22
2AP05-8 -41 3543 25 — 2154 22.23
2AP05-9 -54 1917 25 — 1142 11.18
2AP05-10 -46 5085 25 — 2348 26.99
2AP05-11 -36 759 25 — 290 3.18
2AP05-12 -49 5445 27 — 3008 33.85
2AP05-13 -74 1985 25 — 884 9.77
2AP05-14 -68 4621 25 — 2854 28.43
2AP05-15 -48 2845 25 — 1264 15.34
2AP05-16 -34 2317 25 — 706 10.54
2AP05-17 -66 8909 25 — 4628 56.78
2AP05-18 -35 7615 25 — 3230 39.82
2AP05-19 -39 2317 25 — 1114 13.04
2AP05-20 -42 2117 25 — 830 10.46
2AP05-21 -47 1897 25 — 1230 12.06
2AP05-22 -62 1741 25 — 990 9.77
2AP05-23 -68 2543 26 — 962 12.42
2AP05-24 -76 51 16 — 10 0.12
2AP05-25 -45 9457 26 — 3882 47.96

Table 4.8: Results from assignment test set.
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ILP Interdiction.  We also tested our algorithms on a set of randomly-genet®i®&dT instances.
In these problems, the goal of the upper-level DM is to mimgrthe maximum cost solution achiev-
able by the lower-level DM, who is solving a random ILP. Aslie fprevious two examples, a cost
was associated with the interdiction of each lower-levelade and the upper-level problems con-
tained a single knapsack constraint, representing th&ahlainterdiction budget. In order to create
these instances, we first generated a set ILPs of the desmdvith randomly-chosen coefficients
in the rangg—50, 50]. From these ILPs, we created IPINT instances by settingdiution costs
for each lower-level variable.

We assigned costs in two ways for these test problems. linitime assigned a unit cost to the
interdiction of each lower-level variable. Such a costdtite is appropriate if we are concerned
with questions such as “what are thenost crucial variables in the lower-level problem?”, samil

to that asked in Section.1.7. For these problems, we allow up three lower-level varsltebe
interdicted. We also generated a second set of IPINT inesamdth randomly-selected costs and
interdiction budget. In order to allow comparison betwdms tivo instance classes, we chose the
interdiction budgets in the second class such that the nuofbhariable interdictions allowed was
approximately the same in the first class. The ILP classesitgedicted for these experiments are
summarized in Tablé.9. The column and row dimensions of the full IPINT are equa?toand

m + n + 1, respectively, where andm are the corresponding dimensions of the ILP instance.

Problem Class Num Rows| Num Cols
1 10 10
2 15 10
3 20 20

Table 4.9: ILP Classes Interdicted.

We used these instances to test the performance of our dgadttan, with the additional methods
described in this chapter, as well as the greedy algorithen standalone heuristic. All tests were
performed on an AMD Opteron Processor 6128 with 32GB of mgmArsummary presentation

of the results is given in Tablé.10 The summary results are useful for comparing the average
difficulty of the two test sets. We can conclude that, on ayer#he random instances require less
computational effort than their symmetric counterparts.

Avg. No. Nodes Avg. Depth Avg. Gap (%) Avg. No. Cuts Avg. CPU (s)
Class | Symmetric Random Symmetric [ Random | Symmetric | Random [ Symmetric Random Symmetric | Random
1 13255.20 13199.40 23.00 23.60 — — 13327.40 10828.80 187.12 162.42

2 58639.40 54055.20 24.30 24.60 — — 49633.20 35861.00 583.62 452.66
3 364098.70 | 559028.00 46.20 47.40 161.23 160.78 294524.40 | 249707.80 — —

Table 4.10: Summary results from the IPINT instances.

The complete results from the exact solver on the instanéssymmetric and randomly-chosen
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4.2. GENERAL INTERDICTION PROBLEMS

costs are shown Tablelland Tablet.12, respectively. In Tablé.13 a subset of the results from
both test sets are shown together. From this table, we caparenthe effect of the interdiction and
the required computational effort for the two test sets. Swprisingly, when the interdiction costs
are not symmetric, we see significant differences in thdtieguower-level objective functions for
several of the instances, since the set of feasible int@diplans is different, in general.

Instance Obj. Value | No. Nodes | Depth | Gap (%) | No. Cuts | CPU (s)
miblp-10-10-50-0110-0-1 0 875 15 — 1090 10.24
miblp-10-10-50-0110-0-2 542 1595 25 — 2172 281.78
miblp-10-10-50-0110-0-3 168 5153 23 — 6524 76.25
miblp-10-10-50-0110-0-4 212 3809 20 — 3846 45.85
miblp-10-10-50-0110-0-5 54 14931 29 — 14568 247.22
miblp-10-10-50-0110-0-6 89 4033 24 — 4702 60.87
miblp-10-10-50-0110-0-7 0 1009 17 — 1312 10.04
miblp-10-10-50-0110-0-8 99 2161 23 — 2878 36.33
miblp-10-10-50-0110-0-9 35 2453 17 — 2536 26.30
miblp-10-10-50-0110-0-10 0 96533 37 — 93646 | 1076.33
miblp-15-10-50-0110-0-1 19 1399 17 — 1764 25.27
miblp-15-10-50-0110-0-2 0 251 10 — 334 2.62
miblp-15-10-50-0110-0-3 47 727 15 — 872 7.20
miblp-15-10-50-0110-0-4 10 11355 24 — 11476 115.37
miblp-15-10-50-0110-0-5 267 6965 25 — 7552 426.43
miblp-15-10-50-0110-0-6 6 20813 30 — 18268 180.07
miblp-15-10-50-0110-0-7 96 263 11 — 352 4.08
miblp-15-10-50-0110-0-8 75 25307 32 — 23898 409.66
miblp-15-10-50-0110-0-9 0 411127 41 — 353148 | 3815.48
miblp-15-10-50-0110-0-10 8 108187 38 — 78668 850.02
miblp-20-20-50-0110-0-1 526 244598 45 162.57 | 261042 LIM
miblp-20-20-50-0110-0-2 162 419998 42 143.40 | 353910 LIM
miblp-20-20-50-0110-0-3 200 323470 38 159.05 | 321920 LIM
miblp-20-20-50-0110-0-4 315 430951 48 158.36 | 362260 LIM
miblp-20-20-50-0110-0-5 218 407914 41 170.00 | 389212 LIM
miblp-20-20-50-0110-0-6 133 1009676 68 116.28 | 494430 LIM
miblp-20-20-50-0110-0-7 310 336973 43 147.54 | 305098 LIM
miblp-20-20-50-0110-0-8 376 325434 39 232.51 | 318276 LIM
miblp-20-20-50-0110-0-9 325 65567 35 152.09 68352 LIM
miblp-20-20-50-0110-0-10 873 76406 63 170.49 70744 LIM

Table 4.11: Exact results from IPINTs with symmetric costs.
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Instance Obj. Value | No. Nodes | Depth | Gap (%) | No. Cuts | CPU (s)
miblp-10-10-50-0110-0-1 11 975 15 — 926 9.19
miblp-10-10-50-0110-0-2 607 1929 26 — 1866 234.46
miblp-10-10-50-0110-0-3 210 3425 23 — 3962 47.05
miblp-10-10-50-0110-0-4 210 2767 21 — 2616 30.86
miblp-10-10-50-0110-0-5 122 12389 30 — 10906 194.77
miblp-10-10-50-0110-0-6 89 3965 25 — 3930 52.86
miblp-10-10-50-0110-0-7 0 1045 18 — 1114 8.52
miblp-10-10-50-0110-0-8 99 1713 23 — 2028 26.47
miblp-10-10-50-0110-0-9 35 2699 17 — 2250 24.85
miblp-10-10-50-0110-0-10 0 101087 38 — 78690 995.19
miblp-15-10-50-0110-0-1 28 1347 18 — 1174 19.70
miblp-15-10-50-0110-0-2 0 219 10 — 242 2.00
miblp-15-10-50-0110-0-3 51 721 16 — 674 5.39
miblp-15-10-50-0110-0-4 10 10815 24 — 8802 91.11
miblp-15-10-50-0110-0-5 415 5433 24 — 5852 321.75
miblp-15-10-50-0110-0-6 6 20149 31 — 15076 153.56
miblp-15-10-50-0110-0-7 99 245 12 — 252 341
miblp-15-10-50-0110-0-8 75 27595 32 — 19252 338.08
miblp-15-10-50-0110-0-9 0 377649 41 — 250354 | 2949.34
miblp-15-10-50-0110-0-10 8 96379 38 — 56932 642.23
miblp-20-20-50-0110-0-1 538 493866 46 164.39 | 262674 LIM
miblp-20-20-50-0110-0-2 160 718853 43 142.18 305730 LIM
miblp-20-20-50-0110-0-3 200 517380 39 157.51 | 249392 LIM
miblp-20-20-50-0110-0-4 331 757069 48 161.57 | 338806 LIM
miblp-20-20-50-0110-0-5 218 685632 42 172.33 320710 LIM
miblp-20-20-50-0110-0-6 43 973159 65 105.13 | 297378 LIM
miblp-20-20-50-0110-0-7 264 565006 46 140.46 315354 LIM
miblp-20-20-50-0110-0-8 409 628377 46 24571 | 267310 LIM
miblp-20-20-50-0110-0-9 300 116540 36 147.92 72416 LIM
miblp-20-20-50-0110-0-10 878 134398 63 170.56 67308 LIM

Table 4.12: Exact results from IPINTs with random costs.
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Obj. Value Avg. No. Nodes Avg. No. Cuts

Instance Symmetric | Random | Symmetric | Random | Symmetric | Random
miblp-10-10-50-0110-0-1 0 11 875 975 1090 926
miblp-10-10-50-0110-0-2 542 607 1595 1929 2172 1866
miblp-10-10-50-0110-0-3 168 210 5153 3425 6524 3962
miblp-10-10-50-0110-0-4 212 210 3809 2767 3846 2616
miblp-10-10-50-0110-0-5 54 122 14931 12389 14568 10906
miblp-10-10-50-0110-0-6 89 89 4033 3965 4702 3930
miblp-10-10-50-0110-0-7 0 0 1009 1045 1312 1114
miblp-10-10-50-0110-0-8 99 99 2161 1713 2878 2028
miblp-10-10-50-0110-0-9 35 35 2453 2699 2536 2250
miblp-10-10-50-0110-0-10 0 0 96533 101087 93646 78690
miblp-15-10-50-0110-0-1 19 28 1399 1347 1764 1174
miblp-15-10-50-0110-0-2 0 0 251 219 334 242
miblp-15-10-50-0110-0-3 47 51 727 721 872 674
miblp-15-10-50-0110-0-4 10 10 11355 10815 11476 8802
miblp-15-10-50-0110-0-5 267 415 6965 5433 7552 5852
miblp-15-10-50-0110-0-6 6 6 20813 20149 18268 15076
miblp-15-10-50-0110-0-7 96 99 263 245 352 252
miblp-15-10-50-0110-0-8 75 75 25307 27595 23898 19252
miblp-15-10-50-0110-0-9 0 0 411127 377649 353148 250354
miblp-15-10-50-0110-0-10 8 8 108187 96379 78668 56932
miblp-20-20-50-0110-0-1 526 538 244598 493866 261042 262674
miblp-20-20-50-0110-0-2 162 160 419998 718853 353910 305730
miblp-20-20-50-0110-0-3 200 200 323470 517380 321920 249392
miblp-20-20-50-0110-0-4 315 331 430951 757069 362260 338806
miblp-20-20-50-0110-0-5 218 218 407914 685632 389212 320710
miblp-20-20-50-0110-0-6 133 43 1009676 | 973159 494430 297378
miblp-20-20-50-0110-0-7 310 264 336973 565006 305098 315354
miblp-20-20-50-0110-0-8 376 409 325434 628377 318276 267310
miblp-20-20-50-0110-0-9 325 300 65567 116540 68352 72416
miblp-20-20-50-0110-0-10 873 878 76406 134398 70744 67308

Table 4.13: Comparison of results from IPINTs with differenst structures.
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The results from the greedy heuristic are shown in Talllég and4.15 As in Chapter3, we
compare the objective values found by the heuristic to tisetdoound provided by solving the
underlying MILP:

min clz + dly,
(zy)eQ!

as well as the upper bounds obtained from the simple heuristithods. Note that, for interdic-
tion problems, the bounds obtained from the simple hearisgthods are likely to be equivalent,
assuming that the solution to the underlying MILP does nait@io any nonnegative upper-level
variables. For all instances tested, these bounds weraciniflentical and only one is shown. In
the tables below, the bounds are dend¥dtdP Bound Easy Boundind have the same interpretation
as in ChapteB.

Instance CPU (s) | Greedy Obj.| MILP Bound | Easy Bound
miblp-10-10-50-0110-0-1 0.02 44.0 -99.0 208.0
miblp-10-10-50-0110-0-2 0.28 764.0 -202.0 873.0
miblp-10-10-50-0110-0-3 0.05 257.0 -420.0 548.0
miblp-10-10-50-0110-0-4 0.04 225.0 -365.0 444.0
miblp-10-10-50-0110-0-5 0.04 54.0 -300.0 227.0
miblp-10-10-50-0110-0-6 0.05 105.0 -239.0 469.0
miblp-10-10-50-0110-0-7 0.02 0.0 -104.0 147.0
miblp-10-10-50-0110-0-8 0.05 99.0 -360.0 808.0
miblp-10-10-50-0110-0-9 0.04 35.0 -358.0 269.0
miblp-10-10-50-0110-0-10|  0.05 0.0 -277.0 290.0
miblp-15-10-50-0110-0-1 0.04 26.0 -140.0 142.0
miblp-15-10-50-0110-0-2 0.01 66.0 -314.0 172.0
miblp-15-10-50-0110-0-3 0.02 228.0 -123.0 261.0
miblp-15-10-50-0110-0-4 0.04 10.0 -167.0 210.0
miblp-15-10-50-0110-0-5 0.13 301.0 -241.0 624.0
miblp-15-10-50-0110-0-6 0.03 6.0 -336.0 305.0
miblp-15-10-50-0110-0-7 0.04 127.0 -241.0 211.0
miblp-15-10-50-0110-0-8 0.11 75.0 -425.0 238.0
miblp-15-10-50-0110-0-9 0.06 0.0 -419.0 149.0
miblp-15-10-50-0110-0-10  0.04 8.0 -524.0 235.0
miblp-20-20-50-0110-0-1 0.31 526.0 -887.0 885.0
miblp-20-20-50-0110-0-2 0.14 276.0 -478.0 302.0
miblp-20-20-50-0110-0-3 0.31 252.0 -409.0 446.0
miblp-20-20-50-0110-0-4 0.47 560.0 -566.0 600.0
miblp-20-20-50-0110-0-5 0.28 288.0 -376.0 585.0
miblp-20-20-50-0110-0-6 0.23 180.0 -859.0 526.0
miblp-20-20-50-0110-0-7 0.59 310.0 -697.0 619.0
miblp-20-20-50-0110-0-8 0.15 398.0 -349.0 571.0
miblp-20-20-50-0110-0-9 1.09 325.0 -707.0 592.0
miblp-20-20-50-0110-0-10  0.79 992.0 -1271.0 1359.0

Table 4.14: Heuristic results from IPINTs with symmetrictn
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Instance CPU (s) | Greedy Obj.| MILP Bound | Easy Bound
miblp-10-10-50-0110-0-1 0.03 208.0 -99.0 208.0
miblp-10-10-50-0110-0-2 0.28 764.0 -202.0 873.0
miblp-10-10-50-0110-0-3 0.03 462.0 -420.0 548.0
miblp-10-10-50-0110-0-4 0.04 276.0 -365.0 444.0
miblp-10-10-50-0110-0-5 0.05 132.0 -300.0 227.0
miblp-10-10-50-0110-0-6 0.05 105.0 -239.0 469.0
miblp-10-10-50-0110-0-7 0.02 0.0 -104.0 147.0
miblp-10-10-50-0110-0-8 0.05 99.0 -360.0 808.0
miblp-10-10-50-0110-0-9 0.04 35.0 -358.0 269.0
miblp-10-10-50-0110-0-10  0.06 0.0 -277.0 290.0
miblp-15-10-50-0110-0-1 0.05 32.0 -140.0 142.0
miblp-15-10-50-0110-0-2 0.01 66.0 -314.0 172.0
miblp-15-10-50-0110-0-3 0.01 228.0 -123.0 261.0
miblp-15-10-50-0110-0-4 0.03 10.0 -167.0 210.0
miblp-15-10-50-0110-0-5 0.13 473.0 -241.0 624.0
miblp-15-10-50-0110-0-6 0.04 6.0 -336.0 305.0
miblp-15-10-50-0110-0-7 0.04 167.0 -241.0 211.0
miblp-15-10-50-0110-0-8 0.11 75.0 -425.0 238.0
miblp-15-10-50-0110-0-9 0.05 0.0 -419.0 149.0
miblp-15-10-50-0110-0-10|  0.02 8.0 -524.0 235.0
miblp-20-20-50-0110-0-1 0.26 686.0 -887.0 885.0
miblp-20-20-50-0110-0-2 0.13 276.0 -478.0 302.0
miblp-20-20-50-0110-0-3 0.3 252.0 -409.0 446.0
miblp-20-20-50-0110-0-4 0.6 560.0 -566.0 600.0
miblp-20-20-50-0110-0-5 0.28 323.0 -376.0 585.0
miblp-20-20-50-0110-0-6 0.24 180.0 -859.0 526.0
miblp-20-20-50-0110-0-7 0.64 264.0 -697.0 619.0
miblp-20-20-50-0110-0-8 0.16 512.0 -349.0 571.0
miblp-20-20-50-0110-0-9 0.69 323.0 -707.0 592.0
miblp-20-20-50-0110-0-10, 0.8 1340.0 -1271.0 1359.0

Table 4.15: Heuristic results from IPINTs with random costs
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The effects of interdiction by the exact and heuristic sgyas are summarized in TablelG In
this table, the columns titledvg. Best Effect (YndAvg. Heuristic Effect (%)show the average
effect on the lower-level problem value that results from dfptimal (or best known) and heuristic
interdiction strategies. We define the effect of interdiatias the decrease in the optimal lower-
level solution that results from variable interdiction,dareport it as a percentage of the optimal
lower-level objective value.

Symmetric Random
Class | Avg. Best Effect (%) | Avg. Heuristic Effect (%) | Avg. Best Effect (%) | Avg. Heuristic Effect (%)
1 79.15 72.23 74.16 56.02
2 83.87 70.59 80.57 65.51
3 49.20 36.82 51.12 30.63

Table 4.16: Summary of heuristic and exact interdictiorcess.

From the summary presentation, it is clear that the exagesd able to produce more effective
interdiction strategies, as we would expect, and the diffee in effectiveness tends to increase with
the size of the lower-level ILP. However, we can also see ftloertable, that the heuristic strategies
do still have a significant effect on the lower-level DM’s etiive value, and provide a reasonable
alternative if a solution is needed quickly. The differenceeffectiveness is even less dramatic
for the case of symmetric interdiction costs. A full compar between the exact and heuristic
methods, for each of the test set variants, is provided ite$abl7and4.18

Instance Best Known | Greedy Obj. | MILP Bound Easy Bound | Best Effect (%) | Heuristic Effect (%)
miblp-10-10-50-0110-0-1 0 44 -99 208 100.00 78.85
miblp-10-10-50-0110-0-2 542 764 -202 873 37.92 12.49
miblp-10-10-50-0110-0-3 168 257 -420 548 69.34 53.10
miblp-10-10-50-0110-0-4 212 225 -365 444 52.25 49.32
miblp-10-10-50-0110-0-5 54 54 -300 227 76.21 76.21
miblp-10-10-50-0110-0-6 89 105 -239 469 81.02 77.61
miblp-10-10-50-0110-0-7 0 0 -104 147 100.00 100.00
miblp-10-10-50-0110-0-8 99 99 -360 808 87.75 87.75
miblp-10-10-50-0110-0-9 35 35 -358 269 86.99 86.99
miblp-10-10-50-0110-0-10] 0 0 =277 290 100.00 100.00
miblp-15-10-50-0110-0-1 19 26 -140 142 86.62 81.69
miblp-15-10-50-0110-0-2 0 66 -314 172 100.00 61.63
miblp-15-10-50-0110-0-3 47 228 -123 261 81.99 12.64
miblp-15-10-50-0110-0-4 10 10 -167 210 95.24 95.24
miblp-15-10-50-0110-0-5 267 301 -241 624 57.21 51.76
miblp-15-10-50-0110-0-6 6 6 -336 305 98.03 98.03
miblp-15-10-50-0110-0-7 96 127 -241 211 54.50 39.81
miblp-15-10-50-0110-0-8 75 75 -425 238 68.49 68.49
miblp-15-10-50-0110-0-9 0 0 -419 149 100.00 100.00
miblp-15-10-50-0110-0-10 8 8 -524 235 96.60 96.60
miblp-20-20-50-0110-0-1 526 526 -887 885 40.56 40.56
miblp-20-20-50-0110-0-2 162 276 -478 302 46.36 8.61
miblp-20-20-50-0110-0-3 200 252 -409 446 55.16 43.50
miblp-20-20-50-0110-0-4 315 560 -566 600 47.50 6.67
miblp-20-20-50-0110-0-5 218 288 -376 585 62.74 50.77
miblp-20-20-50-0110-0-6 133 180 -859 526 74.71 65.78
miblp-20-20-50-0110-0-7 310 310 -697 619 49.92 49.92
miblp-20-20-50-0110-0-8 376 398 -349 571 34.15 30.30
miblp-20-20-50-0110-0-9 325 325 -707 592 45.10 45.10
miblp-20-20-50-0110-0-10 873 992 -1271 1359 35.76 27.01

Table 4.17: Heuristic versus exact results from IPINTs witmmetric costs.
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4.2. GENERAL INTERDICTION PROBLEMS

Instance Best Known | Greedy Obj. [ MILP Bound Easy Bound | Best Effect (%) | Heuristic Effect (%)
miblp-10-10-50-0110-0-1 11 208 -99 208 94.71 0.00
miblp-10-10-50-0110-0-2 607 764 -202 873 30.47 12.49
miblp-10-10-50-0110-0-3 210 462 -420 548 61.68 15.69
miblp-10-10-50-0110-0-4 210 276 -365 444 52.70 37.84
miblp-10-10-50-0110-0-5 122 132 -300 227 46.26 41.85
miblp-10-10-50-0110-0-6 89 105 -239 469 81.02 77.61
miblp-10-10-50-0110-0-7 0 0 -104 147 100.00 100.00
miblp-10-10-50-0110-0-8 99 99 -360 808 87.75 87.75
miblp-10-10-50-0110-0-9 35 35 -358 269 86.99 86.99
miblp-10-10-50-0110-0-10] 0 0 =277 290 100.00 100.00
miblp-15-10-50-0110-0-1 28 32 -140 142 80.28 77.46
miblp-15-10-50-0110-0-2 0 66 -314 172 100.00 61.63
miblp-15-10-50-0110-0-3 51 228 -123 261 80.46 12.64
miblp-15-10-50-0110-0-4 10 10 -167 210 95.24 95.24
miblp-15-10-50-0110-0-5 415 473 -241 624 33.49 24.20
miblp-15-10-50-0110-0-6 6 6 -336 305 98.03 98.03
miblp-15-10-50-0110-0-7 99 167 -241 211 53.08 20.85
miblp-15-10-50-0110-0-8 75 75 -425 238 68.49 68.49
miblp-15-10-50-0110-0-9 0 0 -419 149 100.00 100.00
miblp-15-10-50-0110-0-10 8 8 -524 235 96.60 96.60
miblp-20-20-50-0110-0-1 538 686 -887 885 39.21 22.49
miblp-20-20-50-0110-0-2 160 276 -478 302 47.02 8.61
miblp-20-20-50-0110-0-3 200 252 -409 446 55.16 43.50
miblp-20-20-50-0110-0-4 331 560 -566 600 44.83 6.67
miblp-20-20-50-0110-0-5 218 323 -376 585 62.74 44.79
miblp-20-20-50-0110-0-6 43 180 -859 526 91.83 65.78
miblp-20-20-50-0110-0-7 264 264 -697 619 57.35 57.35
miblp-20-20-50-0110-0-8 409 512 -349 571 28.37 10.33
miblp-20-20-50-0110-0-9 300 323 -707 592 49.32 45.44
miblp-20-20-50-0110-0-10 878 1340 -1271 1359 35.39 1.40

Table 4.18: Heuristic versus exact results from IPINTs wéthdom costs.
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Chapter 5

Conclusions and Research Extensions

In this chapter, we summarize the results and contributwinthe dissertation. In addition, we
suggest future research directions and suggest how tocextenresults here to further field of
study. First, however, we describe some interesting agijbic areas, to further motivate the utility
of MIBLP in practice.

5.1 Applications of Interest

5.1.1 Atrial Fibrillation Ablation

Atrial fibrillation (AF) is a form of arrhythmia caused by eteophysiological abnormalities in the
heart's electrical conduction systerRirfta and Haings2004). It is the most prevalent form of
arrhythmia, affecting approximately 1% of the populatidvektare 2002 and is well-known to be

a leading cause of stroke.

In a healthy heart, the heartbeat is controlled primarilythey sinoatrial (SA) and atrioventricular
(AV) nodes, located in the upper portion of the right atriund @t the intersection of the atria and
the ventricles, respectively. Electrical impulses are §&m the SA node, which acts as a natural
pacemaker, across the atria via electrical conductiomtea#ly reaching the AV node. In the AV
node, these impulses are delayed for a fraction of a sechad,sent across the ventricles, causing
contraction and dictating heart rhythm. In AF, impulsegimiating from sources other than the SA
node reach the AV node, causing a more rapid activationnpattieventricle contraction. Clinical
evidence suggests that AF may be the result of impulse gyeliithin macroreentrant circuits,
electrical or physical pathways in the atria, triggered Isparce other than the SA nodeifta and
Haines 2004). It has recently been observed that the most likely oridithese auxiliary impulses
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is a focal point within the atria. The arrhythmia can be &edaby disconnecting this focal point
from the rest of the atriaeenhuyzen et gl2004).

AF ablation procedures are intended to block these unwamtedlses from reaching the AV node.
The most prominent surgical ablation technique is the Caz®procedureox et al, 1997).
This procedure, although known to be extremely effecti@dlihov and McCarthy 2004 in the
treatment of AF, requires complex intrusive surgery andlieararrest to complete. An alternative
procedure is catheter ablation, which does not requireingdahe heart or surgically incising the
patient. Instead, disconnection from the AV is accomplishg transmitting energy (frequently
radio frequency (RF)) to appropriate locations via cathitsertion. In either ablation procedure,
the treatment of AF requires the disconnection of auxilipaghways from the AV node. If we
assume that the electrical impulses are traveling via ttie gllowest resistance (or energy), we
can model their flow using a mathematical program. Then, ftienal strategy for disconnection is
determined by the solution of an interdiction problem whioseer-level is defined by this program.
Further research is necessary to determine if this is asteathodel with which to guide ablation
surgery. However, even a simple model may yield valuablerinition in AF treatment.

5.1.2 Corporate Strategy

A straightforward application of bilevel programming igtanalysis of decentralized decision mak-
ing within a large company. Although itis likely that the ddevel of hierarchy within the company
recognizes the benefit of maximizing the overall health efdbmpany, it is certainly plausible that
different levels have different notions of the measurenwntealth. Additionally, it is easy to
imagine situations where individual components of the camypare myopic, in the sense that their
primary goals may reflect the betterment of their divisioithaut due consideration of the effects
on the company as a whole. In this case, itis in the compam®gsibterest to realize these possibili-
ties and make decisions accordingly. Thus, at the highest, Istrategies that consider the behavior
of lower-level decision makers should be considered. Bll@rogramming is well suited for this
type of analysis. Of course, as is the case when one compgapéisations of linear and integer
programming (seélemhauser and Wolst999 for examples), using the more general model of
mixed integer bilevel linear programming yields more aqydility.

The inherent hierarchical structure is readily apparetiénntra-company model described above.
However, in some applications, the underlying hierardhgtraicture is not as obvious. One example
of such an application arises when two firms compete for animmarket share. In particular, a
decision hierarchy results in analysis of markets domahdite a large entity, or “market-maker.”
In this case, the larger of the two companies has the powexhibie influence over the other
because of its dominance and ability to make decisions waifgct the market itself. Thus, a
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hierarchy exists due to the relative influence of the congmmniather than the corporate structure
of a particular company, as in the application described/@bBconomic analysis was the original
motivation for the study of multilevel programming¢opmans 1951, Charnes et al1967 Cyert
and March 1955. However, we describe a different economic applicati@ntthose considered in
the traditional economic literature.

Suppose the larger company (Company A) wishes to gain aattimirinterest in the smaller com-
pany (Company B). Presumably, the lower the value of the GomB (as measured by profit or
stock price, or any number of valuing techniques), the edsie goal will be to obtain. Of course,
Company B would like this value to be as high as possible, smenthe future health of the com-
pany. This leads to a bilevel optimization problem where @any A seeks to minimize the value of
Company B, while Company B seeks to maximize its own valueielaissume that both companies
value Company B in the same manner, we have zero-sum proBlkennatively, we may consider
a more general case where the companies have conflictingpboecessarily opposite, objectives,
yielding a non-zero-sum model.

We have described a general application of bilevel optitiinaabove. We now suggest a particular
setting in which to apply the general ideas. Suppose Compamighes to determine its marketing
strategy for the upcoming fiscal year. Specifically, supposmpany B is deciding which demo-
graphic or geographic regions to target, subject to a spddaifiarketing budget'. We assume that
there exist a finite numbeN of potential regions available to Company B. We also assurmae t
there exists a cost; to establish a marketing campaign in regiceind that there is a benefit for
marketing the company’s products in regioret

1 if regioni is chosen for the campaign
Yi = .
0 otherwise

Then, Company B solves an integer program where it seeks ximizz the marketing benefit
Zfilpiy,- subject to the budget constraiEf\i1 ciy; < C. Now, suppose that, due its market
dominance, if Company A targets the same region as Compa@pBpany B is unable to estab-
lish a worthwhile marketing campaign. Then, Company A caerdict the marketing problem to
be solved by Company B. Assuming that Company A also has samgebD available for the
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disruption of Company B'’s strategy and that interdictingioe : has costl;, we have the MIPINT

N
min max E DiYi
zeBN yeBN P

N
subject to Z dix; <D
i=1

ciyi < C
yigl—xi, Zzl,N,

where

1 ifregioni is interdicted

xTr; =

0 otherwise
In this simple model, each company is constrained by a sikigdgsack budget constraint. Of
course, we can add additional constraints to make the moded nealistic. Also, we can easily
drop the assumption that both companies value the markbgngfits of each region identically
and introduce separate cost vectors for A and B. This yielisnazero-sum MIBLP that resembles

a MIPINT in its system of constraints.

5.1.3 Wireless MANET

Another interesting application of multilevel programmiarises in cross-layer network design opti-
mization problems. These problems are encountered in mmatlihoc networks (MANET) consist-
ing of moving nodes, each equipped with cognitive radiosdiiaamically adjust their transmission
power and constellation size in response to channel andergace states. One example of such
a network exists in the military, where the mobile nodes @sgent foot soldiers. In this type of
network, the objective is to utilize the minimum amount @frsmission power in the network’s
physical layer, while maximizing the capacity of the linka@ng the nodes, thereby throughput, in
the network layer. If this can be achieved in all radios, tthenmaximum amount of throughput can
be attained at the network layer, yielding the greatest athofucommunication among the radios.

In this section, we discuss previous attempts at modelidgaalyzing this system and motivate the
introduction of several new models which allow for furthealysis. The models introduced here
incorporate the relevant aspects of the previous modei géneralizing the modeling framework

in order to provide a more flexible framework and an alteugasiolution approaches.
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Previous Models. In the past, the problems of finding the optimal cross-laystwork design
with respect to network throughput for a mobile ad-hoc veisslnetwork and determining the min-
imum necessary transmit power in the network’s physicaéidyave been considered as separate
optimization problems. In this section, we consider theitianal models, separately, then refor-
mulate the problem using the frameworks of multicriteria amultilevel programming.

Design Problem Description. A wireless MANET is composed of five layers: physical , medium
access control (MAC), network, transport, and applicatidfe describe joint optimization models
across the first three layers. Our intention is to demorestragthods for combining the cross layer
design model oFridman et al(2008 and an ILP that determines minimum transmission power for
a fixed capacity graph and set of constellation sizes. Indhewing sections, we discuss each of
these and their roles separately. Then, in Seciiar3 we describe an optimization model that has
been previously used to determine the optimal network desith respect to network throughput.

Physical Layer. The primary functions of the physical layer of a MANET are tmtrol trans-
mission power and constellation size. In this layer, thaista set of mobile nodes, each equipped
with a cognitive radio permitting dynamic selection of bétansmit power and constellation size.
Let N = {1,...,n} denote the set of mobile nodes in the network. ket P denote the power
vector, wherey! is the power of node € N at timet, andP is a finite discrete set. We also denote
the constellation vector by! € M, wherem§ is the constellation size of nodet timet, and M

is also a finite discrete sétAt any timet, a subset of the mobile nodes are transmitting. We denote
this subset byrt. At time ¢, the Signal to Interference plus Noise RaiSINR) for nodej € N,
when listening to nodé € N \ {:i}, is given by

t 1—«
pia;;

ZkE’rt\{i} p;'dlzja +0? ’

SINR = (5.1)

whered;; is the distance between nodeand nodej, o > 2 is the path-loss constant, and the
constants? is the additive Gaussian noise to which the channel is stubjsle also define th&it
Error Rate(BER) for each receiver:

. T
BER} = 2Q <, /2SIN R sin W) . (5.2)

'For example, in the case of the well-known modulation schefuadrature Amplitude Modulation (QAMM =
{1,2,4, ..., mmax}, Wheremmaxis the maximum constellation sizEr{fdman et al.2008§.
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In equation $.2), Q is theQ Function Q(Z) = P{Z > =z} for Z ~ N(0,1), which is estimated

as:
Zt2

T, (5.3)

Q'

) 1 1 _
~ e
%zt—l—% /zt2+%\/2ﬂ'
2t = w/2SINR§-sinlt.

mt

7

where

The maximum allowable BER on any link is given By

The cognitive radios used in MANETSs can change both trarsarigopower and constellation size.
Increasing the constellation size;:

e increases the capacity of links emanating from niqde

e increases the chance of symbol decoding error (BER), and

¢ has no effect on the neighboring nodes (other than link egpac
On the other hand, increasing the transmission p@auer

e increases the ratio of ratio of signal to noise (SINR) fonsmaitteri, and

e decreases the SINR for all other receivers.

Thus, these two functions can be used in a complementaryenamimprove network performance.
This relationship motivates our study of multiobjectivedanultilevel models for this application.

MAC Layer.  The primary purpose of the MAC layer is to determine the optistheduling for
data transmission. Here, we assume the network uses algpottimcol. In each slot, a mobile node
can be transmitting, receiving, or idle. Further, for eaotetslot, there exists an associated power
vector that identifies the available resources for the nade Iset S denote the set of time slots
for each round of scheduling. The duration of each time slgfiven by the constant, and each
transmitter; € N is allowed to transmit in at most of the time slots. In this context, a schedule is
defined by|S| different N x N matrices,B' ..., B*, where

1 ifnode: € N transmits to nodg € N inslott € S

0 otherwise

and a feasible schedule is one in which each nodeN transmits in at least one time slot S.
Note that, ifoj =1, thenBER§- < (. That is, the schedule, by construction, will satisfy theRBE
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Figure 5.1: lllustrating the capacity graph constructi@fridman et al.2008

constraint for each attempted receptiémidman et al.2009. The nominal capacity of transmitter

¢ = Zlogz me.

tesS

71S:

But, since node can transmit in at most; time slots, theeffective capacityf link (4, j) is given
by:

. Si
Cij = E Z log, mL. (5.4)
tesS

The capacity for a network link, by its transmitting, or soeirnode.

It is important to note that, in our formulatio is not a free variable and is determined before
the optimization process begins. This is consistent wighvtlerk of Fridman et al(2008, where

the random packing heuristic @fu et al.(2005 is employed. As noted ifridman et al(2008),
each time slot yields a disconnected graph\donodes, where links exist between designated trans-
mission nodes and their potential receivers. The netwadlizeg successive relaying to transmit
packets from the desired source to sink.

In order to combine the disconnected graphs determine bgdheduleB, we create a&apacity
graphG = (V, E) as follows. There exists a vertéxc V' for each mobile node with a positive
effective capacity. Then, for each vertex paif € V' x V, there exists an edde, ;) if and only if

1 transmits tgj in at least one time slot. Formally,

V={ieN|¢; >0, forsomej € N\ {i}}
E={(i,j) € Vx V| Bj; = 1,for somet € S}.

Thus, an edge exists @ if it carries transmission in one or more times slots. Fohesdgee € L,
we assign the capacity;. This process is illustrated in Figusel. G defines the available resources
for links in the networks physical layer, and we can send &gtaftom a node to a nodej if there
exists an(i, j)—path inG. It is important to note that, althougf is directed, in most cases, we
have both edgeg, j) and(j, ), each with an associated capacity.
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Network Layer.  The network layer is responsible for managing the transomssf data packets
between a specified source and destination. We consideptheflseveral commodities across the
network layer, each with a different source and sink. Ket {1, ..., k} be the set of commodities
to be sent across the network. For each commodlity, K, let o, € N andd, € N be the source
and sink node, respectively. Lef > 0 be the flow of commodity: € K over edge: € E. The
sum of the flow over all edges which terminate at the sink nodedmmodityk,

k
Z .Z'i’(gk = fk7

1€EN

yields the totathroughputf, of the commodity.

Multicommodity Maximum Throughput Design Problem (MMTP).  The overall objective of
the design problem is maximize the total amount of commaosiyt over the network. In other
words we wish to maximize the sum of all commadity flows,

F(f)y =YY afs,. (5.5)

keKieN

For each node pait, j), we have the capacity constraint

Yok <a; = %' " logy m, (5.6)
keK tes
which states that we cannot send more flow over any edge tleapdfe’s capacity will allow,
wherec;; is given by equation.4). Additionally, as mentioned previously, whenever a nale i
receiving data, it is required to satisfy the bound on maxmallowable BER. Thus, we introduce
the constraint
Bj;- BER; <3, Vi,jeN,teSb, (5.7)

which states that if any nodds transmitting to node in some slot (i.e. ij = 1), then the BER
for nodej must not exceed. In order to make sure the model is well-defined, we must add th
standardlow conservatiorconstraints,

Y ahi=) al, Vie N\{ond}keK (5.8)
JEN JEN
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which require the flow out of each node to be equal to the flow that node, for all commodities
on the network. This yields the MMTP:

K
k
max Tis,

k=1ieN
subjectto > af; < % > logymi, Vi, jeN
keK ’ ’ tesS
doaki =N "ak, Vie N\{op 0} ke K (MMTP)
jEN jEN

Bj;-BER, <, Vi,jeN,teS
peEP,me M,z >0,

As modeled, [¥MTP) is a nonlinear mixed integer program. To highlight thetietzship among the
layers, we note that, in the preceding model, the link capacinstraints depend on the underlying
temporal schedulé. In turn, the feasibility of the underlying temporal schieddepends on the
physical layer power vectgs and the constellation size vector. In the following section, we
discuss another model, which determines the minimum nagesg&nsmit power on the physical
level and describe its relationship tdiATP).

Transmit Power Problem Description.  As mentioned above, when designing a wireless net-
work, one must also determine the amount of transmissiorepdwallocate to the links in the
physical layer. Traditionally, this problem has been &dais a separate, unrelated problem from
that described in Sectidh1.3 However, itis clear that the problems are, in fact, quitetesl, since
they are modeling different aspects of the same network atidr®ed to determine a power strat-
egyp. In this section, we describe the integer linear progran®)Ithat has been used previously
to determine power allocation. In Sectibri.3 we describe alternative models which combine the
other two models.

In this section, we use the same definition of the power vettais in Sectiorb.1.3 The goal of
the power allocation problem is to minimize the total trafigrower,

> o),

iEN
for each time slot € S. Let~y denote a power threshold below which a link cannot commumica
effectively. That is;y is the minimum QoS requirement for a channel. Thus, in orolethie network
to operate effectively, we must have
t .
SINR; > v,j € N. (5.9)
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So, we can model the transmit power problem (TPP) for tiraeS as the (ILP):

min Z Pl

ieN
pid;"

D kert\ (i} Pedy; + 02

pEP.

subject to >~,i,5 € N, (TPR)

Combined Models. In this cross layer design problem there are, in fact, séyadormance
measures of importance in addition to total throughput:

e The total network capacity

> & (5.10)

i JEN

e The total transmission power

> (5.11)

teS ieN

e Sum of the node constellation sizes

S>> ml (5.12)

teS ieN

In what follows, we demonstrate how to incorporate objecttv11) into the optimization model.
We consider two alternative methods of incorporating thigctive in the network design problem.
The new models differ in the way in which we define decisiorkimg authority. In Sectiorb.1.3
we present a biobjective integer nonlinear framewaork femtatwork design. Then, in Sectiéril.3
we introduce a mixed integer bilevel nonlinear programnmraglel that provides an alternative view
of the problem.

A Biobjective Integer Programming Model.  One way in which we can combine the models
given in Sections.1.3and5.1.3is to employ the biobjective integer programming framework
discussed in previous chapters. This class of models enableo study the tradeoffs between two
conflicting objectives by a single DM.

Applying the biobjective framework to our design problemamg combining the constraints of
the separate problems, and forming an objective functiahititorporates the goal of minimizing
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transmission power, while providing the maximum networkfgenance. This yields thbiobjec-
tive design problen(BODP):

K
vmax szﬁ%’zng

k=1ieN teS ieN
subjectto Y 2k < % Y logyml, VijeN (BODP)
keK tes
doaki=>"ak, Vie N\{ond}. k€K,
JEN JEN

Bj;-BER. <, Vi,jeN,teS
peEP,me M,z >0,

for fixed scheduleB. Note that, in BODP), the second objective minimizes total transmission
power across all time slots, in contrast to the objectiveial,), which considers each slot individ-
ually. In addition, we have removed the constraint

SINR. >~,j € N,

since we assume the network will operate effectively if tieRBconstraint, which is dependent on
SINR, is satisfied. This model can be solved using an algargimilar to Algorithm3.3.

A Mixed Integer Bilevel Programming Model Another way to combine the previous models
is to introduce a second DM. As with many mathematical pnograthe models described above
are still limited by their assumption of a centralized diegismaking structure. However, in this
application, since decisions are made at different timasd, @otentially in different geographic
locations, it is likely that multiple DMs will be involved. d¥ example, suppose that we wish to
control the network flow and constellation size at a centoahmand unit. This may be the case if
one DM controls the flows for several subunits, each using &NEA It is reasonable to assume
that this DM would also control the constellation sizesgsithey have a direct effect on network
capacity. In this scenario, we assume that the internalritthiges installed in the mobile nodes
determine optimal transmission power for each node and taehslot, given a constellation size.
Although the central DM’s primary objective is total thrdumut, it is reasonable that total power
consumed weighs into his decisions, was well. In fact, tieeneost likely some cost, known to the
central DM but not the radios, associated with each unit efggaconsumed. If we let! denote the
unit cost of power at nodeat timet, then we can construct the central objective function:

K
PIPBE TSI

k=14ieN teS ieN
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which maximizes the sum of total throughput and negativesirassion cost. This leads us to a
natural bilevel program:

K
r>0 e Yo aks = ol

k=1ieN teS ieN
subjectto Yk < % Y logym!, VijeN (BLDPMF)
keK ’ ’ tes
doaki =Y "ak, VieNkeK,
JEN JEN

o e argmin ¢ cp {pr : ij . BERE- <p, Vije N} ,Vte S,

iEN
for fixed schedule3. (BLDP) is amixed integer nonlinear bilevel programith multiple followers.
Aside from its nonlinearity, this multilevel model diffefeom those described previously because
multiple DMs (i.e. radios) exist at the second level. Howeités show inCalvete and Galé007)
that BLDPMF) is equivalent to théilevel design problem

K
Z50 e M DD ats, =D > o

k=1ieN teS ieN
subjectto Y af; < % Y logyml, VijeN (BLDP)
keK | | tesS
dal =) af, VieNkeK,
JEN JEN
(p17,..’p|5\) € argmincp {Z Zp§ : ij . BER§. <pB, Vije N} ,
teS ieN

since each follower’s problem contains only upper-leveialdes angh?, and the objective functions
are defined by linear functions. In this situation, we retethte followers asndependent While,

in practice, all decisions may be made during deploymerg,nttodel gives us a way to predict the
overall performance of the network ahead of time.

Solution Methodology With the exception of the ILP described in Sectibri.3 each of the
models described in the previous sections contains nailifumctions in its constraints set. Non-
linear programming models already present a difficult cleégsroblems, due to the possibility of
multiple local minima (see e.@3azaraa et af1979. When combined with integrality restrictions
on the decision variables and modeled as bilevel progrdrasetmodels present a significant com-
putational challenge. We have described exact algoritlomsiixed integer bilevel linear programs
and pure integer bilevel linear programs. However, to owvKkadge, no exact algorithms exist
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for the nonlinear bilevel models of the forBI(DP). Thus, in order to solve these models, we
must either remove the nonlinear functions, using appraions or relaxations, or generalize the
algorithms developed for the linear case to be applied tatnent framework. Alternatively, we
can use thé&fficient Solutiorheuristic method described in Chapgisince it does not depend on
linearity of the constraints.

5.2 Conclusions and Suggested Future Work

In this dissertation, we have discussed the wide applitatf multilevel programming, moti-
vating the study of these models through applications indland security, production planning,
economic market analysis, and algorithm design. We haveodstrated areas in which bilevel
linear programs have made significant contribution by atgnassumptions of a single decision-
maker to be relaxed. However, it has also been argued thsg thedels continue to limit the true
utility of bilevel programming, by constricting its appditton to those systems for which continuous
lower-level models are appropriate. Thus, the further lbgvaent of methods for solving models
with discrete variables is essential if we wish to fully izalthe benefits of bilevel models.

We have also demonstrated the inherent challenges assbevith solving mixed integer bilevel
linear programming problems. It is clear that this is a veffiadit class of problems, for which
algorithmic development is not straightforward. Howevleveraging the recent advancements in
large-scale integer programming and integer programmiraityl, we have made some progress
towards the development of an algorithmic framework whiah bandle these types of problems.
In particular, we have described a theoretical and metlogittdl groundwork of algorithms for
solving MIBLPs directly. We discussed a generalizationh&f tvell-known branch-and-cut algo-
rithm used for solving integer programs. By expanding ouiomoof feasibility, we demonstrated
that the methods are analogous to those used for integefagonsgbut require cutting planes which
encapsulate the lower-level optimality conditions. In tase of pure integer bilevel programs, a
simple argument provides one such class of cuts.

By leveraging the newly-developed extensions to LP dudtigory, we have shown how to derive
single-level integer programming reformulations of thelgpem, several of which are analogous to
those used to derive reformulations for the continuouslprobFor these cases, we have used the
relationship between linear and integer program to ilatstthese similarities. For some special
cases of MIBLP, the reformulation methods yield problena ttan be solved by known methods,
but reformulations for the general case lead to problemsvfich no direct methods are known.
However, using information obtained during our standatelviei feasibility check, we have shown
how one can derive iterative approximation methods for ¢inet-level value function and derived
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theoretical algorithms based on this approach. In ordehfse method to have true practical utility,
however, development of effective methods for the resgisimbproblems is essential.

The primary advantage of our approaches is the ability tdoixhe vast array of existing technol-
ogy for solving integer programs. There are several impbn@asearch directions stemming from
each of these approaches. Certainly, the branch-andguithin we have developed would benefit
greatly from additional classes of cutting planes, esfigcifathey utilize information contained
in the lower-level value function or optimality conditiangurther, the use of value function ap-
proximations appears to be a promising area of future warld, different methods for obtaining
approximations will likely lead to significant computatarnmprovements.

From an application perspective, our primary focus has lmeeproblems in infrastructure pro-
tection. In particular, we have derived methods for solvimg Steiner arborescence problem that
arises in the design of a particular early warning systena teenonitor a Swiss urban water net-
work. Then, using this application as an example, we haveritbesl one way in which interdiction
problems can be used for sensitivity analysis, and provedseral problem-specific methods for
the mixed integer interdiction problem.

To our knowledge, no integer bilevel programming solvers arailable to the mathematical pro-
gramming community. Thus, one of the main contributionshig tresearch has been the devel-
opment a bilevel programming solver package to be madeadaithrough the COIN-OR repos-
itory. The design of the solver is such that future reseasckan easily add additional cutting
planes, branching methods, heuristics, and preprocessatigods with minimal effort. We hope
this framework will benefit the research community and smmgutational experimentation on
and methodological development for integer bilevel protgga The current version of the solver
package contains the branch-and-bound method for IBLP,edisas the customized features de-
rived for interdiction problems. The purpose of this cusiation is meant to demonstrate the way
in which users can employ enhancements based on problectus&to improve the algorithm’s ef-
fectiveness. There is large amount of work to be done towtheddevelopment of a complete bilevel
programming solver. The implementation of other known roé#h) for both continuous and discrete
problems, represents a significant effort in itself. In #&ddi further customized implementations
should be explored for those problems with a wide array ofiegipons.
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Appendix A

List of Acronyms

AF

BER
BIBLP
BLP
BMIBLP
BMILP
BMIPINT
CP
DBLP
DKNAP
DM
DMIBLP
DMILP
DMIPINT
EWS
GFCPA
IBLP
ILP

P

KKT
LMM
LP
LPEC
MAC

Atrial Fibrillation

Bit Error Rate

Binary integer bilevel linear program(ming)

Bilevel linear program(ming)

Biobjective mixed integer bilevel linear program
Biobjective mixed integer linear program

Biobjective mixed integer interdiction

Current problem, from a specialized branch—and—cuorittn
Decision version of bilevel linear programming
Decision version of the knapsack problem
Decision-maker

Decision version of mixed integer bilevel lineaiogramming
Decision version of mixed integer linear programmin
Decision version of mixed integer programmingertiction
Early warning system

Gomory Fractional Cutting Plane Algorithm

Integer bilevel linear program(ming)

Integer linear program(ming)

Integer program(ming)

Karush-Kuhn-Tucker

Linear max-min problem

Linear program(ming)

Linear program with equilibrium constraints

Medium access control
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MANET
MIBLP
MIBNP
MILP
MINLP
MIPINT
MP
MPEC
MSPP
PCSA
RHS
SINR

— Mobile ad hoc network

— Mixed integer bilevel linear program(ming)

— Mixed integer bilevel nonlinear program(ming)
— Mixed integer linear program(ming)

— Mixed integer nonlinear program(ming)

— Mixed integer programming interdiction

— Mathematical program(ming)

— Mathematical program with equilibrium constraints
— Maximum Shortest Path Problem

— Prize—collecting Steiner arborescence

— Right-hand-side

— Signal to Interference plus Noise Ratio

Table A.1: List of acronyms used in this dissertation.
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