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Abstract 

The objective of this investigation is to evaluate the effect of residual stresses 

that arise during welding processes, on localized fracture behavior. The primary 

fracture parameters of interest are the Stress Intensity Factors (SIFs) associated with 

cracks that develop around the welded area. The simulation of the welding process is 

accomplished through the finite element code SYSWELD® and the computation of 

fracture behavior uses a finite element user-defined enriched crack tip element code, 

FRAC3D, developed at Lehigh University. In this study, quadratic 3D finite element 

models which are generated in HYPERMESH®, are first introduced into 

SYSWELD® to perform the thermo-mechanical transient analysis needed to predict 

the welding residual stresses, global stresses, stain and displacement. Residual 

stresses form the welding simulation and the original quadratic 3D finite element 

HYPERMESH® model are combined, modified and transferred into the 

ANSYS/FRAC3D code to obtain the final Stress Intensity Factor (SIF) for 3D cracks, 

and the stresses, strains and displacements in the cracked configuration. In order to 

verify the accuracy of the welding simulation residual stress, different mesh densities 

were examined in detail. In addition, different welding model meshes were applied to 

test the sensitivity of the SIF results to different meshes and geometries. Finally, 

refined weld/crack models with a progression of crack shapes that follow the contours 

of the highest stresses around the weld zone were generated to simulate the behavior 
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of a crack emerging from a weld defect The effect that different welding parameters 

have on the fracture parameters represent an important result from this study. 
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Chapter 1. Introduction 

 

1.1  Finite element analysis of crack problems 

Finite element analysis of three-dimensional fracture problems based on linear 

elastic fracture mechanics is an important tool for design analysis in industry. 

Meaningful 3-D fracture computations should include such quantities as mixed mode 

stress intensity factors, strain energy release rate, and phase angles to be considered as 

an appropriate engineer tool with broad applications. Fracture analysis of structures 

fabricated using welding also require careful consideration of the welding residual 

stresses that often result in localized cracking in the neighborhood of the weld. Such a 

fracture analysis requires a systematic technique to link the results from the welding 

simulation with secondary computations needed to extract the relevant fracture 

parameters, e.g. stress intensity factors. One problem when using the finite element 

methodology to analyze crack problems is the difficulty in adequately capturing the 

mathematical singularity that occurs at the hypothetical crack tip in linear elastic 

bodies. The usual polynomial based elements available in most commercially 

available finite element codes converge very slowly to a suitably accurate solution 

when the finite element model contains a sharp crack that does not incorporate the 

correct asymptotic solution with the appropriate   √   singular stress terms. 

Enriched finite elements are very convenient for representation of singularities in 
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fracture analysis. In this study, a specialized finite element program [1], which uses 

enriched crack tip elements, developed at Lehigh University, is utilized to perform the 

fracture analysis for this research. 

In 2002, Ayhan and Nied[2] implemented asymptotic terms into enriched 

elements for six different types of 3-D elements and developed an efficient finite 

element code, which could perform fracture mechanics analysis for three dimensional 

fracture problems using enriched crack tip elements. This code (FRAC3D, Figure1.1) 

also has the ability to solve general plane strain fracture problem and certain classes 

of non-linear problems, e.g., (small strain plasticity) [1]. One important advantage of 

the enriched finite element method is that the fracture parameters of interest, i.e., the 

stress intensity factors, are defined as additional unknowns in the formulation. Thus, 

the stress intensity factors are computed simultaneously with other regular 

displacement degrees of freedom. In the enriched element approach, no additional 

post-processing is required to obtain the relevant fracture parameters. 

 

Figure 1.1 Running FRAC3D 



5 

One aspect of the enriched element formulation is the need for transition 

elements to rigorously satisfy displacement compatibility. Displacement compatibility 

is satisfied exactly on all element surfaces between the enriched crack tip elements 

and the surrounding isoperimetric finite elements in this methodology. The 

formulation for 3-D interfacial crack problems was updated in FRAC3D by Ayhan, 

Kaya and Nied[3]. Further development of this research code continues, e.g., in 2010, 

Ayhan developed a Graphical User Interface FCPAS (Figure 1.2) based on Frac3D 

and ANSYS. 

 

Figure 1.2 Graphical User Interface FCPAS based on Frac3D and ANSYS 

 

Most commercially available finite element codes have some capacity for 

fracture analysis. For example, ANSYS [4] can be used to compute stress intensity 

factors using the virtual crack extension technique. However, this requires the 
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generation of a specialized “tunnel” crack tip mesh that completely surrounds the 

crack front, which greatly complicates the generation of a mesh for a general 3-D 

problem. The main benefit of using FRAC3D in this study, is that the finite element 

meshes used for fracture analyses of the welded geometry do not require specialized 

crack tip meshes, and thus automatic meshing from HYPERMESH® can be routinely 

used to a generate mesh for the cracked structure. 

In the paper by Ayhan and Nied [1], it was demonstrated that even for coarse 

finite element meshes, the direct calculation of the stress intensity factors using 

enriched elements, results in rapid convergence to the correct stress intensity factor 

solution. Currently, enrichment capabilities of FRAC3D include asymptotic crack tip 

elements for: interface cracks, anisotropic materials, poroelastic materials, dynamic 

loading and crack surface contact. 

However, fracture analysis for welded structures is somewhat different than the 

type of fracture problems that are routinely addressed in most engineering fracture 

problems. First, the highly nonlinear nature of the welding physics requires a separate 

type of finite element formulation to take into account the melting and resolidification 

that occurs during welding. The welding simulation can be completely separate from 

the fracture analysis. However, the residual stresses are an important driving force (in 

conjunction with additional external loads) for subsequent crack growth when a 

welded structure is in actual use. This combination of welding simulation and fracture 
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analysis is of considerable importance, since weld joints are considered to be the 

portion of the structure most susceptible to cracking. 
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1.2  Welding simulation 

Cracking behavior is strongly influenced by the residual stresses which arise 

during the fusion welding process. Computation of heat transfer and welding induced 

residual stress invariably involves a complex nonlinear numerical simulation of the 

fusion weld process, starting with the heat source description, and its moving path 

definition. Since the thermo-mechanical properties depend on temperature in a highly 

nonlinear manner, analysis of welding requires highly computationally intensive 

simulation. In order to meet this need, specialized finite element codes have been 

developed that can model and simulate a variety of fusion welding processes. In 

addition, many of the larger commercial finite element packages, e.g., ANSYS, 

ABAQUS, can be made to simulate welding processes by using appropriate 

user-defined moving heat sources and nonlinear material property models. 

SYSWELD [5] is a specialized commercial code specifically designed to handle 

complex welding simulations and contains built in welding heat source models and 

the necessary material property behavior to accurately simulate a wide variety of 

welding behavior. 

The paper of Suraj Joshi, Cumali Semetay, John WH Price and Herman F. Nied 

[6] presents the simulation of welding-induced residual stresses in a CHS T-Joint, 

which would form the first of the four lacings welded on to the main chord of a 

typical mining dragline cluster. In this paper, computed temperature distributions 

during fusion welding and relevant welding distortion for CHS T-joint are presented. 
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The paper compares numerically generated residual stresses during the welding 

process in a single weld pass, and the observation that residual stresses in the fused 

area at some points can be higher than the uniaxial yield stress. The moving heat 

source defined in these fusion welding simulations, utilized double-ellipsoid power 

density distribution functions, which adequately describe the heat transfer behavior 

for various metal arc welding processes. 

After the transient temperature distribution during welding has been determined, 

the residual stresses can be calculated by performing a nonlinear thermal stress 

analysis of the structure as the weld cools from above its melting temperature, down 

to the normal environmental temperature. The residual stress components in the weld 

region often can become greater than the temperature dependent uniaxial yield 

strength of the filler metal as the welded part cools. This is due to localized triaxial 

constraint that causes relatively high hydrostatic stresses during cooling solidification 

in the neighborhood of the weld. Long longitudinal welds are generally subjected to 

longitudinal tensile residual stress approximately equal to the metal‟s uniform axial 

yield stress, unless post-weld heat treatment or some other residual stress reduction 

treatment is performed. In order to compute residual stress correctly, the stresses that 

result from solid phase transformation also should be considered in the residual stress 

computation.  

    Solid phase transformations during cooling are known to cause local material 

dilatation and contribute to additional strains similar to thermal strains. [6] This effect 
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can be substantial and can even reverse the sign of the residual stresses in determined 

solely from a thermo-mechanical simulation. 
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1.3  Finite element analysis of 3D welding/ fracture 

Problem  

The fracture behavior of welded structures is of considerable importance, since 

fusion welding is the most commonly used technique for joining metal structures. 

Numerous descriptions of catastrophic failures attributed to fracture of a welded joint 

appear in highly constrained welded plate girders [7]. A specific example of a historic 

bridge failures is the Hoan Bridge in Milwaukee, WI.[8] 

 

Figure 1.3 Fracture in highly constrained welded plate girders. [8] 

 

Thus, a better understanding of the relationship between welding processing 

parameters and post-weld fracture behavior is of great importance for improving the 

ultimate load carrying capacity and fatigue life of load bearing structures. Numerous 

experimental studies have indicated that the weld induced residual stress can 

significantly affect the subsequent fracture behavior of a fusion welded structure [9]. 

It is well known that fusion welding processes introduce high residual stresses. 

Unfortunately determination of welding residual stresses to a high degree of accuracy 
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is not easy. In addition, most welding processes are known to introduce crack-like 

defects due to many reasons. For example, the heat affected zone around a weld 

experiences metallurgical changes that can seriously degrade the fracture resistance of 

the base metal. Besides, inadequate gas shielding will cause the formation of oxides 

that are inherently brittle and will result in initiation of weld defects. Incomplete 

fusion can embed crack-like defects underneath the weld, etc. Generally, it is almost 

impossible to create a perfect weld with zero defects. Thus, when failure occurs in a 

welded structural component, the welded part is most likely to be identified as the 

initial location of fracture. Consequently, an accurate and efficient technique for the 

determination of the weld residual stress distribution is the required starting point for 

an accurate fracture prediction methodology for welded structures.  

In Michaleris P [10], a finite element methodology is presented to assess the 

effect of residual stresses on fracture analysis. Residual stress calculated from welding 

simulation, after interpolation, was transferred onto fine meshes for succeeding 

computation of fracture mechanical parameters. 

In V.Robin and T.Pyttel[11], a calculation methodology for failure analysis of 

jointing system such as weld line submitted to dynamic crash loading was presented. 

In this research, the advantage of the built in interface between SYSWELD® [5] and 

PAM-CRASH® was used. For example, the results from a SYSWELD® welding 

simulation is loaded into the rupture modeling of a weld line made of solid elements. 
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The damage parameters are identified through an inverse method based on 

comparisons between numerical and experimental results. 

Z.Barsoum [12] investigated the residual stresses near the weld root and the weld 

toe of multi-pass welded tube-to plate structures. In this paper, a 2-D axi-symmetric 

finite element model was developed to calculate the welding solution and the fracture 

analysis was accomplished by using the LEFM code FRANC2D [12]. 

In an ATLSS report by H. F. Nied, S. Marugan, M. Ozturk, E. Nart, A. Mengel, 

and E. Citirik. [9], a fundamental understanding of the transient nature of residual 

stress evolution during various metal fusion welding processes was developed. This 

work determined the effectiveness of simplified fusion welding finite element models, 

such as two dimensional plane strain and generalized plane strain models, to simulate 

the cracking progress a 3-D crack model was developed in which there is a crack front 

in planes perpendicular to the axial residual stress that arise from welding.  

In  E.Citirik, U. Ozkan, H. F. Nied [13], prediction of welding residual stress 

was performed by using two finite element codes (HEAT2D and FRAC2D_WELD), 

which are developed at Lehigh University. The fracture mechanics parameter 

calculation part was computed by FRAC3D, which is the algorithm methodology used 

in this study.  

To accurately analyze crack behavior in fusion welded components, Cumali 

Senetay, H. Mahmoud, H. F. Nied [7] developed a nonlinear transient welding 

simulation using commercial SYSWELD code. They superposed the residual stress 



14 

and external load from an ABAQUS finite element simulation and used these results 

to perform a fracture analysis.  

The paper by Labeas, Tsirkas, Diamantakos, and Kermanidis [14] introduces an 

effective method to study the effect of residual stresses due to laser welding on the 

Stress Intensity Factors (SIFs) of cracks developing nearby the welded area. The 

simulation of the welding process and the calculation of SIFs on the cracked structure 

are performed using an explicit and an implicit Finite Element code, respectively. The 

developed residual stresses due to the welding of two flat plates by laser welding are 

calculated first, using a thermo-mechanical transient analysis. Subsequently, a linear 

elastic analysis is applied for the calculation of SIFs at the crack tips. For the entire 

finite element calculation, linear solid elements „SOLID45‟ in the ANSYS code are 

used. SOLID45 is a brick element and is defined by eight nodes, having three 

displacement degrees of freedom at each element node. The calculated results of the 

welding simulation are verified by comparing the computed angular distortions to the 

corresponding experimental values. The verification of the important fracture 

mechanics parameter SIF is performed through comparisons between computed and 

experimental crack opening displacement (COD) values. 

In this study the residual stresses that arise during the weld process are a function 

of the welding parameters, e.g., material phase, temperature, displacement, etc. Thus, 

the influence of different weld parameters on the fracture behavior -is an important 

result in this study. 
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In this work, 3-D welding simulations were carried out in order to determine the 

residual stresses which are transported to the three-dimensional fracture analyses. 

Application of both software built-in interfaces and transformed ASCII files are 

necessary. Various types of loading and meshes are applied to check the accuracy of 

simulation. Another objective was to investigate the sensitivity of the SIFs to the 

various controllable welding parameters. In this application, which requires the 

superposing of two numerical algorithms, fundamental data need to be specified 

common to both the welding model and the fracture model. This includes the 

geometry of the welded plate and the dimensions of the fusion weld. The results from 

the SYSWELD welding simulation include: (i) time dependent temperature 

distribution ;(ii) stress tensor, strain tensor and nodal displacement ;(iii) residual stress 

and strains; and (iv) final stress, strain and displacements everywhere in the model 
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Chapter 2. Numerical Analysis 

 

2.1 Numerical Method 

The focus of this numerical study will be on the thermo-mechanical and fracture 

behavior of a long longitudinal bead weld (Figure 2.1). This very common weld 

geometry contains important features observed in most weld geometries and 

represents a generic baseline for developing a systematic numerical methodology for 

analyzing weld fracture behavior. 

Generally, two types of numerical analyses (welding simulation and fracture 

simulation) are required for the fracture mechanics design of longitudinal-bead weld 

Crack test specimens with center crack underneath weld bead. The principle goal of 

this study is to investigate the residual stresses that arise during the welding process 

and their influence on the fracture behavior. Therefore, determination of the residual 

stress field that evolves during the fusion welding process is required prior to 

computing stress intensity factors for the cracks that may develop along the crack 

front near the weld bead. 

Simulation of the fusion welding process was performed using the explicit finite 

element code SYSWELD [11]. The residual stress field around the welded area 

depends on a detailed heat transfer analysis that is exported to the mechanical phase 
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of the simulation. Once the complete thermo-mechanical solution for the residual 

stresses has been obtained, the implicit finite element codes ANSYS [4] and FRAC3D 

can be used to perform the fracture analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic flow chart for the file transfer process 

 

The main problem in this study is that if all the stress results on the final time 

from SYSWELD are transferred to ANSYS as an initial stress file, then essentially the 

HYPERMESH 

Preprocessor 
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Hypermesh 

export file 

*.hm 

8 

*.ASC *.CBD 

SYSWELD 
ANSYS  

*.lis 

Converter2.exe 

Sflist.lis Elist.lis nlist.lis Ecrack ncrack Dlist.lis 
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same results in ANSYS will be obtained as which is obtained in SYSWELD, for the 

same geometry parameter, element and node information, and boundary conditions. 

However, the SYSWELD model in fact is not completely identical to ANSYS model, 

since the SYSWELD model doesn't have a stress-free crack surface, while the 

ANSYS model does. Basically in the superposition procedure shown in Figure 2.1, 

the residual stresses for the un-cracked configuration are obtained using SYSWELD 

and then these stresses are applied as crack surface pressure for the fracture 

mechanics calculation. The superposition of the two solutions gives the complete 

solution for the final state of stress in the cracked configuration. If the crack is in the 

problem before welding occurs, then the heat transfer conditions will simply be 

different and at the same time a preexisting flaw may decrease the accuracy of 

residual stress results from SYSWELD, i.e., the crack faces should be insulated to 

prevent heat from flowing across the crack face surfaces. Admittedly simulation of 

model with a crack is an interesting problem in and of itself, but is more 

representative of a weld repair problem. On the other hand, the model of interest in 

this study represents the case where the crack appears (nucleates) after welding. In 

this circumstance, heat transfer is not impeded by any pre-existing crack faces. 

The approach that is used in this study relies on a superposition method (figure 

2.1), i.e., SYSWELD stress output files are generated to characterize the state of stress 

only for the zone where the crack surface will be in the subsequent ANSYS/FRAC3D 

model. Thus the residual stress data from SYSWELD is used as an applied crack 
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surface pressure on the hypothetical crack surface area. There should be no other 

loads acting on the FRAC3D model (refer to a schematic of the superposition 

procedure in Figure 2.1) with all other boundary conditions the same. In this approach, 

the initial stresses are applied as a pressure on surface element. When this pressure is 

applied to a surface, the finite element program will compute the correct consistent 

nodal forces that are work equivalent to the pressure distribution, i.e., the FEM 

software will determine the proper nodal forces according to pressure information 

applied on the crack surface elements. This approach will yield the correct stress 

intensity factors in FRAC3D. 

After running the FRAC3D program, the initial stresses obtained from 

SYSWELD can be added to the FRAC3D results, to determine the complete stress 

field, strain field displacement and nodal reaction forces. Clearly, this will result in 

cancellation of the stresses on the crack surfaces, providing the correct stresses 

throughout the cracked geometry. However, in most instances the full stress field is 

not of great interest and only the stress intensity factors are desired. Thus, the actual 

superposition of stresses is not generally required. 

In this study, the FE model is initially developed using geometry and meshing 

tools in the HYPERMESH preprocessor. The finite element entities needed for the 

model are transferred to or from the SYSWELD code by way of modified ASCII files 

between *.ASC file from SYSWELD and *.CDB HYPERMESH file, which contains 

the topology of the model (nodes, elements and sets/groups/components). At the same 
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time, the finite element entities of the model are also transferred to ANSYS by way of 

transformed ASCII files from *.HM file from HYPERMESH to *.CDB ANSYS file, 

which contains the same topology of the model. After simulation of the fusion 

welding process in SYSWELD is completed, the computed residual stresses are 

exported from the SYSWELD postprocessor as a *.lis file and are imported as 

pressure into the ANSYS/FRAC_3D model through a FORTRAN program. The 

methodology described, uses the same topology for both of the models required for 

the numerical analyses, with the exception of the boundary conditions on the crack 

surface. This procedure ensures excellent integration between the two models. One 

benefit of this technique, is that it does not require separate meshes for the welding 

simulation and the fracture mechanics problem, i.e., both are solved using the same 

FE mesh.. 
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2.2 Welding Geometry 

In this study, the modeling and simulation effort focuses on generating solutions 

for a simple welded configuration that can easily be tested in experimental facilities. 

The test configuration that is modeled in this study is based on the so-called 

Longitudinal-Bead-Weld Notch-Bend test specimen [15].  

Figure 2.2 shows a schematic drawing of the proposed test specimen 

configuration. In this model, a weld bead is deposited onto a pre-cracked specimen. 

The crack length extends beyond the edges of the weld bead and the crack shape is 

depicted in blue as shown in Figure 2.2. This test configuration approximates the type 

of cracking often observed in welded structures fabricated using longitudinal welds. 

Figure 2.2 geometry of Longitudinal-Bead-Weld Notch-Bend test specimen 

 

After simulation of diffusion welding is accomplished, the SYSWELD stresses 

output files will be transferred only for the zone where the crack surface will be in the 
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ANSYS/FRAC3D model. The hypothetical crack surface is shown in blue in Figure 

2.3. Thus the residual stress data for the hypothetical crack surface area to the crack 

surface as a un-uniform pressure distribution. There should be no other loads acting 

on the FRAC3D model with all other boundary conditions the same (figure 2.1). 

 

 

Figure 2.3 Longitudinal-Bead-Weld Notch-Bend test specimen in Fracture analysis 

 

Since the welding simulation process and fracture analysis share the same finite 

element model information set (nodes, elements, and element 

sets/groups/components), a fine mesh along the crack front is required. Considering 

that the file containing the fundamental finite element information is generally very 

large for these 3-D problems, this study will take the advantage of symmetry 

boundary conditions and use a one-quarter model as shown in Figure 2.4 for the 

fracture mechanics portion of the calculations. As before, the crack surface is marked 
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in blue in the figure. In the welding simulation, half-symmetry along the length of the 

longitudinal weld bead is appropriate. 

 

Figure 2.4 1/4 welding bead model 

The length of the specimen is 100mm, which means the length for the 

one-quarter symmetry model is 50mm. The parameter of the geometry is: the width of 

the plate a equal to 30mm, the height of the plate which is b in the figure is 10mm. 

The radius of the weld cross-section (designated as R1 in Fig. 2.5) is equal to 5mm 

and the crack front is modeled as a circular arc with a radius of 10mm.

 

Figure 2.5 cross section of 1/4 welding bead model  
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2.3 Mesh Generation 

For volumetric 3-D simulation, three different meshing techniques are employed 

to construct the entire mesh for the Longitudinal-Bead-Weld Notch-Bend model using 

1）the HYPERMESH mesh generator for SYSWELD solver, 2）WELD ADVISER. 

and 3) mesh techniques are applied for ANSYS/FRAC_3D model. 

 

 

Figure 2.6 3D mesh generation of Longitudinal-Bead-Weld Notch-Bend model 

First, Hex20 elements were generated in HYPERMESH as shown in figure2.6. 

These are 3-D (2nd order) hexahedra elements, with 20-nodes. These elements were 

used to compute volumetric heat conduction using the SYSWELD code. Quadratic 

hexahedral elements are preferable for HYPERMESH to generate complex mesh. In 

order to obtain reliability for reaching convergence in the thermal and mechanical 

results, it is necessary to generate a finer mesh along the crack front and in crack 

surface, but to keep elements in other part of the mesh comparatively coarser. Heat 



25 

transfer convection to the surroundings occurs on the surface at a constant room 

temperature. Figure 2.7 shows a model of a     room temperature air is showed. 

The elements are quadratic 8nodes plane elements. 

 

 

Figure 2.7 2D mesh and 1D mesh of Longitudinal-Bead-Weld Notch-Bend model 

 

Figure 2.8 2D mesh and 1D mesh of Longitudinal-Bead-Weld Notch-Bend model 

To compute the heat transfer behavior of the longitudinal-bead-weld notch-bend 
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model, a two-dimensional quadrilateral element with 8 nodes, QUAD8 in 

HYPERMESH is required to impose natural convection boundary conditions on the 

surface. Radiation on the model surface is also numerically calculated using the 

QUAD8 elements as well. As a matter of practice, once a mesh is generated in the 

2-D cross-sectional plane, the 2-D plane mesh can be extruded in the welding 

direction (Z axial direction), meshing the entire volume. The generated meshes are 

shown in Figure2.6 and Figure2.8. 

  

        (a) Coarser mesh                   (b) large front mesh       

  

        (c) Finer mesh                    (d) smalle front mesh       

Figure 2.9 Cross section  

The deposition of the welding metal in the weld bead is simulated by using an 

element activation-deactivation technique [5, 16]. The activation-deactivation 

procedure gives the time dependent material properties for the weld bead only when 

the heat source passes across the surface of the plate. The material properties of the 
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weld bead and the gap are not given in this study; however, the properties are 

activated when the heat source passes through the corresponding nodes.  

Since the computational results in SYSWELD and FRAC3D may depend on the 

element mesh density, the model described above was meshed using both a large (the 

crack front is a part of a circle with a radius of 12mm) front mesh as well as a coarser 

mesh and a finer mesh. After comparison of the result e.g. stresses, displacements and 

stress intensity factor, a modified model with a progression of crack shapes that 

follow the contours of the highest stresses around the weld zone was studied. This 

represents a sequence of separate crack configurations  
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2.4 HYPERMESH®/SYSWELD® Interface 

The Geometry/Meshing module, which is an integral part of SYSWELD 

software, is a sophisticated tool for the creation of model geometry and finite element 

mesh preprocessor. However, it is more expedient to create a finite element mesh 

which can be used in different programs in HYPERMESH. For further possibilities 

for the creation of complex geometry and mesh and for computation the same model 

in different environment, this study develops a HYPERMESH®/SYSWELD® 

Interface. Thus it is possible to convert HYPERMESH standard file to SYSWELD 

standard file. Also, it can convert SYSWELD standard file to HYPERMESH standard 

file (refer to figure 2.1).  

 

           

(a) Hex20                             (b) Quad8 

Figure 2.10 (a) Hex20, 3D (2nd order)quadrilateral hexahedra element with 20 nodes 

in HYPERMESH.(b)Quad8, 2D (2nd order)quadrilateral elements with 8 nodes 

ordered in HYPERMESH 
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Although, the FORTRAN code can export/import most of elements in 

SYSWELD, there are only three types of element that are used in this study. These 

elements are depicted in Fig. 2.10. The third type is an two point line element of 1
st
 

order. 

The element name and order of the nodal numbering in the elements from 

HYPERMESH and SYSWELD are shown in Figures 2.10 and 2.11, respectively. 

More information concerning these elements is given in Appendix 1. 

 

 

Figure 2.11 Element definition and nodal number order in SYSWELD 

 

The code allows creation of the SYSWELD data file or HYPERMESH-ANSYS 

standard format data file in ASCII format, which contains the FE mesh (nodes and 
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elements) and definition of Groups/Sets. The code does not permit exporting other 

pre-processing data, e.g., material properties, constraints, loads, etc.); these are 

defined directly in SYSWELD using SYSWELD‟s standard pre-processing 

capabilities or advisors or in ANSYS/FRAC_3D using ANSYS preprocessor. 
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Chapter 3．Fusion Welding Simulation 

 

3.1 Material Properties and Fusion Welding Simulation 

There has been an increasing interest in the effect of fusion welding residual 

stresses on mechanical properties, as the design of engineering components has 

become less conservative. The effects of residual stresses introduced by fusion 

welding are known to play a large role in structural failure mechanisms. Residual 

stresses are formed in welded structures primarily as the result of differential 

contractions which occur as the weld metal solidifies and cools to the ambient 

temperature. These stresses can have important consequences on the performance of 

the structure and its fracture behavior.  

The material used in this study is a low-carbon steel [15].The chemical 

composition of the parent material and weld metal are given in Table 3.1. The 

dimension of the plate is 100          ; the bead-on-plate welds were 

produced along the center line of the plate. The width of the weld beads is 10 mm. 

typical mechanical properties of the parent and weld metal are given in Table 3.2. In 

the welding simulations, the sample was fully restrained when it is clamped. There 

was no pre- or post-weld heat treatment. 

The objective of the welding simulation is to perform three-dimensional, 

finite-elements modeling of the one-quarter bead-on-plate experiment to export the 
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residual stress data, nodal stresses, nodal strain and displacement information. The 

parent and the weld material were assumed to have the same mechanical and thermal 

properties, as was provided in the SYSWELD database for the material S355J2 with 

chemical composition as follows: Cp0:20%, Mnp1:60%, Sip0:55%; Sp 0:035% and 

Pp0:035%. The solidus temperature was     , the liquids are 1505 1C and the 

latent heat of fusion was 270,000 J/kg [5, 15]. The temperature dependent properties 

supplied with SYSWELD are measured values obtained by extensive experimentation. 

Three-dimensional meshes of the substrate plate and the weld bead were constructed 

as illustrated in Chapter 2, Figure 2.6. 

Table3.1 Chemical composition of the consumable materials (in wt%) 

Composition 

material 
C Mn Si S P Ni Cr Mo Cu V 

Parent metal 0.12 0.63 0.13 0.01 0.02 0.02 0.01 0.01 0.01 <0:01 

Weld metal 0.10 1.7 0.68 0.02 0.02 0.05 0.03 0.04 – 0.04 

 

Table3.2 Typical mechanical properties (   ) 

Mechanical properties 
Yield stress 

(MPa) 

Tensile strength 

(MPa) 
Elongation (%) 

Parent metal (experimental 

measurements according to AS 

1391:1991) 

285 429 38 

Weld metal (‘as manufactured’ using 

Argoshield 52 shielding gas) 
445 550 29 

 

The volume of the bead was modeled, for the sake of geometric convenience, as 

a one-quarter circular solid with the front and the back faces of the bead also 

one-quarter circle. Care should to be taken to ensure that the mesh size control 
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specified at different lines and edges, especially, at the juncture of the supposed crack 

front line, the bead surface and the substrate plate, are such that the nodes lay on top 

of each other. The volume mesh was created with quadratic elements in 2-D and 3-D. 

Three differential element sizes are used in mesh; the mesh in the zone of the bead 

was built with a higher mesh density than that on the plate. Similarly, the mesh 

density is higher near the crack front line where the crack is placed, and progressively 

reduced towards the edges of the substrate plate.  

In order to generate the convection and radiation boundary conditions, skin 

elements (two-dimensional quadratic plane mesh) were constructed on all the exposed 

domains of the model. As before, the mesh density of the surface mesh was specified 

such that the skin element nodes were coincident with the volume element nodes 

lying underneath them. A combined convective and radioactive heat transfer 

coefficient of        ⁄  was assumed. The initial temperature was assumed to be 

    (ambient temperature).  

The program required that the welding heat source trajectory be explicitly 

specified along the direction and position of the moving heat source using linear, 

one-dimensional elements. The trajectory was chosen to be along the center line of the 

whole substrate plate, with mesh size control of the weld line to ensure that the nodes 

coalesced with those on the skin and volume elements. The simulation was run for 

fully restrained, i.e., clamped boundary conditions. 
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Figure 3.1 Trajectory line and reference line for fusion welding 
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3.2 Initial Clamping Condition 

Welding simulation results depend on the nature of the clamping condition. In 

this study the model is fully constrained. As shown in Figure 3.2( a) and Figure 3.2 

(b) ,all nodes on the symmetric UX plane and symmetric UZ plane are fixed in a 

direction normal to X and Z planes, respectively. In addition to these, a bottom-front 

node is restrained in all degrees of freedoms (U x, y, z=0). 

 

 (a) X-Y view 

 

 (b) X-Z view 

Figure 3.2 Initial boundary condition  
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3.3 Heat Source Modeling  

The welding heat source used in this study is an arc plasma radiating intense heat 

outwards with decreasing temperature. For accurate simulation of the welding heat 

source, a 3-D double ellipsoidal heat source developed by Goldak [5] is usually used 

in arc welding simulation. Considering a Gaussian distribution, this heat source model 

has been found to be considerably more accurate than a point or a line heat source 

model, especially when simulating metal gas arc welding processes [5]. The total heat 

rate (q, power) from the arc welding gun is simply expressed as Eq. (3.1), with η 

being the efficiency and V and I being the arc voltage and current, respectively: 

         [ ]                                 (3.1) 

 

Figure 3.3 Double ellipsoid source and display of possible trajectories 
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According to Nguyen et al. [15], the most appropriate model for the heat source 

for TIG and MIG welding procedures is the double ellipsoidal heat source. A double 

ellipsoidal heat source consists of two different single ellipsoids as shown in Figure 

3.3, and is properly considered to be a more sophisticated heat source compare to a 

single ellipsoidal on account of its better flexibility in modeling realistic shapes of the 

moving heat source. The heat density Q(x, y, z) at an arbitrary point within the front 

half ellipsoid and rear half ellipsoid is described by the following equation [5], 

respectively: 

                      (3.2) 

                     (3.3) 

 

Where,   ;   ;    ;     are the ellipsoidal heat source parameters,  Q is arc 

heat input defined in Eq.3.2., and    ,    are the proportional coefficients at the front 

and he back of the heat source, respectively, such that (       ). 

An expedient method of calibrating the coefficients is built into the SYSWELD 

program to achieve the correct heat energy density in (    ⁄ ) of each one-half 

ellipsoid. The heat input fitting tool of the SYSWELD welding adviser allows the user 

to enter the basic value of the geometric parameters with accurate arc energy input to 

give the values of     heat energy density in the front half) and    (heat energy 
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density in the rear half) iteratively. A simple Fortran code provides an efficient way to 

iterate several time steps to calibrate the heat source with the known dimensions of 

thermal image of the molten weld pool, as well as distortions of the edges or even 

temperatures at specified points. In this study, the heat source was calibrated using the 

image of the weld pool as shown in Figure. 3.4. 

 

Figure 3.4 Weld pool 

 

 

Figure 3.5 Calibrating heat sources 

The geometry dimension showed in Figure 3.5 of the heat source in this study is: 

   = 4;    = 8; b = 7; c = 0:8 and velocity of the weld torch along the weld trajectory 

line    = 6mm/s. The energy input is 15000W, with an assumed arc efficiency of 0.8 
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and the density of energy source for front and rear ellipsoids are   = 268    ⁄  

and    = 138    ⁄ , respectively. The parameters mentioned here are used in the 

definition of the double ellipsoidal model as provided n the documentation of 

SYSWELD in Figure. 3.5. At t=0, the heat source will move from the start point to 

the end of trajectory line as shown in Figure3.1 in velocity of     ⁄  
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3.4 Heat Transfer Modeling 

Radiation, convection, and conduction are considered as the main factors during 

the transient heat transfer associated with welding. SYSWELD offers numerical 

compute result to analysis heat transfer rates including radiation, convection and 

conduction. 

For radiation evaluation, the surrounding environment is specified at an ideal 

temperature of 20 . In SYSWELD, the surrounding environment is created as a 

group of elements as shown in Figure 2. 7 (the name of the group is skin). The “skin” 

elements are used to apply the radiation boundary condition. In fundamental heat 

transfer, radiation heat transfer is generally given as an expression in Equation (3.4) 

where σ is the Stefan-Boltzmann constant,          [      ⁄ ], and   is the 

emissivity, and    is an ambient temperature, 20 .      is defined as the radiation 

heat transfer coefficient. 

    
           

 )          
 )     )     ) 

                 )[
 

   ⁄ ]                   (3.4) 

In Equation (3.4), the surface emissivity is assumed be 70% for molten stainless 

steel although the emissivity is temperature-dependent. [17]. The equation is simplify 

Newtonian convection: 

     
         )[

 
   ⁄ ]                   (3.5) 

h [W/m2    K] is the convective heat transfer coefficient.  

Conduction heat energy flux from the weld, which is influenced by both of the 
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energy balance and the welding heat source and the heat transfer, is expressed in the 

linear equation of the temperature gradient  . In Equation (3.5), h [W/m2    K] is a 

function of time (thermal conductivity) and   is defined as tensor symbol 

 
 

  
 
 

  
 
 

  
) in Cartesian coordination.  

     
      [    ⁄ ]                      (3.6) 

The initial boundary condition for the weld surface area is expressed as Equation (3.7), 

associate with radiation and convection terms [17, 18, 19]. In the Equation (3.7),  

           )     )                   (3.7) 

q" is the assumed constant represent summation of the convective and radioactive heat 

losses. [17]. Equation (3.7) with the heat input can be deduced as following equation 

in the Cartesian coordinates, as long as heat   is determined. [20, 24] 
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)  
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)  
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)       

  

  

̇
       (3.8) 

In equation (3.8),  [      ] and   [     ⁄ ]are the density and the specific 

heat, respectively. Term  ̇ is the thermal energy generation term and it may be 

related with applied volumetric heat source or power density     [    ⁄ ]. Equation 

can be simplified as equation (3.9). 

   ̇       )                               (3.9) 

The homogeneous equations, involving heat transfer, phase transformation and 

linear plasticity, are contained in SYSWELD numerical program depended on time. 

SYSWELD contains the finite element formulation of the nonlinear transient heat 

transfer equations.   
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3.5 Thermal Analysis 

Figure3. 6 shows the temperature distribution contour when a moving heat 

source passes long the trajectory line from start node to end node. The color in red 

represent the center of heat source and the green, yellow and red zone represent the 

liquid part, which has its temperature higher than, or equal to the melting temperature. 

The solidus temperature was      , the liquids are      and the latent heat of 

fusion was 270,000 J/kg [5, 15]. 

 

 

Figure 3.6 Moving heat source 

 

The contours of temperature distribution are plotted on the Longitudinal-Bead 

-Weld Notch-Bend model in Figures 3.7(a) and 3.7(b). Figure 3.7(a) shows 
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temperature distribution on cross section of plane    . Figure 3.7(b) shows 

temperature distribution of the whole Longitudinal-Bead-Weld Notch-Bend model. 

The welding parameters are described in Chapter 3.3, e.g., the velocity, efficiency, 

heat input, etc. 

  

(a)                                  (b) 

  Figure 3.7 (a) Temperature distribution of plate-bead. (b) Temperature distribution 

of z-direction symmetry plane 

Through the given temperature profile at the symmetry z-direction plane cross 

section in Figure 3.7(b), the contour of the fusion zone can be estimated using 

material properties mentioned in Chapter 3, section1. It should be also to be noted 

when calibrating the heat source that the dimension of the melted zone should cover 

the entire one-quarter circle weld bead, thus the simulation models a deep weld 

penetration for fabrication of a satisfactory weld. In order to analyze the residual 

stresses, Von Mises stresses are usually plotted with units given in Mega-Pascal 

[MPa]. The distribution of residual stresses in the direction of the trajectory line 

will be printed in an ASCII file to evaluate the change of stresses after each welding 

process. Figure 7.8 shows the temperature configuration as a function of time. 
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Figure 3.8 Temperature distributions during welding process. (1) t=5; (2) t=10; (3) 

t=20; (4) t=30; (5) t=40; (6) t=50. 
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3.6 Mechanical Analysis 

In SYSWELD, the mechanical analysis is based on results obtained from the 

thermal analysis and is generally much more computationally intensive. The original 

output data included stresses in elements, integration points and element nodes. Stress 

and strain in nodes, integration points, reaction forces at nodes and other forms of 

computed results can be exported by the convert and extrapolate tool that is built into 

the SYSWELD ADVISOR  
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Chapter 4．Fracture Mechanics Analysis 

 

4.1 Finite Element code FRAC_3D 

After simulation of the welding process, the computed residual stresses in the 

zone of crack surface (blue zone in Figure 2.2) are exported from SYSWELD and are 

imported as initial stresses into ANSYS/FRAC3D, through the 

HYPERMESH/SYSWELD interface described in Chapter2, Section 4. The 

methodology followed utilizes the same FE mesh for both numerical analyses in order 

to simplify the transfer of data between the two simulations. 

The finite element program FRAC3D is specifically designed to treat crack 

problems in fracture mechanics with a stress singularity at the tip of the crack. The 

enriched crack tip element formulation for 2-D problem begins from Benzley's work 

[20], and is generalized such that any singularity may be represented by including the 

proper near field terms. FRAC3D contains 6 different types of crack tip element, in 

this study, a 20-noded three-dimensional crack tip element shown in Figure.4.1 is 

used, where the crack tip has 4 nodes. 

For the enriched crack tip elements in 3-D problems, the asymptotic 

displacement field is given by the following [20]. 

 



47 

 

Figure 4.1 20-Node three-dimensional enriched crack tip element 

 

 

 

 

In the equation (4.1), (4.2), (4.3), stress intensity factors are included, i.e., for a 

32-node three dimensional element, there are 3 more stress intensity factors for each 

of four crack tip nodes, which means 12 additional degrees of freedom in total. The 
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contributions from these 12 stress intensity factors, as well as nodal displacements are 

then assembled into the global matrix as unknowns in the same way it is done for the 

regular elements. In each equation above, the first summation terms refer to the 

normal part of the displacement field, i.e., they have the same field approximation 

used in regular isoperimetric elements. [20] 

Since an analytic singular field is defined in the enriched crack tip elements, 

displacement incompatibility will arise between elements along the crack tip if not 

properly adjusted. Thus         )  is defined as the “zeroing function” which 

enforces compatibility between the crack tip elements and the surrounding regular 

iso-parametric elements. In the enriched crack tip elements    equal to one; in the 

transition elements the     function is one for nodal points where the transition 

element is adjacent to any of the crack tip elements, or it is zero if the transition 

elements is adjacent to regular iso-parametric elements. 

      
 ,    

 
 and     

   represent the stress intensity factors, for mode I, mode II, and 

mode III, respectively. From Figure 4.1, there are four crack tip nodes on one element 

which are associated with the corresponding interpolation function of each node. For 

example, the variation of stress intensity factors in the "z” direction,      
    is relative 

to the shape function values of the crack tip nodes. To evaluate the mode I, mode II 

and mode III stress intensity factors,   
 ,    

 
 and     

 , five asymptotic displacement 

coefficients     ,    ,   ,    and h for each node should be determined. Therefore, 

in the enriched element shown in the Figure 4.1, there will be 108 unknowns (96 
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displacement unknowns and 12 stress intensity factor unknowns). [20] 

 

 

Figure 4.2 General flow of FRAC_3D analysis 

 

The general flow of FRAC3D analysis is shown in Figure 4.2. In order to import 

the required finite element information into FRAC3D, all the data should be 

converted to ANSYS standard format ASCII *.lis file by applying either the ANSYS 

preprocessor [21] or self-developed program(?). 

In this study, finite element information for nodes, elements, sets/components 

and material properties are exported from HYPERMESH and loaded into the ANSYS 
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preprocessor directly by utilizing the built in HYPERMESH interface with ANSYS 

program. As shown in Figure 4.2, six files are required to prepare for analysis in 

FRAC_3D. In this thesis, five files are exported from ANSYS and one is created 

using a FORTRAN program that will be described in Chapter 4 Section2 from stress 

data generated by SYSWELD. For the five files, elist.lis file provides the finite 

element connectivity information; nlist.lis contains nodal coordinate data; dlist.lis 

contains boundary conditions; and ECRACK and NCRACK represent crack element 

file and crack tip element file (what‟s the difference between these two files?), 

respectively. The file sflist.lis is a pressure file generated by a FORTRAN program 

and contains the pressure on the crack surface from fusion welding simulation. In the 

process of creating a *.elsit_3d.goe file, it was necessary to constrain    
 

 and     
  to 

zero along the whole crack front, since the problem should be symmetric by definition. 

Another assumption is that there shouldn‟t be any shear stresses on the cross-section, 

since in this study only mode I loading is permitted. 
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4.2 SYSWELD/FRAC3D Interface 

The SYSWELD/FRAC3D Interface generates a file contains pressures on the 

crack surface. This file is used in the superposition methodology which is the most 

expedient approach to solve problem of Longitudinal-Bead-Weld plate with a notch. 

The purpose of this step is to use the SYSWELD stresses that are transferred only for 

the zone where the crack surface will be in the ANSYS/FRAC3D model. Then these 

stresses will be applied to the crack surface as pressure. There should be no other 

loads acting on the FRAC3D model with all other boundary conditions the same. In 

this approach the initial stresses normal to the weld cross-section are applied as a 

pressure on the crack surface. When applying pressure to a surface, the finite element 

program will compute the correct consistent nodal forces that are work equivalent to 

the pressure distribution. It should be noted that this Interface does not determine 

these forces directly; i.e., the FEM software determines theses nodal forces. This 

approach will give the correct stress intensity factors in FRAC3D. 

Typically most finite element programs provide two sets of stress output. The 

element by element output gives the stress components at the nodes, which is 

extrapolated from the integration points within that particular element. These stresses 

are fairly accurate, but the nodal stresses are not the same for nodes shared by the 

different elements, i.e., the stresses between elements are averaged at the nodes. The 

second stress information that's usually output is the averaged nodal stresses. This 

results in a stress smoothing that gives a reasonably good representation of the state of 
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stress at the nodes. The only time that average nodal stresses are not accurate, is when 

the node is shared by two adjacent elements that have different material properties. In 

this special case, there is a stress discontinuity in the component of stress parallel to 

the element boundary. Of course, this is not an issue in the problems that this study is 

dealing with. Thus, for the superposition calculations in this study, the averaged 

stresses that are given for the nodes, instead of the nodal stresses that are given by the 

individual elements are used for fusion welding residual stress transfer. 

 

 

Figure 4.3 Surface Loads Pressures format, face 1: (J-I-L-K), face 2: (I-J-N-M), face 3 

(J-K-O-N), face 4: K-L-P-O), face 5: (L-I-M-P), face 6 (M-N-O-P) 

 

When applying residual stress as pressure, ANSYS file require four nodal 

stresses for each quadratic HEAX20/3020/SOLID95 element on the crack surface. 

The point and the number are shown in Figure 4.3. For example, in 
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SYSWELD/FRAC3D Interface, the program automatically picks four corner nodes J, 

I, L, K in face 1 which is shown in Figure 4.3.  
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4.3 Superposition Results 

The purpose of this section is to describe the process of superimposing the 

stresses from the un-cracked configuration obtained from SYSWELD to the cracked 

configuration in FRAC3D to obtain the correct stress intensity factors. The 

superposition process can be used to obtain the stress result for the whole 

configuration, if the stresses obtained from both configurations are added together. 

However, since the most important result from a fracture mechanics point of view is 

the stress intensity factor values obtained from FRAC3D, it is usually unnecessary to 

generate the entire stress state. In this study, the main purpose of merging the two 

stress states is to provide an overall sense of the state of stress in the cracked 

configuration.  

From the flow chart shown in Figure 4.2, the FRAC3D output information is 

saved in six ASCII files. Among the six files, the *.crk file gives the computed stress 

intensity factor along the crack front tip.. 

When applying pressure to the crack surface, the crack surface will not be stress 

free, though this will give the correct stress intensity factors. To obtain the actual 

stresses in the cracked structure, it is necessary to add the FRAC3D nodal stresses to 

the initial stresses from SYSWELD. For example, if the initial stresses from 

SYSWELD on the plane where the crack surface is located are tensile stresses, when 

these stresses are applied as pressure on the crack surface in FRAC3D, the result will 

be compressive stresses at the nodes on the crack surface. Thus, if the positive initial 
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stresses from SYSWELD are added to the compressive stresses on the crack surface 

from FRAC3D, they cancel out and will yield a stress-free crack surface. The stresses 

everywhere else in the model can be obtained by superposing the stresses from the 

two calculations. 

The *.str file provides stress tensor information for each element in Cartesian 

coordinates. In the stress output for each element, there is the effective stress     , the 

normal stress component in the x direction   , stress in y direction   , stress in z 

direction   , and shear stress component xy   , shear stress yz   , shear stress xz 

   for each node in the element. When superposing components of the stress tensor 

in a specific direction, the FORTRAN program first adds the two sets of 

                      from fusion welding simulation and fracture mechanics 

analysis together; then new effective stresses are recalculated use equation. This will 

provide a stress free crack surface. 

 

     √  √   )     )     )               )           )           )    

                                                                 (4.4) 

      
 

 
          )                                            (4.5) 

 

The *.stn file provides strain tensor information for each element in Cartesian 

coordinate. In the strain tensor for each element, there is the effective strain     , 

strain in xx direction     strain in yy direction   , strain in zz direction   , strain in 
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xy direction  , strain in yz direction   , strain in xz direction    for each node in the 

element When superposed strain tensors, the FORTRAN program first recalculated 

                      uses the same procedure for computing stresses. New effective 

strains are equal to zero, because this is not a general plane stress problem. The result 

will provide the total strain configuration. 

The *.out file from FRAC3D contains three sections of data output in Cartesian 

coordinates. Firstly, it provides displacement in x, y, z direction for each node, which 

provides a total displacement configuration. Secondly, it lists average stress tensor in 

xx, yy, zz, xy, yz, xz direction for each node. Last is the nodal reaction forces in x, y, 

z direction for each node. And they will be added together directly. 

After all results in these three files are superposed, they are written by a 

FORTRAN program to a Python standard format file. As shown in Figure 4.2, 

ultimately two files,*.1 file and *.vtk file, are created to generate visible stress, strain, 

and displacement contour plots in the PARAVIEW program. 
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Chapter 5．Conclusions and Furture 

Work 

 

5.1 Finite element analysis of crack problems 

In this chapter, the results of fusion welding simulation and fracture mechanics 

analysis are summarized in terms of residual stress and stress intensity factor at the 

crack front. 

 

 

Figure 5.1 Model description 

 

The model which is currently used in this study is using two same heat sources 

moving from the center point and reaching the to two ends of the block at the same 

time. The model is shown in Figure 5.1. 
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Currently the middle plane should be the symmetry plane because the movement 

of heat sources and heat transfer process should be symmetry on middle plane. Thus, 

stresses, strains displacements and other results of the right part and the left part will 

be symmetry. 

The result generally includes: 1) temperature distribution as a function of time, 2) 

temperature shortly after welding process; 3) temperature distribution after cooling; 4) 

Von Mises stress configuration as a function of time; 4) residual stress as a function 

of time; 5) stress intensity factor along the crack front; 5) total stress configuration; 6) 

displacement configuration. 

1. General mesh for large front case 

Figure 5.1 shows the temperature distribution in five cross-section views 

perpendicular to the welding direction. The geometry is described in chapter 2.2. In 

this model the crack front is represented by a part of a     arc whose radius is 12 

mm. The welding parameters are described in Chapter 3.1, 3.2 and 3.3. Temperatures 

on elements along the crack front after cooling are compared in Figure 5.3. Residual 

stress distributions can be found in Figure 5.4, where five cross-section views are 

selected along the fusion welding direction to represent the global     configuration 

results from the fusion welding process after the part has cooled down. It should be 

noted that the part is still full clamped in these images. Figure 5.5(1) shows the total 

    configuration after superposition of welding stress output and FRAC3D analysis. 
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In Figure 5.12 and Figure 5.13, the final stress     in zz direction is comparatively 

higher along the crack front line in the zone between          . 

 

 

Figure 5.2 Temperature distribution after fusion welding (time=2000second) 

 

 

Figure 5.3 Residual stress distribution after fusion welding (time=2000second) 
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Figure 5.4 Temperature distributions during welding process. (1) t=5; (2) t=10; (3) 

t=20; (4) t=30; (5) t=40; (6) t=50. 
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Figure 5.5 Temperature distributions after welding(time=50s) 

 

Figure 5.6     configurations. (1)     of the whole welding plate (2) Residual stress 

    in crack surface after fusion welding (3) Cross view of     in plane of crack 

surface (4)     along the crack front. 
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Figure 5.7 Von Mises stress distributions during welding process. (1) t=5; (2) t=10; (3) 

t=20; (4) t=30; (5) t=40; (6) t=50. 
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Figure 5.8 Von Mises stress distributions during cooling process. (1) t=75; (2) t=257; 

(3) t=542; (4) t=1183; (5) t=1788; (6) t=2000. 
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Figure 5.9 Residual stress σ33 distributions during welding process. (1) t=5; (2) t=10; 

(3) t=20; (4) t=30; (5) t=40; (6) t=50. 



65 

 

 

 

Figure 5.10 Residual stress σ33 distributions during cooling process. (1) t=75; (2) 

t=257; (3) t=542; (4) t=1183; (5) t=1788; (6) t=2000. 
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Figure 5.11 Displacements Magnitude  

 

Figure 5.12 Total stress configurations in direction of zz axial  
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Figure 5.13 Stress Intensity factor (Mpa/√ ) 
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2 finer mesh case 

 

 

 

Figure 5.14 Temperature distributions during welding process. (1) t=5; (2) t=10; (3) 

t=20; (4) t=30; (5) t=40; (6) t=50. 
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Figure 5.15 Temperature distributions after welding(time=50s) 

 

 

Figure 5.16 Residual stresses distribution after fusion welding for finer mesh case 
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Figure 5.17 Von Mises stress distributions during welding process. (1) t=5; (2) t=10; 

(3) t=20; (4) t=30; (5) t=40; (6) t=50. 
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Figure 5.18 Von Mises stress distributions during cooling process. (1) t=75; (2) t=257; 

(3) t=542; (4) t=1183; (5) t=1788; (6) t=3000. 
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Figure 5.19 Residual stress σ33 distributions during welding process. (1) t=5; (2) 

t=10; (3) t=20; (4) t=30; (5) t=40; (6) t=50. 
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Figure 5.20 Residual stress σ33 distributions during cooling process. (1) t=75; (2) 

t=257; (3) t=542; (4) t=1183; (5) t=1788; (6) t=3000. 
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Figure 5.21     configuration for finer mesh case. (1)     of the whole welding plate. 

(2) Residual stress     in crack surface after fusion welding (3) Cross view of     in 

plane of crack surface. (4)     along the crack front. 

 

Figure 5.22 Stress intensity factor k1 (Mpa/√ )  
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3 coarser mesh case 

 

Figure 5.23 Residual stresses distribution after fusion welding for coarser mesh case 

 
Figure 5.24 σ33 configuration for coarser mesh case. (1) σ33 of the whole welding 

plate. (2) Residual stressσ33 in crack surface after fusion welding. (3) Cross view 

ofσ33 in plane of crack surface. (4) σ33 along the crack front. 
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Figure 5.25 Stress intensity factor k1 (Mpa/√ ). 

Section two and section one use the same geometry which is described in 

Chapter2, section2. Compare figure 5.24 and 5.23, the residual stress exported form 

fusion welding simulation is sensitive to mesh density. Figure 5.22 uses finer mesh 

along the crack front and the heat source path, thus the residual stress is positive 

which means the crack will be extravagant. The reason why Figure 5.25 is negative is 

probably that the element density and welding run time is not high enough. Negative 

SIF is a compressive state of stress that is a result of prevent the material from 

expanding.  
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4 refined small front mesh case 

 

 

 

Figure 5. 26 Temperature distributions during welding process. (1) t=5; (2) t=10; (3) 

t=20; (4) t=30; (5) t=40; (6) t=50. 
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Figure 5.27 Temperature distributions after welding(time=50s) 

 

Figure 5.28 Residual stresses distribution after cooling for smaller front (t=3000s) 
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Figure 5.29 Von Mises stress distributions during welding process. (1) t=5; (2) t=10; 

(3) t=20; (4) t=30; (5) t=40; (6) t=50. 
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Figure 5.30 Von Mises stress distributions during cooling process. (1) t=75; (2) t=257; 

(3) t=542; (4) t=1183; (5) t=1788; (6) t=3000. 
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Figure 5.31 Residual stress σ33 distributions during welding process. (1) t=5; (2) 

t=10; (3) t=20; (4) t=30; (5) t=40; (6) t=50. 
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Figure 5.32 Residual stress σ33 distributions during cooling process. (1) t=75; (2) 

t=257; (3) t=542; (4) t=1183; (5) t=1788; (6) t=3000. 
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Figure 5.33 σ33 configuration after cooling for smaller front case. (1) σ33 of the whole 

welding plate after cooling. (2) Residual stressσ33 in crack surface after cooling. (3) Cross view 

ofσ33 in plane of crack surface after cooling. (4) σ33 along the crack front after cooling. 

 

Figure 5.34 Stress intensity factor k1 (Mpa/√ ). 
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Figure 5.35 Total stress     configurations in direction of zz axial  

The total superposed stress component (Figure 5.17) is in the zz axial direction. 

In this picture, there are very low stresses everywhere, but along the crack front. Thus, 

in this simulation, welding process will increase the tendency of crack. 

5 Conclusion 

The results of stress intensity factor is mesh density sensitive and crack size 

sensitive, thus finer mesh will provide better understand of the whole process.  

In conclusion, fusion welding introduces residual stress along the longitudinal 

welding direction. The residual stresses will affect stress intensity factor, especially at 

the symmetry center of the crack front. And the influence of the residual stresses tend 

to result in a susceptibility to crack growth, which is existed before fusion welding.  
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5.2 Future Works 

The model which is currently used in this study uses two identical heat sources 

moving from the two ends of the substrate block and reaches the center point at the 

same time. A modified model will be a heat source moving from one end to the other 

end. To modify the model, these steps should be followed: 

1. Build a 1/2 model in HYPERMESH.  

2. The mesh will be tested in both ANSYS/ FRAC3d and SYSWELD to make 

sure the shape of the element is accepted in both of the software (sometimes ANSYS 

will not accept the mesh the). 

3. Renumber the finite elements and nodes. In this step, control the number of 

the mesh, for example, keep the nodes and elements start from 1 and continuously to 

10000 or 5000. See the picture below: 

 

Figure 5.36 Current model and model for future work. 
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In the same time elements and nodes in left part will continuously start from 

5001, and from 10001, respectively. 

4. Create     room temperature model and weld line model. Renumber them  

5. Create groups which are needed in SYSWELD simulation. 

6. Save the model in another file. Delete the whole left part. Create groups which 

will be used to generate files for FRAC3D.( I am not quite sure if this step can be 

done) 

7. Perform welding simulation for 1/2 model.(this need 48 hours if I run it on our 

work station) 

8. Export residual stress. 

9. Perform FRAC3D computation. 

10. Superposition SYSWELD result and Frac3D result. 

In future work, the method of this study can be used to study the effect that 

different welding parameters have on the fracture parameters. 
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Appendix 

Element details in HYPERMESH and SYSWELD 

Class of 

elements  

Source element type in 

HYPERMESH  

Target element type in 

SYSWELD  

1D linear  PLOTEL, BAR2, ROD, 

GAP 

1002  

1D 

quadratic  

BAR3 1003  

2D linear  TRIA3  2003  

QUAD4  2004  

2D 

quadratic  

TRIA6  2006  

QUAD8  2008  

3D linear  TETRA4  3004  

PYRAMID5  degenerated 3008  

PENTA6  3006  

HEXA8  3008  
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3D 

quadratic  

TETRA10  3010  

PYRAMID13  degenerated 3020  

PENTA15  3015  

HEXA20  3020  
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SAMPLE63_HT.DAT 
NAME SAMPLE63_MESH_ 

SEARCH DATA 2222 ASCII 

 

DEFINITION 

 SAMPLE63 

OPTION THERMAL METALLURGY  SPATIAL 

RESTART GEOMETRY 

MATERIAL PROPERTIES 

 ELEMENTS / INTE 2 

 ELEMENTS GROUPS $V1$ / MATE 1 INTE 2  

 ELEMENTS GROUPS $PART$ / MATE 1 INTE 2  

MEDIUM 

 WELDLINE / GROUPS $TRLINE$ REFERENCE $REFLINE$ ELEMENTS $LE$ START $LN$-- 

 ARRIVAL $FN$ VELOCITY 1 TINF 0 MODEL 1 

$GROUP CREATE NAME GROUPNODEONLYTRAJ 

NODES 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 

 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 

 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 

 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 

 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 

 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 

 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 

 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 

 39173 39174 39175 39176 39177 39178 39179 

$RETURN 

CONSTRAINTS 

 ELEMENTS GROUPS $SKIN$ / KT 1 VARIABLE 1 

LOAD 

1 

 ELEMENTS GROUPS $SKIN$ / TT 20. 

 ELEMENTS GROUPS $V1$ / QR 1 VARIABLE -10000 TRAJECTORY 1 

TABLE 

 1 / FORTRAN 

      function f(t) 

c 

c  radiative losses : f = sig * e * (t + to)(t**2 + to**2) 

c 

      e = 0.8 

      sig = 5.67*-8 

      to = 20. 



94 

      to = 20. + 273.15 

      t1  = t + 273.15 

      a = t1 * t1 

      b = to * to 

      c = a + b 

      d = t1 + to 

      d = d * c 

      d = d * e 

      d = d * sig 

c 

c  convective losses = 25 W/m2 

      f = d + 25. 

c  change to W/mm2 

      d = 1*-6 

      f = f * d 

c 

      return 

      END 

 10000 /  FORTRAN 

      FUNCTION F(X) 

C 

C   F = QC * V1 * V2 * V3 with 

C   V1 = exp( -( YY-Y0-VY*TT )^2/AC^2 ) 

C   V2 = exp( -( XX-X0 )^2/B^2 ) 

C   V3 = exp( -( ZZ-Z0 )^2/C^2 ) 

C   if ( -YY + Y0 +VY*TT ) greater than 0 

C     QC = QF et AC = AF 

C   else 

C     QC = QR et AC = AR 

C 

      DIMENSION X(4) 

C 

C Input 

C 

      XX = X(1)   ; X Coordinate 

      YY = X(2)   ; Y Coordinate 

      ZZ = X(3)   ; Z Coordinate 

      TT = X(4)   ; Time 

C 

C Variables 

C 

      QF = 129.996002197    ; Maximal front source intensity 
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      QR = 66.93800354    ; Maximal rear  source intensity 

      AF = 4    ; Gaussian parameter 

      AR = 8    ; Gaussian parameter 

      B  = 7    ; Gaussian parameter 

      C  = 0.80000001192    ; Gaussian parameter 

      X0 = 0    ; X initial location of source center 

      Y0 = 0    ; Y initial location of source center 

      Z0 = 0   ; Z initial location of source center 

      VY = 0   ; Source displacement velocity 

      AY = 0    ; Angle of torch [deg.] 

C 

C Constant 

C 

      M1 = -1 

      PIDEG = ATAN(1.) 

      PIDEG = PIDEG / 45. 

      AY = AY * PIDEG 

C 

C Transformation of global to local coordinates 

C 

      XD   = XX - X0 

      YD   = VY * TT 

      YD   = YD + Y0 

      ZD   = ZZ - Z0 

C 

C Source rotation about Y axis  

C 

      SA   = SIN( AY ) 

      SA   = - SA 

      CA   = COS( AY ) 

      A1   = XD * CA 

      A2   = ZD * SA 

      XL   = A1 + A2 

      YL   = YY - YD 

      A1   = ZD * CA 

      A2   = XD * SA 

      ZL   = A1 - A2 

C 

C Condition computation, QC and AC initialisation 

C 

      COND = VY * YL 

      IF (VY .EQ. 0.) COND = YL 
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      QC   = QR 

      AC   = AR 

      IF( COND .GT. 0. ) QC = QF 

      IF( COND .GT. 0. ) AC = AF 

C 

C V1 computation 

C 

      A1   = YL * YL 

      A2   = AC * AC 

      A2   = A1 / A2 

      A2   = M1 * A2 

      V1   = EXP( A2 ) 

C 

C V2 computation 

C 

      A1   = XL * XL 

      A2   = B * B 

      A2   = A1 / A2 

      A2   = M1 * A2 

      V2   = EXP( A2 ) 

C 

C V3 computation 

C 

      A1   = ZL * ZL 

      A2   = C * C 

      A2   = A1 / A2 

      A2   = M1 * A2 

      V3   = EXP( A2 ) 

C 

C F computation 

C 

      F    = QC * V1 

      F    = F * V2 

      F    = F * V3 

C 

      RETURN 

      END 

RETURN 

 

 

NAME SAMPLE63_ 

SAVE DATA 2222 
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MEDIUM 

EXTRACT MEDIUM 
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SAMPLE63_MECH.DAT 
NAME SAMPLE63_MESH_ 

SEARCH DATA 2222 ASCII 

 

DEFINITION 

 SAMPLE63 

OPTION THREEDIMENSIONAL THERMOELASTICITY 

RESTART GEOMETRY 

MATERIAL PROPERTIES 

 ELEMENTS / INTE 2 

 ELEMENTS GROUPS $V1$ / E -10000 NU -10001 YIELD -10002 LX -10003 LY -10003 -- 

 LZ -10003 SLOPE -10004 MODEL 3 PHAS 6 AUST 6 TF 1300 KY 0 INTE 2  

 ELEMENTS GROUPS $PART$ / E -10000 NU -10001 YIELD -10002 LX -10003 LY -10003 -- 

 LZ -10003 SLOPE -10004 MODEL 3 PHAS 6 AUST 6 TF 1300 KY 0 INTE 2  

MEDIUM 

 WELDLINE / GROUPS $TRLINE$ REFERENCE $REFLINE$ ELEMENTS $LE$ START $LN$-- 

 ARRIVAL $FN$ VELOCITY 1 TINF 0 MODEL 1 

$GROUP CREATE NAME GROUPNODEONLYTRAJ 

NODES 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 

 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 

 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 

 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 

 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 

 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 

 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 

 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 

 39173 39174 39175 39176 39177 39178 39179 

$RETURN 

CONSTRAINTS 

 PLANE PSI 90.0000 THETA -74.4904 PHI 90.0000 XX -0.0000 YY 7.5000 ZZ-- 

 22.9735 / SYMMETRY 

 PLANE PSI -18.9114 THETA 0.0000 PHI 180.0000 XX 13.6235 YY 5.6106 ZZ 0.0000-- 

 / SYMMETRY 

 NODES GROUPS $UXUYUZ$ / UX UY UZ 

LOAD 

1 NOTHING 

TABLE 

 10000 / -10005  -10006 -10005 -10005 -10005 -10005 

 10001 / 1   20 0.33  1505 0.33 

 10002 / -10007  -10008 -10009 -10010  -10011 -10012 

 10003 / -10013  -10014  -10013  -10013  -10013  -10015 
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 10004 / -10016  -10017 

 10005 / 1  20 210000  200 200000 400 175000 600 135000 800 78000 1000  

 15000 1100 7000 1200 3000 1300 1000 1500 1000  

 10006 / 1   20 1000    1505 1000   

 10007 / 1   20 390  200 258  300 232  400 200  500 187  600 137  700  

 78   800 75  900 45  1000 30  1100 18  1200 10  1300 5  1505 5 

 10008 / 1   20 245  200 200  350 160  650 70   900 45  1000 30  1100  

 18  1200 10  1300 5  1505 5 

 10009 / 1   20 710  200 620  300 592  400 563  500 505  600 395  700  

 200  800 90  900 45  1000 30  1100 18  1200 10  1300 5  1505 5 

 10010 / 1   20 500  200 490  300 472  400 438  500 384  600 280  700  

 140  800 80  900 45  1000 30  1100 18  1200 10  1300 5  1505 5 

 10011 / 1   20 390  200 258  300 232  400 200  500 187  600 137  700  

 78   800 75  900 45  1000 30  1100 18  1200 10  1300 5  1505 5 

 10012 / 1   20 245  200 200  350 160  650 70   900 45  1000 30  1100  

 18  1200 10  1300 5  1505 5 

 10013 / 1   25 0.0     1200 0.0192  1300 0.0208    

 10014 / 1   0 0.0     1505 0.0 

 10015 / 1   25 -0.0095 1200 0.0180  1300 0.020305   

 10016 / -10018  -10018 -10019 -10020 -10018 

 10017 / 7  20 10021  200 10022  300 10023  400 10024  500 10025  600  

 10026  700 10027  800 10028  900 10029  1000 10030  1100 10031  1200  

 10032  1300 10033 

 10018 / 7  20 10034  200 10035  300 10036  400 10037  500 10038  600  

 10039  700 10040  800 10041  900 10042  1000 10043  1100 10044  1200  

 10045  1300 10046 

 10019 / 7  20 10047  200 10048  300 10049  400 10050  500 10051  600  

 10052  700 10053  800 10054  900 10055  1000 10056  1100 10057  1200  

 10058  1300 10059 

 10020 / 7  20 10060  200 10061  300 10062  400 10063  500 10064  600  

 10065  700 10066  800 10067  900 10068  1000 10069  1100 10070  1200  

 10071  1300 10072 

 10021 / 1   0 0  0.003 32.4  0.0035 46.2  0.0054 59.2  0.01 69.3  0.03  

 104.0  0.04 120.2  0.05 129.4  0.07 143.3  0.085 145.6  0.10 147.9  

  0.13 152.5  0.17 159.5  0.24 168.7  0.30 173.3  0.40 180.3  0.50 187.2  

  0.80 198.8  1 206     

 10022 / 1   0 0  0.003 29.1  0.0035 41.5  0.0054 53.1  0.01 62.3  0.03  

  93.4  0.04 107.9  0.05 116.2  0.07 128.7  0.085 130.8  0.10 132.8  

  0.13 137.0  0.17 143.2  0.24 151.5  0.30 155.7  0.40 161.9  0.50 168.1  

  0.80 178.5  1 185     

 10023 / 1   0 0  0.003 26.4  0.0035 37.7  0.0054 48.3  0.01 56.6  0.03  

  84.9  0.04  98.1  0.05 105.7  0.07 117.0  0.085 118.9  0.10 120.8  
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  0.13 124.5  0.17 130.2  0.24 137.7  0.30 141.5  0.40 147.2  0.50 152.8  

  0.80 162.3  1 167.9   

 10024 / 1   0 0  0.003 23.8  0.0035 34.0  0.0054 43.5  0.01 50.9  0.03  

  76.4  0.04  88.3  0.05  95.1  0.07 105.3  0.085 107.0  0.10 108.7  

  0.13 112.1  0.17 117.2  0.24 124.0  0.30 127.4  0.40 132.5  0.50 137.5  

  0.80 146.0  1 151.1   

 10025 / 1   0 0  0.003 19.2  0.0035 27.4  0.0054 35.0  0.01 41.0  0.03  

  61.6  0.04  71.1  0.05  76.6  0.07  84.8  0.085  86.2  0.10  87.5  

  0.13  90.3  0.17  94.4  0.24  99.9  0.30 102.6  0.40 106.7  0.50 110.8  

  0.80 117.6  1 121.7   

 10026 / 1   0 0  0.003 15.8  0.0035 22.6  0.0054 29.0  0.01 34.0  0.03  

  50.9  0.04  58.9  0.05  63.4  0.07  70.2  0.085  71.3  0.10  72.5  

  0.13  74.7  0.17  78.1  0.24  82.6  0.30  84.9  0.40  88.3  0.50  91.7  

  0.80  97.4  1 100.8   

 10027 / 1   0 0  0.003 12.5  0.0035 17.9  0.0054 22.9  0.01 26.9  0.03  

  40.3  0.04  46.6  0.05  50.2  0.07  55.6  0.085  56.5  0.10  57.4  

  0.13  59.2  0.17  61.8  0.24  65.4  0.30  67.2  0.40  69.9  0.50  72.6  

  0.80  77.1  1  79.8   

 10028 / 1   0 0  0.003  9.2  0.0035 13.2  0.0054 16.9  0.01 19.8  0.03  

  29.7  0.04  34.3  0.05  37.0  0.07  40.9  0.085  41.6  0.10  42.3  

  0.13  43.6  0.17  45.6  0.24  48.2  0.30  49.5  0.40  51.5  0.50  53.5  

  0.80  56.8  1  58.8   

 10029 / 1   0 0  0.003  6.6  0.0035  9.4  0.0054 12.1  0.01 14.2  0.03  

  21.2  0.04  24.5  0.05  26.4  0.07  29.2  0.085  29.7  0.10  30.2  

  0.13  31.1  0.17  32.5  0.24  34.4  0.30  35.4  0.40  36.8  0.50  38.2  

  0.80  40.6  1  42.0   

 10030 / 1   0 0  0.003  4.2  0.0035  6.0  0.0054  7.7  0.01  9.1  0.03  

  13.6  0.04  15.7  0.05  16.9  0.07  18.7  0.085  19.0  0.10  19.3  

  0.13  19.9  0.17  20.8  0.24  22.0  0.30  22.6  0.40  23.5  0.50  24.5  

  0.80  26.0  1  26.9   

 10031 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01  0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10032 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01  0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10033 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01  0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   
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 10034 / 1   0 0  0.003 51.5  0.0035 73.6  0.0054 94.2  0.01 110.4  0.03  

 165.6  0.04 191.3  0.05 206.0  0.07 228.1  0.085 231.8  0.10 235.5  

  0.13 242.8  0.17 253.9  0.24 268.6  0.30 275.9  0.40 287.0  0.50 298.0  

  0.80 316.4  1 327     

 10035 / 1   0 0  0.003 50.7  0.0035 72.5  0.0054 92.7  0.01 108.7  0.03  

 163.0  0.04 188.4  0.05 202.9  0.07 224.6  0.085 228.2  0.10 231.8  

  0.13 239.1  0.17 250.0  0.24 264.5  0.30 271.7  0.40 282.6  0.50 293.4  

  0.80 311.5  1 322     

 10036 / 1   0 0  0.003 49.7  0.0035 70.9  0.0054 90.8  0.01 106.4  0.03  

 159.6  0.04 184.5  0.05 198.6  0.07 219.9  0.085 223.5  0.10 227.0  

  0.13 234.1  0.17 244.8  0.24 258.9  0.30 266.0  0.40 276.7  0.50 287.3  

  0.80 305.1  1 315.7   

 10037 / 1   0 0  0.003 46.0  0.0035 65.7  0.0054 84.0  0.01  98.5  0.03  

 147.7  0.04 170.7  0.05 183.8  0.07 203.5  0.085 206.8  0.10 210.1  

  0.13 216.7  0.17 226.5  0.24 239.7  0.30 246.2  0.40 256.1  0.50 265.9  

  0.80 282.3  1 292.2   

 10038 / 1   0 0  0.003 40.0  0.0035 57.2  0.0054 73.2  0.01  85.8  0.03  

 128.6  0.04 148.6  0.05 160.1  0.07 177.2  0.085 180.1  0.10 182.9  

  0.13 188.7  0.17 197.2  0.24 208.7  0.30 214.4  0.40 223.0  0.50 231.5  

  0.80 245.8  1 254.4   

 10039 / 1   0 0  0.003 29.1  0.0035 41.5  0.0054 53.1  0.01  62.3  0.03  

  93.4  0.04 107.9  0.05 116.2  0.07 128.7  0.085 130.8  0.10 132.8  

  0.13 137.0  0.17 143.2  0.24 151.5  0.30 155.7  0.40 161.9  0.50 168.1  

  0.80 178.5  1 184.7   

 10040 / 1   0 0  0.003 14.5  0.0035 20.8  0.0054 26.6  0.01  31.1  0.03  

  46.7  0.04  54.0  0.05  58.1  0.07  64.3  0.085  65.4  0.10  66.4  

  0.13  68.5  0.17  71.6  0.24  75.8  0.30  77.8  0.40  80.9  0.50  84.1  

  0.80  89.2  1  92.4   

 10041 / 1   0 0  0.003  9.9  0.0035 14.2  0.0054 18.1  0.01  21.2  0.03  

  31.8  0.04  36.8  0.05  39.6  0.07  43.9  0.085  44.6  0.10  45.3  

  0.13  46.7  0.17  48.8  0.24  51.7  0.30  53.1  0.40  55.2  0.50  57.3  

  0.80  60.8  1  63.0   

 10042 / 1   0 0  0.003  6.9  0.0035  9.8  0.0054 12.6  0.01  14.7  0.03  

  22.1  0.04  25.5  0.05  27.5  0.07  30.4  0.085  30.9  0.10  31.4  

  0.13  32.4  0.17  33.8  0.24  35.8  0.30  36.8  0.40  38.3  0.50  39.7  

  0.80  42.2  1  43.7   

 10043 / 1   0 0  0.003  4.4  0.0035  6.2  0.0054  8.0  0.01   9.3  0.03  

  14.0  0.04  16.2  0.05  17.4  0.07  19.3  0.085  19.6  0.10  19.9  

  0.13  20.5  0.17  21.5  0.24  22.7  0.30  23.3  0.40  24.3  0.50  25.2  

  0.80  26.8  1  27.7   

 10044 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01   0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  
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  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10045 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01   0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10046 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01   0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10047 / 1   0 0  0.003 93.8  0.0035 134.0  0.0054 171.5  0.01 200.9  

  0.03 301.4  0.04 348.3  0.05 375.1  0.07 415.3  0.085 422.0  0.10 428.7  

  0.13 442.1  0.17 462.2  0.24 489.0  0.30 502.4  0.40 522.5  0.50 542.5  

  0.80 576.0  1 596     

 10048 / 1   0 0  0.003 81.9  0.0035 117.0  0.0054 149.7  0.01 175.5  

  0.03 263.2  0.04 304.2  0.05 327.5  0.07 362.6  0.085 368.5  0.10 374.3  

  0.13 386.0  0.17 403.6  0.24 427.0  0.30 438.7  0.40 456.2  0.50 473.8  

  0.80 503.0  1 521     

 10049 / 1   0 0  0.003 78.2  0.0035 111.7  0.0054 143.0  0.01 167.5  

  0.03 251.3  0.04 290.4  0.05 312.8  0.07 346.3  0.085 351.8  0.10 357.4  

  0.13 368.6  0.17 385.4  0.24 407.7  0.30 418.9  0.40 435.6  0.50 452.4  

  0.80 480.3  1 497.1   

 10050 / 1   0 0  0.003 74.4  0.0035 106.2  0.0054 136.0  0.01 159.3  

  0.03 239.0  0.04 276.2  0.05 297.4  0.07 329.3  0.085 334.6  0.10 339.9  

  0.13 350.5  0.17 366.5  0.24 387.7  0.30 398.3  0.40 414.3  0.50 430.2  

  0.80 456.8  1 472.7   

 10051 / 1   0 0  0.003 66.7  0.0035  95.3  0.0054 122.0  0.01 142.9  

  0.03 214.4  0.04 247.7  0.05 266.8  0.07 295.4  0.085 300.1  0.10 304.9  

  0.13 314.4  0.17 328.7  0.24 347.8  0.30 357.3  0.40 371.6  0.50 385.9  

  0.80 409.7  1 424.0   

 10052 / 1   0 0  0.003 52.2  0.0035  74.5  0.0054  95.4  0.01 111.8  

  0.03 167.7  0.04 193.8  0.05 208.7  0.07 231.0  0.085 234.8  0.10 238.5  

  0.13 245.9  0.17 257.1  0.24 272.0  0.30 279.5  0.40 290.7  0.50 301.8  

  0.80 320.5  1 331.7   

 10053 / 1   0 0  0.003 26.4  0.0035  37.7  0.0054  48.3  0.01  56.6  

  0.03  84.9  0.04  98.1  0.05 105.7  0.07 117.0  0.085 118.9  0.10 120.8  

  0.13 124.5  0.17 130.2  0.24 137.7  0.30 141.5  0.40 147.2  0.50 152.8  

  0.80 162.3  1 167.9   

 10054 / 1   0 0  0.003 11.9  0.0035  17.0  0.0054  21.7  0.01  25.5  

  0.03  38.2  0.04  44.2  0.05  47.5  0.07  52.6  0.085  53.5  0.10  54.3  

  0.13  56.0  0.17  58.6  0.24  62.0  0.30  63.7  0.40  66.2  0.50   

 68.8  0.80  73.0  1  75.6   
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 10055 / 1   0 0  0.003  7.5  0.0035  10.8  0.0054  13.8  0.01  16.1  

  0.03  24.2  0.04  28.0  0.05  30.1  0.07  33.3  0.085  33.9  0.10  34.4  

  0.13  35.5  0.17  37.1  0.24  39.3  0.30  40.3  0.40  41.9  0.50   

 43.6  0.80  46.2  1  47.9   

 10056 / 1   0 0  0.003  4.6  0.0035   6.6  0.0054   8.5  0.01   9.9  

  0.03  14.9  0.04  17.2  0.05  18.5  0.07  20.5  0.085  20.8  0.10  21.1  

  0.13  21.8  0.17  22.8  0.24  24.1  0.30  24.8  0.40  25.8  0.50   

 26.7  0.80  28.4  1  29.4   

 10057 / 1   0 0  0.003  0.0  0.0035   0.0  0.0054   0.0  0.01   0.0  

  0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   

  0.0  0.80   0.0  1   0.0   

 10058 / 1   0 0  0.003  0.0  0.0035   0.0  0.0054   0.0  0.01   0.0  

  0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   

  0.0  0.80   0.0  1   0.0   

 10059 / 1   0 0  0.003  0.0  0.0035   0.0  0.0054   0.0  0.01   0.0  

  0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   

  0.0  0.80   0.0  1   0.0   

 10060 / 1   0 0  0.003 66.0  0.0035 94.3  0.0054 120.8  0.01 141.5   

 0.03 212.3  0.04 245.3  0.05 264.2  0.07 292.5  0.085 297.2  0.10 301.9  

  0.13 311.3  0.17 325.5  0.24 344.3  0.30 353.8  0.40 367.9  0.50 382.1  

  0.80 405.7  1 420     

 10061 / 1   0 0  0.003 64.7  0.0035 92.5  0.0054 118.3  0.01 138.7   

 0.03 208.0  0.04 240.4  0.05 258.9  0.07 286.6  0.085 291.2  0.10 295.8  

  0.13 305.1  0.17 319.0  0.24 337.5  0.30 346.7  0.40 360.6  0.50 374.4  

  0.80 397.5  1 411     

 10062 / 1   0 0  0.003 62.3  0.0035 89.1  0.0054 114.0  0.01 133.6   

 0.03 200.4  0.04 231.5  0.05 249.4  0.07 276.1  0.085 280.5  0.10 285.0  

  0.13 293.9  0.17 307.2  0.24 325.1  0.30 334.0  0.40 347.3  0.50 360.7  

  0.80 382.9  1 396.3   

 10063 / 1   0 0  0.003 57.8  0.0035 82.6  0.0054 105.8  0.01 124.0   

 0.03 185.9  0.04 214.9  0.05 231.4  0.07 256.2  0.085 260.3  0.10 264.5  

  0.13 272.7  0.17 285.1  0.24 301.6  0.30 309.9  0.40 322.3  0.50 334.7  

  0.80 355.4  1 367.8   

 10064 / 1   0 0  0.003 50.7  0.0035 72.5  0.0054  92.7  0.01 108.7   

 0.03 163.0  0.04 188.4  0.05 202.9  0.07 224.6  0.085 228.2  0.10 231.8  

  0.13 239.1  0.17 250.0  0.24 264.5  0.30 271.7  0.40 282.6  0.50 293.4  

  0.80 311.5  1 322.4   

 10065 / 1   0 0  0.003 37.0  0.0035 52.8  0.0054  67.6  0.01  79.2   

 0.03 118.9  0.04 137.4  0.05 147.9  0.07 163.8  0.085 166.4  0.10 169.1  
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  0.13 174.3  0.17 182.3  0.24 192.8  0.30 198.1  0.40 206.0  0.50 214.0  

  0.80 227.2  1 235.1   

 10066 / 1   0 0  0.003 18.5  0.0035 26.4  0.0054  33.8  0.01  39.6   

 0.03  59.4  0.04  68.7  0.05  74.0  0.07  81.9  0.085  83.2  0.10  84.5  

  0.13  87.2  0.17  91.1  0.24  96.4  0.30  99.1  0.40 103.0  0.50 107.0  

  0.80 113.6  1 117.5   

 10067 / 1   0 0  0.003 10.6  0.0035 15.1  0.0054  19.3  0.01  22.6   

 0.03  34.0  0.04  39.2  0.05  42.3  0.07  46.8  0.085  47.5  0.10  48.3  

  0.13  49.8  0.17  52.1  0.24  55.1  0.30  56.6  0.40  58.9  0.50  61.1  

  0.80  64.9  1  67.2   

 10068 / 1   0 0  0.003  7.3  0.0035 10.4  0.0054  13.3  0.01  15.6   

 0.03  23.3  0.04  27.0  0.05  29.1  0.07  32.2  0.085  32.7  0.10  33.2  

  0.13  34.2  0.17  35.8  0.24  37.9  0.30  38.9  0.40  40.5  0.50  42.0  

  0.80  44.6  1  46.2   

 10069 / 1   0 0  0.003  4.5  0.0035  6.4  0.0054   8.2  0.01   9.6   

 0.03  14.4  0.04  16.7  0.05  18.0  0.07  19.9  0.085  20.2  0.10  20.5  

  0.13  21.2  0.17  22.1  0.24  23.4  0.30  24.1  0.40  25.0  0.50  26.0  

  0.80  27.6  1  28.5   

 10070 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054   0.0  0.01   0.0   

 0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50    

 0.0  0.80   0.0  1   0.0   

 10071 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054   0.0  0.01   0.0   

 0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50    

 0.0  0.80   0.0  1   0.0   

 10072 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054   0.0  0.01   0.0   

 0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50    

 0.0  0.80   0.0  1   0.0   

RETURN 

 

 

NAME SAMPLE63_ 

SAVE DATA 3333 

 

MEDIUM 

EXTRACT MEDIUM 
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NEWREFRONT2_HT.DAT 
NAME NEWREFORNT2_MESH_ 

SEARCH DATA 2222 ASCII 

 

DEFINITION 

 NEWREFORNT2 

OPTION THERMAL METALLURGY  SPATIAL 

RESTART GEOMETRY 

MATERIAL PROPERTIES 

 ELEMENTS / INTE 2 

 ELEMENTS GROUPS $V1$ / MATE 1 INTE 2  

 ELEMENTS GROUPS $PART$ / MATE 1 INTE 2  

MEDIUM 

 WELDLINE / GROUPS $TRLINE$ REFERENCE $REFLINE$ ELEMENTS 

$WELDFIRSTELM$-- 

 START $WELDFIRSTNODE$ ARRIVAL $WELDENDNODE$ VELOCITY 1 TINF 0 

MODEL 1 

$GROUP CREATE NAME GROUPNODEONLYTRAJ 

NODES 51153 51158 51154 51159 51155 51160 51156 51161 51157 51162 51163 

 51164 51165 51166 51167 51168 51169 51170 51171 51172 51173 51174 51175 

 51176 51177 51178 51179 51180 51181 51182 51183 51184 51185 51186 51187 

 51188 51189 51190 51191 51192 51193 51194 51195 51196 51197 51198 51199 

 51200 51201 51202 51203 51204 51205 51206 51207 51208 51209 51210 51211 

 51212 51213 51214 51215 51216 51217 51218 51219 51220 51221 51222 51223 

 51224 51225 51226 51227 51228 51229 51230 51231 51232 51233 51234 51235 

 51236 51237 51238 51239 51240 51241 51242 51243 51244 51245 51246 51247 

 51248 51249 51250 51251 51252 51253 51254 

$RETURN 

CONSTRAINTS 

 ELEMENTS GROUPS $SKIN$ / KT 1 VARIABLE 1 

LOAD 

1 

 ELEMENTS GROUPS $SKIN$ / TT 20. 

 ELEMENTS GROUPS $V1$ / QR 1 VARIABLE -10000 TRAJECTORY 1 

TABLE 

 1 / FORTRAN 

      function f(t) 

c 

c  radiative losses : f = sig * e * (t + to)(t**2 + to**2) 

c 

      e = 0.8 
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      sig = 5.67*-8 

      to = 20. 

      to = 20. + 273.15 

      t1  = t + 273.15 

      a = t1 * t1 

      b = to * to 

      c = a + b 

      d = t1 + to 

      d = d * c 

      d = d * e 

      d = d * sig 

c 

c  convective losses = 25 W/m2 

      f = d + 25. 

c  change to W/mm2 

      d = 1*-6 

      f = f * d 

c 

      return 

      END 

 10000 /  FORTRAN 

      FUNCTION F(X) 

C 

C   F = QC * V1 * V2 * V3 with 

C   V1 = exp( -( YY-Y0-VY*TT )^2/AC^2 ) 

C   V2 = exp( -( XX-X0 )^2/B^2 ) 

C   V3 = exp( -( ZZ-Z0 )^2/C^2 ) 

C   if ( -YY + Y0 +VY*TT ) greater than 0 

C     QC = QF et AC = AF 

C   else 

C     QC = QR et AC = AR 

C 

      DIMENSION X(4) 

C 

C Input 

C 

      XX = X(1)   ; X Coordinate 

      YY = X(2)   ; Y Coordinate 

      ZZ = X(3)   ; Z Coordinate 

      TT = X(4)   ; Time 

C 

C Variables 
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C 

      QF = 129.996002197    ; Maximal front source intensity 

      QR = 66.93800354    ; Maximal rear  source intensity 

      AF = 4    ; Gaussian parameter 

      AR = 8    ; Gaussian parameter 

      B  = 7    ; Gaussian parameter 

      C  = 0.80000001192    ; Gaussian parameter 

      X0 = 0    ; X initial location of source center 

      Y0 = 0    ; Y initial location of source center 

      Z0 = 0   ; Z initial location of source center 

      VY = 0   ; Source displacement velocity 

      AY = 0    ; Angle of torch [deg.] 

C 

C Constant 

C 

      M1 = -1 

      PIDEG = ATAN(1.) 

      PIDEG = PIDEG / 45. 

      AY = AY * PIDEG 

C 

C Transformation of global to local coordinates 

C 

      XD   = XX - X0 

      YD   = VY * TT 

      YD   = YD + Y0 

      ZD   = ZZ - Z0 

C 

C Source rotation about Y axis  

C 

      SA   = SIN( AY ) 

      SA   = - SA 

      CA   = COS( AY ) 

      A1   = XD * CA 

      A2   = ZD * SA 

      XL   = A1 + A2 

      YL   = YY - YD 

      A1   = ZD * CA 

      A2   = XD * SA 

      ZL   = A1 - A2 

C 

C Condition computation, QC and AC initialisation 

C 



108 

      COND = VY * YL 

      IF (VY .EQ. 0.) COND = YL 

      QC   = QR 

      AC   = AR 

      IF( COND .GT. 0. ) QC = QF 

      IF( COND .GT. 0. ) AC = AF 

C 

C V1 computation 

C 

      A1   = YL * YL 

      A2   = AC * AC 

      A2   = A1 / A2 

      A2   = M1 * A2 

      V1   = EXP( A2 ) 

C 

C V2 computation 

C 

      A1   = XL * XL 

      A2   = B * B 

      A2   = A1 / A2 

      A2   = M1 * A2 

      V2   = EXP( A2 ) 

C 

C V3 computation 

C 

      A1   = ZL * ZL 

      A2   = C * C 

      A2   = A1 / A2 

      A2   = M1 * A2 

      V3   = EXP( A2 ) 

C 

C F computation 

C 

      F    = QC * V1 

      F    = F * V2 

      F    = F * V3 

C 

      RETURN 

      END 

RETURN 
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NAME NEWREFORNT2_ 

SAVE DATA 2222 

 

MEDIUM 

EXTRACT MEDIUM 
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NEWREFORNT2_MECH.DAT 
NAME NEWREFORNT2_MESH_ 

SEARCH DATA 2222 ASCII 

 

DEFINITION 

 NEWREFORNT2 

OPTION THREEDIMENSIONAL THERMOELASTICITY 

RESTART GEOMETRY 

MATERIAL PROPERTIES 

 ELEMENTS / INTE 2 

 ELEMENTS GROUPS $V1$ / E -10000 NU -10001 YIELD -10002 LX -10003 LY -10003 -- 

 LZ -10003 SLOPE -10004 MODEL 3 PHAS 6 AUST 6 TF 1300 KY 0 INTE 2  

 ELEMENTS GROUPS $PART$ / E -10000 NU -10001 YIELD -10002 LX -10003 LY -10003 

-- 

 LZ -10003 SLOPE -10004 MODEL 3 PHAS 6 AUST 6 TF 1300 KY 0 INTE 2  

MEDIUM 

 WELDLINE / GROUPS $TRLINE$ REFERENCE $REFLINE$ ELEMENTS 

$WELDFIRSTELM$-- 

 START $WELDFIRSTNODE$ ARRIVAL $WELDENDNODE$ VELOCITY 1 TINF 0 

MODEL 1 

$GROUP CREATE NAME GROUPNODEONLYTRAJ 

NODES 51153 51158 51154 51159 51155 51160 51156 51161 51157 51162 51163 

 51164 51165 51166 51167 51168 51169 51170 51171 51172 51173 51174 51175 

 51176 51177 51178 51179 51180 51181 51182 51183 51184 51185 51186 51187 

 51188 51189 51190 51191 51192 51193 51194 51195 51196 51197 51198 51199 

 51200 51201 51202 51203 51204 51205 51206 51207 51208 51209 51210 51211 

 51212 51213 51214 51215 51216 51217 51218 51219 51220 51221 51222 51223 

 51224 51225 51226 51227 51228 51229 51230 51231 51232 51233 51234 51235 

 51236 51237 51238 51239 51240 51241 51242 51243 51244 51245 51246 51247 

 51248 51249 51250 51251 51252 51253 51254 

$RETURN 

CONSTRAINTS 

 PLANE PSI -90.0000 THETA -74.2023 PHI 90.0000 XX -0.0000 YY 7.9904 ZZ-- 

 21.7580 / SYMMETRY 

 PLANE PSI -17.9160 THETA 0.0000 PHI 0.0000 XX 8.1628 YY 7.0599 ZZ 0.0000 /-- 

 SYMMETRY 

 NODES GROUPS $UXUYUZ$ / UX UY UZ 

LOAD 

1 NOTHING 

TABLE 

 10000 / -10005  -10006 -10005 -10005 -10005 -10005 
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 10001 / 1   20 0.33  1505 0.33 

 10002 / -10007  -10008 -10009 -10010  -10011 -10012 

 10003 / -10013  -10014  -10013  -10013  -10013  -10015 

 10004 / -10016  -10017 

 10005 / 1  20 210000  200 200000 400 175000 600 135000 800 78000 1000  

 15000 1100 7000 1200 3000 1300 1000 1500 1000  

 10006 / 1   20 1000    1505 1000   

 10007 / 1   20 390  200 258  300 232  400 200  500 187  600 137  700  

 78   800 75  900 45  1000 30  1100 18  1200 10  1300 5  1505 5 

 10008 / 1   20 245  200 200  350 160  650 70   900 45  1000 30  1100  

 18  1200 10  1300 5  1505 5 

 10009 / 1   20 710  200 620  300 592  400 563  500 505  600 395  700  

 200  800 90  900 45  1000 30  1100 18  1200 10  1300 5  1505 5 

 10010 / 1   20 500  200 490  300 472  400 438  500 384  600 280  700  

 140  800 80  900 45  1000 30  1100 18  1200 10  1300 5  1505 5 

 10011 / 1   20 390  200 258  300 232  400 200  500 187  600 137  700  

 78   800 75  900 45  1000 30  1100 18  1200 10  1300 5  1505 5 

 10012 / 1   20 245  200 200  350 160  650 70   900 45  1000 30  1100  

 18  1200 10  1300 5  1505 5 

 10013 / 1   25 0.0     1200 0.0192  1300 0.0208    

 10014 / 1   0 0.0     1505 0.0 

 10015 / 1   25 -0.0095 1200 0.0180  1300 0.020305   

 10016 / -10018  -10018 -10019 -10020 -10018 

 10017 / 7  20 10021  200 10022  300 10023  400 10024  500 10025  600  

 10026  700 10027  800 10028  900 10029  1000 10030  1100 10031  1200  

 10032  1300 10033 

 10018 / 7  20 10034  200 10035  300 10036  400 10037  500 10038  600  

 10039  700 10040  800 10041  900 10042  1000 10043  1100 10044  1200  

 10045  1300 10046 

 10019 / 7  20 10047  200 10048  300 10049  400 10050  500 10051  600  

 10052  700 10053  800 10054  900 10055  1000 10056  1100 10057  1200  

 10058  1300 10059 

 10020 / 7  20 10060  200 10061  300 10062  400 10063  500 10064  600  

 10065  700 10066  800 10067  900 10068  1000 10069  1100 10070  1200  

 10071  1300 10072 

 10021 / 1   0 0  0.003 32.4  0.0035 46.2  0.0054 59.2  0.01 69.3  0.03  

 104.0  0.04 120.2  0.05 129.4  0.07 143.3  0.085 145.6  0.10 147.9  

  0.13 152.5  0.17 159.5  0.24 168.7  0.30 173.3  0.40 180.3  0.50 187.2  

  0.80 198.8  1 206     

 10022 / 1   0 0  0.003 29.1  0.0035 41.5  0.0054 53.1  0.01 62.3  0.03  

  93.4  0.04 107.9  0.05 116.2  0.07 128.7  0.085 130.8  0.10 132.8  

  0.13 137.0  0.17 143.2  0.24 151.5  0.30 155.7  0.40 161.9  0.50 168.1  
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  0.80 178.5  1 185     

 10023 / 1   0 0  0.003 26.4  0.0035 37.7  0.0054 48.3  0.01 56.6  0.03  

  84.9  0.04  98.1  0.05 105.7  0.07 117.0  0.085 118.9  0.10 120.8  

  0.13 124.5  0.17 130.2  0.24 137.7  0.30 141.5  0.40 147.2  0.50 152.8  

  0.80 162.3  1 167.9   

 10024 / 1   0 0  0.003 23.8  0.0035 34.0  0.0054 43.5  0.01 50.9  0.03  

  76.4  0.04  88.3  0.05  95.1  0.07 105.3  0.085 107.0  0.10 108.7  

  0.13 112.1  0.17 117.2  0.24 124.0  0.30 127.4  0.40 132.5  0.50 137.5  

  0.80 146.0  1 151.1   

 10025 / 1   0 0  0.003 19.2  0.0035 27.4  0.0054 35.0  0.01 41.0  0.03  

  61.6  0.04  71.1  0.05  76.6  0.07  84.8  0.085  86.2  0.10  87.5  

  0.13  90.3  0.17  94.4  0.24  99.9  0.30 102.6  0.40 106.7  0.50 110.8  

  0.80 117.6  1 121.7   

 10026 / 1   0 0  0.003 15.8  0.0035 22.6  0.0054 29.0  0.01 34.0  0.03  

  50.9  0.04  58.9  0.05  63.4  0.07  70.2  0.085  71.3  0.10  72.5  

  0.13  74.7  0.17  78.1  0.24  82.6  0.30  84.9  0.40  88.3  0.50  91.7  

  0.80  97.4  1 100.8   

 10027 / 1   0 0  0.003 12.5  0.0035 17.9  0.0054 22.9  0.01 26.9  0.03  

  40.3  0.04  46.6  0.05  50.2  0.07  55.6  0.085  56.5  0.10  57.4  

  0.13  59.2  0.17  61.8  0.24  65.4  0.30  67.2  0.40  69.9  0.50  72.6  

  0.80  77.1  1  79.8   

 10028 / 1   0 0  0.003  9.2  0.0035 13.2  0.0054 16.9  0.01 19.8  0.03  

  29.7  0.04  34.3  0.05  37.0  0.07  40.9  0.085  41.6  0.10  42.3  

  0.13  43.6  0.17  45.6  0.24  48.2  0.30  49.5  0.40  51.5  0.50  53.5  

  0.80  56.8  1  58.8   

 10029 / 1   0 0  0.003  6.6  0.0035  9.4  0.0054 12.1  0.01 14.2  0.03  

  21.2  0.04  24.5  0.05  26.4  0.07  29.2  0.085  29.7  0.10  30.2  

  0.13  31.1  0.17  32.5  0.24  34.4  0.30  35.4  0.40  36.8  0.50  38.2  

  0.80  40.6  1  42.0   

 10030 / 1   0 0  0.003  4.2  0.0035  6.0  0.0054  7.7  0.01  9.1  0.03  

  13.6  0.04  15.7  0.05  16.9  0.07  18.7  0.085  19.0  0.10  19.3  

  0.13  19.9  0.17  20.8  0.24  22.0  0.30  22.6  0.40  23.5  0.50  24.5  

  0.80  26.0  1  26.9   

 10031 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01  0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10032 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01  0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10033 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01  0.0  0.03  
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   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10034 / 1   0 0  0.003 51.5  0.0035 73.6  0.0054 94.2  0.01 110.4  0.03  

 165.6  0.04 191.3  0.05 206.0  0.07 228.1  0.085 231.8  0.10 235.5  

  0.13 242.8  0.17 253.9  0.24 268.6  0.30 275.9  0.40 287.0  0.50 298.0  

  0.80 316.4  1 327     

 10035 / 1   0 0  0.003 50.7  0.0035 72.5  0.0054 92.7  0.01 108.7  0.03  

 163.0  0.04 188.4  0.05 202.9  0.07 224.6  0.085 228.2  0.10 231.8  

  0.13 239.1  0.17 250.0  0.24 264.5  0.30 271.7  0.40 282.6  0.50 293.4  

  0.80 311.5  1 322     

 10036 / 1   0 0  0.003 49.7  0.0035 70.9  0.0054 90.8  0.01 106.4  0.03  

 159.6  0.04 184.5  0.05 198.6  0.07 219.9  0.085 223.5  0.10 227.0  

  0.13 234.1  0.17 244.8  0.24 258.9  0.30 266.0  0.40 276.7  0.50 287.3  

  0.80 305.1  1 315.7   

 10037 / 1   0 0  0.003 46.0  0.0035 65.7  0.0054 84.0  0.01  98.5  0.03  

 147.7  0.04 170.7  0.05 183.8  0.07 203.5  0.085 206.8  0.10 210.1  

  0.13 216.7  0.17 226.5  0.24 239.7  0.30 246.2  0.40 256.1  0.50 265.9  

  0.80 282.3  1 292.2   

 10038 / 1   0 0  0.003 40.0  0.0035 57.2  0.0054 73.2  0.01  85.8  0.03  

 128.6  0.04 148.6  0.05 160.1  0.07 177.2  0.085 180.1  0.10 182.9  

  0.13 188.7  0.17 197.2  0.24 208.7  0.30 214.4  0.40 223.0  0.50 231.5  

  0.80 245.8  1 254.4   

 10039 / 1   0 0  0.003 29.1  0.0035 41.5  0.0054 53.1  0.01  62.3  0.03  

  93.4  0.04 107.9  0.05 116.2  0.07 128.7  0.085 130.8  0.10 132.8  

  0.13 137.0  0.17 143.2  0.24 151.5  0.30 155.7  0.40 161.9  0.50 168.1  

  0.80 178.5  1 184.7   

 10040 / 1   0 0  0.003 14.5  0.0035 20.8  0.0054 26.6  0.01  31.1  0.03  

  46.7  0.04  54.0  0.05  58.1  0.07  64.3  0.085  65.4  0.10  66.4  

  0.13  68.5  0.17  71.6  0.24  75.8  0.30  77.8  0.40  80.9  0.50  84.1  

  0.80  89.2  1  92.4   

 10041 / 1   0 0  0.003  9.9  0.0035 14.2  0.0054 18.1  0.01  21.2  0.03  

  31.8  0.04  36.8  0.05  39.6  0.07  43.9  0.085  44.6  0.10  45.3  

  0.13  46.7  0.17  48.8  0.24  51.7  0.30  53.1  0.40  55.2  0.50  57.3  

  0.80  60.8  1  63.0   

 10042 / 1   0 0  0.003  6.9  0.0035  9.8  0.0054 12.6  0.01  14.7  0.03  

  22.1  0.04  25.5  0.05  27.5  0.07  30.4  0.085  30.9  0.10  31.4  

  0.13  32.4  0.17  33.8  0.24  35.8  0.30  36.8  0.40  38.3  0.50  39.7  

  0.80  42.2  1  43.7   

 10043 / 1   0 0  0.003  4.4  0.0035  6.2  0.0054  8.0  0.01   9.3  0.03  

  14.0  0.04  16.2  0.05  17.4  0.07  19.3  0.085  19.6  0.10  19.9  

  0.13  20.5  0.17  21.5  0.24  22.7  0.30  23.3  0.40  24.3  0.50  25.2  
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  0.80  26.8  1  27.7   

 10044 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01   0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10045 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01   0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10046 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054  0.0  0.01   0.0  0.03  

   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   0.0  

  0.80   0.0  1   0.0   

 10047 / 1   0 0  0.003 93.8  0.0035 134.0  0.0054 171.5  0.01 200.9  

  0.03 301.4  0.04 348.3  0.05 375.1  0.07 415.3  0.085 422.0  0.10 428.7  

  0.13 442.1  0.17 462.2  0.24 489.0  0.30 502.4  0.40 522.5  0.50 542.5  

  0.80 576.0  1 596     

 10048 / 1   0 0  0.003 81.9  0.0035 117.0  0.0054 149.7  0.01 175.5  

  0.03 263.2  0.04 304.2  0.05 327.5  0.07 362.6  0.085 368.5  0.10 374.3  

  0.13 386.0  0.17 403.6  0.24 427.0  0.30 438.7  0.40 456.2  0.50 473.8  

  0.80 503.0  1 521     

 10049 / 1   0 0  0.003 78.2  0.0035 111.7  0.0054 143.0  0.01 167.5  

  0.03 251.3  0.04 290.4  0.05 312.8  0.07 346.3  0.085 351.8  0.10 357.4  

  0.13 368.6  0.17 385.4  0.24 407.7  0.30 418.9  0.40 435.6  0.50 452.4  

  0.80 480.3  1 497.1   

 10050 / 1   0 0  0.003 74.4  0.0035 106.2  0.0054 136.0  0.01 159.3  

  0.03 239.0  0.04 276.2  0.05 297.4  0.07 329.3  0.085 334.6  0.10 339.9  

  0.13 350.5  0.17 366.5  0.24 387.7  0.30 398.3  0.40 414.3  0.50 430.2  

  0.80 456.8  1 472.7   

 10051 / 1   0 0  0.003 66.7  0.0035  95.3  0.0054 122.0  0.01 142.9  

  0.03 214.4  0.04 247.7  0.05 266.8  0.07 295.4  0.085 300.1  0.10 304.9  

  0.13 314.4  0.17 328.7  0.24 347.8  0.30 357.3  0.40 371.6  0.50 385.9  

  0.80 409.7  1 424.0   

 10052 / 1   0 0  0.003 52.2  0.0035  74.5  0.0054  95.4  0.01 111.8  

  0.03 167.7  0.04 193.8  0.05 208.7  0.07 231.0  0.085 234.8  0.10 238.5  

  0.13 245.9  0.17 257.1  0.24 272.0  0.30 279.5  0.40 290.7  0.50 301.8  

  0.80 320.5  1 331.7   

 10053 / 1   0 0  0.003 26.4  0.0035  37.7  0.0054  48.3  0.01  56.6  

  0.03  84.9  0.04  98.1  0.05 105.7  0.07 117.0  0.085 118.9  0.10 120.8  

  0.13 124.5  0.17 130.2  0.24 137.7  0.30 141.5  0.40 147.2  0.50 152.8  

  0.80 162.3  1 167.9   

 10054 / 1   0 0  0.003 11.9  0.0035  17.0  0.0054  21.7  0.01  25.5  
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  0.03  38.2  0.04  44.2  0.05  47.5  0.07  52.6  0.085  53.5  0.10  54.3  

  0.13  56.0  0.17  58.6  0.24  62.0  0.30  63.7  0.40  66.2  0.50   

 68.8  0.80  73.0  1  75.6   

 10055 / 1   0 0  0.003  7.5  0.0035  10.8  0.0054  13.8  0.01  16.1  

  0.03  24.2  0.04  28.0  0.05  30.1  0.07  33.3  0.085  33.9  0.10  34.4  

  0.13  35.5  0.17  37.1  0.24  39.3  0.30  40.3  0.40  41.9  0.50   

 43.6  0.80  46.2  1  47.9   

 10056 / 1   0 0  0.003  4.6  0.0035   6.6  0.0054   8.5  0.01   9.9  

  0.03  14.9  0.04  17.2  0.05  18.5  0.07  20.5  0.085  20.8  0.10  21.1  

  0.13  21.8  0.17  22.8  0.24  24.1  0.30  24.8  0.40  25.8  0.50   

 26.7  0.80  28.4  1  29.4   

 10057 / 1   0 0  0.003  0.0  0.0035   0.0  0.0054   0.0  0.01   0.0  

  0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   

  0.0  0.80   0.0  1   0.0   

 10058 / 1   0 0  0.003  0.0  0.0035   0.0  0.0054   0.0  0.01   0.0  

  0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   

  0.0  0.80   0.0  1   0.0   

 10059 / 1   0 0  0.003  0.0  0.0035   0.0  0.0054   0.0  0.01   0.0  

  0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50   

  0.0  0.80   0.0  1   0.0   

 10060 / 1   0 0  0.003 66.0  0.0035 94.3  0.0054 120.8  0.01 141.5   

 0.03 212.3  0.04 245.3  0.05 264.2  0.07 292.5  0.085 297.2  0.10 301.9  

  0.13 311.3  0.17 325.5  0.24 344.3  0.30 353.8  0.40 367.9  0.50 382.1  

  0.80 405.7  1 420     

 10061 / 1   0 0  0.003 64.7  0.0035 92.5  0.0054 118.3  0.01 138.7   

 0.03 208.0  0.04 240.4  0.05 258.9  0.07 286.6  0.085 291.2  0.10 295.8  

  0.13 305.1  0.17 319.0  0.24 337.5  0.30 346.7  0.40 360.6  0.50 374.4  

  0.80 397.5  1 411     

 10062 / 1   0 0  0.003 62.3  0.0035 89.1  0.0054 114.0  0.01 133.6   

 0.03 200.4  0.04 231.5  0.05 249.4  0.07 276.1  0.085 280.5  0.10 285.0  

  0.13 293.9  0.17 307.2  0.24 325.1  0.30 334.0  0.40 347.3  0.50 360.7  

  0.80 382.9  1 396.3   

 10063 / 1   0 0  0.003 57.8  0.0035 82.6  0.0054 105.8  0.01 124.0   

 0.03 185.9  0.04 214.9  0.05 231.4  0.07 256.2  0.085 260.3  0.10 264.5  

  0.13 272.7  0.17 285.1  0.24 301.6  0.30 309.9  0.40 322.3  0.50 334.7  

  0.80 355.4  1 367.8   

 10064 / 1   0 0  0.003 50.7  0.0035 72.5  0.0054  92.7  0.01 108.7   

 0.03 163.0  0.04 188.4  0.05 202.9  0.07 224.6  0.085 228.2  0.10 231.8  

  0.13 239.1  0.17 250.0  0.24 264.5  0.30 271.7  0.40 282.6  0.50 293.4  
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  0.80 311.5  1 322.4   

 10065 / 1   0 0  0.003 37.0  0.0035 52.8  0.0054  67.6  0.01  79.2   

 0.03 118.9  0.04 137.4  0.05 147.9  0.07 163.8  0.085 166.4  0.10 169.1  

  0.13 174.3  0.17 182.3  0.24 192.8  0.30 198.1  0.40 206.0  0.50 214.0  

  0.80 227.2  1 235.1   

 10066 / 1   0 0  0.003 18.5  0.0035 26.4  0.0054  33.8  0.01  39.6   

 0.03  59.4  0.04  68.7  0.05  74.0  0.07  81.9  0.085  83.2  0.10  84.5  

  0.13  87.2  0.17  91.1  0.24  96.4  0.30  99.1  0.40 103.0  0.50 107.0  

  0.80 113.6  1 117.5   

 10067 / 1   0 0  0.003 10.6  0.0035 15.1  0.0054  19.3  0.01  22.6   

 0.03  34.0  0.04  39.2  0.05  42.3  0.07  46.8  0.085  47.5  0.10  48.3  

  0.13  49.8  0.17  52.1  0.24  55.1  0.30  56.6  0.40  58.9  0.50  61.1  

  0.80  64.9  1  67.2   

 10068 / 1   0 0  0.003  7.3  0.0035 10.4  0.0054  13.3  0.01  15.6   

 0.03  23.3  0.04  27.0  0.05  29.1  0.07  32.2  0.085  32.7  0.10  33.2  

  0.13  34.2  0.17  35.8  0.24  37.9  0.30  38.9  0.40  40.5  0.50  42.0  

  0.80  44.6  1  46.2   

 10069 / 1   0 0  0.003  4.5  0.0035  6.4  0.0054   8.2  0.01   9.6   

 0.03  14.4  0.04  16.7  0.05  18.0  0.07  19.9  0.085  20.2  0.10  20.5  

  0.13  21.2  0.17  22.1  0.24  23.4  0.30  24.1  0.40  25.0  0.50  26.0  

  0.80  27.6  1  28.5   

 10070 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054   0.0  0.01   0.0   

 0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50    

 0.0  0.80   0.0  1   0.0   

 10071 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054   0.0  0.01   0.0   

 0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50    

 0.0  0.80   0.0  1   0.0   

 10072 / 1   0 0  0.003  0.0  0.0035  0.0  0.0054   0.0  0.01   0.0   

 0.03   0.0  0.04   0.0  0.05   0.0  0.07   0.0  0.085   0.0  0.10   0.0  

  0.13   0.0  0.17   0.0  0.24   0.0  0.30   0.0  0.40   0.0  0.50    

 0.0  0.80   0.0  1   0.0   
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