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ABSTRACT

The mean time between failures (MlBF) of electronic equipment depends

strongly on the temperature in which the equipment operates. One way to increase the

reliability is to reduce the operating temperature and keep it within specified reliability

limits. This calls for effective thermal management especially in electronic equipment

characterized by compact microchip design. Many approaches are used in reducing the

operating temperature ranging from natural convection wi~ ~ as the medium to

sophisticated conduction cooling. Product price and performance requirements dictate the

choice of cooling mode.

The present study deals with the cooling of electronic equipment using

natural convection with air as the medium. A mathematical model descnoing the thermal

and flow phenomena encountered in cooling typical second level electronic packages has

been developed. The governing equations are solved numerically and the temperature

fields are calculated for Grashofnumber values ranging from zero (conduction) to

1.5 x 1-06
• Both laminar and turbulent flows have been studied for two different geometry

cases. The Grashof number is based on cavity width.

The results indicate that the maximum non-dimensional temperature

decreases as the Grashof number increases for both geometries. At high values of

1



GI'3Shof number the air flow looses its stability and becomes oscillatory in time which in

turn enhances the rates ofheat transfer.

In view of the complexity of the problem, further analysis is required

including the determ.ip.ation of resonant configurations that can either maximize the heat

transfer or at least avoid the adverse conditions leading to local hot spots. Information

from these studies should be used in planning complex architectures that arise in.

electronic devices.

21



CHAPTER ONE

INTRODUCfION
~ . ......

Present efforts to produce faster and more powerful

microelectronic devices have an enormous impact on the thermal management of

electronic components and systems. Microchips that have densely packed gates require

high power consumption. This increases the power density and thereby generates large

heat fluxes. The increase in heat flux leads to increased operating temperature and

.
ultimately reduces the reliability of the component. The density at which the chips are

packed on printed circuit boards (PCB) is so high that heat removal has become a major

problem. About 40 percent of all failures in electronic equipment is caused by

temperature, either too high or too low or the cycling temperature effects [Fuqua, 1987].

Generally, the optimum working temperature for electronic equipment is room

temperature but in practice, it is impossible to keep the temperature constant since

operation generates heat. The heat generated has to be removed in order to keep the

temperature rise minimal and therefore to increase the reliability significantly. .

Keeping the operating temperatures of electronic components relatively

constant within the specified reliability limits is the primary method for improving

reliability. Cooling techniques for electronic equipment range from free convection,

using air as the medium, to sophisticated liquid cooling approaches. Choosing the most

3



efficient cooling method is important since inadequate thermal management can reduce

reliability whereas excessive cooling can dramatically increase manufacturing and

operating costs. Free convection has been the most widely used technique in cooling

moderately heated equipment, such as the low cost dot matrix printers, personal

computers and workstations, because it is the simplest, most economical and reliable

method. Besides, interference with sensitive electronic component is eliminated by using

natural convection. The natural or free convection cooling is created by the existence of

temperature gradients. This temperature gradient causes changes in air density and

consequently the cold or denser air moves down replacing the hotter air that is moving

up. This circulatory motion of air improves the cooling rate. The efficiency of natural

convection can be maximized by properly choosing the air paths. For higher product

price and performance, e.g. the Cray supercomputers, conduction cooling is preferred in

order to maintain the very low junction temperature required for extremely high reliabilit'j

[Dally, 1990].

Electronic packaging can be dermed as the placement and connection of

many electronic components in an enclosure to protect the system from environmental

damage and simultaneously provide easy access for routine maintenance. There are

several levels of electronic packaging involved in an electronic system. Referring to

Figure 1.1, the packaging of electronic components starts from the housing of a fragile

chip which has been fabricated on silicon wafer. The housing which is called carrier

4
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(fIrst level packaging), provides all the necessary wiring as an interface between the chip

-----and-the-printed-eircuit-board-.-The-:-carrielis-mounted--onto-a-PGB-(~eond-Ievel-------

packaging) and placed in back panel where communication. among several PCBs is

possible.

Edge connector

Wafer

Printed
circuit
board

Cabinet

Figure 1.1
Levels of electronic packaging, [Dally, 1990]
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1.1 Levels of Packaging in Electronic Equipment

There are several levels of packaging in electronic equipment as shown in

Figure 1.1. The present study deals primarily with second level packaging. However, it

is helpful to discuss briefly some aspects of the frrst level packaging.

First level package (chip carrier) is the housing of thin and fragile silicon

chip. One example is the plastic dual-in-line package (DIP). This packaging is important

not only to protect the chip from physical damage but also to serve as interconnection to

the circuit boards. In operation, chip carriers are also involved in the heat transfer

process. The heat generated by the chip has to pass through the chip carrier frrst before it

can be removed. The schematic of a typical chip carrier is shown in Figure 1.2 [Dally,

1990]. Even though this type of chip carrier is commonly used, it can severely limit the

heat transfer process because of the thermal insulators used at the top and bottom

surfaces.

61



Lid Bond \lIir~;

L~Jds

Pins

Lead frame Bond

Figure 1.2
A schematic ofatypical chip carrier,

[Dally, 1990]
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The type of packaging considered in the study is the second level

packaging or thePCB-.-TheflCBs serve as mounting places for various electronic

components including resistors, diodes, capacitors and integrated circuits (ICs). A

completely assembled PCB can have hundreds of such devices. The problem usually

faced by designers is to pick the optimum arrangement of those devices to deliver

optimum performance and reliability. This problem is difficult to solve because of the

very large number of distinct placement possibilities that exist and it is usually not

economical to pursue the necessary calculations to fmd the optimum arrangement.

Regardless of the level of packaging being considered, it is important for

the manufacturer to evaluate alternative efficient cooling approaches in order to balance

performance and reliability without a significant increase in manufacturing cost.

8
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1.2 RELIABILITY ANALYSIS

As mentioned before, the reliability of electronic equipment is highly

dependent on the operating temperature. Reliability can be dermed as the ability of a

system to continue performing its function to the satisfaction of the user and it is usually

quantified as the mean time between failures (M1BF). High M1BF means high

reliability. It is estimated that the reliability of a component decreases about 2 percent for

every 2° C temperature rise [Chung, 1987]. This problem becomes more urgent as the

operating temperature of electronic components increases due to the increase in circuit

performance (more heat dissipated from faster chips). The requirement for highly reliable

products will be the major issue for electronics manufacturers to consider in order to

increase their market share and maintain their competitive edge.

There are two primary objectives of thermal management in electronic

equipment [Simon, 1983]. The fIrst objective is to assure that the electronic components

are kept within the specified operating temperature limits, the maxim~ and minimum

temperatures that the equipment can operate. This is important since failure to satisfy

these temperature limits will lead to failures ranging from logic failure to actual physical

damage. The second objective is to keep the temperature distribution in the electronic

component within the specified reliability limit that is the optimum operating temperature

range. Meeting the second objective is important especially in the long run, since a slight

change in operating temperature will greatly affect the failure rate.

9



The exact relationship between the operating temperature and the failure

manufacturing processes. One widely used mathematical model to predict approximately

(1.1)

k} = Boltzman constant; 8.616 x 10-
5
eV/ K.

10

To, T} = Temperatures (in Kelvin)

E = Activation energy

RfT} = Rate of failure at T I

F l = Temperature related failure rate

Rrro = Rate of failure at reference temperature

where:

model. According to this empirical model, [Fuqua, 1986],

the relationship between operating temperatures and the failure rate is the Arrhenius

____---.Jrate~ill largel~ deRend on the ~ackaging materials, package configuration and



This model takes into account the changes in device characteristics

----------'lresulting-from--chemical-or-diffusive-prucesses~bylrtilizing_a-norm.alized-{ailure-rate.

Figure 1.3 shows graphically the relationship between operating temperature and the

failure rate. The Arrhenius model originated from the ' experimental activation energy ,

that determines the slope of the reaction rate with temperature. A low activation energy

means low dependency on temperature and vice-versa. Activation energy is a direct

result of every chemical reaction. In an electronic component there are several such

reactions occurring simultaneously and each one of those reactions can contnbute to the

component's failure rate. For general classes of electronic components, the cumulative

effects of these various reactions are approximated to be exponentially temperature

dependent as shown in Figure 1.3 [Arsenault & Roberts,1980].
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SO 100

Tem;>eroture ICO I

Figme 1.3:
The relationship between temperature and

failure rate ..
[Arsenauh& Roberts, 1980]
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1.3 Problem'Definition

The study of thermal management for second level packaging applications

concentrates on the temperature distribution and flow phenomena in air-filled vertical

cavities with protruding heat sources. The convective flow in the cavity is calculated for

Grashof number ranging from 1 x 102 to 1.5 X 106
• The model used in this study is

based on the work done by Liakopoulos, et a1. [1991] and is shown in Figure 1.4. Both

laminar flow and turbulent flow are considered in the study; laminar flow with Grashof

number values from 1 x 102 to 7.5 X 105 and turbulent flow with Grashofnllmber values

up to 1.5 X 106
•

The objective of the current study is to investigate whether flows in taIl

cavities with periodically spaced protruding heat sources and adiabatic boundary

conditions imposed at the upper and lower horizontal walls can be approximated by

taking the middle portion and imposing periodic boundary conditions at the upper and

lower boundaries. Two geometric cases are considered with the same aspect ratios

(height/width), A. The geometry description and the imposed boundary conditions for

the two cases considered in this study are shown in Figure 1.5 and Figure 1.6. The chip

is modeled as protruding heat source with constant heat flux around the chip surface. The

upper and lower boundaries of the computational domain are assumed to be periodic in

terms of velocity and temperature. Calculations are carried out to steady state by solving

13



an initial boundary valued problem with Grashof numbers ranging from zero, the

conduction problem, to 7.5 x 105 for the laminar and up to 1.5 x 106 for turbulent flow.

14



Figure1.4:
Enclosure considered in the study



Period;c Velocity
and TeMpero.ture

I
- - - - .. - - --

hc =.5
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t ....

qU=l
l =2

Tw=O.Oc

+-
l /2=1

InSulo.ted
sL

- - --

-i f-l=1.0 Per;odic Veloc;ty
o.nd TeMpero.ture

(n) Cb)

Figurel.5:
Geometric description(a) and I

imposed boundary conditions (b)
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h =5C '

Tw=O.O
q"=l

Per;od;c Velocity
and TeMperature

PeriodiC Velocity
and TeMperatureL- __

I, /2=.5~ - - -_. ~ 1=1.0

(oJ Cb)

Figure 1.6:
Geometric description (a) and

imposed boundary conditions (b)
for case 2
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1.4 Related Work

Because of the diverse fields in which the study of natural convection

within vertical cavities can be applied, there has been much work done in this area either

by analytical, computational or experimental methods.

1.4.1 Laminar Flows

As mentioned before, part of this study is based on the work done by

Liakopoulos,et at. (1990 and 1991). They investigated the flow caused by natural

convection within vertical cavities with periodically distnbuted flush-mounted heat

sources (1990) and uniformly spaced protrusions with surface heating (1991). All flows

in their study are assumed to obey the Oberbeck-Boussinesq equations with the effects of

viscous dissipation neglected. The governing equations are solved using a spectral

element method (patera, 1984). Their results indicate that the solutions are dependent on

the Grashofnumber, Gr, the cavity aspect ratio, A, the Prandtl number Pr (=.71), and

further length scales that characterize the periodic input and protrusion shape. As the

Grashof number was increased, significant eddy distortions accompanied by enhancement

of the vertical heat flux were observed.

Much experimental work has also been done in natural convection in

vertical cavities with protruding heat sources. Kelleher et al. (1987) and Lee et al. (1987)

performed experiments with one protruding heat source placed on three different

locations in the cavity; bottom, middle and top. Both numerical and experimental results
18



were presented. Their results indicate that the local Nusselt number (Nu) decreased when

the heat source was raised (from bottom to the top) for a given Rayleigh number.

Keybani, Chen and Pitts (1991) conducted experiments with five protruding heat sources

placed in a rectangular enclosure to determine the effect of aspect ratio on heat transfer.

They used ethylene glycol with Pr=166 as the working medium instead of air. Their

results indicate that the velocity of the fluid decreased as the width of the cavity is

increased.

1.4.2 Turbulent Flows

There have not been many studies published in this area compared to the

laminar cases. One experiment that is closely related to the turbulent flow has been

reported by Miyamoto et al. (1986). Miyamoto conducted experiments with two parallel

plates arranged vertically; one plate with uniform heating and the other fully insulated. "

He investigated the temperature distribution on both vertical plates and measured the

turbulent quantities. Using the correlation between the two quantities, he then

approximated the value for the heat transfer coefficient. A numerical study of

bouyancy-induced turbulent natural convection has been done by Cheung et al. (1989).

In the 'study, the flow development and the heat transfer characteristics were investigated

in an innovative air cooling system using an implicit finite-difference method.

19



ts Organi7.ation of Thesis'

In this thesis, the fluid flow and heat transfer in a vertical channel with one

protruding heat source are analyzed using the spectral element method. Chapter I of this

thesis discussed the problem defInition and the importance of the current study in terms

of improving reliability in electronic equipment The description of the governing

equations and a brief explanation of the spectral element method are presented in chapter

2. The discussion includes the importance of temporal and spatial discretizations for

solving the Navier-Stokes equation and the fluid dynamics software package, used in the

current study. The numerical results and discussion are presented in chapter 3 with

emphasis on fluid flow phenomena and heat transfer. Both aspects are analyzed with

respect to the increase in the Grashof number. Finally, the conclusions and

recommendations for future works are presented in chapter 4.

20



CHAPTER TWO

MATHEMATICAL MODEL & SOLUTION METHOD

2.1 Governing Equations

In this study, all flows are assumed to be two dimensional and the convective

motion is governed by the Boussinesq approximation, ie. density changes are significant

only in the body force term in the momentum equation.

The governing equations for flows in vertical channels are as follows:

the continuity (mass conservation) in Dp ,

the momentum equation in Dp ,

(2.1)

--7 --7 --7 [--7 --7] _;-) --7
peat V +( V· V) V) =-Vp+ V· Jl(V V +(V V)T -p~Tg +p f (2.2)

21



the energy equation in Dp ,

[
-7 J -7 -7 -7

T

pCp dtT+( V .V)T = V· (kV1) +Qvol+JlV V : (V V +V V )

where Dp is the fluid domain.

(2.3)

Equations (2.1) - (2.3) are non-dimensionalized by introducing dimensionless

variables as follows :-

-7 (X---7
V =-v*

1

t =f!:..t*
(X (x,y) = l(x*,y*). (2.4)

The resulting dimensionless conservation equations neglecting viscous dissipation

and internal heat generation are:

-7
V ·v*=O

-; -7-7
Dv + Vp*= PrRaT* J. + Pr V2V*j[)t ..

(continuity) (2.5)

(Momentum) (2.6)

22
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" ....,.:'.

where:

DC·)
Dt

Pr=~a

Ra= ~gLil1}
,', va

denotes the substantial derivative of the physical quantity

appearing inside the parenthesis,

denotes the Prandtl number,

denotes the Raleigh number.

... ":'

In each case, the right wall is assumed to be at constant temperature

whereas periodic' boundary conditions for velocity and temperature are imposed at the

upper and lower boundaries of the computational domain as shown in Figures 1.5 (b) and

1.6 (b). The origin of the Cartesian coordinate is shown in Figures 1.5 (a) and 1.6 (a).

Fluid motion is generated by protruding heat sources ofunifonn heat flux mounted on the

left vertical wall.

The imposed bOlmdary conditions for all cases are as follows:

• Flow boundary conditions

(a) No slip boundary conditions are imposed at each wall,

u·= v·=O

(b) Periodic velocity at y* =-2 and y* == 2

23



+ The thermal boundary conditions are (refer to Figure l.S(b) and 1.6(b» :

a) Periodic in terms of temperature at lower (y*= -2) and upper boundary (y*=2).

b) Adiabatic (thermally insulated): daT =0 at
x·

x*=O and 1 S y*S 2

-2S y*S-l

x*=O and 1.5 S Y*S 2

-2 S y*S -1.5

c) Uniform heat fluxes: q"=l at

case 1 case 2

y*=l and Os x* S.5 y*=1.5 and Osx*S.5

y*=-l and Os x* S.5 y*=-1.5 and osx* S.5

x*=.5 and -lsy*~l x*=.5 and -1.5 ~ y* ~ 1.5

d) Isothermal, T*= 0 at

x*=l and for both cases

24.



2.2 Numerical Procedure

The mathematical models are solved using a spectral element method (patera

1984). The approach uses a time-accurate integration scheme, and consequently, it is

possible to distinguish between time-independent and oscillatory asymptotic states.

2.2.1 Spatial Discretization

The computational domain is divided into M non-overlapping

--7
macro-elements. Within each macro-element, the unknown functions V (x,y,t), p(x,y,t)

and T(x,y,t) are approximated by Legendre polynomials of order (N-1) that interpolate in

each spatial direction the unknown functions at the N Gauss-Lobatto-Legendre

---7
collocation points (patera, 1984). Continuity of the functions V, p, and T at the

interfaces between macro-elements is imposed. However, continuity of the derivatives at

the interfaces is achieved only when numerical solutions converge to the exact solutions.

Algebraic rates of convergence, similar to low-order fInite-element or fmite-difference

techniques, are achieved by increasing the number of macro-elements, M while

exponential rates of convergence are achieved by increasing the N, which is the order of

the interpolating Legendre polynomial. Typically, in the computations N varies from 5 to

9. A more detailed discussion concerning the optimal selection ofM and N can be found

in Fischer et aI. (1988).



2.2.2 Temporal Discretization

The non-linear convective terms and the body-force terms are integrated in

time by an explicit third-order Adams-Bashforth scheme, but the diffusion terms are

treated implicitly using the Euler backward method. Although the implicit treatment of

the diffusion terms does not impose any restrictions on the time step At, the explicit

treatment of the convective terms requires that At is small enough in order to satisfy the

numerical stability so that the Courant number, Co ~ COer where

Co=mpCAt :X'/).[ly)

and maxo refers to the maximum over the entire flow field. The critical Courant number,

COer' has to be less than 0.71 for the split-formulation.

2.2.3 Formulation and Solution of Discrete Equations

All high Rayleigh number computations are performed usmg time-split

formulation (Yanenko, 1971). At low Rayleigh number, solutions are computed using

Uzawa's algorithm. This eliminates the splitting errors that can arise at speed

characteristic of small Rayleigh number flows. In every case the discrete equations are

solved by the conjugate gradient method ( Canuto et al., 1988).

26.



2.2.4 NEKTON

All the numerical solutions in the current study were preformed on several

mainframes and workstations; VAX 8530, ffiM RS/6000 model 950 and Stardent P3000

superworkstation. The software package NEKTON, designed for steady and unsteady

fluid flow and heat transfer as well as convective-diffusive passive scalar transport, has

been used for the numerical solution. The numerical procedure in NEKTON is based on

. .

a spectral element method. In addition, the program spectralview developed by Huang

and Liakopoulos (1991) was used for computer flow visualization and data analysis.

Transitions from the base flow are studied by gradually increasing the Rayleigh

number or equivalently the Grashofnumber,

Ra ~gq"14
Gr = Pr = v2a.k

In this study the results are presented in terms of Gr.

(

The computational domain for all cases is divided into macro-elements in

which a local Cartesian mesh is conslnIcted by mapping the physical (x,y) space to a

local (r,s) coordinate system. The convergence to the exact solution depends on the size...

of the macro-element and the order of the interpolant used. By increasing the number of

macro-elements, the error (compared to the exact solution) will decrease with the mesh

size Ax. On the other hand, the error will decrease exponentially if the order of
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interpolant is increased. In this study the order of interpolant used was 5 for low Grashof

number, 7 and 9 for high Grashof number. For example, for Gr=l x 105
, N of 9 was

used.
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CHAPTER THREE

Numerical Results

The flow phenomena and heat transfer due to natural convection in a

vertical channel with protruding heat sources are investigated for two different

geometries. The two geometries have the same aspect ratio, hll = 4, but they have

different chip height (protruding heat source) and therefore different values of total heat

dissipated. The flow and heat transfer phenomena are examined for both laminar and

turbulent flows. The Grashof numbers considered in the study range from zero

(conduction) to 1.5 x 106
•

The calculations are carried out for large values of time, t----7 00 , until

steady state solution is achieved. The steady state solution can be time-independent

(steady), time-dependent (periodic), or chaotic for laminar flow, and time-independent for

turbulent flow. In the subsequent sections, the results and discussion of steady state

solutions are presented for different Grashof numbers. The discussion of results is

divided into two categories depending on the flow regime; laminar and turbulent.
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In order to assUre the accuracy of the presented numerical results, a useful

check is used where the energy balance for the entire cavity is considered. Since the

upper and lower boundaries are periodic in tenns of temperature and velocity. the

resultin2 ene2Y balance equation is as follows:

f2 [aT*] . f2 [aT*]qL=k - dy*=k - dy*=qR
-2 ax* IeftwalI -2 ax* rj({htwalI

The residuals CIt- CJR for various values of Grashofnumbers are presented in Table 3.1

GrashofNumber :::{::{::::{:::~l4Nf}<::\f::f}:/f

¢~:j:~ftt~~~~~ ~~:t~~{{~t~~

o
100

1,000
10000

100 000
200,000
300,000

400.000
500,000

0.000
0.000
0.006
0.007
0.084
0.085
0.022
0.016
0.013

Table 3.1

30

0.000
0.020
0.049
0.060
0.092
0.013
0.012
0.013
0.079



3.1 Laminar Flows

The discussion of results for laminar flows concentrates on the changes in

the flow and heat transfer behavior as the Grashofnumber is increased.

3.1.1 First case Geometry: 1..=2
1

The frrst case geometry is investigated for Grashof number ranging from

zero (conduction) to 7.5 x 105
• The steady state solutions for this case indicate that the

flow and temperature fields can be time-independent, time-periodic and chaotic. Plots for

isotherms, streamlines, vorticity contours and isobars are presented in Figures 3.1, 3.2,

3.3, and 3..4 for selected Grashof numbers. Figure 3.5 shows how the local Nusselt

number changes as the Grashof number is increased.

Gr < 1 X 104

At low Grashof numbers, i.e. Gr < 1 x 10\ the steady state solutions

exhibit the same behavior as that of conduction in terms of maximum temperatures and

isotherm patterns. This means that in this range of Grashof numbers, buoyancy forces

are very weak and therefore the heat removal from the system due to natural convection is

negligible. Referring to the streamfunction, '1', contours (Figure 3.2), for low Grashof

numbers, a large eddy is formed in the cavities between the protruding element'). On the

other hand, the flow above the heating element is undisturbed and the streamlines are

parallel to the vertical walls.
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104~ Gr < 3 x 105

In this range, the maximum non-dimensional temperature (T*ImJ is

reduced significantly. For example, referring to Figure 3.6, T* max is reduced as much as

30 percent as the Grashofnumber is·increased from 1 x 1<t to 3 x 105
• In this Grashof

number range, the steady state solutions are still time independent. The flows, as shown

in the streamline plots, become more unstable characterized by elongation of the large

eddies in the cavities between the heating elements.

3xl05
~ Gr ~ 5xl05

As the Grashofnumber is further increased to a range of3 x 105 and

5 x 105
, the steady state solutions become oscillatory and periodic in time. For this case,

with aspect ratios biZ = 4, h/Z=0.5 and Z/1=2, the Grashofnumber of 3 x 1~ becomes

the Gre where the fIrst instability occurs in the flow. The velocity and temperature fIelds

are oscillating periodically in time while laminar flow behavior is maintained. As one can

see from the streamlines plots, the elongated eddies in the cavities between the heating

elements are now separated forming two smaller eddies. The eddies above the heating

element are also become stronger and more elongated. The cooling enhancement for this

range of Grashof number in terms of T*max shows improvement of about 43 percent

relative to the conduction solution (refer to Figure 3.6).

The results for time dependent flows are presented in phase plane plots of

temperature versus x-velocity (Figure 3.7). All the phase plots indicate that the steady
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state solutions are in fact time periodic. Shown in Figure 3.8 are frequencies calculated

using Fast Fourier Transform (FFI) analysis. The results of the analysis indicate that the

frequency of oscillation increases with Grashof number. Figure 3.9 represents the

instantaneous patterns of isotherms and streamlines during one cycle of oscillation for

Grashof number of 5 x 105
• As one can see, the distortions of isotherms above the

heating element move downward and the eddies are slowly formed above the heating

element as the cycle progresses.

Gr>5xl05

For Grashof numbers above 5 x 105
, the steady state solutions are no

longer time periodic; instead they start to exhibit chaotic behavior. This condition can be

seen from the FFT analysis where the results indicate that there exists a large number of

frequencies, both harmonic and subharmonic. In other words, the steady state solutions

are not periodic - as pointed by the pha.<;e plots. The results from the FFT analysis and

the phase plots are presented in F!gures 3.10 and 3.11 respectively. Isotherms,

streamfunction and vorticity contours are presented in Figure 3. I 2.

33 .



Gr=1000 Gr=lx104

Figure 3.1 :
Isothenns for case 1
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Figure 3.1 (cont'd) :
Isothenns for case 1



Gr=1000

~ .

Figure 3.2:
Streamlines for case 1
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Figure 3.2(cont'd) :
Streamlines for case 1
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11

Gr=5x10sGr=1000

Figure 3.3 :
Vorticity contours for case 1
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Gr=lOOO Gr=lxl05

Figure 3.4:
Isobars for case 1
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Figure 3.5:
Plot aT*/<lx* at x*=l and -2<y*<2
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Figure 3.6:
Dimensionless maximum temperature, T*max vs Grashofnumber, case 1
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Figure 3.7 :
Phase Plots for Gx=3 x 105

, case 1
Temperature vs x-velocity

x* =.75, y* =0
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Figure 3.7(cont'd):
Phase Plots for Gr=4 x lOs:
Temperature vs x-velocity

x* =.75, y* =0
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Figure 3.7 (cont'd):
Phase Plots for GF5 x 1O~:

Temperature vs x-velocity
x* =.75, y* =0
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Figure 3.8:

FFT Analysis of temperature for case 1
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:FFT Analysis of temperature for case 1

Gr=5 x 1~

x* =0.75, y* = 0
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Figure 3.10 :
FFI analysis of pressure for Gr=7.5x105

at x* =0.75, y*=o
Case 1, chaotic behavior in time
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Case 1, chaotic behavior in time
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Figure 3.12:
Istantalleous isotherms, streamlines and vorticity contours

for Gr=7.5xl0~

Case 1, chaotic behavior in time
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3.1.2 Second Case Geometry; !.E.. == 3
1

Gr~ lx l<r

The results for the second case geometry exhI1>it the same behavior as that

of the fIrst case geometry. For low GI'3Shof numbers, Gr ~ 1 x 104, the maximum

temperature remains the same as for the case with no flow, i.e. the conduction problem.

The flows in this range of Grashof numbers are dominated by the large eddies formed in

the cavities between the heating elements. Meanwhile, the flow above the heating

element remains practically undisturbed. The plots of isotherms, streamlines, vorticity

contours and isobars for different Grashofnumbers are shown in Figures 3.13, 3.14, 3.15

and 3.16 respectively. Figure 3.17 shows changes in the local Nusselt number as the

Grashof number is increased.

In this range, T*max decreases significantly as a result of the stronger flow

distortions (refer to Figure 3.14). As one can see from the streamfunction plot for Gr=1 x

105
, the distortions in the flow field are caused by the formation of elongated eddies

above the heating element and the elongation of eddies in the cavities between the heating

elements. The increase in flow distortions can also be seen from the disturbed isotherm

patterns especially in the cavities between the protruding heat sources. For this range of

Grashofnumbers, T*max is reduced about 40 percent relative to the conduction solution.

The plot of T* rmx vs Grashofnumber ic; shown in Figure 3.18.
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2x 105 < Gr~4x 105

As Grashof number is increased to a range of 2 x lOS and 4 x 105 the

steady state solutions become time-periodic as shown in phase-plane plots. Figure 3.19

shows the phase plots of temperature vs x-velocity for the respective Grashof numbers.

The distortions in the flows are significantly increased and are shown in Figure 3.14.

Smaller eddies are starting to fOlID. above the heat source resulting from the elongation of

large eddies in the cavities. The frequencies that exist in the time periodic signals are

calcuIated using Fast Fourier Transform (FFI). The results are depicted in Figure 3.20

and they indicate that as Grashof number is increased, the fundamental frequency is

shifted to the right. In other words, the frequency of oscillation increases with Grashof

number.

Figure 3.21 provides frame by frame or instantaneous plots of isotherms,

streamlines, and velocity vector field within a period of oscillation for Grashof number of

4 x 1O~. The streamline plots show that as the cycle progresses, .eddies inside the cavities

elongate and form smaller eddies above the heating element The small eddies are

moving downward throughout the cycle. Figure 3.21 also shows that the amplitude of

oscillation increases with Grashof numbers.
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For Grashofnumber is increased above 5 x 105
, the steady state solutions-

loose their perio~city in time. The history plots become irregular. The FFT analysis

indicates that there exist a large number of frequencies in the time-history ofany quantity,

harmonic and sub-harmonic. The analysis using phase plots also reveals that the resulting

steady state solutions are non-periodic. From both FFT analysis and phase portraits, one

can conclude that the steady state solutions for Gr ~ 5 x 105 are chaotic in time. The

results of FFT analysis and phase portraits are shown in Figures 3.22 and 3.23

respeGtively. Plots of isotherms, streamlines and vorticity contours are presented in
~'.""

Figure 3.24.

One important point to note is that for both geometries, the downward

non-dimensional volume flow rate (Q*) increases with Grashof number (refer to Figure

3.25) where
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~
Gr=1000 Gr=lxlO~

Figure 3.13 :
Isotherms for laminar flow model: case 2
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n
Gt=2xI05

Figure 3.I3(cont'd) :
Isotherms for laminar flow model: case 2
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Gr=l000 Gr=lxlO~ Gr=lx105

Figure 3.14:
Streamlines for laminar flow model : case 2
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Figure 3.14(cont'd) :
Streamlines for laminar flow model: case 2
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"Gr=1000

Figure 3.15 :
Vorticity contours for laminar flow model : case 2
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Gr::::1000

Figure 3.16 :
Isobars for laminar flow model: case 2
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Figure 3.24 :
Instantaneous isotherms, streamlines and vorticity contours

for Gr=5x105

Case 2, chaotic behavior in time
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3.2 Turbulent Flow

The turbulent flow calculations were based on the IDlXmg length

assumption. Because of the unavailability of experimental data on the mixing length for

the flow studied, the author used the default value of 0 .14 for the mixing length - which

is based on experiments with flows in a pipe. Because the turbulent flow occurs at high

Grashofnumbers, the transient period (the period before reaching steady state) is too long

~ if the calculation is started using the solution for Gr = 0 as initial condition. In order to

avoid such long calculation, a "turbulent" flow solution for Gz=5 x 105 has been

calculated using a laminar flow solution as the initial condition. The actual Grashof

number for transition to turbulence is unknown. The presented results have not yet been

experimentally tested and they are not intended for practical use before validation. The

author hopes that the results will be used as a starting point for future work.

Even though the turbulent flow model was solved for both configurations,

1; =2 and 1; =3 only results from the fIrst case are presented. Figures 3.26, 3.27,

and 3.28 depict the isotherms, streamlines and isobars, respectively, for selected Grashof

numbers; from Gz=7.5 x lOS to Gz=I.5 X 106
• The isotherms and streamlines remain

almost unchanged as the Grashof number is increased from 5 x lOS to 1 X 106
• The

isotherm pattern st:arU? to change at Grashofnumbers larger than 1.25 x 106
• For

Gr < 1.25 x 106
, the temperature decreases with increasing Grashofnumber. However,

for Gr> 1.25 x 106
, the maximum temperature comes back up (as shown in Figure

3.29). Accordingly, the critical Grashofnumber for transition to turbulence is 1.25 x 106
•
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However, it should be noted that this is a conjecture at this point and has to be verified

experimentally. Similar behavior can also be observed in the streamline plots, as the

Grashof number is increased. From the streamline plots, one can see that the flow is

mostly dominated by a large eddies formed in the cavity between the heating elements. A

smaller eddies can also be observed above the heating element The streamline plots of

tim~-averaged flow do not indicate any abmpt changes in the flow field as the critical

Grashofnumber is encountered.
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Figure 3.26 :
Isotherms for turbulent flow
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Figure 3.27 :
Streamlines for turbulent flow
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Figure 3.28 :
Isobars for turbulent flow
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3.3 Sample calculations for typical air-filled cavities encountered in

second level packaging

The numerical studies in this work are intended to provide guidelines in

designing natural convection cooling systems with air as the cooling medium. From the

computational point of view, the most convenient way to conduct the study for different

Grashof numbers is by changing the values of ~g. Thus, the study has been conducted

by using a 'fictitious' fluid rather than air. The properties of the fictitious fluid are chosen

so that the Pr=0.71 and the Grashof number was increased by simply increasing ~g. In

order to use the results present~d in this study in predicting the maximum temperature in

air-filled cavities, some adjustments have to be made. In practice ~g is approximately

constant and the Grashof number changes by changing the value of either I or the heat

flux. By keeping I constant, the applied surface heat flux can be calculated for a given

Grashof number. The results presented below are for values of I typical for electronic

equipment.

Properties ofair :

k =27.8 X 10-3W/m-K

~ = 3.12 X 10-3 K 1

Cp = 1.008 kJ/kg-K
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v = 17.95 X 10-6 m2/s

a. =25.3 x 10.6 m2/s



Properties of 'fictitious' fluid :

k = .011868 W/m-K

v = .008426 m2/s

~ =variable

Assumptions:

• The reference temperature, Tr = 25°C

First case

• 1= .035 m, .045 m

• Ie = .07m, .090 m

• 1/2 = .035 m, .045 m

• he = .0175 m, .0225 m

We know that for physical similarity,

(1; )model = (1; )Air

p=l.O kglm3

Cp = 1.0 kJlkg-K

Second case

1= .035 m, .045 m

Ie = .105 m, .135 m

1/2 = .0175 m, .0225 m

he = .0175 m, .0225 m

Pr: (3.2)
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Gr:
(
~gq"14 ) =(~gqIl14 )

v2k Model v2k air (3.3)

Equation (3.2) is satisfied by the values of properties selected for the

fictitious fluid used in the computational model.

The numerical study based on the properties ofthe fictitious fluid yielded

T*fTRx= f(Gr ; Pr=O.71) as depicted in Figures 3.6 and 3.16 for both geometry cases, and

the maximum temperature anticipated in air-filled cavities can be calculated using

The heat flux, q", can be calculated for a given 1, and is used to deduce

TfTRl:,air' Figures 3.30 and 3.31 are the plots for the maximum air temperature, TfTRl:,air VS

the heat flux, q" for different values of 1for both geometric configurations.
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CHAPTER FOUR

Conclusions & Recommendations

This study bas revealed the importance of effective thermal management in

improving the reliability of electronic equipment. As long as the heat fluxes remain low

enough, natural convection is the most reliable and economical cooling method. The

maximum temperature within electronic equipment can be effectively controlled by

. adjusting the spacing between PCBs. The effectiveness of natural convection cooling

using air as the..medium depends largely on two main factors; the heat flux dissipated by

the chips and the spacing between adjacent PCBs. Since the heat flux is difficult to

control, optimjzing the spacing between PCBs is the most practical way. As shown in

Figures 3.30 and 3.31, the maximum temperature can be lowered by increasing the

spacing length for a given value ofheat flux.

The results obtained indicate that at high enough Grashofnumber (about

3 x 105 for the fIrst case and 2 x 105 for the second), th~ steady state laminar flow

solutions become time-dependent. These results can be used in designing more elaborate

cooling methods, for example, by combining natural convection with fan driven flow.

Knowing the natural frequency of the spontaneously oscillatory free convection flows,

forced convection can be applied to create resonance effects and consequently enhance

the cooling rate.
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The results for turbulent flow reported in this thesis are not as reliable as

those for laminar flow, due to the uncertainties in the mixing length model. However, the

author hopes that the results can be used as a basis for firrther studies in this area.

The isothenn and streamline contour plots presented here are in agreement

with those reported by Liakopoulos et al. (1991) for tall enclosures with periodically

.spaced protruding heat sources. Therefore, the flow phenomena and heat transfer

characteristics of the middle sections of tall cavities with protruding heat sources can be

approximated by solving the equations for only one periodicity unit This approximation

greatly reduces the computational burden.
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