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Abstnd
",

To be able to place surface mount chips accurately and rapidly onto

a circuit board, it is necessary to have a description of where the chip is to

be placed on the board, where the chip is now, where the board is now,

and a method to move the chip from point x to point y accurately. In this

paper we describe the steps we have taken so far to implement the first

three of the requirements listed above using multiple cameras and a vision

system. The final component has already been developed and is planned

for development into a commercial product.



latroductioD

This project deals with the implementation of a machine for placing

surface mount components on circuit boards at approximately twice the

rate of any other commercially available machine. To this purpose the

hardware for a machine has been constructed using multiple linear motors

and a vision system with multiple cameras. This thesis deals with some of

the things needed to implement the vision system portion of the machine.

The vision system is based on a Coreco F_64 1 image capture board

with the ability to switch among multiple cameras. The board also hosts a

Texas Instruments DSP chip to enable images to be processed without the

need for transfer across the bus of the machine. The system is plmmed to

be run on a minimum of an Intel 486DX2-66 machine running the

Microsoft Windows operating system.

The vision system needs to be able to complete two basic tasks.

The first task is the inital scanning of the circuit board. In this step the

board needs to be scanned into the computer and stored so that the

locations for placement of components can be entered either interactively

by a user or through a definition file. If entered through a definition file the
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image will also be used to verify that there are contact pads at the area

specified in the file as a way to check for a valid file. The maximum size

circuit board this machine will handle is twelve inches by eighteen inches.

This board is scanned in images of approx. one half inch by one half inch,

with each image being a 512x512 8-bit grayscale image. This corresponds

to 864 images of 262,144 bytes each, or 216 megabytes of data plus some

overhead for image headers. This amount of information would be easier

to manage, store, manipulate if some form of compression was utilized.

The second task that needs to be performed is when a component is

picked up, we need to know the exact orientation and location of that

component. This is needed to allow for ·accuracy in placing the component

on the board. We know the orientation withIn plus or minus two degrees

and we also know the location within a few pixels, however we need a

better level of accuracy.

Both ofthese tasks are discussed in the following sections, with the

results obtained towards the end. This machine is an ongoing project and I

hope to see a completed prototype in the near future.
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Board Image Compression

Fractal Image Compression

To be able to use the scanned image of the circuit board we needed

to compress it down to a more usable size. One of the methods tried for

this was automatic fractal compression. The "automatic" refers to the fact

that no interactive geometrical modeling is required. This automatic

compression is accomplished by extending IPS theory from global to local

and restricting attention to affine symmetry transformations.

To begin fractal compression we need three basic ingredients2 which

lead to four theorems and expectations. The three ingredients needed are

1. A model Y for the space R of real world images where each

"point" in Y represents a real world image, has a support 0, chromatic

attributes, resolution independence, and closure under the application of

arbitrary invertible affine transformations applied to clipped parallelograms

within images, chosen to yield rectangular images. . The support 0 is a set
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DcR2
, where R2 denotes the Euclidean plane. 0 is defined by

0= {(xJl)ER 2:a~x~b, c~y~d}

where a<b and c<d are real constants.

(1)

2 A metric d on the space Y, such that (Y,d) is a complet~ metric

space.

3.A contractive operator 0, which acts upon the space (Y,d). That

is, the operator°is such that there exists a real number s with 0:::;; s <1 and

d(O(<!»,O(W» :!> s'd(<!>,W) for all <!>,WEY (2)

With these three ingredients we consequentially have the following four

theorems and expectations3

(1) Theorem (Existence of Attractors)

Since °is contractive and the metric space Y is complete,
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there exists an unique image <t>E Y such that

0(et>)=et>

(2) Expectation (Fractal Character ofAttractors)

(3)

We anticipate that <t> has a resolution independent character

because of the contractivity of the functions from which 0 is

constructed: the whole invariant image is the same as a sum or union

ofcontractions applied to it, and thus it is made of shrunken copies

of (parts of) itself Depending on the way in which the contractions

act, the focus may be on· spatial contractivity, intensity contractivity,

or measure theoretic contractivity, and we expect that the attractor <t>

will inherit corresponding fractal characteristics.

(3) Theorem (Computation of Attractors)

To compute <t>, we can use the fact that iflJlEY then the result

of repeatedly applying 0 to lJI converges to the attractor <t>~ that is

n=oo

6
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Moreover, if there exists a real constant C such that

then we have the error estimate

(4) Theorem (General Collage Theorem Estimate)

The distance between l{1EY and the attractor <p of 0 is

bounded by the estimate

d(<f>,qr) ~ d(qr,O(qr))
(l-s)

In fractal transform theory the basic ingredients 1,2 and 3 are

(5)

(6)

(7)

provided by local transformations which are assembled in various ways to

produce operator 0 and a corresponding system for generating resolution

independent fractal attractors.

7



We now consider applying IPS theory to local transfonnation in the

case of binary images.

Definition Let(X,d) be a compact metric space. Let R be a non-empty

subset ofX. Let w:R->X and let s be a real number with O:::s<l. If

d(w(x),w(y)) ~ s·d(x.JI) for all x.JI in R (8)

then w is called a local contraction mapping on (X,d). The number s is a

contractivity factor for w.

Definition Let (X,d) be a compact metric space and let w j:~ .... X be a local

contraction mapping on (X,d), with contractivity factor Sj, for 1=1,2,... ,N,

where N is a finite positive integer. Then

{Wi : Rt~X: i = 1,2, ... ,N} (9)

is called a local iterated function system (local IPS). The number s=max{s

j:i=I,2,... ,N} is called the contractivity function of the local IPS.
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A simple algorithm to compute the attractor A of a local IPS is the

escape time algorithm4
.

Let D = U Dj and define

f: D - 0

by j(X)=W;-l(X) for xED j for i= 1,2,3,... ,N.

(10)

This says that Dj is a piece of the image D, and we have defined a function

f as an inverse affine transformation Wi-
1 such that f(Dj)=R. Because of this

we use the notation R for the domain of Wj, and Djfor its range rather than

the other way around. The piecewise affine function

f:DcD-D (11)

where D is the support of D, provides a dynamical system whose repelling

set is the attractor associated with the local IPS. The regions Dj are called

domain blocks while the regions R are called range blocks.

The attractor of the IPS , A, and a decreasing sequence of approximations

~ to A are computed as follows:
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(0) Initialize a counter to zero, and specify a maximum number of

iterations n;

(1) Input XED

(2) Is (x ED)? Ifyes , replace x by f(x), Ifno output "x (£ A" and

exit

(3) Increment counter; if counter = n, output "x E ~ and exit

(4) GOTO (1)

In practice this algorithm yields,

assuming n is finite. If n=oo and the input belongs to A then the algorithm

will run on endlessly.

Taking this algorithm and applying it to image compression of binary

images gives us the following algorithm.

(0) Input a binary image G, a subset of Dc R2

10



(1) cover G with domain blocks, Db . The complete set of domain

blocks (Dj I=I,2,...,n) must cover G. Blocks do not overlap one

another.

(2) Introduce a collection ofpossible range blocks ReD, such that

Rn G*O. These are squares whose sides are twice as long as those

of the domain blocks. The possible coordinate of the lower left

comer ofeach possible range block <Rx,~) are restricted to lie in a

finite set 1. Correspondingly, we define a collection T of local

contractive affine transformations, mapping from range block R to

the domain block Dj. That is for I=I,2,...n,

(13)

Where w(Dj,Rx,~j) is the contractive affine transformation with

domain R, range Dj, of the form

a.SA(j) . R + t (14)

where AU) denotes the jth symmetry in Table-l and t is a constant.

11



Descriptipn

identity

Table-l Symmetry Matrices5

(3) Cany out the fractal transfonn process as follows. For each i

choose Wi ETi to minimize the Hausdorff distance.

(15)

That is, for each domain block, one chooses a corresponding range

block and symmetry, so that the transfonned part of the image in the

12



range block looks most like the part of the image in the domain

block.

The set (16)

is called the collage of the image G corresponding to the local IFS,

while the number

is called the corresponding collage error.

(17)

(4) Write out the compressed data in the form of a local IFS code.

(5)Apply a lossless data compression algorithm to the local IPS

code, to obtain a compressed local IPS code.

Now that we have an algorithm for binary images we can extend this

to be applied to grayscale images. We use the model for the space of real

world images R that consists of the space Y of all real-valued functions

13



4>: D-- I. Here, 1=[a,b] c R is a real interval that represents the possible

grayscale intensity values in images, such as [0,255].

We convert Y into a complete metric space by defining the distance

between two functions 4>1' 4>2 E Y as

(18)

where sup denotes the suprenum, the smallest number M with the property

that x~ M for all x elements ofS.

Now Let D denote a partition ofD consisting ofa finite collection of

sets Dj c D, I =1,2,...,M., that is

;=1

D = UD.
I

M
(19)

where Djintersect Dj = 0 for i *j. For each i let ~:Di--D, with ~(D)=~,

and let vj:R--R be a contractive transformation with contractivity factor s,

with O<=s<1 that is

for i=1,2,... ,M.

14
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(21)

Then we define F:Y-.Y by

We say that s is the contractivity factor ofF. We call F the fractal

transfonn operator.

Theorem (Convergence of fractal transfonns)6

Let the complete metric space (Y,d) and the operator F:Y->Y be

defined as above. Then F is a contraction mapping on Y; that is, for all

(22)

where s is the contractivity factor ofF.

This gives us the three ingredients from before needed for a fractal

image compression system using F for the operator o. In particular, there

exists a unique function <t> E Y such that F(<t>)=<t>. The function <t> is called

the attractor of the fractal transfonn. To compute <f>, we can use the fact

15



that if WE Y then the result of repeatedly applying F to lIr converges

unifonnly to the attractor (f), that is

which gives the error estimate

(23)

lFon('iT)(XJI) - <t>(xJI) I:s:s nl b-al for all (XJI)eD, where I=[a,b] (24)

The distance between WE Y and the attractor of the fractal transfOJm

operator is bounded by the estimate

d('" 1I.):s: d('iT,F('iT»
'1','1' (I-a)'

This is the collage theorem for the fractal transform operator F.

16
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HuffmanIRLE eRCoding

Huffman coding is a lossless fonn of compression in which the input

symbols are replaced with output symbols based on the probability of

occurrence of the input symbol. The more probable an input symbol the

shorter the output symbol that represents it should be. In our case the

inputs symbols were the gray level values of the image being compressed,

where the probability of occurrence of each symbol can be derived from a

histogram of the input image..

An algorithm to generate the optimum Huffinan code for a given

input string is shown below7

(1) List the input symbols in order ofprobability

(2) Make a tree whose branches, labeled zero and one, are the

two symbols with the lowest weight.

(3) Remove the two symbols just used from the list and add to the

list a new symbol representing the newly fonned tree with

probability equal to the total weight of the branches.

(4) Make a tree whose branches, labeled zero and one, are the

two symbols with lowest weight in the new list. This tree may

17



consist of two other symbols, or it could consist of a symbol and the

tree just constructed.

(5) Repeat this procedure until one large tree is fonned

At each stage in the merging of the symbols into a complete tree the

branches are arbitrarily labeled 0 or I, although following a simple rule

such as the lowest probability tree is 0 will make it easier to follow.

As an example consider an input alphabet with five symbols

{A,B,C,D,E} with probabilities

The steps taken are illustrated in Figure-I.

Step 1- Merge {B,D} to fonn a tree with weight PBD=.21
\

Step 2- Merge {BD,A} to fonn a tree with weight PBDA=.41

Step 3-Merge {C,E} to fonn a tree with ~eight PCE=.59

. Step 4-Merge {BDA,CE} to fonn the final tree with weight
PABCDE=1

From Figure-l we can see that the codewords for the output symbols are

A=OO B=010 C=ll D=OII E=10, , , ,

18



o

A .20 B .OS D .16 E .2S C .34

Figure I-Construction ofHuffinan Code
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Compopept Orientation

Hough Transform

To calculate the orientation of the chip in the captured image we

used the Hough algorithm8
. We knew that we were looking for straight

lines (edges of the pins) and we knew a range of angles in which these

lines would lie.

All points on a line will satisfy the equation for that line, y=mx+c,

where m is the slope of the line, change in y per unit change in x, and c is

the y-intercept. To try to find these lines we therefore take each image

points' coordinates and find which line equations, withiri the specified

limits for the lines, they will satisfy. The procedure is outlined below9
.

(1) Define space

Quantize parameter space between appropriate minimum and

maximum values for c and m.

(2) Setup

Form an array A(c,m) with elements initially zero to act as an

accumlator.

20



(3) Process

For each point (x,y) in a gradient image (see below) such that

the strength of the gradient exceeds a set threshold, increment all

points in the accumulator array where x,y satisfy the line

equation. That is

A(c,m) =A(c.m)+ 1 for m,c satisfying c=-mx+y for Co~c~CJ'vfo~m~Ml' (26)

(4) Results

Local maxima in the accumlator array now correspond to

collinear points in the image array, with the values in the

accumlator array providing a measure of the number of points on

the line.

A gradient image is an image to which the gradient operator has

been applied. For an image function f(x), the gradient magnitude sex) and

direction <t>(x) can be computed as

s(x)=(~i +~i)1I2

<f>(x)=tan-l(~/~l)

where·

21
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~l=j (x+n, y)-j (X,y)
~2= j (x, y+n)-j (X,y)

The operators used to calculate these on a given image are lO

d 1

----~---..,I--~-- 1

o

(28)

o
-1

in the case that n=1. These operators are convolved with the input image

with the results giving the gradient image.

The calculation of the Hough transfonn, although it provided the

required results to the desired degree of accuracy, proved to be

computationally intensive and proved to take too long to be useful in this

project.
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Lillear RegressioR

In trying to reduce the computation we realized that we knew

approximately where the edge we were looking for was located and that

we could find the edge points relatively rapidly. Once we had the edge

points we needed a way to calculate the equation, and therefore the slope

and intercept, of the line these points lay on. To do this we used first order

linear regressionll
.

A straight line relating two quantities x and y can be described by

the equation

Y=mx+c (29)

where c is the intercept, the y value when x=O, and m is the slope. There

will also be some error introduced into the equation of the line due to the

sampling that takes place in capturing of the image in digital form.

Because ofthis our model for the line becomes12

Y; = c+mx,+e; i=1,2, ... ,n

23
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Now to correctly obtain the parameters for the desired line we need to

minimize the error tenn. For the ith case the observed residual (fitting

error) is

i=},2, ... ,n (31)

, note the hats over m and c refer to the estimates of m and c while we are

using the same hat notation to specify the observerd error, which can be

compared to the equation for statistical errors,

e; =y;-(c+mx) i=},2, ... ,n (32)

The method we used to minimize the errors is least squares estimation. In

this method we select c and m to make the residual sum of squares, RSS,

as small as possible where

n n

RSS=E e;2 =E [y;-(c+mx)f
;=1 ;=1

(33)

Now to minimize this we can differentiate with respect to c and m. set the

derivatives to zero, and solve the resulting equationsl3
.

24



6RSS = -2"" (y.-8-mx.)=O
68 LJ I I

6RSS =-2"" x.(y.-8-mx)=O
6';' LJ I I I

Which can be rearranged to

8n+';'L xj =LYj

8Lxj +';'Lxj
2
=L Xl j

Now the estimates for c and m can be found by solving these two

equations simultaneously to obtain

8=Ly/n -';'Lx/n

Now we define

(34)

(35)

(36)

x=Lx,Jn

Y=Ly/n

SXX=L(Xj-X)2

SXY= L (xj-x)(Yj-Y)

I
Sample average for the xj s

I
Sample average for the Yj s

Corrected sum of squares for the x/s

Corrected sum of cross products

25
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Which leads to

~ SXYm=-
SXX

c= y-mx
(38)

Thus given a set of sample (x, y) pairs we can calculate all items needed to

obtain c, and m.

26



Results

Board bRage CompressioR

The Images below (Figure-2 through Figure-5) are sample images

that were compressed using both HuffinanlRLE encoding and Fractal

compression followed by HuffinanlRLE. Table-2 shows the sizes of the

files before and after compression using the different compression

methods~ The table also shows the size of a file after converting to binary

and then running HuffinanlRLE on it.
•

As can be seen from Table-2 the fractal compression perfonned

much better than the Huffinan/RLE alone, as expected, and as well as if not

better than converting to binary and then running Huffinan/RLE. The

times listed in Table-2 are times on a 486DX2-66 machine. Although the

fractal compression is lossy, there were no noticeable artifacts, nor

additives left on the circuit board images tested, Figure 6 through Figure 9,

27



.. ~j~ary} THuff. TFrac.

HUtf.IR.D'E
o/6b6mp}

93~ 5 127

and all images were fully usable for component placement. The detriment

offractal compression was the time it took to compress the images to these
, .

ratios. When scanning a full size tWelve inch by eighteen inch circuit

board there will be a total ofeight hundred and sixty four images taken.

With compression times for one image running into the multiple minutes

fractal compression creates a time burden.
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Figure 2-Board 1

Figure 4-Board 3

Figure 6-Board 1
after reconstruction
from Frac. Compo
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Figure 2-Board 1

Figure 4-Board 3

Figure 6-Board 1
after reconstruction
from Frac. Comp,
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Figure 8-Board 3
after reconstruction
from Frac. Compo
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Figure 9-Board 4
after reconstruction
from Frac.Comp.



Figure 8-Board 3
after reconstruction
from Frac. Compo
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Figure 9-Board 4
after reconstruction
from Frac.Comp.



Component Orientation

Below can be seen images of a chip (Figure-IO through Figure-12)

scanned at a few angles around forty five degrees from horizontal and

Table-3 lists the angles and intersect points determined by our edge

hunting-linear regression algorithm. All images are of a surface mount chip

against a piece of non-reflective black paper.

Figure IO-Chip 1

Figure 12-Chip 3

Figure II-Chip 2

Figure 13 shows the chip orientation used to obtain the images in Figure-l0

through Figure-l 2.
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Component Orientation

Below can be seen images of a chip (Figure-l 0 through Figure-12)

scanned at a few angles around forty five degrees from horizontal and

Table-3 lists the angles and intersect points determined by our edge

hunting-linear regression algorithm. All images are of a surface mount chip

against a piece of non-reflective black paper.

Figure 10-Chip 1 Figure ll-Chip 2

Figure 12-Chip ~
~

Figure 13 shows the chip orientation used to obtain the images in Figure-l 0

through Figure-12.
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Chip

Camera view area
512 x 512 pixels

Background is black non-reflective paper

Figure 13- Chip position for capture

Table-3 Numeric results of component orientaion

As can be seen from Table-3 we managed to calculate both the angle and

the comer point (the intersection of the lines along the outside edges of the

pins). These values were calculated within .1 degrees and within the

dimensions of 1 pixel. With these two pieces of infonnation we can rotate

32



the chip to the desired angle of rotation and also know the amount of x,y

offset to compensate for during placement of the component on the board.
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