
Lehigh University
Lehigh Preserve

Theses and Dissertations

1994

Distributed event monitor user interface tool
Keyang Huang
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Huang, Keyang, "Distributed event monitor user interface tool" (1994). Theses and Dissertations. Paper 298.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/298?utm_source=preserve.lehigh.edu%2Fetd%2F298&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

AUTHOR:

Huang,Keyang

TITLE:

Distributed Event Monitor

User Interface Tool

DATE: October 9,1994

Distributed Event Monitor User Interface Tool

by

Keyang Huang

A Thesis

Presented to the Graduate and Resear~h Committee

of Lehigh University

in Candidacy for the Degree of

Master of Computer Science

10

Department of Electrical Engineering and Computer Science

July 6, 1994

Acknowledgement

This Distributed Event Monitor User Interface Tool development took me a couple

months to learn, write and compile. More thanks go to my advisor Dr. Spezialetti, for her

instructions, helps, discussions and paper writing in this project. I learned more from her about

distributed computation and other things that exceed what I ever expected. Added thanks to those

who worked together as team with me on this project include Scott Bemberg, Ali Yildirim, Ali

Erkan, and Max Brogi. We discuss and learn from each other, we share the great ideas.

Especially Scott Bemberg supports me the I/O interface requirements and event script

definitions. Also many thanks to Brain Hearn, Sr. system programmer of computer center and

Binod Taterway, Sr. user consultant of computer center for their help in troubleshooting of my

program debugging. I learned a lot of dbx in Motif, X window, and X Toolkit Intrinsics from

them.

iii

Table of Contents

Acknowledgements

Table of Contents

List of Figures

Abstract

1. Introduction

2. Event-Driven Environment and Object-Oriented Nature of the Program

3. Style Guide of the Program

4. Three Basic Concepts: Resources, Callbacks, and Managers

5. Shell Widget, Application Context and Class, Command-line Arguments,

and Fallback Resources

6. Functionality, Menus, and Menubars

7. Creating of Main Window, Build Menu, Menubars, Pulldown Menu,

and Pullright Menu

1) Create Main Window

2) Steps to Create Menu and Menubars

3) Techniques to Build General Menu

4) Write a Generalized Function

8. Compound String, C String and Their Conversion

9. Text Widget and Text Editor

10. File Menu Creation and All Dialog Boxes

11. Edit and Search Menu

iii

iv

vii

1

2

5

9

10

14

16

17

17

18

19

22

26

29

30

34

iv

12. General Approach and Techniques for Generalizing Event Definitions

1) Form Dialog Box and Shell

2) Form Widget and Resizing

3) RowColumn Widget and Push Buttons Managers

4) Radio Boxes and Options

5) List Widget, Event Adding and Deleting

13. Event Definition Menus

1) General Structure of the Event Definition Form

2) General Steps for Input Event Definition

14. Command Widget and Run, Compile, Parser Menus

15. Output Menu

16. User's Manual

1) What Is Needed to Run This Tool

2) Running This Tool

3) Quitting This Tool

4) Defining Event Script File

a) Primitive Event Definition

b) Highlevel Event Definition

c) Protocol Event Definition

d) Goal Event Definition

e) Local Event Definition

~----~--.- .._--------
.----------nf) ASSIgn-Event Definition

v

...

g) Place Event Definition

5) Checking User Defined Event and Event Script File

6) Modifying User Defined Event and Event Script File

17. References

18. Vita

vi

69

72

74

78

79

List of Figures

Figure 1. The Distributed Event Monitor User Interface Tool (DEMUIT) 5

Figure 2. The Hierarchy of the Motif User-Interface Library Model 8

Figure 3. File Selection Dialog For Open File 33

Figure 4. The Output of Opening File menu.c (DEMUIT source file) 34

Figure 5. The List Widget Popup Form 43

Figure 6. The Primitive Event Definition Form 51

Figure 7. The Completed "primitive El is access x main" Definition 53

Figure 8. The Highlevel Event Definition Form 54

Figure 9. The Completed "highlevel E7 is El or E2" Definition 56

Figure 10. The Completed "highlevel E4 is E6 notbtwn E9 E5" Definition 58

Figure 11. The Completed "highlevel El is E2 and E3 then E4" definition 60

Figure 12. The Protocol Event Definition Form 61

Figure 13. The Completed "protocol all is Ie" Definition 62

Figure 14. The Goal Event Definition Form 63

Figure 15. The Completed "goal E7" Definition 64

Figure 16. The Local Event Definition From 65

Figure 17. The Completed "local E7" Definition 66

Figure 18. The Assign Event Definition 67

Figure 19. The Completed "assign all to em p1118.cc.lehigh.edu 1" Definition 69

Figure 20. The Place Event Definition Form 70

Figure 2-1. The Completed "place all at myprogpI118.cc.lehigh.edu 1" Definition 71

vii

Figure 22. The Event Checking Form

viii

72

Abstract

The Distributed Event Monitor User Interface Tool (DEMUIT) was developed to aid in

developing and specifying both events and monitoring configurations for the "Event Recognition

Testbed (EVERESn" project. DEMUIT was written in C programming language and Motif

graphical user interface (GUI). This paper first describes the principles and requirements of

designing DEMUIT. The methodology, the concepts, the functionalities, the design process and

approaches, the technical sk111s are then discussed in details. DEMUIT is an event-driven

environment. The main menu consists of Edit, Search, Event, Monitor, Display, Run, Output,

and Help menubars. Each menubar has pul1down menus associated with it. The user can specify

seven events from a popup event definition form: primitive event, highlevel event, protocol

event, assign event, local event, goal event, and place event. The user's manual is also attached.

1

1. Introduction

In distributed computing systems there are two main characteristics: no single, shared

memory and no single, global time. These characteristics make monitoring and analyzing the

system's behavior a complex and potentially costly task. The Event Recognition Testbed

(EVEREST) [1] was designed to study the overhead and applicatbility of various strategies for

monitoring distributed computations for the occurrences of distributed events. The system allows

users to specify events, which are activities of interest regarding the execution of a distributed

computation. An event may test the behaviors of one or more process in the distributed

computation. In addition, the user can specify the allocation of event monitoring and evaluation

responsibilities to various monitoring modules. In this way, different monitoring configurations

can be tested and compared. As the computation executes, EVEREST captures information

pertaining to the defined events, organizes and analyzes the data, and alerts the user when an

occurrence of any of the specified events is detected. As part of the EVEREST system, a user

interface was developed to aid developing and specifying both the events and monitoring

configurations.

The principles to design this user interface are to satisfy as many functionalities as

possible, to keep the interface as simple as possible, while not restricting the functionality to

accommodate simplicity, to support many ways for user to define, modify, and edit the defined

events file and to help the user to be as productive as possible.

The C programming language and Motif graphical user interface (Gill) were used to

00. MOtif is an eVent driven programming environment. I s

important property is called "what you see is what you get". It provides a complete set of

2
".',' l. ,.,'1C'.

"'-."':0:';

widgets for such common user interface objects (appearance) as: the menus, the labels, the push

buttons, the dialog boxes, the scrollbars, text entry, and the display areas (the look). The user

interacts with these objects by typing at the keyboard, and by clicking, selecting, and dragging

various graphic elements of the objects with mouse (the feel). The Motif window manager,

mwm, which does all of the widget management internally, helps to enforce this look-andleel

style guide. To develop the user interface using Motif is to decide which widgets will be used

to create the user interface that is desired. Motif functions position the widgets on the screen in

the right location and at the right size. At the same time, Motif uses functions known as callback

routines that notify the program when a user adjusts one of the widgets. Thus the primary

responsibility of the application in' program is to insure that the application responds correctly

to the user's actions.

The Distributed Event Monitor User Interface Tool (DEMUIT) is designed to meet these

requirements, and is built upon the user's perspectives. The programming methodology, the

styles, the concepts, the task, the functionality, the design process, the technical skills, and

usages are also presented. The DEMUIT was developed on UNIX workstation RISe 6000 using

the e programming language, Motif graphical user interface (GUI) which uses X as the window

system and the X Toolkit Intrinsics (Xt) as the platform. All Motif programs (run on Motif 1.2)

need to link in at least three libraries: Motif Xm library, intrinsics' Xt library, and X version 11

release 5 (XII R5) which consists of the X server, X protocol, and Xlib. Xt provides a higher­

level set of functions for creating and setting resources on the widgets that make programming

easier. Widget is the user interface object that the user sees in a picture-on-screen form, and the

programmer sees in a set of the resources and callbacks form. Xm provides the widgets plus

3

.--:- ...--""""".

an array of utility and convenience functions for creating groups of widgets that are used

collectively as a single type of user-interface element. X server is the process executing in your

workstation and managing the graphics output and the inputs from the keyboard and mouse. The

X graphical window system provides the user with multiple windows run by multiple

applications. X protocol defines the meaning of the data exchanged between the client and the

server. Xlib is the library of C routines that programmers use to access the server. The

combination of Motif and X allow programmer to create graphical interface applications capable

of running on practically any vendor's workstation[2,4,6,7].

Although Motif presents a de facto standard interface which is in use across many

platforms, the user should be aware of some trade-offs: There is considerable overhead incurred

per program, Xt-based programs, including Motif, allocate more than SOK of RAM at

application start time, and tend to toward one megabyte minimum executable size. Motif

programs tend to be slow in the beginning of the execution[S].

The DEMUIT has a menu bar with pulldown menu. The menu bar contains text editor,

event scripts definition, display, run, output and help menus as shown below in Figure 1.

The text editor includes File, Edit and Search. The event scripts definition menu consists

of seven events: primitive event, highlevel event, protocol event, assign event, local event,

goal event, and place event. The Display menu can show time, clock, and the order of events

in a distributed system graphically. The Run menu has compile, run, and parser mode.

The Output menu will show all events user defined. The Help menu provides help information

dialo . The user can also ush the help button to geuhe-mWine-help on nser-specifioo-e-ve-Hlt-t-----I

definition input popup form. By using this tool user can complete most of the processes such as:

!'.Lle ¥1t ~earcla fvub ~odtor !UJI £u,tp.t !!lIplar_r _r

I ...

Figure 1. The Distributed Event Monitor User Interface Tool (DEMUIT)

define and modify all the events user wants to define, edit final file, parse the final file, and

run the executable file. The result will display on the screen. The details of design and

implementation, approaches and techniques are described in the following sections.

2. Event-Driven Environment and Object-Oriented Nature of the Programs

User interfaces design has evolved through three stages. The first stage produced the

------commmrd::driven user mterface, which presents the user with a generally cryptic prompt such

as:" %". The user must know the set of commands that_the interface recognizes and must enter

5

those commands at the prompt. From the programmer's standpoint, this interface is the simplest

because the code for this interface can be very straightforward and compact. From the user's

standpoint, command-driven interfaces leave something to be desired, especially if the user is

new to the system.

Interfaces of the second stage are menu-driven user interfaces. Structurally, menu-driven

and command driven interfaces are similar. The main difference is that menu-driven interfaces

have much more elaborate prompts. The user enters the appropriate choice according the prompt

request, and the new menu appears. The code for this interface is fairly simple. It is less

compact because all of the menus have to be displayed, but it does not pose a serious

programming challenge.

Interfaces of the third stage are event-driven, which are more complex from the

programmer's perspective. An event-driven environment consists of some type of application

program interface (API), which provides a library of functions that create user interface objects

such as menus, windows, buttons, scroll bars, and the like[4] . The user can manipulate these

objects with the keyboard or mouse. Each time the user presses a key or clicks the mouse, the

API picks up the action and delivers it to the program as an event. Usually, events are held in

an event queue so that the program does not have to handle them in real time. Similarly, each

time a user clicks the mouse, the click's location is packaged in a event record, which is also

placed in the event queue. The pseudo-code for event-driven program might look like this:

draw the graphical objects onto the screen;

repeat

wait for an event to appear in the event queue;

6

parse the event;

call the appropriate function to handle it;

until done;

The piece of looping code that receives and handles events like this is called an event

loop. Event-driven programs have two main sources of complexity. First, many objects appear

simultaneously on the screen, and many of them have separate parts. When the code detects a

mouse event, it has to determine which object, and which part of that object, it effects. The

second source of complexity is the many internal events the window system itself can generate.

When part of one window is exposed by the movement of another window, the program receives

an expose event. When a window is resized, the code gets a resize event. Focus change can

generate focus events, and so on. Many lines of code are needed to parse out and handle all of

the events. Much of this code is unique to each application, because each displays its own

assortment of user interface objects.

The beauty of Motif is that it handles most of the low-level details for the programmer.

Motif is a part of a UNIX library hierarchy which has four layers as shown below in Figure 2.

At the bottom is UNIX and its standard libraries such as stdio.h and math.!z. On top of the

UNIX sits the X Window System and its library, accessed through Xlib. h. On top of X sits the

X toolkit, accessed through Intrinsics.h. And finally, on top of the X Toolkit is Motif, accessed

through Xm.h. The UNIX layer provides normal operating system support. The X layer provides

basic windowing and event-handling capabilities[5,6]. The X Toolkit layer provides support for

Ithe creation and_u_s_e_~f widget sets and Motif provides the widgets needed to create user.~ ~

interfaces· easily.

7

Application

Figure 2. The Hierarchy of the Motif User-interface Library Model

The X Window System provides a basic event-driven programming environment. It runs

on a workstation or on an X terminal. It controls the mouse, the keyboard, and the screen;

packages events, places them in an event queue, and allows programs to draw graphical items

on the screen. The X library provides a programming interface to the X Window System. This

library is accessed by including its header files in the application code and then calling the

appropriate routines to access the event queue, issue drawing commands, and so on. Xt is a

general-purpose tool, it allows the programmer to design widget sets, but it does not enforce a

particular look and feel. By design, widget sets appear very objective-oriented to the

programmer. The Motif widget sets looks much like an object-oriented rogramming

envirol1II!ent, b~t because the programming is all done in C rather than in an object-oriented
"-_.. _---- - - ---.---._-_ .. - .. -_ .. -_.--_...._--------_ ... _--. __.- .~

8

Application

Other
libraries

- ~ ."' I

Figure 2. The Hierarchy of the Motif User-interface Library Model

The X Window System provides a basic event-driven programming environment. It runs

on a workstation or on an X terminal. It controls the mouse, the keyboard, and the screen;

packages events, places them in an event queue, and allows programs to draw graphical items

on the screen. The X library provides a programming interface to the X Window System. This

library is accessed by including its header files in the application code and then calling the

appropriate routines to access the event queue, issue drawing commands, and so on. Xt is a

general-purpose tool, it allows the programmer to design widget sets, but it does not enforce a

particular look and feel. By design, widget sets appear very objective-oriented to the

programmer. The Motif widget sets looks much like an object-oriented programming

environment, but because the programming is all done in C rather than in an object-oriented

- - -._ .. ~._---- --~---._.----------.---- ------.---..•._---- .-- ------------ - ._-'.

- ~

language like C++, it is not completely object-oriented. In Motif programming, each user

interface object is controlled by a set of variables called resources. By changing the resources,

the programmer can control the appearance and behavior of the widget. By reading the

resources, the programmer can find out about the widget's state. The widget can also send out

messages, known as callbacks, when it wants to communicate with application code. Motif uses

inheritance to build widgets on top of other widgets or out of groups of widgets. All Motif

widgets use inheritance internally.

There are two significant advantages to handling user interface objects in this way. First,

someone else has already coded the widget's appearance and behavior. Second, the widget

handles all of the low-level event management. It animates itself and then, using callbacks, tells

application code about it in a very controlled and simple way. Motif makes creating a graphical

user interface easier by providing such functionality to the user.

3. Style Guide of the Program

The Open Software Foundation (OSF)/Motif style guide specifies the wayan application

should interact with the user[2,3]. The primary goal is to promote consistency. All applications

with similar menus and dialog boxes should act in a similar manner. The components should

look familiar and iteration should be familiar. The components should be organized in a familiar

manner. The second goal is to allow the user to perfonn tasks by manipulating graphical

representations of objects displayed on the screen such as pushing a button to start some action

or dragging a slider to scroll the display. Flexibility is another key concern. The user should be

able to perform a task many ways. This means that application should make use of the X

resource manager to access these user-specified resources. The application should provide as

-.---- ---~---._------ - - - -- --.-.- --- -._--. ------------------------9--------- ~- -------- -- ---- -_:...------

much help information for the user as possible. The Applications are also expected to request

confirmation from the user whenever an action may irreversibly destroy something.

To avoid common design pitfalls - it is helpful to design and build applications

iteractively, that is build it, try it, see what does not work, change it, and so on.

4. Three Basic Concepts: Resources, Callbacks, and Managers

The heart of the Motif programming is to understand these three concepts: resources,

callbacks, and managers.

1) Resources

The programmer designs a Motif application by selecting a set of widgets to compose the

user interface. Every widget, in turn, has a set of associated resources that control its appearance

and behavior. Resources are much like normal variables, except that they must be accessed in

a special way. For example, a scrolled text widget created in the menu bar has resources that

determine such features as 134 columns by 38 rows text display area, the edit mode is

multi_line_edit, and the scrolling policy is automatic. The rest of the resources retain their

default values. These resources can be read or set to new values. The programmer changes the

widgets in the user interface by adjusting their resource values. The modification of widget

resources is the key to controlling the behavior and appearance of each widget. To use a widget

effectively, the programmer should be familiar with all of its resources, as well as the techniques

for setting them. The resource lists provides this information for each widget.

There are two ways to set resources[2,4]. The first way is through the use of a structure

called an argument list Arg al[J. This list is an array that contains pairs of items; the first item

in pair is the resource's name, and the second is the resource's new value. The ac variable keeps

----~----------- -~

track of the number of valid items in the argument list. Then using the XtSetValue function to

set the values of those resources in the widget. This function accepts three parameters: the

widget to set, the argument list, and a count. The typical codes look like:

Widget widget;

Arg al[lO];

int ac;

XtSetArg(al[ac], resource's name, resource's new value); ac+ +;

XtSetValues(widget, ai, ac);

The Xt layer supports a second way to pass an argument list to a existing widget, using

XtVaSetValues function. In this case, the argument list is passed directly. the Xt layer also

supports an XtVaGetValues function, which can be used to retrieve values from a widget. Both

techniques were utilized in the implementation of DEMUIT.

2) Callbacks

All Motif widgets have callbacks, which can be used to trigger specific actions in

response to user events. The idea behind callbacks is straightforward. If a user manipulates a

widget on-screen, the program of the change must be notified. For example, a menu bar contains

push-button widgets and when the user clicks the push button, it is expected that some specific

action will result. Motif handles a mouse-click event in its main event loop (which is established

by the call to the XtAppMainLoop function) and routes the event to the push-button widget. The

push-button widget handles the event appropriately by making the button flash, but it also needs

a way to communicate this event to the program. A callback function is a normal C function that

..-_ .. _---_._-----.~--~-_.- ~ .._-~- --------­------------------------ ----_.---~-- ..---

11

performs an appropriate action. The address of the callback function is passed to the widget with

the function XtAddCallback, and is thereby registered as a callback function for that widget.

Whenever the widget detects a mouse event, it calls that function and the action occurs. The

typical codes look like:

Widget widget;

String callback_name; /* The name of the callback */

XtCallbackProc callback; /* The function to call when the callback is triggered */

XtPointer client_data; /* Programmer specified data sent to the callback function */

XtAddCallback(widget, XmNactivateCallback, callback, client_data);

This code is used to add a callback function to the widget. The XtAddCallback tell the

"widget" to call the function named "callback" whenever its activate callback is triggered.

3) Managers

Manager widgets are the backbone of the application. Without them, widgets have no

way of controlling their sizes, layout, and input focus model[2,3,4]. In this user interface tool,

we need to display a number of widgets simultaneously. For example, when program was

executed, the menu bar displays multiple widgets such as: MainWindowWidget,

PaneWindowWidget, RowColumnWidget, TextWidget, ScrolledTextsimuitaneously. Here manager

widgets handle the placement of multiple widgets in a single window.

Unlike primitive widgets such as PushButtons, Scrolledbars, and Labels, whose

usefulness depends on their visual appearance and behavior, manage widgets provide no visual

feedback and have few callback routings that react to user input.

Manager widgets have two purposes:

- .. -- _._-- ---- ----- ----

a) To manage the sizes and positions of the widgets they contain.

b) To provide special support for gadgets. A gadget is virtually the same as a widget

from both the programmer's and the user's point of view. The main different between a gadget

and a widget is that a gadget does not possess its own window, therefore it takes less time and

memory to create, manage, and update on the screen.

In all other respects, manager widgets are like other widgets in that they have windows,

can receive events, and can be manipulated directly through Motif or X Toolkit Intrinsics

functions. This means that the users can draw directly into their windows, look for events, or

specify resources for them. When it comes to supporting gadgets, all manager widgets are create

equal.

There are many manager widgets classes, each of which is tuned especially for different

kinds of widget layout. The DEMUIT used a variety of manager widgets class including

MainWindow, RowColumn, Form widget, PaneWindow, ScrolledWindow, and DrawingArea.

Manager widgets manage other widgets. The relationship between managers and the

widgets they manage is commonly referred to as the parent-child model. The manager acts as

the parent and the other widgets are the children. A manager widget negotiates its child's size

and position either by changing its size to accommodate the new child, or by changing the

child's size to its own size. Since manager widgets can be children of other managers, this

model provides for the widget-tree hierarchy, a framework for how widgets are laid out visually

on the screen and how resources are specified in the resource database.

A manager may be created and destroyed like other widgets. The main difference

between managers and other widgets is when they are declared to be managed in the creation

~-lJ-~

process. The creation process of an entire widget tree is top down, but the management process

is bottom up. For best results, XtVaCreateManagedWidget() should be used to create primitive

widgets. XtVaCreateWidget() is used to create manager widgets and XtManageChild() is used to

manage them later. If the programmer is adding another manager as a child, the principle

applies; the programmer should also create them as an unmanaged widget until all their children

are added as well. The idea is to descend as deeply into the widget tree and create as many

children as possible before managing the manager parents as the programmer ascends back up.

Once all the children have been added, XtManageChild() can then be called for the managers

so that they only have to negotiate with their parents once, thus saving time, improving

performance, and producing better results. This is very important principle. The entire

motivation factor behind this principle is to optimize the method by which managers negotiate

size and positions of their children.

S. Shell Widget, Application Context and Class, Command-line Arguments, and

Fallback Resources

In DEMUIT, the following code was used to create the shell widget and is extremely

important since it creates the only top-level window for this application. All the other widgets

created are the children of this toplevel shell.

Widget toplevel = XtVaApplnitialize(XtAppContext * context,

String application_class,

XrmOptionDesRec option[],

Cardinal num_options,

Cardinal *argc,

14

String *agv,

String *jallbackJesources,

ArgList *args,

Cardinal num_args),.

XtRealizeWidget (toplevel) ,.

XtAppMainLoop (context),.

The first argument to XtVaApplnitialize() is the address of an application context, a

structure in which Xt will manage some data internal to Xt that is associated with the

application. The second argument to XtVaApplnitialize() is a normal C string that specifies the

class name for the application. A class name is used in the resource database to specify values

that will apply to all instances: a widget, or a resource. By convention, the class name is the

same as the name of the application itself, except that the first letter is capitalized. The options

and num options parameters specify an array of strings which (custom command-line option)

can be used to parse command line options that can set resource values. The other way to

achieve this is to explicitly set all of the widget resource value directly using the XtSetArg and

XtSetValues functions. The &argc and argv parameters specify the standard command line

options. The fallbackJesource parameter points to an array of strings that contain fallback

resources. The shell widget will handle all of the application's interaction with the Motif window

manage, mwm, and act as the "parent" of all other widgets in the application.

-----------nle willgenliat IS returnea-by-XtVaApplnittaliaze-(Jis--a-Shell-widget;-The shell widget

initializes all of X and the X Toolkit and sets up the main application window. It parses out

15

standard X command line options and fallback resources. Importantly, the programmer must pass

Motif, Xt, and X functions exactly what they expect, or the program will create segmentation

faults that can be very hard to track down, or addressing errors[4] .

XtRealizeWidgetO realizes the toplevel widget. When the toplevel shell is realized, the

window frame that holds this application is created, along with the application's title, resizing

borders, and so on. All of toplevel's child widgets are realized as well, and they too appear on

the screen. In general, the toplevel is the only widget must be realized with an actual call,

because the call to XtRealizeWidgetO recursively realize all of its children.

XtAppMainLoop 0 causes the event loop to begin processing events. The event loop

removes events from the X event queue and passes them to the appropriate widget for

processing.

6. Functionality, Menus, and Menubars

The design process begins by deciding on what functionality the program needs. In

DEMUIT, the user has to enter the event script definitions, and the program has to display the

seven different event script forms for user input. Once all the event definitions have been

completed, the user may modify the event definition file. The program also provides text editor

cababilities, such as File, Edit, Search functions to do so. The user may use this editor to edit

C program. This program also provides Run menu for the user to compile the program, parse

the event script file, and run the executed file. In order to see the results of the event monitor

evaluation, the program has an Output menu which can double check the user's defined events

file, show the evaluation results, and some error messages if any. The display menu can be used

to show the time, clock, and the order of events in this distributed system in color. Help menus

16

provide some degree of help information. On line help can also be accessed from the event script

definition push button. Once the programmer has determined the functionality, the programmer

need to combine different Motif widgets to create the best interface.

Because the large number of the program options and complex of the functionality, the

program could be a large one. A non-menu approach might require the programmer to display

too many push buttons, and these push buttons would take up quite a bit of space. Menus

economize space when the programmer has a large number of program options and commands.

They organize different options in groups. The menu bar displays the name of the each group

at the top of the application window. Clicking a name in the menu bar pulls down a customized

RowColumn widget - a pulldown menu pane containing options associated with the menu name.

The menu bar takes up very little space in the application, but it gives users access to a large

number of program options organized by category.

Menus are somewhat more complicated to use, but once implemented they provide easy

and intuitive ways to get commands and information from the user. This provides more advanced

application interfaces. As shown previously in Figure 1, Figure 1 displayed the menu and

menubars of the DEMUIT.

7. Creating of MainWindow, Build Menu, Menubars, Pulldown Menus,

and Pullright Menus

1) Create Main Window

The MainWindow widget acts as the standard layout manager for the main application.

The XmMainWindow is used as a toplevel window for this application. It contains a menubar,

.··-Scroll'Fext,pan~·window-widgetS-and-label-gadgets~-T-he-function-XJGreateManagedWidget-O-is-s~~~~-1

17

used to create an instance of the MainWindow widget, as shown in the following code fragment:

Uinclude <Xm/MainW. h>

Widget toplevel, main_w, meiiubar;

main_w = XtCreateManagedWidget("main_w",

xmMainWindowWidgetClass, toplevel,

resource-value list,

NULL);

The MainWindow widget class is defined in <Xm/MainW.h > which must be included

whenever MainWindow widget will be created. The "resource-value list II provides fine control

over the three-dimensional appearance of widgets.

2) Steps to Create Menu and Menubars

To create a menu and menubars is a fair complex operation. Several steps must be

followed to create the menu.

First, the XmCreateMenubar() is used to create themenubar. For each title that appears

in the menubar, a cascade button (pullrigh menu) along with the pulldown menu pane is then

created with the menubar as its parent. The order in which the cascade buttons created

determines the order in which they appear in the menubar.

Next a pulldown menu pane is created using XmCreatePulldownMneu() for each cascade

button. The cascade buttons have a resource named subitems. Set this resource to the pulldown

menu pane that will be used for cascade button. When a user clicks the cascade button, it

--- ----man.ages the widget in the subitems resource, makes the menu pane visible. When the pulldown

18

menu pane is created, do not manage the pane.

Finally, the options for individual menu panes is created using push buttons, with the

pulldown menu pane as their parent. The order in which the programmer creates the push button

detennines the order in which they will appear in the pane. These buttons should be managed.

When user clicks one of the push buttons, and its callback function causes the desired action to

occur.

The above steps are repeated as needed for each title. The MenuBar was managed using

XtManageChiLd().

Menus are basically simple objects, and they contain many repetitive elements. While the

simple menu creation routines are handy for basic prototyping and other simple application

constructs, a great deal of redundant code will have to be generated if they are used for creating

a large number of menus. The simple menu creation routines make it difficult to build a looping

construct or a function to automate the process. To develop larger-scale application like this user

interface tool needs use of abstraction and generalization techniques that are flexible enough to

fill the menu functionality requirement.

3) Techniques to Build General Menu

In order to generate arbitrarily large MenuBars, titles, and pulldown menus using a

substantially smaller code-set, the elements of a menu item must be identified. These elements

include [2] :

. Labels

1-_----------cl:I1lHabels-ar-e-set-for the menu items.

. Mnemonics

19

The mnemonics help user traverse menus or select actual menu items without

having to use the mouse. For example, the user can use the key sequence Meta-F to open or

close the file menu without using the mouse.

· Accelerators

The accelerator provides the user with the ability to activate menu in pulldown

menu without having to display the menu at all. For example, if the Quit menu displayed the

accelerator text Ctrl +Q to indicate that the user could press the Ctrl-Q keyboard sequence to

activate that menu item and quit the application.

· Accelerator text

The accelerator text is the string (like convention recommended, such as

"Ctrl +Q") that is displayed on the right side of the menu item.

· Callback routine

The callback routine is the routine called by any menu item. The callback

functions for menu items are declared early. In Menu/tern file_menu[J, the callback routine is

file_cb for all items in File menu.

· Callback data

The callback data is the client data for callback routine. In Menu/tern file_menu[],

the client data XtPointer 0 for callback routine file_cb is for the pulldown menu item "New".

Using this information a data structure Menu/tern can be constructed that comprises all

the important aspects of a menu item:

typedej struct _menu_item {

char *label;

20

WidgetClass *class;

char mnemonic;

char *accelerator;

char *acce(text;

void (*callback) ();

Xtpointer callback_data;

struct _menu)tem *subitems;

j MenuItem;

To create a pulldown menu, all needed to do is to initialize an array of Menultems and

pass it to a routine that iterates through the array using appropriate information, For example,

the following code initializes an array to contain all the elements for a File menu:

MenuItem file_menu[] = {

{ "New", &xmPushButtonWidgetClass, 'N', NUU, NUU,

fileJb, (XtPointer)0, (MenuItem *)NUU j,

{ "Open", &xmPushButtonWidgetClass, '0', NUU, NUU,

fileJb, (XtPointer)1, (MenuItem *)NUU j,

{ "Save", &xmPushButtonWidgetClass, 'S', NUU, NUU,

file_cb, (XtPointer) 2, (MenuItem *)NUU j,

{ "Save As", &xmPushButtonWidgetClass, 'A " NUU, NUU,

file_cb, (XtPointer) 3, (MenuItem *)NUU j,

1---------{-!!.Qos~ttanJ¥idgeLClass,----!-c...M1LL, NUU,,-, _

file_cb, (XtPointer) 4, (MenuItem *)NUU j,

21

{ "Quit", &xmPushButtonWidgetClass, 'Q', NUU, NUU,

jile_cb, (XtPointer)5, (Menu/tern *)NUU j,

NUll,

j;

Two important design and implementation points are worth mentioning. First, it is

advisable to use widget class push button instead of gadget class push button if the user wants

the push button could pop up new window, in particular, the interface utilizes since the gadget

class push button does not possess its own window, but the widget class push buttons have their

window to pop up the dialog windows when user clicks them. The another important point the

use of a cascade button instead of push button to implement pullright menu.

Each element in the Menu/tern data structure is filled with default values for each menu

item. Resource values that are not meaningful or hard-coded are initialized to NULL. The only

field that cannot be NULL is the widget class. This design makes modification and maintenance

very simple. One particular point of interest is the way the WidgetClass field is initialized. It

is declared as a pointer to a widget class rather than just a widget class. Because of that, the

field with the address of the widget class variable was initialized. The use of

&xmPushButtonWidgetClass is one such example. The xmPushButtonWidgetClass pointer has

no value until the program is actually running.

4) Writing a Generalized Function

The Menu/tern data structure can now be utilized by writing a routine that pulls it all

together to make menu. The BuildPulldownMenu() function, shown below, loops though each

element in an array of pre-initialized Menu/terns and creates menus from that information.

22

Widget

BuildPulldownMenu(parent, menu_title, menu_mnemonic, items)

Widget parent;

char *menu_title, menu_mnemonic;

MenuItem *items;

(

Widget PullDown, cascade, widget;

int i;

XmString str;

PullDown = XmCreatePulldownMenu(parent, "JJulldown", NUU, 0);

str = XmStringCreateSimple(menuJitle);

cascade = XtVaCreateManagedWidget(menu_title,

xmCascadeButtonWidgetClass, parent,

XmNsubMenuId, PullDown,

XmNmnemonic, menu_mnemonic,

NUU);

XmStringFree(str);

for (i = 0; items[i].label != NUU; i+ +) (

if (items[i].subitems)

widget = BuildPulidownMenu(PullDown,

items[i].label, items[i]. mnemonic, items[iJ, subitems);

else {

23

widget = XtVaCreateManagedWidget(items[i].label,

items[i]. class, PullDown,

NUU);

}

if (items[ij. mnemonic)

XtVaSetValues(widget, XmNmnemonic, items[ij.mnemonic, NUU);

if (items[ij. accelerator (

str = XmStringCreateSimple(items[ij.accel_text);

XtVaSetValues (widget,

XmNaccelerator, items[i]. accelerator,

XmNacceleratorText, str,

NUU);

XmStringFree (str);

}

if (items[i]. callback)

XtAddCallback(widget, XmNactiveCallback,

items[i]. callback, items[i}. callback_data);

}

return cascade;

}

The function takes five parameters: the parent is a handle to a MenuBar widget that musL _

have been created, the menu title indicates what the title of the menu will be, the

24

menu_mnemonic should be set according to its title, the bold field at the end of the structure

is a pointer to another array of MenuItems. If this pointer is not NULL, then the menu item

points to another group of menu items that represent a cascading menu (pullright menu), and

the last parameter is a array of Menultems.

The three bold lines included in the above function fit in rather nicely with the rest of

the routine. Because the function creates and returns a CascadeButton, the return value may be

used as the menu item in the menu currently being built. But the menu must exist before it can

be attached to a CascadeButton. Recursion handles that problem by creating the deepest

submenus first and returning to the top later. This ensures that all the necessary submenus are

build before their CascadeButtons require them.

By combining the above three techniques together: construct a abstract data structure

_menu)tem, initialize an array of Menu/tems, and pass it to a generalized BuildPulldownMenuO

function, an arbitrarily large MenuBars can be generated using small code-set.

BuildPulldownMenu() function must be called from another function that passes the appropriate

data structures and other parameters. The following shows the code for the CreateMenuBar()

routine. This simple function creates a MenuBar widget calls BuildPulldownMenu(), manages

the MenuBar, and then returns it to the calling function.

Widget menubar, widget, BuildPulldownMenu();

menubar = XmCreateMenuBar(main_w, "menubar", NULL, 0);

-------~-________BuildPulldownMenu{menrdmr;_"File";-·P;Jile _l11enu),~-'~--~­

BuildPulldownMenu(menubar, "Edit", 'E', edit_menu);

25

BuildPuLLdownMenu(menubar, "Search", 'S', search_menu);

BuildPuLLdownMenu(menubar, "Events", 'E', events_menus);

BuildPuLLdownMenu(menubar, "Monitor", 'M', monitor_menus);

BuildPuLLdownMenu(menubar, "Run", 'R', run_menu);

BuildPuLLdownMenu(menubar, "Output", '0', output_menu);

BuildPuLLdownMenu(menubar, "Display", 'D', display_menu);

widget = BuildPuLLdownMenu(menubar, "Help", 'H', h_menus);

XtVaSetValues(menubar, XmNmenuHelpWidget, NUU);

XtManageChild(menubar);

The program is' composed of the function BuildPuLLdownMenuO and the menu and

submenu declarations. The above example shows how to adjust the algorithms, data structures,

and some detail design and implementation to fit the needs of the application by using optimized

code.

8. Compound String, C String and Their Conversion

The string types and their conversion process is a very important design issue. A

compound string is a means of encoding text so that it can be displayed in many different

languages or fonts without changing anything in the program. The C programming language

defines a string as a null-terminated array of characters. In order to use C string with Motif

widgets, the C string must be converted to the XmString format. Motif provides functions to

-~unvernrcsmng to xmStnng, or xmString to a C stnng[2,3,4].

-- . .

Motif supports its own string type, XmString. This type offers more functionality than

26

a standard null terminated C string. XmString is the data type for compound string. Compound

strings include one or more components, each of which contains character set, string direction,

and text. When a compound string is displayed, the character set and direction are used to

determine how to display the text.

The conversion process is very important. Almost all Motif widgets require a compound

string when specifying text. To display messages in the label widgets, PushButtons, list

widgets, a C string must be converted to XmString. For example, the labelString resource is

XmString, when use a call to XtSetArg as shown below:

XtSetArg (al!ac], XmNselectionLabelString, XmStringCreateLtoR (

"Enter the name ofthe newfile", char_set));

It is very easy to forget the conversion and innocently try to pass a normal C string in

the XtSetArg call. The code will compile correctly, but will result in core dump in the run time

because the resource type for the labelString is XmString.

The most basic form of C string to compound string conversion is done using the

function XmStringCreateLtoR and XmStringCreateSimple convert a C string to an XmString.

These two functions are used throughout the entire interface program:

XmString

str = XmStringCreateSimple(text)

char *text;

XmStringFree (str);

1-------------4:'he---text-parameter-is--a-common-C-string;---the-value IetUIned-ts-of'-h!'Oe----KJm8trt1rrr:------!

XmStringCreateSimpleO creates compound strings and. allocates m~mory to store ~he striI!g~ _

27

-- - ---------------

created. Widgets whose resources take compound strings as values always allocate their space

and store copies of the compound string value given to them, so the copy of the string must be

freed to prevent memory leaks[3] after having set it in the widget resource. A compound string

is freed using XmStringFreeO.

The call to XmStringCreateLtoR accepts two parameters: the C string to be converted,

and the character set for the conversion. The character set is represented by the variable

char_set, which is set to the value XmSTRING_DEFAULT_CHARSET. XmStringCreateLtoR also

creates default string direction of left-to-right.

Unlike the other widgets, the text widget, does not use compound strings but C strings.

The XmTextSetString function displays the C string on the text widget. The XmTextGetString gets

the C string from the text widget. However, a conversion problem arises: to get strings from

list widget and put them on the text widget, they must be converted from Xmstring to C string,

or vice versa.

The conversion process from compound string to C string can be simple or complicated,

depending on the complexity of the compound string to be converted. If the compound string

has one character set associated with it and it has a left-to-right orientation, the process is quite

simple. This is usually the case. To make the conversion, the following function can be used:

Boolean

XmStringGetLtoR(string, charset, text)

XmString String;

_:::.::XJ~n=S:.:..:tr....::in:...:'g~C~h:.:..:a::.r;::.,S~et=-------",-c.:..:;ha=r,-"'S-",,et'-L; .. .__

char **text;

28

Xtfree(text);

XmStringGetLtoRO takes a compound string and a character set and converts it back into

a C character string. If successful, the function returns True and the text parameter will point

to a newly allocated pointer to a string. Therefore, this pointer must be freed when you are

through with it. The correct use of the conversions is important to prevent one of the common

errors - core dump in run time.

9. Text Widget and Text Editor

The text widget is the most complicated of the Motif widgets, but it is also the most

interesting and the most useful. It provides the following mechanisms for program control[2] :

· Resources that access the widget's text.

· Callback routines that enable "interposition" on events that add new text, delete text,

and change input position or input focus.

· Keyboard management methods that control input, output, character positioning, and

word-breaks or line-wrapping.

· Convenience routines that enable quick and simple access to the clipboard.

A mutliline edit scrolled text widget called text_w was utilized in DEMUIT. The code

used to created this text widget and its resources is the following:

Widget pane, text_w;

Arg args[lOj;

XtSetArg(args[Oj, XmNrows, 38);

XtSetArg(args[l], XmNcolumns, 134);

XtSetArg(args[2], XmNeditable, False);

29

.._-------

XtSetArg(args[3], XmNeditMode, XmMulti_LINE_EDIT);

XtSetArg(args[4], XmNscrollingPolicy, XmAUTOMATIC);

text_w = XmCreateScrolledText(pane, "text_w", args, 5);

XtManageChild(text w);

When the program is run, the text widget is created on the main menu about 38 rows and

134 columns big. Characters can be typed and displayed on the widget. The user can press the

ENTER key to begin a new line. The user can use the mouse or arrow keys to move the cursor

around the text. Characters can be inserted at any location in the text and can be deleted at any

location using BACKSPACE key. The user can scroll text back and forth by using scrolled bars

in horizontal or vertical direction. This text widget provides full-featured text editing capabilities

that can be used anywhere.

The convenience functions can be used to set or get the text widget's text. To get a text

widget's text, XmTextGetString() is used, and to set a text widget's text, XmTextSetString() is

used. Keeping in mind that the text widget only accepts C strings not XmStrings. The text

widget provides a window in which the user can enter and edit text from keyboard. This tool

makes full use of the text widget functionality in order to give the user the best interact with the

application menu. The following is the full-feature text editor that was built from all information

addressed so far.

10. File Menu Creation and All Dialog Boxes

The project requires defining the new event script file using or without using event

definition form, modjfyiog_lhe_ eYent-scriptfile-.and-monitored-programs-at any time. The--·---­

DEMUIT designed the full-feature text editor in order to do so.

30

The text editor File menu contains New, Open, Save, Save As, Clear, and Quit

pulldown menus. The user can use New option to creates a new program file or event script

definition file without using event definition form. The user can also use the Open option to

manage a file selection dialog box that allows the user to select a file to open and load for

modification. The Save option saves file as the original file name. The Save As option saves a

file as the name the user desired. The Clear option clears the text area. The Quit option exits

the DEMUIT. The File menu provides the user with another way to modify the event script file

even after user has input all events defined. The user can open the event file, check it, modify

it, save it, or save it as new file.

In File menu, when the user selects different options, the DEMUIT needs to pop up

different dialog boxes to satisfy the user's requirement, such as file selection dialog, new_dialog,

open_dialog, save_dialog, save_as_dialog, readonly_dialog, overwite_dialog, error_dialog,

close_dialog, and quit_dialog.

Dialog boxes are composed of a number of separated children bounded into a single

widget. Let us take the file selection dialog box as example. The file selection dialog box is very

powerful and provides a number of resources that contain such data as the current directory, the

list of files, the filter string, and three buttons: ok, filter, and cancel. It lets user select a list of

files available in the current directory. It also gives the user an intuitive way of traversing the

directory structure. The children of a typical file selection box are shown in Figure 3. There are

two techniques for manipulating the children that make up the dialog box. The first technique

I -----'u-s..e~s_~ral resources that exirunJhe.-r.e.SilllrceJ.istlor.file--se1ectionhox-widget.----1'hggg....resources----__----1

allow direct manipulation. For example, the labels on the three buttons have resources in the file

31

~-

selection box widget's resource list named XmNokLabelString, XmNcancelLabelString, and

XmNfilterLabelString. Changing these resources modifies the labels on the three buttons. The

second technique involves extracting the child's widget variable from the file selection box

widget itself and then manipulating the child widget in the nonnal manner. In the file selection

box widget, the extraction is done using a convenience function called XmSelectionBoxGetChild,

which accepts as parameters the parent widget and a constant to identify the child.

The code for creating a file selection dialog box is shown as following:

Arg al[lO];

int ac;

Widget open_dialog;

ac = 0;

XtSetArg(al[ac], XmNmustmatch, True); ac+ +;

XtSetArg(al[ac], XmNautoUnmanage, False); ac+ +;

XtSetArg(al[ac], XmNdialogTitle, XmStringCreateLtoR(

"DEM Editor: Open", char_set)); ac+ +;

open_dialog = XmCreateFileSelectionDialog(toplevel, "open_dialog", al, ac);

XtAddCallback(open_dialog, XmNokcallback, openCB, OK);

XtAddCallback(open_dialog, XmNcancelcallback, openCB, CANCEL);

XtUnmanageChild (XmSelectionBoxGetChild (open dialog,

In DEMUIT, create_all_dialog() function generates all dialog boxes for the file menu.

The code for creating these dialog boxes is nearly identical to the code for creating the file

32

selection dialog box, except for the widget name, title, and label of the push buttons.

Consider the Open option as example. When the user selects the Open button from the

File menu in the menubar, the program pops up the FileSelectionDialog (as shown in Figure 3).

The user can pick up the filename (e.g. menu.c), then press the Ok button in the file selection

Filter

/afs/cc.lehigh.edu/home/kh04/private/motif/*

Directories

.mtmtbttt4~.lHlwattl!Mm'U1.fJUI.l
/cc.lehigh.edu/homelkh04/private/motif/..

Files

junk. out
m1.ps
menu
menu.c .'
menu.c
menu. 0

menu428 J
I I

~I...jl-=============:::::J'c;... 11'""...j;---------;,-....
Selection

/afs/cc.lehigh.edu/home/kh04/private/motif/menu.c

Figure 3. File Selection Dialog for Open File

text widget or press ENTER. The Ok callback function readyle() gets the value of the filename

specified and checks its type. If the file chosen is not a regular file (e.g., if it is a directory) or

if it cannot be opened, an error is reported and the function returns. When the file checks out,

its contents are loaded into the text widget text_w. Rather than loading the file by reading each

line using function like fgets(), the interface just allocates enough memory to contain the entire

file and reads it all in with one call to fread O. The text is then loaded into the text widget using

XmTextSetString(). The scrollbars are automatically updated and the text is positioned so that the

33

beginning of the file is displayed first. The output of the open and load file menu.c is shown

below in Figure 4. The user can utilize the information provided in the popup dialog boxes to

make use of the other options in the File menu.

Ell. !'!it !can:k !f..ato ~tor !u !!"tpot !llaplar !alp

~-~~===:!!!!!-!!!!!!!!!!!!!!!~==-
I ••••••••••••••• , ,. sa , " ••••,.,.." ••••••" .

*
••••• 0 •

•· •· DISTIIlDTED EYEHT XONITOI *· D S E I IHTEIFACE TOOL *· •· a
lElAND IDAHO a·*ELECTIICAL ENOINEEIINO ~ ·COXPDTEI SCIENCE DEPAITXEHT *

·· JOLT 6.1'" *
*
*

• Ai •• Ai • *. • ,*,•••••••,•••/

/. Dlatrlb.tc4 E..at Hoaitor Daar htcrFaca Teol

* Uaqe:.n·• Ke.a. bclad.. :·
OJ

Figure 4. The Output of Opening File menu.c (DEMUIT source file)

11. Edit and Search Menu

i,

To fulfill the project requirement of text edition, the DEMUIT provides Edit and Search

menu which support the user with general text editor tool just like most word prossing software.

The most common example of the data transfer model is cut and paste, a method by which the

user can move or copy text between clipboard and primary selection as well as between the

I --'-'-w~in""d'-"o--'-!w-"-s,._W..hell-th~user-selects...1ext,thg.-.scleet-ien-sfleula-oe-placect-orr-the-ctipct:-Thts"is

known as a copy operation. Retrieving text from the clipboard and placing it in the another

34

window is known as a paste operation. In some cases, after the data is pasted from the

clipboard, the original window will delete the data it copied. This is classified as a cut

operation. The Edit menu contains Cut, Copy, Paste, and Clear functionalities. The cut option

copies the primary selection to the clipboard and then deletes the primary selection. The copy

option copies the primary selection to the clipboard. The paste option inserts the clipboard

selection at the destination cursor. The clear option clears the primary selection. The text widget

has convenience routines that support communication with the clipboard. All these clipboard

functionalities work by default within the text widget. The cutyaste () function makes use of four

text widget functions:

XmTextCut(widget, cut_time)

Widget widget;

Time cutJime;

XmTextCopy(widget, cut_time)

Widget widget;

Time cutJime;

XmTextPaste(widget)

Widget widget;

XmTextClearSelection(widget, clear_time)

Widget widget;

Time clearJime;

-- -The-Searclrm-e-nu proviOesrhe easy way to fmd text strings, replace them with new

strings. It contains Find Next, Show All, Replace Text, and Clear options. As an example,

35

consider the text search usage. First, the file contents are loaded into the text widget text_w.

Then a string pattern can be typed in the "Search pattern" text widget search_w. Pressing

ENTER activates the search. The main text is searched starting at the position immediately

following the current cursor position. If the pattern isn't found by the time the end of the text's

string is reached, the searching resumes at the beginning of the text widget and continues until

either the pattern is found or the original position is reached. If the pattern is found, the

insertion point is moved to that location, the matched string is highlight; otherwise, an error

message is printed at the another text widget called text_output and the insertion cursor does not

move. In this program function XmTextSetCursorPosition() is used to set the cursor position, and

function XmTextSetInsertionPosition() or XmTextGetCursorPosition() is used to get the current

cursor position.

If the user wants a string pattern in the "Replace pattern" text widget replace w to

replace the Search pattern string, the program can perform the replacement automatically. To

accomplish this, the function XmTextReplace() is used:

XmTextReplace(text_w, frampos, topos, value)

Widget text_w;

XmTextPosition frompos, topos;

char *value;

This function replaces the text widget starting at "frompos" up to but not including the

position "topos" with the text in value. If value is NULL or an empty string, the text between

the two positions is simply deleted. To remove the entire text of widget, call XmTextSetString()

with a NULL string as the text value. This is done so often in reinitializing the user's input text

36

widgets of the event definition.

12. General Approach and Techniques for Generalizing Event Definitions

Handling the user's input event script definitions is most important, complicate and

difficult part of the DEMUIT. This involved the creating of the customized dialog boxes to

define seven different event scripts. The requirements are: all the input event definition form

should look and feel similar; when the user clicks the menu button, the DEMUIT should pop

up a dialog box widget, and this widget should be a manager widget. It should be allowed to

attach any other widgets. It should handle its own resizing as well as the resizing of the widgets

it holds automatically.

1) Form Dialog Box and Shell

In order to create a popup customized dialog box, first, the programmer creates aform

diaLog widget, and attach the user interface widgets needed to this dialog box. The FonnDiaLog

creates a diaLog shell widget and aform widget. Theform diaLog widget is the manager widget

which is hooked into a dialog shell widget. The dialog shell allows the manager to act like dialog

boxes when they appear on screen. The code used to create form dialog is shown below. As

shown, the code should not manage the dialog until the programmer want it to appear on

screen.:

Widget topLeveL, form_diaLog;

XmStringCharset char_set = XmSTRING_DEFAULT_CHARSET;

Arg aL[lO];

int ac;

ac = 0;

37

XtSetArg(al[acj, XmNdialogTitle, XmStringCreateLtoR

("User Define Event:", char_set)); ac++;

XtSetArg(al[acj, XmNautoUnmanage, False); ac+ +;

form_dialog = XmCreateFormDialog(toplevel, ''form_dialog'', aI, ac);

Once the container dialog was created, it creates and manages all the user interface

widgets that will make up the dialog. They should be created as children of the manager dialog,

so that the dialog box will appear with all of the children in the correct places when the dialog

is managed. The children's callbacks, resources, and so on, are all completely standard.

2) Form Widget and Resizing

Both Bulletin board and Form widget are manager widgets. But Bulletin board does not

handle resizing very well. It only changes bulletin board size, the widgets it holds remain fixed

when the user resizes windows. To solve this problem, Form widgets are the best choice because

they automatically resize and reposition the widgets they hold when a user resizes the form.

The code used to create Form widget is shown below:

Widget rowcol_w, form;

form = XtVaCreateWidget (''form ",

xmFormWidgetClass, rowcol_w,

XmNfractionBase, 10,

NUU);

When you attach other widgets to a form, these attached widgets change shape and size

along with the form widget. There are four types of the attachments used in the program:

. Attachment to the form's edges:

38

XtSetArg(al[acJ, XmNleftAttachment, XmAITACH_FORM); ac+ +;

· Attachment to another widget:

XtSetArg(al[acJ, XmNtopAttachment, XmAITACH_WIDGET); ac+ +;

XtSetArg(al[acJ, XmNtopWidget, sep); ac+ +;

· Attachment to a position on the form:

XtSetArg(al[ac}, XmNbottomAttechment, XmAITACH_POSITION); ac+ +;

XtSetArg (al[acJ, XmNbottomPosi!ion, 30); ac++,.

· Attachment to nothing:

XtSetArg(al[acJ, XmNbottomAttachment, XmAITACH_NONE); ac+ +

Note that when attaching to another widget or attaching to a position, the code must set

a pair of resources for the attachment to work. However all of the child widgets must be

attached appropriately. It is easy to create bugs when attaching objects to a form widget,

especially if the form has many children[4,7].

3) RowColumn Widgets and Push Buttons Managers

RowColumn widget is the most widely used and robust of all the manager widget. The

widget lays out its children in the rows and columns. This is one of the features of the

RowColumn widget. In DEMUIT, seven common used push buttons: Modify, Done, Confirm,

Save, Clear, Cancel and Help, are set into identically sized boxes, and are chained together

side by side. If all these buttons attached and placed to a form widget, all of this attaching and

placing can become bothersome. The layout performed by RowColumn widget on its children

is determined by the setting of resources. The children can be packed tightly in row and columns

r-----c--------------------
and they can be placed in boxes of the same size.

39

RowCoLumn widget is a generaL-purpose composite widget that manages the layout of its

children. RowCoLumn widget may contain widgets of any type and requires no special knowledge

about how those children function. This is exactly what was needed in event definition design.

LabeL gadgets is created to define the event scripts; LabeL widgets is created to show the usage

information; text fieLd widgets is created to input the user's data, text widgets is created to

display the result, radio boxes is created to chose the options. RowCoLumn widget can be used

whenever needed to manage sets of widgets as a group, such as text and text fieLd widgets group,

LabeL gadgets and LabeL widgets group, radio boxes group, separator gadgets group, push button

gadgets group.

The typical code for creating RowCoLumn widget for the push buttons in primitive event

is shown as following:

Widget primJorm, rowcoL_x, psep;

rowcoL x = XtVaCreateWidget("rowcoL x",- -

xmRowCoLumnWidgetCLass, primJorm,

XmNtopAttachment, XmA1TACH_WIDGET,

XmNtop Widget, psep;

XmNorientation, XmHORIZONTAL,

XmNpacking, XmPACK_COLUMN,

NULL);

A RowCoLumn widget provides a number of resources. Orientation determines whether

--_.._,0---_. __~_._._.. _

1-------BoF-not-the-RowEoiuIIlIl widgerraV6fs filling--rowsor columns as the container is resized.

HORIZONTAL manages all seven push buttons in one row::packing controls how widgets align.

40

PACK COLUMN places seven push buttons in same-size boxes based on the largest child

widget.

4) Radio Boxes and Options

Radio boxes let the user make one-of-many choices among a number of options. For

example, in highlevel event definition eight operator names are defined: or, sf/, and, then, cone,

count, not, and notbtwn. Radio boxes arrangement is the best choice for implementation because

the user can make one-of-eight choice. Also in protocol event definition, three protocol types

needed to be specified: Ie (logic clock), vc (vector clock), and sr (simultaneous region).

A radio box is implemented using a combination of ToggleButton widgets or gadgets and

a RowColumn manager widget. Only one toggle button can be selected at anyone time. This

functionality is enforced by the RowColumn when the resource XmNradioBehavior is set to

True. Radio box is created with a convenience function, as shown below for highlevel event

operators:

char *operator_labels[} = {"or", "sf/", "and", "then", "conc",

"count", "not", "notbtwm "};

int j;

Widget radio_box, hrowcol_w, w;

radio box = XtVaCreateWidget("radio box",- -

xmRowColumnWidgetClass, hrowcol_w,

XJnNpacking, XmPACK_COLUMN,

XmNnumColumns, 4,

41

XmNradioBehavior, True,

NUU);

for U= 0; j < XtNumber(operator_tables); j + +) {

w = XtVaCreateManagedWidget(operator_label[j},

xmToggleButtonGadgetClass, radio_box, NUU);

XtAddCallback(w, XmNvalueChangedCallback, opi_toggled, j);

XtmanageChild(radio box);

When toggle buttons have a radio box as their parent, only one of the toggles can be set

"ON" at anyone time. When user clicks a toggle, for example "and", the "and" toggle turns

on and all the other seven toggles tum off.

Using this general approach and techniques and carefully combining those different

widgets discussed in this section together, the general event definition popup dialog form was

created.

5) List Widget, Immediate Event Checking

The list widget was used to create another popup form for checking event definitions as

shown below in Figure 5. This form pops up after the user defined the first event. The user can

use this form to check the event just defined, add it or delete it before saving them to "final. out"

file. This form is called "List of Defined Events". The top of the form is the scrolled list widget

for displaying all the events defined. The middle of the fornl is the label widget called "Add

New Event" and the text field widget to show the event just defined. The next widget attached

to the bottom of the text field widget is the information display text widget and label widget for

warning message. The button of the form is five push button gadgets managed by a RowColumn

42

widget. These five buttons are: Show, Add, Delete, Save, Clear, and Cancel.

Add New Event:

Figure 5. The List Widget Popup Form

· Push Show button, the new defined event will display on the middle of the fonn.

· Push Add button, the new defined event will display on the top of the form; but

disappears from the middle of the form.

· User can use browse to select event in the top list widget, the selected item is highlight.

Push Delete button, the selected item is deleted.

· After checking all user defined events, The user can push the Save button to save all

trinto-"-fmal-;{)ut~I~Rer~Strings..--Ileed to be convertedj{) C strings, then events_·. .-_._-
defined in the list widget can be save in C file. Finally the popup form is unmanaged.

43

. Clear button is used to clear the list widget area.

. Cancel button is used to unrnanage this List of Defined Event form.

The list widget manages a list of XmString items on screen. It has adding, deleting,

selecting capabilities. The selection policy was defined as Browse selection, i.e, the user can

select one item at a time and can drag the cursor to change the selection.

13. Event Definition Menu

Event definition menu contains definition of primitive event, highlevel event, protocol

event, goal event, local event, assign event, and place event. When the user clicks the menubar

Event option, the program creates these seven events pulldown menus.

1) General Structure of the Event Definition Form

the form dialog was used to pop up the event definition form. The scrolled window

widget then manages the RowColumn widget. The RowColumn widget manages the form widget,

and the form widget manages all it children: event labels gadgets (on the left side, for example:

primitive event name, type, variable, funcname) and text field widgets for user input (on the

right side). The general "for loop" was used to define all labels. The XmTRA VERSE_NEXI was

used to advance the cursor to the next text field widget for some events, such as radio boxes and

toggle button gadgets for selecting options. For example, the protocol event types has three

selections: Ie, vc, and sr; the highlevel event has seven operators: or, sft, and, then, conc,

count, not, and notbtwn. All these selections are using ''for loop" and managed by the

RowColumn widget for automatically resizing. The text widget is used for information display

attached just below the RowColumn widget. Below to the information text widget is the warning

message label widget. The bottom of the form is another RowColumn widget which manages

44

seven push button gadgets: Modify, Done, Confirm, Save, Clear, Cancel, Help. The

functionality of those seven push buttons are shown below:

· Modify button allows user to modify the user's input information before the user

pushes the Done button. the user can move the cursor to any text widget to reenter the input,

then hit the RETURN key, the newly entered inputs are then recorded in data structure.

· Done button is used to record user input to a buffer and data structure.

· Confirm button is used to display user's event definition on information text widget.

· Save button is used to save the event definition to a file. When the first event is

defined, the program pops up a file named dialog form, and asks the user to input the file name.

After the first event was defined, all the following defined events are saved in the same file.

After the event definition phase is finished, the event definition form is unmanaged.

· Clear button is used to clear the information text widget.

· Cancel button can be used to cancel the current event selection if the user hit the wrong

pulldown menu.

· Help button can be used to get on line help for event script usage. The functionality

is the same as select menubar Help, then select pulldown menu and pullright menu for this

event.

2) General Steps for Input Event Definition

The general steps to create the events definition as shown below:

· Click menubar Event, the pulldown menus are displayed on the screen.

· Select anyone of the event pulldown menus, click this selected menu.

· The Dialog fonn for selected event definition popups. For example, if the user selected

45

primitive event, then the primitive event definition dialog form pops up.

· For text widget input, move the cursor to the first user input text widget, click it to

activate that widget.

· The user enters characters into the text widget from keyboard, according to the label

specification on the left side of the text widget.

· The user must hit ENTER key after entering in all characters, the cursor then moves

to the next line of the text widget automatically. This step is necessary, otherwise the input data

will not be recorded.

· Repeat the above two steps until all text widgets are defined.

· For radio box selection, the user must move the cursor to the box desired and then click

on it. For example, in highlevel event definition, if the user wants to choose the II and II operator,

the user must move the cursor to the radio box located on the left of the II and II operator, and

click on this box. The selection is then recorded.

· The user can push the Help button to get on line help of the event script usage at any

time.

· If the user wants to modify some input, the cursor should be moved to the text widget

the user wants to change, the desired changes are then typed and entered via ENTER key. For

modifying the radio box selection, the cursor was moved to the box the user wants to select and

the box selected by clicking.

Keep in mind, all modifications must be done before the Done Push button is hit.

· Check all inputs are Ok, then hit Done push button.

· Push Confirm button to display on the user's defined event on the information widget.

46

· Push Save button to save the event definition in the file.

· The program will pop up a file save dialog to ask the user to input the file name to save

if this is the first event definition. All the following event definitions will be saved into this file

then this event dialog form will be unmanaged.

· The program will pop up another List of Defined Events form for the user to double

check the event just defined. This form will last until the Save button is hit on this form. The

user could use this form to delete some event definitions.

· Push Show button on this form, the defined event will display on the text widget.

· Push Add button, this defined event will be added to the file named "final.out" .

The new added event shows on the top list widget.

· Repeat all above steps until all the definitions were entered.

· Push Save button, all events defined will be saved into "final.out". This popup form

is unmanaged.

· Select menubar Output, click Open pulldown menu, the defined events display on the

text widget of the main menu.

14. Command Widget and Run, Compile, Parser Menu

The Run menubar contains Run, Compile, and Parser menus. The user can use this

menubar to compile the C file, run the executable file, and parse special defined file. The design

strategy is to pop up ajonn dialog widget to manage a command widget. A command widget

allows the user to enter commands and have them saved in a "history" list widget for later

reference. The results of the command execution are display on the scrolled text area. Another

way to achieve this is· to issue the system call "aixterm" to pop up an aix window. On this

47

window the user can compile a program, run executable file, parse the specified event file, and

display all the information.

The form dialog widget is actually like a simple menubar. It contains ScroliedText area

and command widget which prompts for system call. Command widget is a convenient interface

for an application that has a command-driven interface such as compiling, running, parsing. The

code used to create the command widget as shown bellow:

command_w = XtVaCreateWidget(lcommand_w",

xmCommandWidgetClass, cmd_w,

XmNpromptString, file,

XmNtopAttachment, XmAITACH_WIDGET,

XmNtop Widget, menu_bar;

XmNlejtAttachment, XmAITACH_FORM,

XmNrightAttachment, XmAITA CH_FORM,

NULL);

XtManageChild(command_w),.

When any polldown menu on Run menubar is pushed, a dialog pops up and asks the user

to select a file to compile, to run or to parse. The user should select the correct file name. For

example, to compile a C program, the extension of the file name should be ".c"; for run menu

the file should be executable. After selecting a file name, the command dialog form pops up.

15. Output Menu

48

~---------1
I

-- --I
I

I
!

The Output menubar contains Open, Clear, and Exit menus. This menubar provides the

user another way to look what has been done on the event definitions.

· The user can use this Open menu to check all events defined in the "final.out". When

the user pushes the "open" menu, the contents of the file named "final.out" will display on the

main menu text widget area.

· Clear menu can be used to clear the text widget area. This must be done before another

file can be displayed on this text widget.

· Exit menu used to quit main menu and exit.

~- - ----------- -~~---~---

49

16. User's Manual

Welcome to Distributed Event Monitor User Interface Tool (DEMUIT). This user's

manual shows, step by step, how to run and quit this tool, how to define seven events, how to

check, modify, delete them, and how to modify the defined event script file using text editor

supported by this tool.

1) What Is Needed to Run This Tool

This tool runs under Motif Graphical User Interface (GUI) 1.2 developed by Open

Software Foundation (OSF) and X version 11 release 5 (XlI R 5) on any AIX RISC 6000

workstation.

After logging on any RISK 6000 workstation on campus, start X window by entering

"startx" or "xinit". When running remote X clients, it is necessary to set the DISPLAY

environment variable.

2) Running This Tool

At the aix prompt, type menu and press ENTER.

The main menu window will open with nine menubars from left to right:

File, Edit, Search, Event, Monitor, Run, Output, Display, and Help.

3) Quitting This Tool

The DEMUIT can be quit from the File menu.

. Click File menu to open the pulldown menu.

. Click Quit push button to quit this tool.

4) Defining Event Script File

1 ~S~ev~e~n=_d.::..:i=fD=_=e=re=n~t~e~~ipts, such as primitive evenkJlighle-vel-event, protocol event,

50

goal event, local event, assign event, and place event can be defined. There is no limit in the

number of each event type which can be defined.

The general event script form consists scripts labels on the left, and empty text boxes on

the right. The information dispLay box will show the event scripts you defined. The warning

message box shows what steps should be taken next. Seven push buttons are on the button of the

form, they are: Modify, Done, Confirm, Save, Clear, Cancel, Help.

A step by step sample for each example is shown below:

a) Primitive Event Definition

The primitive event definition form is shown in Figure 6.

Name: II
Type: II

Variable:· II
Funcname: II

I

Modify I Done I Confirml Save I Clear I Cancel I Help

Figure 6. The Primitive Event Definition Form

51

The primitive event definition is defined as:

primitive <name> is < type> I<variable> I I<funcname > I

Example: primitive El is access x main.

To input this script:

· Push the pulldown menu Primitive. The primitive event definition form is open.

· Move the cursor to the first empty box, an insertion point(flashing vertical bar) appears

at the far left side of the box. The text typed starts at the insertion point.

· Enter primitive event Name El into this box, press ENTER (must).

· The cursor will move to the second empty box automatically.

· The information display box shows "primitive".

· Enter primitive event Type access into second box, press ENTER.

· The cursor moves to the third empty box automatically.

· Enter primitive event Variable x into third box, press ENTER.

· The cursor moves to the fourth empty box automatically.

· Enter primitive event Funcname main into fourth box, press ENTER.

· Push Done button.

· Push Confirm button. Information display box shows "El is access x main" next to the

"primitive" .

· Push Save button. This tool will open a save event dialog, ask you to "Enter the new
- -

file name to save the event definition", if this is the first event defined. This dialog only happens

once at first event definition.

· Enter the file name you desired. Press ENTER or push the Ok button on dialog form.

52

. The event checking form pops up for checking the user defined event. For details see

section 5) Checking Defined Event below.

. The primitive event definition form is unmanaged. Another event can be selected or the

primitive event can be selected again.

The "primitive El is access x main" is save into the file named by the user.

The completed this event definition is shown as in Figure 7.

Name: IE1I
Type: Iacces:{

Variable: :1 J{

Funcname: ImahI

~rl.ltlve El Is access x mala

Please push the Save button to File the event!

I

ModiFy I Done I ConFirml Save I Clear I Cancel I Help

Figure 7. The Completed "primitive El is access x main" Definition

b) Highlevel Event Definition

The highlevel event definition form is shown below in Figure 8.

53

II I :r
Name:

Opl: ~
Operator RadioBox: One or Two I

yOne: yTwo:

Operatorl: Please choose ,one of followings!

yor yand yconc ynot

ysfl ythen ycoant y notbtwn

Op2: ~
Operator2: Please choose one of followings I

yor yand yconc ynot

ysfl ythen ycoant ynotbtwn

Op3: ~

I

. ;: '. ". ~. '. . '.' . .

Figure 8. The Highlevel Event Definition Form

The highlevel event is defined as:

highlevel <name> is <op1> <operator> <op2 > I<operator> II <op3 > i

There are three different cases:

i) highlevel <name> is <op1> <operator> <op2 >

Where operator is ont include notbtwn.

ii) highlevel <name> is <op1> notbtwn <op2 > <op3 >

iii) highlevel <name> is <op1 > <operator> < op2 > <operator> <op3 >

Example 1: highlevel E7 is El or E2.-

54

To input this script:

· Push the pulldown menu HigWevel. The higWevel event definition form will open.

· Move the cursor to the first empty box, an insertion point appears at the far left side

of this box. The text typed starts at the insertion point.

· Enter highlevel event Name E7 into this box, press ENTER.

· The cursor moves to the second empty box automatically.

· The information display box shows "higWevel".

· Enter the highlevel event opl El into second box, press ENTER.

· Move the cursor to the operator radio box: "One or two!" Press the radio box One.

· Move the cursor to the operatorl radio box: "Please choose one of followings!" Press

the radio box or.

· Move the cursor to the Op2 empty box, click on it. An insertion point appears at the

far left side of this box.

· Enter the higWevel event op2 E2 into the third box, press ENTER.

· Do not push radio box on operator2.

· Do not enter anything into op3 empty box.

· Push Done button.

· Push Confirm button. Information display box shows "E7 is El or E2" next to the

"higWevel" .

· Push Save button. "higWevel E7 is El or E2" is save into the same file defined for the

first event.

· Use the event checking form to check the defined event. Details see section 5) below.

. The highlevel event definition form is unmanaged. Another event can be selected or the

higWevel event can be selected again.

The completed this event definition is shown in Figure 9.

Name: Ir:;t
Op1: IE:iI

Operator RadioBox: One or Two I

A One: yTwo:

Operator1: Please choose one of followings!

A or yand y cone y not

y sfl y then y count y notbtwn

Op2: IE!
Operator2: Please choose one of followings I

y or y and y cone y not

y sfl y then y count y notbtwn

0113: ~

....
I

fhighleVel ~ is E1 or E2

Please push the Save button to file the event!

Figure 9. The Completed "higWevel E7 is El or E2" Definition

Example 2: highlevel E4 is E6 notbtwn E9 E5.

To input this script:

. Push the pulldown menu HigWevel again. The higWevel event definition form will

open.
--------------------------- ----

. Move the cursor to the first empty box, an insenion point appears at the far left side

56

of this box. The text typed starts at the insertion point.

· Enter the highlevel event Name E4 into this box, press ENTER (must).

· The cursor moves to the second empty box automatically.

· The information display box shows "highlevel".

· Enter the highlevel event opl E6 into the second box, press ENTER.

· Move the cursor to the operator radio box: "One or two!" Press the radio box One.

· Move the cursor to the operator! radio box: "Please choose one of followings!" Press

the radio box notbtwn.

· Move the cursor to the Op2 empty box, click on it. An insertion point appears at the

far left side of this box.

· Enter the highlevel event op2 E9 into the third box, press ENTER.

· Do not choose operator2 radio box.

· Enter the highlevel event op3 ES into the fourth empty box. Press ENTER.

· Push Done button.

· Push Confirm button. The information display box shows "E4 is E6 notbtwn E9 E5"

next to the "highlevel".

· Push Save button. "highlevel E4 is E6 notbtwn E9 E5" is save into the same file

defined for the first event.

· The highlevel event definition form is unmanaged.

· Use the event checking form to check the defined event. Details see section 5) below.

The completed this event definition is shown in Figure 10.

57

Name: IE4:

Op1: IEiI
Operator RadioBox: One or Two I

AOne : yTwo:

Operator1: Please choose one of followingsl

yor yand yconc ynot

y sfl y then y count A notbtwn

Op2: lEi
Operator2: Please choose one of followings I

yor yand yconc ynot

y sfl y then y count y notbtwn

Op3: I~

I

fhighleVel E4 is E6 notbtwn E? E5

Please push the Save button to file the event!

Figure 10. The Completed "highlevel E4 is E6 notbtwn E9 E5" DefInition

Example 3: highlevel El is E2 and E3 then E4.

To input this script:

. Push the pulldown menu Highlevel again. The highlevel event defInition form will

. Move the cursor to the fIrst empty box, an insertion point appears at the far left side

58

of this box. The text typed starts at the insertion point.

· Enter the highlevel event Name El into this box, press ENTER (must).

· The cursor moves to the second empty box automatically.

· The information display box shows "highlevel".

· Enter the highlevel event opl E2 into the second box, press ENTER.

· Move the cursor to the operator radio box: "One or two!" Press the radio box Two.

· Move the cursor to the operator1 radio box: "Please choose one of followings!" Press

the radio box and.

· Move the cursor to the Op2 empty box, click on it. An insertion point appears at the

far left side of this box.

· Enter the highlevel event op2 E3 into the third box, press ENTER.

· Move the cursor to the operator2 radio box: "Please choose one of followings!" Press

the radio box then.

· Enter the highlevel event op3 E4 into the fourth empty box. Press ENTER.

· Push Done button.

· Push Confirm button. the information display box shows "El is E2 and E3 then E4"

next to the "highlevel".

· Push Save button. "highlevel El is E2 and E3 then E4" is save into the same file

defined for the first event.

· The highlevel event definition form is unmanaged.

· Use the event checking form to check the defined event. Details see section 5) below.

The completed this event definition is shown in Figure 11.

59

Op1: IE:!
Operator RadioBox: One or Two I

yOne: A Two:

Operator1: Please choose one of followings!

y or A and y conc y not

v sf! y then y count y notbtwn

Op2: IE:{

Operator2: Please choose one of followings!

yor yand yconc ynot

v sf! A then V count y notbtwn

Op3: lEi

" /

fhighleVel E1 is E2 and E3 then E4

Please push the Save buttoll to file the event!

Figure 11. The Completed "highlevel El is E2 and E3 then E4" Definition

c) Protocol Event Definition

The protocol event definition form is shown below in Figure 12.

The protocol event is defined as:

protocol <name> is < type>

Example: protocol all is Ie. To input this script:
--------------- ~

. Push the pulldown menu Protocol. The protocol event definition form will open.

60

Name: II
Protocol Type: Please choose one of followings!

vIc

vvc

vsr

I

Modify I Done I ConfirmI Save I Clear I Cancel IHelp

Figure 12. The Protocol Event Definition Form

· Move the cursor to the first empty box, an insertion point appears at the far left side

of the box. The text typed starts at the insertion point.

· Enter the protocol event Name all into this box, press ENTER.

· The information display box shows "protocol".

· Move the cursor to the Protocol Type radio box: "Please choose one of the followings!"

Press the radio boxJ.c~ . __ ._. _.__ ..__. - --- ,

· Push Done button.

61

· Push Confirm button. The infonnation display box shows "all is Ie" next to the

"protocol" .

· Push Save button. "protocol all is Ie" is save into the same file defmed after the fIrst

event.

· The protocol event defInition fonn is unmanaged. Another event can be defmed or the

protocol event can be defIned again.

· Use the event checking form to check the defIned event. Details see section 5) below.

The completed this event defmition is shown in Figure 13.

Name: IaL[

Protocol Type: Please choose one of followings!

.A lc

yvc

v sr

/

Frotocol all is Ie

Please push the Save button to file the event!

I

Modify I Done I Confirm! Save I Clear I Cancel I Help

Figure 13. The Completed "protocol all is Ie" DefInition

62

d) Goal Event Definition

The goal event defmition form is shown in Figure 14.

Name: II

I

Modify I Done Confirml Save I Clear I Cancel I Help

Figure 14. The Goal Event Definition Form

The goal event is defined as:

goal <name>

Example: goal E7.

To input this script:

. Push the pulldown menu Goal. The goal event definition form will open.

-;-Move-the-cursor-to-the-first--empty-box-;-an--jnseniDn-pvinnlppearS<lnhe-farleftstde·-------1

of the box. The text typed starts at the insertion point.

63

· Enter the goal event Name E7 into this box, press ENTER.

· The infonnation display box shows "goal".

· Push Done button.

· Push Confirm button. The infonnation display box shows "E7" next to the "goal".

· Push Save button. "goal E7" is save into the same file defined for the first event.

· The goal event definition form is unmanaged. Another event can be defined or the goal

event can be defined again.

· Use the event checking form to check the defmed event. Details see section 5) below.

The completed this event defmition is show in Figure 15.

Name: IEll

/

f'lE7
I

Please push the Save button to rile the event! . .

Modify I Done I Confirml Save I Clear I Cancel IHelp

Figure 15. The Completed "goal E7" Definition

64

e) Local Event Definition

The local event definition form is shown in Figure 16.

Name: II

I

Modify I Done I ConfirmI Save I Clear I Cancel I Help

Figure 16. The Local Event Definition Form

The local event is defined as:

local <name>

Example: local E7.

To input this script:

. Push the pulldown menu Local. The local event definition form is open.

----~ o. --.0 .~MoveLhe-tursor-to-the·first-empty-box,an-insertion-point-appears-at-the-far-leftside-- 0_

65

I

of the box. The text typed starts at the insertion point.

· Enter the local event Name E7 into this box, press ENTER.

· The information display box shows "local".

· Push Done button.

· Push Confirm button. The information display box shows "E7" next to the "local".

· Push Save button. "local E7" is save into the same file defined for the first event.

· The local event definition form is unmanaged. Another event can be defmed or the local

event can be defmed again.

· Use the event checking form to check the defmed event. Details see section 5) below.

The completed this event definition is shown in Figure 17.

Name: IEiI

/

floc.l E7
. . .

Modify I Done I Confirml Save I Clear I Cancel IHelp'

-......------;-;;;--;:;:;;-_._- - -

FIgure 17. The Completed "local E7" Definition

66

f) Assign Event Definition

The assign event definition form is shown in Figure 18.

Name: II
EHexe: II
EHmac: .~
EHcnt: II

I

Modify I Done I Confi~ml Save I Clear I Cancel I Help

Figure 18. The Assign Event Definition Form

The assign event is defined as:

assign <name> to <EMexe > < EMmac > <EMcnt >

67

Example: assign all to em pI118f.cc.lehigh.edu 1.

To input this script:

· Push the pulldown menu Assign. The assign event definition form will open.

· Move the cursor to the first empty box, an insertion point appears at the far left side

of this box. The text typed starts at the insertion point.

· Enter the assign event Name all into this box, press ENTER.

· The cursor moves to the second empty box automatically.

· The information display box shows "assign".

· Enter the assign event EMexe em into the second box, press ENTER.

· The cursor moves to the the third empty box automatically.

· Enter the assign event EMmac p1118f.cc.lehigh.edu into the third box, press ENTER.

· The cursor moves to the fourth empty box automatically.

· Enter the assign event EMcnt 1 into the fourth box, press ENTER.

· Push Done button.

· Push Confirm button. The information display box shows "all to em

p1118f.cc.lehigh.edu I" next to the "assign".

· Push Save button. "assign all to em p1118f.cc.lehigh.edu I" is save into the same file

defined for first event.

· The assign event definition form is unmanaged. Another event can be defined or the

assign event can be defined again.

~ Usemeevent checking fOmltO check the defined event. Details see section 5) below.

The completed this event definition is shown in Figure 19.

68

.'

Name:

EMexe:

EMmac:

EMcnt:

Ipll18f.cc.lehigh.edQ

I~

fasS!" .11 to em pIl18f.cc.lehlgh.edm 1

Please push the Save button to file the event!

I

Modify I Done I ConfirmI Save I Clear I Cancel IHelp

Figure 19. The Completed "assign all to em pll18.cc.lehigh.edu 1" Definition

g) Place Event Definition

The place event definition for is shown in Figure 20.

The place event is defined as:

place <name> at <procexe > <procmac > <proccnt >

Example: place all at myprog pI118a.cc.Iehigh.edu 1.

To input this script:

. Push the pulldown menu Place. The place event definition form will open.

. Move the cursor to the first empty box, an insertion point appears at the far left side

of this box. The text typed starts at the insertion point.

69

Name: II
Procexe: II
Procmac: II
Proccnt: II

I

modify I Done I Confirml Save I Clear I Cancel I Help

Figure 20. The Place Event Definition Form

· Enter the place event Name all into this box, press ENTER.

· The cursor moves to the second empty box automatically.

· The information display box shows "place".

· Enter the place event procexe myprog into the second box, press ENTER.

· The cursor moves to the third empty box automatically.

· Enter the place event procmac p1118a.cc.lehigh.edu into the third box, press ENTER.

-.1'he-Gurser-moves-to-theJourtlLernpty_box_automatically.

· Enter the place event proccnt 1 into the fourth box, press ENTER.

70

I

· Push Done button.

Push Confirm button. The information display box shows "all at myprog

p1118a.cc.lehigh.edu 1" next to the "place".

· Push Save button. "place all at myprog p1118a.cc.lehigh.edu 1" is save into the same

file defined for the first event.

· The place event definition form is unmanaged. Another event can be defined or the

place event can be defined again.

· Use the event checking form to check the defmed event. Details see section 5) below.

The completed this event definition is shown in Figure 21.

Ial~ 'IName:

Procexe: Imyproi

Procmac: ;lp1118a.cc.lehigh.edq
/

ItProccnt:

~Iace all at oyprog pI118a.cc.lehigh.edu 1

modify I Done I Confirml Save I Clear I Cancel I Help I

----- ------------------------_.---- - ----------

Figure 21. The Completed "place all at myprog p1118.cc.lehigh.edu 1" Definition

71

5) Checking User Defined Event and Event Script File

This tool provides several ways to check user defined event and event script file. By

using event checking form, the Output menubar, or the File menubar to do this.

i) Immediate Checking Defined Event

Immediate defined event checking happens right after pushing the Save button on the

event dejinitionform (as shown in Figure 22). The event checking form is created by

highlevel E7 is E1 or E2

I
Add New Event:

II
ISave: do all changes before you hit Save button I

Show I~ Deletel Save I Clear I CancelI
___----J

Figure 22. The Event Checking Form

event_define_display function, and is named as "List of Defined Events". The top of the form

is the scrolled list box for displaying all the events defined. No items are available for a new list.

The middle of the form is the label box called "Add New Event" and the text field box to show

_.72

the event just entered. Below the middle of the form is the information display box and warning

message box. The bottom of the form is six push buttons. They are: Show, Add, Delete, Save,

Clear, and Cancel. The following shows how to do check defined event step by step.

· Push Save button on the first event definition form.

· The event checking form "List of Defined Events" pops up.

· Push Show button, the new entered event will display on the middle of the form.

· Push Add button, the new entered event will be added to the top of the form

dynamically and disappears from the middle of the form.

· Repeat above steps. Another newly defined event can be checked after pushing the Save

button on the event definition form.

· The user can use browse to select event in top list widget, selected item is highlight.

Push Delete button, the selected item is deleted.

· Clear button is used to clear the top list box.

· Cancel button is used to unmanage this event checking form.

ii) Checking The Event Script File

The user may want to check all events defined. This tool supports two ways to do this.

From the event checking form, the followings can be done:

· Push the Save button in the event checking form.

· All events are saved into "final.out" file.

· The event checking form is unmanaged.

__ TheIl oneoLthe following-ways can be-used-to-check-theLlserliefined event scripts file. One

way to check defined event scripts file by using the Output menubar:

73

· Push the menubar Output from main menu.

· Push the pulldown menu Open in menubar Output.

· All the events defined in the "final.out" file display on the main text box.

The other way to check defined event scripts file by using the File menubar:

· Select the menubar File from the main menu.

· Push the pulldown menu Open in the menubar File.

· A file selection dialog pops up.

· Select either the file named at first event definition form or "final. out" .

· Click Ok button on the file selection dialog.

· The file selection dialog is unmanaged.

· The Contents of the selected file are displayed on the main text box.

6) Modifying User Defined Events and The Event Script File

This tool supports several ways to modify the user defined event and event script file.

They can be modified on the event definition fonn stage, or on the event checking fonn stage.

The event script file can also be modified after all events are defined using text editor on the

File menubar.

i) Immediate Event Modifying

The event definition fonn has a Modify push button. It can be used to modify any event

script parameters entered including label text enters and radio box selections. However this can

only be done before pushing the Done button in the event definition fonn. Follow the steps
1----- -------------- -

shown below to modify the label enters:

· Push Modify button.

74

-- ------------

· Move the cursor to the label box that is to be modified and click on the text box on the

right side of the label. The insertion point should be on the far right side of the text entered.

· BACKSPACE to delete all characters entered.

· Type in new enters.

· Repeat above steps until all modifications are completed.

· Press Done button.

· Press Confirm button.

Follow the steps shown below to modify the radio box selection:

· Push Modify button.

· Move the cursor to the radio box desired.

· Click on the radio box.

· The selected radio box is highlighted.

· Repeat above steps until all modifications are completed.

· Press Done button.

· Press Confirm button.

ii) Deleting The Defined Event

The event checking jonn provides event deleting capability to delete event after it has

been defined. The push button Delete on this form can be used for this purpose. An individual

event which has been added to the top list box can be deleted before pushing the Save button

on this form. The steps below shows how to do this:

~---.Browse select item in the list box.

· The selected item is highlighted.

75

· Push Delete button on the event checking form.

· The selected item disappears.

· Repeat above steps needed to delete other items on this form.

· Push Save button.

iii) Modifying Defined Event Script File

The full-feature text editor provides complete modification of the defined event script file.

The File menubar can be used to Open a file to modify, add, and delete the events. The user

is familiar these steps:

· Select the File menubar in the main menu.

· Push the polldown menu Open.

· Afile selection dialog pops up.

· Select the file name containing the events to be modified.

· Click Ok button on file selection dialog.

· The file selection dialog is unmanaged.

· The contents of the selected file are displayed on the main text box.

· Move the cursor to the place which is to be modified. The above outlined steps should

be taken to do the followings (as desired):

· Modify events.

· Add new events.

· Delete events.

__ -,----Push the Sav:~ulldown men~o}!Jl1eFile menubar.

· The modified file is saved as an original file name.

76

· By pushing the Save As menu again, the file can be saved as a new file name also.

· A new file name dialog popups.

· Enter new file name.

77

18. References

1. Madalene Spezialetti, "Efficient Techniques for Monitoring Distributed Computation,"

National Science Foundation Project, 1993

2. Dan Heller, "Motif Programming Manual," O'Reilly & Associates, Inc., 1991.

3. Donald L. McMinds, "Mastering OSF/MotifWidgets," Addison-Wesly Publishing Company,

Inc, 1993.

4. Marshall Brain, "Motif Programming: the essentials ... and more," Digital Press, 1992.

5. Nabajyoti Barkakati, "Unix Desktop Guide to X/Motif," Hayden Books, 1991.

6. Douglas A. Young, "The X Window System Programming and Applications with Xt

OSF/Motif Edition," Prentice-Hall, 1993.

7. Eric F. Johnson & Kevin Reichard, "Power Programming ... MOTIF," Management

Information Source, Inc., 1991.

78

18. Vita

Keyang Huang received the B.S. degree in Mechanical Engineering from Northern Jiao

Tong University, Beijing, The People's Republic of China, the M.S. degree in Computer

Science from Lehigh University, PA, USA, in 1994. He is currently a Ph.D. candidate of

Computer Science, Lehigh University, PA, USA.

He has been a research engineer in the Computer Integrated Manufacturing laboratory

(CIM Lab), Lehigh University, PA, USA, since 1988.

His research interests include distributed and parallel computing, multimedia systems,

object oriented and visual programming.

1------ -- ----

79

- ----- ---- ~----~----

	Lehigh University
	Lehigh Preserve
	1994

	Distributed event monitor user interface tool
	Keyang Huang
	Recommended Citation

	00331
	00332
	00334
	00335
	00336
	00337
	00338
	00339
	00340
	00341
	00342
	00343
	00344
	00345
	00346
	00347
	00348
	00349
	00350
	00351
	00352
	00353
	00354
	00355
	00356
	00357
	00358
	00359
	00360
	00361
	00362
	00363
	00364
	00365
	00366
	00367
	00368
	00369
	00370
	00371
	00372
	00373
	00374
	00375
	00376
	00377
	00378
	00379
	00380
	00381
	00382
	00383
	00384
	00385
	00386
	00387
	00388
	00389
	00390
	00391
	00392
	00393
	00394
	00395
	00396
	00397
	00398
	00399
	00400
	00401
	00402
	00403
	00404
	00405
	00406
	00407
	00408
	00409
	00410
	00411
	00412
	00413
	00414
	00415
	00416
	00417
	00418
	00419
	00420

