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Abstract

Researchers have developed and examined Space-Time Adaptive Processing (STAP)

schemes to cope with the clutter spectral spreading that occurs for a radar mounted

on a moving platform. Analysis shows these schemes have great potential. Un

fortunately, much of the previous evaluation of STAP algorithms was based on

the assumption that accurate estimates of the interference-pulse-noise statistics are

available which is usually unrealistic. In this thesis, performance evaluation is based

on a highly non-homogeneous environment where interference-pIus-noise statistics

are unknown. Further, estimates which attempt to characterize the interference

plus-noise environment are obtained by probing nearby range cells which is typical

in practice. Often, as we show, these estimates are very inaccurate. A general for

mulation of a STAP algorithm is defined and several specific cases are described and

studied. Both simulated data and real measured radar data are used in the tests.

The results indicate that STAP schemes can be developed which will perform well

when operating with limited information and possibly mismatched estimates of the

interference-pIus-noise environment. Further development and study are needed to

identify the best STAP schemes for this purpose.

1



Chapter 1

Introduction

In airborne radar, the detection of targets is often limited by ground clutter and

other forms of interference. Platform motion causes Doppler shifts in the ground

clutter that makes Doppler filtering alone ineffective. In such cases Space-Time

Adaptive Processing (STAP) offers a potential solution.

STAP has been an active research topic for at least the last two decades. Much of

the interest was generated by the results in [1] and [2]. Since then several algorithms

have been proposed and evaluated using simulated radar data. With the recent

improvements in phased array antenna and digital signal processing technology, a

STAP-based radar system is becoming an attractive alternative for detection of small

airborne targets in severe clutter, as compared to classicallow-sidelobe beamforming

[3] or displaced phase center arrays.

Current STAP research efforts [4] are focused on, among other things, improved

estimation of the clutter-pIus-noise statistics, calibrated clutter measurements, real

time processing hardware development, and performance evaluation for the compet

ing STAP approaches. The last one is the interest of this thesis. In most previous

research, STAP schemes were evaluated using simulated data or by manipulating

fixed platform measurements to simulate motion. While simulated data is very

useful in the development and analysis of algorithms, a more complete evaluation

includes using actual recorded radar data. Thus, in this thesis, we compare various

STAP schemes using both simulated data and actual measured airborne data. A

2



general STAP processing approach, which includes most linear processing schemes,

is developed. This should be useful in designing robust STAP algorithms which is

an important topic for future research.

In Chapter 2 we describe the system under consideration and we provide an

introduction to STAP. In Chapter 3 we define a general STAP scheme and give a

detailed description of several specific approaches. In Chapter 4 we present com

parison results which utilize simulated radar data. Comparison results based on

measured airborne radar data are presented in Chapter 5. Conclusions are given in

Chapter 6.

3



Chapter 2

System Overview

A radar operates by transmitting energy into the environment and obtaining infor

mation concerning the location of objects by detecting reflections of the transmitted

energy [5]. Detection of an object requires that the received energy from a reflection

be larger than the background energy. There are many contributors to the back

ground energy. The most fundamental one is the random energy fluctuations that

result from the random motion of electrons. This contribution is often called noise.

The presence of other reflectors, such as the ground, whose energy tends to obscure

that of the reflector of interest, can also contribute to background energy. These

contributors are denoted as clutter.

Thermal noise [6] is always present in electronic circuits. As the name implies,

thermal noise is a function of temperature. For our purpose, an important aspect

of thermal noise is that its power spectral density is constant over the bandwidth of

typical radar receivers. The effective received noise power Pn due to the combined

effects of the antenna and receiver is directly proportional to bandwidth. Thus

(2.1)

where k is Boltzmann's constant, B is the receiver bandwidth measured in Hz and

Ts is the effective temperature of the receiving system.

In military radar applications, an adversary can decrease a radar's detection
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2.1. RADAR SYSTEM

capability by inserting a signal in the bandwidth of the radar. This type of inter

ference is known as jamming [3]. Typically, the energy received by the radar due to

jamming is far greater than that of thermal noise, so the presence of the jammer can

significantly decrease the performance of the radar system. One significant differ

ence between interference due to jamming and thermal noise is that interference due

to jamming typically emanates from a single spatial angle, whereas thermal noise

has essentially uniform density over spatial angles. Thus, modifying the antenna

pattern to ensure a low response in the direction of the jamming will often decrease

the effectiveness of the jamming [3].

Clutter [5] can be distributed in angle and range. Further, clutter can be dis

tributed in Doppler frequency. For an airborne surveillance radar, the major source

of clutter is ground clutter which is due to the backscattering of radiation from the

ground. To detect a target in the presence of clutter with a fixed radar platform,

a useful discriminant is that often targets have high velocity, and therefore high

Doppler shifts, whereas ground clutter has zero or low velocity, and therefore zero

or low Doppler shifts. Delay-line [7] cancelers can be easily configured to have nulls

at zero Doppler to suppress this clutter. For moving platforms, Doppler shift is

dependent on the aspect angle of a scatter relative to the radar look direction. As a

result, this makes the Doppler spectral spread quite large. In order to cancel these

aspect-dependent clutter returns, STAP has been found to be useful.

2.1 Radar System

The system under consideration is a pulsed Doppler radar residing on an airborne

platform. As defined by the IEEE Standard Radar Definitions [5], a Doppler radar

is one which utilizes the Doppler effect to determine the radial component of rela

tive radar-target velocity or to select targets having particular radial velocities. It

functions to enhance targets within a particular velocity band while rejecting clutter

and other echoes outside the velocity band of interest. When a Doppler radar uses

pulsed transmissions, it is called a pulsed Doppler radar.

We assume the radar transmits a coherent burst of M pulses at a constant pulse

5



2.1. RADAR SYSTEM

pulse M

'---------' L.J-t-'-L-.:.--'--'-l-' l-L....l.-L....l.--'-'-'--'-' - - - - - - - ~ " •••

range sample I
range sample 2

range sample L

pulse I pulse 2 pulse M

~ , , , , .n , ~ , , , , n. ,~ ~ !!!

r- Tr ----j

Antenna I

Antenna 2

•

pulse I pulse 2 pulse M

~ , , ! ! .n ! ~ I , , , n. , ~ ~...J.-.J......J!r !~
I· CPI -I

Figure 2.1: Structure of the observed signal returns.

AntennaN

repetition frequency ir = l/Tr, where Tr is the pulse-repetition-interval (PRI). The

time interval over which the waveform returns are collected is commonly referred as

coherent-processing-interval (CPI).

In our analysis, the radar antenna used is a uniformly spaced linear array antenna

with N identical elements. These elements may be the beamformed columns of

a rectangular planar array. It is also assumed that the radar array has a fixed

transmit pattern. Each element of the array has its own down-converter, matched

filter receiver, and AID converter. For each PRI, L time samples are collected to

cover the range intervals as illustrated in Fig. 2.1.

With M pulses and N antennas, the received data for one CPI comprises LMN

complex baseband samples. This multidimensional data set, collected as shown in

Fig. 2.1, is often referred as a datacube. Denote the observation corresponding to

the ith antenna element at the lh pulse for kth range cell as Xi,i,k' It is convenient to

denote the part of the datacube which represents the kth range cell of the datacube

as

(2.2)
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2.2. SPACE-TIME ADAPTIVE PROCESSING

where aT denotes the transpose of the vector a. We will refer to X k as a space-time

snapshot.

As in most analysis of radar systems [8], we assume we can decompose the

samples in the datacube as

X k = aV(S) +X(C)

where V( S) is the normalized target response, given as

v(S) = b( rAJ) ® a(-a).

In (2.4), ® denotes the Kronecker product,

(2.3)

(2.4)

(2.5)

is an M x 1 temporal steering vector in which rAJ is the normalized target Doppler

frequency as defined in [8], and

(2.6)

is an N x 1 spatial steering vector in which -a is the target spatial frequency as defined

in [8]. The symbol V(S) used in (2.4) is often called a target steering vector. In

(2.3), a is an unknown constant and X(C) denotes the additive interference-plus

noise returns. X(C) usually consists of additive contributions of clutter, jamming

and thermal noise. A typically model for each of the components of X(C) is given

in [8].

2.2 Space-Time Adaptive Processing

Most of the STAP schemes that have been suggested can be represented as an inner

product of the conjugate of a weight vector wand the vector X k which represents

the snapshot of interest. This inner product

(2.7)
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2.2. SPACE-TIME ADAPTIVE PROCESSING

Signal

I
I
I

I
I

I

,,,,
I

I
I,

I
I

I
I
I
I

Spatial Frequency

Figure 2.2: One-dimensional Doppler filter applied to ground clutter (adopted from
[9]).

produces the complex quantity z whose magnitude is often compared to a threshold

to make a decision. The weight vector w may depend on the estimated interference

plus-noise environment and on the target of interest.

One way to view a space-time processor is as a two-dimensional filter. Conven

tional schemes only use Doppler frequency selectivity and could produce a filtering

action as shown in Fig. 2.2. Fig. 2.2 shows the clutter ridge that is characteristic

of ground clutter in airborne radar [8]. It is clear that although such a filter can

cancel the clutter return due to the mainlobe (assumed to be at zero Doppler) of the

antenna response, it is unable to cancel the clutter returns due to sidelobes. 8TAP

schemes combine both the spatial and temporal information and are able to rotate

the filter to produce a null along the clutter ridge as shown in Fig. 2.3. Ideally, the

space-time processor provides coherent gain for a target while forming angle and

Doppler response nulls to suppress interference. As the interference scenario is not

known in advance, the weight vector must be determined in a data-adaptive way

from the radar returns.

In the well-know sample matrix inversion (8MI) algorithm [2], which is a fully

8



2.2. SPACE-TIME ADAPTIVE PROCESSING

Signal

....
" ......

" ....... /,: ....

,
"

#####;;...
...... ..,"

"

Spatial Frequency

Figure 2.3: Space-time filter applied to ground clutter (adopted from [9]).

adaptive algorithm, the weight vector is given, to within a scale factor, by

(2.8)

where Ris the estimated interference-pIus-noise covariance matrix .. The estimate is

based on a set of reference data, typically chosen from the surrounding range cells.

V(S) is the normalized target response defined in (2.4).

In the case where the interference statistics are known or the estimated covari

ance matrix is exactly equal to the true covariance matrix, SMI can achieve optimal

performance. A fully adaptive STAP scheme is one that requires the formation of an

N M by N M covariance matrix which can be a problem. Even for moderate M and

N, the computational cost of the estimation and computation of R- I becomes exces

sive in real-time implementations. As a result, reduced complexity approaches have

been developed whose computational cost is substantially smaller. Some examples

of reduced complexity approaches are given in the next chapter.

The schemes which estimate the interference-pIus-noise statistics typically re

quire a large set of independent and identically distributed (iid) reference data

9



2.2. SPACE-TIME ADAPTIVE PROCESSING

vectors to achieve an accurate estimation. This requirement may be unrealistic,

since measurements [10] indicate that multichannel airborne radar clutter data is

often severely non-homogeneous. For this reason the reference data set available for

estimation of clutter statistics is usually quite small. Therefore it is important to

know how different STAP algorithms perform for such cases. A particular STAP

algorithm, the adaptive displaced phase-centered antenna (ADPCA) algorithm, ap

pears to provide benefits in some non-homogeneous environment cases where the

interference statistics estimates may be inaccurate.

10



Chapter 3

Some Reduced Complexity STAP

Schemes

STAP is an actiye research area and new schemes are continually being developed.

In order to compare schemes, a standard terminology is useful. Here, we will mainly

follow the terminology used in [8]. We caution the reader that other terminology

also appears in the literature. We first define a general formulation of a for STAP

processing approach which encompasses most of existing STAP schemes. We limit

consideration to those schemes which linearly combine the space-time observations.

Next we describe six specific approaches which are

• Adaptive displaced phase-centered antenna (ADPeA)

• Factored post-Doppler (post-Doppler adaptive beamforming)

• Element-space pre-Doppler

• Beam-space pre-Doppler

• Beam-space post-Doppler

• Joint-domain localized (JDL) approach

each of which are included in the general formulation.

11



3.1. GENERAL STAP APPROACH

3.1 General STAP Approach

Consider the transformations

(3.1)

where X k is the space-time snapshot from the kth range cell and Ap and Bp are

scheme-dependent matrices. The operations in (3.1) can be interpreted as a pre

processor applied to the received signals. This preprocessing generates data for the

adaptive processing to follow. Note that P vectors are produced by the operations

in (3.1). Typically, the pre-processing in (3.1) performs a coordinate transformation

and a selection operation.

We describe the adaptive processing on the pth vector produced by (3.1) as

(3.2)

(3.3)

where
_ 1 k+Q/2 - - H

Rk (p) = Qi=k-t2,i;fk Xi (p) Xi (p)

and S is a scheme-dependent steering vector. Rk (p) is the interference-pIus-noise

covariance matrix estimated from Q adjacent range cells. Note that (3.2) resembles

the 8MI scheme defined in (2.7) and (2.8). Further, based on accepted principles,

the covariance matrix estimation of an TXT matrix like Rk (p) nominally requires

Q= 2r iid secondary data.

In different schemes, Uk (p) mayor may not be the final output of interest. If
;--

Uk (p) is the final output of interest, its magnitude will be compared to a threshold

to decide if signal is present. For cases where Uk (p) will be processed further, we

assemble the complex outputs from each adaptive processor into a P x 1 vector as

(3.4)

and compute

(3.5)

12



3.2. ADAPTIVE DISPLACED PHASE-CENTERED ANTENNA

I(Ao@Bo)H~ Xk(O) ~I SHR'-~(O) ~ yk(O)

I(Al~Blt~ Xk(l) -1 SHit~(l) ~ yk(l) ~
Xk

1(~@B2t~ Xk(2) ~I SHR~1(2) ~ Yk(2) f: -
~,m

Pre-Processing Adaptive Processing Post-Processing

Figure 3.1: Processing flow for a general STAP scheme.

which we call post-processing (after adaptive processing). Typically, 1m is the mth

column of a P X P filter matrix F, and Zk,m is the final output whose magnitude

will be compared to a threshold to produce a decision. A diagram of the complete

processing flow is shown in Fig. 3.1.

3.2 Adaptive Displaced Phase-Centered Antenna

ADPCA is a low complexity alternative to fully adaptive schemes like SMI. ADPCA

uses adaptive processing with Kt (typically 2 or 3) pulses at a time rather than all

the pulses of the CPI. To be more precise, define a set of P sub-CPIs Xk(p), p =

O· .. P - 1 in the kth snapshot. Each sub-CPI contains possible signal returns from

Kt pulses and all N elements.

Fig. 3.2 shows two different ways to form the sub-CPIs. As indicated in Fig. 3.2,

implementation (a) does not overlap pulses. Given M pulses in a CPI where M

can be divided by Kt , implementation (a) generates P = M/ Kt sub-CPIs. The

Oth sub-CPI consists of pulses 0, ... , Kt - 1 and the pth sub-CPI consists of pulses

pKt, ... , pKt + Kt - 1. Implementation (b) forms the sub-CPIs by using the same

pulse returns in several sub-CPIs. Given M pulses in a CPI, implementation (b)

13



3.2. ADAPTIVE DISPLACED PHASE-CENTERED ANTENNA

N element---""""".""" .. "", .. Sub-CPIO· . .:

· . .. .:

· . .. .:
.. , ....... , ........ " .... " Sub-CPIl· . .. .:

· . .. .:

· . .. .:

· . . .
. .
(u)

1
M Pulse

N element---"' .... , .. ", .. , ...... "",,,.', Sub-CPIO· . .. . .
, . , .. , , , , , , .. , , ' , . , , , , , , , . , . , ,;, Sub-CPIl· . .. . ::
:', , ",., ".", .. '" , , ,:,; , Sub-CPI2

.: ,' ~ ~ ,', ~ ..:::
.; :.:
;.:.. ,.,"'~""~". ,."", .. , ,.", ,: :
:.. . .. . ..~ :

:. . .. .................................· . . .
· . . .

(b)

(3.6)

Figure 3.2: ADPCA sub-CPI formation.

generates P = M - Kt + 1 sub-CPIs. The Oth sub-CPI consists of pulses 0, ... ,

Kt -1 and the pth sub-CPI consists of pulses p, ... , p+ Kt -1. In Fig. 3.2, Kt is set

to 3 and in implementation (b), neighboring sub-CPIs overlap 2 pulses. Of course,

other overlaps are possible.

The pre-processing we have just described can be put into the framework of

(3.1). Bp is set to IN which is an N x N identity matrix and

[

Op(Kt-h)XKt j
Ap = IKt

O(M-Kt-pKt+ph) xKt

Where the notation O/xm refers to an l x m matrix of zeros. h indicates the number

of pulses which are overlapped. In implementation (a) h is set to be zero and in

implementation (b) h is set to be Kt - 1. Ap is an M x K t selection matrix.

The adaptive processing in ADPCA is described by (3.2) with the steering vector

(3.7)

where S8 is the N x 1 spatial steering vector as in (2.6), St is a Kt x 1 vector, which

is composed of the binomial coefficients, with each coefficient altered in sign (start

with positive). As a particular example, we have

Vi = (1,-2,1)T

14
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3.2. ADAPTIVE DISPLACED PHASE-CENTERED ANTENNA

Datacube

reference data

,,,,,
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Covariance Estimation Adaptive Processing Post Processing

Figure 3.3: Block diagram illustrating the ADPCA algorithm.

for a three pulse case. If Rk(p) is an identity matrix, and we consider steering to

broadside, then application of the ADPCA steering vector has a simple interpreta

tion. At each element, subtract the amplitude of neighboring pulses. Next subtract

neighboring results and repeat this process until only a single output is obtained.

Finally the outputs from each antenna are summed. It is clear that in this case

ADPCA is implementing a pulse differencing scheme which will tend to "whiten"

clutter present in the observations.

Typically, post-processing as described in (3.5) is employed in ADPCA. In AD

PCA F is a matrix corresponding to a Doppler filter bank, and fm is the mth

Doppler filter. Typically F is DFT matrix and this Doppler processing can then

be efficiently implemented by computing an FFT. If adaptive processing completely

"whitens" the data, then FFT post processing is optimum. IZk,ml, the final output

for Doppler bin m, is compared to a threshold to make a decision if a target is

present at this Doppler frequency.

Fig. 3.3 illustrates the principle of the ADPCA processor. One advantage of this

15



3.3. FACTORED POST-DOPPLER

approach is that it allows an accurate estimate of Rk(p) to be obtained with only

a small number of reference samples, since the dimensions of Rk(p) are kept small.

This can be quite important in practice due to the difficulty in obtaining a large set

of homogeneous reference samples [10]. Further, if we assume stationarity returns

over the CPI, we can use only one Rk (p) for all p.

3.3 Factored Post-Doppler

In factored post-Doppler STAP [8], Doppler processing is first performed on each

spatial channel resulting in a transformed signal matrix. Let the Doppler filter on

each element be represented by fp and for convenience collect the Doppler filters in

the M X M matrix FM = [fo, f1, ... ,fM-1]' Then the pre-processing is described by

(3.1) with Ap = fp, P = M, and Bp = IN. This pre-processing transforms the signal

into Doppler space. In this case p indicates the index of Doppler bin in question.

Next, the adaptive processing in (3.2) is employed with the steering vector S defined

as in (2.6). As for most of the STAP schemes we discuss, tapering could be applied

to the steering vector [8]. Post-processing is not usually employed, so IYk (p) I is

compared to a threshold to test for a target in the pth Doppler bin.

The extended factored approach (EFA) [11] is a slight extension of the factored

post-Doppler approach. In EFA, adaptive processing is applied to several adj:a.cent

Doppler bins instead of just one. Thus, the pre-processing performs both transfor

mation and selection. In a case where the scheme adapts over 3 adjacent bins, the

pre-processing can be described as in (3.1) with Ap = Jp = [fp-I, fp, fp+1]' The

other quantities are set the same as in factored post-Doppler STAP. Using EFA as ,

opposed to post-Doppler STAP, will necessarily increase the size of the covariance

matrices to be estimated and makes this approach closer to fully adaptive schemes

like SMI.

16



3.4. ELEMENT-SPACE PRE-DOPPLER

3.4 Element-Space Pre-Doppler

In element-space pre-Doppler STAP [8], the adaptive processing considers only a

few pulses at a time. Utilizing more than one pulse provides the temporal adaptiv

ity required for clutter cancelation, while retaining full spatial adaptivity provides

a means to handle jamming simultaneously. Clearly this approach is similar to

ADPCA in structure. We begin with defining P sub-CPIs each containing signal

returns from K t successive pulses and all elements. As in ADPCA, one could utilize

either an overlapped pulse configuration or a non-overlapped pulse configuration

(as illustrated in Fig. 3.2). Thus, the pre-processing is described by (3.1) with Ap

as described in (3.6) and with Bp = IN. The adaptive processing is described by

(3.2) with the steering vector S being a Kt-pulse, N-element normalized target re

sponse as in (2.4). Post-processing is usually employed to transform the output into

Doppler space. In the standard approach, this post-processing is similar to what

was described for ADPCA.

3.5 Beam-Space Pre-Doppler STAP

. In beam-space pre-Doppler STAP [8], the dimensionality is reduced in two ways.

First, the element data is pre-processed with an N X Ks beamformer matrix G to

produce Ks beam outputs (see [8] for examples and further discussion of the choice

of G). Second, only the beam outputs from a Kt-pulse sub-CPI are adaptively

processed at one time. Typically K t <t: M and K s <t: N so that a significant

reduction in problem size is achieved. This pre-processing is described by (3.1) with

Ap as defined in (3.6), and Bp = G.

The adaptive processing is described by (3.2) with the beam-space steering vector

S defined as

(3.9)

In (3.9), Se is the steering vector for element-space pre-Doppler STAP. In the stan

dard approach, the post-processing is the same as that described for element-space

pre-Doppler.
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3.6. BEAM-SPACE POST-DOPPLER STAP

3.6 Beam-Space Post-Doppler STAP

In the beam-space post-Doppler approach [8], the pre-processing is described by

(3.1) with Ap = Jp and Bp = G, where Jp is an M x K t matrix of Doppler filters.

A good example of Jp was that given when we introduced EFA. G is an M x Ks

beamforming matrix similar to that, described in Section 3.5. As in factored post

Doppler, the pre-processor transforms the data into Doppler space. The adaptive

processing is as defined in (3.2) with the steering vector

(3.10)

where V is the M-pulse, N-element normalized target response as in (2.4). Yk (p) in

(3.2) is the final output for pth Doppler bin. Post-processing is not usually employed.

3.7 Joint-Domain Localized Approach

In the joint-domain localized (JDL) [12] approach, pre-processing transforms data

from the space-time domain into the angle-Doppler domain. Then only a few angle

bins covering angles near the target of interest are considered in the adaptive pro

cessing. Further, only a few Doppler bins adj acent to the Doppler bin of interest

are adaptively processed. Thus, the pre-processor performs two-dimensional trans

formation and selection. Most conveniently, the transform is the two-dimensional

DFT, and the selection picks out a local processing region (LPR) of width Ln in

angle and Lm in Doppler.

More precisely, we can define this pre-processing using (3.1) with

Ap = [fM,l, fM,2,' .. ,fM,LmL where fM,i i = 1 ... Lm , are the columns of an M x M

DFT matrix corresponding to the Lm Doppler bins in the LPR, and with Bp =
[fN,l, fN,2' ... ,fN,LnJ, where fN,i i = 1 ... Ln, are the columns of an N x N DFT

matrix corresponding to the Ln angle bins in the LPR. The adaptive processing can

be described as in (3.2). For a uniform PRI and array spacing, the steering vector

used in (3.2) has all its entries equal to zero except for the one corresponding to the

angle and Doppler bin of the ta:-get. Nopost~processing is employedfbt' JDt.-
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Chapter 4

Performance Comparison Using

Simulations

The performance comparison will be separated into two chapters. In this chapter,

theoretically based clutter and noise models are used to described the covariance

matrix and hence generate data by computer simulation. A non-homogeneous envi

ronment is simulated by choosing an intentional clutter statistics for the mismatch

between the reference samples and the clutter statistics for the samples taken from

the cell-under-test. In the next chapter, actual measured radar data is used [10].

Consider a simple model [12], which assumes that ground clutter is dominant

over other sources of interference. Noise-plus-clutter observations are assumed to

consist of additive contributions of noise and clutter and the noise and clutter are

assumed to be statistically independent. Furthermore, the noise contribution to the

noise-plus-clutter is assumed to be Gaussian distributed and the noise observations

at different antenna elements and in different pulses are assumed to be statistically

independent. We have obtained very similar results using a more complicated mode

[13], but due to the similarity we did not include the results here.

The clutter contributions have a two dimensional power spectral density (psd)

as described by [12]

Pc(ft,Js) = t CT~,d exp [_ ((ft - fct,d)2 + (fs - fcs'd)2)] (4.1)
d=l 27r CT ft,dCT fs,d 2CTft,d 2CTfs,d
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4.1. CASE 1

which is a function of Doppler frequency ft and spatial frequency fs. The psd in

(4.1) consists of K Gaussian-shaped humps, the dth of which is centered at (ft, fs) =

(fet,d, fes,d) and has amplitude CT;,d and a spread in angle and Doppler controlled by

CTJt,d and CTJs,d' The parameters in (4.1) are taken to model the clutter ridge observed

in airborne radar. Using this model, we can easily generate mismatched reference

data by manipulating parameters in (4.1). In our tests we frequently add one extra

hump to the psd corresponding to either the cell-under-test or the reference data.

For convenience of reference, we refer to this model as the simple model. Various

experiments showed that how the mismatch is generated (whether the extra hump

is added in the reference data or added in the cell-under-test and the exact location

where the extra hump is added) will influence the relative performance of STAP

schemes. Next we present some typical examples.

4.1 Case 1

Consider a case where reference data can be described by the simple model with

the parameters set as shown in Table 1 and with K = 5. The noise power in

d (J'e,d (J'it,d CTis,d fet,d fes,d
1 0.5588 0.01 0.01 -0.35 -0.35
2 0.5588 0.01 0.01 -0.2 -0.2
3 9.9837 0.01 0.01 0.0 0.0
4 0.5588 0.01 0.01 0.2 0.2
5 0.5588 0.01 0.01 0.35 0.35

Table 4.1: Parameters of assumed psd for training samples.

the sample observed at each antenna element and due to each pulse is taken to

be 0.001 which gives the clutter-to-noise-ratio GN R = 50 dB. We show the psd

of clutter contributions in Fig. 4.1, where the highest peak is from the mainlobe

and the rest of peaks represent sidelobes. This simplified clutter spectrum is useful

for performance evaluations. It gives a simple representation of the clutter ridge.

Assume that the cell-under-test has the same statistics except that its clutter psd
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4.1. CASE 1

(dB)

1

----.....

Figure 4.1: Clutter power spectral density for simple model.

includes an additional sixth hump with CTc,6 = 2.0, CTft,6 = 0.01 and CTfs,6 = 0.01. We

present three comparison results and in each of them the sixth hump is added at a

different Doppler and spatial frequency. The sixth hump is placed along the clutter

ridge at fct,6 = 0.1 and fcs,6 = 0.1, fct,6 = 0.18 and fcs,6 = 0.18, or fct,6 = 0.3 and

fcs,6 = 0.3. This type of mismatch could model a case where there is a large clutter

return from a few discrete scatters which are not present in the reference data. Such

cases have been observed in recently measured airborne data [14]. Alternatively the

difference between the psd of the cell-under-test and the psd of the reference data

could be the result of false target jamming [4]. For simplicity, a single target is

assumed at rJ = aand w = 0.2, where rJ and ware defined in (2.6) and (2.5).

We compare the probability of detection of different STAP schemes as a function

of signal-to-interference-plus-noise-ratio (SINR), as discussed in [15]. For each ex

ample, two groups of tests are conducted. In group (a), SMI, factored post-Doppler,

element-space pre-Doppler, and ADPCA (with two different pulse grouping configu

rations as shown in Fig. 3.2), are compared for the case where the datacube consists

of 2 elements and 12 pulses. In group (b), SMI, beam-space pre-Doppler, beam

space post-Doppler, and ADPCA (with two different pulse grouping configurations)
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4.2. CASE 2

I I
I I

1_Element-Space Pre-Doppler
, ,

0.9
,

0.9 ,
2_ADPCA (overlap) , I ,
3_ADPCA (no overlap ) I

, ,, ,
4.SMI ,

0.8
,

0.8 ,
5. Element-Space Post·Doppler :

,,
0.7

,
0.7 ,,

c c ,
.9 .Q ,
h6 ~0.6

,,.. I ..
"tl I "tl

00.5 1.2 : 005
~ -, g'
:ii

I!
:ii ,

.ll 0.4 .ll 0.4
,
Ie e I

a. a. ,
0.3 0.3

,
1.Beam-Space Pre-Doppler
2. ADPCA (overlap )

0.2 0.2 3. ADPCA (no overlap )
I , 4.SMI
I ,

5.Beam-Space Post·DopplerI
0.1

I
0.1 I I

I
I

I
I

0 0
-55 -SO -45 -40 -35 -30 -25 -20 -15 -10 -5 -55 -SO -45 -40 -35 -30 -25 -20 -15 -10 -5

SINR SINR
(a) lb)

Figure 4.2: Performance comparison for simple model in case 1 with fct,6 = 0.1 and
fcs,6 = 0.1.

are compared for the case where the datacube consists of 4 elements and 12 pulses.

See Appendix A for the beamforming matrix, as well as for a summary of all the

particular parameters chosen.

Fig. 4.2 through Fig. 4.4 illustrate the results. All the results were obtained by

setting the true false alarm probability to be Pi = 0.0001, and using a Monte Carlo

simulation with 10000 runs. Note that in group (b), the datacube includes more

pulses than in group (a), so that detection performance is generally improved for all

schemes.

4.2 Case 2

Alternatively, mismatch may occur when the psd of the reference data contains an

additional hump which does not exist in the psd of the cell-under-test. Assume

that the psd for the clutter from cell-under-test has the parameters in Table 1 and

that the psd for the reference data contains additional sixth hump with lJ'c,6 = 4.0,

lJ'ft,6 = 0.01 and lJ'fs,6 = 0.01. Results are provided for examples where the extra
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4.2. CASE 2

-, ((""
0.9 , 0.9

1, Beam-Space Pre·Doppler I ;,,, 2.ADPCA (overlap) ,1. Element·Sp~e Pre.lJoppler ,
0.8 , 0.8 3.ADPCA (no overlap) I

"2. ADPCA (overlap ) ,
4.SMI "3. ADPCA (no overlap ) "5. Beam-Space Post·Doppler "0.7 4.SMI 0.7 "c 5. Element·Sp~e Post·Doppler c

I

".Q .Q : ' (
hs

,
g0.6,

5 : ~0;
,

0;
"tl 2.~,§

,
"tl I

°05
,

°05
, ,, , 4 I

~' ~'
" 'I
":;; :;;
"

;'(
]0.4 ]0.4 "
~ ; ~ : 'a. a. ,

0.3
,

0.3 " ,,
,.: I:,, if)0.2 0.2

" '" '
0.1 0.1 " '

- ~ .::>' ,:
0 0

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5
SINR SINR
(a) (b)

Figure 4.3: Performance comparison for simple model m case 1 with fct,6

and fcs,6 = 0.18.
0.18

,,,
0.9

,,,
0.8

0.7
,,

c ,
.Q ,
g0.6

,,
0;
"tl

°05
~' ,:;;
]0.4

,,
0 ,
a: ,

0.3
,

1. Beam·Space Pre·Doppler
2. ADPCA (overlap)

0.2 3. ADPCA (no overlap ), 4.SMII, 5. Beam·Space Post.lJoppler
0.1 I,,

0
-55 -50 -30 -25 -20 -15 -10 -5

SINR
(b)

1

(i ,,
9

,,
1. Element·Space Pre·Doppler

,,
8 2.ADPCA (overlap )

3. ADPCA (no overlap )
4.SMI

7 I 5. Element·Space Post·Doppler ,,
3 , ,

6
, ,, ,

1,2
, ,,

5
,

.4
,,

5 4

.3 ; ,,,

.2

J,/ ,,
.1 ,,

,,

0

o.

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5
SINR
(a)

o.

o.

c
,Q

~O.
0;
"tl

°0
~'

:;;
]0
~
a.

o

Figure 4.4: Performance comparison for simple model in case 1 with fct,6

fcs,6 = 0.3.
0.3 and

23



4.3. DISCUSSION OF CASE 1 AND 2 RESULTS
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Figure 4.5: Performance comparison for simple model in case 2 with fct,6 = 0.1 and
fcs,6 = 0.1.

hump in the psd of the reference data is located at fct,6 = 0.1 and fcs,6 = 0.1,

fct,6 = 0.18 and fcs,6 = 0.18, and fct,6 = 0.3 and fcs,6 = 0.3. As in case 1, we assume

a single target at '" = 0 and tv = 0.2: Fig. 4.5 through Fig. 4.7 illustrate the results.

We conduct two groups of tests under the same condition as described in case 1.

4.3 Discussion of Case 1 and 2 Results

The results indicate that none of the schemes always outperforms all the others.

Generally, 8MI is not good for a case with mismatch between the reference data

and the cell-under-test. If the additional hump is only in the cell-under-test psd

then the additional hump is usually not suppressed by the processing. This may be

the more common mismatch case. In the other case, where mismatch is due to an

additional hump in the reference data psd, things are more complicated. In Fig. 4.5

and Fig. 4.7, 8MI outperforms all the other schemes. A possible explanation is that,

in the cases of Fig. 4.5 and Fig. 4.7, the reference data has statistics which are a good

match to the data from the cell-under-test for angle and Doppler frequencies near the
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4.3. DISCUSSION OF CASE 1 AND 2 RESULTS

target. Since the effect of an extra hump is to overly suppress the signal returns from

the specific Doppler frequency and spatial frequency where the mismatch located,

this won't hurt too much if the target is far from that location. When there is no

mismatch between the psd of the reference data and the psd of the data in cell

under-test, SMI is the optimal scheme. This also explained why SMI's performance

was degraded in Fig. 4.6. In this case, the target's Doppler frequency is near the

mismatch.

ADPCA with overlapped pulses performs well in the most of the cases considered.

This is especially true in those comparisons with element-space schemes. Although

ADPCA has a similar structure to the element-space pre-Doppler schemes, it usually

outperforms them. The reason is apparently based on its pulse canceling structure

embedded in its steering vector, which makes it possible to cancel clutter with

high correlation across several pulses even if this correlation is not present in the

training data. ADPCA without overlapped pulses is not as good as ADPCA with the

overlapped pulses. However, in most the cases, the performance difference between

the two was not too large. Considering the computation saved, ADPCA without

overlapped pulses may still be a good choice in practice. In the results in Fig. 4.3

(b), ADPCA does not perform very well, but in this case none of the pre-Doppler

schemes perform very well.
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Chapter 5

Performance Comparison Using

Measured Data

The multichannel airborne radar measurements (MCARM) program of Rome Lab

oratory is aimed at accelerating the development of STAP technology through the

use of a common set of data. This program provides a database of measured air

borne radar data which was collected by Westinghouse during several Delmarva and

east coast fly-overs. Data used in this chapter comes from MCARM database flight

5 acquisition 575. Detailed information on the MCARM program and the mea

surements is available in [10] and [16]. Acquisition 575 includes non-homogeneous

clutter. An animation of power spectrum of flight 5 acquisition 575 can be found at

http://sunrise.oc.rl.af.milfjava/index.html. We inserted synthetic moving targets

into different range bins to compare the detection performance. This performance

comparison includes ADPCA, factored post Doppler STAP, EFA and JDL. Refer

ence data are selected from consecutive range cells on each side of the cell-under-test

excluding the two closest guard cells. In the ADPCA implementation, each sub-CPI

includes 3 consecutive pulses. Further, consecutive sub-CPIs overlap two pulses as

shown in Fig. 3.3 (b). In the EFA scheme, adaptive processing is applied to 3 adja

cent Doppler bins. In the JDL scheme, we define the LPR as a 3 x 3 square. See

Appendix A for a summary of the parameters chosen for each algorithm tested.

In the first example, we inserted the synthetic target which corresponds to range
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Figure 5.1: Performance comparison for example 1 with Q 3 times the data vector
length.

bin 290 and Doppler bin 10. We employ a normalized test statistic (as in [14]) which

provides a constant false alarm rate (CFAR) characteristic for homogeneous clutter.

Results, in the form ,of the final test statistic, are provided for different range bins

but these results are restricted to Doppler bin 10. In the results which appear in

Fig. 5.1, we set the amount of reference data Q to 3 times the data vector length.

To evaluate the impact of the amount of reference data on detection performance,

we reduce the amount of reference data Q to twice the data vector length. After

the modification, the performance of the different schemes is shown in Fig. 5.2. We

further reduce the amount of reference data Q to be equal to the data vector length.

We show the performance in Fig. 5.3 for this case.

In the second example, the synthetic target is inserted which corresponds to

range bin 415 and Doppler bin 10. Similarly, we provide Fig. 5.4 through Fig. 5.6,

which illustrate performance for various Q.
In measured data cases, it is hard to evaluate exactly how the statistics of the ref

erence data and the statistics for the data from the cell-under-test are mismatched.

A rough idea can be obtained from considering the energy fluctuation which occurs
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Figure 5.4: Performance comparison for example 2 with Q 3 times the data vector
length.
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Figure 5.5: Performance comparison for example 2 with Q 2 times the data vector
length.
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Figure 5.6: Performance comparison for example 2 with Q same as the data vector
length.

over range. In Fig. 5.7, we plot the energy in range bin 150 through 400 at Doppler

bin 10 with the target signal in example 1. Here the target is located at range bin

290. In Fig. 5.8, we plot the energy in range bin 300 through 550 at Doppler bin 10

with the target signal in example 2. The target in example 2 is located at range bin

415. In Fig. 5.8, there is extreme variation in energy which includes step changes

and linear variation in clutter power.

We note that ADPCA appears significantly more robust than EFA, JDL and

factored post-Doppler in the results for example 1. Note that ADPCA is not affected

significantly by the amount of reference data used. After reducing the amount of

reference data used, ADPCA still performs well. The performance of all the other

schemes degraded quickly as Q was reduced. To further explore ADPCA's potential,

we reduced the amount of computations needed in ADPCA by estimating only one

covariance matrix per range bin. We used the covariance matrix estimated for the

first sub-CPI for all of the rest of the sub-CPIs corresponding to the same range

bin. In this test, we set Q to 3 times the data vector length. As shown in Fig. 5.9

ADPCA still performs very well in this example.
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Figure 5.7: Energy for acquisition 575 and range bin 150 through 400 (target at
range bin 290).
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Figure 5.9: ADPCA with reduced complexity for the case where the target at
Doppler bin 290.

\, ,
1\ ,I, \ ,I

I \
", ,
", ,
"I \ ,I

~

, 1\ I , ' / \,
\' " ' \ I I 1 \, , \ ,

1\ \I \ , ' I , \,
/ I \ I 'Ic I , \/ I

/ , , I
,

\ I
\ I ,\

"
,, , , , I , ,

\ I
I , , \ I,

/I
"

I
,

I I , I
, \ \ I

"
I / / 'I,\ , I / I

, , I , I/ I,
'1 l~\/ \,'I 1 I

, I, I I , ,
I , \ I , , I , I

/ , ,
'I 'I \ I I, ,I 1 , , ,, I / \ , , , I

, I , , I
, , I II

I' '/
I

'.' I, \
, , "I

I' , I 'I
,

, '"I'
" ,I

\ I
, I"

I' II
II

I , I
I' 'I I, I \,, I, I'

'I " " "

"
I " ,

I, I' I

I I' ,:,

-5

o

-20

-25
385 390 395 400 405 410 415 420 425 430 435 440 445 450 455

-10
iD
:3-
~
CIl
:2

-15

Figure 5.10: ADPCA with reduced complexity for the case where the target at
Doppler bin 415.

33



However, in example 2, ADPCA fails to provide a distinguishable difference

between the magnitude of the output at the target bin and the next highest com

peting clutter peak. Some of the other schemes did work well when there is enough

quality reference data. Factored post-Doppler and EFA work well in this example.

As in example 1, we tried testing ADPCA's performance when the computation is

reduced by estimating one covariance matrix per range bin. Fig. 5.10 illustrates

the results. To our surprise, these results are better than the results we obtained

before we reduced the amount of computation. Similarly, we find that in Fig. 5.5

and Fig. 5.6 JDL's performance is improved after the amount of reference data is

reduced. Reducing the amount of reference data used will not always cause degra

dation in performance in a severely non-homogeneous clutter environment. This

is because the number of homogeneous range samples for covariance estimation is

limited. Thus, increasing the amount of reference data used could cause degrada

tion. Actually, it is also the quality of the reference data, not just the amount of

the reference data which determines the accuracy of the covariance estimation. In

a severely non-homogeneous clutter environment, the situation could be subtle, a

small part of the reference data could be dramatically different from the other part

and it could distort the estimation. JDL uses the least amount of reference data

of all the four schemes under comparison and it seems it is also the one most af

fected by the change in the amount of reference data. ADPCA does not work well

in this example and we believe the reason is related to the step changes in energy

near range bin 435 as shown in Fig. 5.8. The normalization of the test statistic

which was imposed to achieve CFAR may also have contributed partially to the

poor performance of ADPCA and JDL.
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Chapter 6

Conclusion

Our results show that the performance of 8MI can be severely degraded in a non

homogeneous environment. This is especially true for cases where the reference data

used in the estimation of interference-pIus-noise statistics does not have statistics

which closely match those for the data in the cell-under-test. However, a few 8TAP

schemes appear to outperform 8MI in these cases.

ADPCA is one of the promising schemes which performs well in many of the

cases studied in this thesis. However, there are some cases where ADPCA per

forms poorly. Using the knowledge we gained in the current research, we intend

to develop generalizations of ADPCA, which will provide even better performance

in a practical non-homogeneous clutter environment. One possible approach for

developing these generalized schemes is to search for optimal pre-processing and

post-processing transformations for cases with inaccurate parameter estimations.

Modifying the steering vector so that it can work most effectively with theses trans

formations would also be interesting to study.
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Appendix A

Most of the parameters used in the comparisons are listed in the following tables.

Here, we use M to denote the number of pulses per CPI, N to denote the number

of elements. Definitions of ApI Bp and 1m can be found in (3.1) and (3.5) where

pre-processing and post-processing are defined. We define FK as a K x K DFT

matrix and 1K,p is its pth column. l r stands for an r x r identity matrix. The

notation Olxm refers to an 1x m matrix of zeros. Dp is used to denote the Doppler

bin where target is located. NA stands for Not Applicable.

Scheme M N p Ap Bp 1m
SMI 12 2 0 112 12 NAlOpX3 ]ADPCA (overlap) 12 2 0 ... 9

~;9-P)X3
12 11O,m

l03pX3 ]ADPCA (without overlap) 12 2 0 ... 3
~;9-3P)X3

12 14,m

l0", ]Element-Space Pre-Doppler 12 2 0 ... 9
~;9-P)X3

12 110,m

Factored Post-Doppler 12 2 0 !l2,Dp 12 NA

Table A.l: Parameters for comparison tests in Chapter 4 group (a).
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Scheme M N p Ap Bp fm

SMI 12 4 0 112 14 NA

[ 0,X3 ]
ADPCA (overlap) 12 4 0 ... 9

~;9-P)X3
14 flO,Dp

[ 0~X3 ]ADPCA (without overlap) 12 4 0 ... 3

~;9-3P)X3
14 f4,Dp

[ 0"3 ]

[1 ~]Beam-Space Pre-Doppler 12 4 0 ... 9

~~9-P)X3
flO,Dp

Beam-Space Post-Doppler 12 4 0 h2,Dp [1 I] NA

Table A.2: Parameters for comparison tests in Chapter 4 group (b).

Scheme M N p Ap Bp fm

Factored
Post-Doppler 128 22 0 f128,Dp 122 NA

EFA 128 22 0 [f128,Dp-1, f128,Dp, f128,Dp+l] 122 NA

[ 0,X3 ]ADPCA 128 22 0 ... 126

~;125-P)X3
122 h26,Dp

JDL 128 22 0 [f128,Dp':"'1, f128,Dp, f128,Dp+l] * NA

Table A.3: Parameters for comparison tests in Chapter 5.

*MCARM data is not collected by a uniformly spaced linear antenna array, so

its beamforming matrix is relatively complicated. This matrix is provided with the

MCARM database.
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