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ABSTRACT 

Transfer of the external loading such as shock or vibration to whole body could 

cause harmful or beneficial effects, depending on its nature.  Two contradicting effects 

were investigated with macro and micro scale.  In macro scale, the vibration absorbing 

capability of the human foot and ankle system (FAS) was investigated as the starting 

point of the whole body vibration using experimental method (transmissibility and phase 

delay measurement) and a model development.  For biological cells, Finite Element 

modeling was utilized for modal analysis of an adherent cell in micro scale. 

Vibration transfer characteristics of the FAS have been studied under vertical 

sinusoidal vibration (10-50 Hz with 5 Hz increments and 17.9 m/s2 (peak to peak)) as a 

function of the external mass and foot and ankle postures.  The results showed that the 

FAS played an important role in vibration transmission since the transmissibility of the 

FAS was dominant in lower leg.  It was also found that the applied mass made the system 

stiffer and less damping, and the increase of the applied mass led to the increase of the 

resonant frequency from 20 to 30-40 Hz.  This result explains that the overweight or 

obese persons can get more vibration transmission to the whole body when they are 

exposed to higher frequency (30-40 Hz).  Furthermore, it supports that the resonant 

frequency of overweight or obese persons is similar to a major frequency range of heel 

strike, and overweight and obesity could be a potential injurious effect.   

As the beginning step of a model development, system identification based on 

black box models (linear polynomial structures and state-space models) was utilized for 

understanding the transfer function on the basis of the acceleration measurement data of 

the foot and ankle exposed to vertical excitation.  The identification of black box models 
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showed good estimation results (60-98 %).  The fitting error of the lower frequency (10 

and 15 Hz regardless of the applied mass conditions) was observed because of nonlinear 

behavior of the viscoelastic material of the foot and ankle system.  The identified state-

space model gave the guide for order selection (2-8) of the grey box model in the next 

step. 

The dynamic model of the foot and ankle exposed to vertical vibrations has been 

developed by deriving analytical dynamic equations that include viscoelastic material 

properties.  Using parameter sensitivity analysis with respect to the states, complex 

derived equations were simplified as a two degrees of freedom model with linear spring 

and nonlinear damping at the fat pad and talocrural joint.  Unknown parameters of the 

dynamic model were estimated by the parameter estimation method (optimization 

algorithm) by fitting the experimental data.  The estimated parameters demonstrated that 

the fat pad dissipated more energy of the applied vibration than the talocrural joint and 

the applied mass and frequency increase affected the stiffness increase at the ankle joint 

and fat pad.  The derived model is expected to be utilized for estimating some other 

frequencies and loading conditions. 

An adherent single cell was modeled as a simple dome to extract the natural 

frequency and mode shapes of a cell in the culturing environment using Finite Element 

modal analysis.  Simulation results showed that the adhered cell shape did not affect the 

modal analysis results.  However the natural frequency was increased proportionally to 

the increase in Young’s modulus.  It is supposed that the natural frequency of cells (18-25 

Hz) is closely related to the optimal vibration range (20-60 Hz) for bone growth. 
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CHAPTER 1 

1 Introduction 

1.1 Motivation 

The effect of vibration on the human body can be classified as being good or bad 

similar to the examples of vibration physics; sound of instrumentation would be a good 

vibration, and car or machine vibration would be an example of bad vibration.  Human 

beings are always exposed to external force environment intentionally or involuntarily 

such as various vibrations or shocks during routine life.  The effect of this external force 

to the human body has been studied for more than 50 years from the point of view of the 

disadvantages.  Many studies described the dynamic responses of body vibration with 

measuring transmission at the specific location of body and explained the relationship 

between vibration and harmful effects.  Recently, the favorable effect of human body 

vibration was introduced by whole body vibration therapy or dynamic vibration therapy.  

It has been utilized to enhance bone mineral density and muscle strength.   

The foot and ankle system is an important body part as the starting location of 

whole body vibration.  It is necessary to study how the human body responds to the 

external force and how to model its dynamic response.  The study of biodynamic 

response of the foot and ankle system will be helpful to understand the adverse and 

favorable effects of whole body vibration.  In addition, the view of whole body vibration 

could extend to micro scale such as the vibration of cells since the growth of bone cells is 

closely related to the external force environment.  These macro and micro studies are 

expected be broaden the knowledge of whole body vibration. 
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1.2 Overview of the structure and function of the foot and ankle [1, 2] 

The foot and ankle joints consist of 24 bones, 33 joints, and a number of muscles, 

tendons, and ligaments. The structure of the foot and ankle can be divided into three parts: 

the forefoot, the midfoot, and the hindfoot (Figure 1.1).  The forefoot is the front part of 

the foot that consists of five phalanges and five metatarsal bones.  The midfoot has the 

cuboid, navicular, and three cuneiforms at the center of the foot.  Two bones, the 

calcaneus and talus in the rear foot compose the hindfoot.  These three parts create the 

arch of the foot; the head of metatarsals and the bottom of the calcaneus are connected 

with a broad and thick tissue, which is called the plantar aponeurosis.   

 

Figure 1.1 Schematic representation of the plantar aponeurosis and the long plantar 
ligament [1]. 

 

There are three main articular joints in the human foot and ankle: the talocrural 

(ankle), subtalar (talocalcaneal), and midtarsal (transverse tarsal) (Figure 1.2).  The 

talocrural joint is located between the talus and tibia and between the fibula and tibia, and 

its axis responsible for the rotation of the foot such as plantar flexion, dorsiflexion, 

abduction, and adduction.  The talocalcaneal joint, located between the talus and 

Forefoot 

Midfoot 

Hindfoot 
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calcaneus, has an axis from the bottom of calcaneus to the front talus and allows the 

supination and pronation.  The midtarsal joint is composed of two articulations: the 

articulation between the talus and navicular and the articulation between the calcaneus 

and cuboid.  

 

Figure 1.2 Talocrural, talcocalcaneal, and midtarsal joint [2]. 

 

The foot has three arches: the medial longitudinal arch, lateral longitudinal arch, 

and transverse arch (Figure 1.3).  These arches are maintained by the shape of the tarsal 

and metatarsal bones, ligaments and plantar fascia, and they contribute to support and 

shock absorption.  According to the height of the medial longitudinal arch, the foot can 

be rigid or flexible, and it is classified as a normal arch foot, a high-arched foot (pes 

Midtarsal 
joint 



6 

cavus), and a flat-arched foot (pes planus).  High-arched feet have poor shock absorbing 

capability because they are generally more rigid structures.  Low-arched feet have 

flexible structural characteristics, which can produce an excessive pronation. 

 

Figure 1.3 Arches of the foot [3]. 

 

1.3 Overview of the effect of vibration on human [4] 

Since humans use more powerful tools in work environments, these tools tend to 

transfer more vibration during those cases.  As a result, vibration is naturally dissipated to 

environments and some of the vibrations are transmitted to the body.  People experience 

the general case of whole body vibration during routine life such as riding transportation 

system.  The external vibration generated from shaking conditions transfers through the 

support point of a sitting or standing human to the whole body.  In the case of the 

standing condition, the external vibration is transmitted to the whole body through the 

foot and ankle as the starting portion of human body.  
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The perception of discomfort about vibration depends on the magnitude and 

frequency of vibration.  However, there are some severe conditions unlike the vibration 

from routine life.  For example, when human body is exposed to vibration from severe 

working conditions such as driving an industrial vehicle or agricultural machinery, and 

working with heavy machinery, it could result in a health risk and musculoskeletal 

disorder at specific joints.   

In contrast to the adverse effect of whole body vibration, whole body vibration 

therapy (dynamic vibration therapy) is utilized in the fitness and health industry for 

beauty, physical therapy, rehabilitation, and so on.  The current whole body vibration 

equipment has a vibrating platform as the vibration source.  The vibration type is 

controlled by the frequency, amplitude, and the direction of the vibrating platform.  The 

vibrating platform types have different features depending on the purpose of whole body 

vibration: generating stretch-reflex contraction in muscle fibers for the positions’ training 

program, working at various speeds for physiotherapy, working at low speed/amplitude 

for preventing osteoporosis, improving blood circulation etc. [5, 6, 7].  

Although there are benefits in the whole body vibration therapy, it is still 

considered controversial because of the adverse effects of human body vibration as 

shown in the previous paragraph.  Thus, it is necessary to understand both favorable and 

adverse effects of whole body vibration.  

 

1.4 Overview of the system identification [8, 9] 

System identification is a theory to build mathematical models based on the 

observed data of systems through the experiments.  A system measures an observable 
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output when it is affected by the external signal as input (Figure 1.4).  The application of 

system identification is broad from mechanical to biological systems.  

 

Figure 1.4 A system with output y, and input u, measured disturbance w, and unmeasured 
disturbance v [8, 9]. 

 

There are two approaches to identify the system: black box modeling and grey 

box modeling.  Black box modeling is able to define the model form and the coefficient 

of the extracted model using measured input and output without building the exact 

mathematical model.  However, if the physical insight and knowledge are available, and 

the derivation of the mathematical model is possible, grey box model can estimate the 

unknown physical parameters in the derived equation with measured input and output.   

The general procedure of system identification is shown in Figure 1.5.  The 

process is performed in an iterative way and trial and error method.  At first, an 

experiment is designed for the selected model, and the measured data is collected.  The 

collected data is evaluated and preprocessed for the next step.  Then, the type of model is 

chosen (black box model) or derived (grey box model) with trial and error.  The selected 

model is identified, or unknown parameters of the derived model are estimated.  The 

identified system is evaluated with the observed data.  If the evaluation is not satisfied 

with the defined criterion, the procedure of system identification is going to the first step 

for a new iteration. 

System 

w 

u 

v 

y 
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Figure 1.5 General procedure of System Identification. 

 

1.5 Organization of Thesis 

This thesis consists of two parts of studies with five chapters.  The first part 

described the dynamic characteristics of the foot and ankle structure exposed to vertical 

vibration from Chapter 2 to 5. 

Chapter 2 reports the dynamic response of the human foot and ankle to vertical 

vibration with the transmissibility measurement between the Base and Medial Malleolus, 

between the Base and Tibial Tuberosity, and between the Medial Malleolus and Tibial 

Tuberosity.   

Experiment 
Design 

Data Model structure Selection 
(Derivation of physical equations) 

Choose criterion to fit 

Model calculation 
(Parameter estimation)

Validation 
No

Yes
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Chapter 3 reports the foot and ankle system identification with black box models 

based on the experimental results. 

Chapter 4 reports the development of the foot and ankle system exposed to 

vertical vibration and estimation of unknown parameters in the suggested models. 

In the second part, the cell adhered on the culturing plate was investigated to 

understand the dynamic characteristics of an adhered cell in the view of micro scale. 

Chapter 5 reports natural frequencies and mode shapes of a single cell adhered to 

the cell culture plate using Finite Element modal analysis. 

 

Equation Chapter 2 Section 1 
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CHAPTER 2 

2 Dynamic response of human foot and ankle to vertical 

vibration 

2.1 Introduction 

The human musculoskeletal system is continuously exposed to shock and 

vibration generated from walking, running, jumping, living and working environments.  

Those external loads are transferred to the whole body through the interference between 

parts of human body.  They are attenuated by natural shock absorbers such as soft tissues 

and bones.  During this process, the external mechanical loading induces internal forces 

on the human musculoskeletal system and sometimes these forces cause detrimental 

effects such as injury or disease.  The shock and vibration absorbing capability of the 

human musculoskeletal system is an important function since it is closely associated to 

the possibility of the above mentioned adverse effects. 

The relationship between the external loading and their harmful effects has been 

studied extensively [10-14].  Folman et al. [10] examined the frequency of the cyclic 

impact loading resulting from the heel strike during normal walking.  It was concluded 

that the impact force generated at heel strike might cause the fatigue failure of the 

musculoskeletal system.  Holt et al. [11] investigated the shock transmission at the joints 

and segments during load carriage and showed the potentially injurious effects during 

load carriage at higher walking speed.  Radin et al. [12-14] applied the repetitive impulse 

loading to the animal joint and studied its effect on cartilage. They found that the applied 

loading was an essential factor in splitting, wearing and finally preceding to the articular 
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cartilage degeneration and osteoarthritis.  Voloshin and Wosk [15] established that the 

impact waves generated by repetitive loading during gait were propagated through the 

whole body and were attenuated by the natural shock absorbers such as soft tissues and 

bones.  It was shown that the low back pain correlated with the reduced shock attenuation 

capacity of human musculoskeletal system [15].  Shock absorbing capacity during 

locomotion was explored at various locations of the human musculoskeletal system (knee, 

medial femoral condyle, and forehead) of young and healthy subjects [16]. 

Similarly to the impact loading, the transmission of vibration through the whole 

body may produce harmful effects on the human musculoskeletal system.  The whole 

body vibration studies have focused on investigating the dynamic response and the 

natural frequency of specific parts of the human body such as pelvis, spinal column, hand, 

shoulder, neck, and head while the whole human musculoskeletal system was exposed to 

various frequencies [17-23].  Panjabi et al. [17] measured the transmissibility of spinal 

columns (the lumbar vertebrae and sacrum). The measured average resonance frequency 

of the lumbar vertebrae was 4.4 Hz. It was expected that those results could help reduce 

the possibility of the harmful effects by controlling the input vibration.  Matsumoto and 

Griffin [18, 19] measured the dynamic response of seated and standing subjects at the 

thoracic vertebras, the lumbar vertebras, the pelvis, the iliac crests, and the knee under the 

vertical whole body vibration. They demonstrated the upper body motion of the seated 

human body at the principal resonance frequency according to the input vibration and 

elucidated that a small bending at the lumbar spine and the lower thoracic spine might 

cause the maximum translation motion of the spine [18]. The standing human body 

exposed to vertical vibration had been studied to evaluate the influence of the leg posture 
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and the vibration amplitude on the human body vibration transfer [19].  It was shown that 

the peak in the apparent mass in the standing case was similar to the seated case.  The leg 

bent posture and the one leg posture showed the attenuated vibration transmission at 

higher frequencies.  The decrease in the resonance frequency of normal posture was 

observed as the vibration magnitude was increased.  Harazin and Grzesik [20] found that 

the ranges of resonant frequency and the transmissibility were dependent on standing 

posture during whole body vibration.  Paddan and Griffin [21] reviewed the 

transmissibility of translational vibration between the seat and the subjects’ head 

according to the direction of input vibration and provided the median value of the 

transmissibility in each direction.  Hinz and Seidel [22] investigated the characteristics of 

the dynamic response at head, acromion, and upper trunk during whole body vibration.  

At the resonance frequencies, the amplitudes of maximum accelerations were 

significantly higher than that of minimum accelerations.  The nonlinear dynamic response 

of human body was observed.  Mansfield et al. [23] measured the apparent mass and 

absorbed power when the human body was exposed to the random vibration, the repeated 

shocks, and combination of these.  They found out that the type of the applied input did 

not influence the dynamic response of the human body.  In addition, it was found that 

resonance frequencies decreased with the increase of vibration magnitude (softening 

effect) and shock stimuli resulted in higher resonance frequencies (stiffening effect). 

They also showed that the effect of the shock was more severe than the random vibration 

on the basis of the total absorbed power. 

However few studies related to the dynamic response to the external vibration of 

the Foot and Ankle System (FAS) measured the natural frequency, the stiffness, and the 
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damping coefficients of the muscle and soft tissue of the lower limbs [24, 25] even 

though the FAS is the starting point of the whole body vibration.  Aruin and Zatsiorsky 

[24] measured the stiffness and damping coefficient of the ankle joint muscle with 

vibration and impact test.  The stiffness and damping constant were respectively 

2.67±0.48 × 104 N·m-1and 811±201 N·s·m-1 for impact case and the 1.49±0.35 × 104 

N·m-1 and 430±36 N·s·m-1 for vibration case.  The frequency response function of the 

human soleus muscle was measured by Bawa and Stein [25].  They showed that the 

human soleus muscle was similar to the second order low pass filter and the natural 

frequency and damping ratio were varied according to the angle of the ankle. 

The purpose of the present study was to investigate a structural dynamic response 

of the FAS exposed to the vertical vibration.  Similarly to some of the whole body 

vibration studies, the transmissibility from the driving point to the Medial Malleolus 

(MM) and the Tibial Tuberosity (TT) were measured using the vertical sinusoidal 

vibration input.  The resonance frequencies were identified for each case.  In addition, the 

influence of the external static load applied at the lower leg and FAS postures, such as the 

plantarflexion and the dorsiflexion, on the dynamic characteristics of the FAS were 

investigated. 

 

2.2 Methods 

2.2.1 Subjects 

The biodynamic response of human body is usually described using the driving 

point mechanical impedance, the apparent mass or the transmissibility [26].  In this study, 

the transmissibility was utilized to describe the vibration transmission through the ankle 
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and foot system.  The experimental procedure for human subjects was followed the 

regulations of Lehigh University’s Office of Institutional Research.   

 

Table 2.1 Physical Parameters of the subjects 

Subjects Age (yr) Height (m) Mass (kg) 
1 21 1.70 50.8 
2 22 1.75 77.11 
3 26 1.75 79.38 
4 18 1.60 63.50 
5 25 1.75 76.66 
6 24 1.60 45.36 
7 23 1.65 54.43 
8 20 1.75 70.31 
9 20 1.83 70.31 
10 22 1.75 77.11 
11 23 1.83 81.65 
12 27 1.83 88.00 
13 22 1.63 61.23 
14 21 1.83 79.38 
15 22 1.70 74.84 
16 27 1.85 72.57 
17 22 1.78 61.23 
18 22 1.88 72.57 
19 20 1.78 71.21 
20 20 1.70 86.18 

Mean 22.30 1.75 70.70 
STD 2.43 0.08 11.44 
Min 18 1.60 45.36 
Max 27 1.88 86.18 

 

Twenty healthy male and female subjects with no medical history of severe or 

permanent ankle injury or ankle arthritis were recruited with the approval of Lehigh 

University Institutional Review Board.  The subjects mean age was 22.4 year old with the 

mean height and mass of 1.75 m and 70.7 kg, respectively (Table 2.1). The subjects were 

asked to wear short pants to prevent any disturbances during the test.  Prior to the test the 
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procedure was explained to each subject and they were asked if there was any 

inconvenience.  All subjects signed the informed consent form.  

 

2.2.2 Experimental set-up 

The harmonic vibration test (a single frequency excitation at a time) in the range 

of frequencies from 10 to 50 Hz was used to characterize the transmissibility of the FAS.  

The subjects were sitting in upright position on a chair placed on the top of a table next to 

a 1200 pound-force shaker table connected with an ultra-high-powered, precision mono 

amplifier1.  The subject’s lower leg was placed on a rigid platform attached to the shaker 

table.  The subject was asked to keep his foot on the flat platform in a position similar to 

free standing.  The subject’s foot and lower leg were set to be perpendicular to one 

another, as well as the lower leg and the thigh (Figure 2.1). 

The sinusoidal input vibration was controlled by a frequency generator.  The input 

acceleration was measured by a piezoelectric accelerometer (PCB Piezotronics, Inc., type 

308B) mounted on the plate attached to the shaker table. The skin mounted accelerometer 

method was utilized to measure the output accelerations [15].  Two piezoelectric 

accelerometers (PCB Piezotronics, Inc., type 303A) were placed externally on the MM 

and TT; they were secured by Velcro straps.  Accelerometers were connected to the data 

acquisition device (Measurement Computing, PMD-1208FS) and raw voltages were 

collected by a computer.  As was shown by several studies [15, 16], the effect of the skin 

under the accelerometer was negligible since the utilized accelerometer had the low mass 

of 2.36 g. 

                                                            
1 Crown Macro-Tech 10000 
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Figure 2.1. The schematic of experiment setup. 

 

The frequency range was selected to be in a range of 10 to 50 Hz with 5 Hz 

increments. The mean amplitude of peak to peak acceleration was selected to be 17.9 

m/s2 to assure absence of the free falling effect.  The acceleration for each frequency case 

was measured with at 1 kHz sampling rate for 10 seconds.  Three different conditions (no 

extra mass, with added 2.3 kg mass, and 4.5 kg mass) and three postures of the FAS (the 

midstance, plantarflexion, and dorsiflexion) were considered to characterize the dynamic 

behavior of the FAS.  Additional masses of 2.3 and 4.5 kg were applied to the top of the 

knee (Figure 2.1).  Because the plantarflexion and the dorsiflexion are dependent on the 

subject’s foot length (from the head of metatarsal to the heel pad), 10 degrees, which is 

based on the range of motion average, were applied at each of the both cases (Figure 2.2).  

For plantarflexion case, the heads of metatarsals and phalanges are placed on the plate 

and the height of the heel was raised with plantarflexion (10°).  For dorsiflexion case, the 
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heel pad was contacted to the flat plate and the forefoot was kept in the status of 

dorsiflexion (10°). 

 

 

Figure 2.2. Midstance (a), plantarflexion with 10 degree (b), and dorsiflexion with 10 
degree (c). 

 

2.2.3 Data Analysis 

The high frequency noise was reduced by the 5th order low pass filter over 100 

Hz.  The peak to peak method was utilized to calculate the transmissibility between the 

input and the output.  It was defined as the ratio of the input ( inAccel ) and the output 

acceleration ( outAccel ) of the MM, and the TT. 
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where X  is the input, and Y  is the output, 0  is the fundamental frequency, n  is an 

integer multiplier of 0 , N  is number data points, k  is the discrete variable, and t  is the 

time interval [27].   

 

2.3 Results 

2.3.1 Effect of the load on transmissibility and phase 

The transmissibility and phase between the base and MM (MB), between the base 

and TT (TB) as a function of loading conditions are shown in Figures 2.3 and 2.4 for all 

subjects.  These plots show spline fit to the actual experimental data that was acquired at 

5 Hz intervals.  The heavy line is an average of all subjects.  The transmissibility results 

below 10 Hz were not available in this study due to the limitations of the experimental 

setup.  However, on the basis of transmissibility trend, the principal resonant frequency 

could be assumed to be below 10 Hz for every case.  This assumption is supported by 

studies that measured the vibration transmissibility at the ankle and knee [18-20, 24, 25, 

28-30].  Even though there is a large inter-subject variance in dynamic response, the 

general shape and the frequency of the transmissibility peak has a similar trend between 

subjects for each condition.  A broad peak of transmissibility, that is a resonance 

frequency, was observed above 10 Hz in every case. 
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Figure 2.3. MB transmissibility and phase in three mass cases for all subjects. 

 

While some subjects showed unclear peak, the observed resonance frequencies of 

most subjects for the MB with no extra mass are varied between 20 to 35 Hz, and they 

are increased to 25-35 and 30-40, respectively, for the cases of 2.3 and 4.5 kg added mass 

(Figure 2.3).  The transmissibility for MB is larger than unity over all frequencies for 

almost all subjects and mass conditions.  The phase lag for MB was increased as 

frequency was increased.  It had a relatively large slope in the same frequency range 

where broad peaks of the transmissibility were observed.   
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Figure 2.4. TB transmissibility and phase in three mass cases for all subjects. 

 

With respect to TB, in several subjects a peak was shown at 20 and 25 Hz for the 

case of no extra mass, while both additional mass cases caused a broad peak around 20 to 

40 Hz for all subjects (Figure 2.4).  The variation of transmissibility magnitude for TB is 

larger at 10 Hz and near the observed resonance frequency comparing with higher 

frequencies around 40-50 Hz.  The transmissibility for TB is less than one above 30, 35, 

and 40 Hz, respectively, for no extra mass, 2.3, and 4.5 kg mass.  Similarly to the phase 

delay for MB, the phase delay for TB was increased with increase in the frequency.   

The mean transmissibility and phase delay for twenty subjects for MB, TB, and 

TM (between the MM and TT) were calculated to analyze the influence of the applied 

mass (Figure 2.5).  Statistical tests ( 0.05p  ) were utilized to identify the peak in 

10 20 30 40 50
0

1

2

3

4

5

6

7

10 20 30 40 50 10 20 30 40 50

T
ra

ns
m

is
si

bi
lit

y

TB with no extra mass

Frequency (Hz)

TB with 2.3 kg mass TB with 4.5 kg mass

10 20 30 40 50

-300

-200

-100

0

P
ha

se
 (

D
eg

re
e)

10 20 30 40 50

Frequency (Hz)

10 20 30 40 50



22 

transmissibility and compare the transmissibility with unity; paired t-test was used for 

mean values of peaks, and one-sample t-test is for the unity check.  Additionally, one-

way analysis of variance ( 0.05p  ) was used for the comparisons between loading 

conditions.  The transmissibility for the MB without additional mass decreased with the 

increase of frequency.  It was greater than unity below 40 Hz and close to unity at 45 and 

50 Hz.  It showed a plateau at 15-25 Hz range since the mean transmissibility at 20 Hz is 

not significantly greater than that at 15 and 25 Hz, but it was significantly greater than in 

the 30 Hz case. 

The application of external mass caused the observed resonance frequency for 

MB shift to higher values, from 15-25 Hz to around 30-40 Hz.  In 2.3 kg case, the 

amplitude at 30 Hz was statistically greater than that at 25 and 40 Hz, but it was not 

significantly greater than that at 35 Hz (Figure 2.5).  As a result, the observed resonance 

frequency in the 2.3 kg case is located at 30-35 Hz range.  The resonance for 4.5 kg mass 

occurred at 35-40 Hz range; the amplitude at 35 Hz was statistically greater than the 

value at 30 Hz and 45 Hz and it was not significantly greater compared with the 

amplitude at 40 Hz.  For both loading cases, the transmissibility is larger than unity at all 

frequencies. 
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Figure 2.5: The mean transmissibility and phase for MB, TB, and TM in three mass cases. 
Vertical arrows show the observed resonance frequencies. 

 

The transmissibility for TB is significantly different between three mass cases at 

10 Hz.  For TB, the transmissibility without extra mass gradually decreased without a 

peak or flat part, and a broad peak of the transmissibility is located at 25 and 30 Hz for 

both cases of 2.3 and 4.5 kg added mass; for both masses, the amplitudes at 25 and 30 Hz 

were statistically greater than the values at 20 and 35 Hz (Figure 2.5).  Two additional 

mass cases have similar amplitude in the range of 15 to 35 Hz since the difference 

between both cases is not significant in that range.  The transmissibility for TB is less 

than unity below 40 Hz in no extra mass case, below 45 Hz for additional 2.3 kg mass, 

and at 50 Hz for additional 4.5 kg mass.   
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The TM transmissibility does not have a resonant peak and is below unity above 

25 Hz for no extra mass and above 40 Hz for both cases with added mass (Figure 2.5).  

The transmissibility gradually decreased in no additional mass case but has a plateau 

from 10 to 25 Hz in the additional mass case.   

The phase delay is naturally increased as the measuring point becomes farther 

away from the input point.  The phase delay difference of both MB and TB between the 

no extra mass case and the additional mass case is gradually increased and it is maximum 

around 30-35 Hz, where peaks are observed as resonant frequencies, and then decreased 

again.  The phase difference between applied mass groups was small at the lower (10-15 

Hz) and higher frequency range (45-50 Hz), but it was larger in the mid frequency range 

(20-40 Hz).  The average phase for all cases shows that the slope is the largest at the 

observed resonant frequency. 

 

2.3.2 Effect of the posture on transmissibility and phase 

The influence of the FAS posture on the transmissibility for MB and TB are 

shown in Figures 2.6 and 2.7.  Even though some subjects show a peak of the 

transmissibility, each posture case has a similar trend and variation without a resonance 

frequency for both MB and TB.  The variance of transmissibility is higher at lower 

frequencies and is decreased as the applied frequency is increased in every case.   

The results for MB for three postures show that there is no clear peak in many 

subjects while broad peaks were observed at 20-35 Hz and 20-30 Hz, respectively, for 

plantarflexion and dorsiflexion in several subjects (Figure 2.6).  The transmissibility for 

almost all subjects is larger than one.  The frequencies, where the transmissibility for 
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subjects is below one, are 40 Hz for midstance and plantarflexion and 45 Hz for 

dorsiflexion.  The dorsiflexion posture shows that some subjects have higher 

transmissibility for MB under 15 Hz than midstance and plantarflexion.  The 

transmissibility for TB has a different trend at lower frequency for each posture; its 

variance is widely spread in the frequency below 30 Hz and then decreased when the 

frequency is increased (Figure 2.7).  The phase delay is increased with the increase of the 

applied frequency.  The variance of phase delay for MB is larger than that for TB above 

20 Hz.  Specially, the MB with plantarflexion shows the larger variance above 30 Hz 

frequency. 

 

Figure 2.6. MB transmissibility and phase in three posture cases for all subjects. 

 

10 20 30 40 50
0

1

2

3

4

5

6

7

10 20 30 40 50 10 20 30 40 50

T
ra

ns
m

is
si

bi
lit

y

MB with midstance

Frequency (Hz)

MB with plantarflexion MB with dorsiflexion

10 20 30 40 50

-300

-200

-100

0

P
ha

se
 (

D
eg

re
e)

10 20 30 40 50

Frequency (Hz)

10 20 30 40 50



26 

 

Figure 2.7. TB transmissibility and phase in three posture cases for all subjects. 

 

The mean transmissibility and phase delay for three different postures for MB, TB, 

and TM are compared in Figure 2.8.  The resonance frequency was not observed in 

dorsiflexion while plantarflexion showed a plateau at 15-25 Hz.  The FAS posture 

affected the transmissibility only at 10 Hz for MB and TB.  However, at other 

frequencies, the transmissibility for all postures for MB and TB were not significantly 

different.  The transmissibility for TM was not significantly different at all frequencies.  

Only the transmissibility for the MB with all postures was close to unity or less at 50 Hz.  

For TB the transmissibility of all postures was decreased below unity above 40 Hz, and 

the transmissibility for TM is less than unity above 25 Hz.  For MB, TB, and TM, the 

overall trend in each posture shows the phase delay increase with the frequency increase 

and similar trend each other except the case for TM with dorsiflexion.   
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Figure 2.8. The mean transmissibility and phase for the MB, TB, and TM in three 
postures. 

 

2.3.3 Transmissibility of single degree of freedom model 

A single degree of freedom (SDOF) model with stiffness and damping was 

utilized to describe the transmissibility variance of the FAS (Figure 2.9). 

 

 

Figure 2.9. A single degree of freedom system. 
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Figure 2.10 Transmissibility contour lines of a single degree of freedom model with base 
excitation. 

 

The base is excited with a sinusoidal vibration and the mass of single degree of freedom 

mode represents the mass of the shank and foot.  The equation of motion of this model is 
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where m is the mass of the foot and shank, iy  is the motion of the base, oy  is the motion 

of the mass relative to the internal reference frame, c  is damping coefficient, and k  is 

spring constant.  The transmissibility ( )T  of displacement, velocity and acceleration are 

defined by 
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where   is the circular frequency [31].  The mean mass of all subjects lower leg ( m =4.3 

kg) was calculated on the basis of anthropometry data [32].  For the additional mass case, 

2.3 and 4.5 kg mass was added to the mean mass of the SDOF.  The transmissibility of 

acceleration for ranges of the stiffness and damping for some frequencies is shown in 

Figure 2.10.  For the measured transmissibility for MB and TB, Figure 2.10 can be 

utilized to find an approximate range for spring constant and damping coefficient of the 

FAS. 

 

2.4 Discussion 

This study measured the acceleration at the MM and the TT with three mass and 

three posture conditions when sinusoidal input vibration was applied to the bottom of the 

foot.  Transmissibility and phase for MB, TB, and TM were calculated to analyze the 

effects of the applied mass and posture.  The data below 10 Hz was not available in this 

study, but the principal resonance frequencies of every case are assumed to be below 10 

Hz based on the observed trend.  This inference is consistent with other studies shown the 

principle resonant frequency occurs below 10 Hz [18-20, 24, 25, 28-30].  The overall 

acceleration patterns at the MM and TT have very similar trend with a study that 

measured acceleration at the ankle and knee, although it used whole body vibration while 

standing [28].  

For the MB transmissibility, a plateau was observed between 15 and 25 Hz for no 

extra mass case.  This frequency is similar to the third resonant frequency (25-63 Hz) of 
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ankle which is observed by Harazin and Grzesi [20].  The observed here resonances are 

not exactly the same as their results since the limitations of experimental setup and the 

applied frequency increments did not allow for the frequency below and around 10 Hz to 

be measured.  Also, the difference of experimental condition (sitting and standing) could 

cause the difference in the value of the third resonance.   

Applied mass increased the resonance frequency from 15-25 to around 25-40 Hz.  

Due to additional mass, the heel pad and the articular cartilage between talus and tibia 

were compressed and stiffened; the foot arch structure also stiffened with the extended 

plantar fascia.  This stiffening effect is closely related to the change of the resonance 

frequency since the resonance frequency for a SDOF model is proportional to the square 

root of stiffness and inversely proportional to the square root of mass.  As shown in 

Figure 2.10, the increase in the transmissibility for the MB and TB at the higher 

frequency could have a resonance when the stiffness is increased more comparatively to 

the lower frequency.   

The transmissibility for the MB and TB below 20 Hz decreased as the additional 

mass was applied to the system.  It indicates that the added mass made the FAS stiffer 

and also more damped at the lower frequency in comparison with the case of no 

additional mass.  This result is also related to the fact that the system becomes stiffer as 

the applied mass is increased, and the vibration is propagating faster and therefore, the 

phase shift is decreased.  The transmissibility without extra mass is gradually decreased 

with frequency, while frequency was increased, for the additional mass cases it showed 

the resonance frequency at 30-40 Hz for MB and 25-30 Hz for TB. 
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The transmissibility for MB was larger than unity over all frequencies regardless 

of the applied mass, while the transmissibility for TM was decreased and was close to 

unity or less.  Thus, it is clear that the major vibration transmission was fulfilled at the 

FAS in all frequencies and the foot and ankle joint played a major role to contribute to 

the resonance in the lower leg system.  The transmissibility for TM, close to unity, means 

that it acts like a rigid body, because the shank has a long tibia bone.  Over 35 Hz, the 

transmissibility for TM decreased below unity.  This vibration at higher frequency might 

be absorbed by complex viscoelastic structures such as tissues, muscles, and tendons of 

the lower leg.   

The postures of the FAS slightly influence the transmissibility results.  The 

dorsiflexion made the FAS stiffen and less damping compared with midstance and 

platarflexion at 10 Hz.  Between 25 and 40 Hz the midstance and plantarflexion showed 

similar transmissibility, but they are larger than that of the dorsiflexion.  It means that the 

posture of dorsiflexion might be less stiff or more damped for the MB at 25-40 Hz.   

 

2.5 Conclusion 

The transmissibility for MB was larger than unity for all frequencies while the 

transmissibility for TM was close to unity or less than unity for each of the loading 

conditions.  It means that the foot structure and ankle joint plays a major role in the 

vertical vibration transmission to the whole body.  The applied mass increased the 

stiffness of the FAS, and there was an increase from 20 to 30-40 Hz in the observed 

resonant frequency with the load increase.  Since the applied mass case is similar to the 

heavier system, these results indicate that overweight and obesity leads to the increase in 
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the stiffness and the resonant frequency of the FAS.  The resonant frequency around 25-

35 Hz is similar to the impact loading frequency at the heel strike during gait [16].  The 

applied postures did not show a resonance frequency and affect the transmissibility for 

MB, TB, and TM in the whole frequency range except 10 Hz.   

Equation Chapter 3 Section 1 
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Chapter 3 

3 Foot and ankle system identification base on black box models 

3.1 Introduction 

The foot and ankle is a passive structure able to store and release the strain energy 

during dynamic loading.  An important role of the foot and ankle is its capability to 

absorb shock and vibration; changes in its ability to attenuate heel strike induced shock 

waves are related to joint degeneration [10, 13].   

Experimental methods and modeling have been widely used to understand the 

dynamic response of the human body.  Some studies modeled the human body as a two 

degree or a three degree of freedom [26, 33, 34] system to analyze the impulse loading or 

vibration transfer of the lower leg.  Wei and Griffin [33] modeled the vertical apparent 

mass of the seated human body as four models (two single degree of freedom models and 

two two degrees of freedom models).  The developed models were fitted to the measured 

mean apparent mass of 60 subjects, and the optimum parameters of those models were 

obtained.  In their results, the fitting with the two degrees of freedom model showed 

similar apparent mass to the human body.  Wu et al. [26] investigated the body 

biodynamic response of the seated human using experimental data and four biodynamic 

models from previous studies.  They solved the equations of motion for the selected 

models to derive the modulus and phase of the measured apparent mass (APMS), the 

driving-point mechanical impedance (DPMI), and the seat-to-head transmissibility 

(STHT).  The identified primary resonant frequencies were compared, and the results 

showed APMS and STHT represented appropriate transfer functions of body dynamic 
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models.  The impulse loading during running was modeled by Kim et al. [34].  The 

dissipation and absorption of shock generated during running was investigated by 

developing a three degrees of freedom model for foot strike transients.  Also, the 

unknown parameters were predicted from the experimental data, and the results of the 

mathematical model were verified with a drop test.  This study concluded that the key 

role to attenuate the impact loading was the damping constant of the landing cushion.  

Some studies modeled the foot and ankle structure exposed to the impact loading 

as a simple truss structure with only spring or spring and damping combination [35, 36, 

37].  Gefen [35] and Simkin and Leichter [36] utilized a simple truss structure (two 

inclined rigid bodies hinged at the apex of the truss) for the foot longitudinal arch and a 

spring (the connection between the ends of each bar) for the plantar fascia.  Kim and 

Voloshin [37] used a simple truss structure, but viscoelastic properties were utilized 

instead of a simple spring for the plantar fascia.   

Modeling the complicated structure of the foot and ankle system remains a 

challenging problem since physical knowledge is not sufficient to describe the foot and 

ankle system.  As shown in literature surveys, the simplified models have been applied to 

the human body and the foot and ankle for investigating the vibration and impact 

absorbing capability of the human body and the foot and ankle system.  However, it is not 

reasonable to express the complex foot and ankle structure by a simplified model without 

any organized approach.  Therefore, the system identification via black box models could 

be a good starting point to model the foot and ankle system because it could provide the 

characteristics of the dynamic model and guide the development of the dynamic model in 

the future.   
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The black box model with parameters or without parameters has been widely used 

to identify various complex models such as physiological, chemical, and mechanical 

structures [8, 9, 38-40].  Czop and Wszloek [38] performed the system identification of a 

servo-hydraulic test rig and obtained the parametric representation of the model.  Their 

study was started from several linear model structures such as linear polynomial models 

and extended to a nonlinear model structure with the Hammerstein-Wiener model, which 

uses one or two nonlinear blocks with a linear block to describe dynamic system.  The 

induction motor was identified with the black box model [39, 40]. Yaacob and Mohamed 

[39] utilized a linear system identification (ARMAX: AutoRegressive Moving Average 

model with eXogenous input), and Mohamed and Koivo [40] utilized a nonlinear system 

identification (NNARX: Neural Network Auto-Regressive Moving Average model with 

eXogenous input).  These two studies successfully validated and provided very simple 

and accurate models of the induction motor.  Several examples of black box system 

identification are shown in the manual of Matlab System Identification toolbox by Ljung 

[8, 9].  

In this study, linear polynomial models ARX (autoregressive models with 

exogenous input), ARMAX (autoregressive moving average model with exogenous 

input), OE (Output error), BJ (Box-Jenkins) and the state-space (SS) models were utilized 

to describe the model structure of the foot and ankle system.  The estimated polynomial 

models and the state-space model of the foot and ankle exposed to vertical excitation are 

expected to show the system behavior and the dynamic characteristics, such as transfer 

functions, to describe impact or shock absorbing capability of the foot and ankle system.  
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3.2 Method 

3.2.1 Experimental data and procedures of system identification 

The experimental data to identify the system of the lower leg exposed to vertical 

vibration was obtained from the previous chapter.  The experimental data at the MM was 

selected as the measurement data for parametric black box models since the 

transmissibility for between the Base and MM was dominant, and the case of additional 

mass condition was utilized for system identification because three postures of the foot 

and ankle did not affect the transmissibility results as shown in the previous chapter.  The 

measured input and output data through the experiment was utilized to estimate the 

transfer characteristics of the foot and ankle system without considering a priori 

information such as the actual dimensions, geometry and vibrational characteristics. 

The basic procedure for system identification is illustrated in Figure 3.1.  Using 

the experimental results, the appropriate model is selected, the selected model is 

estimated, and then the estimated model is validated.  The validation of the estimated 

model is performed to check the suitableness of the estimated model.  If the estimated 

model is accepted, the procedure of system identification is completed, but if the 

estimated model is rejected, system identification repeats from the step of model structure 

selection until the validation is accepted. 
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Figure 3.1 The procedure for system identification [8, 9]. 

 

3.2.2 Model structure selection, estimation, validation 

The general structure of a dynamic system can be expressed with two transfer 

functions: ( )G q  for input to output and ( )H q  for disturbance to output as shown in 

Figure 3.2.  The transfer functions are represented by 

 
( )

( ) ,
( ) ( )

B q
G q

A q F q
  (3.1) 

 
( )

( ) .
( ) ( )

C q
H q

A q D q
  (3.2) 

Experimental results 

Model structure 
selection

Model estimation 

Model Validation 

Model 
acceptance 

Yes 

No 
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Figure 3.2 Structure of a black box model with two transfer functions [8, 9]. 

 

With the expression of the generalized linear polynomial model structure, the general 

structure of dynamic systems is defined by 

 
( ) ( )

( ) ( ) ( ) ( ),
( ) ( )

B q C q
A q y t u t k e t

F q D q
    (3.3) 

where ( )y t  is an output, ( )u t  is an input, ( )e t  is disturbance, q  is the forward shift 

operator,  A q ,  B q ,  C q ,  D q , and  F q are polynomials of q , and k  is the time 

delay between input and output.  The polynomials are represented with the following 

terms: 

 1
1( ) 1 ,a

a

n
nA q a q a q     

 1
0 1( ) ,b

b

n
nB q b b q b q     

 1
1( ) 1 ,c

c

n
nC q c q c q     (3.4) 

 1
1( ) 1 ,d

d

n
nD q d q c q     

 1
1( ) 1 .f

f

n

nF q f q c q     

These are polynomial parameters with n  being the order of polynomials ( an , bn , cn , dn , 

and fn ) used in the model structures [8, 9].   

( )H q

( )G q  
u y

e
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Among polynomial black box model sets for single input and single output (SISO) 

structure, ARX, ARMAX, OE, and BJ models were used in this study (Table 3.1) [8, 9]. 

 

Table 3.1 Linear polynomial model structures. 

Model name Model structure 

ARX 
( ) 1

( ) ( ) ( )
( ) ( )

B q
y t u t k e t

A q A q
    

ARMAX 
( ) ( )

( ) ( ) ( )
( ) ( )

B q C q
y t u t k e t

A q A q
    

OE 
( )

( ) ( ) ( )
( )

B q
y t u t k e t

F q
    

BJ 
( ) ( )

( ) ( ) ( )
( ) ( )

B q C q
y t u t k e t

F q D q
    

 

When the polynomial terms are applied to each model, the dynamic equations for 

each model can be expressed as follows [8, 9]: 

for ARX model 

          1 1( ) 1 1 ,
a bn a n by t a y t a y t n b u t b u t n e t             (3.5) 

for ARMAX model 

 
       

     
1 1

1

( ) 1 1

1 ,
a b

c

n a n b

n c

y t a y t a y t n b u t b u t n

e t c e t c e t n

         

     

 


 (3.6) 

for OE model 

        1 1( ) 1 1 ,
f bn f n bz t f z t f z t n b u t b u t n            

    ( ) ,y t z t e t   (3.7) 
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where  z t  is undisturbed output 

for BJ model 

        1 1( ) 1 1 ,
f bn f n bz t f z t f z t n b u t b u t n            

          1 1( ) 1 1 ,
d cn d n cw t d w t a w t n e t c e t c e t n             

      y t z t w t  . (3.8) 

The free parameterization state-space model was also tested to describe the 

relationship between the input and output signal as a first-order difference equation using 

the subspace method [6]. 

 ( 1) ( ) ( ) ( ),x t Ax t Bu t Ke t     (3.9) 

 ( ) ( ) ( ) ( ),y t Cx t Du t e t    (3.10) 

 0(0)x x  (3.11) 

where A , B , C , D  and K  are the system matrix, and x  is the state, u  is the input, y  is 

the output, e  is the disturbance, and  0x  is the initial condition.   

Model selection, estimation and validation of model have been carried out with 

the System Identification Toolbox of Matlab®.  The utilized numerical methods for 

model estimation were the least-squares method for ARX, iterative prediction-error 

minimization method for other polynomial models and subspace method (n4sid) for state-

space model [8, 9].  

Iterative prediction-error minimization method, which is quite well-known and 

widely used, was utilized to find parameters in the dynamic equations minimizing the 

prediction error [8, 9]: 
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     1ˆ, ( , )tt y t y t    , (3.12) 

where   parameters vectors to be estimate  ,t  is prediction error,  y t  is output 

measure, and  1ˆ ,ty t   is prediction of  y t  with the parameters of the previous step.  

The general model structure is utilized to apply the prediction error method with a linear 

predictor.  It has the form 

        1 1, , ( ),y t G q u t H q e t     

          1 1
1 1 2, ,ˆ ,ty t L q y t L q u t   
   . (3.13) 

Here,  u t  is the input,  e t  is the sequence of independent random variables with zero 

means,  1
1 ,L q   is the past data, and  1

2 ,L q   is the predictor filters. The prediction 

error is calculated from the model and predictor as follows: 

               1 1
1 1 2( , ) , ,ˆ tt y t y t y t L q y t L q u t    
     . (3.14) 

An error criterion to validate the estimated parameters is based on the squared norm of 

prediction error: 

      
1

1
, ,

N
T

N
t

V t t
N

    


  . (3.15) 

The estimation is to minimize the error criterion described by 

 arg mi ( .ˆ n )V


   (3.16) 

Finally, the system matrix of a model was estimated when the error criterion is 

minimized.  

A model structure and order should be selected in such a way that is appropriate 

for the measured data before estimating a model.  The process of choosing a reasonable 
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model structure and order were performed on the basis of trial and error to check the 

Akaike’s Information Criterion (AIC) for the estimated model.  AIC represents the model 

quality when the model is simulated with a different data set and it is based on Akaike’s 

Final Prediction Error (FPE) shown in the following equation [8, 9]: 

 
1

,
1

d
NFPE V

d
N

 
 
  

 (3.17) 

where d  and N  is the number of estimated parameters and data set respectively.  V  is 
the loss function, 

 
1

1
det ( , )( ( , )) ,

N
T

N NV t t
N

    
  

 
  

where N  is the estimated parameters [8, 9].  For d N , the approximation of Eq (3.17) 

is expressed as 

 
2

1 ,
d

FPE V
N

   
 

 (3.18) 

the logarithmic form of Eq (3.18) represents [8, 9] 

 
2

log .
d

AIC V
N

   
 

 (3.19) 

Relatively simple models such as ARX and OE model were tested in order ranges 

between 1 to 15 for an  and bn  and between 1 to 5 for fn .  The suitable an , bn , and fn  

were decided based on the AIC.  To define the order of the other models (ARMAX and 

BJ), the selected order of ARX model was applied and cn  and dn  were chosen after 

several trials.  Similar to the identification of polynomial input and output models, the 

order of the state-space model was selected by trial and error method between 2 to 15.   
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The validation of model has been performed with the measurement data extracted 

from the part of the data not used in the identification process.  The output was simulated 

using the estimated model and the percentage between the measurement and simulation 

was calculated for the model validation.  The fitting was defined as follows: 

 
ˆ

1 100,
y y

fit
y y

 
     

 (3.20) 

where y  is the measured output, ŷ  is the predicted output, and y  is the mean value of the 

measured output [8].  It is necessary to repeat the system identification procedure until 

the validation is acceptable.   

 

3.3 Results 

Model selection, estimation, and validation were performed in the measured 

frequency range of 10-50 Hz with the measurement data from 10 randomly selected 

subjects.  The selected order and fitting percentage results of a typical subject (subject # 

16) for various loading conditions utilizing ARX, ARMAX, OE, BJ, and the state-space 

model are listed in Table 3.2.  The grey cells show the best fitting among identified 

models.  The identified results of the rest of the 9 subjects are included in Appendix A.   

All polynomial structures and the state-space model performed well for 

identifying the black box model.  OE model had a good performance in system 

identification since it showed better fitting than other model structures as the simplest 

model structure.  The obtained range of polynomials orders was mainly distributed in the 

range of 9 to 15, 1 to 12, 1 to 12  for an , bn , and kn  respectively and cn , dn , and fn  were 

3 or 5.  The order of the state-space model was found to be around 2 to 8 for the whole 
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frequency range.  The higher order of the state-space model was observed at the lower 

frequency (10-25 Hz) and loaded condition since the output acceleration had nonlinearity 

with the loaded condition at the lower frequency.  This order range would be used as a 

reference for the identification of the grey box model in the next chapter.   

For subject # 16, the validation (10-25 Hz) between the measured data and the 

simulation of the estimated model are shown in Figures 3.3-3.6 since it has lower fitting 

percentage and more complex trial and error process comparatively to the higher input 

frequency case.  In Figures 3.3-3.6, the left figures show the overall simulation results, 

and the right figure show the amplification of a cycle.  The difference between 

measurement and simulation was generally observed in damping oscillation and the 

shape of acceleration peak.  It is closely related to the nonlinearity of the output 

acceleration.  Since the black box models utilized to identify systems were based on the 

linearized model, they have some limitation to follow the nonlinear behavior shown in 

the lower frequencies.  

 

 



 

Table 3.2 Black box system identification results (Subject # 16). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (9, 7, 2) 74 (9, 7, 5, 2) 74 (7, 5, 5, 5, 2) 80 (7, 5, 2) 79 7 75 

2.3 (13, 12, 15) 72 (13, 12, 3, 15) 72 (12, 3, 3, 3, 15) 69 (12, 3, 15) 77 8 62 
4.5 (11, 11, 8) 79 (11, 11, 3, 8) 78 (11, 3, 3, 3, 8) 68 (11, 3, 8) 84 6 73 

15 
0 (13, 3, 3) 82 (13, 3, 3, 3) 88 (3, 3, 3, 3, 3) 90 (3, 3, 3) 90 5 88 

2.3 (9, 12, 8) 92 (9, 12, 3, 8) 88 (12, 3, 3, 3, 8) 91 (12, 3, 8) 93 5 84 
4.5 (9, 11, 4) 85 (9, 11, 3, 4) 85 (11, 3, 3, 3, 4) 92 (11, 3, 4) 90 5 82 

20 
0 (9, 6, 2) 90 (9, 6, 3, 2) 90 (6, 3, 3, 3, 2) 90 (6, 3, 2) 90 5 88 

2.3 (9, 10, 12) 91 (9, 10, 3, 12 91 (10, 3, 3, 3, 12) 94 (10, 3, 12) 95 4 89 
4.5 (12, 10, 9) 93 (12, 10, 3, 9) 93 (10, 3, 3, 3, 9) 95 (10, 3, 9) 95 4 90 

25 
0 (12, 4, 1) 93 (12, 4, 3, 1) 93 (4, 3, 3, 3, 1) 93 (4, 3, 1) 93 4 89 

2.3 (12, 4, 11) 95 (12, 4, 3, 11) 95 (4, 3, 3, 3, 11) 96 (4, 3, 11) 96 4 93 
4.5 (9, 7, 9) 95 (9, 7, 3, 9) 95 (7, 3, 3, 3, 9) 95 (7, 3, 9) 95 4 93 

30 
0 (11, 4, 10) 92 (11, 4, 3, 10) 94 (4, 3, 3, 3, 10) 96 (4, 3, 10) 95 4 87 

2.3 (11, 10, 10) 95 (11, 10, 3, 10) 95 (10, 3, 3, 3, 10) 97 (10, 3, 10) 97 5 88 
4.5 (9, 8, 3) 95 (9, 8, 3, 3) 96 (8, 3, 3, 3, 3) 96 (8, 3, 3) 95 5 93 

35 
0 (10, 5, 2) 92 (10, 5, 3, 2) 92 (5, 3, 3, 3, 2) 95 (5, 3, 2) 93 5 92 

2.3 (9, 6, 10) 96 (9, 6, 3, 10) 97 (6, 3, 3, 3, 10) 88 (6, 3, 10) 97 5 94 
4.5 (12, 2, 4) 94 (12, 2, 3, 4) 90 (2, 3, 3, 3, 4) 89 (2, 3, 4) 89 5 93 

40 
0 (10, 6, 7) 94 (10, 6, 3, 7) 94 (6, 3, 3, 3, 7) 95 (6, 3, 7) 95 5 93 

2.3 (12, 3, 6) 96 (12, 3, 3, 6) 95 (3, 3, 3, 3, 6) 97 (3, 3, 6) 97 5 93 
4.5 (10, 12, 2) 97 (10, 12, 3, 2) 97 (12, 3, 3, 3, 2) 97 (12, 3, 2) 97 5 92 

45 
0 (11, 2, 5) 94 (11, 2, 3, 5) 94 (2, 3, 3, 3, 5) 93 (2, 3, 5) 93 3 94 

2.3 (12, 6, 3) 95 (12, 6, 3, 3) 95 (6, 3, 3, 3, 3) 96 (6, 3, 3) 96 3 91 
4.5 (9, 7, 6) 97 (9, 7, 3, 6) 98 (7, 3, 3, 3, 6) 97 (7, 3, 6) 96 2 90 

50 
0 (10, 9, 5) 83 (10, 9, 3, 5) 83 (9, 3, 3, 3, 5) 84 (9, 3, 5) 95 5 83 

2.3 (9, 7, 8) 97 (9, 7,  3, 8) 96 (7, 3, 3, 3, 8) 97 (7, 3, 8) 97 4 94 
4.5 (10, 4, 3) 95 (10, 4, 3, 3) 95 (4, 3, 3, 3, 3) 95 (4, 3, 3) 95 3 94 

45 
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(a) 10Hz & 0kg: ARX(74%), ARMAX(75%), BJ(80%), OE(79%), SS(75%) 

 

(b) 10Hz & 2.3kg: ARX(72%), ARMAX(72%), BJ(69%), OE(78%), SS(62%) 

 

(c) 10Hz & 4.5kg: ARX(79%), ARMAX(79%), BJ(68%), OE(84%), SS(73%) 

Figure 3.3 An example of black box system identification results at 10 Hz (subject # 16). 

 

In the estimation result of 10 Hz case, the fitting percentage was lower relatively 

to the results of higher frequencies (Figure 3.3).  Regardless of the applied mass 

conditions at 10 Hz, the part of damping oscillation in the output acceleration is the major 

reason why the simulation results are different from the measurement (Figures 3.3 (a)-

(c)).   
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(a) 15Hz & 0kg: ARX(82%), ARMAX(88%), BJ(90%), OE(90%), SS(88%) 

 

(b) 15Hz & 2.3kg: ARX(92%), ARMAX(88%), BJ(91%), OE(93%), SS(84%) 

 

(c) 15Hz & 4.5kg: ARX(85%), ARMAX(85%), BJ(92%), OE(90%), SS(82%) 

Figure 3.4 An example of black box system identification results at 15 Hz (subject # 16). 

 

 

(a) 20Hz & 0kg: ARX(90%), ARMAX(90%), BJ(90%), OE(90%), SS(88%) 
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(b) 20Hz & 2.3kg: ARX(91%), ARMAX(91%), BJ(95%), OE(95%), SS(89%) 

 

(c) 20Hz & 4.5kg: ARX(93%), ARMAX(93%), BJ(95%), OE(95%), SS(90%) 

Figure 3.5 An example of black box system identification results at 20 Hz (subject # 16). 

 

 

(a) 25Hz & 0kg: ARX(93%), ARMAX(93%), BJ(93%), OE(93%), SS(89%) 

 

(b) 25Hz & 2.3kg: ARX(95%), ARMAX(95%), BJ(96%), OE(96%), SS(93%) 
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(c) 25Hz & 4.5kg: ARX(95%), ARMAX(95%), BJ(95%), OE(95%), SS(93%) 

Figure 3.6 An example of black box system identification results at 25 Hz (subject # 16). 
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the results of the 25 Hz case shown in Figure 3.6 (a)-(c). 

The validation results for higher frequency (30-50 Hz) are included in Appendix 

A.  The estimated models represented the measured data well, but the fitting percentage 

of the output was lower for 10 and 15 Hz input frequency and loaded condition.  In the 

future study, it might be necessary to consider nonlinear black box model identification 

for the 10 and 15 Hz and loaded cases because of the observed nonlinearity of output 
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polynomial model structures and the state-space model were able to fit well with the 

measured data.  Generally, OE model resulted in the best fit.  The observed nonlinearity 

of output acceleration affected the fitting percentage at the lower frequency and 

additional mass conditions.  Because of the complexity of output acceleration patterns, 

the order of state-space model of the lower frequency and additional mass condition was 

higher than that of the higher frequency and without extra mass condition.  This result is 

used as a guide for creating the grey box model of the foot and ankle in the next chapter.  

For the lower frequencies (10 and 15 Hz regardless of applied mass conditions) which is 

the fitting percentage is low, nonlinear black box model identification could be proposed 

for better estimation.  

Equation Chapter 4 Section 1 
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CHAPTER 4 

4 Development of the dynamic model of the foot and ankle 

system exposed to vertical vibration 

4.1 Introduction 

Human body vibration has two contradicting characteristics.  It has been shown 

by many researchers that the vibration exposure of the human body during everyday life 

physical activities is usually harmful and leads to wear of the articular joints such as the 

ankle, knee, hip, and spine; finally it causes joint degeneration [12, 14].  The advantage 

of human body vibration has been shown in other areas, like strengthening of muscle and 

bone [5-7].  Applying appropriate vibration, muscle strength is improved, and bone 

density is increased, which decreases the risk to osteoporosis.   

The foot and ankle plays an important role as a foundation supporting the human 

body and absorbing impact loadings between the human body and the ground.  It is a 

passive structure capable to store and release strain energy during dynamic loading such 

as walking and running.  The capability of storing energy generally is expressed by an 

elastic material like springs.  Various studies related to the foot and ankle have been 

performed in diverse areas such as structural stress analysis, clinical analysis, gait 

analysis, and dynamic analysis shock absorption.  For better understanding of the 

absorption and propagation of the external vibration in the human body, the dynamic 

characteristics of the foot and ankle system have to be investigated as it is the entrance 

point of the external vibration.  
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The capability of the foot to store strain energy and return it as an elastic coil was 

demonstrated with the applied sinusoidal force [41, 42].  McMahon [41] described the 

passive spring behavior of the foot arch, storing, returning, and reducing the energy 

which muscle must absorb and the work which muscle did to accelerate the body in 

running.  This simple concept of storing capacity of the foot was utilized as a two 

dimensional model of the foot in the sagittal plan, in which it has two rigid bodies 

connected by elastic spring.  It showed a fundamental characteristic of the energy storage 

mechanism as a function of the calcaneal inclination [42].  A biomechanical model of the 

foot, a statically indeterminate structure supported by the head of five metatarsals and the 

heel in raised condition, was investigated [43].  Including the role of muscles, tendons, 

and ligaments, a biomechanical foot model was developed to show the mechanical 

principles and behavior of the anatomical foot structure [44].  The compression test with 

quasi-static axial loads was utilized to characterize the force distribution in relation to 

foot deformation [45].  The calcaneus was the main part to transfer approximately 63% of 

compression loads.  The anterior foot was supposed to be the remaining portion of the 

tibial load.  The mechanical property of dissected plantar fascia was measured under 

loading and the in-vivo study also was utilized to measure the height of the foot arch as 

the load increased [46].  It showed the measured elastic modulus of plantar fascia was 

344.7×106 -827.4×106 N/m2.  Ligaments were extended at the initial loading but they 

became stiffer due to the increase of applied load.  The tibial axial acceleration and 

ground reaction force during running were recorded to show the relationship between two 

values using the transfer functions and the frequency analysis [47].  Effective stiffness of 

the ankle and foot was specified as the inertial load and the elastic load through modeling 
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the ankle as a second order system [48].  Using a direct measurements technique, 

deformations and strains of the plantar fascia of the in-vivo during the midstance were 

measured to determine the elastic properties of the plantar fascia [35].  The average 

stiffness of plantar fascia was found to be 170±45 N/mm. 

A complicated model of the foot and ankle has been realized in numerical 

simulation using Finite Element Methods.  Cheung et al. [49] built a 3D Finite Element 

model on the basis of the coronal magnetic resonance images in which the model, 

including both skeletal and soft tissue components, gave the information of the internal 

stress and strain of the foot and ankle.  They showed how the stiff soft tissue affected the 

plantar pressure distributions.  The stress distribution of the foot structure at each phase 

during gait was presented by a three-dimensional Finite Element model [50]. 

System identification method is used to construct mathematical models or 

estimate unknown parameters of dynamic systems from measured input-output data. It 

has been utilized for biomechanical models because they are very complex and have a 

significant number of unknowns.  Kim et al. [34] developed a mathematical model of 

heel strike transients during running.  In order to identify unknown spring and damping 

constants the quasilinearization technique was used.  A biomechanical model, which has 

two rigid bodies and viscoelastic models like a standard linear solid model and a Kelvin-

Voigt model, was presented to show the load bearing mechanism of the foot during 

stance of gait [37].  As in the previous study, the unknown viscoelastic parameters were 

identified with the quasilinearizaiton method. It was found that the plantar fascia carried 

14% of the total load on the foot.  Fard et al.[51] identified the dynamics of the head-

neck complex horizontally vibrated with developing a fourth-order mathematical model.  



54 

The coefficients of the mathematical model were identified by the frequency domain 

identification method, and the viscoelastic parameters of the head-neck complex were 

estimated with the optimization method.   

 

4.2 The model of the foot and ankle 

The characterization of the articulation and ligaments in the foot and ankle system 

is necessary to represent the shock and vibration absorption capability and the dynamic 

behavior of the foot and ankle.  To characterize the ultimate strength of ligaments has 

been mainly studied to show individual failure of those ligaments, and some simplified 

models of the ligaments as springs (sometimes including dashpots) have been used to 

measure the elastic or viscoelastic constants.  In addition, the experimental studies of the 

foot and ankle are generally restricted to the in vitro case.  Owing to the complexity of 

the ankle and foot structures and experimental difficulties, computational methods were 

suggested to predict the load distribution and the internal stress and strain of the foot and 

ankle model [50, 52].  But the stiffness and the damping properties of the foot and ankle 

were not estimated since researches have used the mechanical properties from the 

previous experimental studies to analyze their structural characteristics.  Moreover, the 

elastic or viscoelastic characteristics of the human foot and ankle joint have been studied 

[34-37, 41, 48], but no well-developed and characterized model was presented.  The 

objective of this study was to investigate vibration absorbing behavior of the human 

ankle and foot and to develop a mathematical model capable to describe the attenuation 

and modification of an externally induced vibration by the foot and ankle joint.   
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The foot and ankle act as a shock and vibration absorber for supporting the whole 

body and propelling it during gait.  It has two longitudinal arches: one is a medial 

longitudinal arch (runs across the calcaneus to the talus, navicular, three cuneiforms, and 

the heads of the first three metatarsals); the other one is a lateral longitudinal arch (starts 

from the calcaneus, go through the cuboid, and ends at the heads of the two lateral 

metatarsals).  The medial longitudinal arch can be simplified as a simple truss structure 

because it is more dynamic compared to the lateral longitudinal arch.  So, the human foot 

and ankle model has been developed as simplified two dimensional, planar models using 

the truss structure connected with springs [35-37].  Both ends of the truss are tied with 

the plantar aponeurosis, which supports the arched shape of the foot under loading.  In 

these models, one rigid body consists of calcaneus and talus and the other rigid body 

includes navicular, cuneiforms, and metatarsals.  Considering plantar aponeurosis 

connecting from the calcaneus to the metatarsophalangeal articulation, two rigid bodies 

are connected with one elastic spring or standard viscoelastic solid material model.  The 

simplified models of these studies are shown in Figure 4.1: A, B, C: frictionless hinges; L: 

length of the rigid elements; α: inclination angle of the rigid elements; TS: tension spring; 

F: vertical load. 
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Figure 4.1 The simplified biomechanical models of foot ((a) [36] and (b) [37]).  

 

Similarly to the other studies [35-37] a simplified truss structure was applied as 

the initial model of this study, but this study considered the mass of foot bones, more 

segments, the heel pad, and the ankle joint in the model. The medial arch was modeled as 

the truss which has five rigid bodies including the tibia as shown in Figure 4.2.  The part 

of the forefoot in the medial arch (the metatarsals, the cuneiforms, and the navicular) was 

assumed to be three rigid bodies, and the hindfoot including the talus and the calcaneus 

were also modeled as a rigid body.  The spring ligament, short plantar ligament, and long 

(a)

(b)



57 

plantar ligament between each linkage were modeled as a Kelvin-Voigt model.  The 

connection between the end of calcaneus and metatarsal (the plantar aponeurosis) was 

expressed by a standard viscoelastic solid material model.  The fat pad at the foot bottom 

and the articular joint between the talus and tibia were modeled with a Kelvin-Voigt 

model to represent the vibration absorbing capability.   

The material properties of the front fat pad and heel fat pad were assumed to have 

the same values for model simplification.  The center of mass of tibia was assumed in the 

middle of the rigid body, and it was assumed to move in the vertical direction only. 

Similarly, the centers of mass of each rigid body in the foot structure were assumed to be 

located on the midpoint of each bone.  

In the geometrical view (Figure 4.2 (b)), the bottom surface of the foot is set as 

the harmonic displacement By  at the base support, an output Ty  is the displacement of the 

tibia, Fy  is the base of the foot,   is the angle of a rigid body, x  is the displacement in 

the horizontal direction, L  is the length of a rigid body, I  is the moment of inertia of a 

rigid body, m  is the mass of a rigid body, and the subscript ,1,2,3,4T  are the tibia and 

each rigid body of the foot segments.  The dynamic properties are as follows: Fk  is the 

spring constant of the fat pad of the foot, Fc  is the damping constant of the fat pad of foot, 

11k  and 12k are the spring constants and 1c  is the damping constant of the standard linear 

solid viscoelastic material for the plantar aponeurosis, 2k , 3k , 4k  and 2c , 3c , 4c  are the 

spring constants and damping constants of each joint, and Tk  and Tc  are the articular 

joints between the talus and tibia (Figure 4.2 (c)).   
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(b) 

 

(c) 

Figure 4.2 The model of the foot and ankle structure (a) 3d model [53], (b) geometry, and 
(c) dynamic properties. 
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The geometric and physical information of each rigid body, such as the length, 

angles, mass, moment of inertia of each rigid body, was obtained by an example of a 

subject’s X-ray image and literature study [32, 54, 55].  The utilized geometric 

dimensions, masses, and moments of inertia are shown in Table 4.1.  But the stiffness and 

the damping coefficients were left as unknown values.   

 

Table 4.1 The constants of system. 

Parameters 
Rigid body 

Tibia 1 2 3 4 

m (kg) 2.36 0.133 0.014 0.025 0.043 

L(m) - 79.29e-3 14.74e-3 26.06e-3 65.27e-3 

I (kg m2) - 28.00e-5 10.12e-7 14.13e-7 15.19e-6 

  (deg) - 59.7 69.7 65.1 68.5 

 

4.3 Equations of motion 

The position of the tibia ( Tm ) is expressed in y  direction since the movement of 

the tibia is assumed to be in the vertical direction.  

 .T TR y  (4.1) 

The position of the rigid body ( 1m ) combined the calcaneus and the talus is  

 1
1 1sin( ( )) ,

2x

L
R t   

 1
1 1( ) cos( ( )).

2y F

L
R y t t   (4.2) 
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The position of the navicular ( 2m ) is 

 2
2 2sin( ( )),

2x

L
R t  

 2
2 2 3 3 4 4( ) cos( ( )) cos( ( )) cos( ( )).

2y F

L
R y t t L t L t       (4.3) 

The position of the cuneiforms ( 3m ) is 

 3
3 2 2 3sin( ( )) sin( ( )),

2x

L
R L t t    

 3
3 3 4 4( ) cos( ( )) cos( ( )).

2y F

L
R y t t L t     (4.4) 

The position of the cuneiforms ( 4m ) is 

 4
4 2 2 3 3 4sin( ( )) sin( ( )) sin( ( )),

2x

L
R L t L t t      

 4
4 4( ) cos( ( )).

2y F

L
R y t t   (4.5) 

The system has a constraint as follows: 

 1 1 2 2 3 3 4 4cos( ( )) cos( ( )) cos( ( )) cos( ( )).L t L t L t L t       (4.6) 

The angle 1  can be expressed from Eq. (4.6) as 

 1 2 2 3 3 4 4

1

cos( ( )) cos( ( )) cos( ( ))
( ) cos .t

L t L t L t
t

L

      
  

 
 (4.7) 

In a five-rigid body model, there are eight coordinates ( x , By , , Fy , Ty , 1 , 2 , 

3 , and 4 ).  Because this model has a holonomic constraint (the rheonomic constraint) 

as shown in Eq. (4.6), these coordinates could be reduced to seven.  Two relative 

displacements ( Fz  is the relative displacement between the fat pad base and the bottom of 
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the foot bones and Tz  is the relative displacement between the talus and the tibia) were 

defined to substitute several terms into the equations of motion 

 ,F F Bz y y   

 1 1( cos( ( ))).T T Fz y y L t    (4.8) 

The kinetic energy (T ), potential energy (U ), and dissipation energy ( D ) can be 

obtained with the derived position vector.  Total kinetic energy, potential energy, and 

dissipation energy are expressed in the following-form 

 
4 4 4

2 2 2 2

1 1 1

1 1 1 1
,

2 2 2 2T T i ix i iy i i
i i i

T m R m R m R I
  

           

 
3

2 2 2 2 2
11 11 12 12

2

1 1 1 1 1
,

2 2 2 2 2i i F F T T
i

U k k k k k    


      

 
4

2 2 2

1

1 1 1
,

2 2 2i i F F T T
i

D c c c  


       (4.9) 

where i  is the location of the centers of each mass and 11 , 12 , F , and T  are the 

displacement for each spring and damping constant.  The derived kinetic, potential, and 

dissipation energy are applied to Lagrange’s equations 

 
, 1, 2, , 6j

j j j j

d T T V D
Q j

dt q q q q

    
          




 (4.10) 

where 1, 2 , , 6j    is the generalized coordinates, and jQ  is the conservative generalized 

force according to the generalized coordinates ( x , Fz , Tz , 2 , 3 , and 4 ).  

The derived nonlinear second order differential equations are as follows 
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11 12 13 14 15 16 1

22 23 24 25 26 2

33 34 35 36 32

44 45 46 43

55 56 54

66 6
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Sym A A A A A Bz

Sym Sym A A A A B

Sym Sym Sym A A A B

Sym Sym Sym Sym A A B

Sym Sym Sym Sym Sym A Bx





    
    
    
    

    
    
    
         









,




 (4.11) 

where Sym  denotes the symmetry of the matrix.  All terms of the nonlinear second order 

differential equations are defined in Appendix B.  

The derived nonlinear multi degrees of freedom model is a very complicated 

equation, and solving the problem numerically is a time consuming procedure.  In order 

to reduce the calculation time for dynamic simulation, the geometric nonlinearities were 

simplified with the assumption that there is a small motion at the equilibrium position by 

considering only the first two terms of Taylor series expansion.  The linearized equations 

of motion are obtained as follows: 
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 (4.12) 

for the relative displacement of the fat pad ( Fz ), 

11 1 2 3 4,TM m m m m m      12 ,TM m  13 1 2 2 20

1 1
sin ,

2 2TM m m m L      
 

 

14 1 2 3 3 30

1 1
sin ,

2 2Tm m m m LM       
 

 

15 1 2 3 4 4 40

1 1
sin ,

2 2TM m m m m m L        
 

 16 0,M   

11 ,FC C  12 13 14 15 16 0,C C C C C      

11 ,FK k  12 13 14 15 16 0,K K K K K      

111 ,bConst M y    

for the relative displacement of the articular joint at ankle ( Tz ), 
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22 ,TM m  23 2 20sin ,TM m L    

3 324 0sin ,TM m L   4 425 0sin ,TM m L   26 0,M   

22 ,TC C   23 24 25 26 0,C C C C     

22 ,TK k  23 24 25 26 0,K K K K     

212 ,bConst M y    

for the angle of Navicular ( 2 ), 
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for the angle of Metatarsals ( 4 ), 
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for the displacement of the standard solid linear model of plantar aponeurosis ( x ), 

66 0,M   

66 1,C c  

66 12.K k  

The nonlinear output acceleration at the Medial Malleolus can be derived from Eq (4.8) 

as following: 

 2 2 3 3 4 4( ) ( ( ) ( ) cos( ) cos( ) cos( ),out T F by z t z t y t L L L         

 
2

2 2 2 2 2 2

2 2
3 3 3 3 3 3 4 4 4 4 4 4

( ) ( ) ( ) cos( ) sin( )

cos( ) sin( ) cos( ) sin( ) .

out T F by z t z t y t L L

L L L L

   

       

    

   

   
   

 (4.13) 

The linearized output equation is 

 2 20 2 3 30 3 4 40 4( ) ( ) ( ) sin( ) sin( ) sin( ) .out T F by z t z t y t L L L                (4.14) 

 

4.4 Simplification of dynamic equations 

The system of linearized dynamic equations for the five-rigid body model was 

still complex and expensive in the computational cost since it had a large number of 

unknown parameters to estimate.  In order to obtain a more effective and simplified 

model, the sensitivity analysis was employed to find influential parameters of the system.  

The general purpose of the sensitivity analysis is to analyze how the variation of 

parameters influences the output of a dynamic system.  It has been utilized in the area of 

complex mathematical models for dynamical systems such as mechanical systems, 

biological systems and so on.  Kim et al. [56] performed a parameter sensitivity analysis 

to analyze the effects of the variation of parameters to a piston pump system.  The exact 
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nonlinear mathematical model of the piston pump was represented by fourth order 

dynamic model with order reduction of the model.  In biological systems, modeling with 

nonlinear ordinary differential equations (ODEs) is a useful method to understand its 

signal transduction network and metabolism models in spite of the complexity with many 

parameters.  The simplification of those complicated models was obtained with parameter 

sensitivity analysis [57]. 

In this study, a sensitivity analysis could provide the possible reduction of the 

number of unknown parameters.  Consequently, it could improve dynamic models and 

reduce the calculation time.  Considering the state and parameter vector of a dynamic 

system 

 1 2[ ] ,T
iX x x x   

 1 1[ ] ,T
j      (4.15) 

a nonlinear dynamic equation with a state-space form is 

 0 0( , , , ), ( ) ,X f X u t X t X   (4.16) 

where u  is the input vector, and 0X  is the initial state vector at 0.t    The sensitivity 

vector was obtained by a Taylor series expansion 

    
2

1 1 1

1
, , ,

2

m m m
i i

i j j i j j k j
j k jj k j

x x
x t x t     

    

 
        

       (4.17) 

where i jx    are the first order sensitivity functions and 2
i k jx      are the second 

order sensitivity functions [56, 57].  The first order sensitivity vectors ( ,i j i js x    ) 

were utilized in this study as shown in Eq (4.18) [56, 57] 
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 (4.18) 

The sensitivity matrix was calculated with the direct differential method as follows: 

 0, (0) ,j j j
j

d
J S

X
F S S

dt 


   


 (4.19) 

where J  is Jacobian matrices of ( , , , )f x u t  with respect to the states ( ix ), jS  is the first 

order sensitivity vector with respect to the thj  parameter ( j ), and jF  is Jacobian 

matrices of ( , , , )f x u t  with respect to the thj  parameter ( j ) [56, 57] 
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The system of differential equations from Eq (4.16) and (4.19) was solved by numerical 

integration, and the results of sensitivity were compared with the following dynamic 

relative sensitivities [56, 57] 

  
2

, ,
1

1
,

N

i j i j
k

RS s k
N 

   (4.20) 

where k  is the time instance, N  is the total number of sampling points, and ,i js  is the 

relative sensitivity defined as follows [56, 57] 

 , .ji i i
i j

j j j i

x x x
s

x


  
 

 
 

 (4.21) 
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The calculation of the sensitivity function and relative sensitivity were performed by 

tssolve.m Matlab program [58]. 

For the selection of parameters, random numbers were chosen in the specific 

ranges for each parameter based on some literatures [35, 37, 59] (Table 4.2).  The initial 

conditions for all states were fixed as zero. 

 

Table 4.2 The range of parameters for sensitivity analysis. 

Parameter Range 

Spring constants 
( 11k , 12k , 2k , 3k , 4k , Tk , Fk ) 

4 61 10 parameters 3 10     

Damping constants 
( 1c , 2c , 3c , 4c , Tc , Fc ) 

2 31 10 parameters 3 10     

 

The parameter sensitivity results are shown in Figure 4.3.  The resulting relative 

sensitivities for 30 random cases are shown in Figure C.1.  The higher relative sensitivity 

values among parameters were shown in four parameters: Tk , Tc , Fk , and Fc .  This 

means that in the developed five-rigid body model, the movement of segments of the foot 

arch is very small and the role of the ligament sustaining arch to absorb the external 

vibration could be ignored.  In addition, the sensitivity analysis results demonstrated that 

the dominant part generating the nonlinearity of output accelerations at the Medial 

Malleolus was the fat pad of the foot ( Fk  and Fc ), and the articular joint including a 

number of ligaments between the talus and the tibia ( Tk  and Tc ).   

However, the measured output at the Medial Malleolus is not following the 

sinusoidal input vibration with distorted accelerations.  Therefore, the derived model 

should include any nonlinear behavior parts.  The nonlinearity of the foot and ankle 
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system could be explained with the nonlinear material properties of the heel pad and 

articular joint, which have been shown in studies about fat pads, ligaments, tendons, or 

soft tissues.   
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Figure 4.3 The relative sensitivity of parameters. 

 

There are three mechanical properties to represent the heel pad and soft tissue: a 

quasi-linear viscoelastic model [60], the combination of a nonlinear spring and a 

nonlinear damper [61], and the linear spring and nonlinear damper [62] in the previous 
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studies.  The quasi-linear viscoelastic theory is described with two functions of strain and 

time [60]   
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 (4.22) 

where   is the stress, ( )G t  is the reduced relaxation function, ( ) ( )e   is the elastic 

function, ( )t  is the strain, A  and B  are the elastic constants, ( )S   is the relaxation 

spectrum, 1c  is the amplitude of the viscous effect, and 1  and 2  are the frequency limits 

of the relaxation spectrum.  The force transferred through the heel pad was modeled with 

a nonlinear spring and a nonlinear damper (Eq. 4.23) 

 ,
kk mF j l      (4.23) 

where j , k , l , m  and n  are the constants,   is the strain, and   is the strain rate [61].  

Gefen et al. [62] used a modified Kelvin-Voigt model with a linear spring and a nonlinear 

damper for the heel pad model as follows   

 ,c c cF E       (4.24) 

where c , c  are the strain and strain rate, respectively, and E ,   are the constants for 

the spring and damper. 
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In this study, the combination of a linear spring and nonlinear damping constants 

based on Eq. (4.24) was employed for a model of the fat pad of the foot and talocrural 

joint.  The utilized nonlinear damping model was defined by 

  2
1 3cos ,c xc c e c x  (4.25) 

where 1c , 2c  and 3c  are constants, and x  is the relative displacement between the bottom 

surface and top surface of the fat pad or joint. 

A two degrees of freedom model with linear springs and nonlinear dashpot was 

selected as a more simple and reasonable model as shown in Figure 4.4.  The equations of 

motion derived with Lagrange’s equations are as follows: 

    1 1 2 1 2 0,S T Tm y c y y k y y        

        2 1 2 2 01 2 2 0 0,F T T F Fm c k y yy y y y yyc k y             (4.26) 

where Sm  is the mass of the shank, Fm  is the mass of the foot, 1y , 2y  and 0y  are the 

displacements at the Medial Malleolus, the bottom of the foot bones, and the base 

respectively, Tk  and Tc  are the spring and damping constants for the ankle joint between 

the tibia and foot bones respectively, and Fk  and Fc  are the spring and damping constants 

for the fat pad below the foot bones respectively.   

 

 

Figure 4.4 Two degrees of freedom model with linear springs and nonlinear damping. 

 

  

 

  

Input   

MM Output  

Fat pad output  
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The following relative displacement was defined and applied to the equations of 

motion 

1 1 2z y y  , 2 2 0,z y y   

 1 1 1 0,S T Tm y c z k z     

 2 1 1 2 2 0.F T T F Fm y c z k z c z k z        (4.27) 

Using several relationships of the relative displacement, the equations of motion were 

modified 

 1 1 2y z y  , 2 2 0,y z y   

  1 2 0 1 1 0,S T Tm z z y c z k z        

  2 0 1 1 2 2 0.F T T F Fm z y c z k z c z k z         (4.28) 

The final equations of motion are 

    1 2 1 1 2 1 1

1 1
,TF T T F T

F S

z c z c z k z k z c z k z
m m

          

  1 2 12 2 0

1
.

F
T F T Fz c z c z k z k z y

m
         (4.29) 

The state-space form of the derived equations is 
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 (4.30) 

where  
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 1 1x z , 2 2x z , 3 1 1x x z   , 4 2 2x x z   . 

Because major transmissibility of vibration occurred at the Medial Malleolus as 

shown in Chapter 2, the acceleration at the Medial Malleolus was considered for the 

output.  From Eq (4.27), the observation which is the output at the Medial Malleolus can 

be derived as follows: 

  1 3 1

1
.T T

S

y c x k x
m

    (4.31) 

The selected combination of linear spring constants and nonlinear damping constants (Eq 

4.18) were utilized for the derived model.  The nonlinear damping constants Tc  and Fc  

are as follows: 

  12 1
11 13 1cos ,c x

Tc c e c x  

 22 2
21 23 2c (os ).F

c xc c e c x  (4.32) 

The equations of motion can be expressed as a nonlinear SISO (single input and single 

output) state-space form  

     0 0, ( ), ( ), , ( ) ,x t F t x t u t x t x   

    , ( ), ( ), ,y t H t x t u t   (4.33) 

where F  is a nonlinear function for states, H  is a nonlinear function of outputs, t  is the 

current time, u  is the input vector, and   is a vector of parameters.  

 

4.5 Parameter estimation 

In the derived equations for the foot and ankle, several constants ( Tk , Fk , Tc , and 

Fc ) were left as unknown constants since it is hard to measure them directly.  Those 
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unknown parameters and initial conditions were estimated using the derived equations 

and measurements. 

 

 

Figure 4.5 The process of the parameter estimation [9]. 

 

The estimating system was represented with the derived nonlinear SISO state-

space equations (Eq (4.33)).  The Prediction Error Method (PEM) was utilized for the 

parameters estimation, and the flow diagram of the estimation procedures are shown in 

Figure 4.5.  The experimental results were obtained from the data from Chapter 2 which 

measured the input and output acceleration at the base plate and Medial Malleolus 

respectively.  In the predictor, the derived equations of motion were solved with initial 

guess values for unknown parameters using ODE 45 (Runge-Kutta 45 ordinary 

differential equations solver in Matlab).  After solving ODEs, the estimated output (  ŷ t ) 

was compared with the measured output (  y t ) and, the prediction error (  ,t  ) was 

calculated.  The prediction error and the cost function, which is a quadratic function of 

parameters ( ), are as follows: 

System 

Predictor 

Algorithm to minimize 
the cost function 
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      ˆ, , ,t y t y t     

     2

1

1
, .

N

N
t

V t
N

  


   (4.34) 

The cost function (objective function; nonlinear grey box model) was minimized 

with the trust-region reflective Newton method of nonlinear least-squares (Optimization 

Toolbox of Matlab 2011a) [63].  The general formulation of nonlinear least-squares is 

defined by  

  2 2

2
min ( ) min ix x

i

F x F x   (4.35) 

with constraints such that lb x ub  , where x  is a vector,  F x  is a function of a 

vector, and lb , ub  are the lower and upper boundaries respectively [64].  The trust-

region reflective Newton method is a kind of search method.  The trust region is defined 

as the neighborhood N ( n  space) around a point x  which approximates the behavior of a 

function F  with a simple function q .  In here, the function q  is the quadratic function 

derived by the first two terms of the Taylor approximation of F  at the point x .  The 

minimization of function  F x  was computed with a trial step using the trust-region 

subproblem defined by [63] 

   min , .
s

q s s N  (4.36) 

If    F x s F x  , the current point is updated as a new point ( x s ), and if 

   F x s F x  , the current point is not changed and the trust-region was updated with 

the reduced region.  The trial step is repeated to find the minimization value [64]. 
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The trust-region-reflective method can be developed more from Eq (4.36) and 

described by  

 
1

min
2s

T T

D r
s Hs s g



  
 

 (4.37) 

where sD  is a diagonal scaling matrix, r  is the radius of the two-dimensional subspace 

( s ), g  is the gradient of F  at the current point x , H  is the Hessian matrix of F  at the 

current point x , and .  is the 2-norm [63].  Solving Eq (4.37) is performed by the 

computation of a full eigensystem and a Newton process applied to the following 

equation 

 
1 1

0.
r s
   (4.38) 

The two-dimensional subspace s  is defined with the linear space spanned by 1s  

and 2s .  The 1s  is the direction of gradient of g , and 2s  is a solution to (an approximate 

Newton direction) 

 2H s g    (4.39) 

or a direction of negative curvature [64] 

 2 2 0.Ts H s    (4.40) 

The process of minimization with the trust-region reflective method is 

summarized with the following steps [63]: 

1. Defining the two-dimensional trust-region subproblem. 

2. Solve Eq (4.37) to determine the trial step s . 

3. If    F x s F x  , x  is updated as x s . 
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4. Update r . 

These steps are repeated until the minimization is converged. 

The criterion for the optimization was defined with the trace of the weighted 

prediction error matrix represented as follows: 

  trace * * ,E E W  (4.41) 

where E  represents the prediction error matrix and W  is a positive semi-definitive 

symmetric matrix [63].  Since the weighted matrix W  was assumed with an identity 

matrix, Eq (4.41) was simplified as the traditional least-sum-of-squared-error. 

In order to give constraints for some parameters, measurement results from other 

literatures were utilized.  The stiffness of the heel pad has been measured in several 

conditions such as compression or vibration.  In vitro vibration tests [59, 64], the stiffness 

was around 1160 kN/m at body weight, and it was not dependent on the applying 

frequency.  The measured stiffness with in vivo impact test was about 150 kN/m at body 

weight loading and increased as the frequency was increased [64].  Even though a study 

showed the stiffness was dependent on the location of foot bottom [60], in this study, the 

material properties of the front fat pad and heel fat pad were assumed as the same values 

for the simplified model.  Based on this information, Fk  was constrained in the range of 

3000-10e5 N/m for the estimation procedure. 

In the derived equations, the masses of foot and shank were calculated by the 

anthropometric data [32]: the foot mass is 0.0145 × total body mass, and the shank mass 

is 0.0465 × total body mass.  The other parameters to express mechanical properties such 

as spring constants and damping constants were estimated with the parameter estimation 

methods mentioned above. 
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The estimation of the unknown parameters has been done with the grey box 

parameter estimation (System Identification toolbox of Matlab 2011a) [9].  Since the 

optimization convergence for the parameter estimation is very dependent on the initial 

guess value, the temporary set of the initial guess values was selected for the trial error 

method.  The fitting percentage between the measurement and estimation was calculated 

with Eq (3.20).  

 

4.6  Results 

As an estimation example, the results of subject # 16 were shown in Figures 4.6-

4.14.  The poor fitting results were shown as the initial guess value was tested, but the 

estimated model through the optimization process was well-matched with the 

experimental results.  At lower frequencies from 10 to 20 Hz, the fitting percentage 

between the experimental results and the estimation results was less than comparing with 

the higher frequencies since the experimental results at those frequency ranges had more 

nonlinearity. 
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(a) 10 Hz without an extra mass 

 

(b) 10 Hz with 2.3 kg mass 

 

(c) 10 Hz with 4.5 kg mass 

Figure 4.6 The estimated results according to the applied  mass at 10 Hz (Subject # 16). 
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(a) 15 Hz without an extra mass 

 

(b) 15 Hz with 2.3 kg mass 

 

(c) 15 Hz with 4.5 kg mass 

Figure 4.7 The estimated results according to the applied  mass at 15 Hz (Subject # 16). 
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(a) 20 Hz without an extra mass 

 

(b) 20 Hz with 2.3 kg mass 

 

(c) 20 Hz with 4.5 kg mass 

Figure 4.8 The estimated results according to the applied  mass at 20 Hz (Subject # 16). 
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(a) 25 Hz without an extra mass 

 

(b) 25 Hz with 2.3 kg mass 

 

(c) 25 Hz with 4.5 kg mass 

Figure 4.9 The estimated results according to the applied  mass at 25 Hz (Subject # 16). 
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(a) 30 Hz without an extra mass 

 

(b) 30 Hz with 2.3 kg mass 

 

(c) 30 Hz with 4.5 kg mass 

Figure 4.10 The estimated results according to the applied  mass at 30 Hz (Subject # 16). 
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(a) 35 Hz without an extra mass 

 

(b) 35 Hz with 2.3 kg mass 

 

(c) 35 Hz with 4.5 kg mass 

Figure 4.11 The estimated results according to the applied  mass at 35 Hz (Subject # 16). 
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(a) 40 Hz without an extra mass 

 

(b) 40 Hz with 2.3 kg mass 

 

(c) 40 Hz with 4.5 kg mass 

Figure 4.12 The estimated results according to the applied  mass at 40 Hz (Subject # 16). 
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(a) 45 Hz without an extra mass 

 

(b) 45 Hz with 2.3 kg mass 

 

(c) 45 Hz with 4.5 kg mass 

Figure 4.13 The estimated results according to the applied  mass at 45 Hz (Subject # 16). 
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(a) 50 Hz without an extra mass 

 

(b) 50 Hz with 2.3 kg mass 

 

(c) 50 Hz with 4.5 kg mass 

Figure 4.14 The estimated results according to the applied  mass at 50 Hz (Subject # 16). 
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Based the estimated results of a subject (Subject # 16) the energy dissipation and 

damping characteristics were analyzed with the hysteresis behavior.  The hysteric loops 

were presented with the force and the relative displacement relationship according to 

frequencies in Figures 4.15-4.17.  The force between the tibia and talus (T ) and between 

the bottom of bones and the fat pad ( F ) were calculated with the following equation 

 ,T T T T TF k x c x    

 ,F F F F FF k x c x    (4.42) 

where Tc , Fc  are defined in Equation (4.25), x  is the relative displacement, and x  is the 

relative velocity.  The relative displacement and velocity were obtained by solving the 

ordinary differential equations.   

The force-displacement was analyzed as functions of the input frequency and 

applied mass at the talocrural joint and fat pad model.  In this hysteresis loop analysis 

(Figures 4.15-4.17), the area of the enclosed loop in the force-displacement graph means 

the total energy dissipated by the nonlinear viscoelastic model.  The large dissipated 

energy, the enclosed area of the force-displacement graph, was observed in the fat pad 

viscoelastic material with comparison to the talocrural joint ((a) and (b) of Figures 4.15-

17).  The effect of the applied mass was manifest in both the fat pad and talocrural joints.   

Without-mass case (Figure 4.15) 

The dissipation energy of the talocrural joint was nonlinear, but it was changed 

linearly, like a spring, after 20 Hz (Figure 4.15 (a)).  The fat pad dissipated input energy 

more in compression than that of the talocrural joint (Figure 4.15 (b)).  The dissipation 

energy of the fat pad became the highest at 15 Hz and gradually decreased with the 

frequency increase.  The major portion of work done by the input vibration was the fat 



91 

pad area since the enclosed area of the talocrural joint in force displacement was smaller 

compared to the fat pad model. 

With-mass case (2.3 kg and 4.5 kg mass; Figure 4.16 and 17) 

The shape of the enclosed area in the hysteresis loop was changed according to 

the external mass conditions.  In the case with 2.3 kg mass, the small area of dissipation 

energy of the talocrural joint was observed in compression over 40 Hz (Figure 4.16 (a)).  

With increase of the mass (4.5 kg mass), the enclosed area of the force-displacement at 

the talocrural joint disappeared, and therefore dissipation energy of the talocrural joint 

could be ignored (Figure 4.17 (a)).  The force-displacement of the fat pad showed that the 

lower frequencies had the relationship between higher displacement and lower force, and 

the higher frequencies had the relationship between lower displacement and higher force 

(Figure 4.16 (b)). 
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(a) The talocrural joint 

 

(b) The foot fat pad 

Figure 4.15 Hysteresis behavior (force vs. displacement plot) of the estimated model 
without an extra mass. 
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(a) The talocrural joint 

 

(b) The foot fat pad 

Figure 4.16 Hysteresis behavior (force vs. displacement plot) of the estimated model with 
2.3 kg mass. 
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(a) The talocrural joint 

 

(b) The foot fat pad 

Figure 4.17 Hysteresis behavior (force vs. displacement plot) of the estimated model with 
4.5 kg mass. 
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The results of the parameter estimation showed that the estimated parameters ( Tk , 

Fk , 11c , 12c , 13c , 21c , 22c , and 23c ) of the derived equation (Eq (4.30) and (4.31)) varied 

according to the physical properties of the subjects as the output acceleration was 

different with each subject.  The outlier data in the estimated parameters of 18 subjects 

were defined and removed with the box and whisker plot: the outliers were larger or 

smaller than 1.5×IQR (interquartile range 3 1Q Q , where 3Q  is the median of the upper 

half of the data set and 1Q  is the median of the lower half of the data set).  The 

evaluations of outliers in the estimated parameters were shown in Figures D.1-D.3. 

The spline fitted mean values of estimated parameters were calculated and 

compared with each mass case according to the frequencies.  The estimated parameters 

for the joint between the tibia and talus ( Tk , 11c , 12c , and 13c ) are shown in Figures 4.18-

4.21.  The spring constant ( Tk ) of the talocrural joint was increased as the frequency and 

the applied mass was increased (Figure 4.18).  The difference between the without-mass 

and the with-mass cases was small at 10 Hz, but it increased after 15 Hz.  The amplitude 

of the damping constant ( 11c ) of the talocrural joint with mass showed higher value at 

lower frequency and decreased with the increase of frequency (Figure 4.19).  The other 

constants ( 12c  and 13c ) did not have a significant variation between without-mass and 

with-mass case (Figure 4.20 and 4.21).  The damping capability of the talocrural joint 

was dependent on the spring constant ( Tk ) and the damping constant ( 11c ).   
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Figure 4.18 The mean value of the spring constants ( Tk ) of the talocrural joint. 

 

10 20 30 40 50

0.0

2.0x102

4.0x102

6.0x102

8.0x102

1.0x103

c 11
 (

N
s/

m
)

Freqency (Hz)

 without extra mass
 wtih 2.3 kg mass
 with 4.5 kg mass

 

Figure 4.19 The mean value of the damping constants ( 11c ) of the talocrural joint. 
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Figure 4.20 The mean value of the damping constants ( 12c ) of the talocrural joint. 
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Figure 4.21 The mean value of the damping constants ( 13c ) of the talocrural joint. 
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Based on the estimated parameters, the talocrural joint was softer and had more 

damping at lower frequencies.  The increase of mass and frequency made it stiffer and 

less damping.  As a consequence, external vibration was transferred to the whole body 

since the vibration absorbing capability of the talocrural joint was decreased. 

Similar to the talocrural joint, the increase of frequency and the applied mass 

influenced the spring constant ( Fk ) of the fat pad, which increased linearly as shown in 

Figure 4.22.  It was supported by the experimental result in which the stiffness of the fat 

pad increased as the applied frequency was increased [60].  The Fk  was increased 

gradually with lower slope compared to the slope of Tk .   
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Figure 4.22 The mean value of the spring constants ( Fk ) of the foot fat pad. 
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Figure 4.23 The mean value of the damping constants ( 21c ) of the foot fat pad. 

 

The reverse trend was shown in the damping constant ( 21c ) of the fat pad 

compared to the damping constant ( 11c ) of the talocrural joint; 21c  was increased with the 

frequency and the applied mass increase (Figure 4.23).  Moreover, 21c  had a higher 

magnitude than 11c .  The increase of damping value followed the stiffness increase.  This 

result shows that both the joint and the fat pad have different damping capabilities in 

lower and higher frequency ranges.  The damping properties of the talocrural joint and 

the fat pad increased as the stiffness was increased in 10 - 15 Hz.  As input frequency was 

increased, the fat pad represented a major portion of the damping capacity since the 

talocrural joint showed rigid body behavior (higher stiffness and lower damping).  
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Figure 4.24 The mean value of the damping constants ( 22c ) of the foot fat pad. 
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Figure 4.25 The mean value of the damping constants ( 23c ) of the foot fat pad. 
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There was no clear difference according to the applied frequency and mass in the 

damping constants 22c  and 23c  of the fat pad (Figure 4.24 and 4.25).  Since two damping 

constants ( 22c  and 23c ) were employed to control phase difference and acceleration slope 

of the output acceleration, they played a significant role in expressing the acceleration as 

the nonlinear acceleration output.  

 

4.7 Conclusion 

The medial arch of the foot and ankle was modeled with the complicated truss 

structure.  It was utilized to express the vibration absorbing capability of the foot and 

ankle system.  The equations of motion were derived with Lagrange’s equations.  

However, there were some problems such as the complexity and expense in calculation to 

solve the derived equations.  The sensitivity analysis was applied to find the sensitive 

parameters with respect to the states so that the complicated model was simplified as a 

two degrees of freedom model.  The nonlinear damping constants were employed to 

express the nonlinearity of the measured acceleration at the fat pad and ankle joint.  The 

viscoelastic parameters of the fat pad and ankle joint were estimated by trust region 

reflective Newton optimization method.   

The simulations with estimated parameters were well-matched with the 

experimental data approximately 70-90 percentage fitting.  The hysteresis loop analysis 

calculated with estimated constants showed the nonlinearity of the fat pad and talocrural 

joint as the damping values were proposed to follow the nonlinear output acceleration.  

Generally, the higher vibration absorbing capability was observed at the fat pad from the 
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hysteresis loop analysis since the dissipation energy of the talocrural joint was smaller 

than that of the fat pad.  When the mass was applied to the system, the force was 

increased and displacement decreased as the function of frequency.  This means that the 

foot and ankle system is more stressful with the increase of frequency if it has an 

additional load.  The comparison between this study and other studies [59, 60, 65] in the 

force-displacement relationship of the fat pad showed a significant difference.  This 

difference might be caused by the different type of input forces and loading conditions.  

However, the trend of estimated acceleration was similar to the stress results of 

viscoelastic models for ligaments under sinusoidal strain history [66].  

The estimated spring and damping constants were compared as the function of 

frequency and the applied mass.  Two viscoelastic parts (the talocrural joint and fat pad) 

were stiffer as the frequency was increased regardless of the applied mass conditions.  

For the talocrural joint, the damping properties were decreased with the frequency 

increase while the fat pad was more damping at higher frequencies.  Based on this result, 

the vibration absorbing capability indicated that the talocrural joint and fat pad absorbed 

the vibration at lower frequencies.  However, the increase of frequency caused the 

decrease of the vibration absorbing capability of the talocrural joint, and the vibration 

was absorbed more at the fat pad.  The other damping constants ( 12c , 13c , 22c , and 23c ) 

were only involved with the phase delay and slope of the output acceleration without a 

clear trend.  

Equation Chapter (Next) Section 1 
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CHAPTER 5 

5 Modal analysis of a spread single bone cell using the Finite 

Element Method 

5.1 Introduction 

The structural behavior of bone cells under mechanical loadings is important to 

understand how forces are transferred to bone cells and influence bone cell growth.  In 

order to demonstrate the relationship between bone formation and the type of stimulation, 

mechanical stimulation to bone cells has been widely investigated using experimental and 

numerical studies.  For experimental measurements of bone cells exposed to mechanical 

stimuli, compression force, stretching, fluid shear stress, and vibration have been used as 

mechanical stimulation in the many studies [67-71].  Among those studies, several 

studies, which utilized vibration as mechanical stimulation, have investigated the 

frequency range and amplitude of the vibration optimal for the growth of bone cells [69-

71].   

Several elements, such as structural components, mechanical properties, and input 

loading types have to be considered in computational modeling of cells for better 

understanding of the response of bone cells to mechanical stimuli.  Cell elements, such as 

cytoplasm, nucleus, membrane and the internal cytoskeleton (microtubules and 

microfilaments) have been generally employed for cell models.  A spreading chick 

embryo fibroblast cell adhered to a substrate was modeled with three dimensional 

geometrical images [72, 73].  It included an elliptical nucleus, a dome shape cytoplasm 

covered with a membrane, and an internal cytoskeleton structure composed of a 
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tensegrity model.  The tensegrity model consists of six struts, twenty-four cables, and 

twelve common nodes for microtubules, microfilaments, and actin filaments respectively.  

Nodal positions of the tensegrity model were adjusted to mimic a spreading cell shape.  

For focal adhesion sites, three nodes were constrained with three translation axes at the 

substrate surface.  The nonlinear structural behavior of cells such as prestressed effects, 

strain hardening, variable compliance of the cell and the influence of mechanical property 

of cytoplasm were observed [72].  Using the same model, the response of bone cells with 

fluid shear stress and substrate strain loading were compared [73].  The deformation 

results showed that fluid flow shear stress resulted in a large vertical motion of the bone 

cell, the substrate strain generated deformation on the cell attachments.  The additional 

results showed that the deforming effect of fluid flow shear stress was larger and more 

effective than the substrate strain loading case and that both mechanical stimuli played an 

independent role.  

A brain cell under impact loading was analyzed to examine the effect of several 

mechanical properties and model structures such as with or without cytoskeleton model 

[74].  A round brain cell in suspension was modeled as tensegrity model (prestressed 

cytoskeleton), continuum model (cytoplasm, nucleus, and membrane), and combined 

model.  The viscoelastic behavior was applied to the cytoskeleton and continuum system 

respectively to study its influence on the dynamic response.  They showed that tensegrity 

and continuum model with viscoelastic characteristics affected the dynamic response, 

such as displacement fluctuation and deflection change, and concluded that a combined 

model of tensegrity and continuum system would be good to analyze the prestressed 

cytoskeleton structure in the time domain. 
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The cell strain distribution exposed to mechanical stimulation was investigated 

with the experimental method of Atomic Force Microscopy (AFM) and numerical 

simulation with Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) 

[75].  Cell profiles and material property maps obtained by AFM were utilized to perform 

numerical simulations such as substrate stretch, fluid flow shear, intermittent hydrostatic 

pressure, microbead twisting, and micropipette poking.  Measured small volume on the 

substrate was applied to the model of a cell and isotropic, linear elastic material 

properties were used.  The effect of diverse mechanical stimuli, material property 

changes, Poisson ratio changes, the direction of application of stimulus, and fluid flow 

parameters were investigated.  

In this work, the Finite Element modal analysis has been performed to find the 

natural frequency and mode shapes of a spreading bone cell model utilizing the ANSYS 

12.1.  This study reveals the dependence of natural frequency on cell shapes and Young’s 

moduli of an adherent cell.  These results are expected to serve as a reference in order to 

select the optimum frequency of the external vibrating loading in the future experimental 

research.   

 

5.2 Modeling 

In the bone cell culturing process, bone cells are adhering and spreading on a 

culturing plate after being seeded.  The adhered shapes are various as shown in Figure 5.1 

(a).  In order to model an adherent cell, the geometry information was obtained from 

microscopy images [76, 77].  The ellipsoid shape and the height of a cell was selected 
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from Figure 5.1 (b) and (c).  A bone cell adhered on the cell culture plate was considered 

as a simplified adherent ellipsoidal dome shape (Figure 5.2).   

 

Figure 5.1 Culturing cells (a) various shapes of cells (b) ellipsoid shape of cells [76] (c) 
cross section of a cell [77]. 

 

 

Figure 5.2 The simplified ellipsoid dome model of a cell. 

(a) 

(b) 

(c) 
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Figure 5.3 The four types of ellipsoidal dome shape models. 

 

(a) 135 × 30 µm with 10 µm height

(b) 100 × 40 µm with 10 µm height

(c) 80 × 50 µm with 10 µm height

(d) 67 × 60 µm with 10 µm height

x 

y 

z 
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On the basis of available cell images the dimensions of adherent ellipsoidal dome 

structures were selected with the long ( x ) and short ( z ) axes equal to 135×30, 100×40, 

80×50, and 67×60 µm with 10 µm height ( y ) (Figure 5.3).  Even though the shape was 

changed, the volume of cytoplasm of all shapes was fixed as 1.9×10-14 m3.  The nucleus 

was also modeled as an ellipsoid with 8×5×5 µm (x×z×y) size, and its volume was 

1.05×10-16 m3.  The center of the nucleus was floating at 4.5 µm from the base.  In this 

study, the details of microtubules, microfilament, and cell membrane were ignored, and 

the cells were modeled as structures composed of cytoplasm and nucleus.   

Several numerical studies [72, 73, 74] of cells exposed to mechanical stimuli 

utilized mechanical properties as shown in Table 5.1.  Moreover, since the elastic 

modulus is significantly dependent on the cell type and the measurement method, several 

cases of the elastic moduli (30, 100, 500, 1000, 5000, and 15000 Pa) were selected for 

cytoplasm, and Poisson’s ratio was selected as 0.37 based on these studies [72, 74].  The 

elastic modulus and Poisson’s ratio of nucleus were selected to be 400 Pa and 0.37.  The 

densities of cytoplasm and nucleus were calculated using the volume and mass of a 

typical human tissue cell [78].  They are 1.25×10-7 kg/m3 for cytoplasm and nucleus.   

For creating the Finite Element model, the ten-node (SOLID 187) high-order 

tetrahedral element was used to mesh cytoplasm and nucleus (Figure 5.4) [79].  Table 5.2. 

presents the mechanical properties utilized for the finite element analysis. 
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Table 5.1 Utilized material properties in cell modeling. 

 Cell type Model Components 

Cytoplasm Nucleus Membrane Microtubules Microfilamen
ts 

*E 
(Pa) 

**   E 
(Pa) 

  E 
(Pa) 

  E 
(Pa) 

   E 
(Pa) 



[74] Brain cell 100 0.37 400 0.37 103  1.2× 
109  

0.3 2.6× 
109 

0.3 

[75] Osteoblasts 103 0.3 N/A N/A N/A N/A N/A N/A N/A N/A 
[72] Chick embryo 

fibroblast cell 
100 0.37 400 0.37 103 0.3 1.2× 

109 
0.3 2.6× 

109 
0.3 

[73] Bone cells 100 0.37 400 0.37 103 0.3 1.2× 
109 

0.3 2.6× 
109 

0.3 

*Elastic modulus, **Poisson’s ratio. 

 

 

Figure 5.4 A spread bone cell model in culturing condition (a) an example (100×40 µm) 
of three-dimensional model, and (b) an example of the finite element mesh model. 

 

Table 5.2 Material properties of each cellular component. 

Cytoplasm Nucleus 

Elastic Modulus (Pa) 30, 100, 1000, 5000, 10000 400 

Poisson’s ratio 0.37 0.37 

Density (kg/m3) 1.25e-7 1.27e-7 
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5.3 Modal analysis 

The vibration characteristics of an adhered bone cell, such as the natural 

frequency and mode shapes, were calculated by the Finite Element modal analysis.  

Considering the single degree of freedom model, the general equation of motion is  

            M x C x K x F t      (5.1) 

where  M ,  C ,  K , and  ( )F t  are a mass matrix, damping matrix, spring matrix, 

and external force vector respectively.  For modal analysis, Eq (5.1) was assumed as 

undamped free vibration and can be written as follows 

       0.M x K x    (5.2) 

If the system undergoes a simple harmonic motion       sinx t  , the following 

equation can be obtained: 

      2 0K M     (5.3) 

where 2  is eigenvalue,   is frequency, and    is eigenvector [80].   

The eigenvalues represent the natural frequency of the model, and the eigenvector 

represent the mode shape of the model.  In this study, the eigenvalues were obtained by 

the Block Lanczos method that is a powerful method to calculate eigenvalues and 

eigenvectors for a given system [81].  Generally, a cell has a damping effect with its 

viscoelastic characteristics.  But the damping effects were assumed be very small and 

ignored since the shape of a spread cell is very thin comparative to the in plane size.  The 

bottom area of the model was constrained in translational x, y, and z directions.  The 

number of modes to extract was chosen as ten in the range between 0 and 100 Hz.   
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5.4 Results 

The solution of Finite Element analysis presented eigenvalues and eigenvectors.  

The extracted eigenvalues and eigenvectors represented the natural frequencies and 

corresponding mode shapes.  The effect of cell shapes on the natural frequency was 

analyzed using an elastic modulus of 100 Pa.  The first five modes for each shape among 

the extracted ten modes are shown in Figures 5.5-5.8.  The mode shapes had similar 

trends although the mode shapes of some cases (the first mode of 80×50 µm, and the 

fourth and fifth mode of 135×30 µm) were different.  The first and second modes showed 

one direction oscillation respectively in z and x directions.  All shapes were oscillating in 

the same direction (z and x directions respectively for the first and second mode) (Figure 

5.5, 5.6, and 5.8 (a)) while the opposite direction oscillation was observed in the shape of 

80×50 µm (Figure. 5.7 (a)).  The nucleus inside cytoplasm also followed the oscillation 

of cytoplasm.  The third and fourth modes had two direction oscillations in z or x 

direction.  In mode three, twisting oscillation about the y axis has been observed at the 

center part of the cytoplasm because of two opposite oscillations, and the nucleus was 

rotating about the y axis (Figures 5.5-5.8 (c)).  The fourth mode was generating 

compression in the center area since two x direction oscillations were moving to the 

center simultaneously (Figures 5.5-5.8 (d)).   
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(a) Mode1 (b) Mode 2 (c) Mode 3 

 

 

 

(d) Mode 4 (e) Mode 5  

Figure 5.5 The modal analysis results for 135×30 µm with10 µm height and 100 Pa 
Young’s modulus shape. 

 

(a) Mode1 (b) Mode 2 (c) Mode 3 

 

 

 

(d) Mode 4 (e) Mode 5  

Figure 5.6 The modal analysis results for 100×40 µm with10 µm height and 100 Pa 
Young’s modulus shape. 

 

x 
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(a) Mode1 (b) Mode 2 (c) Mode 3 

 

 

 

(d) Mode 4 (e) Mode 5  

Figure 5.7 The modal analysis results for 80×50 µm with10 µm height and 100 Pa 
Young’s modulus shape. 

 

(a) Mode1 (b) Mode 2 (c) Mode 3 

 

 

 

(d) Mode 4 (e) Mode 5  

Figure 5.8 The modal analysis results for 67×60 µm with10 µm height and 100 Pa 
Young’s modulus shape. 

 

x 

z y 

x 
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The variations of the natural frequency for each mode have shown slight 

differences among ellipsoidal shapes of the model.  However, the natural frequencies as 

the function of an adhered cell shapes were in the similar range with the mean value from 

mode 1 to 10 of 18-25 Hz (Figure 5.9).  The natural frequency of the first and second 

mode is 18.07 (±0.08) and 18.15 (±0.03) Hz.  Above mode 3, the narrower the spreading 

shape is, the lower the natural frequency is.   
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Figure 5.9 The natural frequencies of an adhered cell model in the function of spread 
shapes. 

 

As mentioned in the previous section, the measured elastic moduli of cells have 

values in a wide range.  The natural frequency according to the elastic modulus when the 

area of a cell is 100×40 µm is shown in Figure 5.10.  As the elastic modulus is increased, 

the natural frequency is increased.   
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Figure 5.10 The natural frequencies of an adhered cell model in the function of the elastic 
modulus. 

 

5.5 Discussion and conclusion 

The dynamic characteristics of a bone cell in culturing conditions were analyzed 

using the finite element modal analysis.  An ellipsoidal dome shape was utilized to model 

a bone cell adhered to a culture plate.  Due to variations in the adherent cell shape, 

several ellipsoidal sizes were compared to evaluate the relationship between cell adherent 

shapes and the natural frequency.  Several elastic moduli of cytoplasm were also tested 

since the mechanical property of cell components also has a large variation.   
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Figure 5.11 The calculated first natural frequency as the function of elastic modulus. 

 

The result of this study showed that the natural frequency is in the range of 10-

211 Hz.  It does not depend on the cell shape, but it was affected by the Young’s modulus.  

These results were compared to two studies that reported the natural frequency of a 

suspending single cell (Baker’s yeast cell) [82, 83].  The result of this study shows a big 

difference with the natural frequency measured by Pelling et al. [82] 0.8-1.6 kHz and the 

calculated natural frequency by Molavi et al. [83] 137.7-525.7 kHz.  This difference can 

be contributed to the different conditions and mechanical properties of studies.  An 

adhered cell model has a different structure and vibration characteristics compared to the 

suspended cell.  The elastic moduli in this study (30-15,000 Pa), based on other 

computational studies, is a very small value compared to the value (0.75 MPa) used in 
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other studies [82, 83].  Considering the fact that the natural frequency is proportional to 

the square root of the elastic modulus, the first natural frequencies extracted as the 

function of the elastic modulus were fitted with the power law, and the data fitted 

equation according to the elastic modulus was obtained (Figure 5.11).  Consequently, the 

calculated first natural frequency of an adhered cell model with 0.75 MPa was 1.4 kHz.  

It demonstrates that the results of this study are close to the natural frequency measured 

by Pelling et al. [82]. 

The experimental studies measuring the effect of vibration amplitudes and 

frequencies have shown that several optimal values were beneficial for cell growth [70, 

71].  Rosenberg et al. [69] found that the optimal vibration for osteoblast proliferation 

was at 20 Hz frequency with 0.5±0.1 m/s2.  Shikata et al. [70] showed that the vibration 

frequency at 50 Hz with 0.5 g caused 4.5 times higher ALP gene expression than that of 

the non-vibrating case.  In those studies, the optimum frequency helping to stimulate and 

grow bone cells was around 20-60 Hz.  Based on this study and two studies [69, 70], it is 

supposed that the frequency of applied vibration close to the natural frequency has to be 

beneficial for the growth of the bone cell. 
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CHAPTER 6 

6 Conclusion and future work 

Vibration transfer to whole body may have harmful or beneficial effects, 

depending on its magnitude, frequency and repetition rate.  In order to understand the 

effect of whole body vibration, the foot and ankle system was investigated in the view of 

the starting point of whole body vibration.  The study of an adherent cell on a culturing 

plate with the Finite Element modal analysis was carried out to provide some information 

about the relationship between vibration and bone growth. 

The dynamic response and model of the foot and ankle system exposed to vertical 

vibration was demonstrated with vibration transmissibility measurement, black box 

system identification, and dynamic model development.  Chapter 2 presented the 

experimental results of the vibration transmissibility and phase delay between input (Base) 

and output (Medial Malleolus and Tibial Tuberosity).  The vibration absorbing capability 

of the foot and ankle system was measured as the function of applied mass and posture 

conditions of the system.  The results are as follows: 

 The transmission of the external vibration to whole body was closely related to the 

vibration absorbing capability of the foot and ankle since the major transmissibility 

happened at the foot and ankle.   

 The transmissibility depended on the applied frequency and mass conditions.  As the 

applied frequency was increased, the transmissibility was gradually decreased.  The 

applied mass increased the stiffness of the foot and ankle and resulted in the increase 

of the resonant frequency from 20 to 30-40 Hz with the increase of the additional 
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mass.  This means that the overweight or obese persons can get more vibration 

transmission to the whole body when they are exposed to higher frequency (30-40 

Hz), the overweight and obesity can lead a potential injurious effect since the 

resonant frequency of overweight and obese persons is close to the major frequency 

range of heel strike during gait.   

The system identification based on black box modes was utilized to understand 

the dynamic characteristics of the foot and ankle system in Chapter 3.  The identification 

of black box model was selected as a convenient method to model the complicated foot 

and ankle system without considering prior information.   

 Black box system identification provided the characteristics of the dynamic model 

and guided the development of the dynamic model in the future.   

 The utilized linear polynomial models and state-space model showed good 

identification performance (60-98%).  The identification error was observed in the 

nonlinear behavior of the measured acceleration.   

 The estimation results also presented that the identification of the foot and ankle 

system with linear models had a limitation at the lower frequency (10-15 Hz) 

regardless of the applied mass condition because of the nonlinear behavior of output.  

Therefore, nonlinear black box system identification was suggested for better 

estimation performance.  The results of black box system identification (state-space 

model) gave a guide (2-8 order state-space model) for the future development of the 

grey box model. 

Chapter 4 demonstrated the development procedure of the dynamic model of the 

foot and ankle system to understand the vibration absorbing capability of the foot and 
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ankle with the estimated parameters.  Previously, the concept of the truss structure was 

applied to represent the medial arch of the foot and ankle.  In this study, a more realistic 

model of the medial arch was proposed and developed to represent the dynamic model of 

the foot and ankle system.  It consisted of the five-rigid body including the tibia and 

viscoelastic parts.  The forefoot in the medial arch was expressed with three-rigid body 

(three metatarsals, the cuneiforms, and the navicular).  The hindfoot consisting of the 

talus and calcaneus was modeled a rigid body.  The joints between rigid bodies were 

represented by the viscoelastic model.  The viscoelastic model of the plantar aponeurosis, 

fat pad of foot, and talus joint were also included in the five-rigid body model.  

Lagrange’s equation was utilized to derive the equations of motion for the model.  The 

derived equation was linearized with Taylor series expansion since the motion at the 

operating point was very small.  However, the linearized equations showed a problem 

related to the expensive computing cost.  Through the parameter sensitivity analysis, the 

viscoelastic material of the fat pad and talocrural joint were defined as more sensitive 

parameters with respect to the states.  Consequently, the derived equations were 

simplified as two degrees of freedom model including two viscoelastic parts (the fat pad 

and talocrural joint).  Nonlinear behavior of the foot and ankle system shown in Chapter 

3 was compensated by nonlinear damping properties.  Unknown parameters of the 

dynamic model were estimated by the parameter estimation method (optimization 

algorithm) by fitting the experimental data.  The estimated parameters demonstrated the 

following about the behavior of the foot and ankle system:  

 The fat pad and talocrural joint possess the major vibration absorbing capability of 

the foot and ankle, the fat pad dissipated more energy than the talocrural joint.  
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 The applied mass and frequency increase affected the stiffness increase at the ankle 

joint and fat pad.   

 The derived model could be utilized to estimate the viscoelastic material model at the 

talocrural joint and fat pad when the input and output vibration is measured at the 

given system.   

As a micro scale study of whole body vibration, the dynamic characteristics of 

cells adhered to the culturing plate were investigated to understand the relationship 

between vibration and bone growth in Chapter 5.  The Finite Element modal analysis was 

employed to extract the natural frequencies and mode shapes of an adhered cell.  An 

ellipsoidal dome shape was modeled for an adhered bone cell to the culture plate.  Four 

types of ellipsoidal sizes were considered to analyze the effect of the cell adhered shape 

since there are variations in the adherent shape of cells in reality.  Based on the variation 

of mechanical properties from the literature survey, several elastic moduli of cytoplasm 

were applied to find the effect of the elastic modulus on the natural frequency.  Through 

the Finite Element modal analysis, the natural frequencies and mode shapes were 

obtained and compared with other studies.   

 The oscillating patterns of an adhered cell were described using the mode shapes.   

 The results of the Finite Element modal analysis showed that the natural frequencies 

(18-25 Hz) were very similar to each other regardless of the adhered shape of cells. 

 The variation of the elastic modulus affected the variation of the natural frequency 

(10-211 Hz).   

 The comparison between the calculated natural frequency and the optimal vibration 

(20-60 Hz) for bone cell growth reported in other experimental studies showed that 
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the natural frequency was supposed to be closely related to the optimal vibration 

frequency for bone cell growth. 

For future work, the frequency range will be increased to measure the 

transmissibility below 10 Hz input vibration.  Various vibration amplitude and random 

vibration needs to be considered as an input for general vibration transmissibility of the 

foot and ankle system.  The experiment of vibration transmission in standing condition 

will be considered to give better understanding of the effect of whole body vibration.  

The nonlinear black box model system identification will be performed for the 

nonlinear behavior of the output acceleration and compared with the results of linear 

black box models.  The derived model will be tested with other conditions, such as 

various frequencies, loading conditions, after obtaining the input and output vibration.   

The tensegrity model including a cytoskleton structure will be utilized for the 

detail model of cells.  A more realistic material model will be considered to express 

viscoelastic material properties of cells.  
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A. APPENDIX A 

 

(a) 30 Hz & 0 kg: ARX(92%), ARMAX(94%), BJ(96%), OE(95%), SS(87%) 

 

(b) 30 Hz & 2.3 kg: ARX(957%), ARMAX(95%), BJ(97%), OE(97%), SS(87%) 

 
(c) 30 Hz & 4.5 kg: ARX(95%), ARMAX(96%), BJ(96%), OE(95%), SS(93%) 

Figure A.1 An example of black box system identification results at 30 Hz (subject # 16) 
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(a) 35 Hz & 0 kg: ARX(95%), ARMAX(96%), BJ(96%), OE(95%), SS(93%) 

 

(b) 35 Hz & 2.3 kg: ARX(97%), ARMAX(97%), BJ(887%), OE(97%), SS(94%) 

 

(c) 35 Hz & 4.5 kg: ARX(94%), ARMAX(90%), BJ(89%), OE(89%), SS(93%) 

Figure A.2 An example of black box system identification results at 35 Hz (subject # 16) 
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(a) 40 Hz & 0 kg: ARX(94%), ARMAX(94%), BJ(95%), OE(95%), SS(93%) 

 

(b) 40 Hz & 2.3 kg: ARX(96%), ARMAX(95%), BJ(97%), OE(97%), SS(93%) 

 

(c) 40 Hz & 4.5 kg: ARX(97%), ARMAX(97%), BJ(97%), OE(97%), SS(92%) 

Figure A.3 An example of black box system identification results at 40 Hz (subject # 16) 
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(a) 45 Hz & 0 kg: ARX(94%), ARMAX(94%), BJ(93%), OE(93%), SS(94%) 

 

(b) 45 Hz & 2.3 kg: ARX(95%), ARMAX(95%), BJ(96%), OE(96%), SS(91%) 

 

(c) 45 Hz & 4.5 kg: ARX(97%), ARMAX(98%), BJ(97%), OE(96%), SS(90%) 

Figure A.4 An example of black box system identification results at 45 Hz (subject # 16) 
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(a) 50 Hz & 0 kg: ARX(83%), ARMAX(83%), BJ(84%), OE(95%), SS(83%) 

 

(b) 50 Hz & 2.3 kg: ARX(96%), ARMAX(96%), BJ(97%), OE(97%), SS(94%) 

 

(c) 50 Hz & 4.5 kg: ARX(95%), ARMAX(95%), BJ(95%), OE(95%), SS(94%) 

Figure A.5 An example of black box system identification results at 50 Hz (subject # 16) 
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Table A.1 Black box system identification results (Subject # 2). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (11,11,4) 62 (11,11,5,4) 60 (11,5,5,5,4) 55 (11,5,4) 78 6 60 

2.3 (12,11,3) 60 (12,11,5,3) 56 (11,5,5,5,3) 67 (11,5,3) 68 6 56 
4.5 (10,14,4) 51 (10,14,3,4) 45 (14,3,3,3,4) 38 (14,3,4) 67 8 50 

15 
0 (11,8,7) 69 (11,8,5,7) 66 (8,5,5,5,7) 76 (8,5,7) 88 8 72 

2.3 (9,8,2) 77 (9,8,5,2) 78 (8,5,5,5,2) 76 (8,5,2) 83 9 80 
4.5 (10,3,10) 45 (10,3,5,10) 68 (3,5,5,5,10) 80 (3,5,10) 80 9 79 

20 
0 (12,4,7) 80 (12,4,5,7) 82 (4,5,5,5,7) 81 (4,5,7) 86 10 84 

2.3 (10,4,9) 84 (10,4,5,9) 86 (4,5,5,5,9) 91 (4,5,9) 91 8 88 
4.5 (12,6,12) 86 (12,6,5,12) 85 (6,5,5,5,12) 89 (6,5,12) 89 6 78 

25 
0 (9,10,5) 96 (9,10,5,5) 93 (10,5,5,5,5) 65 (10,5,5) 96 10 96 

2.3 (12,4,2) 94 (12,4,3,2) 93 (4,3,3,3,2) 94 (4,3,2) 94 5 82 
4.5 (12,5,12) 92 (12,5,3,12) 93 (5,3,3,3,12) 94 (5,3,12) 94 7 94 

30 
0 (11,4,7) 93 (11,4,5,7) 93 (4,5,5,5,7) 94 (4,5,7) 95 7 95 

2.3 (11,5,12) 96 (11,5,5,12) 96 (5,5,5,5,12) 96 (5,5,12) 97 7 93 
4.5 (11,5,7) 95 (11,5,5,7) 95 (5,5,5,5,7) 97 (5,5,7) 98 7 89 

35 
0 (12,8,10) 95 (12,8,5,10) 96 (8,5,5,5,10) 97 (8,5,10) 97 5 93 

2.3 (9,3,9) 94 (9,3,5,9) 88 (3,5,5,5,9) 93 (3,5,9) 95 5 91 
4.5 (9,1,4) 94 (9,1,3,4) 91 (1,3,3,3,4) 85 (1,3,4) 86 5 95 

40 
0 (10,11,3) 97 (10,11,3,3) 97 (11,3,3,3,3) 96 (11,3,3) 97 5 94 

2.3 (9,12,7) 97 (9,12,3,7) 97 (12,3,3,3,7) 97 (12,3,7) 97 5 92 
4.5 (10,9,6) 96 (10,9,3,6) 96 (9,3,3,3,6) 95 (9,3,6) 96 5 93 

45 
0 (12,12,10) 96 (12,12,3,10) 96 (12,3,3,3,10) 96 (12,3,10) 96 6 95 

2.3 (12,4,9) 96 (12,4,3,9) 97 (4,3,3,3,9) 97 (4,3,9) 97 5 91 
4.5 (12,9,8) 98 (12,9,3,8) 98 (9,3,3,3,8) 98 (9,3,8) 98 5 93 

50 
0 (9,7,10) 91 (9,7,3,10) 91 (7,3,3,3,10) 89 (7,3,10) 96 3 89 

2.3 (9,12,5) 93 (9,12,3,5) 93 (12,3,3,3,5) 92 (12,3,5) 94 3 91 
4.5 (9,12,3) 98 (9,12,3,3) 98 (12,3,3,3,3) 97 (12,3,3) 97 3 88 
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Table A.2 Black box system identification results (Subject # 3). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (13,11,9) 70 (13,11,5,9) 55 (11,5,5,5,9) 72 (11,5,9) 76 7 62 

2.3 (13,13,10) 64 (13,13,5,10) 52 (13,5,5,5,10) 72 (13,5,10) 68 8 64 
4.5 (11,4,7) 61 (11,4,3,7) 62 (4,3,3,3,7) 58 (4,3,7) 62 8 83 

15 
0 (13,5,3) 81 (13,5,3,3) 78 (5,3,3,3,3) 86 (5,3,3) 87 5 85 

2.3 (9,8,7) 81 (9,8,3,7) 83 (8,3,3,3,7) 86 (8,3,7) 87 7 85 
4.5 (15,1,10) 73 (15,1,3,10) 74 (1,3,3,3,10) 65 (1,3,10) 75 7 83 

20 
0 (9,10,14) 93 (9,10,3,14) 92 (10,3,3,3,14) 93 (10,3,14) 92 5 81 

2.3 (12,3,7) 87 (12,3,3,7) 87 (3,3,3,3,7) 83 (3,3,7) 85 8 89 
4.5 (12,12,1) 88 (12,12,3,1) 88 (12,3,3,3,1) 89 (12,3,1) 89 7 87 

25 
0 (9,7,5) 95 (9,7,5,5) 93 (7,5,5,5,5) 94 (7,5,5) 94 5 87 

2.3 (12,6,7) 80 (12,6,5,7) 79 (6,5,5,5,7) 86 (6,5,7) 88 7 73 
4.5 (12,10,3) 88 (12,10,5,3) 84 (10,5,5,5,3) 73 (10,5,3) 92 4 82 

30 
0 (11,5,3) 87 (11,5,3,3) 88 (5,3,3,3,3) 77 (5,3,3) 95 5 69 

2.3 (11,10,9) 91 (11,10,5,9) 91 (10,5,5,5,9) 92 (10,5,9) 89 6 89 
4.5 (12,4,8) 94 (12,4,3,8) 94 (4,3,3,3,8) 85 (4,3,8) 84 4 88 

35 
0 (9,3,3) 90 (9,3,3,3) 89 (3,3,3,3,3) 93 (3,3,3) 92 4 88 

2.3 (12,3,2) 93 (12,3,3,2) 88 (3,3,3,3,2) 93 (3,3,2) 90 4 87 
4.5 (12,3,13) 91 (12,3,3,13) 92 (3,3,3,3,13) 93 (3,3,13) 93 4 91 

40 
0 (10,9,11) 93 (10,9,3,11) 93 (9,3,3,3,11) 93 (9,3,11) 94 5 91 

2.3 (10,8,6) 96 (10,8,3,6) 96 (8,3,3,3,6) 71 (8,3,6) 97 5 93 
4.5 (10,12,14) 96 (10,12,3,14) 96 (12,3,3,3,14) 96 (12,3,14) 96 5 94 

45 
0 (13,10,12) 95 (13,10,3,12) 95 (10,3,3,3,12) 96 (10,3,12) 95 6 94 

2.3 (11,3,2) 92 (11,3,3,2) 95 (3,3,3,3,2) 96 (3,3,2) 96 5 93 
4.5 (10,7,7) 95 (10,7,3,7) 95 (7,3,3,3,7) 95 (7,3,7) 95 5 83 

50 
0 (10,5,3) 93 (10,5,3,3) 93 (5,3,3,3,3) 94 (5,3,3) 96 4 88 

2.3 (15,10,3) 97 (15,10,3,3) 97 (10,3,3,3,3) 92 (10,3,3) 96 4 91 
4.5 (14,10,3) 98 (14,10,3,3) 97 (10,3,3,3,3) 91 (10,3,3) 98 4 93 
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Table A.3 Black box system identification results (Subject # 4). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (11,4,4) 71 (11,4,5,4) 78 (4,5,5,5,4) 79 (4,5,4) 80 8 81 

2.3 (14,10,2) 78 (14,10,5,2) 78 (10,5,5,5,2) 77 (10,5,2) 80 5 77 
4.5 (12,3,4) 65 (12,3,3,4) 63 (3,3,3,3,4) 65 (3,3,4) 68 6 74 

15 
0 (9,7,6) 85 (9,7,3,6) 91 (7,3,3,3,6) 93 (7,3,6) 92 5 91 

2.3 (9,4,6) 74 (9,4,3,6) 91 (4,3,3,3,6) 91 (4,3,6) 91 4 88 
4.5 (9,2,10) 60 (9,2,3,10) 52 (2,3,3,3,10) 73 (2,3,10) 83 5 90 

20 
0 (14,5,10) 83 (14,5,3,10) 84 (5,3,3,3,10) 85 (5,3,10) 89 4 85 

2.3 (12,5,12) 87 (12,5,3,12) 88 (5,3,3,3,12) 88 (5,3,12) 89 5 85 
4.5 (15,6,12) 89 (15,6,3,12) 90 (6,3,3,3,12) 90 (6,3,12) 89 5 87 

25 
0 (12,12,11) 84 (12,12,5,11) 85 (12,5,5,5,11) 85 (12,5,11) 85 4 78 

2.3 (12,12,3) 94 (12,12,5,3) 93 (12,5,5,5,3) 88 (12,5,3) 95 5 86 
4.5 (12,10,9) 89 (12,10,3,9) 89 (10,3,3,3,9) 88 (10,3,9) 94 5 85 

30 
0 (11,4,3) 89 (11,4,3,3) 88 (4,3,3,3,3) 89 (4,3,3) 91 4 88 

2.3 (11,7,5) 94 (11,7,3,5) 94 (7,3,3,3,5) 90 (7,3,5) 92 3 89 
4.5 (12,10,8) 94 (12,10,3,8) 94 (10,3,3,3,8) 92 (10,3,8) 95 5 91 

35 
0 (15,12,12) 90 (15,12,3,12) 91 (12,3,3,3,12) 89 (12,3,12) 91 3 85 

2.3 (9,7,9) 95 (9,7,3,9) 94 (7,3,3,3,9) 94 (7,3,9) 95 3 93 
4.5 (9,10,8) 95 (9,10,3,8) 95 (10,3,3,3,8) 95 (10,3,8) 97 3 93 

40 
0 (11,4,4) 77 (11,4,5,4) 89 (4,5,5,5,4) 76 (4,5,4) 86 7 88 

2.3 (10,8,4) 90 (10,8,3,4) 90 (8,3,3,3,4) 93 (8,3,4) 93 7 92 
4.5 (9,9,2) 96 (9,9,3,2) 96 (9,3,3,3,2) 95 (9,3,2) 96 8 96 

45 
0 (11,3,2) 77 (11,3,3,2) 76 (3,3,3,3,2) 70 (3,3,2) 89 3 85 

2.3 (10,6,2) 93 (10,6,3,2) 93 (6,3,3,3,2) 93 (6,3,2) 93 3 92 
4.5 (10,9,12) 96 (10,9,3,12) 96 (9,3,3,3,12) 96 (9,3,12) 97 5 96 

50 
0 (10,8,12) 90 (10,8,3,12) 90 (8,3,3,3,12) 91 (8,3,12) 91 5 90 

2.3 (10,6,4) 92 (10,6,3,4) 92 (6,3,3,3,4) 91 (6,3,4) 93 5 93 
4.5 (10,6,4) 93 (10,6,3,4) 94 (6,3,3,3,4) 96 (6,3,4) 97 5 95 

 

136 



 

Table A.4 Black box system identification results (Subject # 5). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (13,4,6) 68 (13,4,5,6) 69 (4,5,5,5,6) 75 (4,5,6) 75 6 60 

2.3 (11,7,2) 67 (11,7,5,2) 68 (7,5,5,5,2) 73 (7,5,2) 76 6 64 
4.5 (9,4,10) 62 (9,4,5,10) 65 (4,5,5,5,10) 76 (4,5,10) 75 6 53 

15 
0 (13,8,5) 74 (13,8,5,5) 88 (8,5,5,5,5) 80 (8,5,5) 88 7 80 

2.3 (13,3,5) 83 (13,3,5,5) 79 (3,5,5,5,5) 88 (3,5,5) 88 7 90 
4.5 (13,4,6) 83 (13,4,5,6) 86 (4,5,5,5,6) 87 (4,5,6) 85 5 76 

20 
0 (11,9,8) 86 (11,9,3,8) 86 (9,3,3,3,8) 90 (9,3,8) 89 7 90 

2.3 (15,14,10) 91 (15,14,5,10) 91 (14,5,5,5,10) 94 (14,5,10) 94 7 90 
4.5 (9,12,10) 82 (9,12,3,10) 84 (12,3,3,3,10) 89 (12,3,10) 89 7 86 

25 
0 (12,4,7) 90 (12,4,3,7) 90 (4,3,3,3,7) 93 (4,3,7) 93 4 90 

2.3 (12,3,4) 91 (12,3,3,4) 91 (3,3,3,3,4) 91 (3,3,4) 91 4 84 
4.5 (12,10,10) 91 (12,10,3,10) 88 (10,3,3,3,10) 92 (10,3,10) 92 7 89 

30 
0 (14,3,4) 91 (14,3,5,4) 94 (3,5,5,5,4) 80 (3,5,4) 92 8 91 

2.3 (10,5,7) 92 (10,5,3,7) 91 (5,3,3,3,7) 91 (5,3,7) 91 8 93 
4.5 (12,9,2) 95 (12,9,5,2) 95 (9,5,5,5,2) 94 (9,5,2) 95 8 93 

35 
0 (12,10,5) 92 (12,10,5,5) 90 (10,5,5,5,5) 88 (10,5,5) 96 5 91 

2.3 (12,7,8) 96 (12,7,5,8) 95 (7,5,5,5,8) 96 (7,5,8) 95 5 90 
4.5 (12,7,10) 93 (12,7,5,10) 95 (7,5,5,5,10) 95 (7,5,10) 95 5 87 

40 
0 (10,8,9) 94 (10,8,5,9) 94 (8,5,5,5,9) 95 (8,5,9) 96 3 91 

2.3 (10,6,2) 94 (10,6,5,2) 95 (6,5,5,5,2) 95 (6,5,2) 95 5 89 
4.5 (11,10,2) 96 (11,10,5,2) 95 (10,5,5,5,2) 94 (10,5,2) 94 5 91 

45 
0 (10,4,4) 92 (10,4,5,4) 93 (4,5,5,5,4) 94 (4,5,4) 95 3 91 

2.3 (10,6,2) 96 (10,6,5,2) 96 (6,5,5,5,2) 96 (6,5,2) 97 3 93 
4.5 (10,9,10) 93 (10,9,5,10) 93 (9,5,5,5,10) 96 (9,5,10) 96 5 92 

50 
0 (10,5,11) 93 (10,5,5,11) 93 (5,5,5,5,11) 95 (5,5,11) 96 4 93 

2.3 (12,7,8) 95 (12,7,5,8) 95 (7,5,5,5,8) 97 (7,5,8) 97 4 94 
4.5 (12,3,4) 95 (12,3,5,4) 95 (3,5,5,5,4) 95 (3,5,4) 95 4 90 
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Table A.5 Black box system identification results (Subject # 6). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (15,8,7) 84 (15,8,5,7) 84 (8,5,5,5,7) 84 (8,5,7) 86 6 84 

2.3 (14,9,7) 70 (14,9,5,7) 69 (9,5,5,5,7) 59 (9,5,7) 78 8 69 
4.5 (14,7,12) 61 (14,7,5,12) 82 (7,5,5,5,12) 47 (7,5,12) 83 6 54 

15 
0 (9,11,8) 56 (9,11,5,8) 72 (11,5,5,5,8) 75 (11,5,8) 85 5 74 

2.3 (9,8,11) 83 (9,8,5,11) 82 (8,5,5,5,11) 83 (8,5,11) 84 5 79 
4.5 (12,2,15) 55 (12,2,5,15) 74 (2,5,5,5,15) 68 (2,5,15) 84 5 65 

20 
0 (12,4,14) 76 (12,4,3,14) 76 (4,3,3,3,14) 77 (4,3,14) 77 7 74 

2.3 (11,4,5) 75 (11,4,3,5) 70 (4,3,3,3,5) 78 (4,3,5) 80 7 79 
4.5 (12,13,10) 71 (12,13,3,10) 74 (13,3,3,3,10) 76 (13,3,10) 87 7 64 

25 
0 (12,6,11) 82 (12,6,3,11) 80 (6,3,3,3,11) 73 (6,3,11) 87 7 78 

2.3 (12,15,8) 88 (12,15,3,8) 88 (15,3,3,3,8) 86 (15,3,8) 88 7 83 
4.5 (12,5,4) 82 (12,5,3,4) 71 (5,3,3,3,4) 87 (5,3,4) 87 5 74 

30 
0 (11,4,9) 74 (11,4,3,9) 74 (4,3,3,3,9) 75 (4,3,9) 74 5 74 

2.3 (10,5,6) 79 (10,5,5,6) 82 (5,5,5,5,6) 83 (5,5,6) 87 8 84 
4.5 (10,7,13) 94 (10,7,5,13) 90 (7,5,5,5,13) 95 (7,5,13) 96 8 88 

35 
0 (15,3,4) 79 (15,3,5,4) 79 (3,5,5,5,4) 87 (3,5,4) 85 5 76 

2.3 (12,1,4) 92 (12,1,3,4) 89 (1,3,3,3,4) 86 (1,3,4) 86 5 89 
4.5 (9,8,8) 94 (9,8,5,8) 94 (8,5,5,5,8) 90 (8,5,8) 93 5 90 

40 
0 (11,6,3) 91 (11,6,3,3) 89 (6,3,3,3,3) 91 (6,3,3) 88 5 83 

2.3 (10,9,10) 92 (10,9,3,10) 92 (9,3,3,3,10) 93 (9,3,10) 92 5 93 
4.5 (12,6,6) 88 (12,6,5,6) 88 (6,5,5,5,6) 88 (6,5,6) 89 5 87 

45 
0 (11,9,8) 87 (11,9,3,8) 87 (9,3,3,3,8) 87 (9,3,8) 86 5 88 

2.3 (10,11,11) 93 (10,11,3,11) 93 (11,3,3,3,11) 94 (11,3,11) 94 3 92 
4.5 (12,9,4) 94 (12,9,3,4) 94 (9,3,3,3,4) 91 (9,3,4) 94 3 91 

50 
0 (11,6,3) 86 (11,6,3,3) 87 (6,3,3,3,3) 92 (6,3,3) 93 3 91 

2.3 (10,4,1) 95 (10,4,3,1) 95 (4,3,3,3,1) 95 (4,3,1) 94 3 94 
4.5 (10,12,8) 92 (10,12,3,8) 95 (12,3,3,3,8) 93 (12,3,8) 93 2 90 
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Table A.6 Black box system identification results (Subject # 7). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (11,12,1) 88 (11,12,5,1) 89 (12,5,5,5,1) 91 (12,5,1) 91 6 89 

2.3 (13,12,4) 82 (13,12,5,4) 82 (12,5,5,5,4) 83 (12,5,4) 82 7 81 
4.5 (11,3,10) 73 (11,3,5,10) 75 (3,5,5,5,10) 74 (3,5,10) 74 6 71 

15 
0 (9,8,6) 87 (9,8,5,6) 86 (8,5,5,5,6) 91 (8,5,6) 92 5 88 

2.3 (11,7,5) 81 (11,7,5,5) 83 (7,5,5,5,5) 86 (7,5,5) 86 5 83 
4.5 (11,12,9) 86 (11,12,5,9) 85 (12,5,5,5,9) 87 (12,5,9) 90 5 85 

20 
0 (12,5,9) 94 (12,5,3,9) 94 (5,3,3,3,9) 95 (5,3,9) 95 5 92 

2.3 (9,6,10) 88 (9,6,3,10) 88 (6,3,3,3,10) 90 (6,3,10) 93 8 90 
4.5 (9,4,12) 90 (9,4,3,12) 89 (4,3,3,3,12) 91 (4,3,12) 92 6 89 

25 
0 (12,9,2) 95 (12,9,3,2) 94 (9,3,3,3,2) 96 (9,3,2) 96 6 91 

2.3 (12,9,6) 93 (12,9,3,6) 90 (9,3,3,3,6) 94 (9,3,6) 95 4 81 
4.5 (12,10,2) 90 (12,10,5,2) 90 (10,5,5,5,2) 92 (10,5,2) 94 4 80 

30 
0 (12,1,3) 83 (12,1,5,3) 90 (1,5,5,5,3) 96 (1,5,3) 96 5 94 

2.3 (9,10,5) 93 (9,10,5,5) 92 (10,5,5,5,5) 96 (10,5,5) 96 3 84 
4.5 (12,7,8) 95 (12,7,5,8) 95 (7,5,5,5,8) 94 (7,5,8) 94 3 86 

35 
0 (9,7,6) 95 (9,7,5,6) 94 (7,5,5,5,6) 95 (7,5,6) 95 3 91 

2.3 (12,9,12) 93 (12,9,5,12) 94 (9,5,5,5,12) 91 (9,5,12) 93 3 91 
4.5 (9,5,7) 94 (9,5,5,7) 95 (5,5,5,5,7) 95 (5,5,7) 95 3 90 

40 
0 (10,8,3) 96 (10,8,5,3) 96 (8,5,5,5,3) 96 (8,5,3) 96 3 93 

2.3 (10,5,6) 96 (10,5,5,6) 96 (5,5,5,5,6) 96 (5,5,6) 96 3 92 
4.5 (10,7,3) 95 (10,7,5,3) 96 (7,5,5,5,3) 97 (7,5,3) 97 3 92 

45 
0 (10,12,11) 94 (10,12,5,11) 94 (12,5,5,5,11) 96 (12,5,11) 96 3 94 

2.3 (10,8,1) 95 (10,8,5,1) 95 (8,5,5,5,1) 96 (8,5,1) 95 3 94 
4.5 (12,11,9) 96 (12,11,5,9) 96 (11,5,5,5,9) 95 (11,5,9) 95 3 95 

50 
0 (10,1,3) 95 (10,1,5,3) 95 (1,5,5,5,3) 95 (1,5,3) 95 3 94 

2.3 (11,4,9) 95 (11,4,5,9) 95 (4,5,5,5,9) 96 (4,5,9) 96 3 94 
4.5 (11,1,10) 95 (11,1,5,10) 95 (1,5,5,5,10) 95 (1,5,10) 95 3 93 
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Table A.7 Black box system identification results (Subject # 8). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (11,7,7) 72 (11,7,5,7) 71 (7,5,5,5,7) 65 (7,5,7) 75 5 71 

2.3 (9,6,6) 67 (9,6,5,6) 67 (6,5,5,5,6) 69 (6,5,6) 70 7 66 
4.5 (9,2,1) 54 (9,2,3,1) 55 (2,3,3,3,1) 74 (2,3,1) 73 6 53 

15 
0 (11,4,8) 92 (11,4,3,8) 91 (4,3,3,3,8) 93 (4,3,8) 93 5 92 

2.3 (9,1,6) 81 (9,1,3,6) 79 (1,3,3,3,6) 67 (1,3,6) 77 5 89 
4.5 (11,4,4) 89 (11,4,3,4) 90 (4,3,3,3,4) 88 (4,3,4) 87 5 87 

20 
0 (12,1,1) 93 (12,1,5,1) 93 (1,5,5,5,1) 80 (1,5,1) 85 5 92 

2.3 (12,4,3) 95 (12,4,3,3) 95 (4,3,3,3,3) 95 (4,3,3) 96 5 94 
4.5 (9,9,7) 94 (9,9,3,7) 92 (9,3,3,3,7) 93 (9,3,7) 91 7 93 

25 
0 (9,9,9) 92 (9,9,3,9) 93 (9,3,3,3,9) 94 (9,3,9) 95 4 94 

2.3 (9,9,10) 89 (9,9,3,10) 93 (9,3,3,3,10) 93 (9,3,10) 92 4 93 
4.5 (12,7,7) 91 (12,7,3,7) 90 (7,3,3,3,7) 95 (7,3,7) 94 4 91 

30 
0 (9,3,4) 94 (9,3,3,4) 94 (3,3,3,3,4) 86 (3,3,4) 94 3 88 

2.3 (11,11,4) 96 (11,11,3,4) 96 (11,3,3,3,4) 96 (11,3,4) 97 3 92 
4.5 (11,4,4) 95 (11,4,3,4) 95 (4,3,3,3,4) 91 (4,3,4) 97 4 95 

35 
0 (12,2,12) 93 (12,2,3,12) 94 (2,3,3,3,12) 94 (2,3,12) 94 4 94 

2.3 (9,5,9) 91 (9,5,3,9) 96 (5,3,3,3,9) 96 (5,3,9) 94 4 95 
4.5 (12,4,6) 95 (12,4,5,6) 95 (4,5,5,5,6) 95 (4,5,6) 93 2 95 

40 
0 (11,8,10) 91 (11,8,5,10) 92 (8,5,5,5,10) 95 (8,5,10) 95 4 88 

2.3 (10,5,2) 94 (10,5,5,2) 94 (5,5,5,5,2) 95 (5,5,2) 96 4 94 
4.5 (11,6,12) 93 (11,6,5,12) 96 (6,5,5,5,12) 95 (6,5,12) 96 2 92 

45 
0 (11,5,3) 91 (11,5,5,3) 92 (5,5,5,5,3) 91 (5,5,3) 91 4 91 

2.3 (10,12,5) 93 (10,12,5,5) 93 (12,5,5,5,5) 95 (12,5,5) 92 4 92 
4.5 (13,8,5) 93 (13,8,5,5) 94 (8,5,5,5,5) 94 (8,5,5) 94 2 92 

50 
0 (11,9,5) 93 (11,9,5,5) 93 (9,5,5,5,5) 94 (9,5,5) 94 2 92 

2.3 (10,8,12) 92 (10,8,3,12) 90 (8,3,3,3,12) 92 (8,3,12) 89 2 91 
4.5 (10,6,4) 92 (10,6,3,4) 92 (6,3,3,3,4) 93 (6,3,4) 95 3 91 
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Table A.8 Black box system identification results (Subject # 9). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (8,7,7) 89 (8,7,5,7) 90 (7,5,5,5,7) 89 (7,5,7) 90 6 88 

2.3 (15,4,11) 64 (15,4,5,11) 76 (4,5,5,5,11) 82 (4,5,11) 86 8 81 
4.5 (8,8,10) 80 (8,8,5,10) 75 (8,5,5,5,10) 66 (8,5,10) 87 8 74 

15 
0 (10,8,6) 92 (10,8,3,6) 92 (8,3,3,3,6) 90 (8,3,6) 92 8 89 

2.3 (9,8,2) 86 (9,8,3,2) 88 (8,3,3,3,2) 90 (8,3,2) 90 5 88 
4.5 (9,3,9) 81 (9,3,3,9) 80 (3,3,3,3,9) 86 (3,3,9) 88 5 84 

20 
0 (9,9,10) 93 (9,9,3,10) 95 (9,3,3,3,10) 95 (9,3,10) 93 6 86 

2.3 (12,2,5) 86 (12,2,3,5) 85 (2,3,3,3,5) 86 (2,3,5) 81 3 85 
4.5 (9,10,8) 94 (9,10,3,8) 95 (10,3,3,3,8) 94 (10,3,8) 95 3 88 

25 
0 (9,4,6) 91 (9,4,3,6) 93 (4,3,3,3,6) 96 (4,3,6) 96 4 91 

2.3 (9,4,12) 93 (9,4,3,12) 93 (4,3,3,3,12) 92 (4,3,12) 93 3 85 
4.5 (9,9,8) 96 (9,9,3,8) 90 (9,3,3,3,8) 93 (9,3,8) 95 2 84 

30 
0 (9,10,8) 95 (9,10,3,8) 96 (10,3,3,3,8) 95 (10,3,8) 97 4 89 

2.3 (11,5,8) 94 (11,5,3,8) 95 (5,3,3,3,8) 95 (5,3,8) 95 4 92 
4.5 (12,7,7) 94 (12,7,3,7) 94 (7,3,3,3,7) 94 (7,3,7) 94 4 90 

35 
0 (9,8,9) 96 (9,8,3,9) 96 (8,3,3,3,9) 97 (8,3,9) 97 2 91 

2.3 (12,3,2) 96 (12,3,3,2) 96 (3,3,3,3,2) 96 (3,3,2) 96 3 94 
4.5 (9,10,6) 93 (9,10,3,6) 92 (10,3,3,3,6) 94 (10,3,6) 95 2 90 

40 
0 (12,11,1) 95 (12,11,3,1) 94 (11,3,3,3,1) 95 (11,3,1) 95 3 93 

2.3 (10,9,5) 95 (10,9,3,5) 95 (9,3,3,3,5) 95 (9,3,5) 95 3 94 
4.5 (12,4,5) 96 (12,4,3,5) 96 (4,3,3,3,5) 96 (4,3,5) 91 3 95 

45 
0 (10,3,1) 93 (10,3,3,1) 91 (3,3,3,3,1) 96 (3,3,1) 93 3 91 

2.3 (10,6,5) 96 (10,6,3,5) 96 (6,3,3,3,5) 97 (6,3,5) 97 2 90 
4.5 (10,6,10) 97 (10,6,3,10) 96 (6,3,3,3,10) 95 (6,3,10) 95 2 92 

50 
0 (10,5,1) 96 (10,5,3,1) 95 (5,3,3,3,1) 96 (5,3,1) 96 2 92 

2.3 (8,7,1) 90 (8,7,3,1) 90 (7,3,3,3,1) 96 (7,3,1) 96 3 89 
4.5 (8,7,10) 96 (8,7,3,10) 96 (7,3,3,3,10) 92 (7,3,10) 96 3 91 
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Table A.9 Black box system identification results (Subject # 10). 

Freq 
(Hz) 

Mass 
(kg) 

ARX ARMAX BJ OE SS 
(na, nb, nk) fit (%) (na, nb, nc, nk) fit (%) (nb, nc, nd, nf, nk) fit (%) (nb, nf, nk) fit (%) (order) fit (%)

10 
0 (15,13,7) 69 (15,13,5,7) 66 (13,5,5,5,7) 51 (13,5,7) 80 6 59 

2.3 (11,12,1) 74 (11,12,5,1) 80 (12,5,5,5,1) 86 (12,5,1) 87 8 82 
4.5 (13,12,9) 82 (13,12,5,9) 64 (12,5,5,5,9) 79 (12,5,9) 91 8 72 

15 
0 (9,5,1) 85 (9,5,5,1) 84 (5,5,5,5,1) 86 (5,5,1) 87 7 85 

2.3 (9,13,4) 85 (9,13,5,4) 76 (13,5,5,5,4) 85 (13,5,4) 90 8 89 
4.5 (13,9,10) 74 (13,9,5,10) 78 (9,5,5,5,10) 84 (9,5,10) 87 9 87 

20 
0 (12,4,3) 87 (12,4,5,3) 89 (4,5,5,5,3) 90 (4,5,3) 90 10 93 

2.3 (9,6,11) 92 (9,6,5,11) 93 (6,5,5,5,11) 94 (6,5,11) 96 10 94 
4.5 (12,4,10) 88 (12,4,3,10) 90 (4,3,3,3,10) 93 (4,3,10) 93 9 94 

25 
0 (9,10,10) 92 (9,10,5,10) 90 (10,5,5,5,10) 93 (10,5,10) 93 10 94 

2.3 (12,1,4) 88 (12,1,5,4) 87 (1,5,5,5,4) 90 (1,5,4) 90 7 90 
4.5 (9,14,12) 93 (9,14,5,12) 91 (14,5,5,5,12) 91 (14,5,12) 96 7 90 

30 
0 (11,11,3) 90 (11,11,5,3) 91 (11,5,5,5,3) 92 (11,5,3) 96 7 93 

2.3 (11,11,3) 94 (11,11,5,3) 92 (11,5,5,5,3) 87 (11,5,3) 97 5 89 
4.5 (9,5,9) 90 (9,5,5,9) 94 (5,5,5,5,9) 96 (5,5,9) 95 5 92 

35 
0 (10,2,2) 87 (10,2,5,2) 87 (2,5,5,5,2) 88 (2,5,2) 89 3 89 

2.3 (12,8,3) 95 (12,8,3,3) 95 (8,3,3,3,3) 96 (8,3,3) 96 3 90 
4.5 (12,5,12) 85 (12,5,3,12) 84 (5,3,3,3,12) 88 (5,3,12) 92 3 89 

40 
0 (11,9,1) 88 (11,9,5,1) 88 (9,5,5,5,1) 90 (9,5,1) 88 3 83 

2.3 (15,4,6) 88 (15,4,5,6) 87 (4,5,5,5,6) 86 (4,5,6) 94 3 85 
4.5 (10,12,4) 96 (10,12,3,4) 96 (12,3,3,3,4) 96 (12,3,4) 96 3 91 

45 
0 (11,1,5) 85 (11,1,5,5) 86 (1,5,5,5,5) 84 (1,5,5) 86 2 87 

2.3 (10,3,7) 86 (10,3,5,7) 85 (3,5,5,5,7) 89 (3,5,7) 89 2 86 
4.5 (10,7,9) 95 (10,7,3,9) 95 (7,3,3,3,9) 94 (7,3,9) 93 2 90 

50 
0 (10,14,2) 89 (10,14,3,2) 89 (14,3,3,3,2) 90 (14,3,2) 91 2 89 

2.3 (10,8,12) 95 (10,8,3,12) 95 (8,3,3,3,12) 95 (8,3,12) 95 3 93 
4.5 (10,14,1) 96 (10,14,3,1) 96 (14,3,3,3,1) 96 (14,3,1) 96 3 92 
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B. APPENDIX B 

The nonlinear equations 
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C. APPENDIX C 
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Figure C.1 The relative sensitivity of parameters (30 cases) 
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D. APPENDIX D 
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(a) The estimated spring constants (
Tk ) of the talocrural joint. 
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(b) The estimated spring constants (
Fk ) of the fat pad. 
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(c) The estimated damping constants (
11c ) of the talocrural joint. 
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(d) The estimated damping constants (
12c ) of the talocrural joint. 
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(e) The estimated damping constants (
13c ) of the talocrural joint. 
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(f) The estimated damping constants (
21c ) of the fat pad. 
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(g) The estimated damping constants (
22c ) of the fat pad. 
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(h) The estimated damping constants (
23c ) of the fat pad. 

Figure D.1 The distribution of the estimated parameters for without an extra mass. 
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(a) The estimated spring constants (

Tk ) of the talocrural joint. 
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(b) The estimated spring constants (
Fk ) of the fat pad. 



157 

10
-2.0x103

0.0

2.0x103

4.0x103

6.0x103

c
11

 (Ns/m)

15
-2.0x103

0.0

2.0x103

4.0x103

6.0x103

8.0x103

20
-1x103

0

1x103

2x103

3x103

4x103

25
-1x103

0

1x103

2x103

3x103

30

0.0

2.0x103

4.0x103

35
-2.0x103

0.0

2.0x103

4.0x103

6.0x103

40
-2.0x102

0.0

2.0x102

4.0x102

6.0x102

8.0x102

45
-2.0x103

0.0

2.0x103

4.0x103

6.0x103

50
-2.0x102

0.0

2.0x102

4.0x102

 

(c) The estimated damping constants (
11c ) of the talocrural joint. 
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(d) The estimated damping constants (
12c ) of the talocrural joint. 
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(e) The estimated damping constants (
13c ) of the talocrural joint. 
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(f) The estimated damping constants (
21c ) of the fat pad. 
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(g) The estimated damping constants (
22c ) of the fat pad. 
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(h) The estimated damping constants (
23c ) of the fat pad. 

Figure D.2 The distribution of the estimated parameters for with 2.3 kg mass. 
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(a) The estimated spring constants (

Tk ) of the talocrural joint. 
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(b) The estimated spring constants (
Fk ) of the fat pad. 
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(c) The estimated damping constants (
11c ) of the talocrural joint. 
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(d) The estimated damping constants (
12c ) of the talocrural joint. 
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(e) The estimated damping constants (
13c ) of the talocrural joint. 
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(f) The estimated damping constants (
21c ) of the fat pad. 
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(g) The estimated damping constants (
22c ) of the fat pad. 
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(h) The estimated damping constants (
23c ) of the fat pad. 

Figure D.3 The distribution of the estimated parameters for with 4.5 kg mass. 
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