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Abstract 

Different elements of structural health monitoring (SHM) can benefit from the 

application of wireless sensor Networks (WSNs), as advanced sensing systems. While 

WSNs can significantly enhance the SHM by facilitating deployment of scalable and 

dense monitoring systems, challenges in the power consumption and data 

communication, and concerns regarding the possible impacts of their associated quality 

on the results have restricted their broad application. This research contributes in 

addressing the limitation associated with the prohibitive data communication delay and 

power consumption by introducing a novel time- and energy-efficient distributed 

algorithm for modal identification, and also addressing the concerns regarding the 

possible effects of their sensing quality by development of quality assessment approaches 

for modal identification and damage detection practices.  

The onboard processing techniques attempt to reduce the communication and power 

consumption by pushing the computation into the network. Efforts in developing onboard 

processing algorithms are restricted by the topology and algorithms, and their efficiency 

is not high enough to alleviate the challenge. A novel approach for modal identification 

of structural systems in a distributed scheme is developed which assigns the entire 

computational task of modal identification to remote nodes and limits the communication 

to transmission of only system’s parameters. The algorithm is based on estimation-

updating steps at remote nodes and iterations by passing the results through the network 
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for convergence of estimation. The algorithm is first developed for input-output scenarios 

and then is further expanded to address output-only systems as well. Development of 

approaches such as Cumulative System Formation for providing initial estimates of the 

system (as starting point of iteration) and also a novel AR-ARX approach for expediting 

the convergence also further enhanced the developed algorithm. Experiments and 

implementations have proved the functionality and performance of the algorithm.  

While the focus of the research is on development of algorithms for enhancing the 

application of wireless sensors in modal identification, other aspects of data-driven SHM 

such as damage detection, and performance evaluation through field-testing of real-life 

structures are also studied. A framework for damage detection algorithm including 

accuracy indicators and statistical approaches for change point detection is developed and 

validated through implementation on different experimental models. Moreover, the state 

of the art in structural monitoring and vibration evaluation is presented in two field 

deployments. 
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       Chapter 1 

Introduction 
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1. Introduction 

Civil structures and infrastructure are fundamental assets of a nation, needed for 

operation of the society and integral for the safety of people living in the society. These 

national assets, as of their role, withstand a number of loading scenarios on a daily basis 

ranging from typical ambient loads to more extreme wind and earthquake loads. Due to 

the uncertain nature of loading scenarios and environmental conditions the health state of 

infrastructure is undetermined. Moreover, infrastructure systems experience long term 

deterioration during their life time due to aging of elements and components. It is evident 

that the deteriorating and uncertain state of the nation’s infrastructure without adequate 

attention can reach to a detrimental point which, in turn, threats the safety of people in the 

society.  

In a Report Card for American Infrastructure, the American Society of Civil Engineers 

stated that “more than 26%, or one in four, of the nation’s bridges are either structurally 

deficient or functionally obsolete,” and estimated a need for a $2.2 trillion dollar 

investment to bring the nation’s infrastructure up to an acceptable conditions (ASCE 

2010). While the “structurally deficient” or “functionally obsolete” designations do not 

necessarily indicate that a bridge is unsafe, it points that these structures require 

significant maintenance and repair to remain in service (FHWA 2010). It is well 

understood that the deficiency of these structures can easily turn to occurrence of 

catastrophic failure events such as the collapse of I-35W Bridge in Minneapolis. 
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Concerns regarding the sub-standard functionality of a large portion of existing 

infrastructure motivated civil engineers to seek effective approaches to ensure safety and 

healthy performance of existing structures. As an intuitive solution, community of civil 

engineers developed the concept of structural health monitoring (SHM) which included a 

large variety of practices and algorithms, such as inspection, measurement and analysis, 

intended to assess the state of structures.  

One of the applicable approaches for monitoring of in-service structural system is non-

destructive testing and evaluation (NDT & E) techniques. Some of the traditional non-

destructive evaluation (NDE) techniques, listed in ASM Handbook (Anon. 1992) include 

but are not limited to visual inspection, liquid penetrant (Deutsch 1979), eddy currents 

(Banks et al. 2002; Ziberstein et al. 2003), ultrasonic waves (Mallet et al. 2004), acoustic 

emission, and infrared thermography (Trimm 2003, Ball and Almond 1998). While these 

methods are proven to be useful tools for indication of structural malfunctioning without 

inducing to structure, there are certain limitations in their application. For example, to 

implement these techniques one must have direct access to the locations of potential 

damages, which may be difficult to reach, especially after an event such as an earthquake. 

Also, some problems such as overloading, settlement, fatigue damage, and locked 

bearings are hard to be visually identified until they are in extreme situations. The FHWA 

admits that assessment ratings presented in the National Bridge Inventory (NBI) by visual 

inspections do not provide adequate detail for managing maintenance programs and 
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planning rehabilitations (Chase, 2005). Furthermore, NDE techniques are costly, difficult 

to use with complex equipment, and provide only a temporary means of SHM.  

While the NDT&E techniques lack the ability to address all the needs for health 

monitoring and performance evaluation of structural systems, advances in sensing 

technology and data processing algorithms provide a more intelligent approach, called 

data-driven SHM, as a substitute or, at least, a complement to the traditional techniques. 

The main concept in data-driven SHM is to estimate the state of a structural system from 

its measured response to the applied loads. Some common tasks in data-driven SHM 

approach are: response measurement, preprocessing (e.g. data cleansing and filtering), 

data interpretation, feature extraction, model updating, and performance evaluation. Two 

fundamental categories of testing and response measurement are static testing and 

dynamic testing, and also some basic data-driven SHM practices are modal parameter 

identification, finite element model updating, and damage detection.  

Static Load Testing versus Dynamic Testing 

One of the commonly used testing in data-driven SHM is static load testing which 

aims performance evaluation of the instrumented structure by means of measuring the 

response to controlled static loads. Results of static load testing of a structure help 

developing accurate numerical models of structures (or updating the existing models) 

which represent their real behavior under different loading scenarios, i.e. finite element 

model updating. These models enable estimation of structure’s performance under future 

load effects (e.g. increased traffic load on a bridge structure) and thus, help with making 
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more realistic decision and management. This technique can also assist with realizing and 

detecting abnormal behaviors of the system. Although the static load testing results in an 

accurate evaluation of structure’s performance, its implementation is usually very 

expensive and need a significant preparation. For example, the first requirement for static 

load testing of a bridge structure is closing the traffic lane which is not a simple and 

practical task for many traffic networks.  

An alternative to static tests is vibration monitoring or dynamic testing. In this 

approach the objective is to collect the vibration response of the structure under the 

effects of its daily ambient loads. Unlike static load testing, dynamic testing does not 

require operation interruption as it can be conducted as the structure is in service. This 

characteristic makes the approach significantly simpler and more applicable. The data 

collected during dynamic testing provides fundamental dynamic characteristics of the 

structure by means of modal parameter identification and can be used for finite element 

model updating and damage detection. Since in dynamic testing the input loads are not 

controllable and are usually random, the results of this technique encompass more 

uncertainty. However, considering the relatively easier implementation, this approach is 

more popular in many circumstances. Dynamic and static testing can be also considered 

as complementary tasks as they can extract different parameters of the instrumented 

structure. 
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Modal Parameter Identification 

As mentioned above, the dynamic testing provides the data for identification of the 

dynamic characteristics of the structure. The identified parameters can be used for 

different applications such as finite element model updating, performance evaluation and 

damage detection. An approach which provides the dynamic parameters of the monitored 

structure from the measured response is called system identification. The goal in the 

system identification is to extract a mathematical model for a system based on its 

measured response. In the context of civil engineering, system identification is mostly 

referred to as identification of modal parameters of the structure (i.e. modal parameter 

identification). Realizing the importance of this concept, researcher have devoted 

significant effort into this topic and developed and improved many approaches 

specifically useful for civil structures. Some examples of time domain approaches for 

system identification are: Eigensystem realization algorithm (ERA) (Juang and Papa, 

1985); Q-Markov algorithm (Anderson et al., 1988); ERA using data correlation 

(ERA/DC) (Juang et al., 1988); ERA-NExT (James et al. 1992, 1993, 1996; Farrar and 

James 1997); Auto-Regressive model with Moving Average (ARMA), (Pandit 1991, 

Roeck et al. 1994) and subspace identification (SSI) algorithms, (Van Overschee 1991, 

1995). As well, some examples of frequency domain approaches are: Poly-reference 

frequency domain algorithm (Zhang et al., 1985), orthogonal polynomial algorithm 

(Rechardson et al. 1982, Vold, 1986 and Auweraer et al., 1987), Modal parameter 
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identification using Complex Mode Indication Function (Shih et al. 1988) and 

multivariate mode indication function (MvMIF) (Williams et al. 1985).  

Finite-Element Model Updating 

Extracting the structural (dynamic) characteristics of the monitored structure, the finite 

element model can be tuned (i.e. updated). This practice in data-driven SHM is called 

finite element model updating. As the name suggests, this task updates the finite element 

model such that the simulated responses of the model matches the real structure’s 

response measured during the experiment. Finite element model updating is a very 

important practice in SHM as it provides the owner and correspondences of structure 

with reliable analytical models and an accurate estimate of the structure’s reserved 

capacity.   

  While the concept is the same, the methods in which finite element model updating is 

implemented can be very different. When static load testing is conducted on the structure 

the finite element is tuned to match the structure’s static response (e.g. displacements and 

stresses) and thus, the parameters such as mass and damping which do not contribute in 

static response will not be updated. On the other hand, updating based on dynamic 

response will tune the structure such that dynamic characteristics of the analytical model 

agree with parameters extracted from dynamic testing (e.g. natural frequencies, natural 

damping ratios, and mode shapes). Each of the aforementioned methods has certain 

advantages and weaknesses. While updating based on dynamic testing focuses on more 

general characteristics of the structure (i.e. dynamic characteristics), this approach is 
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more prone to uncertainties because dynamic testing and vibration monitoring are more 

sensitive to operational and environmental condition than static load testing. However, 

vibration monitoring is a lot simpler in terms of implementation and testing, as explained 

earlier. Beside the classification based on testing method, there is also a broad range of 

algorithms for implementation of model updating. Direct method, iterative sensitivity 

based method, frequency domain method, and response surface method are some 

categories of such algorithms. 

Damage Detection 

Another application of the response measurement and structural identification is in 

structural damage detection. Damage detection using structural vibration measurements 

has been actively investigated by the civil engineering research community in the past 

few decades (Yao and Pakzad, 2012). Methods of damage detection can be classified in 

different ways. One common classification is as physics-based (model-based) methods 

and non-physics-based (model free) methods (ASCE 2011). In the physics-based 

methods, a structural model is formed using the measured vibration. From comparison of 

different estimated models (as results of different measurements through the time), 

together with using some statistical frameworks, the damage (if any) can be detected. The 

advantage of this model is that it provides a physical interpretation of the measured 

vibration and correlates the collected data to the behavior of the structural model and 

helps in making reasonable conclusions. However, creating structural models for civil 

infrastructure is not always easy and complexity of models may bring some uncertainties 
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into the problem.  One of the basic damage detection approaches, classified as model-

based methods, is to estimate modal property from system identification and detect their 

changes throughout the structure’s life-time. This approach is valid as modal parameters 

are directly related to the physics of the structure according to classical dynamics theory. 

However, the effectiveness of modal property as damage indicator varies depending on 

the structural layout and damage type (Yao and Pakzad, 2012). It is shown in many 

studies that modal parameters can be insensitive to some local damages (Doebling et al. 

1996). The performance of this approach can be improved by considering the modal 

property in the finite element model updating. However, this will increase the algorithm 

complexity. Thus, more efficient alternatives are needed. The non-physics-based 

algorithms, on the other hand, do not need structural models as these algorithms only 

interpret the measured responses without consideration of material and geometrical 

information. These approaches detect and localize the damage based on investigating the 

collected signal and despite the absence of physical model, they are sometimes more 

successful in identifying the damage.  

Sensing Systems  

As can be realized from each of above-mentioned practices, a fundamental task in 

data-driven SHM is monitoring and data collection. The reliability of all these approaches 

is highly dependent on the quality of the collected data. Higher the quality of the data is, 

more accurate the results will be. Besides, to draw reliable conclusions, temporal and 

spatial resolution of the sensing system is crucial. Capturing the response with dense 
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array of sensors for a long term period provides much information regarding the state of 

the structure and the results of that study would be significantly more accurate than when 

the response is measured at only limited number of locations, and in short period of time. 

In general, reliability of data and sensor network, temporal and spatial resolution of 

measurement, sensitivity and the level of sensor noise, and agility of the sensor network 

in communication and response to commands are major quality aspects of a sensing 

network. Many sensing protocols have been developed in past decades  and numerous 

structures around the world are already instrumented by these systems for SHM (Bolton 

et al., 2002; Masri et al., 2004; Wahbeh et al., 2005; Ko and Ni, 2005; Guan et al., 2006; 

Fraser et al., 2009). Also, during the past few decades, many different technologies have 

been established with variety of features. These achievements are ranged from 

development of new material and technologies for sensing to advancements in data 

transmission and acquisition systems (e.g. piezoelectric sensors, capacitive sensors, 

micro-electro-mechanical systems, non-contact laser vibrometry, electro-optical 

accelerometer, fiber optics, photogrammetry sensors, global positioning sensors, etc.). 

The challenge in application of mentioned sensing systems, however, is their preventive 

cost. The expense of instrumentation of structures with a dense and high quality sensing 

network has been extremely high such that their application has been limited to only 

eminent structures and infrastructure. Considering the cost, the challenge in the 

application of sensing systems for health monitoring of structures is the trade-off between 

the quality of the measurement and the expenses of instrumentations. Higher quality 
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results in a more accurate estimate of the structure’s state and consequently more reliable 

health monitoring. On the other hand, as the quality increases, the costs of the monitoring 

system also increases which may prevent the wide-spread use of SHM. In the past 

decade, this trade-off has become as a motivation to researchers to pursue efficient ways 

of sensing to decrease the health monitoring costs. 

One of the important developments in the area of sensing and monitoring system is 

incorporation of wireless technology for data transmission in the sensing networks. For 

many years sensing systems in SHM used wires for transmitting power and data from the 

sensors to the data acquisition system (i.e. base station). This type of transmission and 

communication between sensors and base station has been the most commonly used 

approach in many commercial and somewhat research projects and thus, these wired 

sensors are very well established and reliable. Although the wired sensor networks are 

reliable, the installation is costly and labor-intensive (Lynch et al. 2006). A significant 

portion of the time and money spent on installation of sensor networks is associated with 

the wiring process. Additionally, installing cable in some in-service structures may 

introduce some challenges which make a new limitation to the dimension of the sensing 

network and its spatial resolution.  

Considering the difficulties in the instrumentation with wired sensor networks, the 

application of wireless technology attracted the interest of many researchers in SHM 

area. The earliest application of wireless technology in the field of SHM goes back to late 

1990th conducted by Kirmijian et al (1998). Soon after revealing the functionality and 
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performance of wireless sensors, many researchers focused on developing new wireless 

sensor platforms and improving their performances. A complementary advantage of 

WSNs is possession of computation capability on-board. This capability helps the sensing 

network to conduct a portion of data processing right after the data is collected. This 

ability is crucial for data management, preventing data overwhelming, and having a 

responsive sensing system. A detailed development history of wireless sensors is 

presented in the next chapter. 

While WSN makes the deployment of SHM more convenient, a few challenges have 

restricted its application in large scale and for long term health monitoring of structural 

systems. Due to these challenges, the use of wireless sensors is still mostly limited to 

research projects and not commercial projects. The most important drawbacks in 

application of WSN are the latency in the process due to the low data communication 

bandwidth and the difficulties in providing operational power of sensors for long term 

monitoring. Particularly in the event of an earthquake, WSNs need to be responsive in 

capturing and processing the data. Thus, new approaches are required to address these 

challenges and make the existing WSN technology suitable for a wide variety of 

applications. Possible solutions to these challenges rely on either a new technology (e.g. 

use of wireless power transmission or energy harvesting) or a new processing strategy 

which minimizes the need for communication energy. Although technological solutions, 

such as energy harvesting (Casciati et al., 2007) and wireless power transmission (Das et 

al., 1998), are promising and necessary in the future application of WSNs, they do not 
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eliminate the entire challenges and it is still necessary to develop new approaches to 

manage and minimize their power consumption. An idea which attracted many 

researchers after early application of WSN in SHM was incorporating on-board 

computational capability of wireless sensors in data processing and management of 

limited wireless power. It is shown that the power consumption of the communication 

task is significantly higher than that of on-board computation. Hence, the logical goal in 

using on-board computational capability is to assign a portion of data processing to on-

board processors (so called distributed data processing) and minimize the data 

transmission which is the more power consuming task. During the past few years, many 

different algorithms for distributed data processing are proposed and implemented on 

experimental monitoring systems, including this doctoral research.  

Scope of the Research 

This doctoral research while demonstrates the advantages of wireless sensors as a 

more cost-effective and potentially superior alternative over the traditional monitoring 

systems, contributes in addressing challenges in their application in structural health 

monitoring. An algorithm is developed for distributed modal identification to eliminate 

the need for the in-network transmission of the time-history data and as a result, 

minimize the required energy for communication and the delay in network’s response. 

Besides, as the low cost characteristic of these sensors may introduce some limitation on 

the quality of sensing and the level of the noise associated with the measurements, this 

research also investigates the effect of measurement noise on the modal identification 
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through development of parameters which quantify the quality of the estimated modal 

parameters from response measurements. 

While the focus of the research is on development of algorithms for application of 

wireless sensors in modal identification, a significant effort is also spent on other aspects 

of data-driven SHM such as damage detection, and deployment and field-testing of real-

life structures. This research has contributed in development and validation of a statistic-

based damage detection algorithm which identifies the changes in the behavior of 

structural system using the measured response. The damage detection algorithm is 

validated through the use of wireless sensors as well as traditional wired sensors and 

implementation on different experimental specimens. Moreover, this research presents 

implementation of state-of-the-art sensing system on two in-service infrastructure 

systems: a tall building and a cantilevered truss bridge. These works include 

instrumentation of the structures together with the extensive data processing for 

extraction of structural characteristics and performance evaluation. 

Organization of the Dissertation 

Chapter 2 presents the background information on the development of WSNs and their 

application in SHM and also provides the necessary background knowledge on system 

identification which will be used in the later chapters of this dissertation. 

Chapter 3 presents a distributed modal identification approach which is developed to 

enhance the efficiency in application of wireless sensor networks (WSNs) for modal 
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identification of structural systems. In this approach the computational task is distributed 

among remote nodes to reduce the communication burden of the network and as a result, 

optimize the time and the energy consumption of the monitoring system. The algorithm 

relies on a class of estimation method, called Expectation-Maximization (EM), which 

estimates unknown parameters, given the measurement data in the absence of access to 

complete information about the system. The adoption of EM for modal identification is 

such that each node of the network estimates modal parameters using the local 

measurement and the estimated parameters received from the neighbor node. The 

estimation results are updated recursively by passing the results through the network in 

an iterative manner. The formulation of the approach, called Iterative Modal 

Identification (IMID), is presented in Chapter 3 and its performance is validated through 

the implementation of the algorithm on numerically simulated and experimental data. 

This algorithm is further improved to be applicable for output-only systems and eliminate the 

need for availability of excitation load and initial estimate of the system parameters. Furthermore, 

the performance of the algorithm is evaluated using data from an ambient vibration test of Golden 

Gate Bridge. Results of these implementations verify the functionality of the algorithm in 

monitoring of real-life structural systems. 

Chapter 4 presents an effort towards understanding the effects of measurement noise 

on the modal identification. One challenge associated with the design of wireless sensor 

platforms is the trade-off between the functionality and the power consumption and 

attempts for minimizing the cost. These considerations usually cause limitations in the 

architecture and quality of wireless sensors which do not necessarily exist in the design of 
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wired systems. Thus, it is important to carefully investigate the impact of sensor quality 

on the results obtained from data-driven SHM applications. This study develops 

parameters that quantify the quality of estimated modal parameters and determine the 

influence of noise on accuracy of results. The performance of these parameters is 

validated by a numerically simulated example and then, they are used to investigate the 

accuracy of identified modal properties of Golden Gate Bridge using ambient data, 

collected by wireless sensors. The vibration monitoring tests of Golden Gate Bridge 

provided two synchronized data sets collected by two different sensor types. The 

influence of sensor’s noise level on the accuracy of results is investigated throughout this 

work and it is shown that the high quality sensors provide more accurate results as the 

physical contribution of response in their measured data is significantly higher. The 

developed quality metric and the implementation on numerical and real-life data are 

presented in Chapter 4. 

Chapter 5 presents contribution of this research in development and validation of a 

damage detection algorithm. A damage detection algorithm is validated through 

experimental implementation on different experimental specimens constructed in ATLSS 

research center. A scaled steel beam-column connection is densely instrumented by 

synchronized sensor networks of both traditional wired piezoelectric and wireless 

sensors. The collected response data from the experimental model are used to estimate 

the two sets of influence coefficients with the wired one as the reference baseline. The 

functionality of the algorithm is validated and in addition, the effect of sensor quality on 
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its performance is evaluated by comparing the resulted quality metrics from two sensor 

networks. The algorithm is also implemented on the strain data collected from a large 

scale beam-column connection under cyclic loading. The results of these works on 

damage detection are presented in Chapter 5. 

Chapter 6 presents an example of application of sensing in structural monitoring and 

performance evaluation of a building structure. A state-of-the-art sensing system, consist 

of both wired and wireless sensors, together with different data processing techniques is 

utilized for forensic quantification of the building. The performance of the building is 

evaluated in terms of serviceability and strength demand. Time- and frequency-domain 

analysis of response and wind spectrum analysis are some data processing tasks 

performed in this work.  

Chapter 7 also presents another field implementation which is deployment of a 

network of wireless sensors for vibration monitoring of a steel bridge structure. The 

monitoring task is performed in a one-year period during multiple tests (more than 50 

tests) in different seasons as to not only identify the dynamic characteristics of the bridge, 

but also find the uncertainty introduced to the results due to the changes in environmental 

and operational condition of different tests. The parameters which their effects are 

studied in this work are temperature gradient and the volume of traffic load. Variation of 

results due to variation of each of these factors and a general conclusion is presented in 

Chapter 7.  
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Chapter 8 provides a summary of the research presented in this dissertation and 

discusses the original contribution and the broader impact of the research and finally the 

potential future studies to continue the advancement in data-driven SHM. 
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Chapter 2 

Background and Literature Review 
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2. Background and Literature Review 

This chapter presents development history and a summary review of some of the 

fundamental topics of this research including WSNs and their application for SHM, 

advantages and challenges of wireless sensors for SHM, and modal identification of 

structural systems as a basic practice in SHM. The terminology and methodologies 

explained in this chapter will be used later in other chapters of this dissertation. 

2.1.Wireless Sensors for Structural Health Monitoring 

A wireless sensor network is defined as a set of integrated elements which work 

together to measure a physical quantity, and interrogate and wirelessly transmit the 

measurements to a receiver, called base station, for repository. To achieve these 

capabilities, each unit in a WSN needs to encompass four fundamental subsystems: 

sensing interface, processing core, wireless transceiver and power supplier.  

(i) Sensing interface is designed to measure the physical quantity of interest (e.g. 

acceleration, displacement, strain, temperature, etc.) and convert the measured analog 

data into the digital data. This part usually includes sensors for measurement and other 

supplemental components such as Analog to Digital Convertor (ADC), Signal 

Conditioner and amplifier, for conditioning and converting the data.  

(ii) The processing subsystem is integrated to save, process, and interrogate the 

measured data. This part includes processor, random access memory (RAM) and read 

only memory (ROM), as the fundamental components.  
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(iii) Wireless transceiver enables the wireless units to communicate with other units 

and the base station to send/receive data through radio signals. The wireless transceiver is 

usually embedded on the processing board.  

(iv) Power supplier is a simple part of a wireless sensor unit which provides the 

required power for all subsystems. This component usually consists of a battery board 

interfaced with processing board. Energy harvesting techniques can also be integrated for 

supplying the required power, as well. 

Wireless sensor prototypes may differ from each other based on their computational 

power, the type of physical quantity which is measured, the power consumption, the 

communication capability and associated cost. Over the past decade, numerous WSN 

prototypes have been developed and deployed on experimental and real-life structures. 

Each prototype introduced an improvement over the earlier versions and a solution to a 

challenge in WSN. Some of these WSN designs were deployed in large-scale structural 

monitoring projects and their performance were evaluated under realistic conditions.  

Based on available summary reviews (Spencer et al. 2004 and Lynch et al. 2006), 

WSN platforms can be divided into two broad categories of academic and commercial 

WSN prototypes. Academic prototypes generally incorporate commercial out-of-the-shelf 

components based on the specific requirements of users. While academic platforms are 

well suited for specified requirements of SHM, their limited number of users prevents the 

technical contribution of other communities and therefore restricts their access to 

technology advancements (Rice, 2008). In contrast, commercial platforms are developed 
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based on open source hardware and software which allows the access by broader 

community and makes them a better choice for large variety of industrial applications. 

However, both academic and commercial platforms have played important roles in the 

development of WSN application in SHM.  

As the first WSN platform for SHM application, Straser and Kiremidjian (1998) 

proposed the design of a wireless modular monitoring system (WiMMS). This low-cost 

sensing unit was built around a Motorola 68HC11 microprocessor, micros prototyping 

board NMIT-0022 and 64 kB address space for data and program storage. In order to 

store embedded software for local data processing, 32 kB of additional RAM and 16 kB 

of additional ROM were included in the design. An eight-channel, 16- bit, 240 Hz Harris 

H17188IP sigma-delta ADC was used to convert analog signals to digital forms. The 

sampling rate of this ADC was fixed 240 Hz and no anti-aliasing filter was utilized. This 

prototype is considered as the first step toward application of WSN in SHM (Lynch et al 

2006).  

Later in early 21st many researchers developed new wireless sensor platform by 

selection of different components and improving the hardware and software architecture 

to address particular challenges. Mitchell et al. (2002) proposed a new architecture of 

WSN in SHM which was based on distribution of monitoring procedure among wireless 

sensors. In this design, the network consists of several clusters each has a separate server 

which is called cluster node. Each of the cluster nodes was designed to have both short 

and long-range radio for communication with nodes in its cluster and other cluster nodes 
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in the network. A powerful Cygnal 8051F006 microcontroller is integrated on the 

platform of sensing nodes. Similar to the idea of two-tiered wireless SHM system 

proposed by Mitchell et al. (2002), Kottapalli et al. (2003) developed a prototype which 

separated sensing units in different groups and put a site master on the top of each group. 

This prototype aimed to overcome challenges associated with power consumption and 

time synchronization. In this design, the hardware platforms of sensing units were 

different from site masters. Since the power consumption of the site master is relatively 

high, the site master node is considered to be connected to an outlet power. This issue 

limits the application of this architecture design of WSN. Power consumption of 

microprocessors with high computational throughput motivated Lynch et al. (2003a, 

2004a, 2004e) to focus on the design of a low-power but computationally powerful 

wireless sensing unit. This unit integrated a dual-processor computational core which one 

of them was designated for overall operation and real-time data collection and the other 

one was utilized for the local processing of data. Using two types of processor, each 

appropriate for specific purpose, the power consumption would be optimum. Later, 

Swartz et al. (2005) presented the design of a wireless sensor platform called Narada, 

which was designed for both monitoring and feedback control of civil structures. The 

distinguishing feature of the Narada wireless sensor node was the inclusion of an 

actuation interface for high speed feedback control of actuators. The Atmega128 is a low-

power, 8-bit microcontroller with 128 kB of flash memory, 4 kB of electrically erasable 

programmable read-only memory (EPROM), 4 kB of static random access memory and 

an additional 128 kB of external static RAM are integrated on this wireless sensor 
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platform. For wireless communications, the Texas Instruments CC2420 IEEE 802.15.4 

transceiver is selected. The CC2420 operates on the 2.4 GHz band at 250 kbps using 

direct sequence spread spectrum (DSSS) radio frequency modulation techniques. The 

CC2420 transceiver enables the user to adjust the signal strength from weak to strong. 

This feature is particularly useful since it allows balancing the communication range and 

the power consumption of the radio. 

Because of the out of-the-box operation of the commercial platforms and also their 

low cost and technical supports from the manufacturers, this class of WSN platforms 

became more attractive for many researchers (Rice, 2008). Mote wireless sensor platform 

was one of the first wireless sensor platforms which attracted researchers in different 

disciplines. The goal of creation of this family of platforms was development of a “smart 

dust” which was tiny, autonomous, low-power and low cost for use in dense sensor arrays 

(Hollar 2000). Mote platform later became commercialized by Crossbow 

(http://www.xbow.com) and available to the public. Rene Mote (1999) was the first 

commercialized prototype of this family. The software platform for Mote was TinyOS 

and nesC programming language. To employ Mote wireless sensors in structural 

monitoring systems, Tanner et al. (2002, 2003) presented the application of Crossbow 

Rene2 Mote in a SHM system. Two types of Micro Electric Members (MEM) were 

integrated in this platform: the Analog Devices ADXL202 and Silicon Devices SD-1221 

with a 10-bit ADC. Small amount of on-board RAM and sampling of only one channel at 

each time instant were two limitations of Rene2 Mote.  
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In early 2002, Crossbow released MICA Mote wireless sensor which incorporated 8-

bit Atmel ATmega103L microcontroller with 128 kB flash ROM, 4 kB RAM for 

installation of embedded programs (Tiny OS) and 512 kb of non-volatile, off-chip 

memory. The single-channel amplitude modulation TR1000 wireless transceiver was 

selected for wireless communications. Upgrading the radio transceiver, Crossbow 

introduced MICA2 (2003). This platform, offered a greater reliability of communication 

with using Chipcon CC1000 wireless transceiver. The Chipcon CC1000 operates on the 

900 MHz radio band and is capable of 38.4 kbps data transmission rate. Upgrading this 

platform, Crossbow introduced MICAz in 2004 which incorporates 2.4 GHz 

IEEE802.15.4 wireless transceiver which is more improved compared to Chipcon 

CC1000.  

Tmote Sky (2006) is another mote platform suitable for extremely low power, high 

data-rate sensor network applications. The low power operation of the Tmote Sky module 

is relied on the ultra-low-power TI MSP430 F1611 microcontroller. The 16-bit RISC 

processor features extremely low active and sleep current consumption. The 

microcontroller is coupled with 10 kB of RAM and 48 kB of flash memory. It also uses a 

USB controller from FTDI to communicate with the host computer. The MSP430 

microcontroller has eight external 12-bit ADC ports of which six are accessible on a pin 

header on the Tmote. 

Realizing the popularity of Mote platforms, Intel Research Berkeley Laboratory 

cooperated with UC Berkeley and introduced a new platform called Imote (Kling et al. 
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2005). This new platform integrated only the computation core and radio transceiver. 

Based on the choice of user, any sensor board can be designed to be attached onto the 

Imote circuit. This platform employs the 32-bit ARM7TDMI microcontroller operating at 

12 MHz which its significant computational power makes Imote distinguished from other 

platforms. As an upgraded version of Imote, Intel released the most recent generation of 

Mote wireless sensor platforms, called Imote2 (2007). This platform integrates a low-

power PXA271 XScale CPU. The processor operates in a low-voltage, low-frequency 

mode, and enables low-power operation. The frequency of processor can be scaled from 

13MHz to 416 MHz with dynamic voltage scaling, which is a key feature for optimizing 

the power consumption. This platform contains 256 kB SRAM, 32 MB SDRAM, and 32 

MB of FLASH memory, which makes it even more popular than other smart sensor 

platforms. For communication purposes, Imote2 integrates the CC2420 IEEE 802.15.4 

radio transceiver from Texas Instruments, which supports a 250 kb/s data rate with 16 

channels in the 2.4 GHz band. A 2.4 GHz surface mount antenna is provided on the 

Imote2 platform. Additional external antennas, like Antenova Titanis 2.4 GHz Swivel 

SMA, can be also used in conjunction with Imote2’s onboard antenna (Linderman et al., 

2008). 

Figure 2.1 and Figure 2.2 show several examples of academic and commercial 

wireless sensor platforms developed since 1998, respectively.  
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Figure 2.1. Examples of academic wireless sensor prototypes 

 

Figure 2.2. Examples of commercially developed wireless sensor prototypes 

2.2. Application of WSN in SHM 

Over the past decade, WSNs have been used as the primary data acquisition system in 

numbers of structural monitoring projects. Deployment of developed prototypes of WSN 

provides the opportunity to evaluate their performance in realistic scenarios and paves the 

road towards a broader application of this technology. A review of several prominent 

WSN deployments in the SHM field is presented in this section. 
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As the first application of WSN in SHM, Straser and Kiremidjian (1998) instrumented 

the Alamosa Canyon Bridge with the developed wireless sensor platforms to validate 

their performance. Researchers from Los Alamos National Laboratory had previously 

instrumented the bridge with traditional sensor networks for system identification 

purpose and the modal properties of the structure were documented. In this work, totally 

five wireless sensing units with EG&IC 3145 MEMS accelerometers were mounted to 

the girder along one of the spans. The response of the bridge under ambient and impulse 

loading was recorded by both wired and wireless systems. The modal parameters 

obtained from wireless network data were perfectly consistent with the results of the 

wired sensor system.  

This implementation was particularly important as it was the first application of WSN 

in monitoring of structural systems. Following this work, many other platforms are 

deployed for monitoring of bridge and building structures. These implementations are 

conducted to either verify the performance of the platforms, through cross-verification 

(using traditional wired sensors), and/or to extract the structural and dynamic 

characteristics of the instrumented structures. A few of the largest and the most up-to-

date deployments are briefly presented in the following paragraphs.  

Pakzad et al. (2008) at University of California-Berkeley designed and implemented a 

wireless sensor platform for monitoring of the Golden Gate suspension bridge. In this 

platform two commercially available MEMS accelerometers, ADXL202 and Analog 

Devices (SD 1221), were used to measure the high-level and low-level accelerations 
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respectively. This combination of two accelerometer types was a cost-effective way in 

design of sensor units. The ADXL202 has ±2 g range and the sensitivity of 1 mg at 25 Hz 

which makes this accelerometer suitable for measuring the high-level accelerations 

(Analog Devices 1999). In conjugate with ADXL202, the Silicon Design 1221L, with 

noise ceiling of 10 µg, was used to measure the low-level accelerations. The processing 

board of this platform was Micaz. The network included 64 wireless sensors collecting 

data simultaneously and is considered as the largest deployment of WSN up to the date of 

implementation. Wireless sensors were installed along the long-span and the tower of the 

bridge (54 sensing units on the main span and 8 units on the south tower). The sampling 

rate during this test was 1 KHz and the data were down-sampled into 50 and 200 Hz. This 

large spatial resolution of the network and high sampling rate of 1 kHz resulted in about 

20 MB of data at each cycle of measurement and collection which took about 9 hour of 

transmission to the base station. Because of the long linear topology of the structure, 

multi-hop/pipelining data communication routing was used for transmission of data in the 

network. In the multi-hop routing the data is transferred to the base station using the 

intermediary nodes. Finally, the collected data were used to extract the modal properties 

of the main span and the south tower of Golden Gate Bridge.  

Whelan et al. (2009a) at Clarkson University's Laboratory for Intelligent Infrastructure 

and Transportation Technologies (LIITT) developed a wireless sensor platform and 

deployed this platform in a network of 40 channels for monitoring of a single-span bridge 

in St. Lawrence County, NY. The presented platform incorporated the Tmote Sky 
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wireless sensor network platform together with single-ended and differential analog 

signal conditioning for increasing the quality of collected data. Totally 29 low-noise, low-

power LIS2L02AL MEMS accelerometers together with 11 strain transducers were 

installed on the bridge. In this work, real-time data transmission is used which made it 

different from other similar works. The sampling rate for measurement was 512 Hz 

which after passing through a low-pass filter it was down-sampled to 128 Hz. Because of 

the real-time data transmission, the low sampling rate was necessary.  Less than 0.1% 

data loss during real-time transmission was reported in this work which is acceptable for 

the SHM applications. Modal properties of the instrumented bridge were extracted using 

the measured data. Using the same platform and configuration, Gangone et al. (2009) 

performed several other field experiments on Wright Road, Route 56 Colton and Route 

345 Waddington Bridge. 

Finally, as the largest WSN deployments, Jang et al. (2010) and Cho et al. (2010) 

presented deployment of a network of 70 wireless sensor nodes on Jindo, Bridge in 

Korea. In the data collection phase, the network was divided into two sub-networks, one 

with 33 nodes and one with 37 nodes, on two sides of the bridge. The reason for dividing 

the network in two separate sub-networks is the use of single-hop data transmission. In 

this deployment Imote2 together with SHM-A multi-scale sensor board are used. To 

monitor the wind, the SHM-A is modified with adding an anemometer and is named 

SHM-W. This sensor board has three external channels for wind speed in three directions 

and one channel for acceleration. As a solution to power consumption problem in long-
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term monitoring, energy harvesting with solar panels are used for some of wireless sensor 

nodes. The software platform which is employed during this deployment is ISHMP 

service tool-suite, developed in Open Systems Laboratory & Smart Structures 

Technology Laboratory at University of Illinois at Urbana Champaign. The network is 

programmed by an autonomous SHM network management application, called Auto-

Monitor, which combines Remote-Sensing, Decentralized-Data-Aggregation, Threshold-

Sentry and Snooze-Alarm applications (Rice and Spencer 2009). Installing Auto-Monitor 

application on the base station, the user can decide whether raw acceleration data or the 

correlation functions from the local sensor nodes of the network are returned to the base 

station by selecting one of the Remote-Sensing or Decentralized-Data-Aggregation 

applications respectively. The network was programmed to perform data collection 4 

times per day for a period of 4 months. At each run, 10,000 samples of acceleration data 

were collected and transmitted to the base station. Threshold-Sentry application was 

installed to make additional measurement in the case of vibrations more than 50 mg 

which was the triggering threshold. The performance of the network is evaluated after 4 

months of monitoring. Stable and reliable performance of the network is reported. As a 

limitation in this deployment, single-hop routing of this network has significantly 

restricted the length of the radio coverage and imposed the division of network to two 

sub-networks. As a result the collected data from two sub-networks are not synchronized. 
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2.3. Advantages, challenges and solutions in WSN 

Due to the advantages of WSN, researchers are interested in using this technology for 

SHM. Relative low-cost, ease of implementation and the capability of data management 

via on-board processing are the main advantageous features of WSN.  

The low-cost: this characteristic becomes evident when considering a simple 

comparison of different instrumentation costs. Celebi et al. 2002 reported an average of 

$15,000 per sensing channel on instrumentation of Emerson Memorial Bridge with cable-

based data acquisition system while in the vibration monitoring of Jindo Bridge, Jang et 

al. (2010) reported an average of less than $500 per each wireless sensor unit. Such a 

significant difference between the cost of wireless and wired sensor networks in SHM 

clearly attracts engineers to application of WSN.  

The ease of installation: using wireless sensors eliminates the time of installation of 

wires and results in the rapid deployment of WSNs. Straser and Kiremidjian (1998) 

reported 30 minute time for the installation of each wireless sensor, whereas for a similar 

project but cable-based monitoring system, this time is about 150 min. in average (Lynch 

et al. 2006). Additionally, due to the elimination of wiring, modification of network 

geometry is easy, such that additional sensors can be easily added to a network as it is 

required or the sensor locations can be effortlessly changed.  

The capability of on-board computation: this feature is used for on-board digital signal 

processing, data aggregation and self-operative functions. Using the capability of on-
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board computation, the collected data can be processed and transformed into a more 

efficient format and then transmitted to the base station. This strategy eliminates the 

transmission of a large volume of raw data and consequently preserves the limited battery 

power.  

Considering these advantages, the question which remains is that why despite all the 

advantages of WSNs, this approach has not still achieved its wide-spread deployment in 

health monitoring of structural systems and is not the preferred tool for commercial 

projects in the industry yet. The reason is perhaps attributed to the existence of a few 

challenges in the way of broad acceptance of the WSN technology. These challenging 

drawbacks can be categorized as: (i) the need for time synchronization of sensor nodes in 

the network, (ii) the uncertainty in wireless communication (i.e. data transmission 

reliability), (iii) the limitation in wireless data transmission bandwidth, and (iv) the 

prohibitive power consumption.  

2.3.1 Time synchronization 

Time synchronization of the wireless networks has been one of the challenges in the 

wireless technology which has been the focus of researchers for several years since their 

early applications. The situation in wireless communication is such that when a simple 

command/data is sent to a cluster of receivers, in a network, it is not always feasible to 

have all the nodes receive it at the exact same time and start performing the requested 

task all together. Therefore, in a scenario which sensors collect vibration data, the 

captured response at different locations do not correspond to the exact same time and as a 
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result, the obtained results will experience an erroneous phase shift. For instance, the 

result of non-synchronized network in system identification will be extraction of 

structure’s natural modeshapes with phase lags and estimation of non-symmetric stiffness 

matrices. The approach that addresses this problem is called network time 

synchronization. Fortunately, extensive research have been conducted on this topic over 

the past several years and these studies have resulted in many advanced approaches. 

Currently, time synchronization protocols are perfectly reliable and necessarily included 

as a part of wireless sensor applications. Maróti et al. (2004) and Ying et al. (2005) are 

examples of a broad collection of studies on this area. 

2.3.2 Data transmission reliability 

Another primary challenge in the wireless technology is the radio miss-connectivity 

which may result in data loses during transmission. The low signal power, absence of the 

line-of-site in communication, signals collision and physical interference between the 

wireless communication lines are major reasons of this issue. To overcome the data loss 

during wireless communication, researchers have developed protocols, called reliable 

data transfer protocols. These approaches ensure the transmission of the entire data 

packets when the communication is physically feasible. One example of such protocols is 

the Scalable Thin and Rapid Amassment Without loss (Straw) which is a selective 

negative-acknowledgement (NACK) collection protocol. In this transmission scheme, the 

data is sent to the receiver upon a request and then, the receiver identifies and sends back 

a list of missing packets asking for retransmission (Pakzad et al. 2008). This task 
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continues until transmission of all the data. During the past decade, many advanced 

algorithms have been developed for addressing challenges and enhancing the 

communication reliability of the wireless networks and thus, this is no longer a critical 

issue in the application of WSNs in SHM.   

2.3.3 Data transmission bandwidth 

The limited bandwidth in wireless communication is another challenge in application 

of WSNs. This issue is particularly important when a large amount of data is required to 

be transferred timely, as a following action is waiting for the completion of the 

communication. This scenario is a possible situation in the long-term monitoring of 

structural systems (e.g. when the sensor network is required to capture the response to 

drastic events, such as earthquake, and a follow up conclusions are necessary to be made 

immediately).  

One effective solution to this issue is to minimize the communication burden, using 

the on-board computation. This approach is called optimal data communication and 

targets minimizing the required in-network data transmission. The basic idea in the 

optimal data communication is utilizing the on-board computational capability of 

wireless sensors, aiming to minimize the required time and energy for estimating the state 

of the structure from the measured data. In a majority of WSN deployments for SHM, the 

network architecture is designed such that all data is sent to a central station for further 

data processing. In such a central data processing scheme, a long time and large portion 

of the finite power resource is spent on wireless communication for transmission of 
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collected data. However, through the use of an optimal usage strategy, a system can be 

designed such that it incorporates the on-board computation for data conversion or data 

processing and preserves time and power by avoiding the communication of the entire 

collected data.  

One example of such algorithms is Distributed Computing Strategy (DCS) which is a 

hierarchical approach of data processing. This approach takes the advantage of wireless 

sensor’s computational capacity and involves sensor nodes in the data processing task. In 

this scheme, the sensor network is divided into hierarchical communities, in which each 

community communicate inside their own network, perform system identification among 

their local community and send the outcomes to the higher level cluster heads. The DCS 

was initially developed for implementation of Natural Excitation Technique (NExT, 

James et al. 1993) in conjunction with ERA (Juang and Pappa 1985) for system 

identification. Later, the flexibility-based Damage Locating Vector (DLV) method 

(Bernal 2002) also adopted for DCS. This distributed approach reduces the amount of 

required communication and therefore conserves energy and transmission bandwidth. 

Figure 2.3 shows a schematic transmission routing in the hierarchical topology. The 

deficiency of these approaches is that they are not completely distributed, but partially 

distributed. Thus, significant portion of processing is still left for the centralized 

processing. Also, they are restricted by the topology of the network and the utilized 

algorithm, and more importantly, their efficiency is not high enough to alleviate the 

problem. Chapter 3 presents a novel distributed data processing technique which is 
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developed to estimates the parameters of the instrumented system through an onboard 

iterative estimation approach. The efficiency of the developed approach is significantly 

higher than the available algorithms and it does not leave any portion of processing to the 

central processing. Details of the algorithm and the implementation examples are 

presented comprehensively in Chapter 3.   

 

Figure 2.3. Hierarchical topology of a wireless network 

Another solution to the limited bandwidth of the network is to use different 

transmission routings, such as multi-hop data communication, instead of simple one-hope 

transmission between each node to the base station. Multi-hop communication is defined 

as transmission of data between two nodes that are not in the direct radio range, using 

intermediary nodes (Pakzad et al. 2008). This routing is useful in linear network 

topologies. To make an effective use of the available bandwidth during the data 

transmission in multi-hop scheme, data pipelining is also proposed. The basic idea of 

pipelining is to schedule the data transmission of the nodes along the multi-hop 

communication path, such that it maximizes the channel usage and minimizes the energy 

and time (Li et al. 2010). Figure 2.4 graphically shows the pipelining approach in multi-

hop data transmission scheme. 
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Figure 2.4. Multihop/Pipelining data transfer 

2.3.4 Power consumption 

In absence of wires in a sensor network, maintenance of power for different 

components of a sensor unit is considered as a critical issue. Although using battery as a 

ready-to-use power resource is a convenient option, the regular replacement, required for 

long-term monitoring, makes it a challenging drawback. One solution to this challenge is 

using energy harvesting approach which is transformation of available environmental 

energy such as wind, solar power, vibration and thermal, to the electrical energy. Over 

the past decade, many researchers have been working on this topic. Meninger et al. 

(1999, 2001), Elvin et al. (2001), Casciati et al. (2003d), Churchill et al. (2003), Sodano 

et al. (2003, 2004) and Wang et al. (2003b) are few examples of studies on this area. In a 

comparison work, Roundy et al. (2004) compared the potential power densities from 

different environmental energy sources and showed that the solar energy is the largest 

energy source available and proper for the field deployments. Table 2.1 shows the power 

densities that can be obtained from different sources.  Jang et al. (2010) and Hoult et al. 

(2010) are two examples of recent WSN deployments which have used energy harvesting 

with solar panels as one of the power sources. Although this approach is an effective 

solution, the associated expenses are still relatively high. 
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Table 2.1. Comparison of energy sources (Roundy et al. 2004) 

Source Power density (µW/cm3)  

Solar (outdoors) 
 
Solar (indoors) 
Vibrations 
Acoustic noise 
 
Daily temp. variation 
Temperature gradient 
Shoe inserts 

15000 (direct sun) 
150 (cloudy day) 
5 (office desk) 
200 
0.003 at 75 dB 
0.96 at 100 dB 
10 
15 at 10oC gradient 
330 

 

Optimal usage of the energy is another approach which can increase the life-time of 

batteries of a wireless monitoring system. When the power resource is strictly limited, 

careful consideration needs to be given to the consumption of different components of a 

wireless sensor unit. Sensing unit, processor and the transmission unit are different power 

consumers of a wireless sensor unit. Among these components, the radio transceiver is 

the major power consumer which consumes significantly more energy in comparison 

with other components. As an example, Whelan et al. (2009) reported that the power 

consumption of the CC2420 transceiver is 59 mW, whereas the MSP430F1611 

microcontroller and LIS2L02AL accelerometer consumes 2.5 and 2.4 mW (both in the 

active mode) respectively. This comparison shows noticeable higher power consumption 

of transmission task in a wireless sensing unit. Therefore, it is an effective approach to 

optimize the power consumption of communication and minimize the volume of the data 

for transmission.  
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Considering the transmission of the raw data as a time consuming task and a wasteful 

use of energy resources, data compression (Lynch et al. 2003) and data conversion 

approaches, such as the use of frequency responses (Caffrey et al. 2004, Lynch et al. 

2004a, Lynch et al. 2004b, and Nitta et al., 2005), have been developed to reduce the 

volume of communication. Research has also been focused on distributing damage 

detection algorithms to make them suitable for implementation on WSN (Lynch et al. 

2004, Gao et al. 2006, and Hackmann et al. 2008). More recently, further progress is 

made towards the concept of local data processing for modal identification such that just 

an informative and condensed format of the data is communicated through the network.  

Swartz et al. (2009) proposed a decentralized damage detection algorithm using 

transfer function. In this algorithm, the collected data in each sensor is used to fit a time-

series model and then associated coefficients are estimated using Auto Regressive 

Exogenous (ARX) algorithm. Employing these coefficients, the transfer function of the 

structural system is estimated. The migrations of poles of the system in different 

experiments are used to construct a parametric feature representing the occurrence and 

severity of the damage. For validation purposes, this algorithm was implemented on a 

laboratory specimen and the reliability of the algorithm was reported.  In another work, 

Castaneda et al. (2008) employed the on-board processing capability of wireless sensors 

to calculate the power spectrum density and corresponding parameters of curve fitting of 

the response at each separate node. Afterward, the estimated parameters are sent to the 

base station for implementation of a correlation based damage detection algorithm. The 
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described DCS approach, proposed by Gao and Spencer (2008), is also another example 

of effective works on this area.  

Compared to the damage detection, less attention is paid to development of onboard 

modal identification algorithms. An example of such approaches is Coordinated 

Computing Strategy (Nagayama and Spencer 2007) which divides the network into a 

number of sub-networks with cluster heads in a hierarchical topology. In this design, all 

the leaf nodes in each sub-network receive the data from cluster heads and estimate and 

broadcast the correlation functions (under the assumption of ambient excitation) for 

implementation of Eigensystem Realization Algorithm (ERA). Further improvement of 

the approach is the use of decentralized Random Decrement Technique (Sim, et al. 2010) 

in which instead of transmission of raw data from cluster head to leaf nodes, the trigger 

crossing information is sent for estimation of correlation functions. Although these 

approaches reduce the amount of communicated data, they are partially distributed, 

restricted by the network topology and the underlying identification algorithms and their 

efficiency is not high enough for this problem. Additionally, more algorithm 

improvement is still required to remedy the latency and power consumption issue which 

exist in the current WSN deployments.  

Chapter 3 presents an approach which is developed in this research and aims to 

distribute the modal identification process in network such that the modal parameters of 

the structural system are identified without need for transmission of raw data from 

sensors to a central computation station. This approach utilizes an iterative estimation 
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which is similar to Estimation-Maximization (EM) algorithm. The developed approach is 

flexible in the type of underlying algorithms and can be adopted to use different standard 

system identification and simulation techniques. To provide a background on the concept 

of modal identification, the next section provides the necessary terminology and a 

summary review of some commonly used algorithms. 

2.4. A review on system identification algorithms 

Health monitoring of civil infrastructure may be classified into two general terms of 

“local” and “global” monitoring. The local health monitoring seeks the local deficiencies 

and malfunctioning of the system’s components which is usually based on physical 

evaluation or visual inspection. On the other hand, the global term monitors the general 

behavior of the system over its designed life-time.  One of the most effective classes of 

global health monitoring is vibration-based monitoring which estimates the state of the 

structure using its dynamic response. The approach in which a mathematical model is 

estimated for a system using the experimental observations (i.e. its response) is called 

system identification. In other words, system identification is defined as the process of 

developing a mathematical model for a physical system by using experimental data 

(Juang and Phan 2001). Generally, in any system identification algorithm, the objective is 

to estimate the dynamic characteristics of the system (e.g. modal properties), using the 

output response of the system with or without the input load. Figure 2.5 illustrates the 

general idea of the System Identification for a Multi Input Multi Output (MIMO) system.  



 

System identification has been an active research area for a few decades in many 

engineering fields such as electrical, control, mech

of its broad application, a large variety of system identification algorithms have been 
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Figure 2.5. System Identification 

System identification has been an active research area for a few decades in many 

engineering fields such as electrical, control, mechanical and civil engineering. Because 

of its broad application, a large variety of system identification algorithms have been 

developed to date.  The concept was first introduced to civil engineering researchers by 

Liu and Yao (1978) and since then, it has been attracting attentions due to its application 

in damage detection of aged structures, finite element model updating, and verification of 

the finite element models of newly constructed structures.  

System identification techniques in civil and mechanical engineering are generally 

classified in two categories:  “input-output” and “output-only” identification algorithms 

(Yi and Yun 2004). Input-output class is developed based on the availability of 

information about the excitation of the structure and therefore they can be carried out 

when the input loads are controllable and/or measurable. In contrary, output

algorithms are independent of exact excitation function and can be applied when the 

excitation is random ambient loads such as traffic and wind loadings. In output

algorithms, the ambient excitation is considered to be stationary stochastic process. 
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The need to perform ambient vibration tests emerged in structures where controlled 

excitation is very expensive, difficult and even impractical. Civil infrastructure such as 

bridges and buildings are examples of this class of structures. While testing under 

ambient loads is simple and practical for civil structures, it adds some uncertainties into 

the identification problem. One common uncertainty regarding ambient vibration tests is 

the non-stationary assumption of excitation. Although ambient vibrations are considered 

as random inputs, they are not perfectly stationary functions and thus the results obtained 

upon this assumption contain some uncertainties. A solution to minimize this issue is 

collection of sufficiently long data from the response of the structure.  

In the past few decades, many algorithms are proposed on both input-output and 

output-only modal identification which some more important ones are discussed as 

follows: 

 Ibrahim et al. (1977) developed an algorithm, called Ibrahim Time Domain (ITD) 

algorithm, which provides the modal properties of the structure using its free vibration 

response (Ibrahim and Mikulcik 1977, Ibrahim and Pappa 1982). When the excitation is 

ambient, the free vibration response can be extracted using Random Decrement 

Technique (RDT) (Ibrahim, 1977, Yang et al., 1984).  Juang and Pappa (1985) introduced 

an algorithm called Eigen Realization Algorithm (ERA). ERA uses Markov parameters to 

construct the Hankel matrix which from its singular value decomposition (SVD), state 

space matrices can be extracted. Similar to ITD method, ERA works with the free 

vibration response of the structure (Markov parameters are formed based on the free 
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vibration response of the structure). Later, Natural Excitation Technique (NExT) (James 

et al. 1992) was developed to estimate the free vibration response of the structure using 

ambient response. NExT uses the white-noise property, in which there is no correlation 

between the inputs in different time steps, and shows that the cross correlation function 

between responses of structure to white-noise at two DOFs (y1 and y2) is the same as the 

impulse response at y2 due to a unit impulse, u1, multiplied by a factor. Implementation of 

NExT in identification of modal parameters of various types of civil structures under 

ambient vibration demonstrated the effectiveness of this algorithm.  Researchers 

employed NExT for the system identification in both analytical and experimental studies. 

James et al. (1993) identified modal parameters of the Department of Energy/Sandia 

vertical axis wind turbine using NExT, in combination with the Poly-reference Technique 

and the ERA. Results of this work showed an agreement between the modal parameters 

from identification and analytical model. Beck et al. (1994b) also applied NExT to 

identify modal parameters of the Robert A. Millikan Library located at the California 

Institute of Technology. In another work, Farrar and James (1997) used NExT to 

determine natural frequencies and mode shapes of a portion of a bridge which once 

spanned the Rio Grande in Albuquerque, New Mexico along the I-40 highway.  

Anderson (1997) proposed application of Auto-Regressive and Moving-Average with 

Exogenous terms (ARMAX) models for system identification. ARMAX uses stochastic 

relationships between input and output data and forms the state space matrices of the 
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system using ARMA parameters in different forms of controller, observer or modal 

forms.  

Van Overschee and De Moor (1994) proposed numerical algorithms for subspace 

state-space identification (SSI) which similar to ERA utilizes the SVD of block Hankel 

matrix with cross correlation matrix of the response. The basis of SSI is the stochastic 

state space equation which considers the dynamics of the system under stochastic random 

excitation and random noise. This method decomposes the Hankel matrix into 

observability and controllability matrixes and from there, the system matrices can be 

extracted from observability matrix.  

Another class of system identifications is frequency domain algorithms. As well as the 

time domain algorithms, a broad variety of frequency domain approaches are developed 

in past few decades. Power Spectral method (also known as peak picking) is one of the 

most popular methods in which the modal properties of the structure can be extracted by 

reading the peak frequencies and amplitudes of Power Spectral Density (PSD) function 

(Newland 1984, Bendat and Piersol 1993). Frequency Domain Decomposition (FDD) 

(Otee et al. 1990, Brinker et al. 2000) is another algorithm which uses the singular value 

decomposition of PSD function to estimate the modal properties of the system. In this 

method, natural frequencies are estimated based on the peaks of the first singular values 

and mode shapes are estimated from the first singular vectors at frequencies 

corresponding to peaks of the singular values. Poly-reference frequency domain 

algorithm (Zhang et al., 1985), orthogonal polynomial algorithm (Rechardson et al. 1982, 
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Vold, 1986 and Auweraer et al., 1987), Complex Mode Indication Function (Shih et al. 

1988) and multivariate mode indication function (MvMIF) (Williams et al. 1985) are 

some other examples of frequency domain modal identification. 

Discussion about the details of all developed system identification algorithm is not the 

scope of this research. However, in this section, a brief description on a few commonly 

used time domain identification algorithms, ERA, Stochastic Subspace Identification 

(SSI) and Auto Regressive with exogenous (ARX) model, is presented to provide the 

background and the terminology for other chapters. 

Considering the dynamics of a mechanical system consisting of n masses connected 

through springs and dampers, the equation of motion can be written as following matrix 

differential equation:   

)()()()( tutKqtqCtqM d =++ &&&                                        (2.1) 

where M, Cd and K are n by n mass, damping and stiffness matrices, u(t) is the input of 

the system which can be an external excitation or ground motion, and )(tq&& , )(tq&  and 

)(tq  are the acceleration, velocity and displacement vectors at time t.  

Although the physical model of Equation 2.1 is a good representation of the dynamics 

of a structure, it is not a proper model in an experimental modeling context (Peeter et al. 

2001). First, in most of the practical problems, it is not possible to measure the response 

of all DOFs of the FE model. Second, while there are many additional unknown 

excitations, the presence of noise in the experimental modeling should be also 
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considered. These two issues of FE model can be resolved by the use of State-Space 

representation. 

The state space model in continues domain is presented as follow: 
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where x(t) is defined as the state vector at time t, y(t) is the observation vector at time t, 

u(t) is the input vector, Ac is the state matrix, Bc is input matrix, C is the observation 

matrix (also called influence matrix) and D is transmission matrix. All these variables are 

in continues domain.  

The state of the system, x(t), can include any variables representing the system. One 

conventional chooses of structural systems is as follow: 
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For such state variables, the state and input matrices would be: 
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M, K and C are mass, stiffness and damping matrices of the structure. y(t) in Equation 

(2.2) is the observation vector at time t which is defined based on the observed response 
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at specified DOFs. The definition of matrices C and D depend on the vector of 

observations. For example if y(t) is defined as the accelerations at all DOFs, the 

corresponding C and D matrices would be as follow: 

][ 11
dCMKMC −− −−=                                                (2.6) 

1−= MD                                                              (2.7) 

In practice, continues models need to be transformed into the discrete domain.  
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Considering zero-order-hold input and discretization as � = �� + 1�∆� and �� = �∆�, 

Equation 2.2a (state equation) can be written as: 

�[�� + 1� ∆t] = ����∆�����∆�� + 
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Thus, the state-space model in discrete time can be shown as: 

      
)()()(

)()()1(

nDunCxny

nuBnxAnx dd

+=

+=+
                         (2.12a & 2.12b) 
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where n is the time index (t = n ×∆t) and Ad and Bd are discrete versions of state and 

input matrices. The following relation between continues and discrete state space 

matrices can be obtained from the solution of matrix differential equation: 

      )( tcA
d eA
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cA
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0
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= ττ                (2.13) &  

and 

�% = 
 ���#�∆�
� �������$ = &'	 �& − )��'                     (2.14) 

where ∆t is the time step. Observation and transmission matrices (C and D) in discrete 

and continues time models are the same. 

State space representation of the dynamics of a system results in the advantage of 

using theories of first-order matrix differential equations. Additionally, in this form, the 

observation vector is separated from the system’s state vector which is consistent with 

real situation where the measurement differs from the real state of the structure.  

In most civil structures the excitation is not measurable and as a result, considering the 

Input-Output models is not practical. However, when the vibration source is only ambient 

load, it is assumed that the excitation is a white noise function and thus, output-only 

approaches are applicable. The state-space equation for output-only systems is modified 

by replacing the excitation terms in the state and observation equations [Bd(u) & D(u)]  

with noise functions such that:  
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where )(nw is the process noise and )(nv is the measurement noise. 

In this formulation, the identification problem is to determine the system’s state and 

observation matrix (A & C), having the measurement data (observation vector) and 

assumed errors. NExT (James et al. 1992) is an effective algorithms for solving output-

only system identification which estimates the free vibration response of the structure 

using the cross-correlation functions of outputs when the input is stochastic Gaussian 

white noise. It should be noted that given the free vibration response of the system, there 

are several methods for identification of system’s state-space model. 

To clarify the theory of NExT, consider the equation of motion for a multi-degree-of-

freedom, linear time invariant system (Equation 2.1) and assume that the excitation and 

responses are stationary random processes. Post multiplying the equation by a reference 

response process qi(s) and taking the expected value of both sides of the equation yield: 

)]()([)]()([)]()([)]()([ sqtuEsqtqKEsqtqECsqtqME iiidi =++ &&&              (2.16) 

Note that structural parameters (M, Cd and K) are assumed to be deterministic. E[.] in 

Equation (2.12) denotes the expectation. Based on definition of cross correlation, 

Equation 2.12 can be written as: 

iuqiqqiqqdiqq RKRRCMR =++ &&&                                  (2.17) 
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where R(.) denotes the correlation function.  It can be easily shown that for a weakly 

stationary process (D. E. Newland 1975): 

    )()]()([ τ
τ

τ qR
d

d
tqtqE =+&                                          (2.18) 

Also, based on the assumption of white noise excitation, the response is uncorrelated 

to the excitation for positive time lags. In other word, the response at time tn is 

uncorrelated to the excitation at any time after tn. Thus, Equation (2.13) can be written as:  

   0=++
iqqiqqiqq KRRCRM &&&                                       (2.19) 

This equation shows that the correlation function of displacement processes satisfy the 

homogeneous differential equation of motion. Therefore, in structural systems under 

white noise disturbances, the free decay response can be estimated by correlation 

function of their responses. Next sections present the three mentioned system 

identification algorithms. 

2.4.5 Eigen Realization Algorithm (ERA) 

As mentioned earlier, there are a few system identification algorithms which estimate 

the dynamics of the structure based on the impulse (or free decaying) response. One of 

the widely-used algorithms, applicable for input/output systems, is Eigen Realization 

Algorithm (ERA) (Juang and Papa 1985). In ERA, using the Markov parameters, the 

Hankel block matrix is formed as: 
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where Y(n) is m×r (m is the number of outputs and r is the number of inputs) impulse 

response matrix at nth time step; i.e., Yij(n) is the ith output due to an impulse at jth input. p 

and q are also corresponded to the order of Hankel matrix which can be determined using 

stabilization diagram (Peeters and de Roeck 2001a) or other approaches presented in 

literature. It is stated that for an acceptable result, p is better to be approximately ten 

times the number of modes and q should be selected to be 2-3 times p (Caicedo et al., 

2004, Juang and Pappa 1985). Singular value decomposition is performed on Hankel 

matrix at initial time step, H(0): 

TQPH Σ=)0(                                                         (2.21) 

where P and Q are matrices of left and right singular vectors of H(0) respectively and ∑ 

is the diagonal matrix of singular values. Small singular values along the diagonal of ∑ 

correspond to computational or noise modes (non-physical modes).  Therefore, the row 

and columns associated with nonphysical mode are eliminated from the singular-vectors 

and singular-values matrices.  The truncated matrices, ∑n , Pn and Qn are used to estimate 

the sate-space matrices (A, B and C) for the discrete-time structural model as follow 

(Juang and Pappa 1985): 

2/12/1 )1(ˆ −− ΣΣ= nn
T
nn QHPA                                               (2.22) 
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T
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where Em and Er are matrices containing 1 and 0 with appropriate dimensions ([I   0]). 

Estimated state matrix can be used to extract the modal frequencies ωi and damping 

ratios ζi of the system. Eigenvalue decomposition of the state matrix results in the 

diagonal matrix of eigenvalues (Λ) and the matrix of eigenvectors (ψ) which are in 

relationship with the system’s frequencies, damping ratios and mode shapes via following 

equation: 

21, iiiiicic j ζωωζλλ −±−=∗                                             (2.25) 

where (*) denotes complex conjugate and cλ is the ith eigenvalue of the continues system 

which is obtained from the transformation of the discrete model to the continues model: 

t

i
ic

∆
=

)ln(λ
λ                                                     (2.26) 

and iλ is the ith eigenvalue of the estimated discrete state matrix , i.e. )(Λ= diagiλ ; t∆ is 

also the sampling time which is used in data collection.  

Equation (2.21) results in: 
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The observation matrix, C, is used to transform the computed eigen-vector to the 

matrix of mode shapes as follow: 

ii Cψφ =                                                           (2.28) 

where iψ  is the i
th eigenvector of the discrete state matrix and iφ  is the i

th estimated 

mode shape of the system. 

2.4.6 Stochastic Subspace Identification (SSI) algorithm 

Stochastic subspace identification is another popular time domain algorithm which can 

be applied on both input-output and output-only problems. This algorithm relies on the 

property of the stochastic state-space systems (Equation 2.11) which relates the output 

covariance (R) to the next state-output covariance matrix (G). R and G are defined as 

follow: 

][ T
kiki yyER +=

                                                  (2.29) 

                              
][ 1

T
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                                                 (2.30) 

where x and y are state and output respectively. The relation between these covariance 

matrices is: 

k
i

i GCAR
1−=                                                  (2.31) 
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where again, A and C are state and observation matrices respectively. The output 

covariance function can be obtained, having measured response. To obtain C, A and G 

matrices, the block Hankel matrix is formed and decomposed as follow: 
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        (2.32)                                    

where iΟ and iΓ  are extended observability and stochastic controllability matrices. SVD 

can be applied for this decomposition similar to Equation 2.17 and from there: 
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A and C can be obtained from observability matrix and modal properties can be extracted 

based on a similar relationships explained for ERA algorithm. 

2.4.7 Auto Regressive and Exogenous (ARX) algorithm 

Another useful method for system identification of a linear time-invariant system is 

Autoregressive method. For an output-only system under white noise excitation, Auto 

Regressive (AR) model suffices to provide a reliable and accurate estimate of modal 

parameters (Pandit, 1991 and De Roeck et al., 1995). However, addition of Exogenous 

term (ARX) to the model results in an improvement of the accuracy. The ARX model can 

be written as:  
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where )](...)()([)( 21 nynynyny m=  and  )](...)()([)( 21 nxnxnxnx r=  are 

matrices including output and input vectors respectively; iα ’s and iβ ’s are ARX 

coefficients; )(ne represents the noise and measurement error; and finally, p and q are the 

orders of Auto-Regressive and Exogenous terms and are usually assumed to be identical.  

When the input is white noise and is not distinguishable from measurement noise, the 

system can be modeled by: 
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ARX coefficients can be directly obtained, using the output data. It can be shown that 

the system’s state matrix can be expressed as: 
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and the observation matrix is considered as: 

[ ]00..0IC =                                               (2.37) 
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Therefore, the modal parameters of the system (modal frequencies, damping ratios and 

mode shapes) will be computed by the eigenvalue decomposition of the system’s matrix 

and transformation of parameters of discrete system to continues system as it is explained 

in ERA algorithm.  

2.4.8 Frequency Domain Decomposition (FDD) Algorithm: 

FDD is another algorithm which provides modal properties of the system. This 

algorithm uses the Cross Power Spectral Density (CPSD) of the output signals to estimate 

the poles and eigen-vectors of the system by its singular value decomposition. 

Considering the CPSD matrix of the outputs (y), which is defined as a function of 

frequency, the SVD can be applied as: 

)()()()(ˆ ωωωω T
yy VSUG =                                         (2.38) 

where S(ω) is the diagonal matrix of singular values and U and V are matrices of singular 

vectors. It can be shown that the peaks in vector of first singular values, S11(ω), 

represents the poles of the system and the first singular vector, U1(ω), at the frequencies 

of poles, would be an estimate for the mode shapes of the structure. 

Summary of the process is: (i) pre-processing the data: the measured data is passed 

through a filter to clean the signals from noises, (ii) calculating the Cross Power Spectral 

Density as a function of frequency (iii) Singular Value Decomposition of the CPSD, and 

(iv) finding the frequencies at which the first component of singular value matrix is 
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maximized (as natural frequency of the structure) and also to find the corresponding first 

singular vector (as the mode shape of the structure). 

2.4.9 Stabilization Diagram for Optimum Model Order 

One of the difficulties in most of the system identification algorithms is selection of 

adequate system’s order. An effective method for this problem is using stabilization 

diagram This diagram shows the stable modes as a function of increasing system’s order. 

As the order increases, the deviation of the modal parameters is assessed and an optimum 

order is selected. An example criterion for optimum order, proposed by Yi and Yun 

(2004), determines a stable order in which the deviation of natural frequency and 

damping ratio in order p from the order p-1 is less than 0.05 and 0.2 respectively. As 

well, the modal assurance criterion (MAC) value (Allemang and Brown 1982) between 

two extracted mode shapes from orders p and p-1 is greater than 0.95.  

2.4.10 Summary of the Development History and Literature Review 

The development history of wireless sensors and their application in structural 

monitoring and modal identification is presented in this chapter. Advantages and 

challenges in application of wireless sensors for SHM, and modal identification of 

structural systems, as a basic practice in SHM, are discussed. The concept of modal 

identification and the available time and frequency-domain approaches are presented and 

the necessary background and terminology are provided to be used later in other chapters 

of this dissertation. 
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Chapter 3 

Distributed Data Processing 
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3. Distributed Modal Identification 

3.1. Background 

While WSN facilitates the deployment of SHM, a few challenges have restricted its 

application in large scale and for long term health monitoring of structural systems. 

Challenges in application of WSN are explained in Chapter 2. Among those, the latency 

in the process due to the low data bandwidth and the difficulties in providing operational 

power of sensors for long term monitoring are more important issues, because less 

research effort has been devoted to address them in the literature. In particular, for 

monitoring of structural response due to drastic loads (e.g. earthquake) WSNs need to be 

responsive in capturing and processing the data. Thus, new approaches are required to 

address these challenges and make the existing WSN technology suitable for a wide 

variety of applications.     

To address the power consumption issue, different approaches have been developed in 

recent years. Energy harvesting (Grisso et al., 2005), wireless power transmission (Das et 

al. 1998), and optimal power usage strategy are some examples of such approaches. 

While these methods rely on technological developments, the optimal usage strategy 

offers an efficient and integral way of preserving energy just by applying smart local 

algorithms on wireless units. In addition, even with the use of energy harvesting or 

wireless power, it is still necessary to manage the power consumption and therefore, 

optimal usage strategies are crucial.  
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In Chapter 2, it was discussed that the available efforts in utilization of onboard 

processing capability for modal identification are very limited. A few available works on 

this topic are presented. As explained, the developed approaches are partially distributed, 

limited by network topology and the identification algorithm, and their performances are 

not significant enough. This chapter, however, presents a novel distributed modal 

identification approach for application of WSN in SHM which is completely onboard and 

flexible to be used with a broad range of identification algorithms and different network 

topologies. The proposed algorithm, called Iterative Modal Identification (IMID), assigns 

a computational task of modal identification to each remote node and limits the data 

communication to transmission of only modal analysis results. An iterative algorithm is 

developed such that each sensing node in the network sufficiently influences on the final 

estimated results. The necessary requirement for the implementation of the proposed 

algorithm is an initial estimate of the structural modal properties which can be available 

for many structural systems. In this chapter, the formulation of this method is presented, 

and as a proof of concept, the algorithm is implemented on numerically simulated shear 

structures and experimental models. Then, the limitations of the algorithms are discussed 

and the solutions are presented accordingly. For discussed limitations, separate 

approaches are proposed and each approach is then validated through additional 

numerical and experimental examples.   
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3.2. Significance of the Distributed Modal Identification Algorithms 

Latency in the data collection and prohibitive power consumption, as major drawbacks 

in application of WSN in SHM, need special considerations in design of WSN 

architecture. In a long term SHM scenario, the monitoring system is expected to be 

prepared for collecting data and also responsive for processing the data and extracting 

important information about the state of the structure. Due to the limited bandwidth in 

wireless networks, transmitting large volumes of data can take a prohibitively long time. 

In a large scale deployment, tens of megabytes (MBs) data need to be transferred through 

the network while the network bandwidth is strictly limited. In one of the large scale 

deployments of WSN, Pakzad et al. (2008) reported the average bandwidth of 550 bytes/s 

in multi-hop data transmission, which resulted in about 9 hours for transferring 20 MB of 

data from 64 sensor nodes to the base station. Such a delay in the procedure prevents the 

monitoring system from prompt response which is particularly required in the event of an 

earthquake. 

In addition to the latency, caused by the data transmission, power consumption also 

limits the performance of WSNs in long term monitoring. Different components of a 

wireless sensor unit for vibration monitoring (e.g. accelerometer, processor, and 

transceiver) consume different amounts of energy when performing different tasks. 

Figure 3.1 shows a unit of wireless sensor platform with its different components: SHM-

A sensor board (Rice et al., 2008) and Imote2 processing board (Crossbow, 2007). Figure 

3.2 also presents a graph that shows the results of the power consumption measurement 



 

on this wireless sensor unit during the following tasks: standby, temperature sensing, 

acceleration sensing (25, 50, 100, and 280 Hz sampling rates), data interrogation, and 

data transmission. It is observed that the sampling rate in acceleration sensing has no 

effect on power consumption since it only depends on whether the sensor and ADC chips 

are powered on, and not what task they are performing. This figure shows that the highest 

energy consumption rate corresponds to acceleration sensing task and then, the 

communication task. Considering the limited capacity of standard batteries and the fact 

that the battery voltage does not remain constant throughout usage, it is evident that a 

wireless node cannot last for a long time
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Comparing the power consumption of different integrated components of a wireless 

sensor is important in managing the limited power resource. In an inclusive power 

consumption measurement, Whelan et al. (2009) report

79.4 mW from all components of acceleration monitoring (for a specific wireless sensor 

platform) where 59 mW of that was from the CC2420 transceiver. Considering the 

communication time and the result of this power measureme
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approximation of the required energy for performing a simple computation on one kB 

data and also for transmission of the same data through the radio signal can be obtained 

as:  

Ecomputation=[Number of cycles for computation (ALU)]×[1/Clock speed(Hz)]×[power consumption 

rate(mW)] 

(3.1) 

Etrsmission=[1/transmission rate(Kbps)]×[power consumption rate(mW)]                                   (3.2) 

where transmission rate, power consumption rate and clock speed are specifications of 

the transceiver and the processor. The number of required cycles for computation 

depends on the algorithm which is used in the specific type of processor. ALU refers to 

Arithmetic Logic Unit which is a fundamental building block of the CPU of a computer.  

Considering the specifications of CC2420 transceiver  (Chipcon AS SmartRF, 2004)   

and PXA27x Processor (Intel, 2004), which are integrated in Imote2 platform (Crossbow, 

2007), the estimated consumed energy for transmission of one kB data is 0.24 mW-sec, 

whereas the estimated required energy for a simple computation on one kB data is 

2.25×10-5 mW-sec. This result evidently shows the noticeable higher power consumption 

of the transmission task and highlights the importance of developing and incorporating 

distributed modal identification algorithms to reduce the communication load and to 

preserve the limited energy.  
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3.3. Iterative Modal Identification, Theory and Methodology 

A basic requirement for most of the existing modal identification algorithms is the 

access to the entire measured data for computation of the full cross-correlation matrix. 

This restriction requires the sensor network to transmit all the collected data from each 

sensor to a base station. The proposed algorithm, called IMID, estimates the modal 

parameters of the system without requiring simultaneous access to the entire data.  

IMID relies on a class of estimation algorithm, called Expectation-Maximization 

(EM). EM estimates unknown parameter (Ѳ), given the measurement data (Y) in the 

presence of some hidden variables (Ŷ ) (Dempster, 1977). This algorithm is in fact a 

generalized form of maximum-likelihood estimation, which is applicable when the data is 

incomplete. Considering the log-likelihood function of unknown parameters Ѳ as: 

                     
)]/(log[)( θθ YpL =                                                      (3.3) 

the estimation of unknowns (Ѳ) is given by maximizing the function, L(Ѳ), over Ѳ: 

      )](max[. θθ LArg=                                                     (3.4) 

where Y is the available data (complete measured data).  

When the entire data for estimation is not available (data is incomplete), an iterative 

method such as EM is applicable. EM first estimates the complete data using initially 

assumed parameters, Ѳ
p (expectation phase), then maximizes the likelihood function over 
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system’s parameter to find Ѳ
p+1 (maximization step) and continues until the convergence 

for the parameters is achieved. EM can be formally expressed as: 

Expectation step: 

],/)/([log(),( pp YXpEQ θθθθ =                                   (3.5)                                                       

Maximization step: 

),(max.arg1 pp
Q θθθ ∈+                                          (3.6) 

where Ѳ
p denotes the value of the system’s parameter obtained at the pth iteration. The 

concept of EM is also illustrated in Figure 3.3. 



 

Figure 3.3. The block chart presenting the Expectation Maximization algorithm
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The similarity of the proposed identification algorithm (IMID) and EM is that in 
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modal parameters (this is the maximization step in EM algorithm). Then this node sends 

the system’s parameters to the second node in the network for a similar local processing. 

These steps are taken in all of the nodes of the network one-by-one. However, for 

simulation of the response at other nodes, each node uses the system’s parameter 

estimated at its previous node. Therefore, each node updates the estimation by the 

measured data at its location. This procedure is continued inside the network until the 

estimated parameters are stabilized and converged. Note that the algorithm with this 

configuration is applicable to input-output systems and assumes that the excitation signal 

was measured and communicated through the network so all of the nodes have access to 

it. The modifications for output-only systems will be presented later in this chapter. A 

possible scenario for application of input-output vibration testing is in the controlled load 

tests or in the impact test where the excitation is known to all the sensing nodes, as well 

as in earthquake events where the ground motion is also measured. Figure 3.4, shows a 

step-by-step block chart, illustrating IMID.  



 

Figure 3.4. The block chart presenting the iterative modal identification 

Considering the fact that the transmission volume for the estimated parameters is very 

small compared to the time history data, IMID can significantly reduce the data traffic 

flowing through the network. As a result, it saves a considerabl

energy in communication task. It should be noted that this implementation of the 

algorithm, an initial estimate of system’s parameters are required. This initial estimate 

can be achieved either from the Finite Element model of the stru

vibration monitoring, from an initial data collection and performing a centralized data 

processing. However, an approach which addresses this requirement is also developed, 

called cumulative system formation, and is presented later i
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Fundamental iterative steps in IMID are (i): simulation of the response using the 

estimated parameters, and (ii): modal identification using the collected data and simulated 

response. Several system identification models are available for both simulation of the 

response (e.g. Newmark numerical method and the use of Auto Regressive with 

Exogenous (ARX) model) and modal realization (e.g. Eigensystem Realization 

Algorithm (ERA), Stochastic Subspace Identification (SSI), ARX and Least Square 

algorithm). Selection of the best algorithm for each of these steps is one of the critical 

tasks in developing IMID. The performance of simulation and identification techniques, 

in terms of accuracy and efficiency, is the factor that needs to be considered in selection 

of algorithms for IMID. Additionally, since the objective of IMID is to utilize the on-

board processors of the wireless sensors, it is also important to find a computationally 

efficient algorithm for implementation of IMID.  

In summary, different steps in IMID are: 

(i) All sensing nodes in the network perform the measurement 

(ii) First node estimates the system and transmits to the second node 

(iii) Second node receives parameters from the first node, simulate the first node’s 

response, together with its measurement, updates the system parameter and 

passes it to the next node 

(iv) Process continues up to the last node 

(v) If the convergence has not happened in the first cycle, the iteration starts the 

next cycle 



 

(vi) Iteration continues until the system parameters are conver

The following section describes some implementation aspects of IMID algorithm.

3.4. Implementation of IMID

As previously mentioned, in IMID all the nodes in the network contribute in modal 

identification process. In order to explain the implementation deta

different tasks that need to be done in each node are discussed in this section. Figure 3.5 

shows the necessary tasks that are assigned to each node in every iteration cycles.

Figure 3.5. The block chart presenting the tasks assigned to each node 

Simulation of the response:

The first step in IMID is simulation of the dynamic response of the structure under the 

applied excitation. As long as the dynamic properties of the structure are a

task can be done using any numerical methods. However, the selection of simulation 

method is related to the selected parameters for communication. For example, to apply 

numerical methods such as Newmark’s method or Central Difference, the st

properties of the structure (i.e. mass, damping and stiffness matrices) are required. 
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The first step in IMID is simulation of the dynamic response of the structure under the 

applied excitation. As long as the dynamic properties of the structure are available, this 

task can be done using any numerical methods. However, the selection of simulation 

method is related to the selected parameters for communication. For example, to apply 

numerical methods such as Newmark’s method or Central Difference, the structural 

properties of the structure (i.e. mass, damping and stiffness matrices) are required.  
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As an alternative method for simulation of response, the ARX model of the system can 

be used. In this approach, the response at current time can be estimated using ARX 

parameters, past response, and current and past inputs of the system. It is evident that 

utilizing ARX for simulation of the response requires ARX parameters to be transferred 

in the network. 

Modal Identification: 

After the dynamic response of the system is simulated at a remote node, the measured 

response is replaced with the corresponding simulated response at that point and, together 

with the simulated responses for other nodes, is fed into modal identification algorithm. 

The modal identification can be performed using any algorithm such as those explained 

in Chapter 2. 

Selection and assessment of the system’s parameters for transmission: 

Estimation of system’s parameters in IMID is not only the final objective, but a step 

which is taken at each node in every iteration cycles. In fact, estimated parameters at each 

node are transmitted through the network to be updated node-by-node. Additionally, 

these parameters are checked for convergence, at each cycle. Therefore, it is important to 

select the most informative parameters representing the system. Several alternatives for 

system’s parameters are: ARX parameters, state space matrices, and modal properties of 

the structure. 
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The ARX parameters and state-space matrices can be the direct result of system 

identification step and no further assessment is needed before transmission of the 

parameters. However, extraction of structural properties (mass, damping and stiffness 

matrices) from the result of system identification step needs some considerations. It 

should be noted that the advantage of selecting these properties, compared to other 

alternatives, is their compact transmission volume. 

Another challenge in the procedure of extraction of modal properties or dynamic 

properties of structural system from the results of identification algorithms is existence of 

complex eigenvectors. Since the damping is involved in construction of the state matrix 

A, the eigenvectors and eigenvalues are reasonable to be complex. The natural 

frequencies and damping ratios can be simply obtained from Equation (2.23). But from 

the complex components of the eigenvectors, there is no such exact solution to derive the 

normal real mode shapes. In fact, mode shape components contain both amplitude and 

phase. Figure 3.6 shows an example of such mode shape for an exaggerated case.  

 

Figure 3.6. Example of a complex mode for a 5 story shear building 

Re

Im

Re
Im

Re



78 
 

In many practical cases that the damping is nearly proportional and there is no 

significant error, eigenvectors can be scaled in a way that imaginary parts of the 

components become negligible and real parts of the eigenvectors contain sufficient 

information about the mode shapes. But when the complexity is high this approximation 

is not acceptable and both the amplitude and the phase of eigenvectors should contribute 

in the extraction of modal properties.  

One approach to address the complexity of mode shapes is to derive the dynamic 

properties directly from complex eigenvectors. Rewrite the FE equation of motion for 

free vibration: 

0)()()( =++ tKqtqCtqM d
&&&

                                 (3.7) 

the solution will be: 

           n

tnetq ψλ=)(                                                (3.8) 

Substitution of Eq. (3.8) into (3.7) results in: 

 0)( 2 =++ nnn kcm ψλλ                                        (3.9) 

where λn and ψn are the nth complex eigenvalue and eigenvector of the dynamic system. 

Pre-multiplying this equation by m-1, it can be rewritten as: 
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which holds for each eigenvalue and eigenvector. Expanding the equation to include all n 

modes of the system, it becomes: 
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where “*” denotes the pseudo-inverse of a matrix. From this equation, [m-1
k] and [m-1

c] 

can be easily extracted with the minimum least square error. Having an estimate on the 

mass of the system, stiffness and damping can be obtained.  

The remaining issue is determination of eigenvalues and eigenvectors associated with 

the physical system from those generated by noise. During the system identification 

process, it is common to identify some modes that are not from the underlying physical 

system, but are due to the noise in the data and over-parameterization of the problem 

(computational and spurious modes). Constructing stability diagram (Peeters and Roeck 

2001) is an approach that addresses this difficulty based on the fact that structural modes 

stabilize through the process of increasing the model order whereas the spurious modes 

will not converge. Another available approach is determination of confidence interval for 

modes through the Consistent Mode Indicator (CMI) (Papa et al. 1998). In 



80 
 

implementation of IMID, having an initial estimate of the system is also an advantage 

which can assists with determination of structural modes from all identified modes. 

3.5.Validation through Numerical Simulation 

To validate the performance of IMID, it is implemented in identification of two 

numerically simulated models. The models are a 5 degree of freedom (DOF) shear 

structure, shown in Figure 3.7-(a), and a 10 DOF mass-spring-damping model, shown in 

Figure 3.7-(b). The objective is to use IMID for identification of the modal properties of 

these systems. The simulation of the model and the steps of IMID are carried out in 

MATLAB (The Math Works, Inc. Natick, Mass., 1997).  

As the starting point for the iteration process, stiffness matrices are perturbed in each 

case to form an initial estimate of the system. For perturbation, up to 20 percent random 

changes are applied to the stiffness coefficients and the perturbed coefficients are used as 

the initial estimate for the algorithm. Considering application of IMID in long term 

monitoring scenario, where the initial estimates can be obtained through an initial data 

collection and a centralized data processing, 20% deviation of the initial estimate from 

the real values is substantial and larger than the deviation reported in long term 

monitoring studies in literature as a result of environmental variation, measurement noise 

or even small structural damage (for example, statistical study performed on the 174 data 

sets, collected during 3 months from Golden Gate Bridge [Pakzad et al. 2009], concluded 

that the deviation in the estimated frequencies is at most 1.2% due to measurement noise 

and environmental effects). Also, considering the use of finite element models for 



 

obtaining the initial estimate, the level of perturbation is consistent wit

scenarios, presented in the literature in the Finite Element Model Updating field (Zhang 

et al. 2001; Brownjohn et al. 2000). 

Figure 3.7. The 5 DOF (a) and 10 DOF (b) numerically simulated 
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scenarios, presented in the literature in the Finite Element Model Updating field (Zhang 

et al. 2001; Brownjohn et al. 2000).  
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mass matrix is known. To simulate the real condition, an initial estimate on the system 

should be made. For this implementation, the initially estimated parameters are 

considered to be a perturbed version of the true stiffness matrix together with the same 

mass matrix and damping ratios as the true system.  

Perturbation is performed by multiplying the stiffness matrix by factors between 0.8 to 

1.2 (i.e. 0.8 < α < 1.2): 


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Now, the perturbed system is used as an initial estimate of the system for the 

beginning of the iteration algorithm. Mass, damping ratio, and stiffness components for 

the 10 DOF system are similarly modeled. 
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Figure 3.8. Implementation schematic of algorithm on the 5 DOF shear model 

In these numerically simulated examples, measurement noise is also added to the 

responses to verify the functionality of the algorithm in the presence of noises. The noise 

signals have a Root Mean Square (RMS) equal to 10% of the response signal’s RMS. The 

mass and damping ratios are assumed to be constant throughout the iterations and 

stiffness coefficients are selected for updating and transmission through the network. 

Schematic of the algorithm for the 5 DOF model is shown in Figure 3.8. 
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For simulation of the response, Newmark’s numerical method is used. Considering the 

second order equation of motion at time step i+1 as: 

*�+,� + -�.,� + ��,� = /,�                                     (3.13) 

where y is the response, p is the excitation, and m, c, k are mass, damping and stiffness 

matrices respectively, Newmark’s method is developed based on following equations: 

�.,� = �., + [�1 − 0�∆�]�+, + �0∆���+,�                                  (3.14) 

�,� = �, + �∆���., + [�0.5 − 4��∆��5]�+, + [4�∆��5]�+,�                   (3.15) 

which incorporates the estimation of stiffness matrix at each step. Although the 

considered system is a model of a shear structure, the estimated stiffness matrix does not 

necessarily follow the expected format of a shear building structure. To address this 

issue, least square approach is used which estimates the best stiffness coefficient for 

constructing the stiffness matrix with the format of shear building stiffness.  

Identification step: 

In order to estimate the system’s parameters, ARX algorithm (Pandit, 1991 and Roeck 

et al., 1995) is used. The ARX algorithm is explained in Chapter 2. 

Results of the implementation: 

To check the convergence of the results, stiffness coefficients of the structure, 

identified frequencies, and mode shapes are assessed after each iteration cycle. The 

criterion for convergence of modal properties is defined by a predetermined threshold for 



85 
 

the estimated parameters of the system at the end of each cycle. Modal Accuracy 

Criterion (MAC) value is used for comparison of mode shapes in consecutive cycles. 

This criterion is defined as: 
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where pφ and 1+pφ are the estimated mode shapes at iteration cycles p and p+1. 

The error percentages of stiffness coefficients, natural frequencies and mode shapes, in 

the initial estimates and during the iterations are presented in the Figures 3.9 and 3.10 for 

5 and 10 DOF models, respectively. Depending on the desired level of accuracy, 

consistent results are achieved in all of the cases presented in the simulated examples. 

The identified modal properties of the two models (5 and 10 DOF), from Finite Element 

model, IMID, and centralized ARX technique, are also presented in Tables 3.1 and 3.2. 
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 (a) 

 

 (b) 

 

(c) 

Figure 3.9.  (a) to (c), the convergence of stiffness coefficients and modal properties of the 

5 DOF model 
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(a) 

 

(b) 

 

(c) 
Figure 3.10.  (a) to (c), the convergence of stiffness coefficients and modal properties of 

the 10 DOF model 
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Table 3.1. Comparison of identified modal properties of 5 DOF model, using different 

algorithms 

Frequencies (Hz) MAC value Damping ratio (%) 

True value 
(FE 
model) 

Centralized 
ARX 

IMID 
 after 7 
cycles 

FE vs. ARX 
(Centralized) 

FE vs. IMID 
after 7 cycles 

True value 
(FE model) 

Centralized 
ARX 

IMID  
after 7 
cycles 

0.4158 0.4165 0.4153 1.0000 1.0000 5.000 5.000 5.042 

1.0197 1.0249 1.0184 1.0000 1.0000 5.000 5.000 5.031 

1.5724 1.5878 1.5715 1.0000 0.9996 5.000 4.990 4.985 

1.9449 1.9598 1.9444 1.0000 0.9996 5.000 4.980 4.966 

2.4391 2.4495 2.4385 1.0000 0.9997 5.000 4.970 4.964 

 
 

Table 3.2. Comparison of identified modal properties of 10 DOF model, using different 

algorithms 

Frequencies (Hz) MAC value Damping ratio (%) 

True value 
(FE 

model) 

Centralized 
ARX 

IMID 
after 4 cycles 

FE vs. ARX 
(Centralized) 

FE vs. IMID 
after 4 cycles 

True value 
(FE 

model) 

Centralized 
ARX 

IMID 
after 4 cycles 

0.3141 0.3152 0.3132 1.0000 1.0000 5.0000 5.0153 5.0194 

0.5386 0.5428 0.5369 1.0000 1.0000 5.0000 5.0154 5.0288 

0.8206 0.8258 0.8190 1.0000 0.9999 5.0000 5.0090 5.0120 

1.0314 1.0436 1.0302 1.0000 0.9994 5.0000 5.0045 5.0110 

1.2685 1.2846 1.2653 1.0000 0.9994 5.0000 5.0108 5.0122 

1.5202 1.5395 1.5165 0.9998 0.9986 5.0000 5.0094 5.0109 

1.6378 1.6725 1.6316 0.9997 0.9932 5.0000 5.0160 5.0175 

1.7819 1.7612 1.7765 0.9997 0.9918 5.0000 5.0114 5.0224 

1.8672 1.8607 1.8633 0.9996 0.9973 5.0000 5.0060 5.0255 

1.9262 1.9259 1.9229 0.9998 0.9981 5.0000 5.0039 5.0124 
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To identify the sensitivity of the convergence to the level of initial estimate error, a 

large set of simulations are performed with different levels of initial perturbations for the 

5 DOF shear model. The initial estimates of stiffness components are selected to be 

ranged from 50% to 150% of the actual values, with a 5% increment. The results showed 

that, when the initial estimate error is from 5 to 25% (initial values are from 75% to 

125% of the actual values), the convergence, with less than 1% error, happens in less than 

8 cycles (increasing by the increase of initial estimate error). Also for initial estimate 

errors of 25% to 35%, the convergence eventually happened after a maximum of 15 

cycles.  However, for initial estimate errors, beyond 35%, in some cases, the algorithm 

did not converge. It should be noted that this level of error is beyond what is expected in 

application scenarios, discussed in the beginning of this section. 

3.6. Experimental Validation of IMID 

The simulation results in section 3.5 showed the robustness of IMID. The next step is 

experimental validation of the algorithm. For this purpose, a series of dynamic tests were 

performed on two experimental structures in the laboratory. The first one is a 5-story 

model structure excited with a shaking table (Figure 3.11), and the second one is a truss 

structure which is excited by impulsive load, using a hammer test (Figure 3.17).  

3.6.1 The 5-story model structure 

The structure is a 5 story laboratory model with 5 degrees-of-freedom and is subjected 

to earthquake ground excitation. The excitation is El Centro earthquake record 



 

(California, 1940 – S00E), and the response is recorded via 5 Imote2 wireless sensors 

with SHM-A sensor boards using 280 Hz sampling rate. 

programming Imote2 is TinyOS operating system. For 

package which is developed by Illinois Structural Health Monitoring Project (ISHMP, 

2009) is used. As an essential requirement in vibration monitoring using wireless sensors, 

time synchronization is utilized in acceleration sens
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Figure 3.12. The identified modal properties of the experimental model
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structural model is required as the starting point for the iterative process. For this 

example, masses are added to different floors, a separate modal analysis is conducted, 

and the identified parameters of the altered model are used as the initial estimates for the 

algorithm. This is similar to the perturbation of stiffness matrix which was used in the 
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experimental data more informative parameters are required to accurately characterize the 

underlying system. As an alternative to the structural properties, ARX parameters (αi’s 

and βi’s) can be used to represent the structural system in simulation. In this case, ARX 

parameters are considered to be transmitted through the network as the system’s 

parameters. In comparison with structural properties, these parameters can carry a larger 

amount of information about the system. For example, a 5 DOF structure can be 

characterized by stiffness, mass and damping matrices of size 5 by 5. However, the ARX 

model with order 5 (for instance) describes the same system by 10 matrices of size 5 by 5 

(5 autoregressive and 5 exogenous matrices). In the absence of noise, the larger size of 

these parameters does not provide any additional information for simulation. However in 

practical problems, these parameters provide more accurate results. It should be noted 

that as the order of the assumed model increases, the size of the transmitted data increases 

and consequently, the communication burden of the network also increases. Therefore 

optimizing the selected model and the corresponding order is important. Additionally, 

high model order may result in an over-parameterized model for the system and result in 

even less accurate estimation. In literature, there are established criteria which assist with 

finding the best order for systems (e.g. Akaike’s Information Criterion (AIC), Brockwell 

et al. 2002). 

To illustrate the effect of model order in the accuracy of the simulation, the measured 

responses are compared to the simulation results, in different ARX model orders. Figure 

3.13, shows the changes in the ratio of residual-to-response RMS, versus the model 



 

orders. Residuals are defined as the difference of the simulated response and the 

measurement data. This ratio reflects the accuracy of the estimated model in terms of 

predicting the outputs. The results show that the optimum model order, for this specific 

model, is 13. This optimum order is, of course, system and algorithm dependent which 

means for any different system, the best order should be obtained through a pre

processing. Figure 3.14 also shows the two simulated and measured responses when 

using the fitted model with selected order. Although the two signals are not perfectly 

identical, the differences are minimal when the proper model order is selected.

 

Figure 3.13. The residual
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Figure 3.14. Measured response and simulated response from estimated model with 

optimal order 

Once the order is selected, IMID starts iteration from an initial estimate using the 

ARX model for both simulation and identification. To track the convergence, the changes 

in the estimated modal properties are assessed at the end of each cycle. Figures 3.15-(a) 

and 3.15-(b) show the error percentage in estimated natural frequencies and mode shapes 

versus the number of iteration cycles. It is shown that after a few cycles, modal properties 

converge with less than 1% error. The results are also compared to the modal properties 

which are extracted from centralized modal identification with ARX and Stochastic 

Subspace Identification (SSI) methods. Table 3.3 summarizes the results obtained from 

different algorithms. This table shows the accuracy of the obtained results from IMID, 

based on the estimated results from centrally processed data. 
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(a) 

 

(b) 

Figure 3.15.  (a) and (b), the convergence of natural frequencies and mode shapes of 5 

story experimental model versus iteration cycles 
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Table 3.3. Comparison of identified modal propert

different algorithms 

Frequencies (Hz)

Centralized 
SSI 

Centralized 
ARX 

 0.7598  0.7590 

 2.5426  2.5425 

 4.0427  4.0428 

 5.3453  5.3311 

 6.6048  6.6076 

Figure 3.16. The residual
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. Comparison of identified modal properties of the experimental model, using 

Frequencies (Hz) Damping Ratios (%) 

IMID 
after 4 cycles 

Centralized 
SSI 

Centralized 
ARX 

IMID 
after 4 cycles 

 0.7601  1.0049  0.9401  1.0620 

 2.5423  0.6569  0.6580  0.6385 

 4.0413  0.7741  0.7907  0.8385 

 5.3447  0.7568  0.8284  1.0952 

 6.6084  0.3574  0.3628  0.3738 

 

 

The residual-response ratio (max., min., and avg. of different nodes) versus 

iteration number 

ies of the experimental model, using 

MAC 

after 4 cycles  

IMID vs. SSI 
after 4 cycles  

  0.9996 

 1.0000  

  0.9993 

  0.9925 

  0.9999 

 

response ratio (max., min., and avg. of different nodes) versus 
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Figure 3.16 also shows the changes in the ratio of residual-to-response RMS over the 

iteration cycles. This result supports the fact that the assumed model at different nodes of 

the network converges to the real system after a few cycles of iteration.  

3.6.2 Experimental Truss Structure 

To further validate the IMID, the algorithm is used for modal identification of a three 

dimensional steel truss structure. The truss 27.5 feet long and has 6 panels as shown in 

Figure 3.17. A network of 10 wireless sensors is installed on lower chord of the truss to 

collect the acceleration data in lateral and vertical directions (Figure 3.18). The 

accelerometers are LIS3L02AS4 [17] with 50 µg/√Hz noise density in X and Y direction 

and resolution of 0.66 V/g, capturing acceleration in ±2g range. The structure is excited 

by impulsive load, using a hammer test. 

Having a relatively stiff structure with natural frequencies all above 10 Hz, a relatively 

long response measurement with a high sampling rate is required for obtaining 

fundamental natural modes. For the experiments, the impacts were applied on location 2 

in both vertical and lateral directions. It takes about 30 to 40 seconds to have the impulse 

response with a peak of 0.6 g fully attenuated.  The sampling rate was 280 Hz and the 

length of the data used for the algorithm was 10000 points. Figure 3.19 shows the 

collected response from sensor number 3 at the mid-span and its power spectrum.  Using 

AR algorithm, the modal frequencies, damping ratios and mode shapes of the truss are 

identified to be used as a reference for validation of the results, obtained from IMID 

implementation. Figure 3.20 shows the identified modal properties. 
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Figure 3.17. The experimental truss structure 

 

 

Figure 3.18. Location of sensors on the truss 
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Figure 3.19. (a) The impulse response in a node at mid-span, (b) the power spectrum of 

the response 
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Figure 3.20. Identified mode shapes of the experimental truss structure 
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Figure 3.21 (Cont’d). Identified mode shapes of the experimental truss structure 
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For simulation of the response in this implementation, ARX algorithm is applied. 

Using this algorithm, response at any time step can be estimated based on the past inputs 

and outputs and the current input. Considering the noise with zero mean, ARX model can 

be rewritten to estimate for the response at time step n:  

∑ ∑
= =

−+−−=
p

i

q

i

ii
inxinyny

1 0

)()()( βα                                 (3.17) 

When the input is an impulse, for n > p+1, Equation (3.17) will be simplified to:  

∑
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i
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)()( α                                        (3.18) 

This equation can be used for one-step output prediction. For multi-step output 

prediction, the vector of s steps responses can be obtained directly by the following 

equation (Juang and Phan, 2001): 
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Therefore, to predict the output response, a sensor only needs AR parameters of the 

system which is estimated in previous sensor and is passed through the network.  

 

(a) 

 

(b) 

Figure 3.22. (a) and (b), the convergence of natural frequencies and mode shapes of the 6 

identified modes of the experimental truss structure versus iteration cycles 
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Figure 3.23. Residual to response ratio during 

(b) vertical direction 
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(a) 

(b) 
Residual to response ratio during iteration at different nodes, (a) lateral direction 
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To begin the iteration process, an initial estimation of the structural model is required 

as the starting point of the iterative process. For this purpose, random masses are added to 

different nodes such that the additional masses make about 10 percent changes in the 

natural frequencies of the system. An AR model is fitted to the response of the altered 

truss to represent the initial estimate of the structure.  

An important parameter in IMID is the order of the AR model. Usually, higher model 

order result in better representation of the fitted model which particularly enhance the 

accuracy in simulation step. However since the AR parameters should be transmitted 

through the network, increasing the model order increases the size of communication 

burden in the network. The selected model order for this implementation is 10 which 

results in 10 matrices of AR parameters, communicated among the nodes of the network. 

To check the convergence of the results, identified frequencies and mode shapes at 

each step are compared to those identified in previous step and the error is calculated 

.Figures 3.21- (a) and 3.21-(b) show the error percentage in estimated natural frequencies 

and mode shapes, versus the iteration cycles. These figure show that before 3 cycles, the 

natural frequencies and mode shape errors are less than 2 percent.  

Another parameter which shows the convergence of the procedure is the residual to 

response ratio. Available at each node are the measured response and the simulated 

response at the node location. The difference of these two signals defines the residual 

signal. The ratio of the residual-to-response RMS can be also considered as a parameter 

for assessing the convergence status. Figure 3.22-(a) and 3.22-(b) present this ratio for 
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lateral and vertical directions over the iteration cycles. It can be seen that this ratio drops 

after one full cycle (passed through all 10 nodes) and becomes relatively small before the 

third full cycle. 

3.7. Efficiency investigation of IMID 

The enhancement in efficiency in modal identification, using the proposed algorithm, 

is evaluated in this section. The basis for this assessment is the reduction in the total 

communicated data points and also the total required energy that is required for the 

estimation of structural modal properties. These parameters are selected since they reflect 

the improvement of modal identification in terms of minimizing both latency and energy 

usage. The results of numerical examples and the experimental 5-story model are used to 

evaluate the efficiency of IMID. 

For the numerical example, the coefficients of stiffness matrix are transmitted through 

the network and therefore, the total number of transmitted data points can be obtained 

from:  

      Ntotal=(number of cycles×number of nodes)×(number of stiffness matrix coefficients)   (3.20)  

Considering less than 1% error in convergence of modal parameters, the total number 

of transmitted data is: 

Ntotal=(7×5) ×5=175  (for 5 DOF model) 

Ntotal=(4×10) ×10=400  (for 10 DOF model) 
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For the experimental validation, the ARX parameters were sent through the network. 

In this case, based on the cycles of iteration and the selected ARX model, the total 

number of transmitted data points can be obtained as: 

Ntotal=(number of cycles×number of nodes)×(ARX order × size of ARX parameters)       (3.21)  

In the example of 5-story model, the number of nodes is 5, the convergence with less 

than 1% error occurs after 4 cycles of iteration, and the selected ARX order is 10. ARX 

parameters include two groups of autoregressive and exogenous parameters. The 

autoregressive parameters are each 5 by 5 whereas exogenous parameters can be vectors 

of size 5. This is based on the fact that the excitations at different nodes are not 

independent and all are generated by the ground motion. Therefore, the total number of 

data points is equal to:  

Ntotal=(4×5) ×[(10×25)+(10×5)]=6000 (96 kb) 

The efficiency of IMID becomes clearer, comparing this approach with centralized 

computation method. For centralized computation method the data needs to be transferred 

to the base station. To transfer the collected data, sensors can either send their data 

directly to the base station (centralized data collection scheme, Figure 3.23-[a]), or send 

them through the intermediary nodes, which is called multi-hop communication (Figure 

3.23-[b]). Use of multi-hop data transmission is essential when the network is long and 

there are nodes that are not in the radio range of the base station (e.g. implementation of 

WSN on long-span bridges). When using the centralized data transmission routing, the 
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total number of data points will be simply N.ns where ns is the number of sensors and N is 

the number of collected data points at each sensor. Also, in multi-hop communication 

routing, the total transmitted data is N.ns(ns+1)/2 (Pakzad et al. 2008). In modal 

identification process, higher the number of collected data samples is, better the 

estimation of modal properties would be. In this implementation, 25000 samples were 

collected at each sensor node. Considering use of centralized data transmission, 125000 

(2000 kb) will be the total samples need to be communicated. In multi-hop data 

transmission and routing, which is essential in many wireless sensor network 

deployments, the significance of the proposed algorithm will be even more evident, as 

such implementations need (ns+1)/2 time larger transmission when collecting the data at 

the base station, but the same when using IMID approach.  

 

 

 

 



 

   

Figure 3.24. The centralized data transmission routing (a) and multi

Comparison of the total energy:

Considering the results and specifications of the experimental implementation, the 

energy consumed by the two approaches, namely IMID and centralized system 

identification, are estimated and compared.

Required energy for data transmission

having the volume of the data, transmission rate, and the power consumption rate:

Etrsmission=[1/transmission rate(Kbps)
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(a) 

(b) 
The centralized data transmission routing (a) and multi

transmission routing (b) 

the total energy: 

Considering the results and specifications of the experimental implementation, the 

energy consumed by the two approaches, namely IMID and centralized system 

identification, are estimated and compared. 

Required energy for data transmission can be calculated simply from Equation 3.2, by 

having the volume of the data, transmission rate, and the power consumption rate:

1/transmission rate(Kbps)]×[power consumption rate(mW)
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Considering the results and specifications of the experimental implementation, the 

energy consumed by the two approaches, namely IMID and centralized system 

can be calculated simply from Equation 3.2, by 

having the volume of the data, transmission rate, and the power consumption rate: 

power consumption rate(mW)] 
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where the nominal transmission rate of the embedded transceiver on Imote2 is 250 kbps 

(Crossbow, 2007) and the power consumption rate, while transmitting the data, is 245 

mW (Figure 3.2). 

Estimating the required energy for data processing is more challenging since it needs 

an estimate of computation time. Chang et al. (2011) conducted a comprehensive study 

on the required computational time for several different time domain system 

identification algorithms. In this study the required number of operations is presented as a 

function of model order, number of outputs and the signal length. Then the computation 

times in different algorithms are presented and compared. It is concluded through 

simulated examples that the total consumed time for performing the entire identification 

process for a system with 5 outputs and order of 10 is just a fraction of second (less than 

0.1 second).  

The computational time for the numerical simulation of the response, using ARX 

model is also measured for the 5 DOF system of the presented example and resulted in 

less than 0.05 second CPU time. Considering these estimations of computational time at 

each node, 4 cycles of iteration, and 184 mW power consumption rate (Figure 3.2) of the 

Imote2 in data processing mode (radio off), the consumed power for computation is about 

400 mW-sec. Also, the required energy for transmission of 96 kb data, using Equation 

3.2, will be about 94 mW-sec which results in 494 mW-sec total energy. 

For application of the centralized data processing to this example, considering 

transferring 2000 kb data, the total required energy will be 1960 mW-sec.  
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This estimation shows 75% saving in the consumed energy for IMID versus the 

centralized method. However, there are a few important considerations that should be 

noted: (i) the computational time may increase depending on the micro controller that is 

responsible for on-board processing. If high performance processors are utilized in the 

next generations of wireless sensor units, this processing time can further decrease for the 

decentralize analysis; (ii) the transmission rate considered in this study is the nominal rate 

presented in the datasheet of CC2440 transceiver. However in practice, the actual 

transmission rates are less since there is a communication overhead due to packet loss 

and collisions in the wireless communication (for example, see Nagayama et al.  2010, 

which reported maximum of 83 kbps communication rate in single-hop transmission in 

laboratory experiments). Smaller communication rate causes higher energy demand for 

data transmission task which adversely affects the centralized processing methods 

disproportionately; (iii) in these estimations, it is assumed that the transmission scheme is 

centralized and single-hop. The use of multi-hop data transmission results in longer data 

collection time. Therefore, the benefits of IMID will be more significant when multi-hop 

data transmission scheme is utilized. 

3.8.Limitations of IMID 

There are limitations associated with this algorithm: (i) it needs an initial estimate of 

the system parameters and (ii) it needs the excitation load. It was discussed that the initial 

estimate for the system parameters can be available by either a constructed finite element 

model of the structure or from prior dynamic testing of the structure. Both these scenarios 
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for addressing this limitation may make the implementation of the algorithm somewhat 

challenging and restricted in certain cases. 

The need for availability of excitation load also limits the application of the algorithm 

to input-output problems, where the excitation load is measured (in the case of impact 

testing the excitation is also known).  

Following presents some modifications which eliminate the need for initial estimate of 

the system parameters and the excitation load. The approaches are explained and 

validated through numerical and experimental examples. 

3.9. Cumulative System Formation 

Initial estimate of the system 

One of the limitations of IMID is its need for starting points for iteration process. In 

many applications an initial estimate of the system can be provided from previous 

implementations or finite element model of the structure. However, since in many 

applications this information may not be available a cumulative system formation 

approach is developed here which can estimate the modal properties based on a similar 

principles but is independent of initial values.  

In IMID, sensing units, in addition to measurement of the structural response at their 

location, simulate the response at other locations to complete the data for performing 

system identification. To start the iteration, therefore, the first node needs system 
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parameters to simulate for the rest of the nodes. These parameters for this node are 

estimated using only measured data at its location (single output problem). The second 

node then receives estimated parameters from the first node and uses them to simulate 

first node’s measurement. Together with its locally measured data, second node updates 

the estimated systems parameters (two outputs). The third node performs similar process 

with three outputs and the process continues up to the last node in the array, each time the 

number of outputs increases by one. As the estimation reaches the last node, one cycle of 

iteration is completed and the estimated system is formed from multiple outputs. At this 

stage, the estimated parameters are capable of simulating as many outputs as participated 

in the first cycle because they are extracted from a multiple-output model. For the next 

iteration cycles, a multiple-output system will be updated through the network and 

updating continues until convergence. The challenge in this approach is that models 

estimated with only a few outputs are not accurate estimates of the true system. However, 

in implementation examples, it is shown that the accuracy improves quickly as estimation 

is updated through the network. Figure 3.24 also demonstrates the strategy for application 

of IMID. 

As mentioned earlier, in implementation of IMID, careful consideration should be 

given to the selection of model order. When applying cumulative system formation 

approach, model order selection becomes even more important for the few first cycles. 

The reason is that system parameters which are identified from fewer number of outputs 

are expected to carry the entire system characteristics and therefore, estimation may need 
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estimate the system from its only measured output. To do this,
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be based on the accuracy in simulation of response.
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shown that the optimum order can be obtaine
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higher model order to accomplish the task. For example, the first node is supposed to 

estimate the system from its only measured output. To do this, the model order should be 

selected high enough to capture all high and low-level dynamic characteristics of the 

measured signal. For the rest of the iteration cycles, selection of model order should also 

be based on the accuracy in simulation of response. However, in general, it is important 

to use optimum model order which results in accurate results since increasing the model 

order increases the communication burden for the network. In previous examples, it was 

shown that the optimum order can be obtained such that the residual rations 

corresponding to the selected order are minimums.  

Figure 3.25. Iteration cycles in IMID   
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AR-ARX Analogy 

AR-ARX is a two steps process which is a popular implementation of ARMA (Ljung, 

1999) model that can be fit to the data from output-only systems. In this approach, the 

system with relatively broadband input is characterized by ARX parameters in two steps: 

(i) applying an AR model with relatively high order which is fit to the output data (y) and 

provides an estimate of the output (�6), and (ii): fitting an ARX model with relatively low 

model order in which the estimation error (residuals) in step (i) is considered as the 

exogenous input of the model. An analogous strategy can be utilized in the 

implementation of IMID. However, different steps are applied in different iteration 

cycles. In this strategy, the first iteration cycle uses AR model and the later iterations use 

ARX model (using residuals of the AR model) for estimating the system parameters and 

predicting the response. Similar to AR-ARX approach, the ARX models use residuals as 

the input. The available residual at the sensor location is the difference between the 

locally measured signal and the predicted one from simulation. The process is outlined in 

Figure 4.25. Deploying this approach in implementation of IMID enhances the results of 

the algorithm. 



 

Figure 3.26. Block chart presenting AR

 

Validation through implementation on an experimental laboratory truss

To validate the idea of cumulative system formation in IMID, the algorithm is applied 

in modal identification of the three dimensional steel truss structure presented earlier i

this chapter (the 9 m. truss with 6 panels as shown in Figure 3.17). 
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. Block chart presenting AR-ARX analogy in application 

Validation through implementation on an experimental laboratory truss 

To validate the idea of cumulative system formation in IMID, the algorithm is applied 

in modal identification of the three dimensional steel truss structure presented earlier i

this chapter (the 9 m. truss with 6 panels as shown in Figure 3.17).  

 

ARX analogy in application of IMID  

 

To validate the idea of cumulative system formation in IMID, the algorithm is applied 

in modal identification of the three dimensional steel truss structure presented earlier in 
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Auto Regressive with Exogenous model (ARX) is used as a numerical model for 

characterizing the system. ARX models can be used for both simulation and 

identification steps.  

For IMID based on ARX model, ARX parameters are communicated throughout the 

network to represent the structural system. These parameters (αi and βi) can be estimated 

by least square approach (minimizing the sum of squared errors) having the response 

(estimated response). Using ARX to predict the output response, a sensor only needs AR 

parameters of the system which is estimated in previous sensor and is passed through the 

network.  

Implementation and Results 

The objective of this implementation is to identify the modal parameters of the truss 

structure. For this purpose, the system parameters are estimated through the iteration 

cycles. Beginning from one node, network runs iteration following the 

estimation/simulation steps. To make the implementation more efficient, the network is 

divided into different sub-networks where each runs the iteration and transmits the 

converged result to the base station separately. The idea of dividing the network into sub-

networks has been used in several distributed modal identification algorithms presented 

in the literature (Sim et al, 2009). Figure 3.26 shows a few examples of different 

alternative topologies for dividing the network in this experiment. 

 



 

Figure 3.27. Different sub

As the results are converged and the parameters are transmitted to the base station, the 

complete response is simulated and the global modal parameters are estimated. Among 

different topologies presented in Figure 4.26,

(b). This is because in this sub
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As the results are converged and the parameters are transmitted to the base station, the 

complete response is simulated and the global modal parameters are estimated. Among 

different topologies presented in Figure 4.26, the best results are obtained from topology 

(b). This is because in this sub-networking topology, the most structurally correlated 
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the best results are obtained from topology 

networking topology, the most structurally correlated 
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nodes are clustered in the same group (each sub-network includes nodes from either the 

front or the back 2-D trusses). 

To check the convergence, at each node, the root mean square (RMS) of residual 

(simulated signal subtracted from measured signal) is compared to the RMS of the 

measured signal. Figure 3.27 shows the residual-to-signal ratio of 3 cycles of iteration. 

Note that the convergence check assigns an extra task to individual nodes. As Figure 3.4 

presents, different tasks of sensing nodes in IMID are to receive the estimated 

parameters, update them by the use of their measurement, and send them to the next 

nodes for further updating. Part of updating task is to check the convergence, for which 

the response is simulated using the updated parameters, and is compared to the measured 

response. Therefore, for an efficient implementation, convergence check can be assigned 

to only the node which is located at the end of each iteration cycle.   

The model order for this implementation is 30 for the first cycle and 10 for the rest of 

the cycles. These model orders are selected based on minimum simulation error. As 

metioned earlier, alternative approaches for model order selection are Akaike’s 

Information Criterion (AIC) and partial auto-correlation analysis presented in Box et al. 

1994.  



 

Figure 3.28

Having the converged parameters at the base station, the response of the complete 

structure is simulated and the modal parameters are extracted using any system 

identification algorithm. Table 3.4 presents the identified modal parameters 

the two centralized and IMID approaches.

To evaluate the performance of IMID in this example, the number of transmitted data 

points is calculated. Equation 3.22 provides the total number of communicated data 

points: 
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28. Residual to signal ratio throughout iteration cycles

Having the converged parameters at the base station, the response of the complete 

structure is simulated and the modal parameters are extracted using any system 

identification algorithm. Table 3.4 presents the identified modal parameters 

the two centralized and IMID approaches. 
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iteration cycles 

Having the converged parameters at the base station, the response of the complete 

structure is simulated and the modal parameters are extracted using any system 

identification algorithm. Table 3.4 presents the identified modal parameters and compares 

To evaluate the performance of IMID in this example, the number of transmitted data 

points is calculated. Equation 3.22 provides the total number of communicated data 

                             (3.22) 
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where ng is the number of groups of nodes, ns is the number of nodes in each group, nc is 

the number of iteration cycles ([nc-1] is used in the equation to exclude the first cycle), 

and p1 and p2 are model orders in the first cycle and the rest of the cycles, respectively. 

Considering model orders p1=30 and p2=10, the grouping scheme which is shown in 

Figure 3.27-(b), and 3 cycles of iteration, the total number of communicated data points 

(system parameters) will be 11,600 which is about 10% of  communication cost for a 

centralized modal identification method.  

 

Table 3.4. Modal Parameters of the truss, identified by IMID and Centralized approach 

Freq. (Hz) 

Centralized 

Freq. (Hz) 

IMID 

Error 

(%) 

Damping (%) 

Centralized 

Damping (%) 

IMID 

Error 

(%) 

MAC   
(Cent. vs. 

IMID) 

Mode 1 11.245 11.140 1.47 0.600 0.54 11.11  0.998 

Mode 2 13.982 14.231 1.78 0.700 0.595 17.65  0.982 

Mode 3 16.196 16.470 1.72 2.500 2.29 9.17  0.985 

Mode 4 16.958 17.270 1.84 0.900 0.77 16.88  0.956 

Mode 5 27.453 28.020 2.05 2.800 2.55 9.80  0.975 

Mode 6 29.459 30.530 3.81 1.612 2.001 19.44  0.948 

 

 

3.10.  IMID for Output-Only Identification 

Output-only modal identification for structural systems is important as performing 

input-output tests in many cases is either infeasible or very expensive. On the other hand, 

the proposed algorithm requires individual sensors to simulate the system response, using 

the estimated parameters, and to perform the simulation, the excitation load is needed. 
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Therefore, it is important to devise a strategy which eliminates this requirement and 

makes IMID applicable to output-only modal identification. 

One solution to such a limitation is the use of impulsive loading in which the input is 

known (e.g. hammer testing for the truss example presented earlier in this paper). 

Considering the fact that the cross-correlation function between two measured responses 

is an estimate of unscaled impulse response, IMID can be adopted to estimate the 

parameters of correlation functions instead of the response. The concept of on-board 

computation of correlation function is previously proposed by Nagayama and Spencer 

2007.  

In this approach one node, as the reference, sends its measured time history data to the 

rest of the nodes in the network. The other nodes, then, calculate the cross-correlation 

functions and send them to the base station for modal identification. IMID can utilize 

similar step to allow all the nodes to have the cross-correlation functions (between their 

measured data and the reference node data). The rest of the process is identical to the 

implementation of IMID when impulsive loading is applied. As an alternative, the 

unscaled impulse response can be estimated through the use of Random Decrement (RD) 

technique (Cole, 1968). It is shown that for a linear, time invariant system with stationary 

white noise excitation, the RD function is proportional to the correlation function 

(Vandiyer et al., 1982). Using RD technique, the correlation function, hpq(τ), between two 

outputs (p and q), is estimated as: 
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h89:�τ� =  
< ∑ x9�t�: t� + τ�|Aa ≤ x: < a5E<�F                            (3.23) 

where xp and xq are the responses at the two locations, a1 and a2 are the lower and upper 

bounds for the trigger at xq, t is the time index, τ is the lag and N is the length of the RD 

function. Triggering values are determined in different ways and are well described in the 

literature (Asmussen et al, 1996; Asmussen et al, 1997; Gul et al, 2008). A common 

triggering approach is level crossing triggering condition which puts a1=0 and a2=∞ (Gul 

et al, 2008). 

Sim et al. (2010) proposed use of RD in decentralized wireless network for system 

identification. The advantage of RD technique in decentralized approaches is that the 

reference node only sends the trigger information, instead of time history data, to the rest 

of the nodes for estimating the unscaled impulse response. In this way, the overhead due 

to transmission of reference node time-history data is reduced significantly, since the 

trigger information is a lot smaller. Regardless of the technique applied for estimation of 

unscaled impulse response at different nodes, IMID concentrates on estimating and 

updating the system parameters throughout the network.  

To validate the functionality of the IMID algorithm for output-only (ambient input) 

systems, the method is applied for modal identification in two examples. The first 

example consists of a numerically simulated beam subjected to a stationary white noise 

excitation. The second example uses data from ambient vibration testing of Golden Gate 

Bridge with wireless sensor network. These examples are explained in the next sections. 
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. (a) Beam example specifications, (b) time-history of acceleration response at 

mid-span, (c) Power spectral density of response 
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Numerically simulated beam 

The model is a simply supported steel beam with 10 lumped masses along the span. 

Figure 3.28-(a) shows the specifications of this simulated beam. The masses are 

determined based on the weight of the beam element and a uniform load. The 

acceleration response of the beam to a stationary white noise excitation is simulated and 

used for modal identification with IMID. Measurement noise as Gaussian white noise 

with RMS ratio of 5% of the response signal is added to the simulated response. Figures 

3.28-(b) and (c) show the time-history response of the beam at location 4 and the 

corresponding power spectral density. 

In this example, the objective is to compute the cross-correlation functions between 

each node and a selected reference node, and then use IMID to estimate the system 

parameters and update until the converged parameters provide the modal properties of the 

beam. Two different references, node 2 and node 4, are selected for this example. As the 

first step, all the nodes calculate the correlation functions to begin the iteration. IMID 

then starts by estimating the AR parameters and updating them through the network. To 

track the convergence of the iteration, similar to the truss example, prediction errors 

(residuals) are investigated. Figure 3.29 presents the comparison of the measured and the 

predicted correlation functions at node 5 during different iteration cycles. This figure 

illustrates how the simulated signal converges to the true signal in just a few iteration 

cycles. Figure 3.30 shows the residual-to-signal RMS ratio at different nodes in all steps 

of iteration up to the third cycle. It can be seen that the ratio drops down to lower than 5% 
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in the third cycle which results in less than 2% error in the identification of natural 

frequencies (presented in Table 3.5). Figure 3.31 also presents the mode shapes of the 

beam identified by IMID, next to the true mode shapes. The Modal Assurance Criterion 

(MAC), shown on the mode shape plots, presents the accuracy of each identified mode 

shape. In this implementation, model orders are selected as 30 for the first iteration cycle 

and 15 for the rest of the cycles.  

Through this example, it is shown that the estimated system parameters can be 

updated and converge to true system parameters during just a few iterations. The updated 

parameters can be used to simulate the measured response or directly provide the desire 

modal parameters.   
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Figure 3.30. Estimated signal versus true signal at different iteration cycles  
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Figure 3.31. Residual to signal ratios in different iteration cycles 

 

Table 3.5. Natural frequencies, identified by IMID and Centralized approach 

 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10 

True Freq. 
(Hz) 

0.321 1.284 2.888 5.128 7.989 11.427 15.330 19.453 23.321 26.191 

Identified 
Centrally 

0.344 1.309 2.912 5.130 8.011 11.420 15.327 19.433 23.302 26.142 

Identified by 
IMID 

0.324 1.301 2.929 5.206 8.080 11.491 15.234 19.538 23.597 26.634 

Error in IMID 
(%) 

0.93 1.32 1.42 1.52 1.14 0.56 0.63 0.44 1.18 1.69 
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Figure 3.32. Identified mode shapes of the beam example using IMID approach 

 

Implementation on Golden Gate Bridge data: 

This section presents the implementation of Output-Only IMID on the ambient 

vibration data from Golden Gate Bridge. The acceleration data was measured using a 

WSN, consisting of 65 sensing units, during a three month deployment period (Pakzad et 

al. 2008).  For this example, however, as a validation of the approach, a subset of 10 

sensors along the main span of the bridge is selected. The locations of selected sensors on 

the main span are shown in Figure 3.32.  
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Figure 3.33. Location of selected nodes along the main span of Golden Gate Bridge 

 

Similar to the implementation on the truss example, sensor nodes are divided into two 

groups of five (south and north) and data transmission

performed separately in each group. In this example, node 4 is selected as the reference 

and the cross correlation functions are computed between this node and the rest of the 

nodes in the network. Figure 3.33

nodes 4 and 5 as well as the estimated cross correlation function using the updated model 

parameters. 

Iteration results are shown in Figure 3.33

is obtained from a real amb

nonlinearities, the model order is selected to be 40, which is higher than the previous 

examples. Equation 11, for calculating the number of data point for communication, is 

slightly modified to account for the transmission of the reference node data (or triggering 

information, when using the RD technique):
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Similar to the implementation on the truss example, sensor nodes are divided into two 

groups of five (south and north) and data transmission and parameter updating are 

performed separately in each group. In this example, node 4 is selected as the reference 

and the cross correlation functions are computed between this node and the rest of the 

nodes in the network. Figure 3.33-(a) presents both the cross correlation function between 

nodes 4 and 5 as well as the estimated cross correlation function using the updated model 

Iteration results are shown in Figure 3.33-(b) for both groups of nodes. Since the data 

is obtained from a real ambient test and is affected by environmental noise and structural 

nonlinearities, the model order is selected to be 40, which is higher than the previous 

examples. Equation 11, for calculating the number of data point for communication, is 

to account for the transmission of the reference node data (or triggering 

information, when using the RD technique): 
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where Nref is the length of data transmitted from the reference node to the rest of the 

nodes in the network. Other parameters in Equation 3.24 are defined similar to those of 

Equation 3.22. Applying this equation and a calculation similar to the truss example, the 

number of data points that should be communicated for modal identification of the 

bridge’s span using IMID is 8,800 samples plus the length of the data sent from the 

reference node. The total length of the data in each test in the monitoring of Golden Gate 

Bridge, after averaging and down-sampling to 200 Hz is 48000 (Pakzad et al., 2008). 

However, the data is low-pass filtered and further down-sampled to 50 Hz on-board 

before communication. This low-pass filtering helps the modal identification, as the 

natural frequencies of the span are in the 0 to 5 Hz frequency range. Additionally, 

filtering and down-sampling makes the transmission more efficient, particularly for 

centralized data collection, since in this approach all the sensors transmit their measured 

data to the base station and the higher volume of the raw data directly affects the 

communication time. Considering 12,000 samples as the length of the reference node 

signal (after filtering and down-sampling), the total number of data points is 20800 which 

is about 17% of 120,000 (10×12,000) for the centralized approach.  

Application of RD technique reduces the length of communicated data from reference 

node to the rest of the network to 4,570 samples when the level crossing-triggering 

condition is applied (different triggering conditions result in different length for crossing 

information; the largest length will be resulted when level crossing-triggering is applied. 
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Information regarding different ways of determining trigger levels in RD technique can 

be found in Asmussen et al, 1996; Asmussen et al, 1997; Gul et al, 2008. The total 

number of data points in the case of using RD technique is 13,370 which is about 11% of 

the centralized approach.  

It should be noted that while using distributed identification approaches helps the 

efficiency by reducing the data communication, they add an extra processing burden 

which consumes energy at the node. However, it is shown earlier that the extra energy 

consumed in the on-board processing task does not have significant effect on the 

efficiency of these algorithms since it is much smaller than the energy cost of 

communication. 

Finally, the modal properties of the bridge span are extracted having the updated 

system parameters. Table 3.6 presents the first fifteen identified modal parameters of the 

main span in the vertical direction, using centralized and IMID approaches. The 

corresponding errors are presented for identified natural frequencies. MAC values are 

also presented to compare the identified mode shapes from IMID to those of centralized 

approach. 

Moreover, to compare the accuracy of the identified modes, Consistent Mode 

Indicators (CMI), developed by Pappa et al. 1993 are calculated (for both methods) and 

presented in this table. To calculate these indicators along with the modal parameters of 

the system, Eigen Realization Algorithm (Juang and Pappa, 1985) is used. CMI is defined 

as the product of Modal Amplitude Coherence (MAC) and Modal Phase Collinearity 
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(MPC) which both can be extracted when ERA is used. MAC measures the coherence 

between extracted modal amplitude history and the modal amplitude which is formed by 

extrapolating the initial value to later points in time, using the identified eigenvalues. 

MPC also quantifies the spatial consistency of the identified mode shapes. More 

information about these parameters can be found in Pappa et al 1993. 

Table 3.6 shows that in almost all the identified frequencies, the results of IMID are 

comparable and close to those of the centralized approach. Figure 3.34 shows examples 

of identified mode shapes of the main span using both IMID and centralized method. In 

this figure also the comparable results can be observed. Results of this example show that 

a sensing network with IMID is capable to provide modal parameters of the system with 

almost the same accuracy as centralized networks but with significantly less 

communication burden.  
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Table 3.6. Natural frequencies, damping ratios, MAC values and Consistant Mode 

Indicators of vertical modes of the main span of Golden Gate Bridge, identified by IMID 

and Centralized approach 

Mode 
Frequency (Hz) Damping (%) 

MAC 

Consistency of Mode (CMI) 

Centralized IMID Error (%) Centralized IMID Centralized IMID 

1 A 
2 S  
3 A  
4 A  
5 S  
6 A  
7 S  
8 A  
9 S 
10 A  
11 A  
12 S  
13 A  
14 A  
15 A  

0.1079 
0.1408 
0.2348 
0.3565 
0.4585 
0.5572 
0.6593 
0.6843 
0.8151 
0.9347 
1.0671 
1.1486 
1.2708 
1.3903 
1.4563 

0.1082 
0.1370 
0.2245 
0.3758 
0.4593 
0.6005 
0.6566 
0.6611 
0.8324 
0.9403 
1.0736 
1.1544 
1.2665 
1.3852 
1.4343 

0.31 
2.74 
4.39 
5.40 
0.20 
7.76 
0.40 
3.39 
2.13 
0.60 
0.61 
0.50 
0.33 
0.37 
1.51 

6.223 
5.898 
2.272 
1.172 
1.606 
0.571 
0.799 
1.401 
1.254 
0.592 
0.552 
0.452 
0.175 
0.322 
1.619 

7.880 
5.453 
3.855 
1.619 
2.517 
0.898 
0.904 
1.301 
1.915 
1.662 
1.296 
1.731 
1.423 
0.359 
2.386 

0.996 
0.998 
0.989 
0.981 
0.992 
0.999 
0.997 
0.957 
0.911 
0.993 
0.834 
0.994 
0.972 
0.838 
0.803 

0.991 (well) 
0.956 (well) 
0.540 (mod.) 
0.317 (poor) 
0.975 (well) 
0.872 (well) 
0.989 (well) 
0.820 (well) 
0.814 (well) 
0.951 (well) 
0.960 (well) 
0.614 (mod.) 
0.660 (mod.) 
0.932 (well) 
0.873 (well) 

0.999 (well) 
0.979 (well) 
0.468 (poor) 
0.502 (mod.) 
0.827 (well) 
0.695 (mod.) 
0.407 (poor) 
0.958 (well) 
0.935 (well) 
0.915 (well) 
0.747 (mod.) 
0.414 (poor) 
0.418 (poor) 
0.898 (well) 
0.665 (mod.) 
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Figure 3.34. (a) Estimated versus true cross correlation function between node 5 and 

node 4 (b) Residual to signal ratio at different iteration cycles  
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Figure 3.34. Instances of identified vertical modes of the main span of Golden Gate 

Bridge using IMID and Centralized approach 
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Figure 3.35 (Cont’d). Instances of identified vertical modes of the main span of Golden 

Gate Bridge using IMID and Centralized approach 
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3.11. Summary of the Distribute Data Processing 

This chapter presented a new distributed modal identification algorithm, called IMID, 

to address challenges in application of WSN in health monitoring of structural systems. 

The proposed algorithm is structured similar to iterative EM series of algorithms which 

estimate unknown parameters in the presence of hidden information. The main objective 

in developing such an algorithm is to reduce the communication burden in WSN, as a 

smart way of saving computation time and communication power. Latency and energy 

consumption are two factors which prevent WSNs from prompt response to earthquake 

events and also restrict their application in long term monitoring.  Significant reduction in 

the total transmitted data by incorporating the on-board computational capability of 

wireless sensors is achieved by the proposed algorithm. To verify the performance of 

IMID, two numerically simulated models and two experimental models are used as the 

implementation test-beds. The results illustrated the convergence of modal parameters 

after a few iteration cycles. Also, the algorithm is further improved such that the need for 

availability of excitation load and initial estimate of the system parameters are 

eliminated. Thus, IMID can be used for modal identification of structural systems under 

ambient loading without need for prior information about the system parameters. The 

improved version of the algorithm is validated through implementation on a simulated 

model, laboratory specimen data, and ambient vibration data of Golden Gate Bridge. 

The advantageous characteristic of IMID is its flexibility in collaboration with a broad 

range of identification and simulation algorithms. In this implementation, Newmark’s 
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numerical method and ARX algorithms are used for simulation and identification steps. 

Further studies are required to evaluate the efficiency of IMID if other methods are used 

for these steps.  

Comparison of the required data transmission and energy consumption for IMID with 

the few other existing centralized processing methods, clarifies that a substantial 

reduction in the network communication and the total consumed energy is achieved. For 

the input-output experimental model up to 95% reduction in communication is achieved. For the 

3-D steel truss model 90% reduction and for the implementation on the ambient response data 

from Golden Gate Bridge 83%~89% reduction in communication is achieved. Complete 

comparison with other distribted system identification methods (such as Sim, et al. 2009 

and 2010 and Nagayama and Spencer 2007) may not be possible since IMID is an 

iterative process and the total computation/communication cost depends on how fast 

convergence is happened. However, it can be realized that the achieved reduction is 

significantly higher than what is achieved through other state-of-the-art approaches (e.g. 20~25% 

reduction in communication through algorithm developed by Sim et.al. 2010).  Moreover, the 

other existing algorithms are just partially distributed and there is still a portion of 

computation which is assigned to a centralized computer. The simulated and 

experimental results presented in this paper shows significant improvement in both 

agility and energy efficiency of the sensor network. The reduction in communication, which 

is the result of novel approaches developed in this dissertation, clearly results in a reduction in 

energy consumption (e.g. the total energy is estimated to have up to 75% reduction) and also 
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agility of the sensing network. An automated long-term monitoring system, which is time-

efficient and energy-efficient, can be established based on use of this algorithm.  

The application of this algorithm is particularly beneficial in long term structural 

health monitoring in which the current state of the system can be considered as the initial 

estimate. These modal parameters are updated using data collected during the monitoring 

period. Having the identified modal properties of the system along the time, applications 

such as damage detection and/or finite element model updating can be utilized in the 

system, as well. The algorithm can be also considered as a basis for damage detection in long-

term monitoring as it provides the updated modal parameters through the time. 

The future work in this study is implementation of the algorithm on a network of 

wireless sensors for actual, on-board modal parameter identification and evaluation of its 

performance (energy- and time-efficiency) when wireless sensor’s processors perform the 

required computations. The advantage of the proposed algorithm is that it can use 

different identification and simulation methods in its implementation. Considering this 

flexibility, the future work will be also devoted to evaluating the performance of the 

algorithm, in terms of accuracy and efficiency, through the use of different identification 

methods. Finally, it should be also noted that while IMID preserves the energy by 

reduction in communication, the accuracy of final results is limited to the convergence 

threshold. Thus, it is important to, based on the subsequent application, decide about the 

required accuracy and determine the convergence thresholds. Of course when higher 
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accuracy is required, the number of iteration cycles will be increased and there will be 

higher energy consumption, as the price for higher accuracy.   
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Chapter 4 

Effects of Measurement Noise on Modal 

Parameter Identification  
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4. Effects of Measurement Noise on Modal Identification 

4.1. Significance of the Noise Effect Assessment  

As discussed in previous chapters, identification of dynamic characteristics of 

constructed structures is one of the fundamental steps in many structural health 

monitoring applications. In practice, dynamic characteristics of constructed structures are 

obtained through vibration monitoring tests and applying system identification algorithms 

on the measured data. Over the past three decades, vibration monitoring techniques have 

improved from several points of view, from advanced instrumentation technology to 

enhanced data processing and system identification algorithms. The objectives of the 

improvements in vibration monitoring fall into three basic categories: enhancing the 

accuracy of the estimated results, minimizing the cost, and easement of the 

implementation.  

One of the distinguished improvements, introduced to the vibration monitoring 

systems, is deployment of wireless technology for data communication in a sensing 

network. While researchers have shown the effective role of WSN in improving the 

affordability of vibration monitoring (ease of implementation and reducing the costs), 

their possible impact on the reliability and accuracy of the results is still a research 

question. Fundamental factors, affecting the performance of a vibration monitoring 

system, are (i) software characteristics: the implemented data processing techniques and 

procedures, and (ii) hardware characteristics: the monitoring system including sensors 
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and data acquisition system (e.g. the embedded analog filters, Analog-to-Digital-

Convertors, etc.).  

Perhaps, the most significant distinction between WSNs and their traditional 

counterparts, wired systems, is the wireless communication which is the objective of their 

invention. However, some challenges in the design of wireless sensor units, such as the 

trade-off between the functionality and the power consumption, and also attempts for 

minimizing the cost, will cause limitations in their architecture which do not necessarily 

exist in the design of wired systems. Although a large number of wireless sensing unit 

prototypes with different embedded sensors and filters is presented in literature (Lynch et 

al 2006), the number of commercially available platforms with integrated quality sensors 

is limited. Therefore, it is important to carefully investigate the impact of sensor quality 

on modal identification results.  

As the source of measurement noise, the selected sensors may introduce an epistemic 

uncertainty into the results of system identification (Moon et al 2006). Depending on the 

subsequent application of the system identification (e.g. damage detection, Finite 

Element model updating, etc.) the level of uncertainty in the results can be very 

important. On the other hand, despite the development of numerous system identification 

methods and many successful implementations on structural systems (Juang and Papa, 

1985, Pandit, 1991, James et al, 1992, Overschee, 1994, Roeck et al., 1995, and Farrar 

and James, 1997), relatively limited effort has been devoted to evaluation of the results in 

terms of accuracy and credibility. Even the limited research is mainly concerned about 
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the uncertainties associated with environmental and operational conditions (Peeters and 

DeRoeck 2001a&b, Sohn 2007), excitation characteristics (Reynolds et al 2004, 

Nagayama et al 2008) and data processing methodology (Grimmelsman & Aktan 2005, 

Reynolders et al 2007, Zhang et al 2010), and less attention is paid to the impact of 

measurement system and the possible uncertainties derived from measurement noises. 

The lack of research about the effects of uncertainties on system identification results is 

even more critical in the area of large-scale structural monitoring, where many different 

sources of noise exist.  

A major challenge in such studies is that the existing accuracy indicators in modal 

identification are mostly relative indicators which are useful when comparing different 

identified parameters. For example, Pappa et al (1985) introduced two parameters (Modal 

Amplitude Coherence and Modal Phase Collinearity) that can be utilized to determine the 

confidence level of each identified modal parameter when the ERA is used. Although 

these parameters are very helpful in selecting structural modes and eliminating the 

spurious modes, they cannot indicate the general performance of the whole sensing 

system. However, it will be beneficial to use them to compare the performance of two 

sensing systems in terms of accuracy of results.  

This study evaluates the influence of measurement system quality on modal parameter 

estimation, using ERA-NExT algorithm. Physical Contribution Ratio is introduced, 

which reflects the level of contribution of physical modes in the estimation of impulse 

response versus noise and computational modes, when ERA-NExT is used. The 
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parameter is validated through implementation on a numerically simulated example. 

Additionally, the developed parameter is implemented on data collected from the 

vibration monitoring of Golden Gate Bridge which was performed by Pakzad et al 

(2008), using wireless sensor network. The sensor boards in this vibration monitoring test 

utilized two types of accelerometers with low and high characteristic noise levels for 

measuring a broad range of ambient vibrations. The performance of the two sensing 

systems in estimation of Golden Gate Bridge’s modal parameters is examined and the 

results are presented. Modal Phase Collinearity (MPC) and Modal Amplitude Coherence 

(MAC), developed by Pappa et al (1993), are also used for investigating the accuracy and 

purity of each modal parameters identified by both sensing networks. Furthermore, the 

consistency of the identified modal parameters through the increase of model order in 

ERA-NExT is evaluated and the results of different sensing systems are compared and 

discussed. 

4.2. Modal Identification using ERA-NExT 

ERA-NExT algorithm for output-only modal parameter identification was presented in 

Chapter 2. In this section the concept and a brief description are presented which provide 

background for derivation of physical contribution ratios later in this chapter. 

 Natural Excitation Technique: 

NExT is an approach to modal testing which allows structures to be tested in their 

ambient environments (James et al 1993).  The fundamental idea of this approach is that 
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the cross-correlation function between two measured displacements (or acceleration) of a 

structure satisfies the homogeneous differential equation of motion (Caicedo et al 2004). 

Consider the equation of motion for a multi-degree-of-freedom, linear time invariant 

system (Equation 2.1) and assuming that the excitations are stationary random processes 

and the structural parameters (M, C and K) are deterministic, it was shown that Equation 

2.1 can be written as Equation 2.15 as follow: 

0)()()( =++ τττ
iqqiqqiqq KRRCRM &&&                                          (4.1) 

where R(.) denotes the correlation function. This equation shows that the correlation 

function of displacement satisfies the homogeneous differential equation of motion and it 

is shown that the correlation function of acceleration response also satisfies this equation 

(Beck et al 1994). Therefore, for structural systems under ambient vibration (e.g. wind, 

traffic and ground motions), the free decay response can be estimated by computing the 

correlation function of their acceleration responses. The estimated free decay function is 

required in many modal parameter identification algorithms such as ERA (Juang and 

Pappa 1985) or Polyreference (Vold and Rocklin 1982). 

Eigensystem Realization Algorithm: 

It was mentioned in Chapter 2 that one of the effective and commonly used time-

domain system identification techniques is ERA, developed by Juang and Pappa (1985). 

This method uses the system’s impulse response to derive system’s parameters, without 

considering external force in its formulation. When the ERA is accompanied with the 
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NExT, the impulse response is estimated by the auto and cross-correlation functions of 

the measured responses.  

To estimate the system’s parameters in ERA, the Hankel block data matrix is formed 

as (Equation 2.16) and decomposed using singular value decomposition, providing 

observability and controllability matrices. Recalling from Chapter 2, the relationship 

between the state matrices and the estimated impulse response can be obtained by 

substituting the impulse function, as the input, into the state space representation of 

equation of motion: 

  BCAnY
n 1)(ˆ −=                                                           (4.2) 

Therefore, the Hankel matrix is composed of the systems parameters as: 
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To extract the estimate of system’s matrices, the Hankel data block matrix, H(n-1), is 

decomposed using singular value decomposition (SVD) for n=1: 

T
QPH Σ=)0(                                                         (4.4) 

where P and QT are matrices of left and right singular vectors of H(0) respectively, and ∑ 

is the diagonal matrix of singular values. Small singular values along the diagonal of ∑ 
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correspond to computational or noise modes (nonphysical spurious modes).  Therefore, 

the rows and columns associated with nonphysical modes are eliminated from the 

singular-vector and singular-value matrices. The truncated matrices, ∑n, Pn and Qn are 

used to estimate the sate-space matrices for the discrete-time structural model as 

presented in Chapter 2 (Equations 2.18 – 2.20): 

2/12/1 )1(ˆ −− ΣΣ= nn
T
nn QHPA                                                (4.5) 

inp
T
nn EQB

2/1ˆ Σ=                                                         (4.6) 

2/1ˆ
nn

T
out PEC Σ=                                                         (4.7) 

where Einp and Eout are matrices of 1 and 0 with appropriate dimensions based on the size 

of inputs and outputs ([I   0]). Eigenvalue decomposition of the estimated state matrix 

results in the diagonal matrix of eigenvalues ( Λ ) and the matrix of eigenvectors (ψ ) 

which are functions of system’s natural frequencies ( nω ’s), damping ratios ( nζ ’s) and 

mode shapes ( nφ
r

’s).  

4.3. Sensitivity of identified fundamental natural frequency to the level of noise 

In this section, it is attempted to find an expression for the sensitivity of fundamental 

natural frequency to the level of measurement noise. To achieve this goal, a simple beam 

model with 10 lumped masses (Figure 4.1) is assumed. The measurement noise is also 

assumed to be presented by the standard deviation of the noise. 
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Figure 4.1. A simply supported beam with lumped masses 

Assume a structural system and the corresponding equation of motion (Equation 2.1), 

the natural frequencies of the structure, Hi’s are theoretically obtained through eigenvalue 

problem as: 

[I − H,J]K, = 0                                                    (4.8) 

where ϕi’s are also natural modeshapes of the structure. In practice, the process of finding 

these modal parameters of the structure is called Modal Parameter Identification. The 

sensitivity of the eigenvalues of the system to changes in different structural variables can 

be obtained using classic formulation available in the literature. For example, suppose the 

structural system can be described by a set of m parameters, g={g1, g2, …, gm} ϵ Rm, so 

that the mass, stiffness, and damping of the system can become a function of g. The rate 

of change in natural frequencies with respect to change in g can be obtained as: 

LMN
LON = H,  PNQ[ RS

RTN	MNU RV
RTN�,MN RW

RTN]PN
PNQ[MNUX�Y]PN                                     (4.9) 

which represents the rate of change in ith eigenvalue with respect to the change in any of 

structural properties.  
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Despite the calculation of the rate of eigenvalues change due to structural properties, 

the rate of change of identified eigenvalues due to the uncertain identification parameters 

(e.g., level of excitation, variation of environmental parameters, measurement noise, etc.) 

is not well studied in the literature.  

As the solution to this problem is algorithm dependent, the identification method, in 

which the formulation is based on, is first selected to be ERA-NExT. Applying NExT, an 

estimate of impulse response will be available and can be used in ERA algorithm which 

provides an estimate of the system and its modal properties. Considering application of 

NExT, the first step is to find the cross correlation function of the measured signal. 

Assuming that the measured signal consists of real response and the measurement noise, 

it can be written as: 

)()()( tntqty s+=
                                                  (4.10) 

where Z��� is the real response and the �[\]��� is the measurement noise. The impulse 

response is also estimated by the cross correlation function as:  

)()()()()(ˆ τττττ nqqnnnqq RRRRY +++=                                (4.11) 

Considering that the measurement noise is uncorrelated to the true response of the 

structure, the two last terms in the right hand side of Equation 4.11 will be vanished and 

the impulse response can be estimated as: 

)()()(ˆ τττ nnqq RRY +=                                              (4.12) 
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Note that if the measurement noise is a perfect Gaussian White Noise, the 

autocorrelation of the noise will be just the Dirac function. In other words, the white 

Gaussian noise is an i.i.d. process and the signal at time t is independent of the signal at 

other times: 

   ^[������� + ��] = _�0�                                            (4.13) 

thus, 

`a��� = 0   bcd   � ≠ 0                                             (4.14) 

Therefore, in the case of white Gussian measurement noise, the estimated impulse 

response will be the same as correlation function of actual response for � ≠ 0, or: 

f��� ≞ `h[i���                                                   (4.15) 

which suggests that the measurement noise effect will be vanished by taking the non-zero 

lags in the correlation function. However, in real situation, this condition does not 

necessarily hold true.  

The plot of Figure 4.2 shows a white Gussian signal generated in MATLAB with zero 

mean and standard deviation of 1. The autocorrelation function of the signal, as can be 

seen, closely fulfills the explained theoretic condition. It has correlation one at the 

beginning and very small correlation for the rest of the signal. 

To have an idea about the real measurement noise and their correlation functions, the 

plot of a measurement noise corresponding to accelerometer of SHM-A sensor board is 
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shown in Figure 4.3. The difference between this signal and the White Gussian signal 

generated in MATLAB will be clearer when comparing their correlation functions 

(presented afterwards). It can be seen that the correlation is not merged to zero after the 

zero-lag. This means that the correlation function of the measured response is not 

affected only at � = 0, but in longer range of time-lags. 

Therefore, use of  `a[i���  to represent the statistics of the noise, compared to the 

standard deviation of the noise signal, is more comprehensive. It is worth noting that 

 `a[i�0� is the same as the standard deviation as: 

 `a[i�0� = ^[����5] =  j                                              (4.16) 
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Figure 4.2. Gaussian white noise generated in MATLAB: time history and correlation 

function 
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Figure 4.3. Measured SHM-A sensor board’s noise: time history and correlation 

function 
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Assuming that the noise characteristics are reflected in the  `a[i��� , Equation 4.12 

shows that the measurement noise has a direct impact on the estimated impulse response. 

Therefore, sensitivity of the estimated parameter to the noise characteristics can be seen 

in sensitivity of the parameter to the estimated impulse response: 

L�,%ka�,l,k%  mnonpk�ko]�
L qr[[i��� =  L�,%ka�,l,k%  mnonpk�ko]�

L qst���  . L qst���
L qr[[i���               (4.17) 

Also, it can be assumed that there is no correlation between measurement noises in 

different sensors. Thus, the focus will be just on diagonal components of the correlation 

function (or the estimated impulse response). The remaining step is just to find the 

relationship between the estimated impulse response and the identified modal properties.  

Disregarding the details in the identification process, the relationship between the 

identified state matrices and the estimated impulse response can be written as: 

f��� = �&%a	 �%                                                 (4.18) 

Transforming the system from physical into the modal coordinate (& = u Ʌ u	 �, this 

can be written as: 

        f��� = �u Ʌa	  u	 �                                               (4.19) 

where ψ is the matrix of eigenvectors and Ʌ �= [H,]�  is the diagonal matrix of 

eigenvalues in discrete form. Also: 
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where ϕ  to ϕp are simply modeshapes of the system and b  to by are row vectors of 

corresponding participation factors (the participation factor of the particular mode when 

impulse is applied at different nodes). Also, m represents the order of the system, or the 

size of the considered state vector. Expanding the estimated impulse response as the sum 

of m identified poles of the system, it can be written as:  
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where N is the number of outputs. The non-diagonal elements of this estimated impulse 

response are assumed to be unaffected by the noise characteristics (as it is assumed that 

there is no correlation between measurement noise at different sensors). Therefore, the 

relation between the eigenvalues of the system and the noise characteristic can be 

observed from the following equation: 
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Having this equation, the sensitivity of the estimated modal parameter to the noise 

characteristic is directly related to the contribution of each mode in the diagonal 

components of the matrix of estimated impulse response. If the measurement noise is 

identical for all the sensors, it can be assumed that the second terms in diagonal 

components of the correlation matrix are constant and the last equation can be rewritten 

as: 
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         (4.22) 

This equation provides N simultaneous equations which correlate the eigenvalues to 

the Rn. Among the N equation, the one in which H  has a less contribution (smaller 

Kz { z) will result in a higher sensitivity. Also, for identification of the first mode, it is 

not necessary to include all the correlation function matrices into the process. For this 

beam example, the first mode has the most contribution in the correlation function of 
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response at the 5th and 6th locations and the least contribution in that of 1st and 10th 

locations. The shown spatial distribution of the load in Figure 4.4 is due to the ground 

excitation which is transferred to the degrees of freedom relative to the lumped masses.  

 

Figure 4.4. Uniform spatial distribution of the load along the beam 

 

Since the estimated impulse response is a function of time step, the contribution can be 

measured by the integration of the modal response over time or summation in discrete 

domain. In the other words, the participation of the mode can be measured by its sharing 

in the power of the estimated impulse response. 

Defining the sensitivity of first mode to measurement noise as the partial derivative of 

the 1st identified pole to the autocorrelation function of the noise (S = }�~��
} �����), it can be 

written as:   
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L ∑ ∑ PN�NMNr���N��r  =  

∑ �a	 �P�����M�r�Ur              (4.23) 

where j is the location index and can be chosen from different locations. As mentioned 

before, the index that results in the smaller Kz { z (e.g. locations closer to the ends for 

this example) will result in higher sensitivity. In the process of identification, however, 

the poles are extracted from all the correlation functions that are included in the Hankel 

matrix.   

This sensitivity equation shows that the sensitivity of the identified frequency to the 

measurement noise at the sensor location is a function of: 

1. Modal displacement amplitude of the node where the sensor is located due to 

the identified mode; 

2. Participation of the identified mode in the estimated impulse response; 

3. The amplitude of the pole. 

Note that λ is the identified complex pole in the discrete domain and higher 

frequencies have smaller magnitudes in this domain. Also recall from  `�[i ≞ `�i + `a[i  , 
the linear relation between Ry and Rn, means that the sensitivity to Rn is the same as the 

sensitivity to Ry. 

Different measurement noises at different locations: 

In this section, a special case, where the following conditions exist, is studied:  
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1. The spatial distribution of the load is not uniform as before, but is random (Figure 

4.5). 

2. The measurement noise at different locations is different. 

 

Figure 4.5. Random spatial distribution of the load along the beam 

Both conditions will be considered by expressing the sensitivity of different 

eigenvalues with respect to each of the locations. In this case, the sensitivity of mode k to 

the measurement noise at node j is defined as the partial derivative of the kth identified 

pole to the autocorrelation function of the noise at j
th sensor (S�� = }�~��

} ������). It can be 

written as:   

��z = L�M��
L 
 qr����%� = L�M��

L ∑ �����a� = L�M��
L ∑ ∑ P�N�N�MNr���N��r  =  

∑ �a	 �P�����M�r�Ur             (4.24) 
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where, j is the location index, and k is the particular pole which the sensitivity is 

formulated for (e.g. for the first mode k=1). 

Verification through simulation: 

In this section, the sensitivity of the fundamental natural frequency of the beam to the 

measurement noise is assessed through a simulated example which is made in MATLAB. 

A simply supported beam with length L is considered for this verification example. 

The specifications of the structure are assumed as: 

E=29e+6 lb/in2 

I=500 in4 

L=1000 in 

A=50 in2 

Mass density= 500/(386.4*123)=7.3386e-4  (slugs/cubic inch) 

To create a 10 DOFs system, the beam is divided to 10 pieces and the stiffness 

elements are calculated and assembled (Figure 4.6). Then, the rotational degrees of 

freedom are eliminated from the final stiffness matrix using stiffness matrix 

condensation. Based on these parameters, the stiffness and mass matrices are extracted 

and modeshapes (Figure 4.7) and modal frequencies are calculated. 
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Figure 4.6. Discretizing the uniform beam to 10 DOFs and lumped masses 

 

Condensed Stiffness Matrix (lb/in): 

190621.7 -183502 80196.82 -21488.7 5757.872 -1542.81 413.3857 -110.728 29.52755 -7.38189 

-183502 270818.5 -204990 85954.7 -23031.5 6171.258 -1653.54 442.9132 -118.11 29.52755 

80196.82 -204990 276576.4 -206533 86368.08 -23142.2 6200.785 -1660.92 442.9132 -110.728 

-21488.7 85954.7 -206533 276989.7 -206644 86397.61 -23149.6 6200.785 -1653.54 413.3857 

5757.872 -23031.5 86368.08 -206644 277019.3 -206651 86397.61 -23142.2 6171.258 -1542.81 

-1542.81 6171.258 -23142.2 86397.61 -206651 277019.3 -206644 86368.08 -23031.5 5757.872 

413.3857 -1653.54 6200.785 -23149.6 86397.61 -206644 276989.7 -206533 85954.7 -21488.7 

-110.728 442.9132 -1660.92 6200.785 -23142.2 86368.08 -206533 276576.4 -204990 80196.82 

29.52755 -118.11 442.9132 -1653.54 6171.258 -23031.5 85954.7 -204990 270818.5 -183502 

-7.38189 29.52755 -110.728 413.3857 -1542.81 5757.872 -21488.7 80196.82 -183502 190621.7 
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Mass Matrix (slugs): 

5.1057 0 0 0 0 0 0 0 0 0 

0 3.4038 0 0 0 0 0 0 0 0 

0 0 3.4038 0 0 0 0 0 0 0 

0 0 0 3.4038 0 0 0 0 0 0 

0 0 0 0 3.4038 0 0 0 0 0 

0 0 0 0 0 3.4038 0 0 0 0 

0 0 0 0 0 0 3.4038 0 0 0 

0 0 0 0 0 0 0 3.4038 0 0 

0 0 0 0 0 0 0 0 3.4038 0 

0 0 0 0 0 0 0 0 0 5.1057 

 

 

 

Natural Frequencies and modeshapes calculated from eigenvalue problem: 

Mode 
Frequencies 

(rad/sec) 

Mode1 0.978 

Mode2 3.910 

Mode3 8.794 

Mode4 15.615 

Mode5 24.327 

Mode6 34.794 

Mode7 46.680 

Mode8 59.235 

Mode9 71.010 

Mode10 79.748 
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Figure 4.7. Modeshapes of the simply supported beam  

Simulation for one measurement noise at all locations: 

To calculate the sensitivity of the identified natural frequencies to the measurement 

noise, the beam is subjected to a Gaussian noise excitation and the response of the 

structure plus measurement noise is used to identify the natural frequencies. For modal 

parameter identification, ERA-NExT, output-only algorithm is used. Different steps of 

the process are: 

1. A vector of random Gaussian white noise with zero mean and standard 

deviation of one is generated using “random” function and is applied to the 

mass matrix to simulate the external force on the beam.  
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2. The response to this excitation is then calculated using Newmark numerical 

algorithm (damping ratios are assumed to be zero).  

3. Another vector of random Gaussian white noise is generated by variable 

standard deviation (to be increased through cycles) and is added into the 

simulated response. 

4. The output signal (summation of response and noise) is fed into the NExT 

function to calculate the correlation functions and estimate the impulse 

response function of the structure. 

5. The correlation functions are used to estimate the natural frequencies (in 

particular the first natural frequency) of the beam. 

6. The measurement noise, added in step 3, is scaled up from 2% to 200% of the 

RMS of the excitation by 2% increments. At each increment, the first natural 

frequency is estimated and finally their values are plotted versus the noise 

percentage.    

Figure 4.8 shows the first identified frequency versus the level of noise. 
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Figure 4.8. Variation of the first identified natural frequency versus increase of noise 

percentage in the response 

As discussed earlier, the real ideal white noise will not have much influence on the 

estimation result perhaps because it has an auto-correlation function which is very close 

to Dirac function. To have a more realistic simulation, the random noise is generated by 

passing the white noise through a band-pass filter. The design parameters are selected in 

a way that generate a noise close to real noises associated with sensors. The frequency 

contents are selected to be high in low and high frequencies. The FFT of the generated 

noise is plotted in Figure 4.9. 
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Figure 4.9. Frequency contents of a generated noise with higher low and high frequency 

contents 

The result for increase of standard deviation of this generated noise is plotted in Figure 

4.10. The result showed that the variation is not increased significantly by changing the 

frequency contents of the noise. The more accurate results may be obtained by deploying 

more details in design of realistic measurement noise or use of real sensor noise in the 

simulation. 

To have a better understanding of the effect of the measurement noise, the variation of 

the first natural frequency is inspected. For this purpose, a window of length 10 is moved 

throughout the vector of the first identified natural frequencies (for different noise levels) 

and the deviation of the frequency is calculated. Figure 4.11 presents the variation of 

results and demonstrates the effects of noise in the measured response. 
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Figure 4.10. Variation of 

generated noise percentage in the response

Figure 4.11. Standard deviation of the first identified natural frequency versus increase 

of generated no

 

This simulation problem has only one variable which is the standard deviation of the 

noise that is added to all DOFs. Therefore, the verification of the theoretical result will be 
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. Variation of the first identified natural frequency versus increase of 

generated noise percentage in the response 

. Standard deviation of the first identified natural frequency versus increase 

of generated noise percentage in the response 

This simulation problem has only one variable which is the standard deviation of the 

noise that is added to all DOFs. Therefore, the verification of the theoretical result will be 

40 60 80 100 120 140
Noise percentage at first point of the window

 

the first identified natural frequency versus increase of 

 

. Standard deviation of the first identified natural frequency versus increase 

This simulation problem has only one variable which is the standard deviation of the 

noise that is added to all DOFs. Therefore, the verification of the theoretical result will be 

160 180
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just confirming the fact that the increase of noise level causes the increase of uncertainty. 

The plot of identified frequencies versus the noise percentage shows a lot of random 

behaviors which is due to randomness of the noise and therefore, it is hard to make a 

concrete conclusion from the plots. However, it can be observed that the variation of the 

identified results increases through the increase of the noise level.  

Simulation for different random noises at different locations: 

In this section the loading of the structure is different, as each DOF is subjected to a 

separate white noise excitation. Also, the addition of measurement noise is one at the 

time which means at each step, a percent of noise (with increasing scale) is added to the 

response of one DOF. Therefore, different steps of the process will be: 

1. 10 vectors of random Gaussian white with zero mean and standard deviation of 

one are generated and applied to the DOFs of the beam to simulate the external 

force. 

2. The response to the excitation is then calculated using Newmark numerical 

algorithm (damping ratios are assumed to be zero).  

3. For each of the DOFs the following tasks are carried out: 

(a) A vector of random Gaussian white noise is generated by variable standard 

deviation (to be increased through cycles) and is added into the simulated 

response at that particular DOF. 
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(b) The output signal (summation of response and noise) is fed into the NExT 

function to calculate the correlation functions and estimate the impulse 

response function of the structure. Then the correlation functions are used 

to estimate the natural frequencies (in particular the first natural frequency) 

of the beam. 

(c) The measurement noise is scaled up from 2% to 200% of the RMS of the 

excitation by 2% increments. At each increment, the first natural frequency 

is estimated  

4. Finally, the first identified natural frequency corresponds to a particular level 

of measurement noise at a specific DOF (totally 10 × 200 different 

frequencies). At the end the estimates of the first frequency are plotted versus 

the noise percentage and noise location.    

The 3D plot in Figure 4.12 shows the errors in estimating the first natural frequency 

correspond to variation (increase) of noise level in the response.  
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Figure 4.12. Errors in estimating the first natural frequency correspond to increase of 

noise level percentage in the response 

In contrary to the plots from addition of single noise to all location, the variations of 

results are smoother when 10 different noises are added. The reason for this behavior is 

that the noise increases once at the time and at a location. Therefore, the difference in 

estimation between two successive steps is not as significant as what is presented for 

addition of one noise to all of the nodes. 

It is also observed from the results that the estimation error is in overall higher when 

the noise is added into the outer locations, rather than middle locations. This can be seen 

better having the results of noise addition for locations 1 and 5, next to each other. This 

result is plotted in Figure 4.13. 
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Figure 4.13. Variation of the first frequency due to increase of noise level percentage at 

locations 1 and 5 

This behavior is in agreement with the relation which was derived for sensitivity of 

eigenvalues to the correlation of the noise. Recall from the previous section: 

��z = ��H��
� 
 `az��� �� = ��H��

� ∑ ��zz��� = ��H��
� ∑ ∑ Kz,{,zH,a	 p,F a  = 1

∑ �� − 1�Kz�{�zH�a	5a
 

which gives the sensitivity of mode k to measurement noise at node j. As the first mode 

has the highest modal displacement in the middle of the beam and the least at two sides, it 

is reasonable to observe higher sensitivity for the side locations. This means higher 

variation of results due to the addition of noise to side locations.  It should be noted that 

the level of the noise is relative to the excitation and not the response. Hence, the Signal-

to-Noise-Ratio (SNR) of different locations is related to the response amplitude at 

different locations. 
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To have an overall comparison, the average error obtained through addition of noise to 

different locations is plotted in Figure 4.14. The plot shows higher sensitivity of 

eigenvalues to the noise at two side locations. However, there are some inconsistencies in 

the result which might be due to randomness of the noise signal and very small level of 

error. 

 

Figure 4.14. Average error due to addition of noise to different locations 

4.4.Contribution Ratio of Physical Modes in Measured Signals 

This section presents the formulation of a parameter, called Physical Contribution 

Ratio (PCR), which quantifies the participation of physical modal vibrations in the 

estimation of impulse response and modal parameters. The performance of this parameter 

is examined later, through implementation of a numerical example and data collected 

from ambient vibration test of Golden Gate Bridge.  
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As mentioned earlier, using NExT, the impulse response of the structure is estimated 

and can be used in the ERA or a similar algorithm for modal parameter estimation. The 

objective is to quantify what portion of this estimated impulse function is driven from 

physical modal vibration compared to noise. The portion of estimated impulse function 

which is driven from structural modes (PCR) reflects the level of noise contamination in 

the modal identification process. Considering the measured signal as a combination of 

real response and the measurement noise, it is shown that (Equation 4.12): 

)()()(ˆ τττ nnqq RRY +=                                             (4.12) 

Assuming that the noise characteristic is reflected in Rn(τ ), Equation (4.12) shows that 

the measurement noise has a direct impact on the estimated impulse response. Also, as 

mentioned before, it can be assumed that there is no correlation between measurement 

noises of different sensors. Thus, mainly the diagonal components of the correlation 

function are assumed to be contaminated by the measurement noise in the system.  

As the relation between noise characteristics and the estimated impulse response is 

clarified, the next step in correlating the noise effects to the identified modal parameters 

is to find the relationship between the estimated impulse response and the estimated 

modal properties. Considering the discrete state space model, the A, B and C matrices of 

the system can be estimated based on the estimated impulse response, using ERA. The 

relationship between the state matrices and the estimated impulse response follows 



176 
 

Equation 4.18. As presented earlier, transforming the system from physical coordinate 

into the modal coordinate ( 1−Λ= ψψ nn
A ), also provides Equation 4.19: 

   BCnY
n 11)(ˆ −−Λ= ψψ                                              (4.19) 

where ψ is the matrix of eigenvectors and Λ  is the diagonal matrix of eigenvalues ( si 'λ ) 

in discrete form. Also, ψψ 2/1
n

T
out PEC Σ= and inp

T
nn EQB 2/111 Σ= −− ψψ are mode shapes 

and modal amplitudes, respectively, which are the outcomes of minimum realization in 

ERA. It is also shown that mode shapes and modal amplitudes can be rewritten as: 

][ 1 mC φφψ
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where 1φ
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 to mφ
r

 are column vectors of mode shapes, and 1b
r

 to mb
r

are row vectors of 

corresponding modal amplitudes (the modal amplitude of a particular mode when 

impulse is applied at different nodes); m is the order of the system or the size of the state 

vector. It should be noted that the order of the system is usually selected higher than what 

is minimally required (twice the number of outputs) to reduce the estimation bias, but in 

the over parameterized model noise and computational spurious modes will also appear.  

Expanding the estimated impulse response as sum of m identified modes of the 

system, it can be written as:  
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where N is the number of outputs and b andφ  are components of mode shape and modal 

amplitude vectors (e.g. ijφ  is ith component of the jth mode shape and similarly, bjk  is the 

j
th mode’s amplitude at k

th location). This equation presents each component of the 

estimated impulse response as the summation of contribution of all the estimated modes 

(in terms of mode shapes, modal amplitudes and eigenvalues). Having this expansion for

)(ˆ nY , the contribution of each mode can be identified. Since the impulse response is a 

function of time, the PCR parameter is defined by the integration over time (summation 

in discrete domain) which is a measure of signal’s power. Therefore, the PCR of jth mode 

in k
th diagonal component of estimated impulse response (auto-correlation function of 

signal with kth node as the reference) is defined as:  

∑ ∑
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                                          (4.26) 

where n is the time index. 
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When the noise contamination is constant for all the modes, it is evident that the 

higher PCR will correspond to less sensitivity of the mode to the noise. In the other 

words, higher amplitude results in higher signal-to-noise ratio, in modal coordinate. 

Therefore, those modes with higher contribution in the auto-correlation function of a 

particular node are less sensitive to the noise level of the corresponding sensor.  

4.5.Validation of Physical Contribution Ratio through a Simulated Example 

To validate the performance of the PCR in presence of measurement noise and also 

environmental and operational condition changes, a simulated model is developed. The 

model is a simply supported steel beam with 5 lumped masses along the span. Figure 

4.15 shows the specifications of this beam model. The masses are determined based on 

the weight of the beam element and an assumed 3 meter tributary of 6 kN/m
2 uniform 

load. The acceleration response of the beam to random noise at 5 locations is simulated 

and used for modal identification process. ERA-NExT with model order 10 is selected to 

extract the 5 fundamental modes of the beam model. The identified natural frequencies 

and modeshapes of the beam are shown in the plots of Figure 4.16. 

 



 

Figure 4
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Figure 4.15. Beam example specifications 

4.16. Identified modal frequencies and modeshapes 

 

 

. Identified modal frequencies and modeshapes  
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Figure 4.17. PCR values of different nodes at different modes 
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The PCR values at different nodes for each of the fundamental modes are computed 

and presented in Figure 4.17. Comparing these plots with the mode shapes of the bridge, 

it is evident that the PCRs are proportional to the modal ordinates. However, PCR also 

accounts for the modal amplitude factor (b) and modal frequency, as predicted by 

Equation 4.26. It can be seen that the PCR value is relatively small in a couple of nodes 

for some of the vibration modes. These nodes correspond to small (or zero) modal 

displacement. It is also observed that the PCR is larger for higher modes, which is 

consistent with the acceleration response’s power spectrum of this model. In this 

example, the participation of the first and second modes in acceleration responses is small 

as their angular frequencies are less than unity. It is worth noting that the sum of the 

PCRs at each node over the 5 natural frequencies is almost 100%. This is obvious as the 

response is noise-free. 

To see the effect of measurement noise on the PCR, artificial stochastic white noise is 

added to the acceleration response and the variation of these ratios is inspected as the root 

mean square (RMS) of noise increases and the signal to noise ratio (SNR) decreases. As 

expected, the noise causes attenuation of the PCR, since it adds into the frequency 

contents of the measured response at non-fundamental frequencies. This behavior can be 

clearly observed in Figure 4.18 where it shows the PCR for each mode, and also the 

overall PCR for all modes.  
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Figure 4.18. Variation of PCR values at different nodes due to increase of artificial noise 

(decrease of SNR) 

The PCR is developed to reflect the noise contamination of the response which is due 

to non-physical variables (e.g. measurement noise). However, to further investigate the 

performance of the PCR in presence of environmental and operational changes, its 

behavior under different structural perturbations is also inspected. For this purpose, the 

changes in the PCR against random changes in the structural stiffness and also addition of 

random impulsive loads are evaluated. The stiffness perturbation is to represent the 

variation of structural properties due to different environmental conditions (e.g. 

temperature change effects) and addition of random impulsive loads is also to reflect the 

existence of non-stationary loads on structures (e.g. random heavy traffic loads). Also, 
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addition of random masses is to reflect the level of uncertainty in the corresponding mass 

of the system. Of course in the real world structures, many parameters are affected by 

these types of environmental and operational changes. In this example, however, only the 

effects of these three factors are considered. 

For the stiffness perturbation, the components of stiffness matrix are subjected to a 

random change with increasing mean values and the corresponding changes in the PCR 

are inspected. The results are shown in Figure 4.19 where the PCRs are plotted for each 

mode and also the summation of all modes versus stiffness perturbation percentages. It 

can be seen that, in contrast to the noise contamination, the changes in the PCR do not 

follow any decreasing trend and the overall values (summation of all fundamental modes) 

are almost 100% for all cases. This is reasonable as the physical changes in the structure 

only alter the contribution of different modes and do not decrease the overall PCR in the 

modal estimation process. Similar process is applied to observe the effects of random 

masses on the value of PCR. Figure 4.20, where the PCRs are plotted for each mode and 

also the summation of all modes versus mean of additional random mass percentage, 

shows a behavior similar to what is obtained from perturbation of stiffness.  
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Figure 4.19. Variation of the PCR due to increasing random perturbation of stiffness 

components 
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Figure 4.20. Variation of the PCR due to increasing random masses 
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Figure 4.21. Variation of the PCR values due to increasing ratio of random impulsive 

load to the stationary load RMS  

Similar process is applied to observe the effects of adding random impulsive loads on 

the PCR values. The loads are selected based on possible scenario of truck passing over a 

bridge structure. Thus, the loads are applied to different nodes at different times (i.e. 

moving load) and their amplitudes are selected as random values with increasing mean up 

to 30 times the applied stationary loads RMS (the maximum impulsive load generates 

L/1000 deflection at the mid-span). The result of PCR variation is plotted in Figure 4.21. 

It can be seen that the overall PCR for all modes are almost unchanged as the random 

impulsive loads increase. The contributions of different modes however change due to 

3

3.5

4

6

8

10

22

24

30

35

40

5 10 15 20 25 30
25

30

35

Impulsive to stationary load ratio

P
C

R
 (

%
)

90

100

Overall, all modes

Mode 2

Mode 5

Mode 3

Mode 1

Mode 4



187 
 

the increasing impulsive load which is again expected as random impulsive loads may 

alter the load shape function and, as a result, change the participation of different modes.  

Through this numerical example, it is observed that the PCR is sensitive to the level of 

noise in the measured response. However, the overall value of the PCR (for all modes) is 

not sensitive to the structural changes (e.g. environmental and operational changes), 

though their values in different modes change due to changes in modal participation of 

different modes.  

4.6. Accuracy Assessment of the Identified Modal Parameters using MAC and MPC 

In order to validate the identified modal parameters, it is necessary to assess the 

accuracy of the results, particularly when there are different sources of uncertainty in the 

vibration data (e.g. environmental affects, measurement noise, etc.). This section focuses 

on approaches which quantify the uncertainties of each identified mode and provide 

parameters to measure the accuracy of modal identification results. 

A study of the effects of noise on modal identification, using ERA, was performed by 

Juang and Pappa (1986), and a mathematical foundation was established for determining 

the accuracy of identified genuine modes versus those associated with noise. In this 

study, Modal Amplitude Coherence (as a special case of Degree of Modal Purity 

parameter) is introduced which quantifies the consistency of identified modes versus 

time. Another indicator developed also by Juang and Pappa (1985) is Modal Phase 
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Collinearity (MPC) which measures the strength of the linear functional relationship 

between the real and imaginary parts of the mode shapes for each identified mode.  

Modal Amplitude Coherence (MAC):  

The modal amplitude coherence is defined as the coherence between modal amplitude 

history and the one formed by extrapolating the initial value to later points in time, using 

the identified eigenvalue. As the result of minimum order realization, the triple [z, 

ψ2/1
n

T
p PE Σ and

 m
T
nn EQ

2/11Σ−ψ ] is available where z and ψ are eigenvalues and 

eigenvectors of the A matrix (state matrix). The second element, ψ2/1
n

T
p PE Σ , is the 

matrix of mode shapes and the third element, m
T
nn EQ

2/11Σ−ψ , is called initial modal 

amplitudes. The initial modal amplitude can be expressed as: 

*

21

2/11 ],,,[ nm

T

nn bbbEQ L=Σ−ψ
                                      (4.27) 

where the asterisk means complex conjugate transpose of the matrix.  

The modal amplitudes can be extrapolated in time as: 

],,,[ **1**
j

nt
j

t
jj bzbzbq K=                                            (4.28) 

where ti’s represent the sequence of time in which the initial modal amplitude is 

extrapolated. The counterpart sequence would be the identified modal amplitude time 

history, obtained from decomposition of the Hankel matrix:  
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*
21

2/11 ],,,[ n
T
nn qqqQ L=Σ−ψ                                       (4.29) 

As a function of these two modal amplitudes (extrapolated and identified), the MACj is 

defined as: 

2/1*** |)||/(||| jjjjjjj qqqqqqMAC =                                        (4.30) 

This parameter obtains values between 0 and 1 where the values close to 1 indicate 

that the estimated system eigenvalue and the initial modal amplitude are close to the true 

system. Also values that are far away from 1 indicate that the identified mode is a noise 

driven mode. This parameter determines the level of the purity of identified mode in 

presence of measurement noise (Juang and Pappa 1885). 

Modal Phase Collinearity: 

Modal Phase Collinearity (MPC) quantifies the spatial consistency of the identified 

mode shapes. When the modes are normal (which is expected in an ideal lightly damped 

system) the vibration of all locations on the structure are either in-phase or out-of-phase 

with one another (Juang and Pappa 1993). However, in practice, usually the phase angles 

of the identified modal displacement vectors are not consistent. This behavior is not 

necessarily due to structural properties (e.g. non-proportional damping), but can be a 

result of noise in the process. Particularly in lightly damped structures, modes are normal 

and the non-consistent phase angles are often the result of poor data quality. MPC is an 

indicator which quantifies the collinearity of the phase angle in the identified mode 

shapes and determines their accuracy. 
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For each identified complex mode shape vector, consider the variance and covariance 

matrices of imaginary and real parts: 

)Re(.)Re( i
T

ixxS φφ=                                               (4.31a) 

)Im(.)Im( i
T

iyyS φφ=                                                (4.32b) 

)Re(.)Im( i
T

ixyS φφ=                                                (4.33c) 

The eigenvalues of the covariance matrix will be: 

       1
2

2
2,1 +±

+
= ηλ xy

yyxx
S

SS
                                          (4.34) 

where η  is defined as (
xy

yyxx

S

SS

2

+
). The MPC for mode i, is defined by Juang and Pappa 

(1993) as: 

MPCi =

2

21

21









+

−

λλ

λλ
 (×100 %)                                       (4.35) 

Similar to MAC, MPC values are also ranged from 0 to 1, where 0 indicates 

uncorrelated phase angles in the identified mode, and 1 represents a perfect normal mode.  

4.7. Evaluation of Measurement Noise Effects using Golden Gate Bridge Data 

In this section the data collected in a deployment of wireless sensor network on 

Golden Gate Bridge is used as an example to apply the PCR, MAC, and MPC parameters 
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for quantification of modal identification accuracy. The data includes measurements by 

two synchronized sensor networks with different sensor sensitivities. Having two 

synchronized data sets allows the examination of accuracy parameters in presence of only 

uncertainties derived from measurement noise (as the same response with same 

environmental and operational conditions is measured by the two sensor types). 

Therefore, the performances of sensor types can be compared by comparing the accuracy 

of the results. 

Utilized Wireless Sensor Network 

Pakzad et al 2008, presents the results of a long term ambient vibration monitoring on 

Golden Gate Bridge where the acceleration data was measured using a WSN, consisting 

of 65 sensing units, during a three month deployment period. The sensing units in this 

network utilized three hardware components: sensors, filters and microcontroller, and 

radio for wireless communication. For the measurement of low-level and high-level 

accelerations, two Micro-Electro-Mechanical System (MEMS) accelerometer sensors are 

used each in two directions. The use of two accelerometer types in the sensor board 

design is a cost-effective solution and allows examination of performance-price tradeoffs. 

Analog Device’s ADXL202 is the high-level sensor (Figure 4.22-a) which provides a ±2 

g range with a sensitivity of 1 mg at 25 Hz (Analog Devices 1999). For low- level 

vibrations, Silicon Design 1221L (Figure 4.22-b) is used which has higher sensitivity and 

is suitable for ambient structural vibrations (Silicon Designs 2007). The acceleration 

range of the Silicon Design 1221L accelerometer is reduced from ±2 g to ±0.15 g to 
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achieve a higher resolution from the 16-bit Analog to Digital Convertor (ADC). Table 4.1 

shows the detailed specifications of the two accelerometer sensors, integrated in the 

sensor board.  

The measured signal from MEMS accelerometers is fed to a single-pole anti-aliasing 

low-pass filter with a cutoff frequency of 25 Hz. The cutoff frequency is high enough to 

capture many high vibration modes of this long span bridge (Pakzad et al 2008). The 

filtered analog signal is then fed to a 16-bit ADC for each of the channels. The 

acceleration data is collected with a high frequency sampling of 1 kHz and is 

downsampled on-board to 200 Hz to reduce the noise level of the measured signal. For a 

detailed description of the implemented WSN architecture, the system software, and the 

full scale deployment on the bridge, the reader is referred to Pakzad 2010. 

 

 

Figure 4.22. ADXL202 (a) and Silicon Design 1221 (b) accelerometers  
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 Table 4.1. Specifications of Silicon Design 1221 and ADXL202 accelerometers 

Specification 
Silicon Design 1221L 

Accelerometer 
ADXL202 Accelerometer 

Acceleration Range 

Frequency Response 

Nominal Output Noise 

Temperature Range 

Dimension 

Cost 

± 0.15 g (reduced from ± 2 g) 

0 to 400 Hz 

2 µg/√Hz 

-55 ºC to +125 ºC 

3.5 × 3.5 × 1.05 (mm) 

~ $150 (in 2005) 

± 2 g 

0 to 500 Hz 

500 µg/√Hz 

-40 ºC to +85 ºC 

5 × 5 × 2 (mm) 

~ $10 (in 2005) 

 

Before application of the sensor board in vibration monitoring of Golden Gate Bridge, 

sensors were validated through static and dynamic tests, using a reference Wilcoxon 731-

4A low-noise piezoelectric accelerometer (Pakzad 2010). The result of the validation 

showed that the Silicon Design 1221 accelerometer behaves very similar to the low-noise 

reference sensor in both time and frequency domains, whereas the ADXL 202 sensor 

presents higher noise in the data, especially in the low-frequency range. Considering the 

distinguished difference in the cost ($10 versus $150 in 2005), it is important to evaluate 

the significance of lower noise level of the more expensive accelerometer in modal 

identification process.  
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Table 4.2. Identified natural frequencies and damping ratios of vertical modes identified by 

ERA-NExT, using data collected by ADXL202 and Silicon Design 1221 accelerometers 

Mode 
Frequency (Hz) Damping Ratio (%) 

ADXL202 
sensors 

SD1221 
sensors 

ADXL202 
sensors 

SD1221 
sensors 

1 A 

2 S  

3 S  

4 A  

5 S  

6 A  

7 S  

8 A  

9 S 

10 A  

11 S  

12 A  

13 S  

14 A  

15 A  

16 S  

17 A  

18 S  

19 A  

20 S  

21 A  

22 A  

23 S  

24 A  

25 A 

    0.1067 

    0.1326 

    0.1708 

    0.2164 

    0.3015 

    0.3705 

    0.4610 

    0.5491 

    0.6620 

    0.7691 

    0.8884 

    1.0042 

    1.1330 

    1.2565 

    1.5234 

    1.6573 

    1.7659 

    1.9281 

    2.0623 

    2.1797 

    2.3187 

    2.5739 

    2.7082 

    2.8397 

    3.7677 

    0.1067  

    0.1330 

    0.1711 

    0.2170 

    0.3012 

    0.3701 

    0.4607 

    0.5458 

    0.6620 

    0.7664 

    0.8905 

    1.0040 

    1.1312 

    1.2641 

    1.5195 

    1.6596 

    1.7764 

    1.9295 

    2.0713 

    2.1954 

    2.3248 

    2.5929 

    2.7127 

    2.8399 

    3.7605 

    2.1031 

    2.2178 

    1.4182 

    2.1239 

    1.1098 

    1.2066 

    0.5531 

    2.4465 

    0.5082 

    0.8779 

    0.8451 

    1.2559 

    0.7320 

    0.7099 

    0.6339 

    0.5997 

    0.5260 

    0.6840 

    0.5221 

    0.4829 

    0.5614 

    0.2970 

    0.4910 

    0.2722 

    0.3257 

    1.7599 

    1.9824 

    0.9943 

    2.0639 

    1.1078 

    1.4229 

    0.6631 

    2.3976 

    0.5407 

    1.0146 

    0.8692 

    0.8739 

    0.6391 

    0.8225 

    0.7918 

    0.6314 

    0.3653 

    0.6692 

    0.4724 

    0.6695 

    0.5998 

    0.3761 

    0.3537 

    0.3363 

    0.4901 

 

Identified Modal Parameters of the Golden Gate Bridge 

The data collected by two accelerometer sensor types from the ambient vibration of 

Golden Gate Bridge are used for modal parameter identification of the bridge, using 
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ERA-NExT. A summary of identified natural frequencies and damping ratios of vertical 

modes, resulted from ADXL202 and SD1221 accelerometer data, are presented in Table 

4.2. Figure 4.23 also shows the first 9 identified vertical mode shapes, resulted from the 

two sensor types. More detailed information about the identified modal properties of 

Golden Gate Bridge using the ambient vibrations can be found in Pakzad and Fenvas 

2009.  

By comparing the modal properties, it is clear that both sensor types are capable of 

estimating the fundamental modal parameters of the bridge. However, some 

inconsistencies in results of two sensor types, especially in damping ratios and mode 

shapes, can be observed. Applying PCR, MAC, and MPC parameters on the estimated 

modal parameters, the performance of the two sensing systems, in terms of accuracy and 

consistency of results, is investigated.  
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Figure 4.23. First 9 identified vertical modes of the main span of Golden Gate Bridge 
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Figure 4.23 (Cont’d). First 9 identified vertical modes of the main span of Golden Gate 

Bridge 
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Figure 4.23 (Cont’d). First 9 identified vertical modes of the main span of Golden Gate 

Bridge 
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Evaluation of Results, using Physical Contribution Ratio 

The PCR of each mode is computed for all sensing nodes of the implemented sensor 

network on Golden Gate Bridge. Figure 4.24 shows these ratios for first 9 vertical modes. 

Similar to the results of the numerical example, PCRs are proportional to the modal 

ordinates. In addition, these ratios also depend on the modal amplitude factor (b) and 

modal frequency.  

Due to the long span of the bridge, many modes (with natural frequencies up to the 

Nyquist frequency) contribute in the measured response. Therefore, the contribution of 

each mode of vibration in the measured response is expected to be small. This is evident 

as comparing the amplitudes of PCR values of this implementation with those of the 5 

DOF simulated example. 

Figure 4.24 shows that the Silicon Design 1221, which has a lower noise level, 

presents significantly higher PCR, compared to that of ADXL 202 sensors. This simply 

means that the noise contamination of the estimated impulse response is higher in the 

ADXL 202 sensors and therefore, the estimated modal parameters are more influenced by 

the measurement noise.  
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Figure 4.24. Physical Contribution Ratio of four identified modes at different nodes 
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Figure 4.24 (Cont’d). Physical Contribution Ratio of four identified modes at different 

nodes 
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Figure 4.24 (Cont’d). Physical Contribution Ratio of four identified modes at different 

nodes  
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Although in theory the higher modes usually have less participation in response and 

therefore are more sensitive to the noise level, investigation of real data shows that some 

of the higher modes also have significant PCRs. This is reasonable since the ambient 

excitation does not necessarily have a perfectly constant spectrum and therefore, some 

higher modes may be excited more than others. To observe the contribution of different 

modes in general, the PCR of all the nodes are added together for each mode and plotted 

in Figure 4.25. This Figure shows that the signal by Silicon Design 1221 accelerometers 

have higher overall PCRs in almost all of the modes. At the same time, it can be realized 

that the difference is more significant in lower frequencies (e.g. first 5 modes) rather than 

the higher ones. This reflects the fact that the Silicon Design accelerometers are 

significantly more accurate than ADXL accelerometers in low frequencies. This result 

highlights the importance of sensors with low noise level at low frequencies for 

monitoring of long span bridges that have low fundamental natural frequencies. 
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Figure 4.25. Overall Physical Contribution Ratio of identified modes for 25 identified 

vertical modes  

Evaluation of Results, using MAC and MPC 

MAC and MPC are both evaluated for the identified modal parameters of Golden Gate 

Bridge from two networks of Silicon Design 1221 and ADXL202 sensors. Both of these 
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parameters are used to evaluate and compare the accuracy of identified modes from two 

different sensor types. 
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Figure 4.26. Modal Phase Collinearity and Modal Amplitude Coherence of identified 

modes 

Figure 4.26 shows the MAC and the MPC for 25 identified vertical modes. Comparing 

the results, it is clear that the network of Silicon Design sensors has resulted in more 

accurate modal parameters.  
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acceptance of identified modes, suggested in these two articles, is CMI greater than 80%. 

Figure 4.27 shows the values of this parameter for different identified modes for the two 

accelerometer types. It can be seen that many of the modes, identified by ADXL202 

sensors, are not acceptable as accurate modes based on this criterion.  

Generally, the results of identification for modes with lower frequency are less 

sensitive to the noise level, since the modal vibration in those frequencies have higher 

amplitude and therefore, higher SNR in modal coordinates (as can be seen in the results 

of previous section, [Figure 4.25]). However, Figure 4.27 shows that even in the low-

frequency modes (third and fourth mode with frequencies of 0.17 and 0.21 Hz, 

respectively), identified by ADXL 202 data, the lack of confidence is evident. This is 

particularly reasonable as the ADXL 202 sensors presented high level of noise in low 

frequency range and probably the third and fourth identified modes from this sensor have 

not enough amplitude to overcome the high noise of this frequency range.  
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Figure 4.27. Consistency Mode Indicator of identified modes, using ERA-NExT 
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order for both sensor networks with ADXL 202 and Silicon Design 1221. Figure 4.29-a 

and 4.29-b also presents the same information for the first 5 damping ratios, identified by 

the two different sensor types. The mean value and standard deviation of the identified 

damping ratios are also presented in the plots which help in comparing the consistency of 

results obtained from two sensor types. For calculating the mean and deviation of results, 

the damping ratios outside of the 0.5% to 7.5% range are considered as outliers and 

excluded from this computation. Figure 4.29 shows that the sensors with lower noise 

level (Silicon Design 1221) result in smaller deviation and are generally more consistent. 

However, the results for higher orders are fairly similar and stable for both systems. This 

means that increasing the model order and using the stabilization diagram are quite 

effective in overcoming the inconsistency issue, associated with identification of modal 

parameters.  
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Figure 4.28. Consistency of natural frequencies through increase of model order  
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(a) 

 

(b) 
Figure 4.29. Consistency of damping ratios through increase of model order for (a) 

Silicon Design Accelerometer and (b) ADXL201 Accelerometer   
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4.9. Summary and Conclusion on Measurement Noise Effects 

In this chapter, the influence of measurement noise on the accuracy and consistency of 

modal parameter identification is investigated. Physical Contribution Ratio (PCR) is 

developed to examine the level of contribution of physical modes in the estimation of 

impulse response. This parameter, PCR, is validated through implementation on a 

numerically simulated example and its behavior under the effects of artificial noise and 

random structural changes is investigated. PCR is also implemented on the ambient 

vibration data of Golden Gate Bridge, measured by two accelerometer sensors (ADXL 

202 and Silicon Design 1221) with different noise levels. To evaluate the effects of 

higher measurement noise, modal parameters identified by the two sensor types are 

compared and inspected in terms of accuracy and consistency, using the presented 

parameter. The comparison of results, obtained from two sensor types, showed 

significantly higher PCR of estimation using the low noise sensor data. Furthermore, to 

quantify and compare the purity and accuracy of modal parameters, identified by the two 

measurement systems, Modal Amplitude Coherence and Modal Phase Collinearity are 

applied. The investigation showed higher purity in the results of low noise accelerometer 

and failure of some modes, identified by ADXL 202 accelerometer, based on an accuracy 

criterion. To detect the effect of measurement noise on consistency of modal parameters, 

as the model order increases, the identified parameters (natural frequencies and damping 

ratios) are inspected throughout the increase of order, for results of both sensor types. The 

results showed that the deviation of modal parameters, obtained by the low noise sensors, 
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is generally less than those identified by sensors with higher noise level. However, the 

difference is not significant, particularly in higher model orders, and it can be concluded 

that the inconsistency of results can be resolved by increasing the model order and 

through the use of stabilization diagram.  

The developed parameters can be used as general tools for quantification of the modal 

identification results. However, as the objective of this study it can be considered as a 

basis for selection of sensor quality since it targets measurement noise rather than other 

types of uncertainties. Moreover, as a side application, it can be a basis for selection of 

sensor location as it provides the physical contribution of response in terms of the 

location of sensor as well. This application however, needs further study for adaption of 

parameters and development of a systematic approach which includes optimization into 

the process (i.e optimizing the location of sensors as to maximize the physical 

contribution of the structure’s response). 

It is worth mentioning that measurement noise is not the only root of the uncertainty in 

modal identification. Environmental and operational conditions (e.g. temperature and 

randomness of traffic) also have significant impacts on the results. Literature shows some 

efforts towards this investigation and Chapter 7 also presents some studies regarding the 

variation of modal parameters due to temperature and traffic loads. Further investigation, 

however, would improve the current state of this area and can assist with minimizing the 

uncertainty in the process of modal parameters identification. 
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Chapter 5 

Damage Detection 
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5. Damage Detection 

5.1. Introduction to Damage Detection 

Advancements in sensing technology have allowed for the development of new SHM 

methods that can be applied on a temporary or semi-permanent basis for continual 

monitoring of structures. The vibration-based SHM approaches are commonly used to 

extract the dynamic characteristics of the structure from its response. One important 

application of vibration-based SHM and extraction of structural characteristics is in 

damage detection. This chapter introduces a statistics-based damage detection algorithm 

(initially proposed by Pakzad 2008) and presents supplementary statistical frameworks 

for implementation, and validation through different numerical and experimental models. 

Literature presents numerous damage detection methods which rely on changes in 

identified dynamic characteristics (e.g. natural frequencies, mode shapes, and modal 

damping) to reveal changes in the physical properties of the structure (e.g. mass and 

stiffness), i.e. structural damage (Doebling et al. 1998; Alvandi and Cremona 2006). 

While the concept is intuitive, application of methods which rely on dynamic 

characteristics of the structure are not without difficulties. Modal properties are indicators 

of the global state of the structure and are not sensitive enough to local damages (Farrar 

et al. 1994; Chang et al. 2003). Therefore, these methods are mostly referred to as global-

based damage detections. Also, some SHM practices involving global-based damage 

detection require knowledge of specific structural properties, including mass, stiffness, or 

damping ratio, for which it is often difficult to determine very accurate estimates (Koh et 
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al. 1995; Morassi and Rovere 1997; Sohn and Law 1997; and Ratcliffe 1997). On the 

other hand, local damage detection is desired for structural health monitoring since local 

damages happen first and then propagate to the entire structure. Literature also presents 

some effective local damage detection methods, such as damage locating vector (DLV) 

method (Bernal 2002; Sim et al., 2008; Sim et al, 2011) and two-dimensional gapped 

smoothing method (Yoon et al. 2005). While effective, these methods have some 

requirements. For example DLV method requires the knowledge of structural properties, 

or requires homogeneity of the structural properties as in the two-dimensional gapped 

smoothing method. In addition, considering the current state of damage detection 

techniques in practice, more research is still needed to improve existing algorithms, 

develop more effective techniques, and make damage detection more practical and 

applicable in real-life monitoring scenarios.  

The algorithm which is presented in this chapter is an effective damage detection 

method, called Influence-based Damage Detection Algorithm (IDDA) that uses vibration 

responses to achieve localized damage detection without the need for exact knowledge of 

structural properties. The method is based on regression of the vibration response and 

estimation of influence coefficients as damage indicators. While the algorithm is 

effective, it is also very practical as it converts the shear amount of time-history data into 

condensed information which enables detection of structural changes in the system. 

In IDDA, influence coefficients are obtained from linear regression between every two 

node responses and used as the index for determining and detecting the occurrence of 
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changes in the structural properties. The change point of time-variant influence 

coefficients is also determined using a Bayesian statistical framework. The effectiveness 

of the proposed local damage detection method is demonstrated and verified through 

implementation on a simulated and two experimental models. In the experimental 

implementation of the algorithm on one of the models (scaled beam-column connection), 

two different networks of wired and wireless accelerometer sensors are utilized. In the 

implementation of the algorithm on the other model (large-scale beam-column 

connection), however, only wired strain gauge sensors are used. While validating the 

performance of IDDA, the results of the different sensor networks (particularly wired and 

wireless) with different characteristics are also evaluated and compared to observe the 

effect of sensor noise on the effectiveness of the algorithm. 

5.2. Localized Damage Detection Method 

This algorithm based on the premise that a structure’s response changes when physical 

properties change, i.e., due to damage. The response of the structure is monitored at 

various locations via a spatially dense sensor network, and linear regression influence 

coefficients are extracted. When damage occurs, this linear relationship changes, which is 

reflected in the influence coefficients indicating the existence of damage. In addition to 

identifying that damage has occurred, considering the locations of sensors associated with 

changing coefficients allows for localization of the damage as well. Furthermore, a 

statistical framework that utilizes hypothesis testing can be implemented to determine 

whether damage exists at a significant confidence level. 
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5.2.1 Structural Model 

Damage detection methods can be classified in a number of ways. One common 

classification is as identification of linear or nonlinear damage. The definition of linear 

damage is “the case when the initially linear-elastic structure remains linear-elastic after 

damage” (Doebling et al. 1998). One advantage of studying a linear damage state is that 

the linear equations of motion still apply after damage. Additionally, a linear damage 

method can utilize finite element models to predict the structure’s response to certain 

damage states. The method proposed in this work relies on this assumption of linearity 

before and after damage. 

In order to demonstrate the linear-elastic assumptions of this method, a rigid beam-

column joint is considered, as shown in Figure 5.1. This simplified example is used for 

demonstration as it can lead to a laboratory experiment, explained later in this chapter. 

The general free body diagram has 9 unknowns (xi, yi, ri, xj, yj, rj, xk, yk, and rk) assuming 

the joint to be restrained out-of-plane. The displacement at any point along the structure, 

un, can then be defined as a function of each of these unknowns as follows: 

�a = b��,, �, , d,, �z , �z , dz, ��, ��, d��               (5.1) 

Because the joint represents a small portion of the structure, the member lengths create 

small angles. Small angles correspond to negligible rotations reducing the number of 

degrees of freedom (DOFs) to 6 independent translational DOFs (xi, yi, xj, yj, xk, and yk). 
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This number of DOFs can be further reduced with the practical assumptions of 

inextensibility of the column and beam members.  

A structure that is being monitored will experience excitations of the ambient type for 

a majority of its useful life. Other more extreme excitations should be considered as 

occurring during the damaging event, in which case the linearity assumption does not 

hold true. Because this method involves the comparison of the structural state pre- and 

post-event, as opposed to during the nonlinear damaging event, it is reasonable to 

consider the structure within a linear-elastic range. Thus it is valid to consider Equation 

(5.1) as a linear function. 

Another important assumption for the application of this method is that the 

contributing mass at the considered portion of the structure is negligible. This assumption 

allows local dynamic effects to be neglected such that the structure can be considered in 

its linear static state. Pakzad 2008 and Chang 2010 have presented several simulated 

examples that support neglecting mass for this implementation. Both found that because 

the stiffness of elements forming the connection is much larger in comparison to their 

contributory mass when considering a local portion of the structure, the effect of the mass 

term becomes negligible and the dynamic equation of motion can be reduced to a static 

relationship. However, it is important to note that this assumption only applies to a local 

joint. Therefore, the linear relationship between nodes that are within the same local joint 

and share a relatively stiff portion of the structure should be assessed for this algorithm. 



 

This may translate to small clusters of dense sensor networks within a larger

instrumentation network. 

Figure 5

Considering a small portion of the structure (the beam

Figure 5.1) as a linear static system, any displacement response along the connection is a 

linear function of the response at other locations. In the other words, the relatio

between the response at any two locations, nodes 
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This may translate to small clusters of dense sensor networks within a larger

 

 
5.1. Free body diagram of a rigid beam-column joint

Considering a small portion of the structure (the beam-column connection shown in 

Figure 5.1) as a linear static system, any displacement response along the connection is a 

linear function of the response at other locations. In the other words, the relatio

between the response at any two locations, nodes i and j, can be defined as:

�z��� = 4,z + �,z ∙ �,��� + �,z���                           

This may translate to small clusters of dense sensor networks within a larger-scale 

column joint 

column connection shown in 

Figure 5.1) as a linear static system, any displacement response along the connection is a 

linear function of the response at other locations. In the other words, the relationship 

, can be defined as: 

                      (5.2) 
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where, ui(n) and uj(n) are structure’s response at nodes i and j, respectively, and at time n, 

βij is intercept value of regression between nodes i and j, αij is influence coefficient of 

regression between nodes i and j, and εij is the residual of the regression model. 

5.2.2 Mathematical Model 

Auto Regressive with Exogenous (ARX) model is discussed in Chapter 2 in the 

context of system identification. As a more general application, ARX can be used to 

model systems and establish the relationship between different outputs (responses at 

different locations of a structure) as follow: 

                               ∑ ∑
= =
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0 1

)()()( ε                         (5.3) 

where y and x are output and input respectively, αi’s and βi’s are ARX coefficients, ɛ(n) 

represents the residuals, n is the time index, and P and Q are orders of the autoregressive 

and exogenous parts of  the ARX model, respectively. Based on this mathematical 

representation, the response at any time step can be estimated having the past inputs and 

outputs and the current input.  

In a linear structural system, each output is a linear function of input excitations and 

therefore, the linear relationship holds between different outputs, as well. Therefore, the 

ARX model can be written to correlate outputs of a system as follow: 
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where output at node j is related to current and previous outputs at nodes i=1 to k. This 

equation establishes a relationship between one output and other outputs of the system. 

The accuracy of this model depends on the selected model orders. While higher model 

orders, in general, deliver more details of the system and reduce the estimation bias, it is 

always desired to keep the order at the minimum level to avoid over-parameterization. 

Considering the special case of the linear system with negligible mass (absence of inertia 

force), described in the previous section, the corresponding ARX model can be developed 

by assuming P and Q equal to zero: 

     ∑
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++=
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iji

j

i
j nny
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b
ny

1

)()()( εβ                                        (5.5) 

which correlates the response at node j to current responses at nodes i (=1 to k). Addition 

of intercept (β) into Equation (5.5) is in order to account for the initial condition, since 

the effects of previous time steps are removed from the equation. Note that Equation (5.5) 

represents a multi-variable version of Equation (5.2) (i.e. considering k=1 and bi / aj=αij, 

the same equation will be obtained). 

5.3. Influence Coefficients as Damage Indicators 

IDDA takes responses of the structure and uses the assumed linear relationship 

between different nodes, or sensor locations, with one another. This pair-wise 

relationship between node responses is defined by utilizing regression analysis. By 

calculating influence coefficients, αij, between two nodes i and j, based on vibration-
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induced acceleration response data, the correlation between these responses is determined 

according to Equation (5.2).  

The comparison of the resulting influence coefficients from the initial undamaged 

state with that of the damaged state of the structure serves as a “damage indicator” when 

it yields a significant change in the value of the coefficients from state to state. More 

specifically, the influence coefficients exhibit a much more significant change when 

nodes i and j are located on opposing sides of the damaged segment versus when they are 

on the same side. When damage occurs between two node locations, i and j, the element 

becomes structurally more flexible, affecting the correlation between responses at two 

locations ui and uj. From linear regression, this translates to a change in the value of αij 

from that of the original undamaged case. This characteristic allows for the identification 

of the damage location by inspection of the pattern in which influence coefficients exhibit 

significant changes. 

5.4. Influence Coefficient Accuracy and Estimation Error 

Once the coefficients are estimated, the accuracy of the data must be assessed and 

verified before damage detection can be performed. This is done through consideration of 

both the accuracy of the pair-wise coefficients and the estimation error. The product of 

influence coefficients αij and αji, yields the evaluation accuracy, EAij, of these 

coefficients, indicating which node responses are linearly related to one another with the 

least amount of error, εij, and thus are more accurate predictors. An evaluation accuracy 

of 1.0 signifies a strong accuracy of estimation, while a product of less than 1.0 
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corresponds to progressively higher values of noise and nonlinear behavior of the 

physical structure. 

The second parameter that is used for data verification is normalized estimation error, 

which is calculated as: 

0,z = ��N�
�N�                                                 (5.6) 

where αij is influence coefficient between nodes i and j and  σ(αij) is standard error of the 

influence coefficient estimates αij and can be estimated by the following equation: 

j�N� = ��
�∑ �NU��/U                                                       (5.7) 

In Equation 5.7, σe is the standard error of the residuals, e (the difference between the 

estimated and true response).  

Normalized estimation error allows for a direct comparison of the amount of error 

associated with the estimation of each influence coefficient as a damage indicator. This 

parameter is used to determine which influence coefficients should be used for damage 

detection. A low estimation error, resulting from a low standard error of the estimated 

influence coefficient, will correspond to a more accurate predictor. Once the accuracy 

and error have been assessed for each coefficient, post-processing of the best influence 

coefficients can be performed for damage identification and localization. 
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When the influence coefficients have been assessed for accuracy and error, the most 

reliable of these are chosen for use in damage detection. As was previously discussed, 

changes in the physical properties of the structure, such as loss of material stiffness or 

change in boundary conditions due to damage, are reflected in changes in the behavior of 

the structure which can also be seen directly in the influence coefficients; the linear 

relationship between certain locations of the structure will change to differing degrees 

depending on the location of the damage. A high change in the coefficient indicates that 

the structural response is different in one or both of the locations, i and j, from that of the 

original healthy state. The degree to which certain coefficients change can indicate the 

location of the damage. 

5.5. Statistical Framework 

In order to determine what defines a “significant change” in the influence coefficients, 

a statistical framework has been developed and applied. This framework is useful for 

processing large volume of data as a structure is monitored over time. A Bayesian 

Statistic is used to determine the change point, the point at which the data indicates 

damage, at a 95% confidence level (Chen and Gupta 2000). This statistical inference 

method tests the hypothesis that the mean of the influence coefficients for each 

successive test is equal to the mean of the influence coefficients from the initial 

undamaged state,  

��: � = �5 = ⋯ = �� = �6,                                         (5.8) 
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against the one-sided alternative hypothesis that the values of the influence coefficients 

beyond the change point, denoted as r, are greater (or smaller) than that of those prior to 

this point by a significant amount,  

 ��: � = � = �5 = ⋯ = �o < �o� = ⋯ = ��                           (5.9) 

N represents the number of tests. The change point r, mean µ, and standard error σ of 

the influence coefficient are all unknown. The statistic that is developed to test the 

aforementioned hypothesis is a Bayesian statistic as follow: 

�� = ∑ ���,� − �6��	 ,F�                                (5.10) 

where r, the change point, can be any point from 1 to N-1. This Bayesian statistic, in fact, 

assigns a weight (i) to changes that happen successively. In the other words, as the offset 

in the mean value of the influence coefficients persists, the difference between the mean 

and the baseline will be accumulated by increasing factors. To test the significance of 

change and conclude the alternative hypothesis, HA, with a certain confidence level, the 

following normalized t-statistic is utilized: 

   � = ��
� ¡�������U����

¢
                                                      (5.11) 

where j� is the estimated error of the influence coefficient and the denominator of the 

equation is the deviation of SN. The test statistic t, has a t-distribution with N-2 degrees of 

freedom (Sen and Srivastava 1975). In this work, the hypotheses are tested at a 95% 

confidence level.  



 

The physical significance of this hypothesis testing is such that the alternative 

hypothesis, HA, indicates that the structure has incurred damage, while the null 

hypothesis, H0, means that there is not adequate evidence to establish that damage exists. 

These hypotheses are tested for those node pairs that have been identified as significant 

damage indicators in the assessment and verification stage of the method.

Influence-based damage detection algorithm with its different steps is outlined in 

Figure 5.2. There are three phases in the implementation of this algorithm: (i) data 

retrieving and parameter extraction, (ii) validation and accuracy assessment, and (iii) 

post-processing and decision making. The next sections of this chapter will present the 

implementation of the algorithm on different simulated and experimental models.
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The physical significance of this hypothesis testing is such that the alternative 

, indicates that the structure has incurred damage, while the null 

eans that there is not adequate evidence to establish that damage exists. 

These hypotheses are tested for those node pairs that have been identified as significant 

damage indicators in the assessment and verification stage of the method.

damage detection algorithm with its different steps is outlined in 

Figure 5.2. There are three phases in the implementation of this algorithm: (i) data 

retrieving and parameter extraction, (ii) validation and accuracy assessment, and (iii) 

and decision making. The next sections of this chapter will present the 

implementation of the algorithm on different simulated and experimental models.

Figure 5.2. Methodology for damage detection 

The physical significance of this hypothesis testing is such that the alternative 

, indicates that the structure has incurred damage, while the null 

eans that there is not adequate evidence to establish that damage exists. 

These hypotheses are tested for those node pairs that have been identified as significant 

damage indicators in the assessment and verification stage of the method. 

damage detection algorithm with its different steps is outlined in 

Figure 5.2. There are three phases in the implementation of this algorithm: (i) data 

retrieving and parameter extraction, (ii) validation and accuracy assessment, and (iii) 

and decision making. The next sections of this chapter will present the 

implementation of the algorithm on different simulated and experimental models. 
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5.6. Simulated Beam-Column Connection 

Since IDDA is developed for detection of local damages, the evaluations are presented 

based on a beam-column connection (which is a local and also a critical structural 

element) as a testbed structural component. In this section, IDDA is validated using a 

simulated model of the beam-column connection. The finite element simulation is created 

using SAP2000. The beam-column shown in Figure 5.1 represents a localized portion of 

a larger structure, for example a single joint in a larger building frame. A joint is a 

location in a structure that is prone to damage due to high stress concentrations at the 

connections. The ability to determine not only the joint, but the location within the joint 

where damage has occurred can lead to more efficient and cost-effective repair solutions 

in a structure. 

The column portion of the joint is fixed at both ends while the beam cantilevers out 

from the centerline of the column. Two simulation conditions are performed which 

include (1) an undamaged baseline condition and (2) a damaged condition, characterized 

by a reduction in the beam stiffness (15% reduction in stiffness). For each of these 

models, displacement response is simulated at each of the 9 nodes for a white noise 

excitation applied at the free end of the beam in the y-direction.  Measurement noise is 

accounted for by adding a Gaussian noise with a standard deviation equal to 5% of the 

root mean square (RMS) of each response signal. Figure 5.3 shows the schematic of the 

simulated beam-column connection and the displacement response at two nodes before 

and after the damage is applied. 
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The influence-based damage detection algorithm is then applied to the simulated data 

and the parameters are extracted. The relative changes in the influence coefficients 

between the undamaged and damaged states are shown for each pair-wise node 

relationship in Table 5.1. The influence coefficients αij, 1 ≤ i, j ≤ 6 all experience very 

small (less than 5%) changes between the undamaged and damaged states. This implies 

that the physical properties between these nodes have not changed significantly. 

However, the coefficients of nodes 1 through 6, paired with nodes 7, 8, and 9 show 

relative changes of between 20-30%. When nodes are on opposite sides of the damage, 

i.e. nodes 1 through 6 are located on the undamaged column, while nodes 7, 8 and 9 are 

located on the damaged part of the beam, the physical properties between the paired 

nodes changes. This physical change is reflected in a more significant relative change in 

the value of influence coefficients. Furthermore, the influence coefficients αij, 7 ≤ i, j ≤ 9 

also experience a noticeable change in coefficients (about 5-10%). This signifies that the 

physical properties of the structure between the nodes associated with α78, α79, and α89 

have changed. Therefore, damage is more likely to exist between these nodes. This is 

consistent with the simulated damage which was applied by stiffness reduction of the 

beam. While functionality of the algorithm is showed throughout this example, its 

performance still needs to be evaluated throughout experimental data. The next section 

shows the implementation of IDDA, including accuracy assessment, post-processing and 

decision making steps, on a beam-column connection model constructed in the 

laboratory. 



 

Figure 5.3. Simulated model and the displacement response in undamaged and damaged 
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Table 5.1. Relative change in influence coefficients, αij, from undamaged to damaged 

states for simulated structure 

 1 2 3 4 5 6 7 8 9 

1   -3.98 -4.25 -4.93 -4.36 -3.64 17.31 24.09 27.16 

2 0.05   -0.83 -1.53 -0.89 -0.79 21.39 28.39 31.58 

3 0.32 -0.27   -1.14 -0.57 -0.41 21.75 28.76 31.97 

4 0.88 0.28 0.12   0.11 0.08 22.53 29.59 32.81 

5 0.03 -0.51 -0.74 -1.32   -0.59 21.49 28.50 31.68 

6 -2.44 -3.60 -3.77 -4.51 -3.77   17.82 24.61 27.71 

7 -17.54 -18.11 -18.32 -18.83 -18.35 -18.20   5.76 8.39 

8 -22.02 -22.56 -22.77 -23.25 -22.79 -22.65 -5.45   5.49 

9 -23.92 -24.45 -24.64 -25.12 -24.67 -24.53 -7.74 -5.43   

 

5.7. Experimental Beam-Column Connection 

IDDA is further verified through implementation on a laboratory beam-column 

connection model. The prototype represents a portion of the beam and column members 

as they come to a local joint. The specimen is tested for both an undamaged and a 

damaged state. To simulate damage in the location of the connection joint, the beam 

member was switched out for a member of lesser wall thickness (corresponding to a 40% 

stiffness reduction). Note that this just represents a reduction in stiffness near the 

connection and not the entire beam element.  
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The structure is instrumented with two sensor networks; one of 9 wired accelerometers 

and another of 9 wireless accelerometers, as shown in Figure 5.4. The wireless 

accelerometers used in this implementation consist of Imote2 processing board combined 

with SHM-A sensor board, integrating tri-axial LIS3L02AS4 (STMicroelectronics, 2005) 

accelerometer with 50 µg/√Hz noise density, developed by Rice and Spencer (2008 & 

2009). The wired sensors, on the other hand, are capacitive accelerometers (PCB 

Piezotronics, Inc. 2004) with 3 µg/√Hz noise density. Due to the lower noise level of the 

wired sensors and their more reliable network, the wired results are used as a direct 

comparison point for the WSN. The reason for having two sensor networks is to compare 

the performance of each and assess the effects of sensing network quality on the damage 

detection process and the level of confidence for decision making.  



 

Figure 5.4. Experimenta
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. Experimental test bed for beam-column prototype instrumented with wired 

and wireless accelerometers 

 
column prototype instrumented with wired 
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To generate acceleration responses, the free end of the cantilever is attached to an 

actuator and excited by harmonic force at a 15 Hz frequency. The wired data is collected 

at a 250 Hz sampling rate with each test lasting 40 seconds. The wireless data is collected 

with the same length as wired data. Using both wired and wireless sensors, the data 

collection is performed simultaneously for direct comparison. The undamaged and 

damaged structures are each tested 15 times. The collected data samples are then 

processed through IDDA to detect the occurrence of damage. This experiment serves as 

both a validation of the method with a real structural connection as well as a comparison 

of efficiency of the two sensor networks with different noise levels, which reveals the 

sensitivity of method to the sensing quality. The results of the implementation of the 

algorithm using wired sensors are presented in this section and the comparison of sensor 

network results are discussed in the next section. 

Accuracy Assessment and Verification of Influence Coefficients 

Having 9 sensors, 72 influence coefficients can be obtained by performing linear 

regression and presented in Table 5.2. Once the coefficients have been calculated from 

the acceleration data, the estimates must be assessed to identify the most significant 

indicators, which can then be used for damage detection. The evaluation accuracy, EA 

and estimation error, γ are integral for this accuracy assessment. By inspection of these 

parameters, different trends can be identified in the undamaged and damaged parameters, 

with different estimation errors and evaluation accuracies. These trends have been 

designated as six different regions, whose mean values are presented in Table 5.3. In this 
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table, the average accuracy of pairs at different regions is rated from high to low and their 

corresponding locations are presented to describe the reason for different accuracies. 

Region 1 in the table corresponds to the least estimation error and highest accuracy, and 

region 6 corresponds to the greatest estimation error and lowest accuracy. Therefore, 

parameters in region 1, consisting of αij, 7 ≤ i , j ≤ 9, are the most accurate and have the 

least error. This is a reasonable outcome as the actuator applies force at the end of the 

beam, closest to nodes 7, 8, and 9. This proximity and boundary condition result in larger 

amplitude of excitation at these nodes compared with that of the column nodes, thus, 

corresponding to a higher signal-to-noise ratio (SNR) of the data at these nodes. A higher 

SNR correlates to better quality data and more accurate results. 

On the contrary, region 6, which consists of parameter α16, exhibits the poorest 

accuracy and the greatest estimation error. This can be accounted for by the fact that each 

of these nodes is located at either end of the column near the fixed ends. These boundary 

conditions restrict the column from movement closest to the support, greatly reducing the 

magnitude of the acceleration signal and thus, the SNR of these nodes. Figure 5.5-(a) to 

(f) show examples of α from different regions and their corresponding EA and γ. Figure 

5.5-(a) shows that EA is almost equal to unity and γ is almost equal to 0 for region 1. The 

EA and γ values for a region 3 pair, shown in Figure 5.5-(c) also exhibit accurate values, 

although not quite as accurate as region 1. Figure 5.5-(f), however, shows a much lower 

EA and a noticeably higher γ associated with region 6. Based on similar data for all 6 

regions, it can be concluded that regions 1 through 3 contain the most accurate data and 
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thus the most useful damage indicators. On average, these influence coefficients exhibit 

accuracy greater than 98% and estimation error less than 0.2%. 

Post Processing and Damage Detection 

Based on the accuracy assessment, region 1, 2, and 3 coefficients are considered for 

damage detection. Figure 5.6-(a) shows the average percent changes of a few pair-wise 

coefficients in different regions on their corresponding locations. This further supports 

the theory that nodes on opposite sides of damage show the greatest change, while nodes 

with no damage between them show a significantly smaller change. Pairs with nodes 

within the damage location show some change, but not as large as that of nodes on 

opposite sides. The reason for this is that when both nodes are within the damaged area, 

both nodes experience similar increases in flexibility, resulting in a less severe 

differential. Therefore, inspection of the pattern of changes in pair-wise coefficients 

points to the location of damage within the structure (i.e. damage between nodes 2 and 7, 

3 and 8, and so forth). 
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Table 5.2. Relative change in influence coefficients, αij, for experimental structure 

 

Node 1 2 3 4 5 6 7 8 9 

1  2.91 5.22 8.57 2.26 1.37 16.65 27.39 31.76 

2 2.16  1.21 12.75 6.36 6.40 21.44 32.65 37.22 

3 4.15 1.10  13.22 6.96 7.19 22.56 33.91 38.54 

4 12.17 15.04 16.64  6.44 6.87 4.63 14.24 18.12 

5 5.67 8.62 10.21 6.68  0.22 12.21 22.50 26.65 

6 7.09 9.17 10.59 5.51 0.86  11.36 21.55 25.64 

7 15.54 18.10 19.24 6.35 11.93 12.03  9.28 13.06 

8 22.78 25.11 26.13 14.40 19.51 19.62 8.52  3.49 

9 25.44 27.67 28.65 17.37 22.30 22.42 11.63 3.38  

 

 

Table 5.3. Trend regions according to average estimation error (γ) and evaluation 

accuracy (EA) 

Region Influence Coefficients 
Location of pairs on the beam-

column connection model 
γij 

Average 
EAij 

Average 

1 α78, α79, and α89 Between nodes on the beam 0.0001 1.000 

2 α23 and α45 
Between nodes on each side of 

column (except 1 & 6)  
0.0005 0.998 

3 
α27, α82, α29, α37, α38, α39, 
α47, α48, α49, α57, α58, and 

α59 

Between nodes on the beam with 
those on the column (except 1 &6 ) 

0.0012 0.985 

4 α12, α13, α46, α52 and α56 Between nodes on the column 0.0015 0.975 

5 α17, α18, α19, α67, α68, and α69 
Between nodes on the beam with 

those on the column’s ends 
0.0018 0.967 

6 α16 Between two ends of the column 0.0161 0.889 
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Figure 5.5. Pair-wise coefficients (α), estimation accuracy (EA), and evaluation accuracy 

(γ), for region 1 (a) to region 6 (f) 
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Figure 5.5 (Cont’d). Pair-wise coefficients (α), estimation accuracy (EA), and evaluation 

accuracy (γ), for region 1 (a) to region 6 (f) 
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Hypothesis Testing for Significant Damage 

The difference between undamaged and damaged coefficients can be indicative of the 

existence and location of damage in a structure. However, in practical scenarios, it is not 

easy to determine when damage has occurred, and make inferences at different 

confidence levels. Therefore, another element must be added for complete damage 

detection: a statistical framework. 

The hypothesis testing plot graphically shows the change point of damage, the point at 

which damage is identified at a certain confidence level, by plotting the test statistic 

against the test run number. A graph in which the data crosses the confidence bounds, 

either positive or negative, corresponds to a positive hypothesis, previously defined as HA 

in Equation (5.9), indicating the detection of damage. If the accuracy and estimation error 

associated with the nodes being considered are high and low, respectively, the prediction 

of the hypothesis test will be more exact and will cross the confidence bounds closer to 

the occurrence of damage. In order to demonstrate this behavior, the test statistic from the 

15 damaged state tests were plotted against their run number. Because damage exists for 

all of the plotted data, the more accurate damage indicators will yield a plot in which the 

confidence bounds are crossed closer to the occurrence of damage. 



 

Figure 5.6. Relative change of some of coeffi
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. Relative change of some of coefficients, (b) hypothesis testing results for 
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the region 1 and region 3 coefficients in Table 5.2 (regions shown in Table 5.3) 

experienced 4-14% and 10-30% average changes, respectively. These parameters cross 

the bound after only 4 and 5 runs, respectively, whereas, the region 2 coefficients, with 1 

to 7% change, take 7 runs to confidently show damage. This suggests that when a statistic 

crosses the bound first, compared to coefficients of similar accuracy, it is more important 

to the damage location. Therefore, these plots demonstrate that damage is detected by 

hypothesis testing, making this method a reliable means of damage detection. 

Comparison of Wired and Wireless Sensor Networks 

In order to consider realistic application of the proposed damage detection method, 

there must be a reliable and affordable sensor network with which to instrument the 

structure. Continued advancements in wireless sensor technology strive to fulfill that role. 

Although researchers have shown the effective role of WSN in improving the 

affordability of monitoring (ease of implementation and reducing the costs), their 

possible impact on the reliability and accuracy of the results is still a question. As 

discussed in Chapter 4, it is important to assess the effects of application of WSNs on 

reliability of results in SHM applications. By having the two wired and wireless sensor 

networks installed on the specimen for simultaneous data collection, direct comparison of 

result is possible. This way the sensitivity of the proposed algorithm to the characteristics 

of the sensor can be also investigated. 
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Figure 5.7. Comparison of wired versus wireless data in both the time and frequency 

domains 
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Figure 5.8. Comparison of relative change of coefficients between wireless and wired 

During the tests data was collected using two previously mentioned sensor networks 

(wireless and wired) simultaneously. By collecting data at the 

results due to varied environmental noise between the two datasets are avoided. 

Therefore, any differences that appear between the two sets can be attributed to sensing 

network quality. Figure 5.7 shows a comparison of the data co

with the largest recorded amplitude, in both the time and frequency domains. Both 

signals show the harmonic response due to the harmonic excitation clearly with low 

visible noise. Similarly, the frequency content of each sensor 

show a dominant peak at the forcing frequency of 15 Hz. However the wireless data 

contains more noise at high frequencies as well as at very low frequencies.

Figure 5.8 also shows the relative change for selected nodal pairs of the

wired datasets. The changes at 

243 

. Comparison of relative change of coefficients between wireless and wired 

sensor data 

During the tests data was collected using two previously mentioned sensor networks 

(wireless and wired) simultaneously. By collecting data at the same time, differences in 

results due to varied environmental noise between the two datasets are avoided. 

Therefore, any differences that appear between the two sets can be attributed to sensing 

network quality. Figure 5.7 shows a comparison of the data collected at node 9, the node 

with the largest recorded amplitude, in both the time and frequency domains. Both 

signals show the harmonic response due to the harmonic excitation clearly with low 

visible noise. Similarly, the frequency content of each sensor type is comparable; both 

show a dominant peak at the forcing frequency of 15 Hz. However the wireless data 

contains more noise at high frequencies as well as at very low frequencies.

Figure 5.8 also shows the relative change for selected nodal pairs of the

wired datasets. The changes at α85, α82, and α52 of the WSN are comparable to the 

 
. Comparison of relative change of coefficients between wireless and wired 

During the tests data was collected using two previously mentioned sensor networks 

same time, differences in 

results due to varied environmental noise between the two datasets are avoided. 

Therefore, any differences that appear between the two sets can be attributed to sensing 

llected at node 9, the node 

with the largest recorded amplitude, in both the time and frequency domains. Both 

signals show the harmonic response due to the harmonic excitation clearly with low 

type is comparable; both 

show a dominant peak at the forcing frequency of 15 Hz. However the wireless data 

contains more noise at high frequencies as well as at very low frequencies. 

Figure 5.8 also shows the relative change for selected nodal pairs of the WSN and 

of the WSN are comparable to the 



244 
 

changes expected from the wired results. The change at α89 from the WSN is a bit larger 

than that of the wired, but still on par with other nodal pairs of its type (beam-beam 

within damage). On the other hand, a notable inconsistency is seen in two of the column-

column nodal pairs, α12 and α56. The WSN shows significantly larger changes, almost 10 

times larger than those seen in the wired results. This drastic variation can be explained 

by the EA and γ values of these two coefficients having significantly lower accuracies 

(less than 0.9) compared to the other four WSN values and the wired values. Lower 

accuracy correlates to lower reliability. Consequently, these coefficients would not be 

considered as trusted damage indicators.  
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Figure 5.9. Comparison of Bayesian Testing Results, wired vs. wireless networks 

16 18 20 22 24 26 28 30

-3

-2

-1

0

1

2

3

Run Number (After Damage)

t 
S

ta
ti

st
ic

a) Bayesian Test for  α
82

Wireless
Wired

95 % Confidence
Level

16 18 20 22 24 26 28 30

-3

-2

-1

0

1

2

3

Run Number (After Damage)

t-
S

ta
ti

st
ic

b) Bayesian Test for  α
52

Wireless

Wired

95 % Confidence
Level



246 
 

 

 
Figure 5.10. Comparison of influence coefficient changes, evaluation accuracies and 

estimation error for two pair-wise nodes (8-2 and 5-2), wired vs. wireless networks 
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A further verification of the wireless sensor network is obtained via inspection of the 

hypothesis testing results. The corresponding result for pair-wise coefficient 8-2 and 5-2 

is presented in Figure 5.9. The first observation from these plots is that the wired sensor 

system is the first system that identifies the occurrence of damage. This is reasonable 

based on the higher accuracy associated with wired system compared with this particular 

WSN in all the results. Figure 5.10 shows a direct comparison of influence coefficients 

α82 and α52 and their corresponding evaluation accuracy and estimation errors. While both 

sensor networks reflect the change in the influence coefficients (i.e. indicate the damage), 

the accuracy of wired sensor results is higher. The performance of wireless sensors, 

however, is still acceptable since it does detect the damage with 95% confidence level, 

according to the hypothesis tests, even though this is detected after its detection by the 

wired system. Based on the presented comparison points it can be seen that the WSN, 

while exhibiting higher noise than the wired network, is still effective in localizing the 

onset of damage. This higher noise is a worthwhile tradeoff when considering the 

significant difference in the cost and implementation difficulties between the two 

networks. 

5.8. Large-scale Experimental Prototype for Validation of the Algorithm 

The model of the previous applications has idealized the damage as the beam is 

replaced with a member of known characteristics to simulate damage. Also, the entire 

beam section, designed to mimic the portion of the beam closest to the connection, has 

uniform damage, which is unlikely to occur in a real structure. Therefore, there is a need 
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to verify this method for full-scale structures exhibiting more realistic damage scenarios. 

Moreover, the performance of this algorithm is validated through the use of acceleration 

response and it is important to verify the use of other commonly used and affordable 

sensor types, in this case strain gauges, as well. In this section, the performance of the 

damage detection algorithm is evaluated for a large-scale steel moment connection, 

constructed and tested at the Advanced Technology for Large Structural Systems 

(ATLSS) Center at Lehigh University. The testbed structure was designed for use in an 

earthquake-prone structure and was tested for validation and performance evaluation. 

Large-Scale Implementation - Test Setup  

A new design of moment-resistant beam-column connection was developed by 

engineers at a design corporation for implementation in large-scale building structures to 

resist seismic loads. Because the designed connection was to be implemented in an 

important building structure in an earthquake prone area (a hospital in California), it is 

subject to the seismic qualification requirements as set forth by the California Building 

Code (CBC). Therefore, the sample specimens were tested under increasing cyclic loads 

at the ATLSS Center at Lehigh University for design verification and performance 

evaluation.  

According to these requirements, the specimen must sustain at least two full cycles of 

an inelastic drift angle of 0.03 radians and at least two full cycles of an inter-story drift 

angle of 0.04 or more radians without failure. Progressive drift sequences were applied 

using parallel hydraulic actuators at the end of the beam, with the columns fixed to the 
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strong wall and the strong floor. A view of the tested specimen is shown in Figure 5.11 

and the drift sequence is summarized in Table 5.4. The required displacement at the end 

of the beam is calculated from the inter-story drift angle, θ, the length of the beam, Lb, 

measured between the column centerline and the line of applied load’s action.  

The beam and column members of the subassembly were fabricated from ASTM 

A992 steel. The beam cross section was W40x294 and the column was W36x395. Plates 

of the connection also were fabricated from ASTM A572 Grade 50 steel. The specified 

minimum CVN toughness was 40 ft-lb at 70 °F. 

Table 5.4. Drift sequence applied to test structure 

Number of cycles 6 6 6 4 2 2 2 2 

Angle of drift 
(radian) 

0.00375 0.005 0.0075 0.01 0.015 0.02 0.03 0.045 

Beam end 
displacement (mm) 

16.57 22.10 33.15 44.20 66.29 88.39 132.59 198.88 

 

Based on the testing specification, the specimen is subject to increasing cyclic loads 

until failure. The specimen is instrumented by a variety of sensors (strain gauges, 

displacement sensors, and rotation sensors) to capture the behavior of the connection 

throughout the loading. The global behavior of the subassembly is assessed by evaluating 

the applied load versus beam tip displacement relationship. Figure 5.12 shows the applied 

load against the beam end displacement. The total displacement at the end of the beam is 

formed resulting from various action-deformations such as: flexural deformation of the 

column, shear deformation of the panel zone, shear deformation of the side plates, 

flexural deformation of the side plate, deformation of the beam at the end of the 
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connection, and flexural deformation of the beam. Details about the contribution of each 

action-deformation and the resulted behavior of the connection can be found in Hodgson 

et al, 2010. 

 

 
Figure 5.11. Test setup with strain gauge instrumentation plan 
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Figure 5.12. Applied load versus the beam end displacement 

As the cyclic load is applied increasingly, the connection experiences a 

progressive damaging scenario, providing a suitable test-bed for examination of the 

damage detection algorithm. In addition to the densely instrumented sensors for structural 

performance evaluation, 5 strain gauge sensors are installed for the application of the 

damage detection algorithm and their location are shown in Figure 5.13. As can be seen 

in this figure, gauges 1 and 2 are installed at third points on the top flange of the beam, 

gauge 3 directly below gauge 1 on the bottom flange of the beam, and gauges 4 and 5 on 

the outside flange at the midpoint of each column. This configuration was designed 

considering an affordable and practical instrumentation for real-life structural systems. 

Having 5 sensors distributed around the connection provide effective information while 

does not cause data overwhelming.  
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Figure 5.13. The layout of sensor for use in damage detection algorithm

Damage Progression 

During the pseudo-static cyclic loading test, as the targeted drift angle in

connection experienced different damages, ranged from slight yielding in some sections 

to deep fractures and failure. Inspection of the connection during the loading cycles by 

means of full monitoring equipment allowed documenting the progression 

damage (the specimen was whitewashed in order to make yielding visible and help in 

illustration of damages). Accordingly, damages are classified to 10 damage states (from 0 

to 9), where state 0 indicates intact structure and state 9 indicat
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. The layout of sensor for use in damage detection algorithm 

static cyclic loading test, as the targeted drift angle increased, 

connection experienced different damages, ranged from slight yielding in some sections 

to deep fractures and failure. Inspection of the connection during the loading cycles by 

means of full monitoring equipment allowed documenting the progression and location of 

damage (the specimen was whitewashed in order to make yielding visible and help in 

illustration of damages). Accordingly, damages are classified to 10 damage states (from 0 

es complete failure of the 
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connection. The condition of the connection in different damage states are summarized in 

Table 5.5. Each set of drift cycles is designated with a respective damage classification. 

The progression of visible damage is also shown in Figure 5.14 beginning with damage 

class 4. It should be noted that the connections performance was satisfactory as it met the 

requirements of CBC and AISC 7 for seismic design. Performance of the beam-column 

connection is explained in depth in Hodgson et al, 2010. 
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Figure 5.14. Different states of damage 
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Table 5.5. Observed damages during different angle drifts 

Damage 

State 

Angle of 

Drift 

(radians) 

Damage Observations 

0 
0.00375 
& 0.005 

None 

1 0.0075 Onset of yielding under bottom of cover plate 

2 0.01 
Some slight yielding on the beam flange (extreme fiber) / More yielding 
on the bottom cover plate 

3 0.015 
Yielding in the web about 1/5 of beam depth / More yielding on the 
bottom cover plate / Yielding in the through-thickness of beam flange / 
Yielding in the top and bottom of beam flange 

4 0.02 

Web yielding of beam increased to 1/3 beam depth / More yielding on the 
bottom cover plate / More yielding on the beam flanges (top and bottom of 
both) / Small crack (1/2in) in top cover plate to beam weld (bottom side) / 
2 small crack (1in) in top cover plate-to-beam weld 

5 0.03 

Extremely yielding in the bottom cover plate / Considerable yielding in 
beam bottom flange / Web yielding more than 1/3 beam depth / Top cover 
plate separated from beam / Crack of top cover plate-to-beam weld 
(bottom side) opened up to 2in / Cracks of top and bottom cover plate-to-
beam weld (top side at cut-out) opened more than 2.5in 

6 0.045 

Web start to buckle / Top flange start to buckle / Bottom cover plate 
separated from the beam / Plastic hinge completely formed / Bottom cover 
plate-to-beam weld crack propagated / Bottom flange started to buckle (at 
the end of cycle) / Web buckled at lower depth of beam / Small crack in 
side plate-to-column weld (left side) 

7 0.05 
Top flange buckling increased / Web buckling increased / Bottom flange 
buckling increased / Bottom web buckling increased / Crack in cover 
plate-to-beam weld stopped where the beam-to-side plate weld starts 

8 0.06 
Top cover plate-to-beam weld crack propagated to the base metal (beam 
flange) about 1/4in 

9 0.07 
Fracture from the bottom flange propagated into the web more than half 
the depth of beam 
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Implementation and Validation - Pre-processing of Strain Data 

Prior to processing the data through the algorithm, the strain responses were 

considered in comparison to one another as well as versus time. Figure 5.15 shows the 

time histories of the strain responses and the applied load. It should be noted that, at the 

beginning of this plot, the cycles within the data are relatively uniform, but become less 

uniform as the testing continues, along with the increase of damage. Also, it can be seen 

that there are intermittent flat portions of the strain data, corresponding to a constantly 

held load at both the peaks and valleys of each load cycle.  

To examine the linearity of the strain response, they are plotted versus one another. 

Figure 5.16-a presents an example of a strain versus strain plot for the two gauges on the 

column, while Figure 5.16-b shows a strain versus strain plot for two of the gauges on the 

beam. Figure 5.16-a shows a case in which the relationship between the two responses 

remains mostly linear throughout all cycles with small changes in slope over time 

whereas Figure 5.16-b shows the result of excessive yielding. A structure exhibits linear-

elastic behavior prior to a damaging event, experiences nonlinear behavior during an 

extreme event, and then returns to an altered linear-elastic state following the damaging 

event. It is clear that using the entirety of the data set produces results with high 

nonlinearity and error. Therefore, portions of the data which best exhibited a linear 

relationship are used in implementation of the algorithm (note that the algorithm is based 

on linearity of the system). For this purpose, the responses corresponding to loads within 

200 kips are separated from the rest of the data (strain-strain and load-strain relationships 



 

in these portions are linear). This cutoff is chosen

for the first drift in which the structure remained undamaged and purely linear

This ensures that only strains from before and after the damaging events are used.
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in these portions are linear). This cutoff is chosen because 200 kips is the maximum load 

for the first drift in which the structure remained undamaged and purely linear

This ensures that only strains from before and after the damaging events are used.

5.15. Strain response and applied load time histories

because 200 kips is the maximum load 

for the first drift in which the structure remained undamaged and purely linear-elastic. 

This ensures that only strains from before and after the damaging events are used. 

 
. Strain response and applied load time histories 
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Figure 5.16. Strain response against one another: (a) location 4 vs. 5 and (b) location 1 

versus. Location 3 

 

-800 -600 -400 -200 0 200 400 600
-600

-400

-200

0

200

400

600

Strain at Location 4 (µε)

S
tr

ai
n

 a
t 

L
o

ca
ti

o
n

 5
 ( µ

ε)

-3000 -2500 -2000 -1500 -1000 -500 0 500 1000 1500
-5000

-4000

-3000

-2000

-1000

0

1000

2000

Strain at Location 1 (µε)

S
tr

ai
n
 a

t 
L

o
ca

ti
o
n
 3

 ( µ
ε)



259 
 

Considering each loading and unloading portions of the recorded responses (when 

loads are within 200 kips) as a separated monitoring events, total of 135 time-windows 

are available. During the sequence of time-windows, while the loading range is constant, 

the structure experiences different damages as stated in Table 5.5. The influence 

coefficients corresponding to each of time-windows are computed for pair-wise nodes. 

Figure 5.17 shows the influence coefficient corresponding to nodes 2 (on the beam) and 4 

(on the column). In this figure, different damage states are shown along the influence 

coefficients to illustrate the sensitivity of this damage indicator to the health/damage state 

of the beam-column connection. As Figure 5.17 shows, due to progression of damage, the 

influence coefficients start increasing variation above and below the baseline value. This 

non-monotonic change in their values is due to non-symmetric damaging events (e.g. 

yielding of either top or bottom and fracture in one side of the connection) and different 

behaviors under downward and upward, loading and unloading. For example, if there is a 

crack in the top of the beam, when the beam is loaded downward, this crack will open 

further showing more damage. However, when the beam is loaded upward, this same 

crack will likely close and the structure will see less asymmetry. To further investigate 

the variation of influence coefficients due to the progression of damage, the loading and 

unloading sections are considered separately and the changes percentages in the 

coefficients are inspected for each. Figure 5.18 shows the influence coefficient between 

nodes 2 and 4 in different loading scenarios: upward loading, upward unloading, 

downward loading, and downward unloading. 
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Figure 5.17 and 5.18 show that the migration of influence coefficients from the 

baseline becomes noticeable as soon as the damage state 2, where some slight yielding on 

the beam flange (extreme fiber) and on the bottom cover plate is observed. These 

damages have happened due to loadings and achieving 0.01 radian drift angle in the prior 

step. As the yielding propagates in the other locations like web and flanges of the beam 

(damage state 3), the variation of influence coefficients becomes even more noticeable. 

Figure 5.18 also represents the two parameters of evaluation accuracy and normalized 

estimation error. As explained earlier, these parameters reflect the reliability of the 

influence-coefficient in detecting changes in the structural behavior. It can be seen that in 

the least accurate portion of the data, the value of evaluation accuracy is still less than 

0.01 and the normalized estimation error is beyond 0.95.  

To correlate the different states of the damage to the changes in the influence 

coefficients in different locations, one loading scenario is selected and the changes are 

tracked throughout the damage progression. The first loading condition to be considered 

is the downward loading (DL) in which the free end of the beam is being pushed 

downward. The percent change values for each DL damage class compared to the 

baseline DL values are shown for select node pairs in Table 5.6. It can be seen that in 

damage state 1 all of the percent change values are less than 1%. These negligible 

changes are consistent with the mild yielding observed on the bottom cover plate and the 

beam flange. 



 

Figure 5.17. Variation of influence coefficient between nodes 2 and 4 in different time 
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. Variation of influence coefficient between nodes 2 and 4 in different time 

windows 

 
. Variation of influence coefficient between nodes 2 and 4 in different time 
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Figure 5.18. Variation of influence coefficient between nodes 2 and 4 for different 

loading scenarios 
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Figure 5.18 (Cont’d). Variation of influence coefficient between nodes 2 and 4 for 

different loading scenarios 
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Table 5.6. Change percentages during different damage states 

Influence 
coefficient 

 Change Percentage (%) 

Damage 
state 1 

Damage 
state 2 

Damage 
state 3 

Damage 
state 4 

Damage 
state 5 

Damage 
state 6 

Damage 
state 7 

Two sides 
of damage 

4 and 2 0.43 7.15 88.01 88.46 155.21 199.47 135.15 

5 and 2 0.33 5.37 66.01 66.34 116.41 149.60 101.37 

One side 
of damage 

1 and 3 0.70 1.67 5.87 1.04 2.35 106.70 132.41 

1 and 2 0.44 1.04 28.35 21.38 23.26 89.19 113.00 

4 and 5 0.18 0.42 5.84 41.72 44.17 71.68 88.54 

 

In the damage state 2 slight increases in change is observed. When yielding is seen in 

the bottom cover plate, in the top and bottom beam flanges, and at 1/5th locations of the 

web in the vicinity of the connection, more notable changes (5% - 7%) are seen in α2-4 

and α2-5, of which have nodes located on either sides of the damage, compared to α1-3 and 

α1-2 of which have nodes located on one side of the damage. However, the change rates in 

coefficients of the pairs with nodes on opposing sides of damage (α2-4 and α2-5) are 

somewhat different. This asymmetry in coefficients is likely due to the asymmetry seen 

in the damage, with more yielding on one side of the beam.  

The damage state 3 presents significant offset in percent changes. During the 

corresponding drift (0.015 rad), yielding occurred in different locations: beam web, cover 

plate, and through the thickness and bottom and top of the beam flange. In this damage 

state, the largest changes are that of α2-4, α2-5 and then α1-2. As nodes on the column are 

isolated from these damages, the associated influence coefficients experience very slight 



265 
 

percentage changes. The same scenario is applicable for the coefficient between node 1 

and 3, as they are distant from the location of the damage. 

Another significant offset happens at the damage state 5 when damage is incurred with 

a considerable beam flange and web yielding, extreme yielding of the bottom cover plate, 

and separation of the top cover plate from the beam. The largest changes are again seen 

in α2-4, α2-5 as these coefficients correspond to beam-column pairs with nodes on either 

side of damage due to the heavily concentrated beam damage.  

During damage state 6 severe damages are incurred, including beam web buckling, top 

and bottom beam flange buckling, bottom cover plate separation from the beam, and the 

complete formation of a plastic hinge in the beam.  

From the damage state 6 to the damage state 7, there is a decrease in the percent 

changes of coefficients α2-4, α2-5. The likely cause of this is the formation of the plastic 

hinge, which resulted in out-of-plane bending of the beam which changes the relationship 

between nodes. Despite the decrease in the change percentage, the noticeable percent 

changes are still concentrated at nodal pairs surrounding the observed beam damage. The 

damage observed in this state also consists of severe buckling of the beam flanges. 

Based on the data corresponding to downward loading, the coefficients show decisive 

changes during the damage states 3 and 5. Similar trends are also observed through 

inspecting other loading scenarios. While the variation of influence coefficients from the 

baseline through different states represents the existing damage with good accuracy, to 
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make comparison and have a confident conclusion about existence and location of the 

damage, a statistical tool is still needed. This is addressed through the use of Exponential 

Weighted Moving Average (EWMA) process and Cumulative Sum (CUSUM) process 

for change point detection. 

Statistical Change Detection 

A statistics which can be used for detection of changes is Exponential Weighted 

Moving Average (EWMA). This approach is suitable in change detection when here is an 

online observation of data (i.e. change is to be detected through the as the data is 

collected).  EMWA is an easy to implement control scheme for detecting small shifts in 

the mean of a process. This is based on the statistic 

£, = H�, + �1 − H�£,	                                (5.12) 

where Zi is the EWMA at time index i and λ is the controlling parameter and is selected 

to be between 0 to 1. This control scheme is always accompanied with upper and lower 

control limits (UCL and LCL) which are defined as multiples of the standard deviation of 

the control statistic: 

¤�¥ = ¥. j¦                                   (5.13) 

where L is another parameter of the EWMA and is usually chosen to be around 3 (Amiri 

and Alahyari, 2011). The standard deviation of the control statistic can be computed 

from: 
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j¦5 = [A1 − �1 − H�5,E. H/�2 − H�]j�5               (5.14) 

UCL and LCL are used as boundaries for control statistic, Zi; as the value of Zi crossed 

the limits, the change in the observed data can be concluded.  

 

 
Figure 5.19. Exponentially Weighted Moving Average for detecting the change point 

during the observations (correlation function between nodes 4 and 2) 
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Figure 5.19 (Cont’d). Exponentially Weighted Moving Average for detecting the change 

point during the observations (correlation function between nodes 5 and 2) 
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assumed to be 0.6, to follow the literature (Amiri and Alahyari, 2011). It is observed that 

the results of EWMA from the data of this experiment are not very sensitive to the value 

of λ, if it is selected to be between 0.3 and 0.6. This statistic highlights the change at 

around 26th time-window which corresponds to damage state 4. This state represents a 

relatively intense damage in the connection as it corresponds to  web yielding of beam 

increased to 1/3 beam depth, yielding on the bottom cover plate and the beam flanges 

(top and bottom of both), and some small crack (1/2in) in top cover plate. One may argue 

that this state of damage is intense enough not to need statistical framework to realize it. 

However, when generalizing the approach and using it as an automated algorithm, having 

a criterion for decision making is essential.  

To have a more responsive statistics, a more sensitive process can be selected. Another 

approach for detecting the change point over a vector of observed data is Cumulative 

Sum (CUSUM) chart. CUSUM is constructed by calculating and plotting a cumulative 

sum based on the data and is an easy approach for implementation. Let [¨ , ¨5, … , ¨a] be 

the influence coefficients, the CUSUM, [��, � , … , �a], can be calculated as: 

 S0=0      5.15 

 Si=Si-1 + (Xi- 6̈)                  5.16 

The CUSUM is the sums of the differences between the values and the average.  It 

should start at zero and eventually end up to zero.  A segment of the CUSUM chart with 

an upward slope indicates a period where the values tend to be above the overall average. 
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Similarly, a segment with a downward slope indicates a period of time when the values 

tend to be lower than the average. A change in the slope of the chart indicates a change 

point in the data. The cumulative sum indicator can be used to tell at which point there is 

a change. This change point would occur where the magnitude of the CUSUM chart is 

furthest away from zero considering the chart begins and ends at zero. When using the 

CUSUM chart for the damage detection in the beam-column connection, there should be 

one change point: the change from the current state to a point corresponding to a 

significant damage.  

Figure 5.21 presents the CUSUM against the time-windows for two selected pairs of 

nodes (2-4 and 2-5) for two different loading scenarios of downward loading and upward 

unloading. As explained earlier, the detected change point in this algorithm is the point in 

which CUSUM is maximum or minimum (furthest away from zero). Figure 5.21 shows 

that the detected change point is around the 23rd time-window which corresponds to 

transition of damage state 2 to damage state 3. It represents the transition from some 

slight yielding on the beam flange (extreme fiber) and the bottom cover plate to higher 

level of yielding in the web (about 1/5 of beam depth), the bottom of cover plate and 

yielding in the through-thickness of beam flange. As can be seen, CUSUM is more 

sensitive to the change and it identifies the damage state earlier than the EWMA.  
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Figure 5.20. Cumulative Sum versus the time-window for detecting the change point in 

the observed correlation coefficients between points 4 and 2 
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Figure 5.21 (Cont’d). Cumulative Sum versus the time-window for detecting the change 

point in the observed correlation coefficients between points 4 and 2 
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5.9. Summary of Damage Detection Algorithm and Validation 

An influence-based damage detection algorithm (IDDA) is introduced in this chapter 

which is based on the regression of the structural response at different locations. The 

algorithm is integrated with accuracy indicators and statistical frameworks to enable 

evaluation of the significance of the damage as well as estimation of its location, when 

the damage is detected. To validate IDDA, it is implemented on an analytical and two 

experimental models and its performance is evaluated. It is illustrated that the selected 

damage indicators effectively reflect the structural damage which were simulated in the 

analytical and imposed to the experimental models. During the implementation of the 

algorithm on the first experimental model, two different networks of wired and wireless 

sensors were utilized. While validating the performance of IDDA, the damage detection 

resulted from data from each of the two sensor networks were compared and the 

sensitivity of the algorithm to the sensor characteristics was investigated. The result 

showed that both sensor networks are able to reflect the change in the influence 

coefficients and detect damage. However, the accuracy of the wired sensor results was 

higher, as the noise level of the utilized sensors was lower. The performance of the 

wireless sensor network, however, was acceptable as it detected the damage with 95% 

confidence level, even though it did later than the wired system.  

The second experimental model was a large-scale beam column connection which was 

tested under cyclic loading up to its failure. In this implementation, strain data collected 

from a set of 5 strain gauge sensors were used. The damage states were defined based on 
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the observed yielding of different elements of the beam-column connection, including 

beam’s web and top and bottom flanges, the cover plates, and the column’s flanges. The 

changes in the correlation coefficients were tracked and the point with significant change 

was identified through the use of two different statistics: EWMA and CUSUM. It is 

shown that the later approach is more sensitive and the detected point is in an earlier state 

of damage.  

This chapter also presented evaluation of the performance of the introduced damage 

detection algorithm in presence of different measurement noise. The effect of sensor 

quality is evaluated by comparing the resulted quality metrics. Additionally the 

established statistical framework for detection of occurrence of damage is used to 

evaluate the performance of each measurement systems (wireless versus wired sensor 

networks). It is shown that the high quality data results in more accurate outcomes and 

the low quality data results in a delay in indicating damage. 
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Chapter 6 

Field Deployment - Application of state 

of the art in measurement for vibration 

evaluation of a tall building 
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6. Application of state-of-the-art in measurement and data analysis techniques for 

vibration evaluation of a tall building 

6.1. Introduction to the Field Deployment 

Advancements in sensing and data acquisition technology have made monitoring of 

structures and infrastructure more affordable and, at the same time, more comprehensive. 

Examples of such advancements are application of wireless technology for 

communication, the utilization of fully automated systems for long-term monitoring, and 

the remote control of the sensing system over internet. While each of these technologies 

has been used in different structural health monitoring (SHM) projects in the recent years, 

inclusion of an all-in-one sensing system represents the state of the art in measurement 

techniques. This chapter presents the integration of all of above-mentioned advanced 

monitoring approaches in one sensing system for forensic quantification of an in-service 

tall building. The inclusive measurement and monitoring system along with advanced 

data analysis techniques enabled extraction of detailed information about dynamic 

characteristics of the building structure and development of reliable conclusions 

regarding its performance. It is shown that the performance of the investigated structural 

components is satisfactory in terms of strength demand. However, the level of vibration 

in some portions of the structure does not meet limits of human comfort. In addition, 

wind speed spectrum, acceleration response spectrum and the modes of lateral vibration 

are extracted to assist with evaluation of the structure's performance in terms of lateral 

vibration under the effects of wind speed fluctuation. 
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6.2. Vibration monitoring of structures 

In the past few decades the philosophy of structural design has been complemented by 

including a focus on the in-service performance of structures. This change is rooted in the 

concept of performance-based design which is explained, in brief, as “practice of thinking 

and working in terms of ends rather than means” (Gibson, 1982). A fundamental step in 

this practice is the validation and verification of the resulted design against the objective 

performance. This step, in design of new structures, is usually achieved by the means of 

modelling and simulation. In existing structures, however, reliability is achieved through 

instrumentation, measurements, and assessment of the constructed structure. The goal of 

instrumentation and measurement goes beyond validation of design when there are 

concerns over the performance of a structure or when an evaluation is needed to develop 

maintenance strategies. Although the literature shows significant research efforts in the 

advancement of instrumentation techniques for evaluation of in-service structural systems 

(Lynch & Loh 2006; Wong, 2007), the existing applications still face practical difficulties 

in many cases. The mentioned difficulties usually result from either limited budget 

designated to instrumentation, or restrictions imposed by the operation of in-service 

structures (e.g., limited monitoring duration or limited access to structural elements). For 

example, instrumentation of Tsing Ma Bridge in Hong Kong (with more than 350 sensing 

channels) is one of the largest monitoring projects which has provided significant amount 

of information concerning the performance of the bridge (Ko & Ni, 2003). However, the 

instrumentation cost is reported to be approximately $8 million (Farrar, 2001) which is 
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prohibitively high. Celebi (2002) also presents a survey on the instrumentation and 

monitoring of building structures for seismic studies and estimates $4K per sensing 

channel (where $2K is allocated to labor and cabling) for monitoring of tall buildings 

which is not affordable for many building’s owners and administrators.  

Recent advancements in sensing technology have helped alleviate a lot of challenges 

in both the economical and practical aspects. For example, current structural monitoring 

techniques can utilize either the traditional wired sensor network or the relatively new 

wireless sensor network.  In the study presented in this chapter, a combined wired and 

wireless sensor networks in applied in order to provide a cost- and performance-effective 

sensing and acquisition solution for SHM. Each sensor network has its advantages and 

disadvantages.  For example, wireless sensors are less expensive, less labor-intensive, 

and more portable. However, wireless sensors are powered by finite-life batteries and 

also need line-of-sight for communication which limits the application in long-term 

monitoring of a building structure. The combination of both wired and wireless networks 

provided an opportunity to confirm the adequacy of each while producing the necessary 

short- and long-term data for the performance evaluation of an in-service 16-story 

building structure suffering from perceptible vibration in different directions. The 

monitoring system employed in this study includes a broad range of sensors, measuring 

acceleration, displacement, strain (from which stress can be directly calculated), wind 

speed and wind direction. Using the portability advantage of wireless sensors, vibrations 

response from various locations is obtained with minimal effort. Wired sensors, on the 



279 
 

other hand, are installed on fixed locations to perform automated long-term monitoring. 

The applicability of the sensing system is validated and its performance is demonstrated 

through evaluation of the measured data. Collecting effective and reliable data from the 

structure’s response at various locations during different modes of excitation enables the 

extraction of fundamental dynamic characteristics of the building. The information is 

used in evaluating potential mitigation strategies for maintenance and serviceability of 

the building in its future operation.  

The vibration issues under investigation in the study are those caused by wind and 

human-structure interaction. In this work, the structure is investigated on two fronts. The 

first is the vibration-induced demand (i.e., the stresses in critical elements of the 

structure) in comparison to the structural capacity of the building. This effort entails an 

assessment as to whether the demand could lead to potential structural failure in the 

building system.  The second is the effect of the demands on the comfort of the occupants 

of the building.  The effort results in an assessment of the vibration in the structure as 

compared to the acceptability limits (Murray, Allen & Ungar (1997) for vertical vibration 

and Irwin (1978) for lateral vibration).  

6.3. Utilized Sensing System 

The monitoring system is arranged to measure acceleration, displacement, strain, wind 

speed and wind direction. Utilizing a sensing system with different types of sensors and 

with high spatial and temporal sensing resolution assures that the response of the 
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instrumented structure is captured and therefore, a reliable evaluation of the structural 

performance can be achieved. 

Wireless sensors are used because of the portability and ease of installation in various 

locations. Portability makes WSNs very effective tools when there are limitations in 

access to structural elements and in cases where data from a large number of different 

locations on the structure is required. These sensors are particularly beneficial for 

monitoring in-service structures since they eliminate the need for installing wires in an 

occupied facility and thus, the sensor network can be set up quickly and inexpensively.  

The wireless sensor platform of the sensing system is Imote2 with an external antenna 

(Linderman et al, 2012). When necessary, the external antenna was connected through an 

extension cable and directed to a clear line-of-sight with the base station to enhance the 

wireless communication. Imote2 and its specifications are described in detail, in Chapter 

2. The sensor board of the platform is SHM-A developed by Rice & Spencer (2009). The 

tri-axial LIS3L02AS4 (2005) Analog accelerometer manufactured by ST 

Microelectronics is used on SHM-A which is a low-cost, high-sensitivity Analog 

accelerometer with 50 µg/√Hz noise density. Figure 6.1 shows the hardware platform of 

Imote2 and SHM-A sensor board. Table 6.1 also summarized the specifications of Imote2 

and SHM-A sensor board. 



 

Figure 6.1. Imote2 wireless sensor platform with SHM

Table 6.1. Specifications of Imote2 and LIS3L02AS4

Imote2  
Processing Board 

Processor 

SRAM Memory 

Memory 

Power Consumption 

 
Radio Frequency Band 

Dimensions 
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. Imote2 wireless sensor platform with SHM-A sensor board

Table 6.1. Specifications of Imote2 and LIS3L02AS4 

LIS3L02AS4 
Accelerometer 

Intel PXA271 Acceleration 

256 kB Avg. Noise Floor (X&Y)

32 MB (SDRAM/FLASH) Avg. Noise Floor (Z) 

44 mW at 13 MHz Resolution 

570 mW at 416 MHz Temperature Range 

2400.0 – 2483.5 MHz Dimension 

36 mm×48 mm×9 mm 
 

A sensor board 

±2 g 

Avg. Noise Floor (X&Y) 0.3 mg 

0.7 mg 

0.66 v/g 

-40 to 85ºC 

45×45 mm 
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While wireless sensor networks are effective tools for response monitoring of 

structures, maintaining their power by batteries with finite-life makes their application 

somewhat more challenging for long term monitoring. Thus, a traditional wired sensor 

network is used in conjunction with the wireless sensors for performing an automated 

long-term monitoring. The network includes strain gages, accelerometers, displacement 

transducers, and anemometers:  

• Strain gages are uniaxial weldable resistance-type gages with 6.35 mm. length 

produced by Measurements Group Inc. Weldable strain gages are selected due to the 

ease of installation in a variety of weather conditions.  The “welds” are point or spot 

resistance welds about the size of a pin prick. The probe only touches the foil that the 

strain gage is mounted on by the manufacturer.  The gage resistance is 350 ohms and an 

excitation voltage of 10 volts is used. The strain data is converted to stress by 

multiplying by the elastic modulus of steel which is considered as 2×105 MPa. 

• Wired accelerometers are uniaxial and capacitive manufactured by PCB 

Piezoelectronics, Inc., (model 3701G3FA3G) measuring range of ±3 g acceleration with 

3 µg/√Hz noise density. They are specifically designed for measuring low-level, low-

frequency accelerations.  

• Linear Variable Differential Transformers (LVDTs) are used to measure the 

displacement response. The sensors are manufactured by Macro Sensors and have a 
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displacement range of ±25.4 mm.  LVDTs are mounted to a heavy steel base to hold the 

sensor on its zero location.  

• An anemometer is included in the sensing system to measure wind speed and 

wind direction. The anemometer of the system is manufactured by R.M. Young Inc., 

Model 05103. 

Figure 6.2 shows different utilized sensors in the wired network. The data acquisition 

of wired network is a Campbell Scientific CR9000 (1995).  The acquisition system is a 

high speed, multi-channel 16-bit data logger.  CR9000 data logger is configured with 

digital and analog filters to remove noises from collected data. Remote communications 

with the data logger is established using a dedicated wireless broadband modem. 

Utilizing remote communications, wired sensors can be controlled over the network 

remotely and data can be downloaded automatically via a server located at any desired 

place. 



 

Figure 6.2. Wired instrumentation, (a) strain gage, (b) accelerometer, (c) LVDT, and (d) 

The combination of wired and wireless networks with all different types of sensors is 

utilized in monitoring of a testbed structure for measuring its vibration performance 

under in-service loads. The next section describes the building structure and discusses the 

reason that the structure is selected for instrumentation with the sensing system presented 

in this section.  
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6.4. Building Description  

The building selected for the study is a 16 story steel structure with 4 floors of parking 

below grade located in Pennsylvania. The structure is supported on a combination of 

spread footings and caissons dowelled into suitable rock capable of supporting 1.00 MPa. 

The main lateral force resistant system for the building is steel braced frames. Two 

braced frames are used for each transverse axis of the building.  Each steel frame consists 

of two braced frames connected with steel coupling beams. The frames in the North–

South axis of the building continue to the roof. The frames in the East-West direction, 

however, terminate on the 15th floor. While the braced frames in the East-West direction 

are located on the two outermost lines (north and south sides) in the plan, the braced 

frames in the North-South direction are located almost on the centrelines in the plan.  

The building is clad with masonry and has concrete floors supported by steel beams 

and girders. The structure has a consistent plan up to the 13th floor where the building 

face steps back. At this level slender columns support the East face of the upper floors. 

The East face of the structure and a view of the gym area on the 16th floor are shown in 

Figure 6.3. A typical plan view of the building is also shown in Figure A6.1. 
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Figure 6.3. Test bed structure and 16
th

 floor exercise room 

There have been concerns over building’s vibrations which are induced by activities in 

an exercise room, located on the 16th floor, and also high speed wind gusts. Objections 

arise from occupants housed next to, and down to several floors below the exercise room 

when an aerobics class takes place. Locating offices around the exercise room lead to 

user conflict as the vertical accelerations transmit from the activity room to the adjacent 

portions of the structure where active motions are not taking place. For example, while 
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individuals in the aerobics class would not notice the movement, individuals sitting in 

other portions of the building are very sensitive to the motion. Similar objections exist in 

regards to lateral vibration when the wind speed is high. The perceptible movements 

together with some diagonal cracks on the claddings of the structure have intensified 

occupants’ and owner’s concerns regarding the general performance of the building. As a 

result, the vibration evaluation and assessment of the building is the first step for 

alleviating the issues.  

6.5. Background on Vibration and Human Perception 

Accurate vibration evaluation is critical in assessing a building’s performance under 

the effects of dynamic excitations. As a serviceability consideration, a proper design of a 

building should assure that the structure’s vibrations do not exceed the level of comfort of 

its occupants. A few different factors which affect the perception and tolerance level of 

the human are (i) the magnitude of vibration, (ii) the frequency of vibration, (iii) the 

occupant’s activity, (iv) the occupant’s body orientation, and (v) the duration of motion. 

While the effect of magnitude on human perception is evident, the effects of other 

parameters may need more elaboration.  

Frequency of vibration is a critical factor as, depending on the natural frequency of a 

human body, the effects of the vibration can be intensified. Fundamental organs of a body 

have natural frequencies in the range of 5 – 8 Hz (Murray, 1991). Therefore, vibrations 

with major frequency contents within the range would have significantly more 

uncomfortable effects on the body, as compared to vibration with frequencies outside of 
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the range.  Perception also varies significantly depending on the type of activity of the 

individual (Murray, Allen & Ungar, 1997; Irwin, 1978). For example, an individual 

sitting at a desk would be much more sensitive to floor vibrations than an individual 

walking around an office or one who is performing exercise. Tolerance is also dependent 

on the direction of the acceleration and the orientation of the body. High wind gusts 

induce horizontal and torsional motions in a building, whereas fast walking and aerobics 

activities induce vertical accelerations. Depending on the frequency, the direction of each 

of the vibrations may result in different perception levels (e.g., in lower frequencies, the 

lateral vibration is more perceptible than vertical vibration [Irwin 1978]). Finally, the 

duration of the motion has considerable influence on the tolerance of people. It is stated 

in AISC LRFD Commentary (1986) that “Generally, occupants of a building find 

sustained vibrations more objectionable than transient vibrations”.  While this reference 

does not provide an exact duration as a threshold, Irwin 1978 and Boggs 1995 suggest 

evaluation of vibration over approximately 10 and 20-60 minute duration, respectively, 

for the purpose of human comfort assessment.       

Determination of level of comfort and perception for a human body subjected to 

vibration is a well-researched area of study. Although a large portion of these 

investigations are devoted to human response to vibrations in moving automobiles, ships 

or airplanes, there are many established studies for evaluation of motions in building 

structures: Irwin (1978) investigated human response to dynamic motion of a structure 

and presented suggestions for maximum acceptable magnitudes of storm induced 
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horizontal motion for buildings; International Standard Organization (1989) discussed 

many building vibration environments and presented acceleration limits for mechanical 

vibrations as a function of exposure time and frequency, for both longitudinal and 

transverse directions of persons in standing, sitting, and lying positions; Allen & Murray 

(1993) proposed criteria for design of gymnasiums subject to rhythmic loads; Murray et 

al 1997 summarized recommendations and design criteria for floor vibration due to 

human activity in AISC Design Guide Series 11 (Murray, Allen & Ungar, 1997). 

In the building investigated in the study, vibrations are induced due to both wind and 

human-structure interaction which is caused by rhythmic actions. Recommended 

tolerances are reproduced from Murray, Allen & Ungar (1997) and Irwin (1978) and 

shown in Figure 6.4. In this figure, the recommended limits are presented in terms of the 

frequency of vibration.  The limits also depend on occupancy of the building (e.g., office 

areas or exercise area). The recommended values in the plot are used later for evaluation 

of the building’s performance. Note that while the limits of vertical vibration are in terms 

of peak acceleration, limits of lateral vibrations are in terms of root-mean-square (RMS) 

acceleration.  

 



 

Figure 

6.6. Instrumentation details

Monitoring of the building took place during a 3 month period and had two phases: 

onsite short-term monitoring and remote long

includes measurement from wireless sensors from multiple locations in the building: 

• Measurement of floor vibration from multiple locations on 16

floors. Wireless sensors provided a significant easement as they were moved around 

to capture the vibration from multiple locations with minimal effort.

• Measurement of lateral vibration of the building using wireless accelerometers 

installed on roof, 13
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Figure 6.4. Recommended limits on acceleration tolerance

Instrumentation details 

Monitoring of the building took place during a 3 month period and had two phases: 

term monitoring and remote long-term monitoring. The onsite monitoring 

from wireless sensors from multiple locations in the building: 

Measurement of floor vibration from multiple locations on 16th, 15th, 13

floors. Wireless sensors provided a significant easement as they were moved around 

ation from multiple locations with minimal effort. 

Measurement of lateral vibration of the building using wireless accelerometers 

installed on roof, 13th, and 3rd floor, two in each elevation. These sensors 

 

Recommended limits on acceleration tolerance 

Monitoring of the building took place during a 3 month period and had two phases: 

term monitoring. The onsite monitoring 

from wireless sensors from multiple locations in the building:  

, 13th, 12th and 7th 

floors. Wireless sensors provided a significant easement as they were moved around 

 

Measurement of lateral vibration of the building using wireless accelerometers 

floor, two in each elevation. These sensors 
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communicated with their base station, which was located outside of the building, 

through radio signals. The application of wireless sensors provided an economic 

solution to the lateral vibration monitoring, as a result of absence of wiring.  The 

collected data from the 6 wireless sensors is used for extraction of response spectra 

and modal parameters of the building.  

The remote long-term monitoring includes measurement from wired sensors from 

multiple locations in the building: 

• Measurement of strain/stress data from multiple beam elements on the 16th floor and 

bracings in different elevations for performance evaluation in terms of strength 

demand. 

• Measurement of floor acceleration and displacement response from multiple locations 

on the 16th floors for assessment of aerobics induced vibrations and to find maximum 

occurred vibrations in long term.  

• Measurement of wind speed and wind direction using an anemometer installed on the 

roof level. The measured data is used for extraction of wind spectra.  

The automated remote long-term monitoring system is configured to record data under 

a number of different conditions:  



292 
 

(1) Wind History: for the duration of the monitoring wind data are recorded on 5 minute 

intervals.  For each 5 minute interval, the average wind speed, and direction as well as 

the maximum wind speed are recorded. 

(2) High Wind Events: when the wind speed exceeded a predefined threshold value (14 

m/sec), continuous high-speed data are collected from all sensors for a period of 

approximately five minutes. The data collection continued throughout the 3 months 

monitoring period. 

(3) Aerobics Class Monitoring: continuous high-speed data are collected from each 

sensor during all aerobics classes in the 3 month monitoring period. 

Figure A6.2 shows the location of wired sensors on the 16th floor and different 

occupancies of the floor. Figure A6.3 also presents the bracing frames of the building and 

the location of instrumented wired strain gauges. Table 6.2 also presents the the quantity 

and location of all the sensors that are used for monitoring of the building 
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Table 6.2. Instrumented sensors for monitoring of the testbed structure 

Floor Sensor type Quantity Location(s) 

1st  floor strain gauges 4 Lateral Bracings along axes 8 and A 

3rd  floor accelerometers 2 on NE and SE corners  

7th  floor accelerometers 4 on the floor- under exercise room 

12th  floor accelerometers 4 on the floor- under exercise room 

13th  floor accelerometers 4 on NE and SE corners  

15th  floor accelerometers 4 on the floor- under exercise room 

strain gauges 2 Lateral Bracings along axis 8 

16th  floor accelerometers 7 on the floor - gym and office areas 

strain gauges 7 on beam flanges, along axes 9 and C 

LVDTs (Disp. sensors) 2 mid-span of beams along axes 9 and C in 
gym area 

Roof accelerometers 4 (wired and 
wireless) 

on NE and SE corners  

anemometer 1 on a steel pole on the penthouse roof 
framing 

 

6.7. Measurements and data processing: 

As the vibration issues of the building are classified into floor aerobic-induced 

vibration and lateral wind-induced vibrations, the data processing related to each of them 

is presented separately. 

6.7.1 Floor Vibration: 

The first step in evaluation of vibration is to inspect the collected data in terms of 

magnitude. Instrumented wired sensors on the 16th floor are shown in Figure A6.2. A 

typical time-history plot of acceleration, displacement, and stress (from strain gages) at a 

beam element supporting the aerobics class floor is presented for an hour-long class in 
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Figure 6.5 to 6.7. The beam element and location of sensors are selected such that the 

worst case scenario can be represented. The important findings from such a plot are to 

check whether or not the data is in agreement with the physical actions taking place in the 

duration and to check the magnitudes of each of these physical quantities. It can be seen 

in Figure 6.7 that the time-history data is consistent with events that occurred in the class: 

very low vibrations and low stresses start to increase as people arrive at the exercise class 

and start to warm-up and at the end of the class, the magnitudes decrease as people leave. 

To provide a more reliable evaluation and conclusion the magnitudes are investigated 

over a longer duration. This became possible by use of automated wired sensor network. 

The maximum stresses and accelerations of different aerobic classes during the 

monitoring period are collected and plotted in Figure 6.8.  

 



 

Figure 6.5. Stress time

of beam on Line C between Lines 8 and 9 during aerobics class 

295 

Stress time-history plot for top (SG_3) and bottom (SG_4) flange at midspan 

of beam on Line C between Lines 8 and 9 during aerobics class 

see Error! 

 

 
history plot for top (SG_3) and bottom (SG_4) flange at midspan 

of beam on Line C between Lines 8 and 9 during aerobics class  



 

Figure 6.6. Acceleration time

8 and 9 during aerobics class on November 14, 2011 between 12:17 and 12:18 PM
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Acceleration time-history plot for midspan of beam on Line C between Lines 

8 and 9 during aerobics class on November 14, 2011 between 12:17 and 12:18 PM

 

 
history plot for midspan of beam on Line C between Lines 

8 and 9 during aerobics class on November 14, 2011 between 12:17 and 12:18 PM 



 

Figure 6.7. Displacement time
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Displacement time-history plot for midspan of beam on Line C between Lines 

8 and 9 during aerobics class. 

 

 
history plot for midspan of beam on Line C between Lines 



 

Figure 6.8. Peak stress and accelerations measured under aerobics floor

In addition to estimation of strength demand, the acceleration response is investigated 

for serviceability concerns. For that reason, the acceleration response is inspected in 

terms of both magnitude and frequency and is compared to recommended criteria fo

human comfort (as presented earlier in this chapter). 
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In addition to estimation of strength demand, the acceleration response is investigated 
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terms of both magnitude and frequency and is compared to recommended criteria fo

human comfort (as presented earlier in this chapter).  

 

 

Peak stress and accelerations measured under aerobics floor 

In addition to estimation of strength demand, the acceleration response is investigated 

for serviceability concerns. For that reason, the acceleration response is inspected in 

terms of both magnitude and frequency and is compared to recommended criteria for 
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Additionally, since the occupancy of different portions of the building are different 

(offices and gym area), the acceleration response of different locations needed to be 

investigated separately. The need is addressed by use of portable wireless sensor network. 

The data are collected from various locations on different floors via wireless sensors 

during the onsite monitoring. Figure 6.9 and also Figures A6.4 through Figure A6.7 

present the time-history data collected from different locations of the building along with 

the Power Spectrum plots which reflect the dominant frequencies of the measured 

responses. 

A summary of vibration amplitudes at different locations (minimum, maximum, and 

the root mean square of the acceleration signals) are presented in Table 6.3. The color 

gradient is applied on the minimums and maximums to scale the amplitudes and reflect 

the attenuation of vibration level (absolute min. and max. values decrease as moving 

from red to green color). To better demonstrate the amplitude of acceleration in different 

locations, the Maximum and the RMS of the measured acceleration are also shown in 

Figure A6.8 through Figure A6.12. It should be noted that the measurement durations are 

limited and the amplitudes that are presented in Table 6.3 are not the maximum 

vibrations on the floor in the entire aerobics class duration, but are maximum values of 

the associated time slots. The results of wired sensor measurements, however, represent 

the maximum vibrations of the entire aerobics classes. Thus, some inconsistencies in the 

maximum amplitudes of wired and wireless measurements are reasonable.  
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Figure 6.9. Time-history plot and Power Spectrum Density of acceleration from 16th floor 

between C-9.6 & B-9.6 during aerobics class 
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Table 6.3. Summary of acceleration response (max., |min.|, and root-mean-square) 

measured by wireless sensors 

  

Floor Location Date Time 

Acceleration (mg) ACCEL_2 (mg) 

|Min.| Max. RMS Abs Max RMS 

16 C-9.6 / B-9.6 10/25/2011 12:10 14.82 12.48 2.34   

16 C-7/D-7 10/25/2011 12:50 8.76 8.69 2.49   

16 G-9.9 / F-9.6 10/25/2011 12:38 5.10 7.23 0.88   

16 H-9.6 / I-9.6 10/25/2011 12:28 2.94 2.88 0.59   

15 C-9 / C-9.6 11/17/2011 12:30 8.77 7.35 1.25 22.0 2.28 

15 C-9 / D-9 11/17/2011 12:30 9.89 5.39 1.11 22.0 2.28 

15 C-9 / D-9 11/17/2011 12:42 4.35 4.70 0.40 9.08 0.41 

15 D-9 / E-9 11/17/2011 12:42 1.21 1.40 0.27 9.08 0.41 

13 C-10 11/17/2011 12:10 2.91 3.35 0.54 14.6 1.79 

13 C-9.6 (mid-col) 11/17/2011 12:10 4.79 6.35 0.82 14.6 1.79 

12 C-9 / B-9 11/14/2011 12:25 4.97 5.46 0.87 10.2 1.48 

12 C-9 / C-10 11/14/2011 12:25 3.93 4.05 0.64 10.2 1.48 

7 C-9 / C-10 11/14/2011 12:40 2.11 2.60 0.36 4.99 0.62 

7 C-9 / C-10 11/14/2011 12:44 1.18 1.59 0.27 9.12 0.74 

7 

C-9 / C-10 

(East) 11/14/2011 12:40 2.76 2.87 0.43 
4.99 0.62 
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Figures 6.10-a and 6.10-b show the maximum acceleration amplitude in different 

locations in the building. The two plots illustrate that the amplitude of vibration 

attenuates faster on the floor, as getting farther from center of aerobics class, than in the 

elevation, as going down to lower floors. This is reasonable as the vertical transmission 

of vibrations through steel columns encounters less damping compared to horizontal 

transmission through beams and floor slabs. To evaluate the vibration’s effects on human 

perception, it is necessary to find the frequencies of vibration, as shown in PSD plots of 

the measured responses. Figure 6.11 also shows the acceleration response collected from 

a beam supporting the aerobics class floor (as an instance) in frequency domain. This plot 

presents some peaks (2.1, 3.2, 4.3, 6.4, and 8.5 Hz) which are dominant frequencies of 

the collected acceleration response. The frequencies are consistent in all data collected 

from different locations during the aerobics class. It is clear that the acceleration response 

of the floor to the rhythmic exercise forces is not a single harmonic function rather it has 

a range of dominant frequencies (2 to 8.5 Hz). This is particularly important when 

assessing the amplitudes based on limits of human comforts. 



 

Figure 6.10. Maximum vertical aerobics induced acceleration dispersion through 
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Maximum vertical aerobics induced acceleration dispersion through 

structure 

 
Maximum vertical aerobics induced acceleration dispersion through 
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Figure 6.11. Typical frequency content of measured vertical acceleration 

Performance evaluation of the floor system in the building has two aspects: (i) strength 

demands versus capacities and (ii) vibration levels versus comfort limits. 

In regards to strength demand, the induced stresses during the applied rhythmic forces 

are inspected. As Figure 6.5 shows, the magnitudes of stress in the beam are at most 

bellow 5 MPa (0.5 Ksi) which is significantly lower than strength limits of a steel beam 

element (400 MPa). Therefore, there is no concern over the performance of the designed 

floor beams in terms of strength.  

For the evaluation of performance of floor in terms of serviceability, criteria suggested 

in AISC Steel Design Guide Series 11 are used. As the first step, the magnitudes of peak 

acceleration in different occupancies are compared to the recommended limits. The limits 

(as shown in Figure 6.4) are 50 milli-g (0.05 g) for vertical vibration in areas with 
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rhythmic activities and 5 milli-g for offices and residential areas, when the vibration 

frequency is in the range of 4 – 8 Hz.  

Additionally, according to AISC Steel Design Guide Series 11, there are two other 

controls for the evaluation of floor vibration which are related to the fundamental natural 

frequency of the floor: (i) For floors with fundamental natural frequency above 8 Hz, to 

account approximately for footstep impulse vibration, the acceleration limit is not 

increased after 8 Hz, as it would be if Figure 6.4 is used. In other words, the horizontal 

portion of the curves between 4 Hz and 8 Hz in Figure 6.4 is extended to the right beyond 

8 Hz. (ii) If the natural frequency is greater than 9-10 Hz, to account for motion due to 

varying static deflection, a minimum static stiffness of 1 kN/mm under concentrated load 

is introduced as an additional check.  

To evaluate the floor performance and check if additional considerations are needed, 

the natural frequency of the floor is estimated using the ambient vibration data collected 

from the floor and also using the Equivalent Beam Method (EBM) which is 

recommended in the AISC Steel Design Guide Series 11.  

Inspecting the ambient vibration response in frequency domain (e.g. power spectral 

density of response), the first fundamental natural frequency is observed as 8.53 Hz.  

Also, using Equation 1 (from EBM), the first natural frequency of the composite 

beams can be estimated as:  
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ba = ª
5 ¡O«¬Q

­®¯                                                               (6.1) 

where fn is the fundamental natural frequency in Hz, g is acceleration of gravity (9.86 

m/sec2), E is the modulus of elasticity of steel, It is the transformed moment of inertia, w 

is uniformly distributed weight per unit length, and l is the member span. Applying this 

equation on a W16x31 section with 150 mm composite concrete slab depth and 5880 mm2 

reinforcement area, the first fundamental natural frequency is estimated to be 8.19 Hz. 

The estimated frequency is quite consistent with the one obtained from measurement. 

Considering the estimated natural frequency, the acceleration limit should not be 

increased after 8 Hz when using the recommendations of AISC Steel Design Guide 

Series 1. Additionally the static stiffness of composite beams is checked, though the 

design guide does not impose it for natural frequencies less than 9 Hz. Having W16x31 

with 150 mm. composite concrete slab depth and 5880 mm2 reinforcement area, the static 

stiffness under concentrated load (48EI/l3 for simply supported beam) is 9.5 kN/mm, 

which is well beyond the limit. Thus, to evaluate the vibration performance of the floor, 

only the amplitudes of vibration and frequencies are assessed.  

Based on the range of frequencies observed in the collected data (2 – 8.5 Hz as shown 

in Figure 6.11), it is reasonable to consider the horizontal portion of the recommended 

limitations plot (50 milli-g for rhythmic activities and 5 milli-g for offices and residential 

areas). In the aerobics class area on the 16th floor, the maximum measured acceleration 

(Figure 6.10) is below 0.035 g.  Consequently, the peak acceleration of floor vibration in 
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the aerobics class area is below the recommended limits for aerobics activity.  However, 

in the office areas in some portions of the building, the peak values, as presented in 

Figure 6.10, exceed the threshold of 0.005 g for perceptibility at elevations as low as the 

12th floor.  Therefore, it is concluded that the performance of the structure in some 

portions of the building is poor in terms of serviceability, though the structural 

components meet the measured strength demands. 

13
th

 Floor Column Examination 

In addition to general floor vibration issues, concern was raised regarding the vibration 

characteristics of the columns spanning from the 13th floor to the 15th floor along Column 

Line 9.6 due to the fact that the columns carry gravity load from the 16th floor including 

the portion of the floor supporting the aerobics class and the fact that the columns are not 

continuous to the foundation.  Rather the columns are supported on W36x155 transfer 

girders running east-west. Six such columns exist on Column Line 9.6 at Lines B, C, D, 

G, H, and J.   

The mentioned columns are unsupported from the 13th floor to the 15th floor and they 

support gravity loads from the 15th floor, 16th floor, and roof level.  The column on Line B 

was selected for instrumentation and testing.  A single tri-axle wireless sensor module 

was installed at mid-height (on the 14th floor level) to measure the lateral vibration of the 

column during aerobics activity.   
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.

 

 
Figure 6.12. Time-history plot and Power Spectrum Density of acceleration from the 

column from middle of column C-9.6 on 13
th

 floor in transverse direction during aerobics 

class 
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Figure 6.13. Time-history plot of wind speed and wind direction, during aerobics class at 

the time when the vibration of the column C-9.6 is measured 

Figure 6.12 and Figures A6.13 through A6.14 present: time-history and corresponding 

PSD plots of vibration in the weak axis (north-south), strong axis (east-west), and vertical 

directions of the column, respectively.  The wind conditions at the time of the monitoring 

are provided in the time-history plots of Figure 6.13. The vibration is measured during 

aerobics class on Nov. 17, 2011 between 12:10 and 12:15 PM. 
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The natural frequency of vibration of the column can be estimated using closed-form 

solutions for pinned-pinned and fixed-fixed beams, including the effects of axial load. 

The first-mode natural frequency, f1, is given by: 

b = M�U
5ª°U ¡«¬

p                                                          (6.2) 

where  

λ1 = 4.730 (fixed-fixed boundary) 

λ1 = 3.142 (simple-simple boundary) 

and,  

 E = modulus of elasticity 

 I = moment of inertia 

 L = member length 

 m = mass per unit length 

To account for dead load that is acting on the members, the frequencies calculated 

above may be modified using the following equation: 

b,,±²� ≅ ´¡1 + ±
|±µ¶| ·M�

MN ¸5 ¹ b,,±F�                                       (6.3) 

where, 

fi,P≠0 = mode “i” frequency considering the effects of axial load 

fi,P=0 = mode “i” frequency calculated without consideration of axial load (using Eq. 6.1) 

P = axial load, equal to tributary floor/roof areas times dead load plus 25% of design live 
load, = 42.7 kips 
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Pcr = critical axial buckling load (= 4π2EI/L2 for fixed-fixed beam, or π 2EI/L2 for a 
pinned-pinned beam) 

 

For the column W10x49 column spanning from the 13th to the 15th floor, the 

calculated natural frequencies are summarized in Table 6.4.  It can be seen that the axial 

load on the column does not have a large effect on the natural frequency. 

Table 6.4. Summary of calculated 1
st
 mode natural frequencies 

 
Calculated 1st Mode Natural Frequency (Hz) 

Pinned-Pinned Fixed-Fixed 

Vibration Direction P =0 P=-42.7k P =0 P=-42.7k 

Strong Axis 14.7 14.4 33.3 33.1 

Weak Axis 9.1 8.4 20.4 20.1 

 

From Figures 6.14 and 6.15, it can be seen that the measured weak- and strong-axis 

natural frequencies were 12.0 and 17.4 Hz, respectively.  The estimated values fall in the 

calculated range between the fixed-fixed and pinned-pinned cases, though are closer to 

the pinned-pinned case.  The plots also indicate that during the aerobics class, peak 

acceleration amplitudes at mid-height of the column are 5 and 8 mg for the strong and 

weak axis directions, respectively.  For steady-state vibration at the measured natural 

frequency and peak acceleration, corresponding displacement amplitude and bending 

stress are calculated.  The calculated flexural stress in the column for both weak- and 

strong-axis directions is very low, less than 10 psi.  Under this level of demand the 

aerobic induced vibrational stresses are not significant. 
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Lateral Vibration during Exercise 

This section presents a discussion on the effects of the vertical exercise-induced 

vibration on the lateral vibration of the building. Shown in Figures 6.14 is a time history 

plots and corresponding PSDs of lateral accelerations of the 15th floor between columns 

C-9 and C-9.6 during the aerobics class, measured using the wireless sensor network.  

The results indicate that the response at this location is dominated by overall vibration 

modes of the building with peak frequencies of 0.61 and 0.91 Hz.  However, frequencies 

caused by the exercise-induced excitation is also present in the data, with frequencies of 

2.06, 2.92, and 4.27 Hz, though the contribution to the total vibration is small, evidence 

by the relatively small peaks in the power spectral density plot. A similar set of plots for 

the lateral acceleration of the 15th floor between columns C-9 and D-9 is presented in 

Figure 6.15.  At this location there is no effect caused by the aerobics activity on the 

lateral vibration of the 15th floor. 
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Figure 6.14. Time-history plot and Power Spectrum Density of lateral acceleration from 

15
th

 floor between C-9 & C-9.6 during aerobics class 
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Figure 6.15. Time-history plot and Power Spectrum Density of lateral acceleration from 

15th floor between C-9 & D-9during aerobics class 
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6.7.2 Lateral wind-induced vibration 

Wind Load Characteristics: 

Wind force is one of the important loading factors in the design of building structures. 

Effects of wind are classified into static and dynamic effects. In order to ensure the 

structural safety of the building, both static and dynamic effects of the wind force should 

be carefully investigated. Some important characteristics of wind are wind speed, wind 

direction, and wind fluctuation.  

During the entire monitoring period the average wind speed and direction and 

maximum wind speed in 5 minute intervals are recorded using wired sensor network. 

Additionally, during high wind speed events (defined as wind speed beyond 14 m/sec 

[~50 mph]), the continuous data are collected from all wired sensors for a period of 

approximately five minutes. Having collected data, the wind load and the building’s 

response is analysed. 



 

Figure 6.16. (a) Maximum and average wind speed, (b) wind rose presenting wind 

direction, wind speed average and the frequency 

WEST

(b)

316 

(a) Maximum and average wind speed, (b) wind rose presenting wind 

direction, wind speed average and the frequency of occurrence 

2%

4%

6%

8%

EAST

SOUTH

NORTH

10 - 12

12 - 14

14 - 16

16 - 18

18 - 20

Wind Speed
(m / sec.):

  

 

(a) Maximum and average wind speed, (b) wind rose presenting wind 

of occurrence  

0 - 2

2 - 4

4 - 6

6 - 8

8 - 10

10 - 12

12 - 14

14 - 16

16 - 18

18 - 20

Wind Speed
(m / sec.):



317 
 

In order to evaluate the structure’s response to wind, as the first step, the wind 

characteristics are inspected. Presented in Figure 6.16-(a) is a time-history of maximum 

and average wind speed for the duration of the monitoring.  It can be seen that the wind 

speed reached a maximum of 32 m/sec, and exceeded 30 m/sec just a few times. Figure 

6.16-(b) shows a wind rose plot for the same data, where the wind direction of zero 

degrees represents a wind out of the north. The total bar height at each direction indicates 

the frequency of occurrence of wind from a given direction.  A discretization of 10 

degrees was used.  Within each bar, the colour variation provides the makeup of the wind 

speeds that occurred in each direction bin. It can be seen that the wind was predominantly 

out of the west-northwest and south.   

While the wind speed and direction are main factors in the static loading, the wind 

speed fluctuation is the more important factor in vibration evaluation. The basic statistical 

characteristics of the wind speed fluctuation can be represented by intensity of 

turbulence, wind speed probability distribution, and turbulence spectrum.  

The intensity of turbulence is defined as  jº/»̅  , where jº  is the root-mean-square 

(rms) fluctuation and »̅ is the mean speed of wind. The intensity of turbulence for wind is 

usually between 5 to 25%. From the collected data during the high wind speed events, the 

average intensity of turbulence during different event is calculated and is 25.67% which 

shows a relatively intense turbulence. The wind speed probability distribution can be 

assumed as Gaussian distribution which can be defined by mean value and root-mean-

square of the wind speed data. 
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The energy of turbulence fluctuation is distributed over a frequency range which is 

described by turbulence frequency spectrum density function  ��b�. Evaluation of the 

spectrum and frequencies, in which the energy is mainly distributed in, is important when 

assessing the effect of wind on a structure’s vibration. The turbulence spectrum, ��b�, is 

defined as Furrier transform of the correlation function of wind speed `��� . The 

relationship between turbulance spectrum and wind speed variance is: 

jº5 = 
 ��b��b½
�                                                           (6.4) 

It is customary to use another form of spectrum, known as logarithmic spectrum, 

which is dimensionless and preserves the relative contribution to variance at different 

frequencies. The logarithmic spectrum is defined as b. ��b�/jº5  and its integral is: 


 b. ��b�/jº5�[ln�b�]½
� = 1                                              (6.5) 

The logarithmic spectrum of the wind data is extracted using the measurements of 

wind speed and wind direction. The wind spectrum can be obtained either for along wind 

direction or for a specific direction. In this work, as the objective is to assess the wind 

effects on the building structure, the wind speed is projected on each direction and the 

spectrum is extracted accordingly (from 0 to 360 degree with 10 degree intervals).  The 

logarithmic spectrum of wind fluctuation is presented in Figure 6.17. In this figure the 

spectrum is plotted for 360 degrees in a 3-dimensional plot as well as the projected 

spectrum plot for south-north and east-west directions. The extracted spectrum plots, in 

general, are similar to some of wind turbulence spectrum models presented in literature 



319 
 

(e.g. von Karman type spectrum [Karman, 1948] or Davenport spectrum [Davenport, 

1961]). Further investigation of wind spectrum can be obtained by utilizing regression 

and fitting a model to the obtained spectrum. However, this effort is outside of the scope 

of the research and the wind spectrum is used only for determination of main fluctuation 

frequency contents and comparison with fundamental frequencies of the building’s 

response. From Figure 6.17, it is clear that the major frequency contents of the wind 

fluctuation spectrum are laid in a very low frequency range (0.01 to 0.1 Hz). This range is 

far behind the fundamental natural frequency of the building, as estimated and discussed 

later in the modal identification section of the chapter.  

As the characteristics of the wind load are investigated, the structure’s response and its 

vibration are also evaluated. Similar to evaluation of human-induced vertical vibrations, 

the wind-induced lateral vibrations are investigated in terms of both strength demand and 

the effects on human comfort. Both wired and wireless sensors are used in the evaluation. 

Wired sensors are shown to be effective for long-term strain/stress monitoring and 

wireless sensors for lateral acceleration response measurement at different locations. 

Structural Response - Strength Demands: 

Data from the strain gages installed on the selected wind bracing members on the 1st 

and 15th stories are collected for high wind speed events. The stresses are presented in the 

time-history plots for 1st and 15th floor bracings together with the wind-speed time-

history for an example of high wind-speed duration in Figure 6.18. The wind speed time-

history is presented in this figure to enable the comparison of the load and response. Each 
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plot contains the raw data and a 50 point moving average to aid in the identification of 

lower frequency trends. 

It can be seen that on the 15th floor [Figure 6.18-(b)], there does not appear to be a 

strong correlation with the wind history of Figure 6.18-(a) in that there is not a well-

defined peak in stress history corresponding to the time of the large wind gust. It is also 

seen that on the 15th floor, the stress magnitudes are very low, all less than 0.5 MPa.  

The design wind load for the building is 40 m/sec. To roughly estimate the level of 

stress in the bracing members caused by a 40 m/sec design wind, the building response 

could be scaled by the square of the ratio of the wind speeds, or (40/30 m/sec)2 which is 

equal to 2.25.  However, 2.25 times the stresses measured in the braces during the high-

wind event shown in Figure 6.18-(b) would still be less than 1.2 MPa, well below the 

design stress for these members. Table 6.6 also presents the level of the maximum stress 

in different locations during the high wind events. 

On the 1st floor bracing, the stress history shown in Figure 6.18-(c) exhibited a more 

identifiable trend expected for the response of a tall building to dynamic wind loading. In 

Figure 6.18-(c) in particular, there is a spike in the response inducing tension in the brace 

element caused by the large wind gust. However, the measured stresses are again low, 

less than 1.00 MPa for this event. The low level stress demand is less than 0.3% of the 

lower bound yield strength of the steel members. Therefore, there is no concern over the 

performance of lateral load resisting system in terms of strength demand. 
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Figure 6.17. (a) Logarithmic spectrum of wind speed projected different directions, (b) 

and (c) logarithmic spectrum of wind speed in South-North and East-West directions 

respectively 
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Figure 6.18. Stresses response at bracings (a) wind speed, (b) and (c) stresses in bracings 
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Table 6. 6. Peak measured stress in instrumented bracing members during high 

wind event November 23, 2011 2:10 PM (WSmax = 60 mph) 

Bracing Location Maximum Stress (ksi) 

Line 8 – 15th  story 0.07 

Line 8 – 1st story 0.1 

Line A – 1st story 0.09 

 

Table 6.7. Peak measured acceleration at various elevations during high wind event 

November 17, 2011 between 11AM-12PM (WSmax = 31 mph) 

Bracing Location Maximum Acceleration (g) 

Roof <0.010 

13th Floor 0.002 

3rd Floor <0.001 

 

6.7.3 Structural Response – vibration Performance: 

To evaluate the performance of the building in terms of lateral vibrations, the 

acceleration response is inspected. Figure 6.19-(a to c) shows an example of wind speed, 

wind direction and acceleration response time history data collected from the roof level. 

As can be seen in the figure, the peak accelerations are between 3 to 4 milli-g. The 

maximum acceleration during the period of measurement on the 3rd and 13th floor, and 

the roof level are also presented in Table 6.7. 

For cross-verification of the measurement results, one wired accelerometer was 

located on the roof level (the same location as one of the wireless sensors) to measure 

lateral vibration and verify the measurements of wireless sensors. Having time stamps in 
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the collected data from wired and wireless sensors makes comparison of measurements 

possible. Figure 6.21 shows the power spectrum acceleration response from the two 

sensing systems (since the two sensors have different noise characteristics and different 

sampling rates it is more reasonable to compare measurements in frequency domain 

rather than time domain). It can be seen that both sensors show similar power spectrums 

and have agreement about the dominant frequencies of lateral vibration. The consistency 

confirms the reliability of measurements by these sensors.  

The peak frequencies in the power spectrum plot are important in understanding of 

lateral vibration as well as in comparison of peak accelerations with the recommended 

limits (Figure 6.4). As can be seen in Figure 6.21, there are several dominant frequencies 

distributed in the range of 0-15 Hz, starting from 0.62 Hz which is the first identified 

natural frequency of the building. The vibration modes at each of the frequencies are 

presented later in the next section. For evaluation of vibration amplitude also, the limits 

are considered to be as low as the horizontal portion of the plot in Figure 6.4 as the lower 

frequencies are less than 2 Hz. 

Since the limit for lateral vibration is in terms of RMS acceleration, the RMS of 

vibration is inspected. To identify RMS acceleration amplitude, a 100 seconds window is 

moved over the acceleration data, collected during high speed wind events, and the RMS 

of each window is calculated. The length of window is selected as 100 seconds since this 

length is believed to be a reasonable duration of steady vibration which may disturb 

human comfort (100 seconds is a conservative assumption as literature [Boggs, 1997] 
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suggests even longer durations [20 to 60 minutes]). The maximum RMS obtained from 

100 seconds windows moved over the entire acceleration data is 1.2 milli-g, which is well 

below the limits of Figure 6.4 for all vibration frequencies. It shows that the lateral 

vibration issues are not as severe as the vertical vibrations.  

 

Figure 6.19. Sample building response to wind (a) wind speed, (b) wind direction, (c) 

acceleration at roof 
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Figure 6.20. Acceleration time history measured by wireless sensors from lateral 

vibration of different floors on November 17, 2011 
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Figure 6.21. Power spectrum of the acceleration response at roof from wired and 

wireless sensors 
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spectrum, the wind load is only a weak function of frequency. Therefore, wind excitation 

can be assumed as a stationary and stochastic input for output-only system identification 

(Brownjohn, 2003). 

For modal identification of the structure, Auto Regressive (AR) time-domain 

algorithm (Ljuang, 1999) is selected. The methodology is explained in Chapter 2 and 

some of the estimated modeshapes are presented graphically in Figure 6.23. Since the 

sensors were located only on three elevations of the building (3rd, 13th floor and roof), the 

modal displacements of intermediate floors is not available. The limitation on sensor 

placement was imposed by building’s accessibility. Therefore, modal displacement of 

only the 6 points (two N-E and S-E corners of each elevation) of the structure is shown in 

the mode shape plots. The lateral vibration modes of the structure can be categorized into 

flexural transverse and torsional modes based on the in-phase or out-of-phase modal 

displacements of sensors in two corners of the building. Using the results of modal 

identification, the type of vibration at each dominant frequency can be identified. It 

should be noted that the modeshapes identified through modal identification process are 

those that were properly excited by the ambient wind loads. From the Figure 6.23, it can 

be seen that most of the excited modeshapes are torsional modes. The torsional modes 

correspond to the peaks in the response power spectrum (0.93, 2.78, 5.567, and 14.53 

Hz), presented in Figure 6.23. Considering the dominant torsional modes, it can be 

concluded that perceived lateral vibrations on the higher floors of the building are rooted 

mostly in torsional modes. This hypothesis is consistent with some diagonal cracks on the 



 

claddings of the structure. A possible reason for such behaviour can be the configuration 

of lateral load resisting systems (bracings) in the structure’s plan. As explained in the 

building’s description, the braced frames in the East

two outermost lines (north and south sides) in the plan and the braced frames in the 

North-South direction are located almost on the centrelines in the plan. The arrangement 

of the braced frames and the wind direction are shown in Figure 6

designed stiffness distribution does not provide much torsional resistance for the 

structure. 

The evaluation examined different aspects of structural performance. Many of these 

results are obtained by only a limited measurement effort through the use of mobile 

wireless accelerometers. However, the combination of wired and wireless sensors was the 

key point which made a comprehensive sensing system for short

vibration evaluation of the building structure. 

Figure 6.22. Wind direction with respect to the arrangement of Braced Frames
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Figure 6.23. Identified modes of vibration 
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included two networks of wired and wireless sensors providing an effective tool for 

capturing different types of structural responses. This integration of wireless and wired 

sensor networks represents the state of the art sensing for structural health monitoring. 

Integrated in the sensing system were accelerometers, strain gages, displacement sensors 

and anemometers. Utilizing different sensor types with relatively high spatial and 

temporal resolution enabled reliable evaluation of the building’s performance. 

It is shown that the application of the wireless accelerometer sensors significantly 

facilitates measurement of structural response from different locations. The ease of 

installation due to the absence of wiring was a major advantage in wireless sensors as 

valuable information about the structure’s performance is obtained with minimal efforts. 

Deployment of the sensing system demonstrated that wireless mobile accelerometer 

networks are effective tools for forensic quantification of building vibrations. However, 

some challenges associated with the use of wireless sensors, such as limitation due to 

finite battery life and the communication problem in the presence of obstacles, make the 

application difficult for long term monitoring of building structures, requiring the 

deployment of wired sensors for this purpose. Complementing the sensing system by the 

traditional wired sensors further enhanced the capability of the sensing system in 

capturing the structural response. Wireless sensors were relocated multiple times for 

measuring acceleration response from various locations and the wired sensors were 

placed on the fixed locations and monitored the response for a long duration.  
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The wired sensors were programmed specifically for automatic data collection during 

different events such as the occurrence of a high speed wind or an aerobics class in the 

building. Reliable data characterizing the structure’s response to different dynamic 

excitations provided the needed information for the assessment of the structure’s 

performance. 

The collected data was analysed with different data processing techniques (e.g., time- 

and frequency-domain data analysis, spectrum analysis, and modal identification) to 

extract different characteristics of the loads and the structural response. Dynamics of the 

floor vibrations, the structural demands under various loading conditions, the wind 

spectra and response spectra, and the modal parameters of the structure are important 

results obtained using collected data. The three-dimensional wind spectrum is developed 

to reflect the logarithmic power spectrum of the wind in different directions. The wind 

spectrum which is developed in this dissertation assisted in determination direction-

dependent frequency contents of the wind and showed that the wind–induced vibration 

will overlap with fundamental vibration frequencies of the building. Transmissibility of 

the vibration in this particular structure is investigated and it is observed that the floor 

system damps the vibration more efficiently compared to the vertical system, as the level 

of vibration decreases with a higher rate in floors compared to height. Applying the 

results of data processing and available standards, along with engineering insights, the 

vibration performance of the building structure is evaluated. The evaluation showed that 

the performance of the structure under human induced vibration effects is not 
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satisfactory, in terms of serviceability, as the vibration amplitudes in some locations of 

the building exceed the maximum comfort limits. However, the strengths of structural 

components are well above the demands by the measured stresses. The evaluation of the 

structural response to wind showed that the lateral vibration performance of the building 

meets the limits in terms of strength demand as well as serviceability. Moreover, 

inspection of the response spectrum along with the results of modal identification showed 

that the torsional modes of vibration dominate the response, as compared to flexural 

modes. 

The investigation indicates that the vibration-induced stresses are low under all 

conditions studied and are not a significant concern.  The accelerations measured through 

the structure indicate that the aerobic activity does induce significant accelerations 

through the structure. During the period investigated the accelerations induced on the 16th 

floor down to the 12th floor were perceptible. While this activity will not result in any 

likely damage to the building the effect on human comfort is significant.  To alleviate the 

exercise-induced vibration two options are proposed: (i) isolate the aerobics floor.  The 

transmission of accelerations is due to the activity on the 16th floor slab.  Floating slab 

systems are commercially available which allow for isolation of a floor from the rest of 

the building.  These systems typically work through the use of a built up floor supported 

by springs connected to stiff regions of the existing floor.  This can be accomplished 

easily; however, the additional load of the system would need to be compared to the 

strength of the existing floor system to ensure that the additional weight can be safely 
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supported. (ii) Re-locate the aerobics class.  Moving the exercise area to a lower portion 

of the building where the floor framing is stiffer and heavier would reduce (but not 

eliminate!) the acceleration transmission to other portions of the structure.   
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7. Application of wireless sensors for vibration monitoring of a steel truss bridge 

7.1. Introduction 

This chapter presents field deployment and structural identification of a wireless 

sensor network on a steel bridge. In this work, the vibration of a steel truss bridge is 

monitored throughout a year in different environmental and operational conditions. The 

objective of the project was to identify the dynamic characteristics of the bridge through 

modal testing, and also to observe the variability of results due to the changes in 

environmental and operating conditions of the bridge. For this purpose, the vibration of 

the bridge is measured multiple times in different seasons while the temperature and the 

number of vehicles passing the bridge were recorded at the time of each test. Having the 

modal parameters identified from separate data sets, a statistical study could be 

performed which provides the mean and standard deviation of the identified parameters. 

Besides, the possible dependency of the identified parameters on the mentioned variables 

can be assessed. Furthermore, this chapter presents an attempt towards constructing the 

Finite Element model of the bridge and updating the modelling parameters based on the 

estimated modal frequencies. For finite element model updating, sensitivity based 

algorithm is used.  

7.2. History and Specification of the Bridge 

The Northampton Street Bridge was open in October of 1806.  The original bridge 

was a wooden structure and replaced the ferry, which crossed the Delaware River from 
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Easton, Pennsylvania to Phillipsburg, New Jersey, up until the nineteenth century.  This 

original wooden design, built by Timothy Palmer, lasted until the late nineteenth century 

when the demand on the bridge changed from horse-drawn streetcars to trolley cars.  In 

order to meet the demand of this new traffic pattern, a new steel cantilevered-truss bridge 

was designed by James Madison Porter III.  In August of 1955, the Northampton Street 

Toll Supported Bridged sustained major damage during the floods following Hurricane 

Diane.  Repairs were made over the next few years, but the flood damage left a noticeable 

sag in the center span of the bridge that can still be seen today.  Most recently, the 

Northampton Street Bridge underwent renovation in the summer 2002.  The 

improvements included a structural steel repair, painting, and the installation of a 

pedestrian sidewalk with railings.   

Today the bridge has a three-ton weight limit, restricting traffic to only small 

vehicles.  It is held up by two piers that support two 125 foot cantilevers.  The bridge can 

facilitate traffic due to three lanes for motor vehicles as well as pedestrian walk ways on 

both the North and South side.  Although not a toll bridge, the Northampton Street Bridge 

is maintained by the Delaware River Joint Toll Bridge Commission.   

The current structure of the bridge, shown in Figure 7.1, has a total span of 550 (ft) 

supported by 2 piers.  The span is divided into 25 (ft) sections such that each pier 

supports a 125ft cantilever on both sides and a 50 (ft) (two panels) section is suspended 

between them.  The width of the bridge is 36 (ft) from center-to-center of the trusses, 

with a 9 (ft) sidewalk on either side. 



 

Figure 

7.3. Wireless Sensor Network

A network of 20 Imote2 wireless sensors is used for this monitoring project. The 

sensor board which is utilized for measuring the acceleration is SHM

both Imote2 and SHM-A sensor board are

Chapter 6). The sensors were installed across the bridge to capture its vibration under 

ambient loads during tests in vertical and transverse directions. The implementation plan 

for the sensor networks on this 
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Figure 7.1. A view of the Northampton St. Bridge 

Wireless Sensor Network 

A network of 20 Imote2 wireless sensors is used for this monitoring project. The 

sensor board which is utilized for measuring the acceleration is SHM-A. Specifications of 

A sensor board are presented in previous chapters (Table 6.1 in 

Chapter 6). The sensors were installed across the bridge to capture its vibration under 

ambient loads during tests in vertical and transverse directions. The implementation plan 

for the sensor networks on this bridge is shown in Figure 7.2. The locations of sensors are 
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A. Specifications of 
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Chapter 6). The sensors were installed across the bridge to capture its vibration under 

ambient loads during tests in vertical and transverse directions. The implementation plan 

bridge is shown in Figure 7.2. The locations of sensors are 
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selected such that they capture enough information to provide the modal parameters of 

the bridge, including modeshapes, with a proper resolution. Seventeen sensors are located 

on the south-side of the bridge, along the main and the two short spans, and three sensors 

are selected to be on the opposite side (north-side) along the main span. This arrangement 

allows for extraction of different types of modeshapes including flexural bending and 

torsional modes.  

To attach the sensors to different locations on the bridge a magnet bracket was 

assembled, as shown in Figure 7.3. This configuration made the installation of sensors 

very convenient. The vibration monitoring tests were conducted multiple times 

throughout a year. The magnet-bracket configuration allowed for quick installation of the 

sensors and therefore, the sensors were attached and detached before and after each 

testing trip. The locations of the sensor where determined and tried to be constant through 

the different tests. To assure the alignment of the sensors, a handy electronic level was 

used. The alignment is an important issue in installation as it can bring some random 

scaling in the amplitude of measured acceleration responses.   
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Figure 7.2. Sensor locations along the bridge 

Figure 7.3. Sensor attachment using magnet connections

To have an estimate of the performance of the radio communication and to determine 

the sensor arrangement on the bridge, a set of radio tests (Linderman et al. 2010) are 

conducted on the network to indicate the strength of the radio signals, which transmit 

data between the base station and the remote nodes, in terms of the percentage of package 

loss during communication. Results of the test are shown in Figure 7.4. Since the sensor 

units were attached to the web of the columns, a number of sensors are not in line

sight with the base station.  As it can be seen in Figure 7.4, for these sensors, the 

percentage of package loss in transmission is relatively high. However, incorporating 

 

 
Sensor attachment using magnet connections 

tion and to determine 

the sensor arrangement on the bridge, a set of radio tests (Linderman et al. 2010) are 

conducted on the network to indicate the strength of the radio signals, which transmit 

of the percentage of package 

loss during communication. Results of the test are shown in Figure 7.4. Since the sensor 

units were attached to the web of the columns, a number of sensors are not in line-of-

Figure 7.4, for these sensors, the 

percentage of package loss in transmission is relatively high. However, incorporating 



 

reliable data transfer protocol in data transmission permits having somewhat low signal 

strength in the network and still send and rece

For cross verification of results a network of wired sensors is also used during one of 

the field tests. The wired sensor network included seven accelerometers connected to a 

data acquisition system. The accelerometers are low 

±2g acceleration range. The data acquisition system was PDAQ Premium data acquisition 

system from DIGITEXX with 16 Channels for voltage input from different sensors types 

measuring acceleration, strain, wind speed/directi

an analog filter with 24 bit resolution. The software which retrieves and converts data is 

Digitexx. Figure 7.5 shows the data acquisition system and a SD 2210 accelerometer. 

Figure 7.4. Package loss percentage vs. distance for the implemented wireless sensor 

341 

reliable data transfer protocol in data transmission permits having somewhat low signal 

strength in the network and still send and receive the data in the network.

For cross verification of results a network of wired sensors is also used during one of 

the field tests. The wired sensor network included seven accelerometers connected to a 

data acquisition system. The accelerometers are low noise Silicon Design 2210

±2g acceleration range. The data acquisition system was PDAQ Premium data acquisition 

system from DIGITEXX with 16 Channels for voltage input from different sensors types 

measuring acceleration, strain, wind speed/direction, temperature. This system integrates 

an analog filter with 24 bit resolution. The software which retrieves and converts data is 

Digitexx. Figure 7.5 shows the data acquisition system and a SD 2210 accelerometer. 

 

Package loss percentage vs. distance for the implemented wireless sensor 

configuration 

reliable data transfer protocol in data transmission permits having somewhat low signal 

ive the data in the network. 

For cross verification of results a network of wired sensors is also used during one of 

the field tests. The wired sensor network included seven accelerometers connected to a 

noise Silicon Design 2210-002 with 

±2g acceleration range. The data acquisition system was PDAQ Premium data acquisition 

system from DIGITEXX with 16 Channels for voltage input from different sensors types 

on, temperature. This system integrates 

an analog filter with 24 bit resolution. The software which retrieves and converts data is 

Digitexx. Figure 7.5 shows the data acquisition system and a SD 2210 accelerometer.  

 
Package loss percentage vs. distance for the implemented wireless sensor 



 

 

Figure 7.5. PDAQ data acquisition 
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and power spectrum of an example acceleration data collected from the seven wired and 

the seven wireless sensors located along the main span. The collected data from the two 

sensor network are consistent and comparable. The different noise characteristics of the 

different utilized accelerometers in each sensing network make the frequency responses 

slightly different. This difference is basically negligible in identification of the modal 

properties. However, the identified modal properties may have different accuracy and 

purities. This topic is discussed with details in Chapter 4. 
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Figure 7.6. Acceleration data from wireless sensor data 
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Figure 7.7. Acceleration data from wired sensors 
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7.5. Modal Parameter Identification 

As the main objective of the dynamic testing of a structure, modal properties are 

aimed to be identified. In most of the civil infrastructure, the excitation is not measured 

and therefore, output-only system identification algorithms are the only applicable 

algorithms.  The advantage of such algorithms in the bridge monitoring is that the data 

collection can take place anytime, when the bridge is under the random ambient and 

traffic loads. 

Modal parameter identification of the bridge is performed using different time and 

frequency domain algorithms. The utilized algorithms are Frequency Domain 

Decomposition (FDD) algorithm, Eigen Realization Algorithm (ERA-NeXT, -OKID, and 

-Average) (for ERA-OKID and ERA-Avg, the reader is referred to Change et al. 2012), 

Auto Regressive (AR), and N4SID. Different algorithms have different time-efficiencies 

and accuracies. However, the different accuracy also depends on the characteristics of the 

data and the testing conditions (e.g. the length of data or the randomness of the ambient 

input). Except the FDD algorithm, the identification algorithms and corresponding results 

also depend on the selected model order as described in Chapter 2. Using the stabilization 

diagram, the optimum order can be found and from that the modal properties can be 

extracted. As an example, Figure 7.8 shows the stabilization diagram for the 

identification of the bridge modal properties in vertical direction using AR algorithm. 

Similar plots are extracted for other time-domain algorithms named above. As explained 

in Chapter 2, the stabilization diagram requires threshold values to determine the stable 
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order which is defined as the deviation of natural frequency, modeshape, and damping 

ratio in order p from the order p-1. In this work these values are selected as 5% and 20% 

for frequency and damping ratio, and 95% for MAC value of identified parameters in two 

consecutive orders.  

 
Figure 7.8. Stabilization diagram for model order selection for vertical direction in AR 

algorithm 
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Figure 7.9. Estimated modeshapes using different algorithms 
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Figure 7.9 (Cont’d). Estimated modeshapes using different algorithms 

FDD

ERA-OKID

ERA-NExT

ERA-NExT-Avg

AR

N4SID

Frequency=4.41Hz 
Damping ratio=1.40 %

FDD

ERA-OKID

ERA-NExT

ERA-NExT-Avg

AR

N4SID

Frequency=5.21 Hz
Damping ratio=2.07 %

FDD

ERA-OKID

ERA-NExT

ERA-NExT-Avg

AR

N4SID

Frequency=9.01 Hz
Damping ratio=0.8 %



350 
 

 
 
 

 

 

 
Figure 7.9 (Cont’d). Estimated modeshapes using different algorithms 
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Figure 7.9 shows the estimated modeshapes of the bridge, extracted from different 

algorithms. The first 6 modeshapes presented in Figure 7.9 show the modeshapes which 

are identified with all the applied algorithms. The rest of the modeshape plots however, 

show those modes which could be identified using only a few of the algorithms. In the 

other words, some of the algorithms have not been able to identify those modes with the 

consistency that the threshold level of the corresponding stabilization diagram requires. 

Table 7.1 through 7.3 also present the estimated modal parameters (frequencies, damping 

ratios, and modeshapes MAC values as compared to FDD modeshapes) using different 

algorithms. The results for the modes which are not identified through some of the 

methods are presented as “not id’ed”. The last row in the tables presents the normalized 

standard deviation (j/À� of the estimated values. It can be realized that the identified 

frequencies and modeshapes are quite consistence (normalized standard deviation are less 

than 1%) whereas the damping ratios have significantly higher deviation (up to 30% for 

those that are estimated using all the algorithms).  

The variation of results, shown in Tables 7.1 through 7.3, highlights the existence of 

an uncertainty in the identification of bridge’s dynamic characteristics. Beside the effects 

of selection of identification algorithm, there are other sources that impose uncertainty to 

the results. The most important ones are the environmental and operational conditions 

(EOCs). In particular, the amount of traffic load and the ambient temperature are 

important EOC parameters for modal identification of the bridge structures. The effects 

of the two mentioned parameters are discussed in the next section. 
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7.6. Effects of Temperature and Traffic Loads 

Dynamic characteristics reflect the global structural behavior of the system and 

therefore any change in their value can reflect the structural change and can be used in 

the performance evaluation and health assessment of the system. Modal parameters of 

constructed structures are estimated through vibration monitoring and applying system 

identification algorithms on the measured responses, and as mentioned in the previous 

section, there are uncertainties associated with this process. Some of the uncertainties are 

rooted in the natural randomness of testing (e.g. noise in measurement and randomness in 

the ambient vibrations) and some are rooted in the environmental and operational 

condition changes (e.g. temperature and traffic load changes).  While the ultimate goal 

would be to eliminate or minimize the uncertainty in the estimation process, the 

fundamental step towards this goal is to study different sources of uncertainty and 

provide understanding about their impact on the results of modal parameter identification.  
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Table 7.4. Recorded temperature and number of vehicles during the ambient tests of 

Northampton Bridge 

Test number Temperature (F) Number of Cars 

1 58 168 

2 59 135 

3 59 153 

4 59.7 149 

5 60.4 154 

6 63.7 154 

7 70.9 162 

8 67.5 177 

9 61.9 174 

10 50.9 126 

11 52.3 131 

12 53.2 103 

13 43.2 97 

14 43.2 91 

15 44.4 86 

16 51.5 122 

17 50.2 117 

18 48.6 146 

19 44.6 112 

20 43.3 112 

21 43.3 120 

22 46 132 

23 46 157 

24 45 150 

25 58.1 91 

26 59.5 116 

27 57.6 88 

28 62.1 60 

29 57.9 49 

30 58.5 52 

31 56.3 128 

32 55 107 

33 79 62 

34 79 94 

35 77.5 100 

36 92.3 114 

37 91.8 118 

38 92.3 132 

39 74.5 42 

40 72.3 42 

41 70.9 38 

42 71.2 21 

43 85.1 119 

44 77.4 114 

45 77.9 84 

46 79.7 113 

47 58.6 84 



357 
 

Having the vibration data of the bridge in a wide range of temperature and traffic load 

in different ambient tests, the variation of modal parameters of the bridge can be 

observed and their correlation with the temperature and traffic load can be estimated. The 

range of temperature in which the data is collected from is from 43.2 to 92.3°F and the 

numbers of passing vehicles are from 21 to 171. Table 7.4 lists the temperature and the 

number of passing vehicles recorded throughout the vibration test in different tests. 

To evaluate the effect of each of the two parameters on the modal parameters, the 

correlation between the identified frequencies and the two investigated parameters, 

temperature and traffic load, are estimated as: 

` = «[�Á	Á6��Â	Â6�]
�Ã�s                                                     (7.1) 

where X and Y are the two parameters that their correlation is estimated (e.g. the first 

identified frequency and the ambient temperature), 6̈ and f6 are the mean values, and  jÁ 

and jÂ are also their standard deviations.  

Figure 7.10 shows dispersion of estimated frequencies as functions of temperature, 

along with the mean value and the standard deviation of the frequencies and the 

correlation with the temperature. 
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Figure 7.10. Estimated frequencies versus ambient temperature 
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Figure 7.10 (Cont’d). Estimated frequencies versus ambient temperature 
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Figure 7.10 (Cont’d). Estimated frequencies versus ambient temperature 

30 40 50 60 70 80 90 100

5.25

5.3

5.35

5.4

5.45

5.5

5.55

5.6

5.65

5.7

Temperature(°F)

F
re

q
u

en
cy

 (
H

z)

Mean Freq.=5.477(Hz)
Std Freq.=0.0582(Hz)

R (Correlation) =-0.062

30 40 50 60 70 80 90 100

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15

Temperature(°F)

F
re

q
u

en
cy

 (
H

z)

Mean Freq.=5.93(Hz)

Std Freq.=0.0467(Hz)

R (Correlation) =0.120

30 40 50 60 70 80 90 100
6.4

6.45

6.5

6.55

6.6

6.65

6.7

6.75

Temperature(°F)

F
re

q
u

en
cy

 (
H

z)

Mean Freq.=6.584(Hz)

Std Freq.=0.0336(Hz)

R (Correlation) =0.092



361 
 

 
Figure 7.10 (Cont’d). Estimated frequencies versus ambient temperature 
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Figure 7.11. Estimated frequencies versus traffic density  
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Figure 7.11 (Cont’d). Estimated frequencies versus traffic density  
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Figure 7.11 (Cont’d). Estimated frequencies versus traffic density  
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Figure 7.11 (Cont’d). Estimated frequencies versus traffic density  
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Figure 7.11 also presents the same information for evaluation of the correlation 

between identified natural frequencies and the number of vehicles passed over the bridge 

per minute during the vibration monitoring.  

As can be seen in the presented plots, in contrary to the expectations, there is not a 

clear and strong correlation between the estimated frequencies and the two parameters. 

To better understand the range of correlations, the calculated correlations for different 

identified frequencies are shown in Figures 7.12 and 7.13. The weak correlation with 

both ambient temperature and the number of vehicle is observed for most of the 

frequencies. However, the deviation of the estimated frequencies in different tests shows 

the uncertainty associated with the results. The standard deviations for the selected 

identified frequencies are from 0.5% to 2% of the mean values (normalized with respect 

to the mean). This uncertainty is slightly higher than the uncertainty associated with the 

selection of the algorithm (Table 7.1). 
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Figure 7.12. Estimated correlations between frequencies and the ambient temperature 

during the vibration monitoring 

 
 

 
Figure 7.13. Estimated correlations between frequencies and the number of vehicles 

passed over the bridge during the vibration monitoring 
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7.7. Finite Element Model of the Bridge 

This section presents the Finite Element (FE) modeling of the Northampton Bridge 

which is developed in SAP2000. The FE model is constructed based on information 

provided through the 1978 Bridge Inspection and Rating report (DRJTBC 1978).  When 

converting these plans into a SAP model, simplifications are necessary, since modeling 

every piece of the structure is impractical.  Furthermore, the plans, while detailed, are 

surveyed in 1978 and multiple changes have been made to the bridge since then.  In 2002 

a new railing and sidewalk system were added to the bridge (Bridge Information 2012).  

The mass from the additional components and un-modeled structural elements must be 

calculated, or in some cases estimated, and applied to the model separately.  As a result, 

differences will exist between the modal frequencies given by the FE model and the 

actual bridge frequencies, estimated through vibration monitoring.  Variations in these 

frequencies may also result from changes in material properties, such as elastic modulus, 

or boundary conditions (Jaishi and Ren 2007). 

7.7.1 Constructed FE Model 

The Bridge Inspection Plans (1978) contain section and connectivity information for 

the structural components of the bridge.  Figure 7.14 shows one of the side views of the 

bridge.  SAP2000’s Section Designer feature is used to define the individual sections for 

each member. To simplify analysis, truss members are released only in the M33 

direction.  Though in reality the bridge experiences both lateral and vertical modes of 

vibration, the FE model which is used for updating only considers the vertical bending 



 

modes (when releasing the truss members in only one direction, transverse modes are 

prevented).   

Figure 7.14. The side view of the Northampton Bridge provided by Bridge Inspection 

 

Since the plans are more than 30 years old, it was necessary to have a visit to the 

bridge and investigate how closely the plans match the real structure.  At th

following modifications are noted:

• The concrete deck has been replaced with a steel deck

• The original railing (contained in the plans) has been replaced

• There is a concrete barrier, not included in the plans, between the road and the 

sidewalk 

• The frame section for members has been modified.

To obtain a set of matching modal parameters from the FE model, it is critical to 

account for the mass as accurately as possible.  While self

computed, the SAP model does not accoun

plates.  The dead load for each member, excluding self

the Bridge Inspection report and applied to the joints as point loads. The mass due to the 

new railing and concrete barrier
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7-A contains the section information and dead loads (excluding self-weight) for each of 

the truss members.  

The dead loads experienced by the bridge are divided into three categories: 

1. Non-structural dead load described in the Bridge Inspection manual (pins and 
plates) 

2. Non-structural dead load estimated from visiting the bridge (railing and concrete 
barrier) 

3. Structural self-weight for members modeled in SAP2000 

 

Each type of the dead load is applied as a separate load pattern as the certainty 

regarding accuracy of each one is different and the separation of load patterns allows for 

a better control over load cases and the updating process. To account for the entire mass 

of the bridge each load pattern is set as a mass source.  A view form the final SAP model 

can be seen in Figure 7.15. 
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Figure 7.15. Finite Element Model of the Northampton Bridge developed in SAP2000 

7.7.2 FE Model Updating Approach 

Much work has been done to develop methods of updating FE models to more 

accurately reflect real structure.  Two general approaches for model updating are: the 

direct method and the indirect (iterative) method.  The iterative method, used in this 

study, is the more common method in structural systems with dynamic testing. This 

approach requires one to choose a set of updating parameters (Levin and Lieven 1998).  

The selection of the type and number of updating parameters is critical in the process of 

FE model updating.  Sensitivity analysis is performed to determine which parameters will 

result in the most efficient model improvement.   

Mottershead et al (2011) has identified elastic modulus and non-structural applied 

mass as valid parameters for model updating.  Thus, elastic modulus and non-structural 
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applied mass are selected as the updating parameters in this study. The number of 

updating parameters is limited by the available information about the real structure which 

in this case is the identified modal parameters from the vibration data.  Generally, a small 

number of parameters are used in order to maintain a well-conditioned problem 

(Brownjohn et al 2001). It is also important to pay attention to choose of modal 

parameters to match.  Not all modes are able to be measured with an equal amount of 

accuracy, and these differences must be taken into account when updating (Zhang et al 

2001).   

As presented by Friswell and Mottershead (2001), the iterative updating process used 

in this study consists of minimizing the solution, (Equation 7.3) to the optimization 

equation (Equation 7.2): 

_ÄTÅÆÆ_Ä  subject  to _Ç = È_Ä     (7.2) 

_Ä = [ÈÉÅÊÊÈ + ÅÆÆ]	 ËÈÉÅÊÊ_Ç − ÅÆÆAÄz − Ä�EÌ        (7.3) 

where: 

 Äz , Ä� = current or initial parameter value 

 _Ç,  _Ä = change in response or parameter 

 S =Sensitivity Matrix 

 ÅÊÊ , ÅÆÆ =Weighting matrices for frequencies and parameters 



373 
 

Solving Equation 7.3 indicates how the parameter values must be changed to increase 

agreement between the model and the actual responses. 

7.7.3 Model Updating Process 

To update the FE model based on the identified parameters, Equations 7.2 and 7.3 are 

used. Basically Equation 7.3 minimizes the change in the parameter value from the initial 

estimate of the parameter.   

The updating parameters chosen in this study are the elastic modulus of steel and 

estimated non-structural loads (ENSL).  The ENSL consists of the railing, railing support, 

and concrete barrier.  This load is applied equally at all deck joints except for the end 

joints (L0 and L0’).  As mentioned before, Equation 7.3 minimizes the parameter’s 

change from the initial estimate.  Since the absolute value of the elastic modulus is much 

greater than the ENSL, parameter values are replaced by normalized factors in the 

MATLAB code. These factors are created by scaling each parameter to the initial 

estimate; ENSL is scaled to the load applied at the deck joints (the ENSL is updated in 

model by changing the mass multiplier for the corresponding load case).  

 The responses for FE model updating are chosen to be the natural frequencies, 

estimated from modal identification. The selected frequencies are limited to 5 of the 

identified modes. Model updating matches the analytical frequencies (from the FE 

model) to the average measured frequencies (Brownjohn et al 2001).     
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Sensitivity Matrix (S) is to be estimated as is required in Equation 7.2. The sensitivity 

matrix is calculated by taking the first derivative of the response with respect to the 

parameter (Mottershead 2011). This matrix accounts for the change in response 

(frequency) for a given change in parameter. In this work, the value of one parameter is 

changed by 1% in the SAP model, and the corresponding frequencies are extracted. The 

process is repeated with the second parameter, when the first parameter held at the initial 

value. In sensitivity based model updating, the sensitivity matrix may either be held 

constant throughout the updating process, or recalculated per iteration.  Both approached 

are taken in this updating process and based on the results and recommendation by 

Friswell and Mottershead (1995), the recalculated method was chosen.  

Since the value of the elastic modulus is known with greater confidence than the value 

of the estimated loads, a weighting matrix must be also considered for the 

parameters  �ÅÆÆ� . Weighting matrix is a positive, diagonal matrix and its first row 

corresponds to the elastic modulus; the second row corresponds to the ENSL.  To prevent 

the change in elastic modulus from exceeding ±5%, the elastic modulus is assumed to be 

known with 3,500 times more certainty than the ENSL.   

Therefore, 

  ÅÆÆ = Í3500 00 1Ï 

is assumed.  
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Similarly, variation exists in the accuracy of the measured frequencies.  The weighting 

matrix WÐÐ accounts for these variations which is also a positive, diagonal matrix, whose 

entries correspond to the reciprocal of the variance for each average modal frequency.  

Table 7.5 shows the average of the selected frequencies (as responses) and corresponding 

standard deviations. 

Table 7.5. Average and Standard Deviation of selected frequencies for updating 

Average Frequency (Hz) Standard Deviation 

1.793 0.0212 

4.363 0.0227 

5.933 0.0472 

8.959 0.0377 

 

The FE model updating process consists of four main steps: 

Step 1: Calculate the sensitivity matrix in MATLAB. 

Step 2: Enter the current parameter values into SAP and run the modal analysis. 

Step 3: Enter the modal frequencies generated by SAP2000 into the MATLAB code 

and calculate the updated parameter values and new sensitivity matrix. 

Step 4: Modify the parameter values in SAP to the updated values and repeat the 

process until the system converges. 

Tables 7.6 shows the change imposed to the modeling parameters through FE model 

updating. It can be seen that the elastic modulus increases by 4.8% and the ENSL 

increases 52.11%.  The greater change in ENSL compared to elastic modulus indicates 

the effectiveness of using a parameter weighting matrix. Table 7.7 also contains the 
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frequencies that are identified, and also computed from the initial and the updated FE 

model. It can be seen that the updating process improves the consistency of the FE model 

and the measured response of the structure. It can also be seen the updated model has 

natural frequencies within 5% of the measured frequencies. Figure 7.16 also shows the 

modes of vibration in the selected frequencies, obtained from the updated SAP model.  

 

  
 

  
Figure 7.16. Modes of vibration in selected frequencies from FE Model in SAP2000 
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Table 7.6. The FE modelling parameters selected for updating 

Initial parameter Final parameter % change 

Elastic 
modulus 
(kip/in2) 

Estimated 
non-structural 

load (kip) 

Elastic 
modulus 
(kip/in2) 

Estimated non-
structural load 

(kip) 

Elastic 
modulus 
(kip/in2) 

Estimated 
non-structural 

load (kip) 

29000 5.957 30,401 9.061 4.83 52.11 

 

Table 7.7. Identified, initial, and updated frequencies 

Identified 
Frequency (Hz) 

Initial 
Frequency (Hz) 

Difference (%) 
before Updating 

Updated 
Frequency (Hz) 

Difference (%) 
after Updating 

1.793 1.847 3.035 1.816 1.302 

4.363 4.463 2.282 4.416 1.210 

5.933 5.665 4.511 5.780 2.585 

8.956 8.001 10.659 8.599 3.986 

 

7.8. Summary of the Bridge Monitoring 

The semi-long term monitoring of Northampton Bridge is presented in this Chapter. 

The portability of the wireless sensors and the ease of installation facilitated the vibration 

monitoring of the bridge. The wireless sensor network deployed in this experiment 

consisted of 20 wireless sensors and in addition, 7 wired sensors (in one test only) for 

cross-verification of the obtained results. The modal parameters of the bridge structure 

are identified using different time- and frequency-domain identification approaches. It is 

observed that while the identified modal parameters are in general agreement, there exist 
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slight variations among the identified parameters. This is considered as the uncertainty 

due to the algorithm selection.  

Having the measured data collected during different environmental and operational 

conditions (EOCs), the uncertainty of the results due to these parameters is investigated. 

It is attempted to find a correlation between the dynamic characteristics of the bridge and 

the mentioned parameters. The effects of the parameters (ambient temperature and 

number of vehicle passing the bridge during the monitoring) did not follow a uniform 

trend and the correlations were weak and inconsistent for different modes of vibration. 

This means that different vibration frequencies of the bridge structure react to the EOCs 

in different way. In addition to that, it can be realized that the effects of the extra mass 

due to the passing vehicles is insignificant and also different for different modes. 

Although no correlation could be established between the dynamic characteristics and the 

EOC parameters, the variation of results could be easily observed. 

Along with the study on the identified modal parameter identification of the bridge, 

the Finite Element model of the bridge is also developed in SPA2000. The modeling is 

performed based on the information provided in the as-built drawings of the bridge given 

in the Bridge Inspection report. Some details are however obtained through the visit to 

the bridge. The objective for development of Finite Element model is to have a model 

that perfectly represents the real structure. Therefore, some uncertain initial modeling 

parameters are modified using iterative, sensitivity-based model updating approach. For 

simplicity, only the fundamental natural frequencies are selected as response for updating 
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process. Further study could be performed to include different responses such as modes 

of vibration and higher frequencies in the updating process. 
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Chapter 8 

Summary of Contribution of the 

Research, Broader Impact, and Future 

Studies 
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8. Contribution of the Research, Broader Impact and Future Studies 

8.1.Original Contribution of the Dissertation 

This research contributes in enhancement and improvement of the current state of 

SHM and application of advanced sensing technology in the SHM practice. Some 

challenges in application of wireless sensor networks (WSNs) are addressed and new 

algorithms and approaches are developed. In following section, the existing challenges 

and the most recent efforts for addressing them are presented and then the original 

contribution of this dissertation is discussed. 

Challenge and Existing Solutions in Modal Identification using WSNs 

Latency in the data collection and prohibitive power consumption, as major drawbacks 

in application of WSN in SHM, need special considerations. Due to the limited 

bandwidth in wireless networks, transmitting large volumes of data can take a 

prohibitively long time. In addition to the latency, power consumption also limits the 

performance of WSNs in long term monitoring. Different components of a wireless 

sensor unit consume different amounts of energy when performing different tasks. From 

the power measurement, it is observed that the radio transceiver is the major power 

consumer in a unit of wireless sensor. The onboard processing techniques attempt to 

reduce the communication by pushing the computation into the network. Efforts in 

developing onboard processing algorithms for application of wireless sensors include: 

decentralized damage detection algorithm using transfer function and migration of its 

parameters by Swartz (2009); Coordinated Computing Strategy which divides the 

network into a number of sub-networks with cluster heads in a hierarchical topology by 

Nagayama and Spencer 2007 and its further improvement by deploying decentralized 
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Random Decrement function estimation (Sim, et al. 2010). Although these limited 

attempts reduce the amount of communication, they are restricted by the network 

topology and the underlying algorithms, and mostly developed for damage detection. The 

limited effort is devoted to onboard modal identification which is just partially onboard 

and still a significant portion of computation is assigned to a central computer. 

Additionally, the efficiency of the proposed algorithms is not high enough to alleviate the 

challenge (for example in the algorithm developed by Sim et al. 2010, the saving in 

communication is just 20~25%). Therefore more efficient algorithms are still needed to 

remedy the latency and power consumption issue which exist in the current WSN 

deployments. 

Contribution in Addressing Limitations of WSNs for Modal Identification 

This dissertation presents a novel approach for modal identification of structural 

systems in a distributed scheme, suitable to address challenges in application of WSN in 

SHM. The proposed algorithm, called Iterative Modal Identification (IMID), assigns the 

entire computational task of modal identification to remote nodes and limits the data 

communication to transmission of only modal analysis results. In this approach the 

communication burden is reduced and as a result, the time and the energy consumption of 

the monitoring system are minimized. The algorithm is developed such that each node 

estimates the system’s parameter (Ѳ) based on the measured data at the node (available 

observation, Y) plus the assumed responses in the other nodes, f.t  The estimation results 

are updated recursively by passing the results through the network in an iterative manner. 

Considering a structure instrumented by N sensor nodes, the first node uses the initial 

value of the parameters and makes a numerical simulation to obtain the response on other 

nodes. The simulated response and the measured data at this node are used to estimate 
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system’s modal parameters and send them forward. These steps are taken in all of the 

nodes of the network one-by-one and each node updates the estimation by the measured 

data at its location until the estimated parameters are stabilized and converged. Note that 

the algorithm with this configuration is applicable to input-output systems. The algorithm 

is implemented on different input-output numerical models and a laboratory 5 DOF 

model (on shaking table) and its performance is validated. 

IMID needs a starting point for iteration process. For cases where this is not available, 

another novel approach, called Cumulative System Formation, is developed which 

addresses this requirement. In this approach, the parameters for the first node are 

estimated using only measured data at its location (single output problem). The second 

node then receives parameters and with its locally measured data updates the estimated 

parameters (two outputs). The third node performs similar process with three outputs and 

the process continues up to the last node in the array, each time the number of outputs 

increases by one. As the estimation reaches the last node, one cycle of iteration is 

completed and the system parameters are formed from multiple outputs. 

Challenge for Output-only Modal Identification Problems 

The modal identifications for civil structures are mostly output-only problems because 

the input is not controllable and measurable. Therefore it is important to have the 

identification algorithm formulated for output-only systems as well. 

Contribution in Addressing Output-only Problems: 

The approach which is developed to address output-only modal identification is such 

that one node, as the reference, sends its measured time history data to the rest of the 

nodes in the network. The other nodes, then, calculate the cross-correlation functions (as 
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estimates of impulse responses) and send them to the base station for modal 

identification. IMID can utilize similar step to allow all the nodes to have the cross-

correlation functions computed (between their measured data and the reference node 

data). As an alternative, the unscaled impulse response can be estimated through the use 

of Random Decrement (RD) technique, in which instead of transmission of time-history 

data from reference node to the rest, the trigger crossing information is sent for 

estimation of impulse response. While estimation of impulse response with correlation 

functions and random decrement function have been available in literature, the novelty of 

the developed algorithm is their adoption for use in the Iterative Modal Identification. 

The performance of the algorithm is enhanced using developed AR-ARX analogy 

approach. AR-ARX is a two steps process which is an implementation of ARMA. An 

analogous strategy is utilized in the implementation of IMID. In this strategy, the first 

iteration cycle uses AR model and the later iterations use ARX model (using residuals of 

the AR model) for estimating the system parameters and predicting the response. The 

ARX models (second cycles of iteration) use residuals as the input. The available residual 

at the sensor location is the difference between the locally measured signal and the 

predicted one from simulation. The algorithm with all elements (for output-only systems) is 

also implemented on a numerical 10-DOF model, an experimental 3-D truss and the data 

collected from ambient vibration of Golden Gate Bridge. 

Efficiency of the Algorithm and Comparison 

The efficiency of the algorithm is investigated by assessing the reduction in the 

communication burden, compared to the centralized data processing scheme. For the input-output 

experimental model up to 95% reduction in communication is achieved. For the 3-D steel truss 

model 90% reduction and for the implementation on the ambient response data from Golden Gate 
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Bridge 83%~89% reduction in communication is achieved. This reduction is significantly higher 

than what is achieved through other state-of-the-art approaches which are introduced earlier (e.g. 

20~25% reduction in communication through algorithm developed by Sim et.al. 2010). This 

reduction in communication, which is the result of novel approaches developed in this 

dissertation, clearly results in a reduction in energy consumption (e.g. the total energy is 

estimated to have up to 75% reduction) and also agility of the sensing network. An automated 

long-term monitoring system, which is time-efficient and energy-efficient, can be established 

based on use of this algorithm. The algorithm can be also considered as a basis for damage 

detection in long-term monitoring as it provides the updated modal parameters through the time.  

Challenge in Assessing the Effects of Measurement Noise:  

A challenge associated with the design of wireless sensor platforms is the trade-off 

between the functionality and the power consumption and attempts for minimizing the 

cost. These considerations usually cause limitations in the architecture and quality of 

wireless sensors. As the source of measurement noise, the selected sensors may introduce 

an epistemic uncertainty into the results of system identification. Despite the 

development of numerous system identification methods and many successful 

implementations on structural systems, relatively limited efforts have been devoted to 

evaluation of the results in terms of accuracy and credibility. The limited research is also 

mainly concerned about the uncertainties associated with environmental conditions 

(Peeters and DeRoeck 2001), excitation characteristics (Nagayama et al 2008) and data 

processing methodology (Reynolders et al 2007, Zhang et al 2010), and less attention is 

paid to the impact of measurement system and the possible uncertainties derived from 

measurement noises. Similarly, the measurement noise can have impacts on the results of 

damage detection and these effects need to be investigated. 
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Contribution in Quantifying the in Modal Identification Quality due to Noise 

This PhD dissertation develops a parameter that quantifies the quality of estimated 

modal parameters in presence of measurement noise. The developed parameter, called 

Physical Contribution Ratio (PCR), reflects the contribution of system’s response in the 

estimated impulse response from the measurement in presence of noise. Higher PCR 

translates into more accurate identified modal parameters. Therefore, the identified modal 

parameters can be passed through this assessment to be quantitatively assessed in terms 

of the quality. The performance of this developed approach is validated by a numerically 

simulated example. It is also used to investigate the accuracy of identified modal 

properties of Golden Gate Bridge using ambient data, collected by wireless sensors. The 

vibration monitoring tests of Golden Gate Bridge provided two synchronized data sets 

collected by two different sensor types. The influence of sensor’s noise level on the 

accuracy of results is investigated throughout this work and it is shown that the high 

quality sensors provide more accurate results as the physical contribution of response in 

their measured data is significantly higher. Therefore, the developed parameter can be 

used for quantification of the modal identification results and also a basis for selection of 

sensor quality. Moreover, it can be a basis for selection of sensor location as it provides 

the physical contribution of response in terms of the location of sensor as well. 

Development and Validation of a Damage Detection Algorithm and Assessing its 

Efficiency in Presence of Noise 

Providing enhancements in the sensing and measurement systems, this research also 

looks into improvements in one of the fundamental applications of sensing and response 

monitoring which is damage detection. While providing a review on the current state of 
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the damage detection, the study contributes in validation of a developed damage 

detection algorithm which works with the correlation function of the measured responses 

at different locations of the structure. The damage detection algorithm is implemented on 

two small-scale and large-scale experimental models and its functionality and 

performance are validated. The small-scale experimental model is built to represent a 

beam-column connection and the implemented sensor network (including 9 sensors) is 

assumed to represent a portion of a dense array of sensor in a small portion of a structure. 

Through this implementation, two different sets of wired and wireless sensors are utilized 

and having the obtained results, the performance of each sensor network is evaluated. It is 

shown that though the wired sensor network, due to the higher sensing quality, provides 

slightly more accurate damage indicators, the results obtained from both networks are 

capable of reflecting the structural change in the instrumented model.  

While the first implementation used the acceleration response form dynamic testing, 

the second implementation used the strain data from cyclic loading of a large-scale beam-

column connection. Through the two implementations, the algorithm is shown to be 

effective in reflecting the damage, whether it is introduced suddenly or gradually 

throughout the time (or throughout the increase of the load). Along with the 

implementation and validation of the damage diagnosing algorithm, this research also 

explores the importance of statistical frameworks in this area. Several different statistical 

approaches are utilized to detect the change in the damage indicator and also to reflect the 

significance of the change. The statistical frameworks used for change point detection in 
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the validated damage detection are Bayesian Testing, Exponentially Weighted Moving 

Average, and Cumulative Sum. Equipping the damage detection approaches with such 

statistical framework is particularly important as there are always minor changes 

associated with non-structural changes which need to be differentiated form the structural 

ones. 

Implementation of Wireless Sensors for Monitoring of Real-Life Structures  

This dissertation is complemented by presenting two field-deployments for structural 

health monitoring. The first one is implementation of a state-of-the-art sensing system in 

monitoring of a tall building structure which is suffering from excessive vibration in 

vertical and lateral directions. The utilized sensing system consists of both wired and 

wireless sensors which are integrated to provide a cost-effective sensing system. The vast 

variety of sensors, including accelerometers, strain gauges, displacement sensors, and 

anemometer, are deployed and, along with different data processing techniques, 

facilitated the forensic quantification of the building. The performance of the building is 

evaluated in terms of serviceability and strength demand. Time- and frequency-domain 

analysis of response and comparison with the design guidelines, wind spectrum analysis, 

modal identification and extraction of excited modes of vibration are some data 

processing tasks performed in this study.  

The second field deployment is utilization of a network of wireless sensors for 

vibration monitoring of a steel bridge structure. The monitoring task is performed in a 

one-year period during multiple tests in different seasons to identify the dynamic 
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characteristics of the bridge and also find the uncertainty introduced to the results due to 

the changes in environmental and operational condition of different tests. The parameters 

which their effects are studied are the ambient temperature and the volume of traffic load 

crossing the bridge during the vibration monitoring. Variation of results due to the 

variation of each of these factors and a general conclusion are studied and it is shown that 

the modal parameters do not have strong correlation with the studied parameters for this 

specific bridge. 

8.2.Broader Impact of the Research 

The goal of this research was to facilitate the application of wireless sensors, as 

advanced sensing and monitoring technology, in structural health monitoring to allow this 

practice fully benefit from the advantages of wireless sensing and onboard computing.  

The approaches developed through this research may be further improved and adapted 

to be used in different scenarios in structural health monitoring. For example, the 

developed distributed modal identification can be utilized as a basis for development of 

distributed damage detection or the approach for quantification of the modal parameter 

quality can be used for sensor location selection. However, more importantly, this 

research can contribute in introducing a considerably superior monitoring approach for 

the civil infrastructure. As the application of wireless sensors in different elements of 

structural health monitoring (e.g. modal parameter identification and damage detection) is 

facilitated, many structural systems can benefit from their affordability and ease of 

utilization. Therefore, not only a broader range of structures will be considered for 
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monitoring, but a higher spatial resolution will be achieved in the monitoring. Distributed 

algorithms for onboard computations along with remote sensing technology can form a 

new avenue for establishing smart sensing systems and ultimately smart structures. 

8.3.Future Studies 

While this dissertation presented different approaches and techniques for enhancement 

of SHM, a wide range of research topics is also opened as a result, which can be 

explained and classified as the future studies. This Section also includes the studies that 

can be done as the continuation of the research presented in this presentation. 

8.3.1 Distributed Data Processing 

The iterative modal identification presented in Chapter 3 provided a significant 

enhancement in the efficiency of modal identification using WSNs. However, there is 

still a great potential for further improvement of the algorithm by examining different 

simulation and system identification approaches. The presented algorithm based its 

modal identification step on the Auto Regressive Exogenous (ARX) while it could use 

different time-domain or frequency domain algorithms. The same flexibility exists with 

the numerical simulation step. Using different approaches could make the algorithm more 

efficient in terms of computation which eventually helps with the energy-efficiency of the 

modal identification process. While ARX is selected among different algorithms, a broad 

study needs to be performed to find out the most efficient algorithms in terms of 

efficiency and also accuracy. Additionally, sensitivity analysis can be performed to find 
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out the dependency of the results (e.g. the convergence results) of the algorithm on the 

parameters such as the initial estimate of the system, and the window size or triggering 

criteria in estimation of impulse response using correlation function and random 

decrement. 

While the performance of the iterative modal identification algorithm is validated 

through implementation on several numerical, experimental, and real-life vibration data 

in MATLAB, the approach still needs to be programmed and compiled on actual wireless 

sensor platforms and be examined in a real structural monitoring scenario. In addition to 

the modal identification algorithm which is developed for onboard computation, there are 

plenty of data processing approaches which can be adopted for installation on wireless 

sensors. An example of such algorithms is the damage detection algorithm presented in 

Chapter 5. An automated monitoring system can be developed having the damage 

detection approach programmed and compiled on the wireless sensors. Statistical 

frameworks can also be utilized along with the damage detection method to provide a 

basis for reliable decision making about the assurance of damage. Further automation can 

be achieved through defining thresholds for change point detection and deployment of 

alarming system.  

8.3.2. Preemptive Sensing System 

An important future research for the application of wireless sensors in structural health 

monitoring is to enable the monitoring system to capture the sudden and drastic events, 

such as earthquakes or high speed wind. The current state of the wireless sensors in 
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structural monitoring does not provide real-time triggering of the sensing system in 

reaction to high structural response levels. Additionally, an effective and responsive 

monitoring system should be able to capture the sudden events and also respond to the 

collected information. Solutions to this need can be either found in hardware 

development (or hardware adjustment) or algorithm development. The iterative modal 

identification can be considered as a step towards a responsive sensing system as it 

estimates the system parameters onboard in a time- and energy-efficient way. However, 

this area is still in its infancy stages. Providing real-time control on the wireless sensors 

needs more hardware development and ensuring the effective and the timely response 

from the monitoring system also needs more improvements in data processing algorithms 

and the corresponding hardware. 

8.3.3. Uncertainty Assessment  

While this research attempted to provide an understanding about different types of 

uncertainty, further investigation on different sources of uncertainty is still needed. 

Chapter 4 provided a metric which quantifies the accuracy of the modal parameters 

identified through vibration monitoring with existence of measurement noise. However, 

measurement noise is not the only root of the uncertainty in modal identification. 

Environmental and operational conditions (e.g. temperature and randomness of traffic) 

also have significant impacts on the results. Literature shows some efforts towards this 

investigation and Chapter 7 also presents some studies regarding the variation of modal 

parameters due to temperature and traffic loads. Further investigation, however, would 
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improve the current state of this area and can assist with minimizing the uncertainty in 

the process of modal parameters identification. A complementary study that could be 

done on in conjunction with the performed research is to incorporate the assistance of 

Finite Element models in modeling the effects of different sources of uncertainty. For 

example, the emperature gradient and also the random traffic loads could be modeled in 

the developed FE model and their effects on the dynamic characteristics of the structure 

could be investigated theoretically. These results could be then compared to the 

observations of the experimental study, presented in Chapter 7.    

Additionally, extracting the effects of environmental and operational conditions can 

provide a basis for developing some approaches for excluding their effects from the 

results. In the other words, knowing the dependency of the identified modal properties on 

the testing parameters assists in removing the unwanted effects and more reliable 

identification. Although literature presents some efforts in this area, the approaches are 

not commonly utilized and there is still a significant need for more studies. 

Also, the knowledge of uncertainty in the results of modal identification does not help 

in assessing the reliability of the monitoring process until their effects are also studied in 

the following application of the modal identification practice. As discussed in Chapter 1 

and 2, typical applications of the modal identification are in damage detection and finite 

element model updating. Investigating the uncertainty in the identified modal parameters 

would be more helpful when it is continued to the assessment of their effects on each of 
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the mentioned applications (damage detection and finite element model updating). Thus, 

this topic should be an important focus for the future studies. 
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Appendix 6-A 

 

 

Figure A8.1. Typical plan of the building 

 

 



 

Figure A8.2. 16
th

397 

th
 floor plan, different occupancies and wired sensor locations

 

floor plan, different occupancies and wired sensor locations 
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Figure A8.3. Lateral bracing frames of the building and location of strain gauges 
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Figure A8.4. Time-history plot and Power Spectrum Density of acceleration from 

15
th

 floor between C-9 & D-9 during aerobics class 
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Figure A8.5. Time-history plot and Power Spectrum Density of acceleration from 

13
th

 floor on location of C-10, during aerobics  
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Figure A8.6. Time-history plot and Power Spectrum Density of acceleration from 

12
th

 floor between C-9 & C-10 during aerobics class 
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Figure A8.7. Time-history plot and Power Spectrum Density of acceleration from 7

th
 

floor between C-9 & C-10 during aerobics class 
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Figure A8.8. Peak measured accelerations and RMS accelerations obtained from 

wireless sensors 

403 

.8. Peak measured accelerations and RMS accelerations obtained from 

wireless sensors on the 16th floor during aerobics class  
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Figure A8.9. Peak measured accelerations and RMS accelerations and corresponding 

factored values obtained from wireless sensors on the 15

404 

 
 

.9. Peak measured accelerations and RMS accelerations and corresponding 

factored values obtained from wireless sensors on the 15
th

 floor during aerobics class 

 
.9. Peak measured accelerations and RMS accelerations and corresponding 

floor during aerobics class  



 

Figure A8.10. Peak measured accelerations and RMS accelerations and corresponding 

factored values obtained from wireless sensors on the 13

405 

 
 

Peak measured accelerations and RMS accelerations and corresponding 

factored values obtained from wireless sensors on the 13
th

 floor during aerobics class 

 
Peak measured accelerations and RMS accelerations and corresponding 

floor during aerobics class  



 

Figure A8.11. Peak measured accelerations and RMS accelerations an

factored values obtained from wireless sensors on the 12

406 

 
 

.11. Peak measured accelerations and RMS accelerations and corresponding 

factored values obtained from wireless sensors on the 12
th

 floor during aerobics class 

 
d corresponding 
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Figure A8.12. Peak measured accelerations and RMS accelerations and corresponding 

factored values obtained from wireless sensors 
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.12. Peak measured accelerations and RMS accelerations and corresponding 

factored values obtained from wireless sensors on the 7
th

 floor during aerobics class 

 
.12. Peak measured accelerations and RMS accelerations and corresponding 

floor during aerobics class  
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Figure A8.13. Time-history plot and Power Spectrum Density of acceleration from the 

column from middle of column C-9.6 on 13
th

 floor in transverse direction during aerobics 

class 
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Figure A8.14. Time-history plot and Power Spectrum Density of acceleration from the 

column from middle of column C-9.6 on 13
th

 floor in transverse direction during aerobics 

class 
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Mid.-Col., Vertical direction
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Appendix 7-A 

Section information and dead loads for bridge members 

  Member Section Included Loads (lbs) 

Upper Truss 
Members 

L0U1 TC: 4x6x1-5/16 eyes 37.145 

U1U2 TC: 4x6x1-1/8 eyes 63.8 

U2U3 TC: 4x7x1-9/16 eyes 88.47 

U3U4 TC: 4x8x1-11/16 eyes 95.845 

U4U5 TC: 4x9x1-11/16 eyes 95.845 

U5U6 TC: 4x9x1-1/2 eyes 86.771 

U6U7 TC: 4x8x1-3/8 eyes 79.965 

U7U8 TC: 4x6x1-3/8 eyes 75.995 

U8U9 TC: 2x6x1-5/16 eyes 37.147 

U9U10 TC: 2x6x1-5/16 eyes 37.147 

U10U11 TC: 2x5x3/4 eyes 21.267 

Lower Truss 
Members 

L0L1 L0L1 

lacing bars 530 

stay plates 310 

splicer plates 40 

total 880 

L1L2 L1L2 

lacing bars 570 

stay plates 310 

splicer plates 40 

total 920 

L2L3 L2L3, L6L7 
lacing bars, stay plates, 

splicer plates 
920 

L3L4 L3L4 
lacing bars, stay plates, 

splicer plates 
920 

L4L5 L4L5, L5L6 

lacing bars 530 

stay plates 310 

total 840 

L5L6 L4L5, L5L6 

lacing bars 530 

stay plates 310 

splicer plates 40 

total 880 

L6L7 L2L3, L6L7 
lacing bars, stay plates, 

splicer plates 
920 
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 Member Section Included Loads (lbs)  

Lower 
Truss 

Members 

L7L8 L7L8 
lacing bars, stay plates, 

splicer plates 
920 

L8L9 L8L9 
lacing bars, stay plates, 

splicer plates 
920 

L9L10 L9L10 

lacing bars, stay plates 880 

splicer plates 100 

total 980 

L10L11 L10L11 lacing bars, stay plates 880 

Vertical 
Truss 

Members 

U1L1 Typ Vertical 

lacing bars 150 

angles and plates 730 

pin plates 260 

total 1140 

U2L2 Typ Vertical 

lacing bars 200 

angles and plates 320 

pin plates 200 

stay plates 120 

total 840 

U3L3 Typ Vertical 

lacing bars 320 

angles and plates 320 

pin plates 250 

stay plates 90 

total 980 

U4L4 Typ Vertical 

lacing bars 470 

stay plates, misc plates 170 

pin plates 250 

total 890 

U5L5 Vertical 5 

lacing bars 670 

diaphragms 350 

stay plates 1290 

 pin plates, misc plates 1130 

total 3440 

U6L6 Typ Vertical 

stay plates, misc 
plates/angles 

820 

pin plates 230 

total 1520 
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 Member Section Included Loads (lbs)  

Vertical Truss 
Members 

U7L7 Typ Vertical 

lacing bars 320 

stay plates, misc 
plates/angles 

350 

pin plates 250 

total 920 

U8L8 Typ Vertical 

lacing bars 200 

stay plates, misc 
plates/angles 

350 

pin plates 210 

total 760 

U9L9 Typ Vertical 

lacing bars 130 

stay plates, misc 
plates/angles 

230 

pin plates 340 

total 700 

U10L10 Vertical 10/11 

lacing bars 80 

stay plates, misc 
plates/angles 

230 

pin plates 220 

total 530 

U11L11 Vertical 10/11 

lacing bars 30 

stay plates, misc 
plates/angles 

360 

gusset plates 310 

total 700 
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 Member Section Included Loads (lbs)  

Horizontal     
M-bars 

M4.5M5 M bars 
lacing bars 
misc plates 

total 

100 
180 
280 

M5M5.5 M bars 

lacing bars 100 

misc plates 180 

total 280 

Diagonal        
M-bars 

M4.5L5 rod only self-weight NA 

L5M5.5 rod only self-weight NA 

Half- Tower 

Top Strut Portal: Top Horizontal lacing bars 344.53 

Bottom 
Strut 

Portal: Bottom Horizontal lacing bars 516.8 

Diagonals 
Portal: Outside Diagonal, 
Portal: Inside Diagonal 

lacing bars 430.66 

 
  filials 770 

 
  misc steel 400 

    total 2461.99 

Sidewalk 
(load per 

panel) 
  

366:565 Edge Stringers connections 330 

  Floor Beams buckle plates 1790 

  FSEC1 (at ends) concrete 12030 

    checkered plates 1280 

    total 15430 

Deck (load per 
panel) 

Panels L0-
L8 

Interior Stringers connections 1970 

Floor Beams buckle plates 10210 

FSEC1 (at ends) lateral bracing 630 

  total 12810 

Panels L8-
L11 

Interior Stringers connections 1970 

Floor Beams lateral bracing 630 

FSEC1 (at ends) total 2600 
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Member Section Included Loads (lbs) 

Diagonal 
Truss 

Members 

L1U2 Diag: 4x1/16 eyes 60.116 

L2U3 Diag: 2x7/16 eyes 40.833 

L3U4 Diag: 2x1/4 eyes 35.446 

L4U5 Diag: 2x5/16 eyes 37.147 

U5L6 Diag: 2x1/16 eyes 30.058 

U6L7 Diag: 2x1/4 eyes 55.295 

U7L8 Diag: 2x7/16 eyes 40.833 

U8L9 Diag: 2x5/8 eyes 46.221 

L9U10 BU L9-U10 

lacing bars 330 

stay plates 130 

pin plates 390 

total 850 

L10U11 BU L10-U11 

lacing bars 310 

stay plates 130 

pin plates 180 

total 620 

 

 Member Section 
 Included Loads 

(lbs) 

Pins Not Drawn 180 

Anchorage Not Drawn  1010 

Railing (load per panel) Not Drawn 1170 

Railing Support (load per panel) Not Drawn 870 

Concrete Barrier (load per panel) Not Drawn 3898 
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