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Abstract 

A study was undertaken to determine the feasibility of using advanced 

instrumentation and data processing to accurately predict in real-time the properties of 

biomass to be used as a supplemental fuel in coal-fired electric generating plants. 

Biomass use would reduce greenhouse gas emissions and also lower the fuel costs for a 

power plant. However, biomass properties are highly variable and not well characterized 

with a time scale that can be used for boiler operational control.    

Laser Induced Breakdown Spectroscopy (LIBS) was the analytical technique used 

in this study to analyze samples of biomass and coal.  Spectral data obtained with LIBS 

were processed using advanced data processing techniques to determine fuel properties of 

interest. 

In this study, ash fusion temperature, high heating value, and ash mineral 

concentrations were measured. The results were highly successful by comparing the 

experimental results with independent laboratory analysis. All mineral results showed 

almost linear calibration curves with little data scatter.  The heating value results, ranging 

from 6,620 Btu/lb to 13,080 Btu/lb, were obtained with root mean square error of 

approximately ±15 Btu/lb. The initial deformation ash fusion temperature, ranging from 

1,590 F  to 2,800 ,F  has a root mean square deviation of approximately ±33.34 .F  

These results showed that even under significant property variations, the combined 

application of LIBS and advanced data processing provides results that a power plant 

operator could use to mitigate problems in boilers fired with biomass and coal, which 

originate from the fuel quality variability of the feedstock.  
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Chapter 1: Introduction  

 1.1 Problem Statement and LIBS 

The growing interest in global warming due to carbon dioxide emissions has 

drawn attention to the use of biomass as feedstock for electricity production [1]. The use 

of biomass energy, compared to other sustainable energy sources, has been proposed as 

an effective method of reducing net greenhouse gas emissions since the carbon in 

biomass is part of the active carbon cycle [2]. Biomass combustion and biomass/coal co-

firing, both in retrofit and for new plants, are expected to considerably increase 

worldwide in the foreseeing future. According to a recent inventory on the application of 

biomass co-firing worldwide [3], more than 80 coal-fired power plants have experience 

with biomass co-firing, in a range from approximately 50  to 700 . By now, 

much of the biomass co-firing in large coal-fired boilers has been at relatively low co-

firing ratios, up to 20% by heat input to limit the impact on plant performance.  

The applicability of biomass co-firing with coal partly depends on its impact on 

ash deposition which can have important impact on boiler operations, boiler efficiency, 

and corrosion of heat transfer surfaces. Ash deposition on heat transfer surfaces 

(commonly referred as slagging and fouling) is a very important issue for solid fuel-fired 

boilers, and more importantly for biomass combustion. Slagging refers to bulk ash 

deposition that occurs at the high temperature areas of the boiler, where radiant heat is 

relevant. Fouling refers to condensation of gases compounds in the flue gas on convective 

pass heat transfer surfaces, which poses high sintering strength. There is a large number 

of research papers on the characteristics of coal ash deposits, but there is relatively 

limited literature on the coal-biomass ash deposits. Coal/biomass co-combustion has the 

potential to create ash deposition problems because of the inorganic composition (high 

alkali levels) and mode of occurrence of inorganic species (mostly mobile forms) in 

biomass [4]. This results in increased slagging and fouling propensity when co-firing 

biomass with coal, in comparison to the base case of coal firing by itself.  

Ash fusion temperature (AFT) of solid fuels has been traditionally regarded as a 

useful slagging indicator. Typically, fuels with a low ash fusion temperature would result 
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in formation of plastic deposits that would accumulate on the upper boiler heat transfer 

surfaces, leading to high rate of slagging. It is widely acknowledged that the chemical 

composition of coal and biomass is influential in determining its ash fusion temperature. 

However, determination of ash fusion temperature from the fuel ash elemental 

composition is a complicated problem because the relationship between the interacting 

factors is not well understood [5]. There are several traditional methods to estimate the 

ash fusion temperatures from elemental ash analysis [6, 7]. Most of those methods rely on 

statistical analysis.  

Prediction of and on-line detection of slagging and fouling propensity would help 

optimize plant operation, increase plant availability and lower maintenance requirements, 

for biomass/coal co-firing power plants. Typically, plants that fire coal (and also 

biomass/coal blends) rely on periodical sampling and laboratory analysis of fuel samples 

to determine the potential slagging and fouling impact of the fuels and to anticipate way 

to mitigate the impact. This approach has limited effectiveness, since that fuel variability, 

which directly impacts slagging and fouling, changes more rapidly than the frequency of 

the fuel analysis, making it almost impossible to optimize plant operation in relation to 

fuel quality at an appropriate time scale. Laser induced breakdown spectroscopy (LIBS) 

could be applied as an in-situ detection technique for coal-biomass co-firing applications 

and help with slagging/fouling mitigation [8]. LIBS is a technology which uses a high 

density pulsed laser to induce a plasma from a sample by focusing onto its surface. The 

emitted light from the laser-induced plasma (LIP) can be collected and applied to 

elemental analysis by means of emission spectroscopy. Many elements present in the coal 

or biomass, such as Al, Ca, Mg, Na, Fe, Si, K and Ti can be traced by a LIBS system [9].  

There are many advantages of using LIBS, as compared to other on-line detection 

technologies for solid fuel characterization. The LIBS measurement is based on a 

straightforward method that makes unnecessary to prepare the sample in advance. 

Furthermore, LIBS instrumentation can be designed for various applications and compact 

portable systems are commercial now. More importantly, LIBS measurements results can 

be made almost instantaneously which makes it an attracting method for solid fuel 

analysis in power plants.  
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 1.2 Research Objective 

This thesis reports a study performed to demonstrate the feasibility of using LIBS 

and advanced data processing for prediction of coal and biomass elemental composition, 

and accordingly to estimate their slagging propensity. In this study, two coals, eleven 

biomass materials and three coal/biomass blends, with different elemental compositions 

and slagging potentials, were tested by a LIBS system in the laboratory. The collected 

data were then processed to develop calibration curves for the sample elemental 

composition determination. Fuel heating value was also modeled and predicted. The 

information could then be supplied in real time to boiler plant operators to optimize 

relevant operation parameters that could help alleviate boiler slagging problems whereas 

firing or co-firing with biomass.  
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Chapter 2: Literature Review  

 This literature review includes detailed descriptions of slagging and fouling 

phenomena, slagging and fouling indices for biomass co-firing, the LIBS technique, and 

applications of artificial neural networks. 

 2.1 Slagging and Fouling Phenomena 

Slagging and fouling are two of the biggest problems in solid fuel fired boilers, 

which are caused by deposit deposition on heat transfer surfaces, especially for biomass 

combustion.  There are two basic forms of ash deposits: molten ash and alkali salts. The 

molten ash particles are called slag and occur mainly on furnace walls and convection 

surfaces exposed to radiant heat. The alkali salts are generally referred as fouling, 

occurring on convection heat surface such as the superheater and reheater [10]. 

 

 

Figure 2.1: Slagging and Fouling in a Pulverized Fuel Boiler [1] 
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The molten ash deposits which build up on the furnace walls are called wall slag. 

The furnace walls of coal fired boilers consist of membranes that connect the water pipes 

through which water flows. Heat from the combustion process boils this water to steam 

which absorbs half of the combustion heat release. Most boilers have some degree of wall 

slag which does not necessarily cause problems. Generally, the amount of slag is 

controlled by applying air, steam or water soot blowers. When the amount of slag 

becomes excessive, problems can occur.  

Excessive wall slag causes the following problems [11]:   

1. Wall slag would flow to the bottom of the furnace, cool and plug the opening 

situated there. The ash would eventually bridge over, sealing off the bottom boiler 

outlet for bottom ash removal. 

2. Wall slag would act as an insulator and impede heat transfer to the water. This 

would increase the furnace exit gas temperature (FEGT) and further allow molten 

ash to deposit in the superheater and convection pass regions. 

3. Slag would build up around the burner area, called eyebrows, interfering with coal 

and air flows. This type of buildup can cause damage to the burners, among other 

things. 

The molten deposits sticking at the superheater sections are called superheater 

slag. It is when this slag bridges across the fuse spacing that the deposits become 

troublesome. The bridged slag reduces the cross sectional area of the flue gas to flow 

through. As the slag grows in size, the flue gas velocity increases and the decreased heat 

transfer due to the slag insulating the tubes would cause slag buildup in the next section 

of the convection pass.  

Alkali sulfates, primarily 4CaSO  and 2 4Na SO which can bond with fly ash 

particles are the main cause of fouling. Fouling tends to form in the convective pass of 

boilers, particularly the reheater, horizontal superheater and the economizer sections.  

2.2 Slagging and Fouling Indices for Biomass Co-firing  

           It is clear that ash deposition occurring in the furnace and boiler heat transfer 

surfaces is a complex phenomenon. The process occurs over a wide range of flue gas and 

surface temperatures, and is dependent both on the characteristics of the ash and on the 
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design and operating conditions of the boiler. This is complicated when biomass is 

introduced as a secondary fuel in existing coal-fired boilers. Biomass co-firing with coal 

has the potential to cause ash deposition problems because of its high alkali levels and 

inorganic species, compared to many coals. These differences will increase ash 

deposition and fouling of boiler tubes. The feasibility of coal-biomass co-firing depends, 

in part, on this impact on ash deposition. 

A number of slagging and fouling indices are available for the assessment of the 

propensity of fuel ashes to form deposits, mainly in combustors and furnaces. A detailed 

description of the technical basis and use of these indices is presented in Raask (1985). 

These indices are based either on the fuel ash content and the ash chemical composition, 

or on the ash fusion temperatures. These indices have been developed mainly for the 

assessment of coals, and are applied, with appropriate modifications, to other solid fuels, 

including wastes and biomass materials, and to the mixed ashes produced by the co-

processing of biomass materials with coal [12].  

One of the most commonly used high temperature slagging prediction indices is 

the ratio of the acidic metal oxides ( 2SiO , 2 3Al O and 2TiO ) to the basic oxides 

( 2 3Fe O ,CaO , MgO , 2Na O and 2K O ), which was presented by Attig and Duzy [13]:  

 2 3 2 2Base Fe O CaO MgO Na O K O       

 2 2 3 2Acid SiO Al O TiO     

 /b aR Base Acid   

            When the b aR  value is lower than 0.5, it has been suggested a light slagging; 

when the b aR  value is between 0.5-1.0, it stands for medium slagging; when the b aR  

value is between 1.0-1.75 it may lead to high slagging; and when the b aR value is greater 

than 1.75, the slagging is severe.   

Another widely used index is the silica ratio, which is described by Winegartner 

[14],  

 
2

*

2 2 3

% *100%
SiO

Silica
SiO Fe O CaO MgO


  
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            The slagging potential in terms of the silica ratio is defined when the silica ratio is 

higher than 72%, slagging is light; when the silica ratio is from 65% to 72%, medium to 

high slagging takes place; and when the silica ratio is lower than 65%, it may lead to 

severe slagging.  

            For the co-firing of biomass at relatively low levels, the mixed ash is still 

predominantly an alumino-silicate system and the normal coal slagging assessment 

methods previous described can be applied, with some level of confidence. 

Another significant slagging index is the ash fusion temperature (AFT). AFT of 

fuels is one of the parameters most widely used in the assessment of feedstocks quality, 

ash fusibility and melting characteristics. To best represent the AFT as a slagging index, a 

combination of initial deformation temperature (IT) and hemisphere temperature (HT) is 

used [15]: 

 
4

5
S

IT HT
F


   

          When sF  is higher than 2,449 F , the boiler slagging is slight; when sF is between 

2,250 and 2,449 F , the slagging is medium; when sF  is between 1,926 and 2,250 F , 

there is high slagging properties, and when sF  is lower than 1,926 F , the slagging is 

severe.  

There have been various studies on the correlation between ash chemical 

composition and ash fusion temperature given by laboratory analyses for biomass and 

biomass-coal blends. Yanqin Niu, et al. [16] conducted a study on fusion characteristics 

of biomass ash. The ash fusion characteristics of capsicum stalks ashes, cotton stalks 

ashes and wheat stalks ashes were studied in a thermo gravimetric approach. It was found 

that initial deformation temperatures increase with decreased 2K O  and increase with 

increased MgO , CaO , 2 3Fe O  and 2 3.Al O The softening temperature, hemispherical 

temperature and fluid temperature of the ashes were not affected by the concentrations of 

each element and the experimental ashing temperature. Therefore, the deformation 

temperature could be used as an evaluation index of biomass deposition characteristics.  

In a research conducted by Q.H. Li, et al. [17], actual and simulated biomass 

ashes were used to study their ash fusion temperature. Nine typical biomass fuels ashed at 
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1076 F and 1499 F were employed to investigate their ash fusion temperatures. By 

changing the ash composition and studying the influence of composition on fusion 

temperatures, twenty-seven simulated ashes were prepared with mixtures of organic and 

inorganic oxides for the ash fusion tests. The results showed that 2SiO  and 2 3Al O  are all 

favorable to increase the ash fusion temperature. 2 3Al O  is more effective than 2SiO  in 

reducing the slagging tendency. It was inferred that slightly adding 2 3Al O  can strongly 

improve the operational condition for slagging-mitigated biomass combustion. It was 

concluded in this study that the effect of base to acid ratio, b aR  on the deformation 

temperature is related to the initial deformation temperature of the ash. The initial 

deformation temperature decreases with b aR , increasing if the b aR  is less than 1.4. 

Seggiani [18] conducted a study on empirical correlations for ash fusion 

temperatures for coal and biomass ashes. In this study, empirical correlations were 

derived by regression analysis to calculate the ash fusion temperatures under reducing 

conditions from the ash chemical composition. The database used in this work includes 

about 300 ash samples from coals of different sources and different biomass feedstock. 

Forty-nine independent parameters were considered in this regression analysis, which 

include the nine oxides normally analyzed on a 3SO  free basis. The deviations of the 

correlations were in the range between 113 F  and 176 ,F which fall within the 

experimental errors of the measurements, indicating that biomass elemental composition 

can be used with good accuracy to correlate biomass ash fusion temperatures.  

When considering the potential slagging behavior of mixed ashes from co-firing 

biomass with coal, it is evident that, besides 2SiO , all of the significant components of 

most biomass ashes, principally the alkali and alkaline earth metals, are powerful fluxing 

agents affecting the blended fuel ash fusion temperatures. It is expected, therefore, that 

co-firing with biomass will result in a reduction in ash fusion temperatures, and hence an 

increase in the slagging potential. This will certainly depend on the level of fluxing 

agents in the coal and on the co-fired ratio. The effect will be more dramatic when 

biomass is co-fired with coals with high fusion temperature ashes.  
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Mastalerz et al., [19] have proposed several fouling indices for coal ashes, as 

shown:  

Table 2.1: Fouling Indices of Coal and Range of Values 

 

Fouling Indices Boiler Fouling 

Low Medium High 

2*
Base

Na O
Acid

 
 
 

 
<0.2 0.2~0.5 >0.5 

2 20.659Na O K O  <0.3 0.3~0.5 >0.5 

2%Na O  <0.5 0.5~1 >1 

%Cl  <0.3 0.3~0.5 >0.5 

2

2 3

%

%

SiO

Al O
 

<2 >2 

 

From Table 2.1, it can be seen that fouling indices for coal ashes are mainly based 

on the sodium content of the fuel. The deposition of sodium compounds by a 

volatilization/condensation mechanism is considered to be the principal driving force for 

convective pass fouling in coal-fired plants. Potassium in coal ash is principally present 

as a constituent of the clay minerals, and is not usually considered to be available for 

release by volatilization in the flame. For most biomass materials, potassium tends to be 

the dominant alkali metal, and is generally in a form that is available for release by 

volatilization. The fouling indices for biomass materials tend, therefore, to be based on 

the total alkali content of the fuel (Miles et al. 1995). 

Overall, the majority of the studies reported in this chapter were originally 

developed and applied for the characterization of coals and their behavior in combustion 

systems. Because they are already in use within the power industry, many of these 

methods have been adapted for use with biomass materials, and for gasification and 

pyrolysis systems as well as combustors. As always, the application of methodologies to 

materials and processes for which they were not designed (such as biomass, or biomass 

and coal blends) should be done with caution. 
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2.3 LIBS Applications 

Laser-induced breakdown spectroscopy (LIBS) is a technique based on atomic 

emission spectroscopy, which utilized a highly energetic laser pulse as the excitation 

source. LIBS can analyze any material sample regardless of its physics state, be it solid, 

liquid or gas. Even slurries, aerosols, and gels can be readily investigated with LIBS. 

Because all elements emit light when excited to sufficiently high temperatures, in theory, 

LIBS can detect all elements, limited only by the power of the laser, as well as the 

sensitivity and wavelength range of the spectrometer and detector.  

Laser-induced breakdown spectroscopy operates by focusing the laser onto a 

small area at the surface of the specimen. When the laser is discharged, it ablates a very 

small amount of material which generates a plasma plume with temperatures in excess of 

180,000 .F  During data collection, typically after local thermodynamic equilibrium is 

established, plasma temperatures range from 8,541 – 35,541 F [20]. At these 

temperatures, the ablated material dissociates into excited ionic and atomic species. At 

this point the characteristic atomic emission lines of the elements can be observed.  

A LIBS system typically consists of a neodymium doped yttrium aluminum 

garnet solid-state laser, optics for focusing the laser energy onto a sample surface and for 

delivering the light produced during the LIBS reaction event to a detector with a wide 

spectral range and a high sensitivity, fast response rate and time gated operator. This is 

coupled to a computer which can rapidly process and interpret the acquired data. As such, 

LIBS is one of the most experimentally simple spectroscopic analytical techniques, 

making it one of the most cost effective techniques to operate. 

A typical LIBS experimental setup [21] is shown in Figure 2.2, and a typical 

LIBS fiber optic based experimental setup is shown as Figure 2.3. 
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Figure 2.2: Typical LIBS Experimental Setup 

 

 

Figure 2.3: Typical LIBS Fiber-based Experimental Setup 
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In order to investigate the feasibility of using LIBS for biomass, coal and 

biomass-coal blends analysis and infer the slagging propensity of biomass and coal 

mixtures, it would be very important to review previous studies conducted in this area. 

There are many practical studies related to the application of LIBS for coal-fired power 

plants. The use of LIBS for biomass co-firing power plants is still in incipience.  

In a study by Wangbao [22], a LIBS system was designed for on-line quality 

analysis of pulverized coal in power plants. The LIBS system, provided for direct 

measurement for C, H, Si, Na, Mg, Fe, Al, and Ti with measurement errors of less than 

10% for pulverized coal. In this investigation, a LIBS system comprising of a LIBS 

apparatus and sampling equipment developed for application in a real power plant was 

described. References 26 demonstrated the feasibility of implementing the LIBS 

technique for in-situ characterization of pulverized coal.  

For coal analysis, Ottesen [23] showed a preliminary application of LIBS for 

determining the composition of the inorganic coal constituents, such as Si, Al, Fe, Ca, 

Mg, K, Na, Ti in a combustion environment. Several aspects of the technique were 

discussed: (1) the plasma excitation process; (2) experimental intensities and methods of 

calculating elemental composition; and (3) the comparison of particle-by-particle results 

with average bulk chemical analyses and scanning electron microscopy data. This work 

reports the first direct experimental comparison of composition on a particle-by-particle 

basis with grain-by-grain determination of elemental ash composition.  

In a research conducted by Bruce Chadwick and Doug Body [24], an 

instrumentation variation on LIBS was developed and applied for the operation at a 

power generating company. The instrument design allows simultaneous determination of 

all detectable elements using a multiple spectrograph and a synchronized, multiple 

charge-coupled device (CCD) spectral acquisition system. Independent testing of the 

instrument showed good correlation between the routine LIBS analysis and the analysis 

of the coal via acid extraction techniques for key ash-forming elements. It was shown that 

the LIBS instrumentation could yield sufficient accuracy and repeatability for 

commercial application in lignite-fired power stations. They also provided a long term 

assessment of LIBS in an industrial environment. Reference 28 concludes that for power 
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stations using this technology, the forecast analytical cost saving are in the vicinity of US 

$100,000 per year enabling the power station to recover the capital cost of the equipment 

within nine months. In addition, the rapid analysis of LIBS enables further saving via 

better supervision of plant operations resulting in potentially fewer unscheduled shut-

downs.  

Stankova et al. [25] used a simple and cost effective LIBS system to make an 

evaluation of quantitative analysis capacities of major elements (Ca, Al, Mg, Si and Fe) 

present in fly ashes. Concentrations obtained by the LIBS were compared to wet acid 

digestion and alkali fusion followed by inductively coupled plasma optical emission 

spectrometry (ICP-OES) analysis. Ca, Mg, Fe, Si and Al concentrations found using the 

LIBS method were in a good agreement with the values obtained by classical methods. 

The method in this study is quite promising as the sample preparation of fly ashes for 

LIBS analysis is simple and fast and the LIBS spectra recorded in a few seconds.  

Romero et al. [26] used LIBS for coal characterization and assessing slagging 

propensity. LIBS and neural networks were used to characterize elemental composition 

of coal samples and estimate the initial deformation ash fusion temperatures. A coal 

inventory was assembled with a range of slagging characteristics and fusion temperatures 

from 1751 to 2696 .F  The LIBS system achieved elemental composition measurement 

accuracy within ±15% (absolute). The LIBS system was tested off-line at a power plant 

on three different coals. The field results indicate an average relative fusion temperature 

prediction error when compared to American Society for Testing and Materials (ASTM) 

standardized measurements of ±132.8 ,F  and an average precision for the LIBS 

measurements of ±57.2 .F  

Li et al. [27] from The State Key Laboratory for Coal Combustion in China, 

studied the effects of experimental parameters on elemental analysis of coal by LIBS, 

with the purpose to improve its precision. Organic components such as C, H, O, N and 

inorganic components such as Ca, Mg, Fe, Al, Si, Ti, Na, and K of coal was targeted. The 

experimental parameters such as the sample operation mode, and ambient gas were 

investigated and the optimum parameters which improved the precision of LIBS 

measurement were obtained. The relative standard deviation of the emission lines 
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intensities obtained from the elements in the coal samples were smaller that 10%. It was 

shown that the precision of elemental analysis of coal by LIBS can be improved by using 

the proper experimental parameters.  

In a study by Blevins et al. [28], LIBS was applied near the superheater of an 

electric power generation boiler burning biomass, coal, or both. Elements detected 

include Na, K, Ca, Mg, C, B, Si, Mn, Al, Fe, Rb, Cl, and Ti. In this research, a full-scale 

testing was performed in a stoker-fired traveling grate boiler. The purpose of testing the 

power generation boiler was to use LIBS results to examine the differences in relative 

slagging potentials of various fuels. The Si, Na, Ca, Mg, and Ti concentrations were 

generally similar when firing coal and when with fiber cane, whereas the K, Al, and Fe 

concentrations were generally noticeably higher for fiber cane co-firing than for coal 

burning. The fluctuation levels were generally larger for the biomass co-firing tests than 

for the coal tests. This result was expected because the biomass fuels contained 

significantly more moisture than the coal.  

 In additional research by Blevins [29], LIBS was used to detect Si, Al, Ti, Fe, Ca, 

Mg, Na, P concentrations near the superheater section during co-firing tests which were 

conducted at a pilot-scale reactor at Sandia National Laboratories and in a boiler at the 

Hawaiian Commercial & Sugar Factory At Puunene, Hawaii. Combustion tests were 

performed, using Australian coal and whole fiber cane, including tops and leaves 

processed at three different levels, and fiber cane stripped of its tops and leaves. Testing 

was performed for pure fuels and for biomass co-firing with the coal at levels of 30% / 

70% by mass. The testing results show that the combustion products were enriched in 

sodium relative to the fuel composition during all tests, and they were enriched in 

potassium for the biomass co-firing tests. Alkali metals were relevant because 

compounds containing these elements are more readily releasable into the combustion 

products than refractory components that remain in large particles such as silicon, 

aluminum, and titanium. The present application of LIBS reveals its potential to provide 

an abundant amount of real-time information, provide real-time field information on the 

deposition propensity of different fuels and the effects of different fuels at boiler 

operating conditions.  
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Chapter 3: Experimental Instrumentation and Setup 

 3.1 Experimental Setup Introduction 

A LIBS system was modified at the Energy Research Company, Plainfield, NJ, to 

test the feasibility of the LIBS technology to measure biomass feedstock elemental 

composition of interest for slagging propensity determination. The same setup was also 

used to analyze coal samples, as part of the study. In this system, a high-power laser is 

focused onto the sample surface to produce plasma, light from the plasma is captured by 

a spectrometers and the characteristic spectra of each element can be identified, allowing 

concentrations of elements in the sample to be measured. This technique could be applied 

for biomass co-firing power plants at the feedstock stream with further research. In this 

way, it will be possible to monitor coal-biomass blends composition in real-time. 

A general layout showing the system components and the connections is shown as 

Figure 3.1. 

 

Figure 3.1: LIBS System General Layout 

 

The LIBS system experimental setup consists of a sample stage, a tank for 

pumping protecting purge gas, an excitation Nd: YAG (neodymium-doped yttrium 
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aluminum garnet, Nd: ) laser, an optical spectrometer, and a computer with the 

system control software.  

The laser applied in the LIBS system was an actively Q-switched Nd: YAG laser, 

a Quantel (USA) laser model CFR-400, which produces near infrared (IR) laser pulses, at 

a repetition rate of 10 HZ. The near IR pulses were directed down into the sample stage 

by 1064 nm laser mirrors. A lens directs the laser pulses onto the surface of the sample to 

create the LIBS spark. The Q-Switch Nd: YAG laser with pulse energies of 

approximately 300 mJ at 1064 nm was used to ablate and vaporize sample material and to 

induce the plasma at the time of the Q-switch trigger. The Echelle spectrometer controls 

the triggering of a flash lamp and the Q-switch. The time from the flash lamp trigger to 

the Q-switch trigger sets the laser power. An Echelle spectrometer (ESA-3000 LLA, 

Germany) was used to collect the spectra data for the analysis of elements in the samples. 

This spectrometer contains an Echelle type grating which allows for high resolution 

spectra to be collected over a broad wavelength range of 200 to 780 nm.  

            Figure 3.2 shows a photograph of the assembled LIBS system for 

experimentation.  The laser head was located in a protective enclosure. Configuration of 

the system optics was done to allow for greater depth-of-field.  

 

Figure 3.2: Photograph of LIBS Analyzer Installed in ERCo's Laboratory 
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 3.2 Experimental Sample Preparation  

The biomass samples were selected to cover a broad range of feedstock fired in 

the US and with a large enough range of properties pertinent to the characterization to be 

carried out with the LIBS technology. Three groups of biomass samples were targeted.  

Those groups correspond to biomass residues, dedicated energy crops, and woody 

biomass. The biomass materials were supplied by MESA Engineering & Processing, Inc. 

of Auburn, NY, in 5 lb bags, with the corresponding as-received inherent moisture. 

Samples from each of the following materials were used: biomass residues – corn stover, 

rice hulls, and wheat straw; energy crops – switch grass, Arundo Donax, and sugar cane 

bagasse, woody biomass – forest residue, willow trees, sawdust, land clearing and 

torrefied wood, coals (Central Appalachia (CAPP) and Illinois basin (ILB)). 

Additionally, blends of CAPP with corn stover, switch grass, and willow trees were also 

prepared.  

Samples of materials were sent to an analytical laboratory for standardized ASTM 

testing for ultimate analysis, heating value, ash mineral analysis, and fusion temperatures. 

The fusion temperature analyses were performed under a reducing environment, since 

this atmosphere provides the lowest fusion temperature results. Lower fusion temperature 

analysis provides a more conservative approach to slagging potential prediction. Table 

3.1 includes the laboratory analysis results for all the materials used in this project.  As it 

can be seen from Table 3.1, due to cost, the samples of coal/biomass blends were not 

analyzed for coal and ash elemental concentration, and since that the major objective of 

the project was to determine the ability of LIBS to predict fusion temperature, as a 

surrogate to infer slagging potential.  The blend ratio used for the biomass/coal blends 

were: 26% corn stover/74% CAPP, 24% switch grass/76% CAPP, and 23.4% willow 

trees/76.6% CAPP.  These ratios correspond to 20% heat proportion, based on their 

individual calorific values.  
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Table 3.1: Material Sample Analysis 

 

 3.3 Measurement Procedures 

            An optimization of the LIBS system optical settings and operation was carried out 

on each of the biomass and coal samples containing detectable quantities of all elements 

of interest, before LIBS data were collected from all material samples. A number of laser 

shots, as determined from preliminary testing, were collected and averaged for each 

measurement. Each material and blends was analyzed to evaluate the measurement 

consistency and to provide a robust data set for data processing using the artificial 

intelligence tools. The testing cycle per sample consisted of moving the sample container 

on the Z-axis linear stage (see Figure 3.2) - for fresh sample material to be sparked, firing 

the LIBS system, and collecting the resulting spectrum by the spectrometer.  

 

 

 

 

 

BTU/lb, 

dry basis

No. Sample IT ST HT FT
Total 

Moisture

As Detd. 

Moisture
Carbon Hydrogen Nitrogen Sulfur 

Heating 

Value
SiO2 Al2O3 TiO2 Fe2O3 CaO MgO Na2O K2O P2O5 SO3 MnO2

1 RICE HULLS >2800 >2800 >2800 >2800 8.98 6.33 38.53 4.89 0.46 0.10 6623 97.54 0.05 0.02 0.16 0.53 0.38 0.03 1.47 0.77 0.26 0.14

2 SWITCHGRASS 1710 1916 2084 2219 9.30 6.36 47.48 5.91 0.51 0.11 8092 55.27 0.51 0.05 0.60 9.42 6.07 1.13 17.42 7.24 4.63 0.41

3 WHEAT STRAW 1600 1691 1974 2150 8.80 6.24 45.85 5.78 0.43 0.13 7894 48.32 0.31 0.05 0.40 8.03 3.51 1.22 24.64 8.31 5.82 0.14

4 WILLOW TREES >2800 >2800 >2800 >2800 9.38 6.69 49.12 5.93 0.41 0.08 8326 4.91 1.49 0.33 1.85 52.17 3.96 0.72 7.51 9.70 3.49 1.16

5 LAND CLEARING 2747 2749 2752 2754 13.22 5.86 49.90 6.00 0.01 0.02 8390 4.58 1.16 0.09 0.89 47.15 10.91 0.73 8.34 7.48 7.34 10.72

6 SAWDUST >2800 >2800 >2800 >2800 16.04 6.44 49.34 6.03 <0.01 0.04 8211 4.05 1.15 0.12 0.78 47.25 11.17 0.32 9.36 6.04 4.14 12.86

7 CORN STOVER 2213 2398 2627 >2800 9.19 4.97 42.37 5.15 0.49 0.07 7214 66.57 8.11 0.39 3.06 5.09 3.10 1.17 6.90 1.91 1.69 0.23

8 FOREST RESIDUE 2620 2681 2701 2731 17.63 7.80 50.21 5.98 0.15 0.03 8514 14.55 3.63 0.38 3.72 31.83 9.28 1.79 15.53 11.75 5.59 0.22

9 ARUNDO DONAX 2251 2298 2364 2447 9.86 44.74 5.81 0.59 0.39 10406 22.30 1.60 0.24 1.10 25.03 9.78 1.72 21.20 10.73 2.35 0.13

10 CANE BAGASSE 1889 1958 2070 2177 8.04 48.66 6.08 0.37 0.29 7388 44.92 2.91 0.21 2.84 16.42 5.88 1.03 16.63 3.95 4.25 0.19

11 TORREFIED WOOD 2001 2047 2221 2380 4.44 3.24 57.45 5.25 0.18 0.08 9825 42.18 11.43 0.66 4.96 23.95 4.19 2.68 5.88 1.69 3.18 0.21

12 CENTRAL APPALACHIAN COAL 2519 2574 2664 2760 11.73 3.18 70.74 4.79 1.22 1.25 12711 55.12 26.65 1.14 8.56 1.79 1.00 0.37 2.77 0.15 1.34

13 ILLINOIS BASIN COAL 2027 2114 2364 2599 11.78 4.80 72.50 5.08 1.41 2.73 13082 50.60 19.67 0.88 17.00 4.24 0.95 0.88 2.36 0.28 4.16

14 CAPP with Corn Stover 2371 2415 2481 2590

15 CAPP with Switchgrass 2278 2336 2399 2496

16 CAPP with Willow  Trees 2456 2505 2583 2633

wt. % wt. %, dry basisFusion Temp, G&C [deg. F] Ash Composition, wt. %
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Chapter 4: Laboratory Experimental Results 

Before using advanced data processing techniques to develop correlation models 

for high-order feedstock properties, for example, to predict ash fusion temperature, LIBS 

calibration curves were derived for all of the elements of interest.  Calibration curves help 

provide information on the sensitivity, fidelity and quality of the spectral data in relation 

to the actual material samples. Calibration of LIBS data for accurate determination of 

elemental composition of solid samples is typically performed by comparing “like with 

like.” This comparison consists of matching up LIBS intensity measurement-derived 

concentration of individual elements with the concentration of oxides of the same 

element provided from standardized laboratory analysis. Calibration is the most difficult 

issue in LIBS data processing, especially for field measurements. In addition to the 

variables related to emission spectra, several other variables affect the intensity of the 

LIBS signal. These include the fluctuation of incident laser energy; the size and density 

of particles and associated sample matrix; the location of the focus point; and the surface 

feature and history of ablation by laser shots.   

Calibration curves, constructed over the measured elemental concentration range 

(including all of the biomass and coal samples) for selected elements of interest, are 

shown in Figures 4.1 to 4.6. These curves were generated by plotting normalized LIBS 

intensity ratios versus the corresponding molar ratio estimated from the results from the 

standardized chemical analyses. Both parameters used to plot the calibration curves of 

Figures 4.1 to 4.6 were normalized with respect to Si. This normalization was done to 

minimize the impact of the variability of the background emission level in each 

individual set of measurements.  It should be noticed that the calibration curves establish 

a relationship between concentrations of oxide forms of elements, from calcinated 

samples of  ash analyzed with the standard procedure, while the LIBS-determined data is 

obtained from ablation of a coal sample and the spectral produced by all the elemental 

components in the sample. The calibration curves led to results that trend well, 

considering the broad range of concentrations for each elemental ratio, and the range of 

biomass coals with dissimilar properties. Very little sign of spectral saturation was 

observed from the data, which may occur at high concentrations of a particular element, 
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due to the ability of the atoms to absorb the emitted energy. However, the level of 

accuracy obtained from the calibration curves does not seems to be acceptable for 

operation of a fuel monitoring system for application at a power generation plant that 

fires a broad range of fuel feedstock. Different correlating functions are included in those 

figures to show the goodness of the correlation, in terms of the R-square of the 

correlations. The obtained R-squares of the correlations range from 0.71 for K to 0.96 for 

Al. 

Table 4.1: S/B and S/N for Selected Atomic Emission Lines from the Switchgrass Sample 

Element Average Signal (S) Average Background (B) σ Background (N) S/B S/N 

C 1322.63 131.50 26.35 10.06 50.19 

Fe 1952.50 88.62 9.10 22.03 214.51 

Mg 726.07 257.87 10.54 2.82 68.92 

Mg 4957.04 254.64 30.16 19.47 164.34 

Si 2854.05 183.95 17.00 15.52 167.84 

Al 373.67 113.68 8.43 3.29 44.34 

Al 897.85 113.68 8.43 7.90 106.53 

Ti 535.71 139.65 13.89 3.84 38.56 

Fe 1034.60 171.65 24.89 6.03 41.56 

Ca 9518.56 154.16 50.27 61.74 189.34 

Al 932.54 154.16 50.27 6.05 18.55 

Al 1754.00 154.16 50.27 11.38 34.89 

Ca 12004.81 154.16 50.27 77.87 238.80 

Ca 5195.11 214.76 18.56 24.19 279.96 

Na 606.00 55.04 8.33 11.01 72.78 

Na 423.82 55.04 8.33 7.70 50.90 
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Figure 4.1: Calibration Plot for K (769.9 nm) Emission Line 

 

 

Figure 4.2: Calibration Plot for Al (309.3 nm) Emission Line 
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Figure 4.3: Calibration Plot for Ca (422.7 nm) Emission Line 

 

 

Figure 4.4: Calibration Plot for Fe (259.9 nm) Emission Line 
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Figure 4.5: Calibration Plots for Mg (285.2 nm) Emission Line 

 

 

Figure 4.6: Calibration Plots for Na (589.0 nm) Emission Line 
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Chapter 5: Results  

This study explored using advanced data processing techniques to develop 

correlation models that utilize LIBS-based biomass and coal elemental information to 

predict slagging potential information, which would be used by operators in biomass co-

firing power generation plants. An approach was developed and proven more accurate in 

correlating raw LIBS spectral for elemental composition than the calibration curve 

approach described in Chapter 4. The approach was also been satisfactory in predicting 

higher-order coal properties which include ash fusion temperature and heating value.   

The results for prediction of the metal oxides are shown in Figures 28 to 35 for 

the models developed for the particular biomass feedstock groups. The appropriateness of 

the fit was evaluated using the root-mean square error, as defined by: 

2

1( )n

t t ty y
RMSE

n



 
  

where ty


  is the predicted expected value for time t, of a regression's dependent variable 

y, for n different prediction. The RMSE’s in Figures 28 to 35 show good correlation and 

acceptable learning efficiency of the BP networks for sample composition. The RMSE 

values (absolute errors) in those figures correspond to relative errors for Al2O3, CaO, 

Fe2O3, K2O, MgO, Na2O, SiO2 and TiO2, of 4.57, 4.31, 8.33, 1.61, 4.28, 5.25, 1.61 and 

6.96%, respectively. The relative error for the generic model ranged from 8.55 up to 

37.24% for all metal oxides, except titanium oxide, which had a relative measurement 

error as high as 54.57%.  
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Figure 5.1: Results for Prediction of Al2O3 

 

Figure 5.2: Results for Prediction of CaO 

 

Figure 5.3: Results for Prediction of Fe2O3 
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Figure 5.4: Results for Prediction of K2O 

 

Figure 5.5: Results for Prediction of MgO 

 

Figure 5.6: Results for Prediction of Na2O 
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Figure 5.7: Results for Prediction of SiO2 

 

Figure 5.8: Results for Prediction of TiO2 

The results for heating value (dry basis) applicable to the entire range of biomass 

and coal feedstock used in this project are included in Figure 5.12. The prediction has a 

combined RMSE of ±15.25 Btu/lb. Though these results are based on a single limited 

data set, these results indicate that there is a significant potential for monitoring heating 

value of coal and biomass feedstock using a concept based on the LIBS technique and 

advanced data processing. 
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Figure 5.9: Prediction Results for Heating Value 

 

            Results for initial deformation fusion temperature are included in Figure 5.13. The 

results in Figure 5.13 show a RMSE for the temperature prediction of ±33.34 .F  This 

represents a relative accuracy of ±1.4%, referred to the average fusion temperature for the 

entire range from 1,600 F  for wheat straw to at least 2,800 F  for rice hulls, sawdust 

and willow trees. The results for initial deformation temperature for each of the four 

biomass and coal groups, are improved to a combined RMSE of ±15.24 F . The results 

for heating value and fusion temperature have associated higher accuracy than the results 

obtained for elemental composition of metal oxides. 

            The results in Figure 5.13 also include fusion temperature predictions of blends of 

coal and biomass. The intention was to explore the feasibility of the LIBS/Advanced Data 

Processing approach to predict blend properties of importance to a power producing 

facility that would co-fired coal with biomass. Three blends at a 20/80% biomass/coal 

ratio, by heat input (CAPP/corn stover, CAPP/switch grass, CAPP/willow tree) were 

used.  The inputs values for the blends were estimated using weighted averages of each of 
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the elemental concentrations as detected by LIBS. The corresponding blend weight ratio 

for CAPP and corn stover, switch grass and willow tress was 26.0, 24.0 and 23.4%, 

respectively.  

            The results for the blends are included in Figure 5.13. The predictions for the 

CAPP/corn stover and CAPP/willow tress blends are within the specified error band 

(±100 F ). However, the fusion temperature predictions for the CAP/switch grass are 

17.2, 116.8 and 76.5 F , representing 0.7, 5.1 and 1.5%, respectively. This may be due to 

the impact some individual ash elements may have of the fusion temperatures. This is of 

great importance to operators of boilers that would like to anticipate the properties of the 

fuel blend when they co-fire coal and biomass and its relative impact of boiler operation, 

emissions and unit availability. 
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Figure 5.10: Prediction Results for Initial Deformation Fusion Temperature(IDT) 
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Chapter 6: Conclusions and Recommendations 

In this study, the ability of laser-induced breakdown spectroscopy and advanced 

data processing to measure important parameters of biomass and also biomass/coal 

blends has been successfully demonstrated. This will more easily allow coal-fired electric 

generating power plants to supplement their coal use with biomass; thus, substantially 

reducing greenhouse gases. The testing covered a number of biomass residues, energy 

crops, woody biomass, coals, and blends of coal and biomass. Heating value, ash fusion 

temperature, and a number of mineral oxides were successfully measured/predicted. It 

was shown that these parameters can be accurately monitored in a future real-time LIBS 

installation, allowing a boiler operator to optimize the plant efficiency and minimize 

expensive slagging and fouling problems.   

It is recommend that the technology be taken to the next level and be tested at a 

power plant that co-fires biomass and coal.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

32 

References 

1. Abel, Tortosa-Masiá, Ahnert Falk, Spliethoff Harmut, Loux Claude, and Hein 

Klaus. "Slagging and Fouling in Biomass Co-combustion." Thermal Science 9.3 

(2005): 85-98. Print. 

2. Robinson, A. L., J. S. Rhodes, and D. W. Keith. "Assessment of Potential Carbon 

Dioxide Reductions Due to Biomass−Coal Cofiring in the United 

States." Environmental Science & Technology 37.22 (2003): 5081-089. Print. 

3. Baxter, L. "Biomass-coal Co-combustion: Opportunity for Affordable Renewable 

Energy."Fuel 84.10 (2005): 1295-302. Print. 

4. Robinson, Allen L., Helle Junker, and Larry L. Baxter. "Pilot-Scale Investigation 

of the Influence of Coal−Biomass Cofiring on Ash Deposition." Energy & 

Fuels 16.2 (2002): 343-55. Print. 

5. Yin, Chungen, Zhongyang Luo, Mingjiang Ni, and Kefa Cen. "Predicting Coal 

Ash Fusion Temperature with a Back-propagation Neural Network 

Model." Fuel 77.15 (1998): 1777-782. Print. 

6. Seggiani, Maurizia, and Gabriele Pannocchia. "Prediction of Coal Ash Thermal 

Properties Using Partial Least-Squares Regression." Industrial & Engineering 

Chemistry Research 42.20 (2003): 4919-926. Print. 

7. Zhao, Bingtao, Zhongxiao Zhang, and Xiaojiang Wu. "Prediction of Coal Ash 

Fusion Temperature by Least-Squares Support Vector Machine Model." Energy 

& Fuels24.5 (2010): 3066-071. Print. 

8. Blevins, Linda G., Christopher R. Shaddix, Shane M. Sickafoose, and Peter M. 

Walsh. "Laser-Induced Breakdown Spectroscopy at High Temperatures in 

Industrial Boilers and Furnaces." Applied Optics 42.30 (2003): 6107. Print. 

9.  Yin, Wangbao, Lei Zhang, Lei Dong, Weiguang Ma, and Suotang Jia. "Design of 

a Laser-Induced Breakdown Spectroscopy System for On-Line Quality Analysis 

of Pulverized Coal in Power Plants." Applied Spectroscopy 63.8 (2009): 865-72. 

Print. 

10.  Hatt, Rod. "Influence of Coal Quality and Boiler Operating Conditions on 

Slagging of Utility Boilers." (n.d.): n. pag. Print. 

11.  Hatt, R. "Fireside Deposits in Coal-fired Utility Boilers." Progress in Energy and 

Combustion Science 16.4 (1990): 235-41. Print. 

12.  Pronobis, M. "The Influence of Biomass Co-combustion on Boiler Fouling and 

Efficiency."Fuel 85.4 (2006): 474-80. Print. 

13.  Stam, A. F. "Review of Models and Tools for Slagging and Fouling Prediction 

for Biomass Co-combustion." (n.d.): n. pag. Print. 



 

33 

14.  Attig, C., and A. Duzzy. "Coal Ash Depositional Studies and Application to 

Boiler Design."American Power Conference, Chicago, IL., Illinois Institute of 

Technology(1969): n. pag. Print. 

15.  Winegartner, E. C. Coal Fouling and Slagging Parameters. [New York]: ASME, 

1974. Print. 

16. Niu, Yanqing, Hongzhang Tan, Xuebin Wang, Zhengning Liu, Haiyu Liu, Yang 

Liu, and Tongmo Xu. "Study on Fusion Characteristics of Biomass 

Ash." Bioresource Technology 101 (2010): 9373-9381. Print. 

17. Li, Q.H, Y.G Zhang, and A.H Meng. "Study on Ash Fusion Temperature Using 

Original and Simulated Biomass Ashes." Fuel Processing Technology 107 

(2013): 107-112. Print. 

18.  Seggiani, M. "Empirical Correlations of the Ash Fusion Temperatures and 

Temperature of Critical Viscosity for Coal and Biomass Ashes." Fuel and Energy 

Abstracts 41.6 (2000): 367. Print. 

19.  Mastalerz, Maria, A. Drobniak, John Rupp, and Nelson Shaffer. "Availability of 

the Reserves, Physical and Chemical Properties of the Coal, and the Present and 

Potential Uses." (n.d.): n. pag. Print. 

20. Cremers, David A., and Leon J. Radziemski. Handbook of Laser Induced 

Breakdown Spectroscopy. Chichester: Wiley, 2013. Print. 

21.  Sneddon, Joseph, and Yong Lee. "Application of Laser-induced Breakdown 

Spectrometry in Urban Health." Microchemical 67.1-3 (2000): 201-05. Print. 

22.  Yin, Wangbao, Lei Zhang, Lei Dong, Weiguang Ma, and Suotang Jia. "Design of 

a Laser-Induced Breakdown Spectroscopy System for On-Line Quality Analysis 

of Pulverized Coal in Power Plants." Applied Spectroscopy 63.8 (2009): 865-72. 

Print. 

23.  Ottesen, David K., L. L. Baxter, L. J. Radziemski, and J. F. Burrows. "Laser 

Spark Emission Spectroscopy for In-situ, Real-time Monitoring of Pulverized 

Coal Particle Composition." Energy & Fuels 5.2 (1991): 304-12. Print. 

24.  Chadwick, Bruce L., and Doug Body. "Development and Commercial Evaluation 

of Laser-Induced Breakdown Spectroscopy Chemical Analysis Technology in the 

Coal Power Generation Industry." Applied Spectroscopy 56.1 (2002): 70-74. 

Print. 

25.  Stankova, Alice, Nicole Gilon, Lionel Dutruch, and Viktor Kanicky. "A Simple 

LIBS Method for Fast Quantitative Analysis of Fly Ashes." Fuel 89.11 (2010): 

3468-474. Print. 

26.  Romero, Carlos E., Robert De Saro, Joseph Craparo, Arel Weisberg, Ricardo 

Moreno, and Zheng Yao. "Laser-Induced Breakdown Spectroscopy for Coal 

Characterization and Assessing Slagging Propensity." Energy & Fuels (2009): 

091019142552047. Print. 



 

34 

27.  Li, Jie, Jidong Lu, Zhaoxiang Lin, Shunsheng Gong, Chengli Xie, Liang Chang, 

Lifei Yang, and Pengyan Li. "Effects of Experimental Parameters on Elemental 

Analysis of Coal by Laser-induced Breakdown Spectroscopy." Optics & Laser 

Technology 41.8 (2009): 907-13. Print. 

28.  Blevins, Linda G., Christopher R. Shaddix, Shane M. Sickafoose, and Peter M. 

Walsh. "Laser-Induced Breakdown Spectroscopy at High Temperatures in 

Industrial Boilers and Furnaces." Applied Optics 42.30 (2003): 6107. Print. 

29.  Jenkins, Bryan, Robert Williams, Scott Turn, Lee Jakeway, and Linda Blevins. 

"Closed-loop Biomass Co-firing in a Laboratory Reactor and in a Full-scale 

Boiler." (n.d.): n. pag. Print. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

35 

Vita 

 

Tong Zhu 

 

 

Birth Date: November 28th, 1988 

 

Birth Place: Anqing, China 

 

Name of Parents: Xuehua Zhu (Father), Wenxia Li (Mother) 

 

Institutes Attended and Degrees: 

 

 

Lehigh University, Bethlehem, USA 

Master of Science in Mechanical Engineering (to be awarded)                              09/2013 

 

Xi’an Jiaotong University, Xi’an, China 

Bachelor of Science in Energy Power System and Automation                               06/2010 

 

 

Research Area: Energy Research in Mechanical Engineering 

 

Professional Experiences: 

 

Research Assistant                                                                                      04/2011-07/2013 

Energy Research Center, Lehigh University                                Bethlehem, Pennsylvania 

Laboratory and field research on the biomass co-firing technology and other energy-

related topics. 

 


	Lehigh University
	Lehigh Preserve
	2013

	Using LIBS and Advanced Data Processing to Analyze Biomass and Coal Feedstock for Utility Boiler Applications
	Tong Zhu
	Recommended Citation


	tmp.1435161973.pdf.nPg58

