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Abstract

The amount of Semantic Web data is huge and still keeps growing rapidly today. How-

ever most users are still not able to use a Semantic Web Knowledge Base (KB) effectively

as desired to due to the lack of various background knowledge. Furthermore, the data is

usually heterogeneous, incomplete, and even contains errors, which further impairs under-

standing the dataset. How to quickly familiarize users with the ontology and data in a

KB is an important research challenge to the Semantic Web community.

The core part of our proposed resolution to the problem is the contextual tag cloud

system: a novel application that helps users explore a large scale RDF(Resource De-

scription Framework) dataset. The tags in our system are ontological terms (classes and

properties), and a user can construct a context with a set of tags that defines a subset

of instances. Then in the contextual tag cloud, the font size of each tag depends on the

number of instances that are associated with that tag and all tags in the context. Each

contextual tag cloud serves as a summary of the distribution of relevant data, and by

changing the context, the user can quickly gain an understanding of patterns in the data.

Furthermore, the user can choose to include different RDFS entailment regimes in the

calculations of tag sizes, thereby understanding the impact of semantics on the data. To

resolve the key challenge of scalability, we combine a scalable preprocessing approach with

a specially-constructed inverted index and co-occurrence matrix, use three approaches to

prune unnecessary counts for faster online computations, and design a paging and stream-

ing interface. Via experimentation, we show how much our design choices benefit the

1



responsiveness of our system. We conducted a preliminary user study on this system, and

find novice participants felt the system provided a good means to investigate the data and

were able to complete assigned tasks more easily than using a baseline interface.

We then extend the definition of tags to more general categories, particularly including

property values, chaining property values, or functions on these values. With a totally

different scenario and more general tags, we find the system can be used to discover inter-

esting value space patterns. To adapt the different dataset, we modify the infrastructure

with new indexing data structure, and propose two strategies for online queries, which will

be chosen based on different requests, in order to maintain responsiveness of the system.

In addition, we consider other approaches to help users locate classes by natural lan-

guage inputs. Using an external lexicon, Word Sense Disambiguation (WSD) on the label

words of classes is one way to understand these classes. We propose our novel WSD

approach with our probability model, derive the problem formula into small computable

pieces, and propose ways to estimate the values of these pieces. For the other approach,

instead of relying on external sources, we investigate how to retrieve query-relevant classes

by using the annotations of instances associated with classes in the knowledge base. We

propose a general framework of this approach, which consists of two phases: the keyword

query is first used to locate relevant instances; then we induce the classes given this list

of weighted matched instances.

Following the description of the accomplished work, I propose some important future

work for extending the current system, and finally conclude the dissertation.

2



Chapter 1

Introduction

As the Semantic Web has evolved over the last decade, the amount of interlinked structured

data has grown tremendously. Billions of statements are published using Semantic Web

languages, by people from all over the world. The knowledge covers many domains such

as media, geographic data, publications, life science, and so on. In addition to academic

researchers and organizations, more and more companies are publishing their data in

Semantic Web format, such as NY Times, BBC, Nature Publishing Group, etc. While

some of the statements are very domain specific knowledge (such as life science) created by

domain experts, there are also many statements that bridge various vocabularies among

different domains.

While such a huge amount of miscellaneous information potentially enables many

different powerful applications, we also notice that there are some obstacles preventing

people from taking full advantage of a Semantic Web knowledge base (KB). One of the

3



challenges is how to present a KB, particularly a multi-source or cross-domain KB, which

is usually huge in terms of its terminology or the amount of data, to casual users and

familiarize them with it so that they can quickly start building interesting queries and

get useful answers. The terminology is formally defined as an ontology which represents

knowledge as a hierarchy of concepts within a domain, using a shared vocabulary to denote

the classes (types of things), properties (relations and attributes) and interrelationships

of those concepts. The data contains facts associated with the terminological vocabulary

within the KB. The users’ unfamiliarity with the KB (which we refer to as their knowledge

gap) arises due to various aspects with regard to both the ontology and data.

1. Syntactic Correctness: “What classes are available?” Knowing the ontological

terms (classes and properties) is usually the first task. If the user does not know

what terms are available in the KB, there is no way for the user to build a formal

query.

2. Semantic Correctness: “Does this class refer to the concept I expect?” Knowing

the terms also includes correctly understanding them, not only knowing their names.

The meaning of a term can be found in the formal definition of ontological interre-

lations, or be implied by the actual usage in the data (which occasionally might be

different from the ontological definition). Understanding the semantics of the terms

is essential to construct a meaningful query.

3. Meaningful Results: “Does the dataset hold enough knowledge coded with the

vocabulary I choose?” Knowing the distribution of data in the KB can also be

4



important for a successful query. A query can be semantically correct but practically

less helpful, simply because the coverage of the data is incomplete with regard to

the ontology.

4. User-friendly Interface: “Can I construct useful and customized queries without

using a formal query language?” Even with all the above questions answered, i.e. the

users understand exactly what terms to use, casual user might still need help with

writing correct formal queries. Even for expert users, an easy interface for frequently

used template queries could save a lot of time.

These are the real problems to the Linked Data world and knowledge gaps that users

typically have. Even taking an adequate subset of the linked data cloud, we can see

wide spread domains from different sources. Then ambiguity becomes a common issue:

sometimes a word is used with different senses (e.g. “Bridge” may refer to a structure

or a card game), and sometimes the same sense is refined within different domains (e.g.

“Person” in a scientific ontology may just refer to “Scientist”). Furthermore, the linked

data usually contains errors and is incomplete, which adds to the barrier of understanding

the KB. The errors can mislead the users and enlarge the first and the second gaps; and

the incomplete coverage of knowledge is exactly the third gap.

Thus our first set of research questions arises: How can we help casual users explore the

Linked Open Data (LOD) cloud? Can we provide a more detailed summary of linkages

beyond the LOD cloud diagram? Can we help data providers find potential errors or

missing links in a multi-source dataset of mixed quality?

5



Since there are two aspects of a dataset: the ontological terms (classes and properties)

and the instances, there are two straightforward ideas to present the KB to users. One

way to help users understand these terms is to show the axioms related to each term,

however sometimes the axioms are missing or too complex to present in a user-friendly

way. Another approach is to examine the instances related to each term. While looking

into the related instances one by one provides the most details, it is very time consuming,

and there is a risk of getting misled by coincidently looking into some erroneous data. So

the questions cannot be answered by only viewing the ontology axioms or only inspecting

a small sample of instances. A combined view of both aspects is necessary. There are also

two types of linkages: ontological alignment and owl:sameAs links between instances. The

usability of a multi-source RDF dataset is largely affected by the erroneous or missing links

of both kinds in the dataset. Data providers also need a tool, which ideally emphasizes

the unlikely facts to help unveil such problems in the dataset.

Our solution is to use tag clouds to display statistical information about the distribu-

tion of instances among various ontological terms. A key feature is that each tag cloud is

relative to a filter consisting of ontological terms that is dynamically defined by the user.

In analogy to traditional Web 2.0 tag cloud systems, an instance is like a web document or

photo, but is “tagged” with formal ontological classes, as opposed to folksonomies. Tags

are then another name for the categories of instances. We extend the expressiveness and

treat classes, properties and inverse properties as tags that are assigned to any instances

that use these ontological terms in their triples. The font sizes in the tag cloud reflect

6



the number of matching instances for each tag. We allow the user to change their focus

on a specific subset of instances in the dataset by specifying a combination of ontological

terms as the filter on the fly, and then the resulting contextual tag cloud will resize tags

to indicate intersection with this context.

We are also curious about how useful this contextual tag cloud system is for the

scenarios when the KB is not so complex. In such scenarios, some of the knowledge gaps

might be less important. For example:

• If the KB covers a very focused domain, and the user has some background

knowledge about this domain, then the second gap is less likely to happen since

the terms with a specific focused domain usually have clear meanings with little

ambiguity. However, for casual users, or someone who is not familiar enough to the

terminology in this KB, it is still very important to clarify the terms.

• If the KB has full-fledged data, i.e. the closed world assumption is valid, then

presumably any semantically meaningful query will be productive and we do not

need to worry about the third gap. However it is a bonus if we can provide users

some kind of statistics about the dataset with simple user interactions instead of

letting the users construct the queries.

In these scenarios, we can usually assume the users are or will quickly become familiar

with the ontological terms and how to use them; however there is still the need for an easy

interface. On the other hand, we notice that the contextual tag cloud system is not only

useful as a tool that familiarize users with the ontological terms, it is also a novel approach

7



to let users construct certain queries dynamically and then observe interesting patterns

from the dataset. For the linked data KB, we present the patterns of ontological terms.

For a dataset with focused domain and full-fledged data, we can extend the concept of

tags to property values, chaining property values, and functions on such values and then

visualize the patterns of values.

In addition to the contextual tag cloud systems, we also investigate approaches to

annotate classes in the KB from the natural language aspect. This research direction

helps reduce two kinds of gaps:

1. If a user has a particular information need, a keyword search will return the most

relevant classes (not necessarily string match).

2. When a user looks at a class, additional explanation (e.g. alternative expressions)

will avoid ambiguity and confusion.

One approach we take is to performWord Sense Disambiguation (WSD) on the label words

of classes with the help of external lexicons. We propose a novel WSD approach based on

our probabilistic model of word senses of classes’ labels, derive the problem formula into

small computable pieces, and propose ways to estimate the values of these pieces. For

the other approach, instead of relying on external sources, we investigate how to retrieve

query-relevant classes by using the annotations of instances associated with classes in the

KB. We propose a general framework of this approach, which consists of two phases: the

keyword query is first used to locate relevant instances; then we induce the classes given

this list of weighted matched instances.

8



Based upon the above discussion, this dissertation will summarize the accomplished

research for reducing the knowledge gaps that prevent users from effectively using the

Semantic Web KBs, particularly the large scaled ones with mixed sources and mixed data

qualities. I will present the details of design and systems and evaluation results of the

developed algorithms. The contributions of this dissertation is:

1. A novel interface that combines aspects of tag clouds and faceted browsing in order

to explore Semantic Web knowledge bases consisting of hundreds of thousands of

terms. A preliminary user interface study found that 85.7% of novice participants

felt the system provided a good means to investigate the data and were able to

complete assigned tasks in the same time or less than using a baseline faceted-

browsing interface.

2. A scalable infrastructure, in terms of both preprocessing and online computation, of

the contextual tag cloud system that can load billions of triples for KBs on LOD.

The preprocessing has an almost linear performance with regard to the input size,

and can process 1.4 billion triples within 12 hours. We use an inverted index to store

the data, and apply effective pruning strategies to avoid unnecessary queries to the

index. The online system can respond 90% of the requests to display the first page

within 1 second and 97% of the requests within 2 seconds.

3. A demonstration that the interface can also be extended to enable investigation of

computer logs with as many as 33 million events. In particular, such application

is made possible by a light-weight implicit ontology that discretizes property values

9



and adds simple hierarchies for date/time and other features. Such a system could

be used to facilitate data analyzers in the tasks like monitoring popular trends or

suspicious activities and finding out significant differences by comparing patterns.

4. linguistic approaches towards alternative labels for ontological classes including a

novel WSD approach based on our probability model for the labels of classes and a

two-phase framework that uses textual information of the instances to retrieve rele-

vant classes. The WSD is able to get accuracy of up to a 84.6% while in comparison,

the baseline approach only has 64.1% accuracy. The class retrieval method has ∼

20% improvement in Discounted Cumulative Gain scores comparing to the exact

string match or synonym expansion approaches.

The rest of this dissertation is organized as follows. Chapter 2 provides background

information on the Semantic Web and Linked Data, and also describes related work in

the relevant research fields. In Chapter 3, I introduce the overall concept and design

of the contextual tag cloud system, and some use scenarios of the system. Following

that, in Chapter 4 we will discuss the computation challenges behind the system, and

experiments that verify our design choices. Then in Chapter 5, we present a tag cloud

system based on property values with the extended concept of tags, and also discuss the

new scalability questions after this extension, with experimental data. In Chapter 6, we

introduce the user study on the tag cloud system in comparison with another baseline

system we implemented. Chapter 7 will cover our WSD algorithm on the labels of classes,

and Chapter 8 will cover the two-phase instance-based class retrieval framework, which

10



both are ways to help users understanding the classes from the natural language aspect,

and can be treated as possible extensions to the contextual tag cloud system. In Chapter

9 we will propose some future work, whose detail is out the scope of the dissertation, but

still important for extending the current system. We finally conclude in Chapter 10.
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Chapter 2

Background

In this chapter, I review important technology and introduce background knowledge re-

lated to this dissertation. First, I provide a brief introduction to the Semantic Web

technology and Linked Data. After that I will compare several different ideas and system

for representing a Semantic Web KB, or an RDF dataset. Then, I will discuss scalable

repositories and the use of inverted index of Semantic Web data. Finally, I will introduce

relevant works about the relation between natural language words and ontological classes,

including WSD on Semantic Web, and how class retrieval is typically done in most existing

systems.

2.1 Semantic Web and Linked Data

The design of RDF and OWL by groups of international experts, such as The World Wide

Web Consortium (W3C), provided a set of standards for the Semantic Web. Although

12



RDF is commonly described as a directed, labeled, graph, many researchers prefer to

think of it as a set of triples, each consisting of a subject, predicate and object. The

subject is the source of an edge, the predicate is its label, and the object is its target. The

subject and the predicate are always RDF resources specified by their URIs, but the object

can either be a resource or a literal. A literal could be plain (an arbitrary sequence of

characters) or it could be adorned with XML Schema datatype information. RDF defines

a distinguished property called rdf:type to relate a subject to a class. RDF Schema

(RDFS) provides some basic semantics for the classes (i.e., objects of rdf:type triples) and

properties (to be used as a triple’s predicate). In particular there are rdfs:subclassOf

and rdfs:subpropertyOf, which allow class and property hierarchies to be defined, and

rdfs:domain and rdfs:range which define the classes of the subjects and objects of triples

that use specific properties. The formal semantics of RDFS rules are listed as in Table

2.1, where S indicate the set of original triples. Each rule specifies a kind of inference, and

from that we know if such pattern exists in a set of triples, an extra triple can be entailed

by this rule. The details and full set of rules can be found in RDF 1.1 Semantics1.

In comparison with RDFS, OWL adds significant expressiveness for describing the

semantics of RDF vocabularies. OWL is based on description logics, a decidable fragment

of first-order logic. By using OWL, one could construct various classes by specifying how

the instances of this class will use the properties (e.g. the values or the cardinality), or

by using intersection, union, or complement of other classes. Properties are more clearly

defined in OWL as either owl:ObjectProperty or owl:DatatypeProperty depending on

1RDF 1.1 Semantics W3C Recommendation: http://www.w3.org/TR/rdf11-mt/
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Table 2.1: Semantics of RDFS Rules

If S contains: then S RDFS entails:

rdfs1 any IRI aaa in D aaa rdf:type rdfs:Datatype .

rdfs2
aaa rdfs:domain xxx .

yyy rdf:type xxx .
yyy aaa zzz .

rdfs3
aaa rdfs:range xxx .

zzz rdf:type xxx .
yyy aaa zzz .

rdfs4a xxx aaa yyy . xxx rdf:typerdfs:Resource .

rdfs4b xxx aaa yyy . yyy rdf:typerdfs:Resource .

rdfs5
xxx rdfs:subPropertyOf yyy .

xxx rdfs:subPropertyOf zzz .
yyy rdfs:subPropertyOf zzz .

rdfs6 xxx rdf:type rdf:Property xxx rdfs:subPropertyOf xxx .

rdfs7
aaa rdfs:subPropertyOf bbb .

xxx bbb yyy .
xxx aaa yyy .

rdfs8 xxx rdf:type rdfs:Class . xxx rdfs:subClassOf rdfs:Resource .

rdfs9
xxx rdfs:subClassOf yyy .

zzz rdf:type yyy .
zzz rdf:type xxx .

rdfs10 xxx rdf:type rdf:Class xxx rdfs:subClassOf xxx .

rdfs11
xxx rdfs:subClassOf yyy .

xxx rdfs:subClassOf zzz .
yyy rdfs:subClassOf zzz .

rdfs12
xxx rdf:type xxx rdfs:subPropertyOf

rdfs:ContainerMembershipProperty . rdfs:member .

rdfs13 xxx rdf:type rdfs:Datatype xxx rdfs:subPropertyOf rdfs:Literal .

whether the object of the property is an instance or a literal value respectively. One could

also construct object properties with their inverse properties; or even construct properties

with property composition in OWL22. The expressiveness of RDF/OWL allows any person

to make any statement on anything, and provides a framework for people to contribute

their knowledge.

Among the vocabularies provided by RDFS and OWL, there are some very impor-

tant ones for the Linked Data: rdfs:subclassOf, owl:equivalentClass that link the

2OWL 2 Web Ontology Language Document Overview: http://www.w3.org/TR/

owl2-overview/
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Figure 2.1: Linking Open Data cloud diagram

by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/

classes; rdfs:subclassOf and owl:equivalentProperty that link the properties; and

owl:sameAs that links the instances. Thanks to these links, people are able to connect

and integrate knowledge from distributed sources. Linked data enables a very promising

way of sharing and reusing the information and knowledge more efficiently.

Linked data describes a method of publishing structured data so that it can be

interlinked and become more useful. It builds upon standard Web technologies

such as HTTP and URIs, but rather than using them to serve web pages for

human readers, it extends them to share information in a way that can be read

automatically by computers. This enables data from different sources to be

connected and queried.
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Christian Bizer, Tom Heath and Tim Berners-Lee [6]

The Linked Open Data now has tremendous amount of data which is contributed by

researchers and organizations that believe the great potential of this framework. Figure 2.1

illustrates the status of the Linked Open Data as in September 2011. The data included in

the diagram contains 295 datasets with 31.6 billion triples and more than 500 million links

between datasets3. These dataset are created for various domains of media, government,

life sciences, etc. We have seen more and more people and organizations contributing to

the Linked Data. However, on the other side, people, especially the ordinary users, do not

get as much benefit of this knowledge base as one would expect. Even expert users are

usually very focused on very few sources in the domain they are very familiar with. How

to consume the Linked Data is already a very important and attractive research topic

in the Semantic Web community. We believe the knowledge gaps are the fundamental

problems that prevent people from consuming the Linked Data.

2.2 Visualizing the Semantic Web data

Early researchers used graph representations for browsing Semantic Web data, believing

it as a natural choice. But later Karger and schraefel [25] pointed out Big Fat Graphs

are not the ideal representation for RDF data because of the problems in terms of the us-

ablity/usefulness . Many recent systems, such as /facet [19], gFacet [18] and BrowseRDF

[36], use or extend the faceted browsing idea first presented by Burke et al. [8]. It is

3State of the LOD Cloud: http://lod-cloud.net/state/
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a technique where users can construct a selection query by adding constraints and each

new added constraint will update the faceted interface to display further facet options

based on the current query selection results. The selection operations often vary in dif-

ferent systems. Most systems support selection on property values, and intersection on

selections. For example, BrowseRDF supports existential selection on properties and join

selection which is equivalent to property composition, and all these operations on inverse

properties. Similarly in gFacet, whose use case is illustrated in Figure 2.2, users can pick

a property and specify the property value (datatype or instances with chained facets) to

construct a complex query and find matched instances. The interface also has the feature

for automatically pinning the positions of node windows to avoid any overlap. For exam-

ple, if a user add a node as shown in Figure 2.2 (A), it will soon be adjusted to Figure 2.2

(B).

Another type of exploration tools provides summaries of datasets. e.g. Explod [26]

provides a summary graph for class and property usage of grouped instances. A simple

example illustrated in Figure 2.3 shows how the triples are turned into an Explod class

view. The number in the parentheses indicates classes’ usage (the size of them), and each

group of instances is assigned a block id (shown in square brackets), while the groups

are based on common relationships. However such summary information is buried in

bracketed labels, making patterns less obvious. When the size of triples grows larger, the

graph will also encounter usability issues.

Tag cloud can also be used to summarize the usage and trends of data. Traditional
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Figure 2.2: The user adds new facets to the graph by selecting them from a menu below the list.

tag cloud interfaces are mostly used for displaying the frequency or popularity of tags in

some systems, such as in flickr4 (illustrated in Figure 2.4) and delicious5. Usually tags in

these systems are folksonomies assigned to items (like photos or web pages) defined by

the users, and the tag clouds visualize the popularity of tags in the dataset.

The TagExplorer [45] application allows for browsing of Flickr photos using the tags.

The user can either start browsing using a keyword query or by choosing one of the popular

tags. Given the user’s query the TagExplorer generates a set of tags related to the query.

The tag set is displayed to the user in the tag-cloud paradigm. Additionally, the tag cloud

4www.flickr.com
5www.delicious.com
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Figure 2.3: The triples are turned into an Explod class view

The size of each class is shown between parentheses, and a unique instance id is shown in
square brackets.

is broken up into several parts by grouping together tags that belong to the same syntactic

category.

As illustrated in Figure 2.5, the user decides to browse the tag London. In addition to

the top photos relevant to the query, the TagExplorer shows a cloud of related tags, such

as England, United Kingdom, Southwark, City, Big Ben, London Eye, Thames, party and

travel. The tags England, United Kingdom, Southwark, and City are grouped together as
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Figure 2.4: Tag cloud of flickr as of May 2014.

locations; the tags Big Ben, London Eye, and Thames are grouped together as subjects;

and the tags party and travel are grouped together as activities. This tag interface also has

something similar to faceted browsing because the user can refine with additional related

tags, and the facets are automatically learned in the preprocessing steps.

2.3 Scalable Repository and Index of the Semantic Web

Data

There are many existing systems for storing RDF triples. To compare with general purpose

triple stores, Rohloff et al. [42] present a comparison of scalability performance of various
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Figure 2.5: TagExplorer showing grouped tags related to the query “london” as well as matched
photos in flickr

triple store technologies using the LUBM benchmark [17], and reported that Sesame [7]

was the most scalable: It6 loads around 850M triples in about 12 hours, but it takes more

than 5 hours to answer LUBM Query 14, which, similar to the task in the contextual

tag cloud systems, requests the instances of a class. Sakr and Al-Naymat [44] survey

RDF data stores based on relational databases and classify them into three categories: (1)

each triple is stored directly in a three-column table, (2) multiple properties are modeled

as n-ary table columns for the same subject, and (3) each property has a binary table.

Abadi, et al. [1] explore the trade-off and state the third category is superior to the

others on queries assuming a column store is used instead of an RDBMS. However our

experiments (in Chapter 4.6) show using an inverted index is much faster for the queries

6The experiments were conducted in 2007.
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that count instances of intersections of classes/properties. Additionally, we compare our

inverted index approach with the state-of-the-art RDF store RDF-3X [34]. The difference

in the experiments indicates that a general purpose SPARQL engine is not always the

right choice for a Semantic Web system which requires scalable performance on special

kinds of queries.

There are also many applications using inverted indices on Semantic Web data. Many

of them are Semantic Web search engines. E.g. Sindice [49] and Watson [13] are used to

locate Semantic Web documents, while other search engines such as Falcons [9], SIREn

[14], and SemSearch [27] are used for locating semantic entities, and thus whether to index

labels, URLs, literal values or other metadata might differ between them. Occasionally,

question answering systems [50, 51] use inverted indices to help identify entities from

natural language inputs, which in some sense is also an entity search engine. Despite the

categorization, all the above systems index with keywords because the intended usage is to

locate relevant resources based on natural language queries posed by users. Our contextual

tag cloud system is very different because the “terms” in our index are no longer keywords

but ontological tags. As a result, the index in the tag cloud system is compatible with

entailments sanctioned by the ontologies in the data. This is also why we propose our

preprocessing steps prior to indexing, which we have not seen in other works.
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2.4 Natural Language Words vs. Ontological Classes

Banek et al. [3] stress the importance of WSD in ontology alignment and they recommend

WSD as the primary step of ontology integration. They propose their approach of dis-

ambiguation on class names by using the names of the related classes in RDFS axioms as

context. However, they did not consider the names of properties or names of compound

words, and only used a limited subset of axioms in the document. They only reported

the experimental results on accuracy of top senses, however, if this WSD component is to

be used as part of the integration process, providing the scores of all the possible senses

would be more useful for later processes.

WSD techniques and many ideas we use in Chapter 7 are inspired by many previous

traditional WSD works, especially the ones that are knowledge based and exploit infor-

mation from a given lexicon. One category of these approaches relies on the definition

of senses. Lesk [28] first invented the gloss overlap algorithm that calculates the overlap

between the definitions of two target words. Banerjee and Pedersen [4] developed the

extended gloss overlap method by also considering the glosses of other related senses. An-

other category of approaches uses semantic similarity measures. For example, Resnik [41]

and Jiang and Conrath [24] used the notion of information content from corpus statistical

information and calculated the similarity distance between senses. A third category of

approaches explores the graph structures and tries to find a lexical chain between target

words. Hirst and St-Onge [20] introduced the first computational model of lexical chains

and counted the number of times the chain changes direction. A comprehensive review of
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WSD can be found in [33].

However, most of the previous work define their own scores, based on their own ad hoc

heuristics. If we can integrate these heuristics into a more theoretical framework, we may

get the combined advantages from different approaches. Also instead of ad hoc scores,

probability distributions have clear meanings, and should be easy to reuse. Based on this

motivation, we propose our probabilistic approach for WSD in Semantic Web documents

in Chapter 7.

A potential use case of the WSD component is in the resource retrieval problem, which

we define as: find the best matched resources in the dataset based on the input keywords.

Resource retrieval is essential in many systems across various scenarios. For example,

Sindice [49] is a state-of-the-art Semantic Web search engine that has an inverted index

over resources crawled on the Semantic Web, and allows users to retrieve documents with

statements about particular resources. In order to improve instance retrieval, Sindice

makes use of inverse functional property values (e.g. email address) as texts that are

indexed to retrieve the instances. However, if there are many similar matching instances,

it is up to the user to determine if the desired match is not any single instance, but

instead a class the represents a collection of instances. We also find that although various

strategies are applied in different (controlled) natural language QA systems [5][31][48], all

of them implement and integrate some kind of resource retrieval components (to retrieve

classes and properties). Most of these systems only use the straightforward strategy for

resource retrieval, i.e. exact string match on the rdfs:label values, or in the case of Sindice,
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on any inverse functional property values.

However, a few QA systems enhance their retrieval component by expanding queries

with WordNet, a large lexical database of English. For example, Aqualog [31] uses syn-

onyms for class matching, and Tran et al. [48] mention that they extract synonyms,

hyponyms (subclasses) and hypernyms (superclasses) for all the terms. It is not clear

whether they only use direct hyponyms and hypernyms, but the drawbacks of matching

to indirect hyponyms and hypernyms are easy to see: (1) the need to search for a large

number of variations in the query term significantly increases the query time; and (2)

when less similar concepts are introduced, precision suffers.

Even when lexicon-based matching sticks to straight synonyms, there are problems.

First, in some domain specific KBs, people might use query terms that are not in the lexi-

con. Second, a synonym might have other meanings as well, and retrieving all occurrences

of it can reduce precision. Finally, the ontology creators and KB users may sometimes

use words that are not synonyms to refer to the same concept [15] under different circum-

stances. For example, people might refer to an entity or event (the referent) by one of

its features or attributes (the metonym). Some of these problems can be solved if we are

able to perform WSD on the labels of resources. However there are still problems that

WSD will not help. For example the creator of an academic ontology may use “Person” to

name the concept of people at an academic institution; but this concept only consists of

“Professors” and “Students”. Meanwhile in many cases a partial match is useful. For the

keyword query “professor”, the Person class from the academic ontology may be suitable
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as a partial match, even though it is a super class. This is especially true if other con-

straints in the query restrict results to someone teaching a course or advising a student.

Thus alternative approaches for resource retrieval need to be investigated.
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Chapter 3

The Contextual Tag Cloud

System: Concepts, Features and

Use Cases

In this chapter, I will introduce the basic concepts of the contextual system, the function-

alities it provides, and use cases of it.

3.1 Concepts of the Contextual Tag Clouds

The idea of presenting data via a tag cloud has been widely used for many systems,

particularly the Web 2.0 systems where the contents are mostly from the users and a

high-level summary of the contents (or usually folksonomies that categorize or highlight

the contents) is quite convenient. An analogous situation exists for the Linked Open Data
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in that everyone can contribute their knowledge, therefore we find the tag cloud can be

a good fit to the Semantic Web KBs as well. In Table 3.1 we compare our adapted idea

to traditional Web 2.0 tag cloud systems. An instance is like a web page document, but

is “tagged” with formal ontological classes, as opposed to folksonomies. Tags, are then

another name for the categories of instances. We will define tags and contexts in this

section first.

Table 3.1: Comparison between traditional Web 2.0 tag cloud and our contextual tag cloud

Web 2.0 Our System

What is a tag? A folksonomy defined
by users

An ontological term(class or
property)

What defines the
tag size in the tag
cloud?

The count of documents marked by the tag

What is a docu-
ment marked by a
tag?

A web page tagged by
users

An instance associated with
the ontological term in the
dataset

What happens
when a tag is
clicked?

Show a list of docu-
ments of the tag

Show another contextual tag
cloud with this tag added to
context

Formally, consider a KB defined by S, a set of RDF statements. Each statement s ∈ S

can be represented as a triple of subject, predicate and object, i.e. s = ⟨sub, pre, obj⟩. In

addition to these explicit triples, an entailment regime R defines what kind of entailment

rules will be applied to the triples. By applying all the specified entailment rules, we can

get SR, a closure of S which completes S with the entailed statements. To extend the

expressiveness, we include various ways to assign a tag to an instance i:

1. Class C, if ∃⟨i, rdf:type, C⟩ ∈ SR, i.e. by entailment, i is an instance of C.
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2. Property p, if ∃⟨i, p, j⟩ ∈ SR, i.e. the instance appears as the subject in one or

more triples involving p. Note it does not matter whether j is also an instance or j

is a literal value. Thus both owl:ObjectProperty and owl:DatatypeProperty are

valid.

3. Inverse Property p−, if ∃⟨j, p, i⟩ ∈ SR, i.e. if the instance appears as the object in

one or more triples involving p. Here the property pmust be an owl:ObjectProperty.

In addition, we find it useful in many scenarios to introduce the Negation Tag ∼t.

While a tag represents that an instance is described by a particular class or property, we

use a negated tag to indicate that such a description is missing. This can be useful for

inspecting what portions of the data are missing important properties, e.g., how many

politicians are missing a political party. We considered three possible semantics for the

negated tags:

1. classical negation: Instances have the tag only if the negation of the corresponding

concept is logically entailed;

2. negation-as-failure: Instances have this tag if the system fails to infer the regular

tag, i.e. it does not have the tag in SR; and

3. explicit negation: Instances have this tag if they do not explicitly have the positive

tag in S.

Classic negation is usually used in the communities related to logic reasoning, such

as in First Order Logic. The negation in this case states what must be false given the
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information from the dataset. On the other extreme side, the explicit negation only tries

to retrieve the statement and return false when it fails to retrieve the exact form of the

statement. We soon decide the explicit negation is not an option because it could lead

to confusing scenarios where an instance has a regular inferred tag and a corresponding

explicit negation tag. Negation-as-failure (NAF) is another well recognized way of defining

negation in logic programming [30], and is part of prolog, the widely used, general-purpose

logic programming language. Under prolog’s NAF inference, what cannot be proved is

considered as false statements. This is known as the Closed World Assumption [40] and

works well for datasets with complete knowledge. However it is definitely different from

many Semantic Web datasets, particularly the LOD, where statements can always be

appended to existing datasets, and this is why classic negation is more proper for inference

of knowledge in Semantic Web. However, there is another view of NAF, which conveys

totally different semantics for negation. Michael Gelfond [16] showed that it is also possible

to interpret the negation of something (p) literally as “p can not be shown”, “p is not

known” or ”“p is not believed”, as in autoepistemic logic. The autoepistemic logic is

particularly useful for the representation and reasoning of knowledge about knowledge.

While propositional logic can only express facts, autoepistemic logic can express knowledge

and lack of knowledge about facts. From this view, NAF best fits our requirement and we

argue that this is the correct semantics for a system where what is not said is sometimes as

important as what is said. Note that the negation tags are virtually assigned to instances,

since they can be easily derived by whether their regular tags are assigned.
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Let I be the set of all the instances, T be the set of all possible regular tags assigned

to instances in the dataset, V be the set of all negation tags, i.e. V = {∼t|t ∈ T }, and

A = T ∪ V. Given R, we define a function TagsR : I → 2T that maps the given instance

to all the regular tags assigned to it under R-inference closure. i.e.

TagsR(i) = {C|∃⟨i, rdf:type, C⟩ ∈ SR}
∪
{p|∃⟨i, p, j⟩ ∈ SR}

∪
{p− |∃⟨j, p, i⟩ ∈ SR}

(3.1)

Note under monotonic logic 1, R1 ⊆ R2 ⇒ TagsR1
(i) ⊆ TagsR2

(i), i.e. if more entailment

rules are applied, we will have at least the same set of tags assigned to an instance, if not

any more.

The function InstR : 2T × 2V → 2I maps the given set of regular tags T and the given

set of negation tags V to the set of all instances assigned or virtually assigned with them.

InstR(T, V ) = {i|T ⊆ TagsR(i) ∧ ¬∃t(t ∈ TagsR(i) ∧ ∼t ∈ V )} (3.2)

Since T and V and can be distinguished syntactically, as a short-hand, we will use the

following definition:

InstR(A) = InstR(T, V ) where T = A ∩ T ∧ V = A− T (3.3)

1A logic is monotonic if every thing that is entailed by a KB is entailed by a superset
of the KB.
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For convenience, we define the frequency of a set of tags A ⊆ A as

fR(A) = |InstR(A)| (3.4)

When the user specifies a context A ⊆ A, he actually constructs a class expression in

description logic (except for the negation tags), using a very simple syntax. For example,

the context {eg : Town, eg : mayor} is the same as eg : Town ⊓ ∃eg : mayor.⊤. Then the

context defines a narrowed scope of instances to be further investigated and the next tag

cloud is presented within this dynamically specified scope of instances.

Note that for all the definitions above, the entailment regime R is also a variable to

the functions, since we can choose to include subsumption inference and domain/range

inference. To investigate the impact of different R, we can generalize various entailment

rules into tag subsumptions. Tag t1 is a sub tag of tag t2 if and only if the entailment

regime requires InstR({t1}) ⊆ InstR({t2}). For example, this sub tag relation includes

RDF subclasses/subproperties plus the ones entailed by the domain/range axioms: If ⟨p,

rdfs:domain, C⟩ and ⟨p, rdfs:range, D⟩, then p is a sub tag of C and p− is a sub tag

of D. We use the notation a1 ⊒R a2 or a1 ⊑R a2 for a1, a2 ∈ A to denote that a1 is a

super/sub tag of a2 under entailment regime R respectively.

In our implementation, we have two specific sets of rules: RSub for entailment of

class/property subsumption relations(including equivalence relations, which can be treated

as two-way subsumption relations) (rdfs5, rdfs7, rdfs9 and rdfs11 in Table 2.1);

and RDR for property domain/range entailment (rdfs2, rdfs3 in Table 2.1). We also
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support the combination of these two sets, leading to four distinct entailment regimes

R = {∅, RSub, RDR, RSub ∪RDR}.

3.2 System Feature and Use Cases

We introduce the features and use cases of our system using the dataset provided for

the Billion Triple Challenge 2012, which is a significant subset of the Linked Open Data.

This complex dataset contains 1.4 billion triples, from which we extract 198.6M unique

instances, and assign more than 380K tags to these instances.

The initial tag cloud has context A = ∅ or semantically A =owl:Thing, and the tags

in the cloud reflect the absolute sizes of instances related to each tag. We put classes and

properties into two separate views, so that users will not treat a property called “author”

(which may have domain Publication) as a class name by mistake. To emphasize that

difference, we also add an icon with “C” or “P” in front of each tag. If a tag is clicked,

it will be added to the current context, and then a new tag cloud will be shown for the

updated context. A user can add/remove any tags to/from the context, and explore any

custom defined collection of instances. A user can also switch to Instance View to get a

list of instances that match the context and investigate their triples.

A user can also change the inference regime, which by default is RSub, the subsumption

inference. Usually we can expect tags to become larger when more inference is introduced.

If R entails that a set of tags are equivalent, we choose a canonical tag to group them

under. We display a ≡ after the canonical tag to indicate this; clicking it will display the
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Tag font sizes reflect 

sizes of intersections. 

Users can construct a context by 

clicking on tags or removing them

Tags of an instance can vary 

under different inference rules

Figure 3.1: Property Tag Cloud with contexts foaf:Group and ∼schema:MusicGroup.

equivalent tags. Also for any tag cloud, we can turn on the negation mode, and then the

tag sizes indicate how many instances do not have this tag under the current context and

inference level. A negation tag can be also added to the context, which mathematically

means the relative complement. For example in Fig. 3.1, the property tag cloud with

context foaf:Group and ∼schema:MusicGroup shows us the common property usages of

instances of foaf:Group that are not instances of schema:MusicGroup.

Given the context A0 ∈ A and the entailment regime R, the contextual tag cloud

presents a list of regular tags [t1, . . . , tn] with various font sizes [fs1, . . . , fsn] that reflects

the instance sizes of types [fR(A0 ∪ {t1}, . . . , A0 ∪ {tn}]. The font sizes for a tag ti in the

tag cloud is

fsi = (FSMAX − FSMIN)
log fR(A0 ∪ {ti})

log fR(∅)
+ FSMIN
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where the max and min font sizes are denoted as FSMAX and FSMIN. In practice we

use FSMAX = 48 px and FSMIN = 12 px. The max font FSMAX indicates fR(∅),

i.e. the total number of instances, which provides a universal scale to the font sizes over

all contextual tag clouds. Alternatively, in some cases, we can also make the size of the

current context, i.e. fR(A0) map to the max font, which makes the sizes on the current

page larger especially if the context is a very specific one. We use log functions2 on the

fR so that the tag cloud shows differences of tags in orders of magnitude. The sizes of

tags in the LOD usually vary from a wide range, so if we do not use log functions the tag

cloud page will be dominated by a small number of largest tags.

With the BTC dataset, a challenging problem for UI design is how we can show so

many tags in the tag cloud. A straightforward idea is to show tag clouds in pages. To help

users locate specific tags in the tag cloud, we initially sort the tags by their local names

alphabetically. When the system receives a request (context T and inference R), it will

process tags in the same alphabetic order, and then stream out whatever is available for

the requested page. If the user chooses to browse tags alphabetically, then the streaming

of results is generally able to stay ahead of the user by pre-fetching results for tags on

subsequent pages. Instead of browsing, a user can also search for tags by keywords. We

index the local name, rdfs:label and rdfs:comment (if it exists) for each tag to support

such keyword search. The retrieved tags will then be shown in the tag cloud sorted by their

relevance to the keyword with their frequencies under the current context and inference

regime. In addition, we provide sorting by tag frequency as another option, so that users

2The base of log does not matter because of the division.
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can easily see the most popular tags under the current context and inference. However,

we have to wait until all the frequencies are computed to enable this sort option. For some

contexts, it can take a few minutes for the overall computation of thousands of pages of

results. We show a progress bar of the computation and the estimated time left; and

before the frequency sort is enabled, users can still browse by alphabetical order or search

with keywords.

We believe our system can be used for multiple purposes. Here we shall briefly present

four scenarios that describe how a user can explore the BTC dataset.

Choose the right terms for SPARQL. A user wants to build a SPARQL query

on lakes, but does not know what classes about lakes are available. The user starts with

a keyword search “lake”, and is presented with a tag cloud as illustrated in Figure 3.2.

The tag cloud contains all tags that match the keyword, and is sorted by the relevance

scores to the query. Then the user finds that dbpediaowl:Lake is the largest tag, which

indicates that it contains the most instances. After picking this class, the user wonders

what property to use for querying the area of a lake. Then by searching again with keyword

“area”, the user is presented with the contextual tag cloud with keyword-matched tags

whose sizes reflect the intersection of the instances of dbpediaowl:Lake and the tags, as

illustrated in Figure 3.3. It turns out dbpediaowl:areaTotal is the best choice of the

property.

Learn interesting facts. A casual user tries a keyword search on “Manhattan”. The
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Keyword search

Indicates equiv exists

Figure 3.2: The tag cloud search result page for a user’s query “lake”.

The search now returns tag clouds 

within the context-defined subset.

Figure 3.3: The tag cloud search result page for a user’s query “area” with context
dbpediaowl:Lake.

tag cloud is shown as Figure 3.4. There are classes of parks, streets, etc. located in Manhat-

tan. However, it also has the slightly unexpected class yago:ManhattanProjectPeople;

with her interest piqued, the user adds this to the context to explore in more detail. In
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Figure 3.4: The tag cloud search result page for a user’s query “Manhattan”.

the resulting tag cloud, the user finds various categories for such people, and then searches

again for “scientist” to find out which scientists are involved. Then surprisingly there is

a tag freebase:computer.computer scientist. The user is intrigued, because she did

not know that any computer scientists were involved in the effort to build the first atomic

bomb. By adding that tag and switching to the Instance View, she finally learns that this

scientist is John von Neumann.

Detect Co-reference Mistakes. Sometimes when two tags have a small unexpected

intersection, it is due to an error, rather than an interesting fact. For example, the

tag yago:BritishComputerScientist has one common instance with a very small tag

dbpediaowl:MusicalArtist. By adding this tag and looking into the triple details in

the Instance View (as shown in Figure 3.5), we can see the two dbpediaowl:abstract

values clearly refer to two different people who have the same name but different birth
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Figure 3.5: The instance view reveals the co-reference mistake.

We find different birth year and occupations in the only instance for context
{yago:BritishComputerScientist, dbpediaowl:MusicalArtist}.

years (1941 and 1962) and occupations (American musician and British scientist), and are

mistaken as the same person in the dataset.

Examine ontological errors. Under inference RDR, a user finds that foaf:Person

appears in the tag cloud of context dbpediaowl:Software, implying that some people are

software, or vice versa! If the user changes the inference to R∅ or RSub, this error will

disappear. So that means there must be something wrong with the domain-range inference.

We know that if there is a property claimed as having foaf:Person as it domain, then

any instance using this property will be classified as the instance of this class. With

this hypothesis in mind, the user adds both foaf:Person and dbpediaowl:Software to

the context, selects the property view and inference RDR, and sorts the properties by

frequency. Then the top tag is foaf:homepage, which has all the instances in the current

context (by hovering the mouse over the tag, we can see the frequency of this tag). This is

very suspicious, and by clicking on the “P” icon before foaf:homepage, the user can see
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Figure 3.6: Examining ontological errors.

The first property foaf:homepage in the property view implies class foaf:Person.

(in Figure 3.6) that foaf:Person is an inferred super tag of this tag, and that causes the

error. By checking the raw ontology we find that although the domain of foaf:homepage

is owl:Thing in the foaf schema, two other sources in the BTC dataset make the claim

that the domain is foaf:Person and foaf:Agent respectively.

To visualize the patterns, our contextual tag cloud system combines the idea of faceted

browsing with the traditional tag cloud visualization technique. Our current system is sim-

ilar to faceted browsing systems in the sense that our contextual tag cloud idea also has the

feature that the new tag cloud is generated based on the previous selected tags. In com-

parison with the faceted browsing systems we introduced in Section 2.2, our contextual tag

cloud system has less expressiveness than BrowseRDF since it supports only existential,

inverse existential and intersection, and does not support any operations on the values of

properties. However on the other hand, it is potentially more scalable. To the best our

knowledge, there are no scalability experiments for such systems, however the scalability

issue can be questionable due to the fact that a facet selection is a query to the dataset and

intersection is a typically a costly operation in SQL. While none of the 3 papers stressed

the scalability issue, our system particularly focuses on limited expressiveness, i.e. the
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existence of properties and classes, and by optimizing the infrastructure, provides a more

scalable performance over large datasets. Meanwhile we want to emphasize, except for

the same flavor of adding constrains on the fly and the comparison of expressiveness and

scalability, our system has different purposes compared to faceted browsing systems. Our

system aims at revealing the patterns of co-occurrence of ontological terms and familiar-

izing the users with the KB while the faceted browsing systems mostly help users find

specific instances that meets some criteria. In comparison with the traditional tag cloud

systems, while tags in them are folksonomies, tags in our system are ontological terms, or

property values, and thus have precise semantics enabling inference on the tags. Also most

tag cloud systems only provide a top level tag cloud, and our system provides tag clouds

of dynamically defined subsets of instances. TagExplorer is similar to our contextual tag

cloud idea in the sense that faceted browsing and tag cloud browsing are combined. How-

ever, they classifies folksonomies in the preprocessing and group them by facets in the

resulting tag cloud, while our tags are ontological terms and the facets are used as filters

to generate dynamic tag clouds based on the filter.
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Chapter 4

Scaling the Contextual Tag Cloud

System

Since our goal is to display the frequency of all tags given a context A, our main challenge

is to compute fR({t} ∪ A) for ∀t ∈ T efficiently. There are two ways to approach this

problem: (1) ensure efficient calculation of fR(A) for any A; and (2) prune unnecessary

calls of fR({t} ∪ A). To achieve this, we need to correctly structure the repository and

develop an efficient preprocessing step. In this section we will first solve these problems

for the situation where there is only a single entailment regime R. Then we will discuss

how to “infer” relations between tags and instances, and how to determine co-occurrence

between tags under tag inference. At the end we will provide some experimental results

to verify our design choices.
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4.1 Preprocessing

Our preprocessing is shown in Figure 4.1, where the dashed boxes are input or intermediate

data and the solid ones are data results for the online system, and the detailed steps are

as follows.

Raw 

Data

Ontology

sameAs

Axioms

Instance

Triples

Replaced Flipped

Instance Triples

(in n Files )

Sorted R&F

Instance Triples

[Multi-Inference]

Inference Closure

[Multi-Inference]

Instance Index

[No-Inference] Tag 

Co- Occurrence

Figure 4.1: Preprocessing for the tag cloud system

1. Split the Triples. The raw triple files are parsed and split into three triple

files (one triple per line): the ontology file which includes specific properties (e.g.,

rdfs:subClassOf) or classes (e.g., owl:Class), the owl:sameAs (instance equiva-

lence statements) file, and the file of remaining instance triples. It is not a trivial task

in order to exactly find the ontological axioms (and nothing else) because ontology

triples that are part of complex expressions don’t necessarily contain owl: or rdfs:

namespaces. However the simple approach is good enough for our system since we

do not apply complex logic inference. Note in different scenarios, this step can be

simplified or complicated. This step can be skipped if the ontology and sameAs

files are provided separately. However, if any possible sub property of owl:sameAs

under the given entailment might exists, the extraction of sameAs axioms should be

postponed after the closure of the ontological axioms (i.e. the next step) has been
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computed.

2. Inference Closure. The ontology is processed into a closure set of sub-tag axioms

for the given entailment regime (or regimes). In practice, for each entailment regime,

we have a pair of maps for sub tag relations and super tag relations. Then we go

through the ontology and for each tag subsumption statement we update the maps

of the relevant entailment regime as follows. If the current ontological statement is

equivalent to t1 ⊑R t2, we update the sub tag map by adding all the existing sub tags

of t1 to the sub-tag-relation sets of all the existing super tags of t2, and update the

super tag map by adding all the existing super tags of t2 to the super-tag-relation

sets of all the existing sub tags of t1. Also at the end of the process, we trim the

maps of RSub ∪RDR by removing what is already in the maps of RSub or RDR, and

the trimmed maps will only contain the tag subsumption relations that can only be

inferred by applying both RSub and RDR. By removing the redundant information

in the last map, we save 87.7% space. When we want to retrieve the content of

RSub ∪RDR, we can always reconstruct it by union the three maps on the fly.

As the result of this process, the closure is then responsible for two functions: subR(a)

and superR(a) which respectively return the sets of sub/super tags of tag a ∈ A under

inference R. Notably, although the functions can take either a regular or a negation

tag as input, in implementation, we only need to compute the closure for class tags
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and non-inverse properties, since for an inverse property p−,

subR(p−) = {p′ − |p′ ∈ subR(p)} (4.1)

superR(p−) = {p′ − |p′ ∈ superR(p)} (4.2)

Also the results for the negation tags can be computed because t1 ⊑R t2 ⇔ ∼t1 ⊒R

∼t2. Given t ∈ T ,

subR(∼t) = {∼t′|t′ ∈ superR(t)} (4.3)

superR(∼t) = {∼t′|t′ ∈ subR(t)} (4.4)

3. Replace, Flip, and Split the Instance Triples. We use the well-known union-

find algorithm [11] to compute the closure for owl:sameAs statements, and pick

a canonical id for each owl:sameAs cluster. In this process, for each statement

⟨a, owl : sameAs, b⟩, we find the sets containing a and b, and union them together.

Then for the instance triples, we replace each instance with its owl:sameAs canonical

id (if any). Note that at this step we merge triples of all ids in the same set, and

after this integration, there is no way to correct any results after this step if we later

find any false sameAs statement unless we restart from this step. If the object of the

triple is also an instance, we add an additional flipped triple to the intermediate file,

i.e., if the triple is ⟨i, p, j⟩, the flipped one is ⟨j, p−, i⟩. By this means, we can find

all the regular tags (particularly inverse property tags) of an instance i by simply
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looking at the triples with i as a subject. Note by duplicating the object property

statements, the output can have up to twice as the original triple size. In order to

index an instance, we need to first group all of its triples together. To do this, we

first output the triples into n files based on the hashcode of their subjects, so that we

keep the information of an instance in the same file while making each file relatively

small.

4. Sort the n Triple Files. We use merge sort on each “replaced and flipped” file

generated from the last step, so that triples with the same subject instance are

clustered together. Note that by splitting the triples into n files, we gain benefits

from two sides: (1) sorting each file becomes faster (and since we only need to group

triples with the same subject, we do not need to merge the sorted files); (2) we can

sort in parallel (either with multiple machines or with multiple threads). We use

these sorted files together with the given inference closure to build an inverted index

of the instances.

5. Index the Sorted Files. The inverted index is built with tags as indexing terms

and each tag has a sorted posting list of instances with that tag. This means given

a “type” defined by a set of tags we can quickly find all the instances by doing an

intersection over the posting lists. Also, since we use negation as failure, we do not

need to index negation tags; their size can be calculated from its complementary

tag. i.e. fR({∼t} ∪ A) = fR(A) − fR({t} ∪ A). Given a type defined by context

A ∈ A, which can be represented as {t1, t2, . . . , tn,∼s1,∼s2, . . . ,∼sm}, the instances
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defined by this context can be retrieved by a boolean IR query:

t1 AND t2 AND . . . AND tn AND NOT s1 AND NOT s2 AND NOT . . . AND NOT sm

At the time of indexing each instance, we materialize all the tags that are entailed

based on our previously computed entailment closure. Note that for different entail-

ment regimes, we have different set of posting lists, which increases the disk space.

However, we will justify this choice in Section 4.3. Also note that the tags we use

here in the index are in fact integer ids instead of their original URIs, and we will

introduce the details about the tag id mappings later in this section. Meanwhile

we add other fields to facilitate other features in our tag cloud system: (1) labels

of instances, to display human-readable instance names in the instance view; (2)

sameAs sets, to allow users to inspect all the ids in the sameAs set of an instance;

and (3) file pointers to the raw file, to locate the file block where the system is able

to load the triples starting with the given instance as its subject.

6. Compute Co-occurrence Matrix. To help prune unnecessary tags when com-

puting the conditional distribution of tags under any given context T , we precompute

the Co-occurrence Matrix for all the tags. Define MR as a |T | × |T | symmet-

ric boolean matrix, where MR(x, y) denotes whether tags tx and ty co-occur, i.e.

MR(x, y) = (fR({tx, ty}) > 0). We will discuss different approaches for computing

this matrix next, then introduce the pruning benefit from this matrix in Section

4.2, and later discuss how to efficiently compute this matrix for different entailment

regimes in Section 4.3.
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There are three ways to generate the Co-occurrence Matrix MR. We can roughly

estimate the execution time of each method from how much index access (the functions

TagsR, fR, and InstR) is needed. Assume on average a tag has d instances and an instance

has e tags. The cost of InstR({tx, ty}) (or fR({tx, ty})) is estimated as c1d, because the

intersection needs to simultaneously walk through both sorted posting lists. The cost

of TagsR(i) is estimated as c2e. Here, c1, c2 are constants given the dataset and the

environment.

1. Traverse all the instances. For each instance i ∈ I, we get all of its tags TagsR(i),

and then for each pair of tags (tx, ty) ∈ TagsR(i) × TagsR(i), set MR(x, y). This

method has |I| iterations and takes |I|c2e.

2. Traverse pairs of tags. For any pair of tags (ta, tb) ∈ T × T , if fR({ta, tb}) > 0,

set MR(x, y). This method has |T |2/2 iterations and takes c1d|T |2/2.

3. Traverse tag instances. For each tag tx ∈ T , we get all of its instances InstR({tx}),

and then set occurrences for all tags in them. For i ∈ InstR(tx), for any tag ty ∈

TagsR(i), set MR(x, y). This method has d|T | iterations and takes c2ed|T |.

There is one problem with the estimations above: we ignored the cost of setting M .

The first approach can repeatedly set the same cell. However, for a large scale dataset, the

full matrix may not fit in memory, and thus updating random cells becomes more costly

due to the lack of disk locality. In contrast, for the second and the third approach, they

both only need to set each MR(x, y) once. Specifically the third approach calculates cells

48



row by row, and both the second and the third approach can stream out the results since

each cell is set at most once. When choosing between the second and the third approach,

we pick the third one if the ratio r = c1d|T |2/2
c2ed|T | = c1|T |

2c2e
> 1. Note both c1 and c2 can be

easily estimated by experiment, and c2 is usually one to two orders of magnitude larger

than c1. In general, if the size of all the tags is small enough to hold the full matrix

in memory, then use the first approach; otherwise, if we find in the dataset that each

instance usually uses a very small portion of all the tags (e.g. less than 1%), the third

approach is preferred than the second. In a multi-source cross-domain dataset such as the

BTC dataset, instances usually have very few tags from other domains, e.g. a musician

instance will seldom use tags from domains like e-Government or life sciences; thus we use

third approach.

This matrix provides a function for each regular tag tx ∈ T to return all the regular

tags that co-occur with it in at least one instance. i.e.

COR(tx) = {ty|MR(x, y) = true} = {ty|ty ∈ T ∧ fR({tx, ty}) > 0} (4.5)

Note there are different ways to store this matrix. If we treat the relationship of tag

co-occurrence as a graph, we can see all the graph representations are applicable to this

problem. In practice, this matrix is usually very sparse for most interlinked datasets,

and “adjacency lists” [12] are generally preferred because they efficiently represent sparse

graphs. An adjacency list representation of a graph is a collection of unordered lists, one

for each vertex in the graph. Each list describes the set of neighbors of its vertex. Thus
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in our adjacency lists, for each tag, we maintain a list of tags that co-occur with that tag.

To reduce the space cost (and thus the loading cost) in the above steps, we apply two

kinds of mappings to the URIs of tags before we build the index and the co-occurrence

matrix. We first replace the full URIs of the ontological terms with their qualified URIs

(prefix:local name), where the prefix is mapped from the namespace of the URI. The

namespace is first looked up via a namespace lookup service 1, so that the well-known

namespaces will be replaced by their typical prefixes, e.g. http://xmlns.com/foaf/0.1/

to foaf. However, if no record is found, we will use an automatically generated one, such

as ns1, ns2, etc., and record the mappings. Then we map these qualified URIs to integer

IDs, so that we have a minimal cost for storing all tag related information. The integers

are specially designed to facilitate many features of the system:

• Integer Ranges. We split the range of integers into a few sections, so that for

any given integer, we can quickly know whether it is a regular or negation tag, and

whether it is a class, a property, or inverse property. In our implementation, we

use the first bit of a positive integer to indicate whether the tag is class(0) or a

property(1), and use the second bit to indicate whether a property tag is an inverse

property(1). Thus in this implementation, we limit the total number of classes to

Integer.MAX VALUE/2, and the total number of properties to Integer.MAX VALUE/4.

• Mapping Relations. The integers are also assigned in a way so that: from the ID

of a property we can quickly compute the ID of its inverse property or vice versa

1http://prefix.cc/
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(id1 = id2 + INV MASK); from the ID of a regular tag we can quickly get the ID of

its negation tag or vice versa (id1 = −1− id2).

• Sorted Order. To help sorting alphabetically in the system, we ensure that within

the same regular tag type (class, property, or inverse property), the order of IDs is

in accord with the order of the local names of the tags.

Proposition 1. If t1 is a sub tag of t2 under R, any tag that co-occurs with t1 under R

should also co-occur with t2 under R. i.e. COR(t1) ⊆ COR(t2) if t1 ⊑R t2.

Proof. ∀tx ∈ COR(t1), we know ∃i ∈ I, {t1, tx} ∈ TagsR(i). Thus we know t2 is also

assigned to this instance i, because t2 is a super tag of t1 under R-entailment, and thus

{t2, tx} ∈ TagsR(i). By definition of COR, we know tx ∈ COR(t2). So we have proven that

∀tx(t1 ⊑R t2 ∧ tx ∈ COR(t1)→ tx ∈ COR(t2)). i.e. t1 ⊑R t2 → COR(t1) ⊆ COR(t2)

4.2 Online Computation

Given a context A ∈ A and entailment regime R, the online computation will return all

the fR({t} ∪A) for every tag t ∈ T . With our index, we can simply issue an IR query for

each t that counts all the instances with all tags in A and t, which returns the number of

total hits for a boolean AND query (or AND NOT for negation tags). Note that the underlying

system compares the posting lists of all tags in the query, and because A is the common

part among this series of queries, the intersected posting list can be shared among queries.

Thus increasing |A|, i.e., the number of tags in the context, may simplify the queries by
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generating a shorter posting list for A. A quality IR system can answer a count query

within a few milliseconds, but since we have hundreds of thousands of tags, we need to

focus on how to reduce the number of queries.

There are two special cases of the fR results, which we want to know without issuing

fR queries:

1. Always-Occur i.e. fR({t}∪A) = fR(A). If t is a super tag of any tag t′ in A, then

t ⊓ t′ = t′, adding t to T does not change the instance set and thus does not change

fR, i.e.

∀t′ ∈ A,∀t ⊒R t′, fR({t} ∪A) = fR(A) (4.6)

2. Never-Occur i.e. fR({t} ∪ A) = 0. If there is any negation tags in the context A,

there will be no instance in this context that is also assigned its regular tag or any

sub tag of this regular tag, i.e.

∀∼t′ ∈ A,∀t ⊑R t′, fR({t} ∪A) = 0 (4.7)

Ideally we want to skip every tag in both special cases. However, the above rules are

both entailed from axioms, and will only prune a small amount of the tags. However

in practice, there are many tags that never co-occur in the same instance, even though

there are no axioms stating this disjointness (in some cases, this may not be a necessary

condition, but instead a property of the current state of the world). Thus we find more

approaches to resolve this.
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For convenience, we let T = A∩T , i.e. all the regular tags in the context A. Since we

do not have any further optimization for the negation tags in A, in the following discussion

of pruning algorithms, we only deal with the context input T ∈ T , and leave the pruning

algorithms for more general cases as future work. We define ZR(T ) = {z|fR({z}∪T ) = 0},

in other word the set of tags that never occur in combination with T . Let CL be the

candidate list of regular tags and each candidate t ∈ CL will need a query fR({t} ∪ T ) to

be issued. We propose three different pruning approaches to make CL as short as possible.

1. Use the Co-occurrence Matrix (M). Given T ,
∩

t′∈T COR(t
′) has (and not

necessarily only has) all the tags {t|fR({t}∪T ) > 0}. When |T | = 1, it returns only

the co-occurring tags and prunes all the ZR(T ). When |T | > 1, it returns a super

set of the co-occurred tags, because the returned tags are only known to pairwise

co-occur with any tag in T , but are not guaranteed to co-occur with all tags in T in

the same instance.

2. Use the previous tag cloud cache (C). We can show InstR({t}∪T ) ⊆ InstR(T ),

InstR({t} ∪ T ) = {i|TagsR(i) ⊆ {t} ∪ T} ⊆ {i|TagsR(i) ⊆ T} = InstR(T ) (4.8)

As a result, the set of co-occurred tags given context {t} ∪ T is also a subset of

that given T . Thus if we cache the previous tag cloud, which has the same context

T except for the most recently added tag, we can get another super set of the co-

occurred tags for context T . This relies on the tag cloud application scenario: it is
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Figure 4.2: Pruning for Online Computation

very likely that the current request is from a user adding a new tag to the context.

However we believe it can be applied to any scenarios involving a depth-first search

of the context space.

3. Dynamic update (D).When computing fR({t}∪T ) for all the candidate tags from

the above two approaches, if we find fR({tx}∪T ) = 0, we know ∀ty ∈ subR(tx), ty ∈

ZR(T ), and these tags can be ignored in further computation. This approach can

be optimized if we sort the list of tags such that sub tags always follow super tags.

However, our tag cloud system does not use this optimization because it needs to

stream results alphabetically.

The online computation works as shown in Fig. 4.2, where the pruning steps are

marked with red circles. First, the input context T will be simplified (under R-Inference)

to its semantic-equivalent T ′ so that any redundant super tags will be removed and any

equivalent tag will be changed deterministically to a representative tag. The key idea

of this algorithm is the coverage of a tag. Since each tag in the context is a filter, the
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functionality of filtering by a super tag is covered by it sub/equivalent tag, and thus the

redundant super tags are to be removed. This simplification process should ensure the

following properties:

• any original tag in T should be covered by some tag in T ′, i.e.

∀t ∈ T∃t′ ∈ T ′(t′ ⊑R t) (4.9)

Another way of expressing this is: If we union the tags in T that are covered by each

tag in T ′, we should see all tags in T are covered. i.e.

∪
t′∈T ′

(T ∩ superR(t
′)) = T (4.10)

• after simplification, any tag in T ′ should have an equivalent tag in T , i.e.

∀t′ ∈ T ′∃t ∈ T (t ≡R t′) (4.11)

• after simplification, any tag in T ′ should not be covered by another in T ′, i.e.

¬(∃t1, t2 ∈ T ′(t1 ̸= t2 ∧ t1 ⊑R t2)) (4.12)

The first two properties ensure T and T ′ are equivalent, and the third ensures T ′

is most simplified. One implementation of this function is shown in Algorithm 1. The
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algorithm finds the set of tags that are covered by some other tag in the context. If there

are equivalent tags, the algorithm will consider the latter tags as covered by the first

equivalent tag. Also note in this algorithm, the context is modeled as a list2 (not a set)

of tags because the order of tags matters: it reflects the sequence of a user’s action. So

we need to sort the tags in T ′ to ensure the deterministic result.

Algorithm 1 Algorithm for Simplifying Context T

1: function simplifyContext(Tag[] T , Entailment R)
2: Set<Tag> C ← ∅ ◃ Initialize the set of tags that are already covered
3: for int i← 1 to T.length−1 do
4: if T [i] ̸∈ C then
5: Tag s← T [i] ◃ s gets the lowest sub tag of T [i] in T
6: for int j ← i+ 1 to T.length do
7: if T [j] ̸∈ C then
8: if s ⊑R T [j] then
9: C ← C ∪ {T [j]} ◃ Ignore super/equiv tags of s

10: else if s AR T [j] then ◃ Found a lower one
11: C ← I ∪ {s} ◃ The old s is covered
12: s← T [j]
13: end if
14: end if
15: end for
16: end if
17: end for
18: Tag[] T ′ ← ∅ ◃ Initialize the simplified context
19: for Tag k in T\C do ◃ For all the tags that are not covered in T
20: Set<Tag> E ← {t|t ≡R k} ◃ The equivalent tags of k
21: T ′.push(min(E)) ◃ Use the smallest id as the representative
22: end for
23: sort(T ′) ◃ Sort by tag id, to ensure deterministic result
24: return T ′

25: end function

Then after the context simplification, the system checks whether this semantic-equivalent

request (with context T ′) has been kept in cache for direct output. If not, the system will

2We assume that array index starts at 1
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get candidate lists CLM from approach M using T ′ and CLC from approach C using T .

Then we use the intersection CL = CLM ∩CLC as the candidate list for queries and keep

updating it using approach D.

Proposition 2. Using simplified T ′ in approach M will get the same candidate tags as

using T . i.e.

T ′ = simplifyContext(T )→
∩

t′∈T ′

COR(t
′) =

∩
t∈T

COR(t) (4.13)

Proof. By Equation 4.10, we can rewrite
∩

t∈T COR(t) by grouping tags based on what

tag in T ′ covers them. i.e.

∩
t∈T

COR(t) =
∩

t′∈T ′

(
∩

t∈T∩superR(t′)

COR(t)) (4.14)

Then for each t′ ∈ T ′, from Equation 4.11, we know that ∃s ∈ T, t′ ≡R s. Also this

s ∈ T ∩ superR(t
′). By Proposition 1, we know

∀t ∈ T ∩ superR(t
′),COR(s) ⊆ COR(t) (4.15)

Since s is a sub tag of all other t ∈ superR(t
′), then COR(s) must be a subset of all other

COR(t). Thus, the intersection of COR(s) with the COR(t) is simply:

∩
t∈T∩superR(t′)

COR(t) = COR(s) (4.16)
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And since t′ ≡R s,

COR(t
′) = COR(s) =

∩
t∈T∩superR(t′)

COR(t) (4.17)

Thus we know

∩
t∈T

COR(t) =
∩

t′∈T ′

(
∩

t∈T∩superR(t′)

COR(t)) =
∩

t′∈T ′

COR(t
′) (4.18)

By removing super tags, we can avoid unnecessary intersection of lists when computing

the candidates. On the other hand, the cache approach needs the original T in order to get

the previous context; subsequently, this previous context is simplified for cache lookup.

4.3 Supporting Different Entailment Regimes

In our implementation, we have two specific sets of rules: RSub for sub class/property

entailment and RDR for property domain/range entailment. The combination of these

two sets leads to four distinct entailment regimes R = {∅, RSub, RDR, RSub ∪RDR}.

From the raw dataset, we get only Tags∅, the tags of each instance with no inference

applied. In order to implement TagsR, InstR and COR for different R, we can either

materialize them so that they serve as independent repositories; or we can always do the

inference on-the-fly. We first discuss how to represent the three functions under R by

combining the R = ∅ versions (i.e., with no inference) with the tag subsumption functions

superR and subR. After that we will discuss the design choice regarding materialization.
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By adding inference, an instance will be assigned with the super tags of its explicit

tags, and a tag will be assigned to all instances of its sub tags. i.e.

TagsR(i) =
∪

t′∈Tags∅(i)

superR(t
′) (4.19)

InstR(A) = InstR(T, V ) =
∩
t∈T

∪
t′∈subR(t)

Inst∅(t
′)−

∪
v∈V

∪
v′∈subR(v)

Inst∅(∼v
′) (4.20)

where T = A ∩ T are the regular tags in A and V = A ∩ V are the negation tags in A

(thus ∼v′ is the regular tag of the negation tag v′).

From Eq. (4.19), we know that t is a tag of instance i under R if and only if at least

one sub tag of t under R is assigned to i under ∅. i.e.

t ∈ TagsR(i)⇔ ∃t′ ∈ subR(t), t
′ ∈ Tags∅(i) (4.21)

Then from the equation above and the definition of COR, we can also see the relation

between a pair of co-occurring tags under R. If tag s co-occurs with tag t under R, we

can imply that at least one sub tag of s and one sub tag of t under R should co-occur
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under ∅.

s ∈ COR(t)⇔ ∃i ∈ I, s ∈ TagsR(i) ∧ t ∈ TagsR(i)

⇔ ∃i ∈ I, ∃sx ∈ subR(s), ∃ty ∈ subR(t), sx ∈ Tags∅(i) ∧ ty ∈ Tags∅(i)

⇔ ∃sx ∈ subR(s), ∃ty ∈ subR(t), sx ∈ CO∅(ty) (4.22)

For convenience, we define

super∪R(T ) =
∪
t′∈T

superR(t
′) = {t|∃t′ ∈ T, t ∈ superR(t

′)} (4.23)

which includes all the super tags of any tag in the given set T under R. And similarly,

CO∪
R(T ) =

∪
t′∈T

COR(t
′) = {t|∃t′ ∈ T, t ∈ COR(t

′)} (4.24)

which includes all the co-occurring tags of any tag in the given set T under R. Then we

compute COR(t) from Eq. (4.22).

COR(t) = {s|∃sx ∈ subR(s), ∃ty ∈ subR(t), sx ∈ CO∅(ty)}

= {s|∃ty ∈ subR(t), ∃sx ∈ CO∅(ty), s ∈ superR(sx)}

= super∪R({sx|∃ty ∈ subR(t), sx ∈ CO∅(ty)})

= super∪R(CO
∪
∅ (subR(t))) (4.25)
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In our implementation, as shown in Fig. 4.1, we materialize TagsR for all 4 entailment

regimes, thus we do not need to compute Eq. (4.20) for online computation. However we

only precompute CO∅ and use Eq. (4.25) at online computation. We made our design

choices based on two reasons. First, how much slower will it be if not materialized? Both

Eq. (4.20) and (4.25) include union and intersection of sets or posting lists, however the

lists of instances in Eq (4.20) are usually much larger than the list of tags in Eq. (4.25), and

using Eq. (4.20) significantly increases the execution time compared to the materialized

index. Second, how important is the runtime performance? As in our scenario, for each

tag cloud (or conditional distribution) given T , COR is only called once, however InstR is

called for each tag from the candidate set.

Also note Eq. (4.25) can be used for either online computation of COR or precompu-

tation if it is materialized. Building the co-occurrence matrix MR is a time consuming

step (see Fig. 4.4). We should avoid repeating it four times for four inference regimes.

Instead, we only need to build M∅, which is the easiest because each instance has the

minimal number of tags, and the co-occurrence for all the other inference regimes can be

computed based on Eq. (4.25).

4.4 Implementation Details

In this section we discuss some implementation details that are important to the system.

The system is deployed as shown in Figure 4.3. On the user side, the web browser will

always first load a page frame by a JSP page. However, the frame nearly contains no
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specific data that is dependent on the KB except for the total number of instances in

the KB, and the number of instances filtered by the current context (since these two

requests can be completed in milliseconds and the results are used at multiple places in the

page). Then the javascript code will initiate a few different kinds of AJAX (Asynchronous

JavaScript and XML)3 requests to the web server. These AJAX requests will respectively

interact with some back-end JSP. Those JSP will never be directly seen by normal users,

but instead return some JSON (JavaScript Object Notation)4 objects to the frame JSP,

where some javascript code will modify the content to the page, such as rendering the

data into a tag cloud. When processing the AJAX requests, those back-end JSP do not

run any real computation tasks, but instead call functions to compiled Java classes on

the web server. Also the Java classes on the web server side only act as a data client,

who actually communicates with another server, the data server via our customized socket

protocol. The data server is in fact the part that runs all the algorithms that we discussed

in Section 4.2. We separate the data server from the web server based on the fact that our

online computation requires significant computational resources and that the web server

usually supports other services that we do not wish to be adversely affected by the Tag

Cloud Browser. Meanwhile such separation also make things easy for debug and system

maintenance. Now we shall discuss in details how the tag cloud is shown via various

requests.

For the contextual tag cloud page, after the frame is loaded, two AJAX requests will

3AJAX Wikipedia page: http://en.wikipedia.org/wiki/Ajax_(programming)
4Introduction to JSON: http://json.org/
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Figure 4.3: System architecture and major techniques for contextual tag cloud system.

first be issued. One will fetch the context information, which also include the change in the

number of instances if any one tag is removed from the context. The other will start the

computation of the tag cloud for the current page. Then two more repeated requests will

follow the start request. One will fetch whatever data is currently available for the current

page to display, and decide whether to repeat itself by checking from the result whether

the complete flag for the current page is set. Also the next page button is enabled after

this flag is set and a “more” flag is set. The other request following the start request will

check the status for all pages, i.e. it will check whether all the candidates have been used

to issue a fR query, and based on the progress, report information (such as the estimated

time to finish) in the result. Similarly there is a flag indicating whether all pages are

completed. If they are completed, the sort-by-frequency option will be enabled; otherwise

we will repeat this status request after a short interval (which we set as 1-3 seconds).

Meanwhile on the data server side, we simplify the context in the request and use that

as the key to interact with the cache. We implement the cache in two layers. The first layer

is the LRU (Least Recently Used) in-memory cache, i.e. when the cache is full (the number

of stored keys exceeds the limit) we discard the least recently used (requested) items first.
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Then the second layer, i.e. the disk based cache is used when an item is removed from

memory: we extract the list of tag-frequency pairs, which is the most time consuming part

of the results, as one array of tag ids and another array of their corresponding frequencies

and serialize these two integer arrays into a file. When a start request is received, the data

server will first check if its result is in-memory, if not then it will check if it is available

in disk. If neither exists, we will create an in-progress cache item and put it in memory

cache. A thread is then started to process this request and push any tag with non-zero

frequency to the cache. So when there is a request for a specific page of the tag cloud,

we can directly find the in-progress cache item, and compute the beginning index and

the end index in the array (since we have a fixed number of tags per page), and return

any available ⟨tag, frequency⟩ pair in that range. Meanwhile we maintain a queue for the

candidates (CL in Figure 4.2), the queue’s initial size, and the start time of the request,

and by using these records, we are able to estimate the percentage of the progress, time

to finish, etc. in order to answer the status request.

Theoretically we can provide the same paging feature for the search tag cloud. However

currently in our implementation we do not use cache for the search feature, which means

we do not have the streaming or paging feature on the search results. Instead, a keyword

query will only return the result page with up to 500 matched tags, after the page is

complete. We find this limit is quite enough for most queries because we sort the results

by relevance score, and usually the results become very irrelevant after 100 tags. This is

partially due to the relatively straightforward search algorithm we currently use. For a
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keyword search, we only consider the rdfs:label, rdfs:comment and the local names of

the classes and properties. We implement a parser for the local names to deal with the

camel case (e.g. d:SoccerPlayer has capital letters “S” and “P” for writing compound

words “Soccer Player”), which is frequently seen in them. Then we index the stemmed

words from these labels, comments or local names. Each word in the index has a posting

list of tag ids, which are the same as we use in the instance index. Thus for any search

request, we first get a list of tag ids from the keyword match, and then a candidate list

from the Co-Occurrence Matrix approach. We go through the first list and ignore any tag

that is not in the second, until we reach the end of the first list or we reach the page limit

of the search result page.

4.5 System Scalability Analysis

Our system is implemented in Java and we conducted all experiments on a RedHat machine

with a 12-core Intel 2.8 GHz processor and 40 GB memory.

In order to test the performance of our preprocessing approach, we apply it to all five

subsets of the BTC 2012 dataset, as well as the full dataset. The statistics are listed in

Table 4.1.

Fig. 4.4 illustrates how long each step of preprocessing takes for each subset, among

which the sort step is multi-threaded (6 threads in our experiment). The Multi-Inference

step is not included in the figure since it is too short (41s for the full set) compared

with other steps. In general the sorting step and the steps that involve a full scan of the
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Table 4.1: Statistics of Triples in the subsets of BTC 2012 dataset

Set Name Total Ontology Triples SameAs Triples Instance Triples

rest 22 M 54.7 K 734 K ∼22 M

freebase 101 M 0 8975 K 92 M

dbpedia 198 M 1.8 K 22,818 K 175 M

timbl 205 M 1,260.1 K 340 K 203 M

datahub 910 M 466.0 K 4,490 K 905 M

full set 1,437 M 1,782.6 K 37,357 K 1,397 M

dataset, such as Replace/Flip and index, are the most substantial. Each step is related

to certain factors of the dataset provided in Table 4.1. E.g. the time for inference is

related to the number of tag subsumption axioms, which is correlated with the number of

ontology triples; the time for union-find on sameAs is related to the number of SameAs

triples; and most of the other steps are related to the number of instance triples. Despite

the differences in the portions of different kinds of triples, we also plot the time/space for

datasets against their numbers of total triples in Fig. 4.5, which shows the scalability of

our preprocessing approach. The reported disk space includes both the index and the no-

inference co-occurrence matrix (M∅), and is dominated by the index, which usually takes

> 90% of the total space. We can see the time is quite linear with the total number of

triples, because most of the major steps are linear w.r.t. the number of triples. All these

major steps require a full scan of the triples, and might be slightly complicated by the

complexity of the entailment results. Among these steps, the most tricky one is the sort

step, which in theory should have the time complexity of at least O(n log n). However,

note that in our approach, we always split the triples into n small files and do not need

to merge the sort results of them. So we can fix the average file size of each file, i.e. set
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Figure 4.4: Time for steps of preprocessing various datasets

c = N
n as a constant, where N is the total number of input triples and n is the number

of files we want to split. Then if we assume, roughly speaking, each file has the same

size, sorting each file will have a constant time cost and the total time is linear w.r.t. n,

and thus linear w.r.t. N . However, we should also be aware that the assumption can be

false in some cases. Since all triples with the same subject must be assigned to the same

split file, if the total number of triples of some subject is large enough to make its file

significantly larger than the average, then we would not expect to see this linearity trend

continue. For the extreme case,the whole set contains only a single subject, and the split

result will be a single file the same size as the input, and this file must still be sorted using

a n log n algorithm.

The space has the same trends as the time, however is slightly less correlated to the

total number of triples, since many different triples might only contribute to a single tag

in the index. For example, there might be 1000 triples saying a foaf:Person foaf:knows

1000 different people, however these triples only contribute a single property tag to this

person. This is exactly what happens in the timbl subset, and explains why we see timbl

has slightly more triples than dbpedia but needs less time/space.
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Figure 4.5: Preprocessing: Time/Space - Total Triples

We then test the response time of fR({t} ∪ T ) queries, i.e. how long it takes to count

the instances of tag t with context T by querying the index. To ensure a random but

meaningful context T , i.e. InstR(T ) ̸= ∅, we randomly pick an instance i and get a subset

(size of 6) from its tags Tags∅(i) as [ti,1, ti,2, . . . , ti,6]. Thus the six tags in this array

are known to co-occur under all entailment regimes. We generate 100 such arrays using

different i. Additionally, we pick a set S of 10000 random tags. Starting from5 k = 1 . . . 6,

we use the first k tags in the arrays as contexts T , and we measure the average time of

fR({s}∪T ) for all s ∈ S. While S might overlap with some T , it does not impact the query

time since we issued the same fR queries without removing redundant query terms. By

doing this, we can compare the average query time for different contexts T because they

are intersected with the same tags; and we can compare the difference when adding more

tags to contexts because as k increases, each array will provide a more “strict” context

then before. We also change R = ∅, RSub, RDR, RSub ∪ RDR to examine the impact of

different inference. The average time per 10K queries grouped by |T | is shown in Fig. 4.6.

5The initial tag cloud (|T |=0) is precomputed and cached, thus we do not test it here.
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Figure 4.6: Average time for 10K queries as context T grows for each entailment regime.

In average, it takes 0.6∼0.7 milliseconds for a single fR query. The time slightly increases

(sub-linear) when we add more tags to context. It takes longer if R has more inference

rules due to longer posting lists of tags in the index. As we expect, since there are fewer

tags added to each instance from domain/range inference, we find the curves for RDR and

∅ are close, while RSub and RSub ∪RDR are nearly identical.

For the different subsets, we test the response time of fR(T ) with random T . Since

freebase does not have any ontology axioms, we choose R = ∅. For each dataset, we

generate 500K random queries for |T | = 1, . . . , 5 (100K each), and record the average

time for every 1000 queries. In Table 4.2, we report the average time for 1000 random

queries on each dataset, as well as possible impacting factors such as the number of

triples/instances/tags and the average length of posting lists (PList) in the index (i.e. on

average, how many instances have each tag). We can see that the numbers of triples/tags

do not directly impact query time, but the numbers of instances are very correlated. When
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Table 4.2: Average time per 1000 queries over datasets

Dataset Time Triples Instances Tags PList

rest 257ms 22.3M 4.1M 3K 6581

freebase 270ms 198.1M 23.5M 308K 3661

timbl 326ms 204.8M 22.7M 12K 11616

dbpedia 341ms 101.2M 31.1M 29K 445

datahub 972ms 910.1M 122.0M 33K 22644

full 1256ms 1436.5M 198.6M 378K 2986

the numbers of instances are similar (timbl and freebase), huge difference in the average

lengths of PLists can also impact the time.

We also test how well our system does for pruning candidate tags under the most

complex inference R = RSub ∪ RDR. Using the approach above, we generate 100 arrays

of length 6 from TagsR(i), by changing the length of sub arrays we get 600 random T .

As we discussed in the previous section, there are three approaches: by co-occurrence

matrix (M), by previous cache (C), or by dynamic update (D). By each combination

of approaches, we can count how many fR queries are finally issued, and see how many

queries are pruned. Note there is always some pruning due to super tags of tags in contexts.

When using approach C, we always assume the previous cache is available.

The average number of pruned tags is shown in Fig. 4.7. There are |T | =389K tags

in total however most tags only co-occur with a few other tags. Pruning usually saves

us unnecessary queries. We can see when |T | increases any approach will generally prune

more tags because more tags in T means a more constrained context. Among the three

approaches, M in average prunes more tags, and enabling the other two approaches in

conjunction with M only provides less than 1% more pruning (thus we do not show the
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Figure 4.7: Average Number of Pruned Tags

overlapping curves for combinations MC, MD and MCD). This justifies the preprocessing

for the co-occurrence matrix. C also has good pruning except that when |T | = 1, the

cache of |T | = 0 is a list of every tag and C will not help. However, in the tag cloud

scenarios, |T | = 1 is important as it will decide the response after the user’s first click.

Also in practice, the history cache might not always be available (e.g. a user adds t1, t2, t3

and then removes t2). So its availability is a concern although it requires no preprocessing.

The time cost for COR is not a key concern to our system. The average time for the above

test set is 1.1s with all approaches enabled. However running this pruning saves ∼300K

fR queries or in average 0.6ms×300K = 180s for each tag cloud. For the above 600 T , we

have an average time of 8.8s per tag cloud, with max of 48.8s. Thanks to the paging and

streaming features in our interface design, the first 200 tags in the tag cloud page almost

always show within 2 seconds, which we consider an acceptable responsiveness.

Lastly we test with end-to-end web requests. We create a random browser model, with

0.6 probability to add a tag to the context (add request), 0.2 probability to remove a tag

from the context (remove request), and 0.2 probability to start over with empty context
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(start-over request). In order to simulate more realistic requests, when the context size

is small, we bias in favor of adding tags. Also when trying to add a tag, we give the

more frequent tags in the tag cloud a higher chance to be selected. Using this model,

we randomly generate a series of 1000 requests on RSub, including 699 add requests, 118

remove requests, and 183 start-over requests (note when the context has only one tag, we

count the remove request as start-over), with an average context size of 2.53. We record

the time spent on displaying all the tags (up to 200 tags per page) in Page 1, and that

on finishing computation for all the pages (that is also when the “Sort by Frequency”

feature is enabled). In Fig. 4.8(a) and Fig. 4.8(b) we show the percentage of requests

that can be finished within x seconds. For displaying Page 1, 90% of all the requests

can be finished within 1s, and 97.7% within 2s. Among these requests, start-over is the

fastest (not shown) since it just returns the cached results. On average, remove requests

are faster than add requests since they are more likely to have a shorter context or be

cached due to previous add requests. However as shown in Fig. 4.8(b), the time spent on

loading all the pages can be as long as a minute and vary more uniformly. This signifies

the importance of streaming results and displaying them in pages. Also, this justifies the

decision to defer the frequency sort option.

4.6 Comparison to Other RDF Repositories

We use the inverted index as our RDF triples, although there are many existing alterna-

tive repositories for general-purpose RDF data management and query answering. From
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Figure 4.8: Browser-Side Response Time for Random Requests: (a) Time for displaying Page 1;
(b) Time for loading all pages.

the aspect of formal queries to RDF dataset, fR(A) is actually a special kind of query

template. Thus most available RDF repositories should be able to answer this kind of

query. However, the choice depends on the scalability on two aspects: most importantly

the online computation time for fR, and meanwhile an affordable preprocessing time. In

this section, we will compare our system to other systems with regard to this aspect.

Our first attempt is to build a system involved an relational database, with proper

optimizations applied. Firstly, we did not consider holding the KB with a triple table,
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otherwise our task would require expensive join operations over multiple selections on the

giant table. On the other hand, the decomposed storage mode seems more promising:

the triples are inserted into n two-column tables (each of which is much smaller than a

single triple table) where n is the number of unique properties (including rdf:type) in

the data. In each of these tables, the first column contains the subjects that define that

property and the second column contains the object values for those subjects. However

the join operation on selections on tables is inevitable for our task, thus we made several

simplifications and optimizations, in order to minimize the cost of the DB approach. For

each t ∈ T we create a table with a single indexed column, id, an integer that represents

each unique instance of tag t. Thus fR(T ) can be computed by joining the tables of classes

and properties. For faster table joins, we use a dictionary that maps all strings (either full

URI or its qualified name) to integer ids, and use the ids in the property tables. However

this might require maintenance of the dictionary and frequent look-ups slow down the

process. Given that the task is only collecting summary information, we do not have to

record the real URIs, but only need to know whether an instance has appeared before

when processing a new triple. So if we reuse the first three steps in the IR approach, we

can just assign an auto increment id to each new instance (if it is different from the last

one) while reading through the sorted file line by line. Then this auto id can be inserted

into tables corresponding to the tags in its cluster of triples. Similarly, the superclass and

super property inference is materialized at this step. In practice, if the insertion is done

line by line there is much waste in the overhead cost of DB operations. Thus instead, we
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first generate the script file of insertions, and run it in a batch.

We choose DBPedia 3.6 as our dataset. Specifically, we load two raw data files, i.e.

Ontology Infobox Types and Ontology Infobox Properties, together with the ontology.

Comparing to the BTC 2012, DBPedia is not a multi-source interlinked dataset, but still

a good subset of the Linked Open Data: (1) it plays a central role in the Linked Data world;

and (2) it has two important features of multi-source linked datasets: an ontology with

broad scope and a large scale of data. There are in total 2,446,683 instances in 27,221,328

triples (including the flipped ones), which we turned into 1952 tags. We simplify the

preprocessing steps in Section 4.1, and only keep the necessary steps (2-5), with the only

entailment regime RSub.

Timelines for DB and IR approaches
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Figure 4.9: Timeline for loading data with DB and IR approaches

We use MySQL 5.0.21 and Lucene 3.3.0 as the underlying DB and search engine. In

Fig. 4.9 we illustrate the process of both approaches for loading the DBPedia dataset and

compare the timeline between them. Using the IR approach, most of the time is the cost of

parsing and writing the file. However, comparing between the DB and the IR approaches,

we find that the step for running the SQL script itself is already more than the total time

of the IR approach.
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To compare the time cost of fR by both approaches, we conduct another experiment:

run fR({tx, ty}) for a comprehensive set of combinations pairwise tx, ty ∈ T . There are

1952 tags, and thus we call fR for 1,904,176 (= 1952×1951
2 ) times. It turns out that it takes

more than 2 hours if we issue so many queries to DB, but only less than 8 minutes if we

search the index. This shows the great advantage of the IR approach compared to the DB

approach. In conclusion, we find the DB approach is not as efficient as using an inverted

index for this specific application purpose, both in terms of load time (8X slower) and

online query time (18X slower).

We also compare the response time of this specific kind of queries with RDF-3X, a

state-of-the-art SPARQL engine that “outperforms its previously best systems by a large

margin” [34]. It takes 9 hours and 11 minutes to load the full BTC dataset into RDF-3X.

Note that this loading does not include any kind of inference, sameAs closure/replacement,

nor co-occurrence computation as we do in our preprocessing. Similar to the previous

experiment, for context size |T | = 1, . . . , 5, we randomly pick 50 (10 of each) contexts,

and this time we measure how long it takes for both systems to compute the full contextual

tag cloud without pruning. i.e. for a given T , we compute f∅({t} ∪ T ) for ∀t ∈ T . We

use R = ∅ because RDF-3X does not explicitly do any inference. The comparison results

are shown in Table 4.3. In addition to the average execution time of both systems, we

also list the Average/Maximum/Minimum Differences, which shows how much faster our

system is compared to RDF-3X, with respect to an average query, its best query and its

worst query. Note, the times in this table are longer than those in Fig. 4.6, because we are
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Table 4.3: Comparison on Time Cost for Computing Full Tag Cloud (No Pruning)

|T | Avg. Time Ours Avg. Time RDF-3X Avg. Diff. Max Diff. Min Diff.

1 65.8 s 887.6 s 13.5 X 93.2 X 1.71 X

2 84.9 s 516.7 s 6.09 X 15.6 X 2.87 X

3 90.7 s 721.2 s 7.95 X 20.6 X 4.56 X

4 92.8 s 1030.8 s 11.1 X 30.8 X 6.24 X

5 110.3 s 1359.7 s 12.3 X 33.4 X 4.44 X

All 88.9 s 903.2 s 10.2 X 93.2 X 1.71 X

issuing ∼380K queries as opposed to 10K. It is clear that our system always outperforms

RDF-3X. Averaging across all queries in our test set, our system is 10 times faster than

RDF-3X. The differences are more pronounced when |T | increases, although both systems

have a sub-linear increase in query execution time as |T | increases. There are two outliers

of the Max/Min trends. When |T | = 1, the Max Diff. occurs when f∅(T ) = 49, 584, 018,

which is the largest set of instances specified by the context in our test set. When |T | = 5,

the Min Diff. occurs when f∅(T ) = 143, which is the smallest set of instances specified by

the context in our test set. It is possible that the smaller sizes of instances specified by

the context lead to more efficient joins in RDF-3X, allowing it to approach our system’s

performance.

The key point to recognize here is that one-size-fits-all triple stores are not always the

best solution for scalable applications. By choosing a carefully constrained user interaction

method, we are able to design a specialized infrastructure that can meet our performance

requirements. That said, we posit that the systems capable of performing voluminous tag

intersections can be used not just for supporting user interfaces, but for data mining and

anomaly detection as well.
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Chapter 5

Preliminary User Study on

Contextual Tag Cloud System

We proposed the contextual tag cloud system as an easy and straightforward way for

users to explore large scale linked data. The system, as well as the idea it demonstrates,

has been well-received during several Semantic Web conferences since 2011. Unlike most

of the other available tools for Semantic Web datasets, this system does not require a

lot of the background knowledge regarding the Semantic Web such as ontological axioms

or SPARQL syntax, yet conveys significant useful information about a large, complex

dataset while supporting real-time exploration by users. We hypothesize that this will be

a practical tool for non-expert users to access knowledge bases with thousands of terms

and millions of instances, such as Linked Open Data. In this chapter we want to focus on

the particular questions related to usability: How well will non-expert users accept this
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tool? Will the system help them explore a large scale dataset and find useful information

from it? We start with the study design and continue with analysis on the results from

the study.

5.1 Study Design

We want to understand whether average users could easily explore a large scale Semantic

Web dataset by using our proposed system. However there is not a straightforward way to

evaluate this. We address two main factors which make it difficult to design a reasonable

user study.

The first reason is that we have not seen any other system like the Contextual Tag

Cloud system (referred to as TC in this chapter) that is available (directly accessible

or downloadable for our deployment) for users to explore a large scale Semantic Web

dataset. When a dataset is small, it is easy to customize and design a system for users to

explore it; and those specific systems are not considered for comparison. Also we do not

consider any system that requires SPARQL as the input; nor any system that simply does

information retrieval as a search engine, which would not help users with understanding

the structural information. Due to the lack of a comparison system, we implement another

interface, namely the Hierarchical Faceted Term List (referred to as HL in this chapter),

which supports faceted browsing of Linked Data, but does not include any features of

tag clouds. Both systems hold the same dataset, i.e. the BTC 2012 dataset. We shall

introduce the HL system later in this section.
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The second problem is how to define the tasks for the users when they use the system

during the study. Usually when a user study is designed, we want to tell the users what is

the task, i.e., explain the purpose of the task for the investigation. We have a hypothesis we

want to test, the task must be measured in a way that can be used to test the hypothesis.

The task, is also set as what typically the real world users want to do with the system.

However, given that the system is still a prototype with a lot of room for extension, we

find it really hard to specify what exactly the typical purpose should be when it is used

in the real world. If we want to evaluate the system’s use as an easy exploring tool, it

is unclear how to specify an appropriate task whose result can be objectively quantified.

Everyone can learn different things after exploring the dataset, but how shall we measure

how well and how much the user learns from exploring the dataset with a specific tool?

We shall discuss how we choose the tasks later in this section.

5.1.1 Comparison System: Hierarchical Faceted Term List

Since we did not find any similar systems that are available online for users to explore a

large scale Semantic Web dataset, we decided to implement an unbiased baseline system

for comparison with our proposed TC system. We think there are two major advantages

of the TC system: it is responsive and it requires very little prior knowledge. To make sure

the other system has similar performance, we decide to mostly change the user interface

part, and reuse most of the infrastructure functions we already have.

The TC system, as we have introduced before, can be considered as a combination of

the tag cloud browsing and the faceted browsing interfaces. Either kind of interface, we
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believe, provides some good aspects for exploring large scale datasets. Thus we want to

see, through this study, what if we did not apply the combination, i.e. what if we only

use one aspect or the other? We quickly found that the system becomes very trivial if

it only supports tag clouds: The system will only need the precomputation for counting

instances of each class, and then present a static page of the statistics on those counts.

There will be very few interactive use cases, and thus users will not be able to get as much

information as from the TC system.

Thus we decide to implement a faceted browsing system. We design and implement

the faceted browsing system similar to the online shopping sites, which faceted browsing

systems are best known for. A screenshot is illustrated in Figure 5.1. The tags are still the

same as we defined for the TC system, however, instead of the various sized tag cloud, each

tag is alphabetically listed on the left-hand sidebar, with a square bracket and a number

after it indicating the relative size of this tag to the selected facets (i.e. the context in

TC). We use the same function fR(T ∪{t}) (defined in Chapter 3) to compute the relative

size of tag t with context T and apply the same pruning algorithms to avoid unnecessary

queries when generating the tag list. Like TC, the tags are also displayed in two separate

views, classes and properties. The tag search feature provides a list of matched tags in

the same order as the TC system. However the search result has a different view: there

will be a pop-up window showing the list of tags using a consistent font size, but the user

will still be able to see the relative count of each tag from the following number in square

brackets. In the main area of the page, we list all the instances that match the current
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Figure 5.1: Class Hierarcical Faceted Term List with contexts dbpediaowl:Software.

context, and also allow users to expand the details of each listed instance which shows the

raw triples about it.

We also implement an extra feature in addition to a typical faceted browsing system:

the type hierarchy information. Since a Semantic Web dataset usually contains a taxon-

omy, we think it useful to represent the hierarchy of tags in order to clarify the semantics

for users and help them locate information of interest. When a tag t1 is subsumed by

another tag t2, t1 will only be found in the sub folder of t2. As illustrated in Figure

5.1, umbelrc:ComputerGameProgram is subsumed by umbelrc:MediaProduct, and both

are subsumed by umbel:Products, and thus they are shown as a tree of depth 3. Also

this hierarchical display can hide unnecessary tags from the page, which reduces potential

distractions to users. Currently we use a naive way to decide whether a tag needs to be
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shown. Given a context T , we will show each tag that co-occurs with the context and for

which any of the following is true:

• The tag t is a top-level tag. A top-level tag is a tag that is not a proper sub tag of

any other tag. i.e. ̸ ∃t′ ∈ T , t @R t′.

• The tag t is a super tag of a tag in T . i.e. ∃t′ ∈ T, t ⊒R t′. Let S denote the set of

tags that qualify this criteria. We need to define the criteria with S.

• The tag t is a direct sub tag of a tag in S, i.e. ∃t1 ∈ S{t @R t1∧ ̸ ∃t2(t2 @R t1∧ t @R

t2)}

When a tag is shown, we precede it with a “+” if there is no proper sub tag shown

under it; otherwise a “-” indicates that proper sub tags are already displayed. A user can

always click the “-” to fold the sub tree of a tag. However, when the user clicks on a “+”,

it will expand and show any direct sub tag that co-occurs with the context, but if there

is none, a “.” will replace the “+”.

5.1.2 Tasks in the Study

We want to specify the tasks to the participants so that they would use the system to

answer questions similar to those that typical users might have. We reviewed the four

proposed use cases in Section 3.2, including choosing the right terms for SPARQL, finding

interesting facts, and detecting potential errors in instance co-reference or ontological

alignment; and from them we tried to see which use cases can be cast as a proper task for

the study.
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The first use case is to use the system to choose the right terms for SPARQL. We

propose this use case as the most promising usage of the TC system. However, during

the study or in the real world, we shall not expect that the participants or average users

already understand the concepts of SPARQL before they start to use the system. A

practical way is to give a tutorial and tell the participants that we usually want to choose

the terms that are used in the most instances when no other clue is available for us to

decide which candidate term is better for queries. We illustrate the set of instances with

Venn diagram and use a made up example about the “movie” classes and the “directedBy”

properties. Then the task is stated as

Task 1. Given a pair of keywords for the class and the property as the query

purpose, can you find a matched class and a matched property from some

source (specified by their namespaces), so that using this pair of terms (the

best combination) would retrieve most of the instances in the dataset?

We also need to decide the pairs of keywords. There are a few considerations when

picking the keywords. Firstly the topic should not require any specific background knowl-

edge, i.e. it should not be in life science domains, nor about academic publications, given

that the participants could be a freshman without such knowledge. Also because we will

have multiple pairs, we want the topic of each pair to be different from those of all other

pairs. The most important reason is that we do not want a participant to acquire any

information in the task of one pair and have this information bias the subsequent task of

another pair. Also, isolating topics makes it easier to analyze the user logs and see which
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topic each request is related to. We list the final pairs and the best combinations we

have for the study as follows. Note that in this experiment we only consider the syntactic

matches, so that the tasks are more straightforward to the participants and the less open

questions make it easier to analyze the results. However in the future we should also

consider involving synonyms as answers.

• Task 1.1 Keyword for Class: “Company”, for Property: “location”

Best Combination: {dbpediaowl:Company, dbprop:location} (19208 instances)

• Task 1.2 Keyword for Class: “Scientist”, for Property: “award”

Best Combination: {dbpediaowl:Scientist, dbpediaowl:award} (3072 instances)

• Task 1.3 Keyword for Class: “Town”, for Property: “population”

Best Combination: {dbpediaowl:Town, dbpediaowl:populationTotal} (23104 in-

stances)

• Task 1.4 Keyword for Class: “Actor”, for Property: “starring”

Best Combination: {yago:Actor109765278, dbpediaowl:starring-} (15225 in-

stances)

After considering the second use case of “learning interesting facts”, we decided that it

is not specific enough to investigate with a user study. Although we believe the TC system

provides users an easy but flexible way to explore the dataset and learn something, it is

hard to quantify whether their findings are interesting and valuable, in fact, interesting and

valuable are subjective criteria themselves. So instead, we want to provide participants
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the opportunity of interesting findings in other tasks.

The other two use cases are “detecting errors”, one involves co-reference errors and the

other ontological errors. We believe that non-expert users will find it difficult to analyze

errors in order to determine what the reason of the error is. However it might not be

hard for the users to find something that sounds improbable as long as they are presented

with a interface that they clearly understand what the data indicates. We give a made

up example of overlapping between instances of movies and book, and suggest that the

reason is because some instances of movies are considered the same as their original novel

books. This task is stated as

Task 2. Given a class as the context, browse all the overlapping class tags in

the system, can you find something that is incompatible, i.e. it is impossible

that something is both an instance of the context class and an instance of the

tag?

Again we follow the criteria we use for Task 1 to pick the context, and we also want

the total number of overlapping class tags to be shown in 10 - 15 pages. We finally decide

two contexts: Task 2.1 lgv:Stadium; Task 2.2 dbpediaowl:College. We shall discuss

more with these two sub tasks in Section 5.3.

In order to compare the TC and HL systems, we have each participant to equally use

both systems, which also means that each system will be equally used across participants.

Also we want each question to be equally answered using either system, so that we can

compare and see which system is more effective for completing certain tasks. We fixed the
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order of the questions shown to the participants but randomized the order of systems to

be used. To ensure the order does not change after refreshing the page, we used a pseudo

random order determined by each participant’s login user name.

5.1.3 Procedures of the User Study

Before the user study, both Professor Jeff Heflin and I completed the National Institutes

of Health (NIH) Web-based training course “Protecting Human Research Participants”

certified by the Office of Extramural Research in NIH. We also submitted materials for

this research study to IRBNet, and the IRB approved this project (IRBNet ID: 594046-1,

Local Board Reference #: 14/176 T) in the EXEMPT category so that the project is

exempt from continuing IRB review according to federal regulations.

The study was done in groups, with two participants in each. They were briefly

informed about the purpose, the content and the estimated time of the study before they

came to the study. At the beginning of the study, they were presented with a consent

form (see Appendix A), which clearly states the steps of the study, the potential risks of

the study, and also their rights and privacy in the study. The formal study began after

participants signed the forms.

The first part was a general tutorial about the related concepts in this experiment,

which took 15 - 20 minutes. There were two categories of background contents to be

covered in the tutorial: the user interface and the basics of Semantic Web. Even for most

of the non-expert computer users, they probably have already used systems with either of

the two interfaces, tag cloud browsing and faceted browsing; however they may not know
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the formal names for these concepts. The tutorial would remind them of the semantics

underlying the representation of the interfaces and the purpose of such design, and help

reduce the learning curve of using the two systems. Given that participants may have no

background knowledge about Semantic Web or structured knowledge bases, we wanted

them to understand the basic concepts, the purpose and the real world scenarios of the

Semantic Web, which motivates this study. Then we did a few live demos using both

the TC and HL systems. The main focus points of the demo were the basic concepts of

the interfaces, the actions and results of modifying the facets (or contexts), the keyword

search feature, and the means to inspect specified instances. Although there are a lot

of other features, we did not cover those that are irrelevant to this study. Then we also

showed the participants the web page where they would answer the questions of the tasks

and survey. Finally we demonstrated solving an example question of each task (not from

the questions they needed to answer).

After the tutorial, each participant was assigned pseudo randomly to a system for each

question in the two groups of tasks. After they finished all the tasks, they were asked a few

survey questions (see Appendix B), including 11 Likert scale [29] (single select) questions

and 3 short free-form questions. The last 3 text questions are just places for participants

to comment on both systems and the study. Each Likert question is a statement with

five options: Strongly Agree, Agree, Neutral, Disagree, and Strongly Disagree. The first

3 of the 11 Likert questions are about the participant’s experience in using computers

and using similar interfaces, and how well they understand the tutorial. The other 8
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are actually 4 pairs of questions about the user’s opinion on each system: (1) how easy

was it to become familiar with the system; (2) how easy was it to finish Task 1 with the

system; (3) how easy was it to finish Task 2 with the system; and (4) whether they think

the system is a good tool for exploring the dataset. By using Likert scale questions and

avoiding stating any direct comparison statements between the two systems, we believe

we minimized the bias from the wording or implied attitude from the questions.

Using this procedure, we asked two participants for a trial of the study, and then

formally got 14 other participants to complete this study. All the participants are students

from Lehigh University: 2 of the 14 are undergraduate students, 4 of the 14 are women,

and 6 of the 14 are computer science majors.

5.2 Analysis on Results of Task 1

We compare how well participants completed the four subtasks of Task 1 when using both

systems. The answers are considered invalid if any term in the selected combination does

not match to the original meaning and purpose of the question. For example, in Task 1.1,

where we wanted the participants to find a term for “company”, some participants choose

properties like dbprop:companyType or dbprop:companyLogo-. These terms, although

partially matches for the keywords, do not have the same semantics as the query purpose

(also they would not retrieve as many instances). Thus we count these answers as invalid

combinations, no matter how many instances they can retrieve.

We want to quantify how good each valid participant answer is. For each question,
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there is a best combination of terms which will retrieve the most number of instances that

matches the purpose of the query. Also for each valid participant answer, we record how

many instances it will retrieve. We define the coverage as the ratio between the counts

of instances retrieved by a valid answer and the best combination 1. We compute the

average coverage ratio of the valid answers by questions and systems, and report result

in Table 5.1. For each subtask and each system, the number of attempts in the first row

is the number of participants who answer that question with that system, followed by

the number of valid participant answers in the second row, and the ratio between the

second row and the first row as the third row. In the last row we report the average of

the coverage ratios which we compute only for the valid answers. Note the final column

provides adjusted results for Task 1.4, which is an ideal interpretation of the participants’

answers, as will be explained later.

Table 5.1: How well do participants finish Task 1 with both systems?

Task 1.1 Task 1.2 Task 1.3 Task 1.4 Task 1.4*

HL TC HL TC HL TC HL TC HL TC

# of Attempts 8 6 7 7 6 8 7 7 7 7

# of Valid Answers 5 4 7 7 3 4 6 6 6 6

% of Valid Answers 0.63 0.67 1 1 0.5 0.5 0.86 0.86 0.86 0.86

Avg. Valid Coverage 0.63 0.58 0.89 1 0.66 1 0.49 0.47 0.99 0.93

Generally speaking, we find that there is no obvious difference in whether a participant

will find a valid answer by using both systems. We think that is because whether a

1We assume that all such instances are valid, even though it is likely that some terms
have erroneous instances. If we assume that such errors are distributed uniformly, this
metric still records the best combination.
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participant could provide a valid answer is mostly related to how well they understand

the general task purpose (or the way of querying structured datasets). Also from the result

we can see the TC system sometimes has significantly better average coverage of the valid

answers. In Task 1.2 and Task 1.3, TC gets full coverage, which means participants

can always find the best combinations by using TC in these two questions, as long as

they correctly interpret the purpose of the questions. In Tasks 1.1 and 1.4, TC users

have slightly lower coverage than HL users. We investigate the two answers of Task 1.1

via the TC system that do not get full coverage, and find that both answers are the

same: user chose yago:Company108058098 instead of dbpediaowl:Company as the term

for “company”. The former company class has 5656 instances in the dataset while the

latter one has 33747. The difference in the counts of instances is obvious; however we

find that in the TC interface, the font sizes for these two tags are 28.3 px and 31.6 px

respectively due to the log function mapping from instance counts to font sizes. When

these two tags are not placed side by side, the difference in font sizes is really hard to

discriminate by eye, especially when the former has more characters which makes it seem

to take more space. It might be that when the participants use the TC system for the first

time, they assume any difference in the instance counts should be easily reflected by font

sizes, or they do not know that they can get the exact count numbers when they hover

the mouse on the tags. However, in comparison, participants using HL sometimes select

tags with significantly fewer matches, e.g. one participant chose ns6998:Company ( which

has only 775 instances) in Task 1.1 using the HL system.
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Task 1.4 is a relatively tricky question. The best combination {yago:Actor109765278,

dbpediaowl:starring-} has 15225 instances. Since we did not cover the concept of in-

verse properties in the tutorial, we believe most of the participants do not know the

difference in semantics between dbpediaowl:starring- and dbpediaowl:starring. We

saw quite a few of answers without the inverse notation, and we are not sure whether

they found the right one but omitted the “-” when filling in the form. In the dataset,

both dbpediaowl:starring- and dbpediaowl:starring have some instances of actors

as its subjects, although the number of the former is much greater than that of the latter

(15225 vs. 6 instances). That means there are data supporting either direction of the

usage, and we consider both are valid answers for the keyword “starring”. Thus we report

two columns for Task 1.4, where the original one, has a much lower coverage ratio than the

adjusted one. That is because in the adjusted results, we assume that participants who an-

swered dbpediaowl:starring actually meant dbpediaowl:starring-. There is another

tricky point of Task 1.4 because the “greedy algorithm” will fail. When a user searches

for “actor”, the largest class freebase:film.actor has 26067 instances, which is larger

than yago:Actor109765278 (24760 instances). However, if the user chooses this “local

optimal” class, the combination of {freebase:film.actor, dbpediaowl:starring-} will

only have 12175 instances. In fact, the only two answers by TC system that do not get

full coverage (after the inverse property adjustment) are exactly {freebase:film.actor,

dbpediaowl:starring-} resulted from the local optimal actor class.

We also compare how long it took the participants to answer each question with both
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Figure 5.2: Estimating time spent on each question of Task 1.

systems. We used web request logs to estimate the time spent on each task question.

When the request contained some keywords, or tags related to the keywords in any of the

tasks, we are very sure that it is related to a specific task, and thus we can certainly mark

them. However for other requests, we were not sure whether it is relevant to a specific

task, especially when this request is between two clusters of requests for two adjacent

tasks. Thus we simply apportion half of the ambiguous time interval to each of the two

tasks. As illustrated in Figure 5.2, we mark the first and last clearly relevant request

of each task question and estimate that each tasks ends exactly halfway between its last

clearly relevant request and the first clearly relevant request of the next task. Similarly,

we assume that the next task begins at this point.

We plot the box-and-whisker diagram for time spent on each question by each system

in Figure 5.3. The lower red boxes indicate the range between the first quartile and

the median, the upper blue boxes indicate the range between the median and the third

quartile, and the lower bar and upper bar indicates the min and max time. We can see

that participants usually spent less time to complete a task using TC in Task 1 except

for Task 1.2. HL is slightly better than TC in Task 1.2, and we find the times by the two
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systems are very close in this subtask. We also found that one of the time records, by a

participant who uses TC, may be estimated with a higher error, because the ambiguous

time interval (transition time) between Task 1.2 and 1.3 by that participant is the highest

among all all participants and tasks. The average length of the ambiguous time intervals

is 32.7 s, while the highest is 109 s.

We also checked the points that seem to be outliers, especially focused on the following

three points: 580.5 s in Task 1.1 with HL, 319.5 s in Task 1.3 with TC, and 252.5 s in

Task 1.4 with TC. It turns out that there is nothing unexpected. All the request logs

show that the participants were doing something related to their tasks. Also, we note that

these outliers are not due to our approach to estimating task time: If we do not include

the ambiguous time interval in the estimation, i.e. we only look at the time between the

first and the last relevant requests, the times are 574 s, 309 s, and 241 s respectively.

We believe that is just because of the browsing habits of the participants, and in fact

the longest times in Task 1.3 and Task 1.4 with TC come from the same participant.

Additionally, the participant who spent the most time in Task 1.1 with HL, also uses the

second longest time in Task 1.4 with HL. In order to investigate the times and also take

the differences between participants into account, we plot the total time spent on each

system by each participant in Figure 5.4. It shows us that 9 out of 14 (64.3%) participants

spent less time in total when they use TC. But also it indicates that some users might

find HL a more effective way for them to complete Task 1. Note that we have mapped the

original usernames to user ids, which does not reflect the sequence of participating this
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study.

Another trend from Figure 5.3 is that participants spend less time from Task 1.1
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Figure 5.5: Statistics of time reduced when a participant uses a system for the second time.

to Task 1.4. We hypothesize that this improvement could be attributed to participants

getting familiar with both the tasks and the tools. Based on this observation, we compute

the difference of time that a participant spent the first time they used a system and the

second time they used the same system. We find that 10 out of 14 participants improve

their completion time the second time they use HL, and 10 out of 14 for TC as well. So

usually there is an improvement, and the time gets reduced. We plot another box-and-

whisker diagram in Figure 5.5, which summarizes these differences. Although we find HL

has a larger value in the max, which is due to the “suspicious outlier” we mentioned before,

TC is better at the min value, the first quartile, the median, and the third quartile. That

suggests people are likely to get more improvement when they use TC for the second time.

We used a one-tailed t-test to verify whether our hypotheses are statistically significant:

(1) The total time spent on TC is less than that on HL; and (2) The improvement on TC

is larger than that on HL. However, the p-value for them are 0.175 and 0.306 respectively.

This means under the current size of samples, we are not able to prove our hypotheses.

For future work, we need more participants in order to see if those are true.
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5.3 Analysis on Results of Task 2

There are two contexts for the Task 2, {lgv:Stadium} and {dbpediaowl:College}. Be-

fore the study, we recognized that identifying errors is a much more difficult task for

non-expert users, and it is well known that people might sometimes disagree on the On-

tology models. Thus we told the participants when they started Task 2 that the answers

would be very subjective, and they did not need to provide a perfect and complete list of

errors. They only need to record any classes that they think are weird and suspicious.

We observed that most participants felt unconfident about some tags during this task,

and they tended to skip a few following tags after they saw some tag that made them

hesitant or frustrated. We also noticed that the native English speakers (5 participants

including 2 in the trial) were obviously quicker at reading the tags and thus usually quicker

at completing this task.

We examined all the answers, and checked if a participant had found any true errors.

Again, the errors can be very subjective, some can be very controversial and we only con-

sider the ones that are definitely incorrect. For example, in displays for the stadium class,

there are classes of teams, which are mistakenly considered the same as their stadiums. In

the display for the college class, we find classes such as websites, companies, and person.

After examining all the answers, we find 7 of 14 (50%) participants found some true errors

in Task 2.1, and 14 of 14 (100%) found some true errors in Task 2.2. We think one reason

to explain why Task 2.2 is answered better is that there are more errors in the college

class than in the stadium class, and another reason is in Task 2.1 there are many false
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errors (the ones that seem to be an error but in fact are not) that distract participants’

effort. We will analyze the false errors later in this section.

We also examined how well the participants completed Task 2.1 with both systems2.

Ten participants used TC and four used HL for Task 2.1. We find 4 of 10 (40%) succeeded

in finding some true errors using TC, and 3 of 4 (75%) succeeded using HL. Although the

sample size is small, we think the results are reasonable in some sense. We also get some

comments submitted by the participants which explain the problems with using TC for

this task.

“The problems is the errors may always occur in those tags that is quite small.

If I want to find those errors as many as I can, that is not a good experience.”

“When the words are smaller it hurts your eyes to search through a list that

is not indented in the same manner.”

“For task group 2, tag cloud based scheme is awkward. It is difficult to locate

a detailed stuff based on words flushing the whole screen.”

While TC makes larger tags more noticeable to users, it also makes the smaller tags

less likely to get noticed. Also because of the layout, users may fatigue more easily while

reading through the various sized tags on a page. In contrast, the tags in HL are well

aligned, and users can quickly go through the list that start with some string if they

2This analysis was not done for Task 2.2, as both system resulted in successful task
completion for all users.
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think these tags can be skimmed for the task. For example, there are a lot of tags like

“UniversityIn...” and users can usually go through the list more quickly.

We do not report the time spent in this task for several reasons. First, the questions

in this task are open questions, and participants were allowed to stop at any time they

felt they had produced sufficient answers. During the study, we also found that when they

felt frustrated or tired, some participants would move on to the next task or step, while

some others would take a short break and then resume the task. We also noticed that a

participant was very likely to be affected if he/she found the other participant in the same

group had completed all the questions and submitted the form.

Now we discuss the false errors with examples from participants’ answers. The first

category are the classes that are too abstract. For example, classes such as schema:Thing,

pos:SpatialThing, foaf:Agent are very frequently recorded as errors. Usually experts

or users with experience of Semantic Web will find it very natural to have these abstract

classes in the high levels of the ontology hierarchy. However, from this study we find that

most non-expert users, including participants with computer science background, will

have difficulty understanding these classes without proper tutorials. The second category

are the classes that are designed in unusual ways. For example, we find some classes

from freebase like freebase:common.topic, umbel:Attributes, gml: Feature are also

very frequently chosen. Few people understand what these classes mean, but also feel

uncertain to claim those are wrong. These classes can be very dependent on the domain

where their ontology are designed for, however we feel it will cause misunderstanding to
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most users even including some experienced Semantic Web users. The third category are

the classes that represent categories of related topics. For examples there are many classes

from yago that use the names of athletic teams as the local name of that class, such as

yago:SamsungLions and yago:ChicagoWolves. These classes are usually considered as

errors, if the participants did not realize that those are the team names representing their

stadiums.

We wonder whether improving the interface could help reduce any misunderstandings.

We think representing the hierarchy of classes is useful for clarifying the meaning of ab-

stract classes. Although subsumption relationship were indicated in both systems, we

noticed that participants were more likely to understand the folder-like representation for

the hierarchy, compared with the gray-colored tags shown in the tag cloud which were used

to indicate super tags of the context. Another idea is that probably we should develop

some algorithm to discover or some syntax to denote those abstract classes, and hide them

from the non-expert users.

5.4 Analysis on Survey Questions

There are 4 pairs of Likert-scale questions about the two systems. We plot the answers

from all 14 participants in Figure 5.6. The answer ranges from Strongly Agree (SA) to

Neutral (N) to Strongly Disagree (SD). From the pairwise comparison, we can see TC

usually has a higher acceptance rate (i.e. more people agree with the statements) than

HL, except the group of familiarity. The HL may seem more familiar to most users as the
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Figure 5.6: Pairwise comparison on Likert scale answers for both systems.

faceted browsing style is widely used in online shopping sites. We can also see that TC is

most accepted as the tool for Task 1, which corresponds with our analysis on the objective

results of Task 1. On the other side, TC also has a higher rate for disagreement on the

statements, which makes it a more polarizing system. That is reasonable because some

users may enjoy novelty, while others may take time to adjust to new paradigms. Among

the questions, we see that TC gets most negative remarks on Task 2, and in Section 5.3

we have discussed possible reasons why TC is not as good as HL in Task 2.

We compare whether people prefer one system to another in each pair of questions.

Let SA = 5 and SD =1, the difference in scores by TC and HL ranges from 4 to -4, where 4

indicates greatly in favor of TC and -4 indicates greatly in favor of HL. We plot the count

of preference in Figure 5.7. Generally speaking, there is no evidence that one system is

more subjectively favored than the other.
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Figure 5.7: Count of Users group by system preference by combining scores in the pairwise Likert
questions.

Is less time spent on one system the main reason why the participant prefers that

system in Task 1? In order to check whether this is true, we compute the correlation

between them. For each participant i, we compute the difference in total time spent on

both system: di = tHL,i − tTC,i, and the difference in the Likert scores: pi = scrTC,i −

scrHL,i. However, surprisingly, we compute the correlation coefficient, and find r = −0.44.

This means the two events have a moderate inverse correlation, and it is more likely to

see a participant prefer the system on which he/she spent more time!

5.5 Discussion and Future Work

Although this study did not accomplish everything we had hoped, we feel we can still draw

some initial conclusions. The most important one is that we proved that our tag cloud

system can be used by non-expert users. The system we proposed is still a very immature
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prototype system. Prior to this study, we only had anecdotal evidence that academic

people can use it with minimal instructions. This study demonstrates that non-expert

users are able to access a Semantic Web dataset and successfully complete some typical

tasks as in the real world: they are able to find proper terms to form queries; and they are

able to contribute to the Semantic Web community by suggesting potential errors. Since

we were unable to find a similar tool that is available to explore a large scale Semantic

Web dataset, we built a baseline system. By comparison with a baseline system HL, we

also showed that the tag cloud system is accepted by 85.7% of users as a good tool for

exploring a linked dataset.

There are many places we can improve for this study in the future. First of all, we

need more participants. Currently we have only 14 participants, which is good enough

to show the hints of trends. However, given that in the study each task often involves

many parameters which divides the data points into many groups, we have only 3-4 in

each group. Thus we can hardly make any statistically significant statement. Also the

design of the study can be improved. We think Task 1 is a good start, but we want the

participants to explore further based on their choice of combinations. Task 2 should be

modified so that participants have more options to explore the data while still keeping a

clear purpose. We think the current Task 2 requires too much time and effort which makes

participants get tired, and this problem should also be resolved. Meanwhile, we should

also keep searching for other similar systems and use that for comparison. It will provide

participants more heterogeneous interfaces for participants to experience and then decide
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which interface is better.
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Chapter 6

Extending the Contextual Tag

Cloud System

We believe we have a very useful system for users to explore the Semantic Web KB based

on Linked Open Data. One of the key feature it provides is that users are able to observe

the data distribution based on a set of ontological terms that they specify on-the-fly, which

helps reveal the co-occurrence or patterns between different terms. The contextual tag

cloud system provides a very user-friendly way for constructing template queries. We have

discussed how the system could be use to explore merged collections of diverse data sets

such as Linked Data. Could this same approach be beneficial for more focused data sets

where the users are already familiar with the schema? In particular, can the system be

used to detect interesting pattern or identify anomalies in such datasets? In this chapter,

we discuss how to extend the tag cloud to a specific domain that does not use Semantic
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Web data, and showcase some use scenarios. Then with experiments, we discuss whether

the infrastructure for the ontological tag cloud still fit for this new dataset.

6.1 Extended Tags and Use Cases

Our scenario of interest is finding suspicious activity in the computer logs of a large

enterprise. We use various synthetic datasets created by CERT 1 for use by the DARPA

Anomaly Detection at Multiple Scales (ADAMS) effort. The dataset is based upon realistic

data models of a large enterprise and contains 33 million events of 1000 users activities

during 17 months2. The data is provided as logs (comma separated values, i.e., CSV) about

computer usage, including logons, file accesses, web accesses and email communications.

We noticed that for a specific kind of usage logs (as shown in Figure 6.1), the events almost

always have the same set of properties, and showing the existence of a property is not very

useful to users. Instead, the values of the properties contain more interesting information

and potential patterns. So we define a tag as a property-value pair, i.e. t = ⟨p, v⟩, and

extend the concept of tags to the following categories.

C0. Explicit Class. In the original dataset, we may find existing well-defined classes,

if instances are categorized explicitly. If ⟨i, type, C⟩ ∈ S, where S is the set of all the triples

in the dataset, we assign tag t : ⟨type, C⟩ to i. This is the same as our definition of class

tags in Section 3.1.

1http://www.exactdata.net/, http://www.cert.org/
2Project dataset: R3V1
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C1. Existential. Similar to ∃P.⊤ and ∃P.C defined in OWL, we define tags based

on the property usages. If ⟨i, P, j⟩ ∈ S we assign tag t : ⟨P,⊤⟩ to i, and this is the same as

our definition of property tags in Section 3.1. If in addition we know j is also an instance

and ⟨j, type, C⟩ ∈ S, we also assign t : ⟨P,C⟩ to i.

C2. Discrete Enumerated Literal Categories. If the literal values of a property

P is from a fixed set, each value, combined with P can be a category. If ⟨i, P, “L”⟩ ∈ S

we assign tag t : ⟨P, “L”⟩ to i.

C3. Continuous Literals. Some literals have values from infinite sets (e.g. real

numbers) or there are too many to enumerate (e.g. timestamps). We can define a function

fP that maps the continuous value space to an enumerable value set. i.e. if ⟨i, P, “L”⟩ ∈ S

we assign tag t : ⟨fP , fP (L)⟩ to i, where the function name is used as the property of the

tag. Sometimes P may have multiple functions that divide the space in different way or

into different granularities.

C4. Text. Some literals (e.g. sentences or paragraphs) are too many to enumer-

ate, but can be represented by a set/list of enumerated parts (e.g. terms, keywords, or

topics). We define function tokens that tokenizes such literals into parts, and assign tag

t : ⟨P ′, “L”⟩ to i, if ⟨i, P, o⟩ ∈ S ∧ “L” ∈ tokens(o). Semantically, the new property P ′ is

different from P , and can be treated as a composition property P ′ = P ◦ hasToken if we

treat the text o as an instance with property “hasToken”.

We list some representative attributes and the way we extract tags from them and

correspond each item below to our categories of tags:
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userID, filename and URL. Here, we directly use their values as tags. Linking

back to C2 in our data model, for an event i with user ID user001, a tag from its userID

attribute will be ⟨userID, “user001”⟩, where the attribute userID becomes the property

P ;

date. Our date information contains the date and time of an event, e.g., for event i, we

could have the following value as its date: 12/30/2010 09:20:23AM. In this case, instead of

directly using the attribute and its value as tags, we give a more fine-grained classification

of time, includingMonthYear, TimeofDay, DayofWeek, Daytype and Hour. Corresponding

back to C3 in our data model, for the above given date, we then have the following tags

assigned to event i: ⟨MonthYear, “Dec2010”⟩, ⟨DayofWeek, “Thursday”⟩, ⟨TimeofDay,

“Morning”⟩, etc.; and here tag properties MonthYear, DayofWeek and TimeofDay are the

mapping functions on the date, and tag values Dec2010, Thursday and Morning are the

functions’ values. Time information is continuous and a typical timeline may be good

in showing the activities along the time; however, timelines will not sufficiently display

recurring at multiple scales, while our way of tagging time provides a better possibility to

explore recurring activities.

content. content refers to the actual file content, web page content and email content.

We tokenize (simply by white spaces and punctuation) the content and treat each distinct

token as a tag. This type of tag is what we call Text (C4) in our model, where the property

P here is content and “L” refers to the individual tokens.

Comparing to the interface for browsing Linked Data, we add two new concepts to
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group the the tags: a set of tags that represent a common facet constitutes a block

and a collection of blocks that describe a particular dimension of the data constitutes

a tab. Each tag t = ⟨p, v⟩ should belong to one and only one block, and typically the

block collects tags with the same value for p. e.g. tags ⟨DayOfWeek, “Sunday”⟩ and

⟨DayOfWeek, “Monday”⟩ both belong to block DayOfWeek. Blocks like DayOfWeek,

MonthYear appear under the tab “time”. Figure 6.2 shows a snap-shot of the interface.

In Figure 6.1, we list all the mappings from the original attributes in the logs to the

blocks and the tabs in the interface. Note some attributes are used for multiple blocks,

for example, the date attribute is mapped to all the blocks in the Time tab, by various

discretization functions. In addition to those general categories we mentioned above, we

also apply a few special mappings. For example, “duration” is computed by the difference

of time between two adjacent log-on and log-off activities; by comparing the sender and

recipient to the user’s email address, we can tag whether the email event is sending or

receiving an email. Also note we do not have C1 mappings in it, because we only have the

types of log events in this dataset. If we integrate more external knowledge, we can also

have meaningful C1 category tags: e.g. if we have categories of websites, we can add tags

for Web events to indicate what kind of website is involved in the event. We list some

scenarios below for demonstrating the interface and use cases.

Monitoring popularity trends We can determine the most/least popular items in

the data set. For example, sales logs could be used to understand customer preferences

and analyze shopping trends. As in our dataset, from Figure 6.3 we find that the duration
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Figure 6.1: Mappings from attributes in logs to blocks and tabs in the interface.

for logon events in the night tends to be either very short (10 to 30 mins) or long (4-8

hours). Another example (in Figure 6.4) is that we find that the most events in the evening

is web access.

Monitoring suspicious activity Due to the mission critical nature of data networks

and systems of an organization, it is necessary to protect these systems from both internal
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Figure 6.2: Tag cloud interface with multiple constraints showing the “Access” tab consisting of
5 blocks.

Figure 6.3: Duration of Night Logon Events

and external threats. Thus different types of logs such as email records, VOIP activity

logs, Internet usage logs, etc. could be retained and monitored periodically. For example

in the log data, we consider the set of email activities on Saturday nights. This set itself
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Figure 6.4: Types of events in the evening.

is not suspicious, but a reasonable hypothesis is that it may include some anomalous

activity, since the actors will attempt to conceal their behavior from coworkers, possibly

by conducting operations during atypical work hours. Thus by examining tags in different

blocks, we are able to inspect potential threats: Are there any suspicious keywords in

the content? What are the emails of the contact people? Is anyone bcc’ed? How many

attachments are in the email? All these questions can be answered by exploring our

system, and if we find any suspicious tags, we can simply add that tag to the context

and continue to inspect the resulting tag cloud. Figure 6.2 shows a step in this inspection

process.

Profiling a user When we select a particular user as a constraint, we are actually

presenting the profile of a user, with multiple aspects. In our dataset, we can answer

questions like: Whom does he frequently exchange emails with? Does he access the Web

more in the afternoon? Does he usually work at night? e.g. as shown in Figure 6.5 we

find that the user “LKF0122” has no events recorded in the evening or night, has no file

access, and the only machine he logged on is “PC-2051”.

Comparing two patterns One might want to compare two scenarios to find the

differences in pattern. For example, our system can also be used to visualize the evolution
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In the Time tab

In the Access tab

Figure 6.5: Profiling user “LKF0122”

Figure 6.6: Duration of Afternoon Logon Events

of the terms and hence the topic of interest among the users. As in above-mentioned

examples, we can compare between users, compare between access patterns. e.g. we

can compare the duration of logons in the afternoons (Figure 6.6) with those in the nights

(Figure 6.3). We can see that although there are still many short logons (less than 1 hour),

the largest ones are the 4-8 hours. We think the comparison on the tag clouds of similar
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contexts are usually interesting and can reveal important patterns (or changes in patterns).

So we also implemented a comparison view. Figure 6.7 illustrates the comparison between

(1) the activities of user “CSF0929” at any time, and (2) the activities of the same user in

July 2010. The comparison tag cloud combines the two regular tag clouds and shows any

tag that is in either of them. The font size of each tag indicates the absolute value of the

difference for this tag between the two tag clouds, and the font color indicates whether

the difference is positive or negative (the color of the tag corresponds with the context

bar to indicate the more frequent side). This experimental feature currently supports

customizable definition of the difference. In this example, the difference is defined as the

change of the percentage that a tag takes in its context w.r.t. the number of events. From

the comparison we can see, user “CSF0929” has more activities in the evenings and nights

and in weekends in July 2010, comparing to his usual activities.

Figure 6.7: The comparison view for user “CSF0929” to check whether his activities in July 2010
is consistent with those in other months
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6.2 Required Infrastructure Changes

The previous section has proposed several changes to the system. To support the charac-

teristics of the new dataset, the modified definition of tags, and the block/tab nature of the

interface, we need to modify the infrastructure accordingly in order to provide responsive

system.

The first difference is how we index the events (i.e. the instances) and how we store the

Co-occurrence Matrix. Since the request now is based on each block, the index and the

matrix are optimized to be built based on blocks too. Our indexing structure is shown in

Figure 6.8(a), where for each block (such as “Content”) we have a corresponding indexing

field, and in each field we index each possible value (such as “flight”) with a posting list

of events that have the ⟨block, value⟩ tag. The Co-occurrence Matrix is also built as an

inverted index called Supporting Index as in Figure 6.8(b). There are two retrieval fields

in the Supporting Index: Co-existing Set (tagset) and Block. In the Co-existing Set field,

each indexing tag has a posting list of tags that co-occur with that tag. In the Block filed,

each indexing block has a posting list of tags that appear in that block. By introducing

the block names as either retrieval fields or indexing terms in a retrieval field, we can

easily get the tags of a block by specifying the block name from both the Event Index and

the Supporting Index.

We defined ontological axioms for tag entailment, which speed up both the preprocess-

ing and the online computation. When building the supporting index, naively, we could

issue the following conjunctive query to our event index:“p1=v1 AND p2=v2” for every
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(a) Event Index Structure (b) Supporting Index Structure

Figure 6.8: Index Structures

pair of ⟨p1, v1⟩, ⟨p2, v2⟩ ∈ T . However we note that some combinations will never result in

co-occurrences. Therefore, we carefully picked 30 tags (e.g. ⟨AccessType, Email⟩) or tag

groups (e.g. ⟨Content, *⟩), and created a 30× 30 disjoint matrix, as illustrated in Figure

6.9, in which the cell (i, j) indicates the disjointness (1 means they are disjoint) between

the ith and jth tags (or groups). Disjointness was manually determined based on semantic

conditions of the blocks and tags, resulting in 13% of the cells being marked as disjoint

relation. For example, the tag ⟨AccessType, Web⟩ (f in Figure 6.9) is disjoint with the

tag group ⟨Filename, *⟩ (l in Figure 6.9) because no files can co-occur with a web access

in an event. Note, the matrix is symmetric, but the diagonal is not always disjoint. In

particular, multi-values properties such as content, server-names (extracted from emails

recipients and senders), contacts, and e-mail to/cc/bcc are not disjoint with themselves.

When building the supporting index, the disjoint matrix is used to prune unnecessary

queries to the event index. This disjointness is also used for pruning online computation.

Because we can see some tag groups (i.e. blocks) are disjoint with some other tags or tag
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groups, when any of these disjoint ones are in the context, we can directly ignore that

block, without even querying the supporting index.

Besides the disjointness axioms, we also use the Supporting Index (for the same pur-

pose as the Co-occurrence Matrix in Section 4.2) to reduce the number of tags that will

require frequency (fR) queries. Given block B and context T = {t1, t2, ...}, we issue a

boolean query “block=B AND tagset=t1 AND tagset=t2 ...” to the supporting index, and

the result will be a set of tags in block B that are likely to co-occur with the context.

This pruning strategy is called Precomputed Candidate Set (PCS), since the result

from the precomputed supporting index is a set of candidates.

In some cases, we find that the context is actually very selective, and there are only a

few instances that match the context. Instead of issuing queries from the candidate set,

we can directly count the tags that appear in these matched instance. Notably, this will

be inefficient when |Inst(T )| is very large and |B|, i.e. the number of unique tags in this

block, is relatively small. Thus in practice, we use the following Conditional Instance

Processing (CIP) rule: if |B|/|Inst(T )| > αB ; otherwise, we use the naive approach

which issues a conjunctive query for every tag t in the dataset. Here αB is a constant

parameter for each block B. In practice we let αContent = 10, and αB = 100 for all the

other blocks. The Content block is specially handled because it is a multi-value block,

accessing each instance would add counts to multiple tags at the same time. We did the

estimation of αB in a very experimental manner, and we think further investigation and

a more theoretical estimation method on this is necessary for future work.

117



CIP and PCS are efficient in some different cases, so we combine these two ap-

proaches into a third one (CIP+PCS): we use the precomputed candidate set and

apply a modified conditional instance processing rule. On every request, if |T | > 1 ∧

|candPCS(B, T )|/|Isub(T )| > αB, we process matched instances; otherwise we use sup-

porting index to get a smaller candidate set. Note that the key difference between this

combined approach and the CIP only approach is whether we use the precomputed can-

didates from the supporting index or use all the tags from a given block as candidates.

Also because PCS is guaranteed to provide all the co-occurring tags if |T | = 1, we do not

consider to use CIP in this case.

6.3 Experiments

In order to test the online response time of our system, we generate random requests to

simulate real users’ behavior. Initially we let context T = ∅. We pick a random non-empty

block B as the block that the user is interested in, and measure the computing time for

that B. Then we pick a random tag t ∈ B and add it to T . We repeat the random

procedure of selecting B and t until |T | = 5 (i.e. 5 random web requests), as a sequence

of a user’s behavior. In total, 1000 random sequences (i.e. 5000 requests) are generated

as the test set for evaluating our system. The time for each request given T and B is

recorded for each of the three systems (CIP, PCS and CIP+PCS). Note that the time we

recorded is only for the system to calculate the tags and co-occurrence frequencies, and

does not include the time for web browser to render the data as a tag cloud (< 0.2s). Also
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in real scenarios, when a user views a tab, there are actually multiple requests of blocks

issued to the server.

In Table 6.1 we provide a comparison of systems by statistics on selected subsets of

requests. In addition to the average and worst case time, we also define responsiveness

rate (rr) as

rr =
number of requests with response time ≤ 0.8s

total number of requests
(6.1)

We choose 0.8s because after factoring 0.2s of rendering time, this is the limit for the

user’s flow of thought to stay uninterrupted according to Nielsen [35]. We can tell from

the full test set, in general, PCS is better than CIP and CIP+PCS is the best. When

|T | increases from 0 to 4, the average times for both CIP and CIP+PCS decrease. This

is because |Inst(T )| usually decreases when |T | becomes larger, and instance processing

is very efficient when |Inst(T )| is very small. However for the other cases, the supporting

index provides more benefit. We also list a few subsets of requests selected by the requested

blocks. It is clear to see that the blocks have more impact on response time than |T |.

Consider block Content with |B| = 88665 and block DayOfWeek with |B| = 7. It is

obvious that the blocks with smaller sizes require fewer queries to the event index and

thus lead to shorter execution times. We also inspect the worst cases for the systems. For

CIP, the worst case (20.6s) happens when B = Content, |T | = 4. |Inst(T )| = 4623 and

|B| = 88665, so it chooses to process instances because there are too many tags to test

in B. However from the supporting index, there are only 2290 candidates, the other two

systems just test tags from this much smaller set, and thus are much faster for this request.
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For PCS, the worst case (11.0s) happens when B = Content, |T | = 3. |Inst(T )| = 1 but

the candidate set provided by the supporting index has 20063 tags, in this case, issuing

count queries is not as efficient as CIP when it only has to process the single matched

instance. So CIP+PCS is a balanced system that performs well on both cases when only

CIP or PCS does well. On average, CIP+PCS has response times well under 1s and the

worst case for most blocks is < 2.5s except the User block. However, we find it is still not

perfectly tuned. e.g. for blocks DayOfWeek and TimeOfDay, a perfectly tuned CIP+PCS

system should have a worst case time close to that of PCS. So one area for future work

is to find better ways to let CIP+PCS choose its strategy more wisely. Note that this

combined strategy might also be useful for the LOD dataset, because it also has many

situations where the context selects a small number of instances that could be used to

quickly determine the candidate set. However, since the co-occurring matrix is usually

sufficiently selective and therefore fast enough, without future experiments, it is unclear

whether on average, the overhead of choosing strategies is worth the benefit of a more

efficient choice.

The previous experiment shows that our system is more efficient if we use a supporting

index however at the expense of consuming more time in the preprocessing step. The

question is, is the supporting index worth the effort? We provide two sides of problem to

answer this question.

Preprocessing Scalability. Comparing to the preprocessing steps in Section 4.1,

there are a few differences: there is no split step because the data has no ontology or
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sameAs; there is no flip step because the event is alway what we focus on; the sort step

can be ignored because information about each event is already together in the log. So for

this dataset, the preprocessing just includes the index/co-occur steps. In this experiment,

our preprocessing step includes building the event index only (Event) and the supporting

index as well (Event + Supporting) by querying the event index to get all tag pairs

that have ever co-occurred. We show the runtime and index size for the two different

approaches in Figure 6.10. We use logarithmic scale for both axes (runtime in seconds

and index size in MB).

For runtime, we can see that building this supporting index requires one to two orders

of magnitude more time since we need to query the event index to see if every pair of

tags have ever co-occurred. This is very time-consuming when the event index is large.

Although we adopted the disjoint matrix for optimization, it still took nearly 6.32 hours

to finish building the pair of indices for 10 million log events. As for index size, when we

increase the number of events, the size of the Event index grows faster than the other

and the differences between Event and Event+Supporting become less substantial. This

is because the size of our supporting index depends on the total number of tag pairs that

have ever co-occurred. As the number of events continues to grow, the event index size

grows rapidly since we continue to add more documents to the posting list of the terms in

the index; however, the total number of co-existing tag pairs grow at a much slower pace

because there are a fixed number of tags in our entire dataset and they can be sufficiently

covered in a decent number of events. Note that the index structure here is different from
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the one designed for the LOD, and different information (and also with different encoding

methods) is stored in them, so we do not compare the disk usage here with the disk usage

for the LOD system.

The Effectiveness of the Supporting Index. As we just discussed, building the

supporting index adds a certain level of complexity in both runtime and disk space. Here,

we briefly discuss how helpful the supporting index in terms of how many tag pairs it

actually prunes as shown in Table 6.2. As we increase the number of events to be indexed,

Table 6.2: Pruning Capability of the Supporting Index

Number of Events 1K 10K 100K 1M 10M

|Tags in event index| 14,183 37,886 69,520 104,428 227,861

|Supporting index tag pairs| 1,679 K 7,328 K 27,638 K 96,556 K 292,178 K

Pruning Percentage 99.17% 99.49% 99.43% 99.11% 99.44%

the number of tags starts to grow and the same is true for the number of tag pairs in our

supporting index. For all event sizes, the supporting index always gives a good pruning

percentage calculated as Pruning Percentage = 1− |Supporting Index Tag Pairs|
|Tags in Event Index|2

.

In conclusion, we find that building the supporting index is time-consuming, but its

growth rate slows as the total amount of events grows; also we find that the supporting

index provides a significant benefit for the pruning. The bottom line is building the

supporting index is good for the system scalability.
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1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

d 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1

g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1

m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1

n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0

p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0

q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0

r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0

s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0

t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 1 0

u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1

Figure 6.9: Disjointness between tags or tag groups.

The tags are: 1=⟨User, * ⟩, 2=⟨Department, * ⟩, 3=⟨MonthYear, * ⟩, 4=⟨DayofWeek,
Monday⟩, 5=⟨DayofWeek, Tuesday⟩, 6=⟨DayofWeek, Wednesday⟩, 7=⟨DayofWeek,
Thursday⟩, 8=⟨DayofWeek, Friday⟩, 9=⟨DayofWeek, Saturday⟩, a=⟨DayofWeek,
Sunday⟩, b=⟨TimeofDay, * ⟩, c=⟨DayType, Weekday⟩, d=⟨DayType, Weekend⟩,
e=⟨DayType, Holiday⟩, f=⟨Access, Web⟩, g=⟨Access, Email⟩, h=⟨Access, File⟩,

i=⟨Access, Logon⟩, j=⟨Machine, * ⟩, k=⟨Content, * ⟩, l=⟨Filename, * ⟩, m=⟨URL, * ⟩,
n=⟨Extension, * ⟩, o=⟨ServerNames, * ⟩, p=⟨Contacts, * ⟩, q=⟨EmailFrom, * ⟩,

r=⟨EmailToCC, * ⟩, s=⟨EmailBCC, * ⟩, t=⟨EmailSize, * ⟩, u=⟨EmailAttachmentCount,
* ⟩
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(a) Preprocessing Runtime (b) Preprocessing Disk Space

Figure 6.10: Preprocessing Scale-up Test
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Chapter 7

Word Sense Disambiguation on

Labels of Classes

Understanding the meaning of classes is a very important part for users to get familiar

with the Semantic Web KB. When presented with a new dataset, users tend to assume

that local names and/or rdfs:labels are sufficient for knowing the meaning of classes

and properties. If they are unsure, they might look at the rdfs:descriptions, but it is

rare that users will use ontological axioms to interpret ontological terms. Any attempt to

interpret terms based on names and labels must take into account that the constituent

word forms are sometimes ambiguous, and Word Sense Disambiguation (WSD) may be

required for clarification. In addition to helping humans understanding the classes, WSD

can also work as a component in a Question Answering system or any system that allows

users to identify classes by natural language keyword input.
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The typical WSD is the process of identifying which sense of a word (i.e. meaning)

is used in a sentence, when the word has multiple meanings. In addition to traditional

WSD, WSD on class labels involves two new problems: the role of ontological axioms

in determining the context of WSD, and how to compute results that are meaningful to

subsequent processes such as formulating a SPARQL query. Unless confidence is very

high, a good intermediate result should not be a single top sense. Some WSD processes

may produce a rank ordering of possible meanings, but then there is no information about

about the confidence that the i-th meaning is more likely than the (i + 1)-th. Internal

scores provide more information, but if these scores are not normalized consistently, it

is impossible to know if the best score is a meaning that can be relied on with high

confidence or not. A probability distribution for each ambiguous word provides the most

complete information. As probabilistic models have proved successful in many other fields,

we propose a novel WSD approach by using a probability model and calculating the

distribution as the score results.

7.1 Utilizing WordNet

WordNet is a widely used lexicon for the English language. It groups English words into

sets of synonyms called synsets, provides short, general definitions, and records the various

semantic relations between these synsets. For convenience, in this chapter we define T

the set of terms and S the set of synsets in WordNet, and describe several functions in

WordNet as follows.
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A term in T is a word or a phrase that can be found in WordNet. A term may have

multiple senses, i.e. WordNet provides a function syn which takes a term as input and

outputs a set of synsets of this term. i.e.

syn : T → 2S (7.1)

Inversely, one could also find the word forms of a given synset by the function wordForm.

, i.e.

wordForm : S → 2T (7.2)

A term bound with a synset of it is a word sense. The gloss of a synset is the definition

of this synset in WordNet. Let D be the set of all definitions in WordNet. The function

gloss takes a synset as input and produces a list of words in the glossary of it as output,

which is a human-readable definition of the synset. , i.e.

gloss : S → D (7.3)

A synset is related to other synsets. WordNet defines a set E of relation or edge types

between synsets. For example, for a noun synset, there are hypernyms (super class),

hyponyms (sub class), part holonyms (part of), etc. Note for a given synset the available

edges is a subset of E . A function relEdge returns the available edges of a synset, i.e.

relEdge : S → 2E . Given a synset and an edge type, we could get the synsets related via

this type, which is a subset of the set S of all synsets in WordNet. A function relSyn
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provides such information, i.e. relSyn : S×E → 2S . Besides the edges defined in WordNet,

we add a new type of edge “DONE” which links every synset to null. The usage of this

edge will be discussed later.

In addition, WordNet provides the statistical information for synsets and terms. A

function tagCount : T ×S → N tells the frequency (integer) of a word sense (i.e., a <term,

synset> pair) against the text corpus used for WordNet1. From the corpus statistics, we

can estimate different types of probabilities. We assume the probability of a given word

sense is in proportion to the frequency that a term is used with that meaning in a given

corpus.. Thus, the probability that some sense S is the meaning of a given term T is the

ratio of the frequency of that word sense against the total frequency of that term, i.e.

P (S = s|T = t) =
tagCount(s, t)∑

si∈syn(t) tagCount(si, t)
(7.4)

Similarly, the probability that one tends to use a term T for a given sense S is as follows.

P (T = t|S = s) =
tagCount(s, t)

synTC(s)
(7.5)

where the function synTC of a synset s counts the frequency by summing the tag counts

of word senses including all possible variations on the word form of S, i.e.

synTC(s) =
∑

wi∈wordForm(s)

tagCount(s, wi) (7.6)

1We set the tag count of a word sense equal to 1 if it is 0 in WordNet to avoid a 0 prior
probability for this word sense.

129



Equations (7.4) and (7.5) are probabilities w.r.t. the relations between terms and

senses, which reflect our language habits. In some scenarios, we care more about the

concept frequency, that is, how frequently we refer to an instance of a given concept,

regardless of how frequently we might use the exact synset of it. For example, the term

“Hominidae” is very rare in real world use, but the concept of this term is frequently

encountered because it is a generalization of the concept of “human”. Thus we define the

function cf for counting the concept frequency of a synset S: for nouns it is the size of

the set HS that consists of its direct and indirect hyponyms(subclasses); otherwise it is

the same as the synTC of S, i.e.

cf(S) =


∑

Ss∈HS synTC(Ss) , if S is a noun

synTC(S) , otherwise

(7.7)

Equations (7.4) and (7.5) are the corpus probability formulas we get from statistics

against a given corpus. A domain specific corpus, if available, can provide much better

prior knowledge. Equation (7.4) gives us a prior probability distribution for the meaning of

a given term, without considering the context. Our goal is to provide a better estimation

of such probabilities with contextual information.

7.2 Probability with Context

With contextual information, we can provide better probability distributions for the mean-

ing of terms. In this section, we formally define the problem probabilistically, apply some
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assumptions, and break down the problem into small computable pieces.

In a Semantic Web document, there are many URI resources. A URI resource could

be either a class, a property, or an instance that we want to match to something else.

Each URI resource has various associated texts, such as rdfs:label, rdfs:comment, or even

a parse result of its URI, which are the syntactic information sources. An associated text

can be further split into zero or more WordNet terms. There might also be words that

cannot be found in WordNet, which we ignore here.

To avoid discussion of minutiae, let us simplify the problem by only considering dis-

ambiguation within a single ontological document. In real world applications, we might

also want to consider a set of ontological documents that contain mappings and other

alignment axioms; or even consider the whole KB so that the associated texts of instances

are also considered and the RDF triples related to instances are available as clues for dis-

ambiguation. Without loss of generality, such a KB, or a set of documents can be viewed

as a virtual document.

Now we formally define our problem. Given an ontological document O, and a Word-

Net term T appearing in the associated text of an RDF resource U ,we want to find the

probability that this T means the sense S0, i.e. P (S0|O,U, T ). The condition consists of

three parts: the ontology, the URI resource, and the term we want to disambiguate. The

discrete random variable S0 has a domain of S and stands for the event that T means S0.

All the possible senses are exclusive and exhaustive, thus the sum of all possible senses
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should be 1, i.e. ∑
s∈syn(T )

P (S0 = s|O,U, T ) = 1 (7.8)

While T constrains the possible values of S0, O and U are actually the context that have

effect on the distribution. Equation (7.8) defines an ideal probability distribution without

information loss, however we have to make some simplifications to estimate it.

Researchers in WSD usually simplify the condition part to some context. The context

in theory could be anything, such as very rich structured data. It is basically whatever we

want to know from the document in the process of WSD. In traditional WSD, the context

is usually defined as a bag of words. We follow this tradition and also define the context

in our problem as a bag of terms W1,W2...Wn, and replace O and U with these terms. i.e.

P(S0|O,U, T ) ≈ P(S0|T,W1,W2, ...,Wn) (7.9)

In traditional WSD, such a bag of words is usually the neighboring words of the target

word in the free text document. A window size is set to decide how many words around

the target word are included. We shall define the axiom distance which is similar to the

window size for selecting context.

We first define the set of relation triples as all the explicitly stated triples in the

document, excluding the ones that use a term from the RDF/RDFS/OWL namespace as

its subject or object. Based on these relation triples, we can draw an undirected graph,

the relation triple graph: each node stands for a unique RDF resource, (which can be a
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blank node in RDF graphs), and every two nodes, including the properties, that appear

together in at least one relation triple are connected with an undirected edge. For any two

URI resources, we define the axiom distance as the number of edges in a shortest path

connecting them in this relation triple graph 2. An example is given in Figure 7.1.

Figure 7.1: An example of axiom distances.

There are three URI resources in this example: Paper, hasAuthor, and Peron. The
axiom distance between any two of them is 2.

We define the function context as follows. It takes three arguments. The first is the

term T we want to disambiguate, the second is the URI resource U of which the label

contains T , and the third is an integer that indicates the maximum axiom distance. The

output is a bag of words that appears in the labels of URI resources within axiom distance

of d of U excluding the ones identical to T . There are two special cases of this function.

If we set the axiom distance d = 0, it means we only consider the terms that appear in

U ’s label. If d = ∞, we consider the labels of every URI resource within the connected

RDF graph that contains U . 3

2We consider elements within the same parseType Collection to be connected to an
anonymous node, and the distance between any two elements in such collections is 2

3In practice, there might also be resources that have no axioms in the ontology. The
context selection problem in such cases is out of the scope of this paper.
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Banek et al. [3] use a very similar way to find context, but they only consider class

names in 4 kinds of axioms, i.e. subclass, superclass, domain and range. Our definition

tries to obtain more context words by considering all the axioms and all URI resources with

associated texts. It is worth pointing out that our approach of finding context uses the

structure in RDF graphs, but does not use the semantics in it. This makes our approach

still a syntactic matching process, and thus is not redundant with any subsequent semantic

based matching processes that may occur.

Once the context is defined, we can further derive the formula in Equation (7.9) to

computable parts as follows.

P (S0|T,W1, ...,Wn) =
P (W1, ...,Wn, S0|T )
P (W1, ...Wn|T )

=
P (W1, ...,Wn|T, S0) · P (S0|T )

P (W1, ...Wn|T )

=
1

P (W1, ...Wn|T )
· P (S0|T ) ·

n∏
i=1

P (Wi|S0, T ) (7.10)

We first apply Bayes’ rule, then apply the naive Bayes assumption that the occurrence

of each Wi in the bag is conditionally independent with others given the disambiguation

target word sense, and we have Equation (7.10). We can interpret this equation as follows.

The probability before derivation is the chance that term T has the sense S0 when a bag

of words W1, ...,Wn co-occur in the context. In the resulting formula, P (W1, ...Wn|T ) is

the probability that the bag of words co-occur given that T occurs. Since Equation (7.8)

holds, this part is just a normalization factor for estimating the probability, so we do
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not need to calculate it if we intend to calculate the entire distribution. P (S0|T ) is the

corpus probability in Equation (7.4). The product of P (Wi|S0, T ) for all 1 ≤ i ≤ n, is the

co-occurrence of Wi given the word sense (S0, T ). It can be interpreted as the probability

that each term Wi is mentioned when people attempt to define something referred by the

target word sense. It tells the relatedness between a term and a word sense. While using

WordNet, the condition that a word sense is given is almost the same as the condition

that its synset is given, because from the aspect of calculation, we get almost the same

information from a synset as from the synset and its word form4. Thus we can use the

approximation as follows.

P (Wi|S0, T ) = P (Wi|S0) (7.11)

While diverse approaches of estimating P (Wi|S0) may be chosen, again we follow the

most common one in traditional WSD: the relatedness between synsets. Now we try to

transform and relate P (Wi|S0) to P (Sy = s|S0), s ∈ syn(Wi), where Sy is the meaning of

Wi.

The intuition of estimating relatedness between synsets is that more information from

WordNet can be utilized if we investigate synsets. P (Wi|S0) is the probability that Wi

is used in the ontology as part of the definition of S0. P (Sy|S0) is the probability that

the person thinks of the synset Sy of Wi when attempting to define S0. We can model

the cognitive process with the Bayesian Network reflecting the causal relationships [37] as

4they provide almost the same information about relations to other synsets or terms
except the “antonym” relation, which we do not use in our algorithm.
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follows.

S0 → Sy →Wi

Bayesian networks are Directed Acyclic Graphs whose nodes represent random variables

in the Bayesian sense, and the edges represent conditional dependencies; nodes that are

not connected represent variables that are conditionally independent of each other. A

causal network is a Bayesian network with an explicit requirement that the relationships

be causal. We assume the conditional independence based on the following modeling of

how the Wi appear in the context of S0. The person first has a synset S0, or say a concept,

in mind. This S0 leads the person to think of another synset Sy, with some probability,

in the purpose of defining or explaining this concept in the ontology. At last this Sy is

represented with the term Wi by this person. Many synsets can appear given S0 with some

probability, however only the synsets Sy ∈ syn(Wi) have some probability to cause Wi.

Note here Sy is a hidden variable with discrete values. Following the Bayesian Network

rules, i.e. the assumptions of conditional independence, we have the following equation.

P (Wi|S0) =

∑
∀s P (S0)P (Sy = s|S0)P (Wi|Sy = s)

P (S0)

=
∑

s∈syn(Wi)

P (Sy = s|S0) · P (Wi|Sy = s) (7.12)

P (Wi|Sy) is the corpus probability in Equation (7.5). The probability P (Sy|S0) reflects

relatedness between synsets.
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7.3 Estimation of Relatedness between Synsets

In order to find the relatedness between two synsets S0 and Sy, we may need to explore

the synset graph in WordNet because S0 and Sy might not be directly related but are

indirectly related via other synsets. Thus, we start the synset expansion from the given

synset S0 with the goal of finding chains to Sy. In such an expansion, the process that

people think of more synsets starting from S0 is also simulated, thus we propose a model

and algorithm that estimates P (Sy|S0).

7.3.1 Synset Expansion Model

We model the expansion as steps of exploration to neighbors in the synset graph from

the given synset S0, with probabilities of deciding which synset to choose at each step.

A step of expansion consists of two decisions. First it chooses the WordNet relation

type for this step. Some relation types such as “hypernym” have higher probabilities than

others, because the connections to other synsets often pass their hypernyms. For example,

the synset cat#n#1 is connected to paw#n#1 via its hypernym feline#n#1. P (E1|S0)

denotes such probability. In the real world, this reflects the probability that one thinks

of a WordNet relation type E1 when he tries to think about expansion of a synset S0 in

order to define it. The event of deciding a type of WordNet relation edge given the current

synset has exclusive and exhaustive values, i.e.

∑
e∈relEdge(S0)

P (E1 = e|S0) = 1 (7.13)
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The second decision of expansion continues with a synset that follows the selected relation

edge, and a related synset is selected with some probability, P (S1|S0, E1). This can be

viewed as the probability that one thinks of a synset S1 when he tries to think about a

synset related to S0 with a given type of relation E1. Similarly, the event of deciding the

synset following the relation edge we have chosen also has exclusive and exhaustive values,

i.e. ∑
s∈relSyn(S0,E1)

P (S1 = s|S0, E1) = 1 (7.14)

Following Equation (7.13) and (7.14), we can derive P (Sy|S0) at the first step of

expansion as follows.

P (Sy|S0)

=
∑

E1∈relEdge(S0)

P (Sy, E1|S0) (7.15)

=
∑

E1∈relEdge(S0)

P (Sy|S0, E1) · P (E1|S0) (7.16)

=
∑

E1∈relEdge(S0)

∑
S1∈relSyn(S0,E1)

P (S1, Sy|S0, E1) · P (E1|S0) (7.17)

=
∑

E1∈relEdge(S0)

∑
S1∈relSyn(S0,E1)

P (Sy|S0, E1, S1) · P (E1|S0) · P (S1|S0, E1) (7.18)

Equation (7.15) and (7.17) are derived by marginalization. Equation (7.16) and (7.18)

can be derived by reforming the conditional probability. Equation (7.18) is the result of

first step expansion. P (Sy|S0, E1, S1) shows that we expand the synset S0 to its 1st level

neighbors, if we can further find the relatedness between S1 and Sy, we know that S0 and

Sy are somehow indirectly related via S1. Then we can continue the expansion at the
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second level between S1 and Sy.

We define a chain after the l -th expansion as Cl = S0, E1, S1, ...El, Sl, l = 0, 1, ....

We now show the formula for the (l+1)-th expansion in general case. Note that when

l = 0, the expansion is the same as above. Deriving the formula is similar to Equation

(7.15)-(7.18).

P (Sy|Cl)

=
∑

El+1∈relEdge(Sl)

∑
Sl+1∈relSyn(Sl,El+1)

P (Sy|Cl+1) · P (El+1|Cl) · P (Sl+1|Cl, El+1)

(7.19)

Equation (7.19) suggests a recursive algorithm for calculating the relatedness probabil-

ity for two different synsets. We should also define the exit of recursion, i.e. at some step

we should stop expanding the chain C and assign some value to P (Sy|C). We implement

it by adding an edge type “DONE” with a small probability at each step. This “DONE”

edge expands the last synset Sl of the current chain Cl and links to null with probability

1. It indicates we want to force the expansion of this branch to stop and see the direct

relatedness between synset Sl and Sy. We further make the assumption that only the last

synset in the stopped chain affects the probability.

P (Sy|Cl, El+1 = DONE, Sl+1 = null) = P (SD
y |Sl) (7.20)
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P (SD
y |Sl) is the probability that Sy is directly referred given Sl. We use SD

y to denote

the event that Sy is directly related, which also has discrete values. We shall discuss

estimation of direct relatedness later. Note that the chain here in our probabilistic model

is very different with the Markov chains. We do not make any independence assumption

during the expansion.

Once we have that defined, we have a finite set of chains CS to be expanded, then we

can rewrite P (Sy|S0) as follows in a simpler way.

P (Sy|S0) =
∑
c∈CS

P (Sy|C = c)P (C = c|S0) (7.21)

P (C = c|S0) is the probability of the chain c that starts with S0. Let L be the total

number of steps of expansion in c (i.e. the length of c), cl be the sub chain at the l-th

expansion, el and sl be the edge and synset selected at the l-th step. Then the current

chain can be viewed as the result of a series of actions of adding el and sl to the chain

(1 ≤ l ≤ L). So the probability is the product of the probabilities of them. i.e.

P (C = c|S0) =
L∏
l=0

P (el+1|cl) · P (sl+1|cl, el+1) (7.22)

Equation (7.21) provides another way of understanding the nature of our model. We can

also model a Bayesian Network causal graph that leads to Equation (7.21).

S0 → C → Sy
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One intuition of exiting the expansion is that we should stop expansion if the chain is

too long. It is unlikely that one synset will remind people of another synset if this is only

a distant indirect relation. Mathematically, it means the chain has a very low probability,

i.e. P (C|S0) < ϵ. In this case, we ignore the further expansions that are unlikely to

happen, and force the chain to stop expansion by adding a DONE edge with probability

1 after it. i.e.

P (Sy|Cl) = P (Sy|Cl,DONE, null) = P (SD
y |Sl) (7.23)

Another problem is cyclic chains. Mathematically we have no problem in computation,

because cycles make the probability of the chain P (C|S0) decrease and as the length of

the chain approaches infinity, its probability approaches 0. However in reality, we believe

people tend to avoid such cyclic thinking in their mind when they try to associate synsets.

Thus we remove those expansions that lead to cycles from the possible expansion branches.

We shall discuss how we decide possible edges for expansion later in Section 7.3.3.

There are three probabilities we shall estimate: the direct synsets relatedness probabil-

ity P (SD
y |Sl), the conditional edge expansion probability P (El+1|Cl), and the conditional

synset expansion probability P (Sl+1|Cl, El+1). We first introduce our simple estimation

on P (Sl+1|Cl, El+1). We assume the probability that Cl is expanded to Sl+1 in edge El+1

is decided by cf(Sl+1) in Equation (7.7), for those synsets that are targets of that edge

El+1. In consistency with Equation (7.14), we have the normalized estimation.

P (Sl+1|Cl, El+1) =
cf(Sl+1)∑
se∈AS cf(se)

(7.24)
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In the real world, this equation implies that people are more likely to think of synsets

that are frequently met. The set AS is the set of available synsets that are in the set of

relSyn(Sl, El+1) but not in the current chain Cl.

7.3.2 Estimation of Direct Relatedness between Synsets

P (SD
y |Sl) tells the direct relatedness between synsets. Here we introduce three different

ways to estimate it. A straightforward idea is that we can consider the case that Sy is the

same as Sl. Thus we have the first estimation.

P1(S
D
y |Sl) = 1 iff. Sy = Sl , 0 otherwise (7.25)

However in practice this may not perform well, because it is useful only if we find a chain

connecting two synsets S0 and Sy. Since WordNet does not provide every possible connec-

tion between synsets in its synset graph, merely depending on finding explicit chains often

fails. For example, there exists no reasonable chain between person#n#1 and name#n#1,

which we know are somehow related.

One approach to overcome this problem is using the gloss in WordNet. If some word

form Ty of Sy happens to appear in the gloss of Sl, it is evidence that they are related,

or mathematically P (SD
y |Sl) > 0. This gives us an approach to estimate P (SD

y |Sl) with

P2(S
D
y |Sl) based on gloss.

P2(S
D
y |Sl) = max

Ty∈wordForm(Sy)
p(Ty, gloss(Sl)) · P (Sy|Ty) (7.26)
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There are two parts in the equation. The first part p(Ty, gloss(Sl) is a function that tells

the portion of Ty in the gloss of Sl, which will be defined soon. The second is the corpus

probability in Equation (7.4), which is the probability that Ty means Sy. We try to match

all possible word forms of Sy to the gloss and use the max likelihood. In practice, every

word in either the word form or the gloss is stemmed before matching. This allows for

small word variations and even enables the match across different part-of-speech. Thus it

increases the chance that matches are found, but may lower the precision.

An easy definition of the function p could be the ratio between the numbers of words,

however this makes the estimation of P2(S
D
y |Sl) biased towards common senses, because

the senses that have common word forms are much more likely to be matched in the gloss.

Thus we use the inverse document frequency(idf)5 to determine the importance of the

words and compute the portion.

p(Ty, gloss(Sl)) =


idfSum(Ty)

idfSum(gloss(Sl))
, if Ty ∈ gloss(Sl)

0 , otherwise

(7.27)

We record the document frequency of all the stemmed terms in the gloss of all synsets in

WordNet. idfSum is the function that sums the idf of words given a bag of words.

The gloss based estimation helps find the missing relatedness between synsets in Word-

Net, but still it does not find all. Also we do not want the relatedness between synsets

at any time to be 0, a very small probability is better. Note these direct relatedness

probabilities are the leaves in every branch of the expansion. If P (SD
y |Sl) is 0 for every

5If a word appears in n documents, then for this word, idf = 1/n.
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chain, then according to Equation (7.20) and (7.21), P (Sy|S0) = 0. If P (Sy|S0) = 0 for

every sense Sy of Wi, then according to Equation (7.12) and (7.10), P (Wi|S0) = 0, thus

P (S0|T,W1, ...,Wn) = 0. Thus the whole disambiguation is very sensitive to the selection

of context, which is not desirable. Thus we define P3(S
D
y |Sl), the smooth approach of

estimating P (SD
y |Sl).

P3(S
D
y |Sl) =

synTC(Sy)∑
∀S synTC(S)

(7.28)

This simply means the conditional probability is the same as the probability of encoun-

tering the synset in the corpus.

With theses three approaches, we have three estimators for P (SD
y |Sl). We use a simple

linear combination method as follows.

P (SD
y |Sl) =

3∑
k=1

akPk(S
D
y |Sl) , where

3∑
k=1

ak = 1 (7.29)

There are some heuristics for deciding the weights ak. The larger ak is, the better we trust

that estimation. Think of one extreme case when a3 = 1. It will always return the same

value for the expansion given different S0, thus it can not disambiguate at all. Making

a1 > a2 > a3 seems reasonable, because the estimations from 1 to 3 become less reliable.

However, as the chain grows longer, the first two approaches gain larger estimation errors,

and thus become less reliable. So we make these weights the functions of the current chain

probability. The values of both a1 and a2 decrease to some small non-negative values as the

chain probability goes down. The functions can be defined very differently. If we assume
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Figure 7.2: An example group of functions. The x-axis is the chain probability. During expan-
sion, the probability goes down, the values of ak change from right to left.

that the second estimation is more likely to accumulate errors, we can make a2 decrease

with a faster rate as the chain probability goes down. a3 becomes dominant as both a1

and a2 decrease. This can be interpreted as when the chain becomes long enough, the

estimation that any synset can be related becomes more accurate. An example group of

functions is given in Figure 7.2. Note that the curves should be read right-to-left, because

the chain probability decreases as the expansion goes on. We choose log functions because

the chain probability changes approximately exponentially step by step, and we want the

change of ak to be approximately linear w.r.t. the steps.
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7.3.3 Estimation of Conditional Edge Expansion Probability

P (El+1|Cl) can be interpreted in the real world as the probability that one thinks of a

relation type El+1 given the current chain Cl in mind. We can predefine the weights

for different types, that is weight(E) for every relation type E. Then we can estimate

P (El+1|Cl) by normalizing the weights of available edges.

P (El+1|Cl) =
weight(El+1)∑
E∈ES weight(E)

(7.30)

The normalization is required by Equation (7.13). ES is the set of available edge types

given Cl. It is a subset of edges of the last synset Sl in Cl. To avoid cyclic chains, we

prevent edges in ES from linking Sl to some synset that is already in the chain.

ES = relEdge(Sl) ∩ {E|∃S ∈ relSyn(Sl, E) and S /∈ Cl} (7.31)

Following Hirst and St-Onge’s idea [20] to consider the “number of times the chain

changes direction”, we can modify Equation (7.30) to “encourage” the chain to keep its

direction, which means the adjacent edge types in the chain are the same. The function

aug boosts the weight if the chain keeps the direction. Note, that in order to ensure that

the distribution sums to one, we must also include aug in the denominator.

aug(El, El+1) = α > 1 if El = El+1 , 1 otherwise (7.32)
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P (El+1|Cl) =
aug(El, El+1)weight(El+1)∑
E∈ES aug(El, El+1)weight(E)

(7.33)

7.4 Preliminary Experiments and Discussions

We test our approach on the dblp ontology6, which is is adapted from the XML schema7

of the DBLP Computer Science Bibliography8, and has 22 classes and 23 properties. The

disambiguation targets are the 39 ambiguous noun terms (i.e. each term that has more

than one synset) from rdf:label in the ontology. The ground truth is gained by collecting

online votes from 5 students who are familiar with the ontology. The base line that our

approach is compared to is the corpus probability in Equation (7.4). We compare two

things: (1) the accuracy, i.e. the percentage that the top sense is correct; and (2) the

probabilities of the correct sense.

In this preliminary experiment, we cannot demonstrate the results of every possible

combination of parameters. Instead, we set the axiom distance level for context d = 1, the

constant-direction augment factor α = 1.5, use a typical stop list for idf and the predefined

weights for every type of relation, and use the function group of ak which combines the

direct relatedness estimation as follows.



a1 = max[0, a10(1− logϵ p)];

a2 = max[0, a20(1− log10ϵ p)];

a3 = 1− a1 − a2

(7.34)

6http://swat.cse.lehigh.edu/resources/onto/dblp.owl
7http://dblp.uni-trier.de/xml/dblp.dtd
8http://www.informatik.uni-trier.de/ ley/db/
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Table 7.1: Accuracy Results

(a) (a10, a20) = (0.5, 0.4)
ϵ =? 10−2 10−3 10−4 10−5

accuracy 71.8% 76.9% 82.1% 84.6%

(b) ϵ = 10−4

(a10, a20) =? (0.5, 0.4) (0.9, 0) (0, 0.9)

accuracy 82.1% 79.5% 79.5%

,where p is the chain probability, a10 and a20 are the initial values for a1 and a2 respectively

when p = 1.

We compare the accuracy when the chain probability threshold ϵ, and a10, a20 change in

Table 7.1. In the WSD community, researchers usually use two naive baselines to evaluate

their systems: (1) randomly select a sense from all the senses for the target word, and this

baseline is usually compared with unsupervised approaches; (2) always select the top sense

which is most frequently used for the target word, and this baseline is usually compared

with supervised approaches. In contrast to our unsupervised approach, the accuracy from

WordNet top sense is 64.1%. In Table 7.1.(a), we can see the accuracy becomes better

when we lower the threshold ϵ. This is what we expected, because theoretically the chain

gets more expanded and thus gather more information. However, the lower ϵ would also

need more computation time. In Table 7.1.(b), we set a moderate threshold ϵ = 10−4

(which also requires moderate running time), and compare the effects by different direct

relatedness estimators. When we set a10 or a20 equal to 0, it means we do not use that

estimator of direct relatedness probability (P1(S
D
y |Sl) and P2(S

D
y |Sl) respectively). Only

relying on one of them can also get good accuracy, but not as good as combining them.
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In order to evaluate the probability distributions, we define the Distribution Candidate

Ratio (DCR) Test as the ratio between the probability of the correct discrete value (from

ground truth) and the probability that is the highest among all other possible values.

Formally, let D = [p1, p2, . . . , pn], where
∑n

i=1 pi = 1 be the probability distribution to

test, pc be the probability for the correct value. Then pm = maxi̸=cpi is the highest among

all other possible values. We define DCR = pc
pm

. This ratio test can be used to evaluate

any distribution of discrete value events. If the correct one is not the highest probability

in the distribution, this ratio is less than 1 and tells the closeness to candidacy; if the

correct one is the highest probability, this ratio is greater than 1 and tells how well this

event is distinguished from the others.

Now we examine the probability distribution of our results by DCR Test. Here we use

the setting ϵ = 10−4, d = 1, (a10, a20) = (0.5, 0.4). In Figure 7.3 we contrast the ratios

of distribution by our approach and WordNet (WN) corpus probability. The terms are

sorted by the highest probability output by our approach. From this result we have two

findings. First, for most of the cases, our approach has better DCR test result. Our

approach either makes the top sense correct when the WN result gets it wrong, or makes

the correct sense more distinguished from the others than the WN results. Second, we were

somewhat surprised that some of the distributions have one dominate probability which

is higher than 99%. This could be good for the correct ones showing the confidence of the

judgment: the ones with extreme dominant probabilities (also having a very high ratio)

are very likely to be correct, because it is usually the sign of finding strong relatedness
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Figure 7.3: An example ratio of distribution between the correct one and the other top one.
Terms are sorted by the highest probability output by our approach.

between the target term and the contexts. For example, term #39 “publication” has the

highest dominant probability, because most of the context around it are all related to the

correct sense (since the ontology is about publications).

However, there are also exceptions that our result is worse than WN in the ratio

test. Term #34 is “master”. The correct sense is master#n#8 which means “someone

who holds a master’s degree from academic institution”, and the top one in our result

is master#n#5 which means “an original creation (i.e., an audio recording) from which

copies can be made”. The context words, such as “publication”, are found related to

master#n#5, because they are hyponyms (sub classes) of creation#n#1. On the other

hand, there is little relatedness between context and master#n#8 found by our approach.

However, to a human reader, it is clear that the word “academic” in the gloss shows some
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relatedness to context words. Term #9 and #11 are both “title” appearing at different

places in the ontology. A similar problem occurs with them. Our approach cannot find

the relatedness between the correct sense title#n#2 and context. However in its gloss, the

phrase “literary composition” can be easily related to context words such as “publication”

by humans. So all these mistakes our approach makes shows that our challenge is to find

efficient ways of estimating the relatedness between synsets, as in Section 7.3.2, and also

to minimize the impact of errors.

Currently we have not tried to optimize execution time. The whole process can be

very time-consuming when ϵ is small and d is large. The average time for each pair of

synsets in P (Sy|S0) is 278 ms for ϵ = 10−3, d = 1.

Although this WSD algorithm still needs further research and more experiments, we

think the ideas can be expanded to be useful in many Semantic Web applications. One

of the most important use case is for retrieving classes. If we have the probability dis-

tributions of senses for classes, and also we have the distributions of senses for a users

input, we can develop an algorithm to compute the expected distance (i.e. weighted by

probabilities) of senses between the input and each class in the KB, and then present users

a ranked list of classes that are relevant to the users input. This would help improve recall

by retrieving matches of synonyms or hypernyms/hyponyms, and also limit the loss of

precision by combining information from multiple probability distributions.
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Chapter 8

Class Retrieval using Instance

Texts

An important problem in using KBs is how to translate natural language queries to the

appropriate ontological terms. In this chapter we address the resource retrieval prob-

lem, which is the task to find the best matched resources (classes, properties, or instance)

in the KB given a keyword-based query. Existing tools typically use simple string match-

ing, although some expand the matching by using lexicons like WordNet. We believe

that leveraging usage information from the KB can improve retrieval quality better than

referencing external lexicons.

Our intuition comes from the observation that in many scenarios, humans learn what

a named class refers to by examining some of its instances. For example, when we see

a class named “Person”, if after examining several random instances of it we find out
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all of them are scientists, we have an idea that this class Person may mainly refer to

researchers. Now consider another example: a class named “Cat”. If the instances include

species of tigers, leopards, etc. then we know that it refers to felines in general, and not

just the typical house cat. Similarly, a resource retrieval component can also obtain more

information about a class by identifying patterns in the textual properties of an instance,

and using this information to improve retrieval quality. This approach will also have

benefits when the KB does not have a sufficient concept for the query. Consider the “Cat”

example above in a KB that does not have the class “Tiger”: when users query “tiger”,

the retrieval component knows the class Cat covers the query topic best.

We focus on the problem of class retrieval using instance texts, and propose a general

framework of this approach, which consists of two phases: the keyword query is first used

to locate relevant instances; then we induce the classes given this list of weighted matched

instances.

8.1 Class Retrieval Framework

Formally, we define the class retrieval problem as: given a natural language query q, return

a set of ⟨class, score⟩ pairs {⟨Ci, scri⟩}, where Ci ∈ C, and the score scri is how well Ci

matches q. The naive approach is to define scri as the string similarity between the label

(lCi) of Ci and query q:

scri(q) = StrSim(lCi , q) (8.1)
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In practice we implement this method SL with the Scaled Levenstein distance metric (edit

distance similarity). By utilizing external lexicons, we further define a function expand(q)

that derives a set of terms (synonyms, hypernyms, or hyponyms etc.) related to q, and

combine string similarities (also using the SL distance) as scri by choosing the max value

of similarity to the query among all the possible variations of expanded word forms. i.e.:

scri(q) = max
q′∈expand(q)

StrSim(lCi , q
′) (8.2)

This method WN is implemented with WordNet as the lexicon.

We propose a two-phase class retrieval framework, as shown in Figure 8.1. In the first

phase, the query q is matched to instances’ texts (which we shall soon define), instead

of directly matched to classes’ labels. This step can be done with a standard IR query;

and a set of ⟨instance, IR score⟩ pairs RS = {⟨Ij , rj⟩} are returned. Given a set of

weighted matched instances, the problem in the second phase is then how to induce the

class represented by these instances. Then in the process of computing scri we may take

RS and the rdf:type relations (i.e. a property that denotes the class of an instance) in

the KB as extra information (they are constant for a given KB). We shall further discuss

different implementations of this function in the next section.

Defining instances’ texts is crucial and fundamental to the framework. The idea that

using texts from instances improves class retrieval is based on the assumption that if we

have collected sufficient instance texts, the common terms among these instances are very

likely to be indicative of the class (as we shall soon discuss for the “Fern” example in
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Figure 8.1: Two-phase Class Retrieval Framework

Table 8.1). We generalize the definition of instance texts as a function on an instance,

as well as the given KB. We need to point out that there may not be a universally ap-

plicable methodology to define the function due to wide variations of KBs. However, as

illustrated in Figure 8.2, we list the following ones that often work well: (1) annota-

tion properties such as rdfs:label and rdfs:comment. These properties are widely used in

many KBs: the rdfs:label values (Ti1) are the names of instances and rdfs:comment usu-

ally provides a human-readable description. (2) properties with high discriminabil-

ity/coverage. Song and Heflin [46] proposed an automatic approach that computes the

discriminability/coverage scores in a given KB and finds a list of properties such as job

title/name/address, etc. We can further manually (or develop some algorithms to) select

some property (such as p2 in the figure) from this list to get the text values (Ti2). (3)

external links. Different types of external knowledge can be used, e.g. WWW search,

or owl:sameAs links, to get more texts (Ti3) about the instance. (4) refining existing

texts, e.g. using some function f1 to extract key terms (T ′
i1) from the value of some

textual property of an instance.

We also show the traditional approach in Figure 8.2, which expands the original text

(Li) of a class, and tries to match with any relevant words (DLi1, DLi1) via external
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Figure 8.2: Expanded Texts of a Class

lexicon. In fact, Figure 8.2 illustrates that all the resources and literals are connected

in a huge graph. Comparing our instance-based proposal to lexicon expansions, we see

the common purpose is to find more texts connected to class Ci. However, they face

different uncertainties. While the links within the KB are statements and the nodes in

the graph are always semantically related, the external links are based on the (possibly

ambiguous) syntactical forms of terms, and may lead to texts with no semantic connections

to the class. If the expansion goes further from the original term, the uncertainty becomes

higher and more noise is introduced. On the other hand, although we have certainty that

the instances’ texts are connected to the instances and the instances are connected to the

class, it is unclear how well the instances’ texts can represent the class.

In this chapter, we use DBPedia 3.7 [2], an RDF dataset of structured information

extracted from Wikipedia, as the KB to test our ideas and run the evaluation experiments.

We chose DBPedia for mainly two reasons. First, it contains a large amount of data, and

most resources have the property rdfs:label, which provides a human-readable version
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of a resource’s name, and the property rdfs:comment, which provides a human-readable

description of a resource. This enables us to study contributions from various annotations.

Although our work does not require a KB to have these properties, generating annotations

from scratch will add extra factors that complicate our analysis. The second reason is that

it includes various kinds of classes that cover several different domains. As we shall see

soon, annotations of instances of different classes have different features. Since DBPedia

has a wide range of topics described at various levels of detail, it allows us to evaluate how

our algorithm responds to diverse conditions. For convenience, we use “d” as the prefix

of DBPedia’s naming space, e.g. d:Book for http://dbpedia.org/ontology/Book. DBPedia

also has many links to external ontologies or sources. Some of them, e.g. YAGO1 types,

may also be useful for retrieval. However in this chapter, we ignore such interlinks.

For example, we find that after removing the stop words from labels of all the 683

instances of d:Fern, the top 15 frequent terms appearing in these labels (as shown in

Table 8.1) are mostly the hyponyms of “fern”. We also observe a similar phenomenon

for many other classes such as d:EducationalInstitution, when the name of each individual

instance usually contains the category name, which can be an alternative to the label of

(a subset of) its class. e.g. the label “Chesterton Community College” of an instance

indicates the category name “Community College”. However, the labels of other classes

are less informative. For example, the labels of d:Person, d:Film, and d:Song fail to present

high rank relevant terms for classes because the titles and names seldom contain relevant

terms to the class.

1http://www.mpi-inf.mpg.de/yago-naga/yago/
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Table 8.1: The top 15 frequent terms in the labels of instances of d:Fern after removing stop
words

Rank Term Frequency

1 cyathea 137

2 asplenium 36

3 blechnum 25

4 polypodium 22

5 polystichum 16

6 dryopteris 16

7 equisetum 14

8 adiantum 14

9 pellaea 13

10 cheilanthes 13

11 tectaria 8

12 fern 8

13 botrychium 8

14 diplazium 7

15 woodsia 6

On the other hand, values of rdfs:comment (basically the content of the Wikipedia

article) often contain useful terms for class retrieval, but due to their length they contain

many irrelevant terms too. However, the oft-repeated terms in these values are often

closely related to the class. For example, in the comments of d:Film, the top terms

not only include similar concepts such as synonyms like “movie”, and sub categories like

“comedy” and “drama”; but also include contextual terms such as “starring”, “directed”,

etc. To enhance the chance that the selected texts accurately reflect the class, we introduce

a third text type by refining the comments with simple string manipulations.

We take advantage of the Wikipedia custom, which usually starts its paragraph with

a very descriptive sentence about the basic information of each instance page in the form:

⟨label of the instance⟩ ⟨to-be verb⟩ ⟨rest of the sentence⟩.
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We implement a straightforward approach to split2 the comment values and extract only

the third part of the first sentence as the third type of texts. We remove the label of the

instance because the labels can introduce noise as we discussed in rdfs:label. It turns out

that we successfully extract these fragments out of 96.5% of the comments in the KB.

Note that although this approach is not generally applicable to every instance in the LOD

dataset, it can be still useful in many cases for retrieving classes in other subsets, given

that DBPedia is a central node in the LOD diagram, with many ontological alignment

axioms and instance sameAs links.

Thus in total we have three types of texts: labels, comments, and fragments of com-

ments. We use a traditional IR inverted index and index each of the KB instances with

these types of texts into corresponding indexing fields respectively. The index of each field

has a term list that contains all the unique terms in the texts of that type; and each term

will be associated with a posting list with all instances that contain this term in this field.

Given a query q and a specified text feature (a single field or any weighted combination

of them), a set of ⟨instance, IR score⟩ pairs can be retrieved via standard IR means; and

the first phase in our framework is done.

8.2 Inducing Classes from Instances

From the first phase we have a set of ⟨instance, IR score⟩ pairs RS = {⟨Ij , rj⟩} as the

results. For convenience, we define Iq = {Ij | < Ij , rj >∈ RS} the set of all the instances

2The program tries to find the first to-be verb and splits the sentence based on that.
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in RS. The task of the second phase is to assign an appropriate score scri for each Ci in

the KB. While the first phase can rely on a standard IR approach, we have more choices

in how to induce a class in the second phase. In this section, we cast it in three different

ways as discussed below.

8.2.1 Additive Value Function

We start from the most straightforward intuition: if an instance Ij of a class Ci is returned,

the IR score rj associated with Ij should somehow contribute to scri, the score of Ci.

In utility theory, the influence of multiple attributes can be represented by an additive

value function as long as we assume mutual preferential independence holds between the

attributes. An additive value function is simply a multi-attribute function that is the sum

of a set of single attribute value functions. Inspired by this idea, we define the additive

value function (AVF) score of a particular class Ci as:

scri(q) =
∑

Ij∈Ci∩Iq

T (rj) (8.3)

In this formula, we take the score of each instance in both the class Ci and the matched

instances Iq, apply a normalization/transformation function T , and then simply apply a

naive summation of each transformed value.

We can define T with simple functions. For example, define T0(rj) = 1 if rj > 0,

otherwise 0, which means every instance “votes” for its classes. Or set a threshold ϵ and

let Tϵ(rj) = rj if rj ≥ ϵ or 0 otherwise. If ϵ is set as the n-th greatest value in {rj}, it
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means we only consider the top n matching instances.

Note that in a KB, Ij ∈ Ci can be either explicit or entailed by ontological axioms.

An instance thus can belong to multiple classes even in single-inheritance ontologies. This

suggests that the score (or vote) T (rj) from each instance Ij should be apportioned among

every class it belongs to. Thus a modified version is

scri(q) =
∑

Ij∈Ci∩Iq

T (rj) · f(Ij , Ci) (8.4)

where f(Ij , Ci) factors how the vote from Ij is divided. Let ncj be the total number of

classes Ij (explicitly and implicitly) belongs to i.e. ncj = |c|KB |= Ij : c|, then we can

naively equally divide T (rj) by setting f(Ij , Ci) = 1/ncj , i.e.

scri(q) =
∑

Ij∈Ci∩Iq

T (rj)

ncj
(8.5)

However, this does not reflect the general intuition that the more specific classes should

be more favored. For the extreme case, owl:Thing, in theory, contains all the instances,

and thus it will get the max score among all the possible classes. However returning

owl:Thing does not provide any useful information as well. So instead, we should somehow

penalize the larger classes in the KB. Let f(Ij , Ci) =
1

|Ci| , where |Ci| = |{x|KB |= x ∈ Ci}|

denotes the size of instances entailed in Ci, we have

scri(q) =
∑

Ij∈Ci∩Iq

T (rj)

|Ci|
(8.6)
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8.2.2 Instances as IR Queries

Another option is to consider the problem as another IR problem by treating each class

as an IR document, and indexing each class with its instances’ IDs as its content. In

the index, each instance has a posting list of classes it belongs to. Then the problem in

the second phase of our framework is cast as Boolean retrieval given a long query with

query terms Iq to this index. We consider the basic tf-idf (short for term frequencyinverse

document frequency) [32] approach. In its classic definition, the tf-idf is a numerical

statistic that is intended to reflect how important a word is to a document in a collection

or corpus. The tf-idf value increases proportionally to the number of times a word appears

in the document, but is offset by the frequency of the word in the corpus, which helps to

control for the fact that some words are generally more common than others. In our case,

the tf-idf is useful for normalizing the scores of instances that belong to multiple classes.

i.e.

scri(q) =
∑

∀Ij∈Iq

tf (Ci, Ij) · idf(Ij) =
∑

Ij∈Ci∩Iq

idf(Ij) (8.7)

An instance is either a member of a class (tf = 1) or not (tf =0), thus the tf merely

denotes whether Ij ∈ Ci is true (explicitly or by entailment) for this KB. Furthermore if

we consider that query terms are not equally weighted, again we apply the transformed
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Figure 8.3: Distribution of Number of Classes - Number of Instances

scores T (rj) associated with each Ij as the boost factor3, and then we have

scri(q) =
∑

Ij∈Ci∩Iq

T (rj) · idf(Ij) (8.8)

The idf is usually defined as idf(Ij) = log NC
df(Ij)

, whereNC is the total number of documents

(in our case classes). The number of classes is often relatively small in Linked Data

datasets, for example, in DBPedia, NC = 319. The log function is taken to scale the huge

difference among document frequencies of terms (df(Ij)). However in our case, df(Ij) is

just the total number of classes Ij belongs to, in other words, df(Ij) = ncj . Figure 8.3

illustrates that in DBPedia for most of the instances ncj = 3 ∼ 5. Note that we count

both the explicit and entailed classes of an instance, except owl:Thing, which is the top

concept and should be assigned to any instance. Since ncj does not change in orders of

magnitude, for most of the time we get idf(Ij) = 1.80 ∼ 2.02, thus we can approximately

3In many standard IR approaches, the boost factor is used to adjust the weight of a
specific word to emphasize/de-emphasize it in the query or in the document collections
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treat logNC/ncj ≈ α as a constant. Then

scri(q) =
∑

Ij∈Ci∩Iq

T (rj) · idf(Ij) ≈
∑

Ij∈Ci∩Iq

α · T (rj) (8.9)

is mathematically approximate to AVF in Equation (8.3). To emphasize the difference,

we define idf ′ without the log, then

scri(q) =
∑

Ij∈Ci∩Iq

T (rj) · idf ′(Ij) =
∑

Ij∈Ci∩Iq

NC · T (rj)
ncj

(8.10)

which is directly proportional to Equation (8.5), and thus produces an equivalent rank-

ordering of classes. In practice, the basic tf-idf approach above is usually tuned with

various normalization factors, and we will use a state-of-the-art IR tool in the experiment

to evaluate this approach to scoring.

8.2.3 Ontology Alignment Problem

We first discuss the relations between a query and a class in the KB. Imagine a virtual

class Q based on the query q. Q basically means anything that is closely related to the

query q. Thus an instance with texts containing q is considered to be explicitly declared

to have type Q. Note that in the real world, it is very unlikely to have a system class

interpreted as “everything about q”, thus we do not expect any class Ci from the KB s.t.

Ci = Q. On the other hand, we define another virtual class Dq, which is the concept that

directly corresponds to the query need represented by the term q. Dq @ Q. Often this Dq
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Figure 8.4: Relation between Q, Qe and Dq

can be aligned to some class C in the KB. We show the Venn Diagram in Figure 8.4.

However Dq is not directly observable in the KB; and even Q is not fully observable.

We can only detect a subset Qe consisting of “explicit” instances of Q. Since Q is anything

closely related to q, instances that have texts containing synonyms or hyponyms of q should

also be considered as implicit instances. Thus Dq ⊓ Qe is the part that is both desirable

and observable. For example, if q =“movie”, the target class Dq =d:Film. Some instances

of d:Film have “movie” in their texts, and thus are instances of Dq ⊓ Qe, while others

using “film” instead of “movie” are implicit members of Q. The other classes in Q can

be movie actors, movie songs, etc. that are disjoint with, but also closely related to Dq.

In other examples, Q may also include classes that are totally irrelevant to Dq due to the

ambiguity of q. We can define two ratios:

α1 = P (Dq|Qe) =
|Dq ⊓Qe|
|Qe|

(8.11)

α2 = P (Qe|Dq) =
|Dq ⊓Qe|
|Dq|

(8.12)
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where α1 is the likelihood that an instance with text q is an instance of Dq (related to

the ambiguity and usage of q), and α2 is the likelihood that an instance of Dq has q in

its texts (related to the variations of expression of Dq). These two ratios are variables

of the query and the KB. But for a given query q and KB they are fixed, and so is the

ratio between them. The ratios can be some important factor for our estimation on the

probabilities, however, currently we make a naive assumption that the ratio is similar on

different queries, and leave the study on how to decide these ratios based on the statistics

of the KB for future work. Here we simply define the ratio as a constant which is also the

ratio between Dq and Qe.

α =
α1

α2
=
|Dq|
|Qe|

(8.13)

Under a naive assumption of uniform distribution of Dq in Qe and uniform distribution of

Qe inDq, we assume that given any sample of Qe, we can infer the size of the corresponding

sample of Dq ⊓ Qe, and then infer the size of the corresponding sample of Dq. We can

further interpret it in an extreme way: every time we find an instance of Qe, we estimate

that it is expected to represent α instances of Dq.

From the first phase, the result set ⟨Ij , rj⟩ actually returns a set of instances that are

likely to be instances of Qe, where the relevance score rj indicates such likelihood. So we

can first apply a function Tp(rj) which is the probability that Ij is an instance of Qe. If

in addition, we take the ratio α into consideration, and finally we can define a transform

function Tα(rj) = α · Tp(rj). Then Tα(rj) can be interpreted as the expected number of
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instances of Dq that Ij represents. The total size of Dq is estimated as

|Dq| ≈
∑

∀Ij∈Iq

Tα(rj) (8.14)

Based on the uniform assumption, we can estimate that every instance that is in Ci and

matches q implies α instances of Dq ⊓ Ci. i.e., :

|Dq ⊓ Ci| ≈
∑

Ij∈Ci∩Iq

Tα(rj) (8.15)

With these estimated sizes, many existing approaches in instance-based ontology align-

ment can be applied. e.g. the the most commonly used Jaccard (Jcd) approach [47] is

defined as:

scri(q) =
|Dq ⊓ Ci|
|Dq ⊔ Ci|

=
|Dq ⊓ Ci|

|Dq|+ |Ci| − |Dq ⊓ Ci|
(8.16)

There are also measures for ontology matching based on information theory. e.g. The

Pointwise Mutual Information (PMI) approach [10] measures the reduction of uncertainty

that the annotation of one concept yields for the other. Mathematically, it is the log of

the ratio between the probability of their coincidence given their joint distribution and

the probability of their coincidence given only their individual distributions:

scri(q) = log
P (Dq ⊓ Ci)

P (Dq) · P (Ci)
= log

|Dq⊓Ci|
N

|Dq |
N

|Ci|
N

= log
|Dq ⊓ Ci| ·N
|Ci| · |Dq|

(8.17)

where N is the total number of instances in the KB. PMI is maximized when Dq ⊑ Ci or
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Dq ⊒ Ci is true. Other measures in this category include log likelihood ratio, information

gain, etc. A comprehensive comparison of measures in instance-based ontology alignment

can be found in [22].

We also propose an alternative approach. First we can consider P (Ci|Dq) which rep-

resents the probability that an instance has type Ci if we already know it has type Dq.

scri(q) = P (Ci|Dq) =
|Dq ⊓ Ci|
|Dq|

=
∑

Ij∈Ci∩Iq

Tα(rj)

|Dq|
(8.18)

Note that scri is calculated for each class Ci given query q, and |Dq| is just a normalization

factor. So the output rankings of Ci using this approach is the same as that of AVF in

Equation (8.3) when we assume Tα(rj) is proportional to T (rj) . From one perspective,

we evaluate each Ci ∈ C with some metric on how well Ci matches virtual class Dq.

Then Equation (8.18) evaluates each candidate Ci with the virtual recall of Dq, i.e., the

percentage ofDq instances that were identified by Ci. We can also use the virtual precision:

the percentage of Ci instances that are actually in Dq, i.e.

scri(q) = precision(Ci, Dq) =
|Dq ⊓ Ci|
|Ci|

=
∑

Ij∈Ci∩Iq

Tα(rj)

|Ci|
(8.19)

which, except for scaling for α and normalization, is identical to Equation (8.6) (the AVF

with bias towards more specific classes). In combination, we propose the virtual F-Measure

approach (FM):

scri(q) =
2 · |Dq⊓Ci|

|Ci| ·
|Dq⊓Ci|
|Dq |

|Dq⊓Ci|
|Ci| +

|Dq⊓Ci|
|Dq |

=
2 · |Dq ⊓ Ci|
|Dq|+ |Ci|

(8.20)
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Table 8.2: Summary of Class Induction Formulas. The ∝ indicates the two formulas are propor-
tional to each other.

Section 8.2.1 Section 8.2.2 Section 8.2.3

Eq(8.3) Eq(8.5) Eq(8.6) Eq(8.9) Eq(8.10) Eq(8.18) Eq(8.19)

Eq(8.3) ≡ ∝ ∝
Eq(8.5) ≡ ∝
Eq(8.6) ≡ ∝
Eq(8.9) ∝ ≡
Eq(8.10) ∝ ≡ ∝
Eq(8.18) ∝ ∝ ≡
Eq(8.19) ∝ ≡

8.2.4 Summary of Formulas

In this section we have introduced three ways of viewing the problem of inducing classes

from instances. Although initiated from different viewpoints, we find that some approaches

are proportional to each other, and thus are mathematically equivalent with regard to

the output rankings of classes, although some are approximately proportional because

of various assumptions. We see that an approach proposed in one view gets backed up

by another view. However we still need to point out the difference behind these similar

formula. The variability hidden in the formula is the transform function. Table 8.2

summarizes the similar formulas in the three views.

8.3 Evaluation

In this section, we first introduce our experimental setup, and then discuss the results of

our proposed approaches.
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8.3.1 Experiment Setup

We begin with a discussion of how evaluate the results of a class retrieval system. In

traditional IR, a document is either relevant or not, but classes can be generalizations

of each other, and intuitively more specific classes should be better matches than very

generic classes because the generic ones usually fail to represent the user’s interest and

thus return many results that are useless to the user. We continue using the previous

notation, assuming the query term q represents a virtual concept Dq. We discuss different

categories of matches to Dq that can be specified in the ground truth. Within each case,

we want to clarify the goal of the retrieval, i.e. which classes are worth retrieving. With

this goal in mind, we define a function rel(Ci, q) that indicates the degree of relevance of

a retrieved class Ci to the query q.

1. Equivalence Match: ∃Cb in the KB, Cb = Dq. In this case, returning exactly Cb

is the only goal. e.g. q =“movie”, Dq = Cb =d:Film. We define rel(Ci, q) = 1 if and only

if Ci = Dq and 0 otherwise. In addition, to better distinguish the difficulty of query, we

call an Equivalence Match a Syntactic match if the matched class Cb has label lCb
= q ,

otherwise a Synonym match because Cb and q represent (almost) the same concept and

usually the label of Cb is a synonym of q.

2. Partial Match: Sometimes ¬∃Cb = Dq for a query q. However we may find

classes very close to the virtual query class Dq. e.g. given q =“composer” return

Cb =d:MusicalArtist ; or given q =“physicist” return Cb =d:Scientist. In both exam-

ples, the classes are the superclasses of the query class Dq, but are the best results the
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system can return, because they are the most specific upper bounds of Dq. A class Cu is an

upper bound of Dq in the KB if and only if ∃Cu, Cu A Dq, and ¬∃C ′
u, s.t. Cu A C ′

u A Dq.

In other words Cu is a most specific subsumer of Dq in the KB. Similarly, we can define

the lower bounds of Dq. A class Cl is a lower bound of Dq in the KB if and only if ∃Cl,

Cu @ Dq, and ¬∃C ′
l , s.t. Cl @ C ′

l @ Dq. Note there can be multiple upper bounds or

lower bounds. Suppose the total number of upper bounds and lower bounds of a query

are u and l respectively. We define three types of partial matches:

• Superclass Match if u ≥ 1 and l = 0. We assign rel(Ci, q) = 0.8/u if Ci is one of

u upper bounds of Dq; otherwise it is 0. Thus, a superclass match is not as relevant

as an exact match, and the more possible upper bounds there are, the less relevant

any single one is. Note that if no other upper bound exists, in theory owl:Thing is

the upper bound, however we do not count that as a Superclass Match.

• Subclass Match if u = 0 and l ≥ 1. We assign rel(Ci, q) = 0.8/l if Ci is one of l

lower bounds of Dq; otherwise it is 0.

• Bounded Match if u ≥ 1 and l ≥ 1. We assign rel(Ci, q) = 0.4/u if Ci is one of u

upper bounds of Dq; assign rel(Ci, q) = 0.4/l if Ci is one of l lower bounds of Dq;

otherwise it is 0.

The rel(C, q) values can be viewed as the expected utility of translating q into C for

subsequent usage. We set these values based on rough estimations of the likelihood that

such a match can be a satisfactory search result for a user, or the likelihood that such a
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match can be used to formulate a SPARQL query to get useful answers. Note that we

actually define very strict goals for the retrieval task. In all three cases, we are asking

what the best possible match could be for the query. Thus the superclasses of the upper

bounds or subclasses of the lower bounds do not get a partial relevance score. We also

debated whether we should give partial relevance scores to the overlapped classes. An

overlapped class is a class that shares some instances with the query class Dq, but is

not a super class nor a sub class of Dq. The benefit from retrieving an overlapped class

Cx is really determined by the ratio of the common part of Cx and Dq. Since we need

human judgment to produce ground truth for the evaluation, in order to increase the

intra-human agreement as well as reduce human effort, we simply treat all overlapped

classes as irrelevant.

For our evaluation, we call a query q a qualified query if and only if ∃Cx in the KB, s.t.

rel(Cx, q) > 0. At first, we tried to collect qualified queries by extracting terms from target

web pages: we visited the web sites that contain general purpose questions/answers, such

as Ask.com, and went through the question archives in order to extract useful query words

from them. However, we found a low yield because either the domain of the questions

was irrelevant to the classes in DBPedia, or the nouns in the questions were simply proper

nouns which could not be considered as a match to any class. Finally we chose to make

use of the interlinks from DBPedia to another dataset, namely the WordNet dataset. The

links are statements each of which claims an instance has a WordNet type that specifies

the synset that categorizes this instance. e.g.
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⟨ dr:Gzip, dp:wordnet type, wn:synset-software-noun-1⟩

which says that Gzip is a software, and the term “software” used here should refer to

the meaning of the first noun definition of “software” in WordNet. Thus we extract this

term “software” as an original (e.O) query term. There were 425,008 unique instances

connected to 124 unique synsets in the interlinks. We then removed those links involving

instances that are not classified to any class in DBPedia, and that resulted in 339,041

instances that are classified to 252 unique classes and linked to 113 unique synsets. In

order to provide various terms, we also take advantage of the specified sense of the term,

and expand the query set by the adding the synonyms (e.S) and hypernyms (superclasses

of terms) of the original terms from WordNet. For hypernyms, we use not only the direct

(level 1, e.H1) hypernyms, but also hypernyms of level 2 (e.H2) and level 3 (e.H3). We

did not expand the query in the hyponym (subclass of term) direction, because we think

in that direction, we would usually find only Superclass Matches for the expanded queries.

However, we are able to get various types of Matches if we expand in the hypernym

direction. In addition, we also avoid terms that are rarely used in the real world. Since

WordNet provides tag counts (number of occurrences of words with specific meaning in a

corpus), for each synonym or hypernym expansion, we pick up to the three most frequently

used word forms with tag counts > 10 of that sense. This expansion process resulted in

184 candidate queries.

We implemented an interface and asked three native English speakers to provide their

judgment on whether an ontological class is a super/equivalent/sub/overlapped/disjoint
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concept to the query. The interface always infers for the relevant classes when the user

specifies his judgment on one class: If the user specifies a class as the subclass of the

query, all the subclasses of that class are marked as subclasses as well. The super class and

equivalent class follow the same inference. We also made an assumption that frequently

holds in DBPedia: different branches are disjoint with each other, and thus when a super

class is specified or inferred, all the other branches are automatically marked as disjoint.

Note the automatic markup feature reduces the burden of participants and also ensures a

consistent judgment (it is impossible to mark C1 as super class and C2 as sub class while

C1 @ C2 in the KB).

Using these judgments, our system automatically categorized the queries into the five

matching types, i.e. Syntactic match, Synonym match, Superclass match, Subclass match,

and Bounded match. We now discuss the algorithm for combining the judgments and

deciding what match it is based on the combined judgment.

We model the judgment as a set of beliefs each participant holds for a given query,

and the belief could be that one class is a super/equivalent/sub class of the query. Since

we assume disjointness in different branches, and assume the participant provided their

judgment to the best of their knowledge, we can simply use the closed-world assumption

[40], and consider anything that cannot be inferred from one’s belief to be against his

belief. Then we provide two methods for beliefs w.r.t. inference. The complete() method

completes the set of beliefs by adding all entailed ones, and in the opposite direction, the

simplify() method reduces the beliefs to the minimum set of beliefs that could infer any
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belief in the current set. Note that we always simplify the judgment before we store it or

report it, because the simplified one saves space and is easier to understand.

We present the algorithm for combining various judgments of a given query in Algo-

rithm 2 which works as follows. We first complete the set of beliefs in each judgment,

and then count how many people are in favor of each belief. By majority vote we decide

what to be kept in the combined judgment. Lastly we simplify the combined result and

return it. From the simplified results, we can classify the query by its simplified combined

judgment. If there is a belief for equivalent class, we check the word form and decide if it

is a Syntactic match or Synonym match. If there are only super classes or sub classes, it

is a Superclass match, or a Subclass match. If there are both, then it is a Bounded match.

If there is nothing, it fails to obtain intra-judge agreement.

Algorithm 2 Algorithm for Combining the Judgments in jList

1: function combineJudgments(Judgment[] jList)
2: for Judgment j in jList do
3: j.complete() ◃ Complete the set of beliefs by adding all entailed ones
4: end for
5: Map<Belief, Integer> countMap← ∅ ◃ Declare a map to count each belief
6: for Judgment j in jList do
7: for Belief b in j.getBeliefs() do
8: addCount(countMap, b)
9: end for

10: end for
11: Judgment cj ← ∅ ◃ Declare the combined judgment initialized with no belief
12: for Belief b in countMap.keySet() do
13: if countMap.get(b) > jList.size()/2 then ◃ Majority vote for each belief
14: cj.addBelief (b)
15: end if
16: end for
17: cj.simplify() ◃ Simplify beliefs to the minimum set
18: return cj
19: end function
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After the combination of judgments, there were only 4 queries that lacked intra-judge

agreement and we dropped them from the query set. Note that there are two approaches

we applied to maximize the intra-human agreement in this algorithm:

• We use a majority vote (e.g. at least two out of three people should agree) on the

judgment of each class query pair. If we only keep the ones that everyone agrees on,

we will have 23 queries that lack intra-judge agreement.

• We extend the judgment to super/sub classes to see if there is anything that can

be agreed in the hierarchy. For example, for Ci and Dq, if one says Ci @ Dq and

another says Ci = Dq, we consider Ci @ Dq as their agreement. If we do not apply

such inference, we will have to drop 16 queries.

Proposition 3. Combining a list of consistent judgments will result in a consistent judg-

ment using Algorithm 2. The consistency here we discuss means that we do not have any

C1 @ Dq @ C2 in the belief set of a judgment if C1 A C2 in the KB.

Proof. If we have C1 @ Dq in the combined judgment, it means we have the majority

of votes for C1 ⊑ Dq. For each of these vote, we know after inference with C1 A C2

by calling the complete() method, each judgment should also have C2 @ Dq. Thus the

majority should have C2 @ Dq. On the other hand, Dq ⊑ C2 in the combined judgment

means the majority should have C2 ⊒ Dq. Thus we have at least one judgment that has

both C2 @ Dq and C2 ⊒ Dq, which means it is an inconsistent judgment.

A summary of the data set is presented in Table 8.3. This table categorizes the queries
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Table 8.3: Summary of Query Dimensions

All e.O e.S e.H1 e.H2 e.H3

All 180 106 13 28 17 16

Syntactic 68 53 3 7 1 4

Synonym 26 15 2 5 2 2

Super 42 26 6 7 3 0

Sub 12 0 0 3 5 4

Bounded 32 12 2 6 6 6

by two dimensions: how a query is generated (the columns) and the ground truth of the

query (the rows). From the table we can see that the query set we generated has a good

covering on different match types. In total there are 94 exact matches and 86 partial

matches. Note that we have e.S which uses synonyms in WordNet to expand queries, and

we have Synonym matches which are often the matches of expanded query to class labels.

However these two synonym-related features do not highly correlate. Interestingly, we

find 3 terms from e.S have Syntactic matches: their original queries match the synonyms

of class terms and the expanded queries become the same terms as the class labels. By

hypernym expansions (e.g. e.H1), we find that although we get more general query terms,

we sometimes get exact/subclass matches to other classes in the KB. All these features

indicate the diversity in our generated set.

To best evaluate the top-k retrieved classes, we use Discounted Cumulative Gain

(DCG) [23] as our metric. i.e.

DCGp = rel1 +

p∑
i=2

reli
log2 i

(8.21)
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The gain (i.e. measure the usefulness) is accumulated from the top of the result list to the

bottom with the gain of each result discounted at lower ranks. It is particularly useful for

us to evaluate our system because we assume a list of matched results, instead of the top

one, are returned to a user or to a subsequent component. When a query is issued, the top

p = 10 matched classes are returned, and by using the average of relevance scores from

human judgment, we get the DCG score for this query. There is another similar metric

nDCG (normalized-DCG). nDCG sorts documents of a result list by relevance, producing

an ideal DCG, and normalizes the DCG of the retrieval results by this ideal DCG. We

choose DCG without normalization because we want to weight each match by its rank and

utility, and to emphasize that there is a difference between an exact match and a partial

match. Meanwhile we also present the average ideal DCG score to show the best possible

performance a system can achieve based on human judgment.

8.3.2 Experimental Results

We use Additive Value Function (AVF) from Equation (8.3) , an IR method (Luc) based

on Equation (8.8), Jaccard (Jcd) from Equation (8.16), F-Measure (FM) from Equation

(8.20), and Pointwise Mutual Information (PMI) from Equation (8.17) introduced in Sec-

tion 8.2 as our test systems. The IR algorithm uses the state-of-the-art IR system Lucene

3.5, which uses a combined Boolean model and Vector Space Model scoring method. We

say the Luc approach is ”based on Equation (8.8)” because although it is similar, the

weighting and normalization factors are much better tuned for standard IR tasks (de-

tailed in the javadoc of org.apache.lucene.search.Similarity). All of the above systems use
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instance texts. As we introduced in Section 8.1, the texts we chose are labels (L), com-

ments (C) and fragments of comments (F) which we extracted by using the Wikipedia

custom. We also implemented two baseline systems, a Scaled Levenstein approach (SL

in Equation (8.1)) and a WordNet approach (WN in Equation (8.2)), that only use class

labels. To avoid extra factors complicating the analysis, we define the transforming func-

tion as T (rj) = rj , i.e. we directly use the IR scores from results in the first phase, and

we set a constant ratio α = 1 in Equation (8.13). Our future work includes studying the

effect of different transforming functions and values of α on different queries.

Figure 8.5 shows the overall comparison of average DCG scores among the combination

of the systems and text fields, in contrast with the baselines and the ideal DCG score.

Among different systems, we find that Jcd, FM, and Luc have a better performance than

the others, and it suggests that if we use Jcd, FM, or Luc, our proposed idea of using

instance texts can provide better class results than the syntactic matching approaches on

class labels. A straight-forward AVF is always worse than the WN baseline, and if it uses

just labels, it is even worse than the SL baseline. For different text fields, we can see that

F is the best feature in general, although C is almost as good. Using L seems to be less

helpful than the other two fields. That is because, as we discussed in Section 8.1, labels

of instances do not usually provide useful terms that refer to the class of that instance.

However, it is still useful if we manipulate it with a right approach. In this experiment,

we did not try to use multiple fields as a text feature. However we have noticed the fact

that in some cases one field provides more useful information but in other cases introduces
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Figure 8.5: Comparison on the Overall Query Set

more noise than the other. We believe by combining these different fields, we can expect

improvement for the class retrieval problem. We will study this in our future work. Also,

interestingly, we find the coincidence that FM and Jcd always return the same rankings

of classes for all the queries in this experiment. After reflection, we realized that since we

did not transform the IR score rj , we always underestimated |Dq ⊓Ci| in Equation (8.15);

and thus in Equation (8.16) |Dq ⊓ Ci| is usually negligible when compared to |Dq|+ |Ci|;

the typical value of
|Dq⊓Ci|
|Dq |+|Ci| = 10−5 ∼ 10−4 in our test set, thus it it makes Equation

(8.16) highly similar to Equation (8.20). Since there is no significant difference between

FM and Jcd, in the rest of the chapter we only present the results of FM.

We also compare the systems in different dimensions of queries. Figure 8.6 shows the

comparison on match types of queries. We compare the four systems on the same field F,

to see how each system performs against queries with different matching types. There are
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Figure 8.6: Comparison on the Match Type Dimension

several things we want to point out. First we want to explain the change of average ideal

scores. There are two reasons why an ideal score becomes small: (1) there are many partial

matches, which get partial scores; (2) a partial match has too many classes as its bounds.

The upper bounds usually have only one class for each query, however there could be many

for the lower bounds for a query. Although we set the sum of rel scores of these bounds

to 0.8, the ideal DCG score, however, will sum the discounted scores to less than 0.8 if

there are ≥ 3 bounds. This is why we see exact matches have 1.0 and Superclass matches

have 0.8 as their ideal scores, while Subclass matches have very a small ideal scores and

Bounded match is between Superclass match and Subclass match. Secondly, we inspect

the performance of baseline systems. As we can expect, SL works perfectly on Syntactic

matches, and sometimes finds matches in Synonym match queries thanks to the partial

string match. e.g. “character” matches to d:FictionalCharacter and “official” matches

to d:OfficeHolder. However it has difficulty finding partial string matches in other match
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types, and the score drops dramatically. Similar to SL, WN is perfect at Syntactic matches,

and is very good at Synonym matches because of the lexical expansion on queries to match

to class labels. For Superclass matches and Bounded matches, we find that such lexical

expansion continues benefiting WN; however for Subclass matches, it makes WN worse

than SL: when we expand the query too much, we reduce the precision while increasing

the recall. Also, we want to point out that the experiment is a little biased towards

WN, mainly because we generate the query terms using WordNet. Lastly we compare the

performances of proposed systems on different match types. We can see that FM is the

best on Exact and Subclass matches, however Luc and AVF become better for Superclass

and Bounded matches. By examining Equation (8.3) of AVF, we can see that AVF has no

factoring for classes. While each instance adds some utility to each of its classes, the more

general classes are more likely to get larger scores. Thus AVF always favors general classes,

and effectively finds upper bounds (usually general classes) for Superclass and Bounded

matches. On the other hand, FM has a factor of |Ci| that penalizes general classes, thus

it is less likely to get upper bounds in these cases. Luc, however has a moderate factoring

on |Ci|, which is encoded in its normalization of document sizes (which in our case is |Ci|),

and thus exhibits good performance over different match types.

To further inspect how the systems perform on queries that match to general or specific

classes, we divide the query set in a third way. We define the depth of a class as the shortest

path length from this class to the top class owl:Thing in the class hierarchy graph. For

each query, we calculate the average depth for all the bound classes (or the exact class if
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Figure 8.7: Comparison on the Average Depth of Matched Classes

it is an exact match), and round to the nearest integer. As a result, general queries have a

small average depth, while specific queries have a larger average depth. We compare FM,

Luc, PMI, and AVF on field F in Figure 8.7. We can see that each system has a clear trend

of performance as the average depth increases. Most systems achieve better class retrieval

results if the query becomes more specific, while only AVF favors the general queries. In

other words, FM, Luc, and PMI are leaning towards returning specific classes in the KB

because |Ci| all appear in their formula as a factor discounting the general classes. While

such discounting is desirable for specific queries, we wonder whether in some systems it is

over-discounting. From the figure we can see that Luc is most robust with the change of

generality of queries, while PMI is most sensitive to it.

Based on our results, we find a nearly 20% improvement is achieved when comments

or comment fragments are used as the instance text and the FM or Jcd approach is used

for class induction. Also, we believe the results can be further improved based on our two

phase instance text based class retrieval framework. There are a few directions for future
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work: new approaches for inducing the class, alternative text fields (or combination of

text fields), and the impact of various of transforming functions.

We believe this instance-based class retrieval can be used in applications with the

following characteristics: there are multiple user communities with different terminology

for the same concept, or the conceptual model of the ontology is dissimilar from that of

many users. If this is the case, and there is instance data that has text fields of sufficient

length, then our approach is likely to provide some benefit. So the LOD can be a very

appropriate dataset for this approach, or at least retrieval of classes from DBPedia and its

interlinked datasets can be improved. For example, we can integrate this component into

the contextual tag cloud system in order to get better search results (with a much higher

recall) which would also include classes with alternative names, or even partially matched

classes (super/sub classes). However, meanwhile, how to scale this approach to the LOD

is also another interesting challenge for future work.
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Chapter 9

Future Work

In this chapter, I propose important and interesting topics that are worthy of investigation

beyond this dissertation. We have successfully applied the idea of contextual tag clouds

to two datasets that are very different and adapted various optimizations based on the

features of the dataset. However, we wonder whether we are able to apply this to further

scenarios as well. Thus the ongoing research effort will focus on how to generalize the

contextual tag cloud and underlying algorithms.

9.1 Generalized Theory: Boolean Attribute Co-occurrence

Histogram

In order to make the algorithms more broadly applicable, we consider the more general

problem of calculating Boolean Attribute Co-occurrence Histogram, which focuses on the
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computation of conditional distributions of boolean attributes and some useful mathemat-

ical operation on the distributions. Here we provide a proposal of the formalization of the

problem.

Let I be the set of all the data record items, and T be the set of all the boolean

attributes (tags). For t ∈ T , i ∈ I, t(i) and ∼t(i) denote item i has a true/false value on t

respectively. For convenience, we also define S as the set of all the false-value attributes.

i.e. S =
∪

∀t∈T {∼t}. Let A = T ∪ S.

Given a set A ⊆ A, a query q : 2A → 2I is a function that selects items that match

the conjunction of all the given attributes, i.e.

q(A) = {i| ∧a∈A a(i)} (9.1)

Given a set I ⊆ I, a histogram h(I) = [(t1, f1), . . . , (tn, fn))] outputs a list of (t, f) ∈

T × N0, where ∀tj ∈ T , fj = |{i|i ∈ I ∧ tj(i)}|. We define the function for co-occurring

histogram of boolean attributes A, hq(A) = h(q(A)).

By default, each element (tj , fj) in this list is ordered using the natural ordering of T ,

i.e. alphabetically. Given the order of t, the list can be easily represented as a |T | × 2

tag-frequency matrix, where the first column is the tag id (1 to |T |) and the second column

is the corresponding frequency of the tag.

Based on the formalization of the histogram result, we can further define operations

on the histogram (assuming it is represented as H), such as

• scale(H, func), where func is a function applied to each frequency in H.
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• combine(H1,H2, func), where the frequencies of H1 and H2 corresponding to the

same terms are combined via a function func. In either histogram, missing terms

are treated as frequency = 0. This can be useful in performing comparative analysis,

e.g. by using subtraction.

• sort(H), the result of which is sorted by descending frequencies.

• choose(H, {t1, t2, . . . , tn}), which creates a histogram that consists only of specified

elements t1 through tn.

• frame(H, i : k), which selects the i through k elements from H. This can be used

in paging the tags.

• filter(H,n,m), which selects only elements with frequencies in the range of [n,m].

• topK(H, k), which selects the top-k most frequent elements from H.

Notably, some of the listed functions can be implemented as a combination of other

functions, e.g. topK(H, k) = frame(sort(H), 0 : k − 1).

Let R be the relation set between all the attributes, including both subsumption (e.g.

t1 ⊑ t2) and disjointness (e.g. t1 ⊑ ∼t2). We can define Histogram Axioms such as:

Axiom 1. The histogram of query attribute set A can be computed via combining

(summing the frequencies at each tag) the two histograms of query attribute set A union

any regular tag and A union its negation tag. i.e.

hq(A) = combine(hq(A ∪ {t}), hq(A ∪ {∼t}), g(x, y) = x+ y) (9.2)
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Axiom 2. For any two attribute sets A and A′, if for any attribute in A′ we can find

a sub attribute of it in A, then by comparing the histogram of the two sets, we will find

no frequency for the first will be larger than the corresponding frequency for the second.

i.e.

(∀a′ ∈ A′, ∃a ∈ A s.t. a ⊑ a′)⇒ combine(hq(A), hq(A′), Ix>y(x, y)) = ∅ (9.3)

Axiom 3. The scale functions in the combine function can be simplified and combined

into a single function.

combine(scale(H1, g1), scale(H2, g2), g0) = combine(H1,H2, g0(g1(x), g2(y))) (9.4)

These axioms will be useful for optimizing the online computation algorithms, which

is the topic of the next section.

9.2 Improve Pruning Algorithm for Online Computation

In Section 4.2, we introduced three ways of pruning unnecessary tag queries: by using the

Co-occurrence Matrix, by Using the previous tag cloud cache, or by dynamic update. If

we reconsider the approaches, we can actually treat the Co-occurrence Matrix as a special

kind of cache, with two major differences:

• Context. The Co-occurrence Matrix is built for all the regular tags, while the cache

context could be a combination of regular tags and negation tags. Also the size of
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the context for the Co-occurrence Matrix is always 1, while the cache context can

be any positive integer.

• Stored Information. The Co-occurrence Matrix only has the tags whose frequency

with the context tag is greater than 0 (in other words, the co-occurred tags), how-

ever, the frequency is not stored. In comparison, in the cache, we always store the

frequencies. We decide to store only the tags in the Co-occurrence Matrix, because

we want to minimize the disk cost for this large matrix, which also means for online

computation we need less time to load the matrix on the fly.

However, in fact, we can actually implement the cache file in the way that no extra

time is needed if we do not need to know the co-occurring frequencies: we can first store

the array of tags and then the corresponding array of frequencies sequentially. If we do

not want the frequencies, we just load the first array without reading the remaining part

of the cache file.

On the other hand, we should think what is the advantage of storing those co-occurring

frequencies. First of all, the frequencies can be directly used as output, if the request is

exactly the context of the cache (or semantically equivalent). Secondly, the frequency of

each tag also indicates an upper bound which can be a potential point for optimization.

Formally, if we have the cache for context A, and now we get a request for A ∪ {a}, then

we know that adding a tag to the argument of fR will result in an equal or less value. i.e.

∀t ∈ T , fR(A ∪ {t}) ≥ fR(A ∪ {a, t}) (9.5)
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Previously, we only used this rule for the special case:

fR(A ∪ {t}) = 0⇒ fR(A ∪ {a, t} = 0 (9.6)

which in other words, means that the co-occurring tags for a more restricted context can

only be a subset of the co-occurring tags of a less restricted context. Now we can think

about the optimization for the general case. The upper bound can be used when we

issue a boolean IR query. When doing the intersection of the posting lists, we can stop

the intersection process if the current size of the intersection already reaches the upper

bound.

Another interesting problem is, when we have multiple cache files available, and each of

them has a context that is a subset of the context of the request. We might be able to prune

some tags by loading any combination of these cache files and finding the intersection. The

more cache files we load, the better chance we will prune more tags, but there is also an

additional cost for loading each cache. Do we prefer loading some combination of the cache

so that we get the most benefit with regard to the total cost? Note that the algorithm

for deciding which cache files to load should also be timed for the total cost. Can we find

a smart algorithm to select the most efficient cache files? Only via experiments can we

answer the question.
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9.3 Extend Contextual Tag Cloud to Property Value Spaces

In Chapter 6, we have discussed how we extended the contextual tag cloud system to

visualize the computer logs. We think this is a good practice for evolving our contextual

tag cloud idea, because in addition to the ontological usages, we also investigated how to

properly show the values of properties as tags, which greatly improve the query ability

of the system. However in that system, we manually mapped certain value spaces, and

defined blocks and tabs for clustering tags. So one of our future work should focus on

how to automate this process, or minimize the manual effort, and eventually we would

like to have a contextual tag cloud system for LOD on value spaces, which supports any

standard “star query” (or a converted one).

Star queries are “SPARQL queries that contain a graph pattern forming a star, with

a single center vertex (that is usually a variable), and one or more edges emanating from

this center vertex to variable or constant vertexes”, which are “fairly common in SPARQL

workloads” [21]. The contextual tag cloud interface can be easily adapted as the templates

for these queries: In addition to the current design of choosing classes and properties,

for each selected property in the context, a user can be provided with a dynamically

generated tab (besides the class tab and property tab), where a tag cloud is shown for

the value space of that property. Ideally that value space is also dynamically computed,

based on the current context, and it can also be refined in some cases. For example, for

the eg:birthYear property, a user is first shown tags that specify the century; then after

picking a tag “1900-1999”, the user is shown a refined tag cloud consisting of tags “1900s,
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1910s, · · · ”, lastly after picking a tag “1980s”, the refined tag cloud shows “1980, 1981,

· · · ”.

While the ideal use case sounds very desirable to us, and requires only a few straight-

forward changes in the interface, we face many challenges on the implementation side.

The first question is how to automatically define the tags. Although we may get

some information from the definition of some data type properties, we cannot assume the

instance triples follow the definitions. So it is more practical to go through all the values

of a given property and decide what data type it is, while also allow for outliers (e.g. most

values are numbers but occasionally there are values like “N/A” or “null”). After knowing

the type of the data, we should choose a corresponding strategy to apply to the values.

For numbers, we should apply algorithms to allocate meaningful buckets (ranges) based

on the min, max, mean, and/or standard deviation of the values, and use these buckets as

discrete tags. For strings, we should tokenize them, and cluster similar ones into the same

tag. We should also consider assigning multiple tags for each property value in order to

facilitate refinement of contexts.

Also there are a lot of questions about the infrastructure. We are introducing thousands

to hundreds of thousands of tags, and there are various relations between them: e.g. tags

of the same property should be grouped, the refining tags are organized in a hierarchy, the

tags of strings may have similarity scores. Thus we need to reconsider the data structure

and organization of the tags. Most likely, we will need a more complex data structure

and split the storage of tags in different places with some shared reference schema. This
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also raises a question about how the Co-Occurrence Matrix might need to change. For so

many tags in different categories, we probably do not want to compute or record pairwise

co-occurrence for all the tags, but instead only compute the pairs that provide us the most

benefit for online computation.

We understand much work is required to achieve this goal. So in practice we should

also plan intermediate steps. For example, we can consider to reduce or simplify some

features, or we can first deploy a system on a smaller subset, such as DBPedia as a

proof-of-concept.

9.4 Apply the Infrastructure to Other Research Fields

We believe the scalable infrastructure in our contextual tag cloud system, should not be

used only for the user interface. The computational problem under the system is closely

related to some fundamental statistics of the dataset. Thus we believe the system can also

be used to help any other algorithms that might need to perform many computations on

the statistics that we can provide. Here we have two scenarios as examples.

Association Rule Learning. Association rule learning [38] is a popular method for

discovering interesting co-occurring relations between variables in large databases. The

most well-known algorithm is as follows: (1) use the Apriori algorithm to find all frequent

itemsets, i.e. attributes that occur together, with frequency ≥ ϵ; (2) for each itemset

I, divide I = X ∪ Y , where X ∩ Y = ∅, accept any rule X ⇒ Y if the confidence

count[I]/count[X] is above the threshold. The Apriori algorithm can be implemented
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with our system because an itemset is like a set of attributes or a context in our tag cloud,

and the function for the frequency of a given itemset is exactly our fR function. Also the

frequent itemsets of size n + 1 are built based on the frequent itemsets of size n, where

our cache and related algorithms can be helpful.

Feature Selection in Decision Trees. The goal of a decision tree [43] is to predict

the value of a target variable based on several input variables. When creating a decision

tree (generating the rules), at each node of the tree, the feature selection algorithm chooses

the attribute of the data that most effectively splits its set of samples into subsets enriched

in one class or the other. In many popular feature selection algorithms, such as C4.5 [39],

the splitting criterion is the normalized information gain, and the attribute with the

highest normalized information gain is chosen to make the decision. If we only consider

boolean attributes, our system fits the problem very well. At each node of the tree, we can

treat the node as a tag cloud with tags in it path as the context, and after applying some

functions on the frequencies, we get the scores (normalized information gain) for each tag

in the tag cloud, and then the tag with the highest score should be selected. Since the

entropy formula is basically a function over the conditional probabilities, our system can

be very fast at providing these statistics.
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Chapter 10

Conclusion

We are on the verge of an explosion of RDF data. Billions of facts have been created in the

RDF format, and there are even more to be come available. The Semantic Web technology

provides a great framework to allow different people contribute their knowledge, or link

their knowledge to others’. While more and more Semantic Web Knowledge Bases are

built either from the interlinked datasets or from a self-contained domain expert system,

we put our focus onto how such a volume of valued knowledge should be consumed, not

only by the experts, but also by every casual user. We analyzed and summarized the

reasons why a user might not be able to use a Semantic Web KB, and make our efforts

towards reducing the knowledge gaps via two aspects.

The first direction is a system for exploring a Semantic Web KB. We proposed the

contextual tag cloud system. The contextual tag cloud system is a novel tool that helps

both casual users and data providers explore the LOD dataset: by treating classes and
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properties as tags, we can visualize patterns of co-occurrence and get summaries of the

instance data. From the common patterns users can better understand the distribution of

data in the KB; and from the rare co-occurrences users can either find interesting special

facts or errors in the data. The main challenge is how to provide a responsive system

on a large dataset such as the BTC dataset which contains more than 1.4 billion triples.

In addition to the interaction design, we implemented the infrastructure with an inverted

index and three pruning approaches, as well as a scalable preprocessing approach. In the

experiments, we demonstrated an affordable preprocessing approach, which has almost

linear time and space costs and loads the BTC dataset in ∼12 hours; we showed that using

the inverted index takes 0.6-0.7 millisecond for each count query for the BTC dataset, and

is on average 18X faster than relational DB based storage and 10X faster than a state-

of-the-art general purpose RDF repository; we proved the effectiveness of our pruning

approaches which usually saves us 80-90% of unnecessary count queries; we showed that

90% of the randomly generated requests from an end user can get the response within 1

second, 97% within 2 seconds, thereby justifying our design choices. We also extend the

idea and the concept of tags, by defining more categories such as property values as tags.

We applied the contextual tag cloud system to the problem of the computer usage logs,

and revisited the infrastructure of the system, where we proposed different strategies for

processing queries, and by experiments we showed that the new combined query strategy

reduces response time by 16% on average and by as much as 50% on particular queries.

We also conducted a preliminary user study on the contextual tag cloud system. We are
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pleased to see that the non-expert participants were able to use the system to access a

Semantic Web dataset and successfully complete a few typical tasks as in the real world,

and 85.7% of these novice participants felt the system provided a good means to investigate

the data. We believe this is a good sign that we are filling the knowledge gaps between

users and Semantic Web KBs. However, we think there is still a long way to go for

the system. We think a generalized abstraction of the tag cloud system is essential for

applying this idea more widely. Querying the values of properties would be a huge upgrade

to the current system. Reducing displayed tags and showing only the interesting ones is

also a very important and desirable feature for a really practical product. In order to

achieve these, we are likely to encounter more challenges on computational problems for

the infrastructure, and also data mining or machine learning techniques will be involved

for deciding which tags to hide. By formalizing the algebra and axioms of the tag cloud

system, we expect such problems can be resolved both theoretically and practically in the

future.

The other direction is linking the ontological classes to natural language expressions.

We first proposed a novel approach for WSD on the labels of classes with our probability

model. We constructed a probabilistic model of the WSD task, and derive a formula

for calculating the sense distribution, and then propose approaches of estimating each

term in this formula. Our preliminary experiments show our approach can achieve a 84%

accuracy and also make the correct senses distinguished from other senses in the result

distribution. Alternatively we addressed the keyword based class retrieval problem and
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solved the problem without the help of external lexicons. Unlike traditional approaches

that directly match the query to the labels of classes, we proposed a two-phase framework

that utilizes the texts from instances to improve class retrieval, and by experiment we find a

nearly 20% improvement in DCG scores is achieved when comments or comment fragments

are used as the instance text for our proposed instance-based approach comparing to

the baseline systems. The future work includes improvements on both algorithms, and

potentially integration of the algorithms to the contextual tag cloud system as the add-ons

of linguistic annotation or the advanced search feature.

The Semantic Web has been evolving for over 10 years, and the related techniques

have been widely applied to many real world scenarios. While there has been a debate

on whether Semantic Web is the future of the Web, no one can deny that the era of Big

Data has come, nor would anyone deny the great need of integrating various information

in order to extract useful information from it. Among all the efforts for easier information

integration, Semantic Web is probably the most influential one supported by world wide

communities. Meanwhile, we are also aware of other sibling frameworks of representing

structured data (graph data). For example, Schema.org, a lightweight framework, provides

a shared markup vocabulary that makes it easier for web masters to decide on a markup

schema and get the maximum benefit for their efforts, which is another popular way for

representing structured data and is supported by search engines including Bing, Google,

Yahoo! and Yandex to improve the display of search results. We want to emphasize here

that all the approaches we have discussed in this dissertation do not heavily depend on
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the Semantic Web specific environment, and can be easily adapted to other frameworks.

While more knowledge providers and more researchers devote their effort to building

the ultimately semantically interlinked web of knowledge, we would like to see more people,

not just the academics, to consume and benefit from the knowledge. We understand the

challenges due to the nature of the diversity and dynamics of LOD, and we are aware

of the imperfect quality of the data. We are not going to resolve all the difficulties that

people have when they try to use a Semantic Web KB. However, we believe the completion

of this dissertation is moving towards the right direction, bringing more people closer to

the world of Semantic Web.
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Appendix A

Consent Form

CONSENT FORM

Study on User Interfaces for Exploring Large Scaled Linked Data

You are invited to be in a research study of User Interfaces for Exploring Large Scaled

Linked Data. You were selected as a possible participant because you are a Lehigh student

over 18 years old. We ask that you read this form and ask any questions you may have

before agreeing to be in the study.

This study is being conducted by: Xingjian Zhang, under the direction of Prof.

Jeff Heflin, Department of Computer Science and Engineering.

Purpose of the study

The purpose of this study is: to evaluate the usefulness of the user interface that

we proposed for exploring large scaled linked data datasets. The dataset includes general

facts such as the name, birth year, and active years of an athlete, or the properties of a
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location, of a company, etc.. However, the information is so mixed, and there are just

too many different terms to express those facts. A challenge is how to familiarize people

with the dataset and help them decide what terms are more frequently used so that they

can construct queries that are likely to have answers. In order to study whether our

proposed interface would be helpful for this purpose, we ask the participants to use two

web applications for certain browsing tasks. We will record the time and the answers for

the tasks performed by each participant, as well as collect surveys of the comments on the

applications.

Procedures

If you agree to be in this study, we would ask you to do the following things:

1. A general tutorial (∼ 15 min) about the related concepts in this experiment, such

as different types of user interfaces, the concepts, purpose and statistics of the real

world linked data, and the features of the test systems. Then we ask them to make

their best attempts to accomplish a set of tasks by using both systems.

2. The first group of tasks (10 - 15 min) is to find the best combinations of terms that

would return the most results. For example, if the question is the areas of lakes,

there are hundreds of terms (from different data sources) that describe the concept

lake, and hundreds to describe the property area, and the task is to find which

combination would provide the most information to the user.

3. The second group of tasks (10 - 15 min) is to find potential errors in the dataset
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within a given context. For example when examining the software instances in the

dataset, there is an error that some software products are considered the same as

the company who produce it.

4. The survey questions (∼ 5 min) are about your experience in using the system, such

as how useful you feel about various features of the systems in finishing the tasks.

More details will be given in the tutorial and the instruction sheet.

Risks and Benefits of being in the study

Possible risks:

First, participants will be subjected to minimal risk, similar to sitting at a desk and

working on a computer; Second, participants may also feel frustrated when they try to

accomplish the task or wait for the response.

The benefits to participation are:

Participants will understand more about the linked data, which could be helpful for

their future study and work in computer science major. The study may also contribute

as the prove of the usefulness of a novel user interface for the real world linked data.

When linked data get more popular and easier to use, everyone will benefit from this large

amount of shared knowledge on the web.

Compensation

You will receive no monetary compensation but will be provided with pizza

and soft drinks.
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Confidentiality

The records of this study will be kept private. In any sort of report we might publish, we

will not include any information that will make it possible to identify a subject. Research

records will be stored securely and only researchers will have access to the records.

Voluntary Nature of the Study

Participation in this study is voluntary: Your decision whether or not to participate will

not affect your current or future relations with the Lehigh University. If you decide to

participate, you are free to not answer any question or withdraw at any time without

affecting those relationships.

Contacts and Questions

The researchers conducting this study are: Xingjian Zhang and Prof. Jeff Heflin. You

may ask any questions you have now. If you have questions later, you are encouraged to

contact Xingjian Zhang at PL117, 610 758 4235, xiz307@lehigh.edu or Prof. Jeff Heflin

at PL330, 610 758 6533, heflin@cse.lehigh.edu.

Questions or Concerns

If you have any questions or concerns regarding this study and would like to talk to

someone other than the researcher(s), you are encouraged to contact Susan E. Disidore at

(610)758-3020 (email: sus5@lehigh.edu) or Troy Boni at (610)758-2985 (email: tdb308@lehigh.edu)

of Lehigh Universitys Office of Research and Sponsored Programs. All reports or corre-

spondence will be kept confidential.
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You will be given a copy of this information to keep for your records.

Statement of Consent

I have read the above information. I have had the opportunity to ask questions and have

my questions answered. I consent to participate in the study.

Signature: Date:

Signature of Investigator: Date:
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Appendix B

Survey Questions

1. I am a computer user with experience more than web browsing and document editing:

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

2. I am a computer user with experience more than web browsing and document editing:

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree
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⃝ Strongly disagree

3. Before this study I have already used some tag cloud browsing systems (like flickr)

and faceted browsing systems (like Amazon.com):

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

4. After the tutorial I am aware of the purpose and the basic concepts of the linked

data, and the need of exploring tools of it:

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

5. It is easy to get familiar with the concepts and functionality of System 1 (Tag Cloud):

⃝ Strongly agree

⃝ Agree
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⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

6. It is easy to get familiar with the concepts and functionality of System 2 (Term

List):

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

• I feel the first group of tasks (finding best combinations) are easy to accomplish

via System 1 (Tag Cloud):

⃝ Strongly agree

⃝ Strongly disagree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

7. I feel the first group of tasks (finding best combinations)are easy to accomplish via

System 2 (Term List):
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⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

8. I feel the second group of tasks (finding errors) are easy to accomplish via System 1

(Tag Cloud):

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

9. I feel the second group of tasks (finding errors)are easy to accomplish via System 2

(Term List):

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree
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10. In general, I think System 1 (Tag Cloud) is a good way of visually organizing data

and supports a lot of functionalities for exploring data:

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

11. In general, I think System 2 (Term List) is a good way of visually organizing data

and supports a lot of functionalities for exploring data:

⃝ Strongly agree

⃝ Agree

⃝ Neutral

⃝ Disagree

⃝ Strongly disagree

12. Please provide your general comments (pros and cons) on System 1 (Tag Cloud)

(you can also emphasize your keywords with #):

13. Please provide your general comments (pros and cons) on System 2 (Term List) (you

can also emphasize your keywords with #):

14. Please provide your general comments (pros and cons) on this study:
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