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Abstract

Movement has been made in recent times to generalize the study of degree se-

quences to k-edge-colored graphs and doing so requires the notion of a degree vector.

The degree vector of a vertex v in a k-edge-colored graph is a (k× 1) column vector

in which entry i indicates the number of edges of color i incident to v. Consider the

following question which we refer to as the k-Edge-Coloring Problem. Given a set of

column vectors C and a graph family F , when does there exist some k-edge-colored

graph in F whose set of degree vectors is C? This question is NP-Complete in gen-

eral but certain graph families yield tractable results. In this document, I present

results on the k-Edge-Coloring Problem and the related Factor Problem for the

following families of interest: unicyclic graphs , disjoint unions of paths (DUPs),

disjoint union of cycles (DUCs), grids, and 2-trees. Specifically, in Chapter 1, I

characterize the degree vector sequences of k-edge-colored unicylcic graphs, and in

Chapter 2, I characterize degree sequences of factors of fixed DUPs, fixed DUCs,

and fixed graphs with maximum degree at most 2. In Chapter 3, I characterize

degree vector sequences of 2-edge-colored fixed DUPs and fixed DUCs, and in doing

so, I show that one restricted case for each is NP-hard. Finally, I characterize degree

sequences of grid factors in a subset of cases in Chapter 4 and degree sequences of

partial 2-trees in Chapter 5.
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Introduction

The concept of characterizing the degree sequences of graphs is natural amongst

graph theorists, and at its core, the impetus of all our results stems from this

simple concept. Movement has been made in recent times to generalize the study of

degree sequences to edge-colored graphs, a notion pertinent to the field of Discrete

Tomography. In an attempt to progress the study of degree sequences of edge-

colored graphs, we introduce the notion of the k-Edge-Coloring Problem and its

sibling, the Factor Problem. We now give the background required to define these

problems and then we explain the connection between them. Finally, at the close

of this introductory section, we discuss what contributions others have made to the

k-Edge-Coloring Problem and we summarize our contributions as well.

We begin with a few simple definitions. A graph consists of a set of vertices

and a set of edges where each edge represents a pair of vertices. We are concerned

only with simple graphs, meaning we do not consider graphs with multiple edges or

loops. The size of a graph is the number of edges and the order of a graph is the

number of vertices. A graph family is a set of graphs. Typically, the graphs in a

graph family share a common descriptive property. Given a subgraph H of G, the

notation G−H refers to all vertices and edges of G which do not appear in H .

The degree of a vertex in a graph is the number of edges incident to the vertex.

In a graph G with order n, the degree sequence of a graph is a list of n non-negative

integers which consists of the degrees of the vertices in G. A list of integers D is

realizable if there is some graph whose degree sequence is D. The use of the word

“sequence” in “degree sequence” is a bit of a misnomer since the order of the entries

does not truly matter, and so some places in literature refer to a “degree sequence”

2



as a “degree list.” Nonetheless, we use the traditional term “degree sequence.”

Also, we adhere to convention of writing degree sequences in descending order. If

the reader requires any further details about these definitions or others, we refer the

reader to [15].

Asking whether or not a list of integers is realizable is a well-studied question.

To generalize this question to graphs whose edges are colored with 1 of k colors, we

now define a k-edge-colored graph, a degree vector, and a degree vector sequence.

Definition 0.0.1. For a positive integer k, a k-edge-colored graph is a graph

whose edges are colored (not necessarily properly) with colors from the set {1, 2, . . . , k}.

A k-edge-colored graph has a k-coloring.

Definition 0.0.2. The degree vector of vertex v in a k-edge-colored graph is the

(k × 1) column vector where the entry in row i is the degree of color i at v. Given

a k-edge-colored graph on n vertices, the degree vector sequence of the graph is

the collection of n degree vectors of the graph.

Definition 0.0.3. A k-edge-colored graph G realizes a set of vectors D if the degree

vector sequence of G is D. In this case, we say that D is realizable, and that D is

realized by G.

Instead of saying that a k-edge-colored graph realizes D, we sometimes say that

a k-coloring realizes D, and by this we mean that the k-edge-colored graph with

the given k-coloring realizes D. Given a k-edge-colored graph G, we define a color

i degree sequence of G. Note that the color i degree sequence is precisely the list of

entries in row i of the degree vector sequence of G.

Definition 0.0.4. For 1 ≤ i ≤ k, the color i degree sequence of a k-edge-colored

graph is the degree sequence of the color i subgraph.

Given a collection of (k×1) column vectors D, we wish to determine whether or

not there exists some k-edge-colored graph from a specified family which realizes D.

This is precisely the k-Edge-Coloring Problem. When k = 1, this problem reduces

to asking whether or not a list of integers is realizable by some graph in a certain

family.

3



Problem 0.0.1. (The k-Edge-Coloring Problem) Given a graph family F ,

determine criteria characterizing when a collection D of (k × 1) column vectors is

realized by some k-edge-colored graph in F .

We now explain the sibling of the k-Edge-Coloring Problem, that is, the Factor

Problem. A factor of a graph G is a spanning subgraph of G. G is referred to

as the host graph of the factor. Factors have been well-studied in the context of

f -factors. Given a graph G and a function f : V (G) → Z
+, an f -factor of G is a

factor in which vertex v has degree f(v). Tutte’s f -factor Theorem indicates when

an arbitrary graph has an f -factor. As another example, a theorem of Ore indicates

when a bipartite graph has an f -factor.

Instead of specifying a function f , we instead specify the desired degree sequence

of a factor and this gives impetus for the following definition.

Definition 0.0.5. Let G be a graph with max degree ∆. A [d0, d1, . . . , d∆]-factor

of G is a factor with di vertices of degree i for 0 ≤ i ≤ ∆.

Figure 2 shows an example of a [d0, d1, d2]-factor of a path. While an f -factor

indicates the degree of a specified vertex in the factor, a [d0, d1, . . . , d∆]-factor does

not. We wish to determine when [d0, d1, . . . , d∆]-factors are present in graphs within

a specified family and we define this problem as the Factor Problem.

Problem 0.0.2. (The Factor Problem) Let F be a graph family. Given non-

negative integers d0, d1, . . . , dr, determine criteria describing when some graph from

F has a [d0, d1, . . . , dr]-factor.

We often consider the Factor Problem before the k-Edge-Coloring Problem. This

is because the Factor Problem gives insight into the 2-Edge-Coloring Problem, which

in turn gives insight into the k-Edge-Coloring Problem for general k. This insight

stems from the natural relationship between a 2-coloring of a graph and a factor of

a graph. After deleting all color 2 edges from a given 2-coloring of a graph G, the

remaining subgraph can be viewed as a factor H of G. Conversely, given any factor

H of G, we can replace all edges in H with color 1 edges and all edges in G − H

4



with color 2 edges in order to obtain a 2-coloring of G. Figure 1 exemplifies this

idea.

1 1

2 1

1 2
1 2 1

(a) A 2-coloring of G (b) A Factor H of G

Figure 1: Obtaining factors from 2-colorings

There is also a relationship between the degree vector sequence D of a 2-coloring

of a graph G and the degree sequence of the factor H obtained by deleting all color

2 edges from G. The list of initial entries of each vector in D is both the degree

sequence of the factor H and the color 1 degree sequence of the 2-coloring of G. For

example, the degree sequence of the factor H in Figure 1(b) is < 3, 2, 2, 2, 2, 1 >.

This is precisely the color 1 degree sequence of the degree vector sequence of G in

Figure 1(a), which is

(

3

0

)(

2

2

)(

2

2

)(

2

1

)(

2

0

)(

1

1

)

.

Notice that the column sums of these vectors yield < 4, 4, 3, 3, 2, 2 > which is pre-

cisely the degree sequence of G.

Therefore, if a k-edge-colored graph realizes a vector sequence, then the graph

has a factor whose degree sequence is the color 1 degree sequence of the given vector

sequence. However, given a factor of a graph G with degree sequence consisting of

di entries of the number i, not every set of vectors whose first row entries consist of

di entries of the number i is realizable by a 2-coloring of G. We give an example of

this now.

Consider the path P and the [1, 2, 3]-factor of P shown in Figure 2. The [1, 2, 3]-

factor of P clearly has degree sequence < 2, 2, 2, 1, 1, 0 >. The column sums of the

degree vectors of any 2-coloring of P must be the degree sequence of P and so must

5



(a) A Path P (b) A [1, 2, 3]-factor of P

Figure 2: Example of a [d0, d1, d2]-factor of a path

be < 2, 2, 2, 2, 1, 1 >. Below are the only two vector sequences with non-negative

integer entries whose first row entries are < 2, 2, 2, 1, 1, 0 > and whose column sums

are < 2, 2, 2, 2, 1, 1 >.

2, 2, 2, 1, 1, 0
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2

0









2

0









1

0









1

0









0

2



 X





2

0









2

0









2

0









1

1









1

0









0

1



 X

We cannot color P with 2 colors so that it has a degree vector sequence which

matches the first vector sequence in the list above. However, we can do so for the

second vector sequence. In general, if a graph G has a [d0, d1, . . . , d∆]-factor and if

we let S be the set of vector sequences whose first row consists of exactly di entries

of the number i and whose column sums match the degree sequence of G, then some

non-empty but possibly proper subset of the vector sequences in S are realizable as

a 2-coloring of G.

A regular graph is a graph in which every vertex has the same degree. Note

that if G is regular, then the previously discussed set S consists of exactly one

vector sequence. So in order to show that a vector sequence D is realizable by a

2-coloring of a regular graph G, it suffices to find any factor of G whose degree

sequence consists of the color 1 degree sequence of D and vice versa. In this sense,

the 2-Edge-Coloring Problem and Factor Problem are equivalent for regular graphs.

Claim 0.0.6 and Claim 0.0.7 formalize these arguments.

Claim 0.0.6. Let G be a graph with maximum degree ∆. Let S be the set of

(2 × 1) vector sequences where row j consists of di entries of the integer i and

6



whose column sums is the degree sequence of G. Then G has [d0, d1, . . . , d∆]-factor

if and only if some non-empty (but possibly proper) subset of the vector sequences in

S are realizable as a 2-coloring of G. If G is regular, S consists of exactly 1 vector

sequence.

Proof. Without loss of generality, assume row j is row 1. If G has [d0, d1, . . . , d∆]-

factor H , color the edges in H with color 1 and the edges in G−H with color 2. The

degree vector sequence of the resulting 2-edge-colored graph is in S. If any vector

sequence in S is realizable by a 2-coloring of G, then the color 1 subgraph of this

2-coloring of G is a [d0, d1, . . . , d∆]-factor. Finally, if G is a r-regular, then row 2 is

unique and is r minus the value in row 1. Then S consists of 1 vector sequence.

Claim 0.0.7. Let G be a graph with maximum degree ∆. Let D be a sequence of

(2 × 1) column vectors with entries in [0, . . . ,∆] where the columns sums of the

vectors in D is the degree sequence of G. For a fixed row j ∈ {1, 2}, let di where

0 ≤ i ≤ ∆ be the number of vectors in D where row j contains the integer i. If there

exists a 2-coloring of G with degree vector sequence D, then G has a [d0, d1, . . . , d∆]-

factor. The converse is also true if G is a regular graph.

Proof. Let S be the set of (2×1) vector sequences where row 1 consists of di entries of

the integer i and whose column sums is the degree sequence of G. Then D ∈ S.

0.1 Summary of Our Results and Others’

Dürr, Guiñez, and Matamala while working with topics in Discrete Tomography

considered the following problem. Given a collection of (k × 1) column vectors D,

determine whether or not there exists a k-coloring of a complete bipartite graph

which realizes D. Dürr, et. al., recently showed that this problem is NP-Complete

for k ≥ 3 [4]. As a consequence of this result, in the same paper they show that

determining whether or not there exists some edge-colored graph which realizes D

is also NP-Complete for k ≥ 2. Their results exclude k = 1 because when k = 1,

the problem reduces to asking whether or not a list of integers is realizable. We
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Family F and Value of k What is known
Arbitrary Graphs k ≥ 2 NP-Complete [4]
Arbitrary Graphs k = 1 Solutions Exist, Ch. 3 of [12]
Bipartite Graphs k ≥ 2 NP-Complete [4]
Bipartite Graphs k = 1 Gale Ryser Theorem [12]

(if partite sets are given)
Complete Graph of NP-Complete [4]

Appropriate Size k ≥ 3
Complete Graph of Reduces to Arbitrary

Appropriate Size k = 2 Graphs k = 1
Complete Bipartite Graph of NP-Complete [4]

Appropriate Size k ≥ 3
Complete Bipartite Graph of Reduces to

Appropriate Size k = 2 Bipartite Graphs k = 1
Forests Solution exists for all k [5]

Graphs With Max Degree 3 Solution exists for all k [10]

Table 1: Known results for the k-Edge-Coloring Problem

previously mentioned that this question is well-studied and many theorems exist

which yield answers to this question. Thus, these authors showed that the k-Edge-

Coloring Problem is NP-Complete for a complete bipartite graph when k ≥ 3 and

for the graph family of arbitrary graphs when k ≥ 2.

On the other hand, there are for which the k-Edge-Coloring Problem yields

tractable results. For example, Isaak and Carroll found conditions describing when

D is realized by a k-edge-colored forest for k ≥ 1 [5]. Also, Alpert et al. provide a

different proof of the forest result and also give conditions characterizing when some

graph with max degree 3 can be colored with k ≥ 1 colors so as to realize D [10].

Table 1 summarizes what is known about the k-Edge-Coloring Problem for these

and additional graph families. Note that some families in this table are families that

consist of a single graph and others are infinite families.

In an effort to find results for specified families as our predecessors have done,

our main focus has been to solve the k-Edge-Coloring Problem or Factor Problem

for a set of ‘plausible’ graph families. By ‘plausible’, we mean families whose degree
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sequences are characterized, as such families yield an immediate answer to the k-

Edge-Coloring Problem when k = 1. Characterizations exist for degree sequences

of the following families and so these families are all plausible: disjoint unions of

paths and cycles, partial 2-trees [13], and unicyclic graphs [2], cacti graphs [14],

Halin graphs [3], and edge-maximal outerplanar graphs [11]. We now describe the

results we have obtained for disjoint unions of paths and cycles, partial 2-trees,

and unicyclic graphs. We also describe how we have organized these results in the

upcoming chapters. We leave the other plausible graph families as avenues for future

work.

In Chapter 1, we generalize the forest results of Isaak and Carroll in [5]. We

characterize when a sequence of vectors is the degree vector sequence of a k-edge-

colored graph with at most one cycle for k ≥ 1. Thus, we answer the k-Edge-

Coloring Problem for what we refer to as at-most-unicyclic graphs.

In Chapter 2, we concentrate on the Factor Problem for graphs of max degree 2.

Such graphs are a union of paths and cycles. It is straightforward to give conditions

for when some disjoint union of paths (DUP) exists with a given [d0, d1, d2]-factor.

So after doing so, we then consider a deeper question, specifically, we characterize

which DUPs have a given [d0, d1, d2]-factor. In doing so, we answer the Factor

Problem for a fixed DUP with specified path sizes. We then give similar results

for a disjoint union of cycles (DUC). When considering factors of DUCs, we show

that a case of the Factor Problem for a fixed DUC is NP-Complete and reduces to

the Subset Sum Problem. Finally, we combine the results for DUPs and DUCs to

answer the Factor Problem in general for fixed graphs of max degree 2.

In Chapter 3, we concentrate on the 2-Edge-Coloring Problem for graphs of max

degree 2. Since a DUP is a forest, the forest results yield conditions for when a

vector sequence D is a degree vector sequence of a 2-edge-colored DUP. Similar to

Chapter 2, we thus consider a deeper question. We characterize which DUPs can be

2-colored so that the resulting degree vector suquence is D. In doing so, we answer

the 2-Edge-Coloring Problem for a fixed DUP and we again explain a case of this

problem that is NP-Complete and which reduces to the Subset Sum Problem. As

expected, in Chapter 3 we use the insight given by the Factor Problem for DUPs
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in Chapter 2. Finally, we dissect the details of these proofs to give an algorithm

for how to color a fixed DUP with 2 colors so that its degree vector sequence is a

specified one.

In Chapter 3, we also characterize the degree vector sequences of 2-Edge-Colored

DUCs. Since a fixed DUC is a regular graph, by Claim 0.0.7, the 2-Edge-Coloring

Problem answers the Factor Problem for a fixed DUC and vice versa. We have

chosen to give the details of the proofs in Chapter 3 and to state the result in

Chapter 2 as a corollary. When doing this, we make it very clear that we create

no circular references. We remark that the terminology associated with colorings is

more clear and more natural to use than that associated with factors. This explains

why we chose to keep the proofs in Chapter 3 instead of Chapter 2.

Finally, we close Chapter 3 by exemplifying why it is difficult to answer the k-

Edge-Coloring Problem for DUPs and DUCs when k ≥ 3. We remark that in Chap-

ter 3, we do not combine the separate results concerning 2-colorings of DUPs and

DUCs in order to answer the 2-Edge-Coloring Problem in general for fixed graphs

of max degree 2. Doing so requires a case-by-case analysis that is less interesting as

other work we chose to consider.

In Chapter 4, we discuss the Factor Problem for grids. Since the maximum

degree of a grid is 4, the factors we seek are [d0, d1, d2, d3, d4]-factors. DUP results

are helpful in this section because a grid is the cartesian product of paths. In fact,

when d3 = d4 = 0, we use DUP results to list the few cases where the desired factor

does not exist in a grid. When d3 + d4 > 0, there are 4 challenges that arise: (a)

when d1 + d2 is ‘too small’, that is, when d1 + d2 < 4, (b) when d4 is ‘too large’, (c)

when d1 or d2 is 0, and (d) when d1 + d3 < 4. When d1 + d2 < 4, the list of cases

when a grid has the desired factor is short and we identify them. When d1+ d2 = 4,

the shape of the possible factors is very restrictive and we conjecture what structure

such factors have. Because this case is so specific, we leave this conjecture for future

work and we present results when d1 + d2 ≥ 5.

In the case when d1 + d2 ≥ 5 and d4 > 0 our greatest challenge is difficulty (b)

above. When d4 is ‘large,’ a certain number of degree 1, 2, and 3 vertices must exist

in the factor. This is related to the fact that no vertex on the border of a grid or in
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a factor of a grid can be degree 4. We introduce the variable B(n,m, d4) to capture

the minimum number of degree 1,2, or 3 vertices that are necessary in any factor

of a n×m grid. Thus, d1 + d2 + d3 ≥ B(n,m, d4) in any [d0, d1, d2, d3, d4]-factor of

an n × m grid. We discuss the challenges involved in giving a closed formula for

B(n,m, d4). We then present a lower bound for B(n,m, d4). Specifically, we show

that B(n,m, d4) ≥ max{2n4 + 2, 2m4 + 2} where n4 and m4 are the least number

of rows and columns, respectively, which must contain a degree 4 vertex in any

factor of G. Hence, when d1 + d2 + d3 < max{2n4 +2, 2m4+2}, a [d0, d1, d2, d3, d4]-

factor of an n × m grid G is impossible. We then show that when d1 + d2 + d3 ≥

min{2n4+2m−1, 2m4+2n−1} and when a few fairly weak additional assumptions

are also made, G has the desired factor. When max{2n4+2, 2m4+2} ≤ d1+d2+d3 <

min{2n4+2m− 1, 2m4+2n− 1}, we know of cases when G does and does not have

a [d0, d1, d2, d3, d4]-factor, and this range of d4 values is left for future work.

Finally, in the case when d1 + d2 ≥ 5 and when d3 > 0 but d4 = 0 we give a list

of pathological cases and we show that no grid has a factor on this list. We then

conjecture that the desired factor exists except for this list of cases. See Table 4.1

for a summary of our results.

In Chapter 5, we characterize the degree sequence of partial 2-trees, that is,

factors of 2-trees. Determining this characterization is equivalent to answering the

Factor Problem for 2-trees and the k-Edge-Coloring Problem for partial 2-trees when

k = 1. Recall that we listed 2-trees as plausible graph families of interest for the k-

Edge-Coloring Problem because the degree sequences of 2-trees are known [13]. Note

that the color i subgraph of a k-edge-colored 2-tree is a partial 2-tree by definition.

Hence, a necessary condition for a k-edge-colored 2-tree to have a degree vector

sequence D is that the entries in row i of the vectors in D is the degree sequence

of a partial 2-tree. Thus, the characterization of partial 2-tree degree sequences is

crucial to the k-Edge-Coloring Problem for 2-trees, and hence, we have concentrated

our efforts on this characterization.

We remark that work has been done as early as the 1980s to characterize the

degree sets, that is, the set of vertex degrees, of k-trees. See [7] and [6]. Work also

has been done to characterize the degree sequences of k-trees, and only in 2008,
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has this characterization been completed for the case k = 2 [13]. To date, the

characterization is not complete for any k ≥ 3. Prior to our results, no work had

been done to characterize degree sequences of partial k-trees for any k ≥ 2.
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Chapter 1

The k-Edge-Coloring Problem for

Unicyclic Graphs

In Theorem 1.0.5, Caroll and Isaak characterize when a sequence with (k × 1) with

non-negative integer entries is the degree vector sequence of some k-edge-colored

forest. In this chapter, we generalize their results to graphs which have at most one

cycle.

We make use of the following helpful facts about forests. Claims 1.0.1 and 1.0.2

are well-known facts about forests. We omit the proof for Claim 1.0.1.

Claim 1.0.1. The integer sequence d1 ≥ d2 ≥ . . . ≥ dn ≥ 0 is realizable as a

forest F if and only if this sequence has even sum at most 2m− 2, where m is the

number of nonzero di. If the sequence has sum less than 2m− 2, F is disconnected.

If the sequence has sum exactly 2m− 2, then F is a tree and thus connected.

Claim 1.0.2. Let G be a forest with degree sequence d1 ≥ d2 ≥ . . . ≥ dn ≥ 0.

For any di > 0 and dj > 0, i 6= j, where di and dj are not both 1, there exists a

realization in which a vertex of degree di is adjacent to a vertex of degree dj.

Proof. Assume di ≥ dj. Then di > 1. Let vi and vj be vertices of degree di and

dj, respectively, in some realization G of D. If vi and vj are adjacent, then we are

done, so assume they are not. If vi and vj are in distinct trees in the forest, then let
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x, y be neighbors of vi, vj , respectively. Delete vix and vjy and add the edges vivj

and xy. (This process is called 2-switching vix and vjy in later chapters.) Doing

so preserves degrees and does not create any cycles and so the result is the desired

realization. If vi and vj are in the same tree T , then since di > 1 we know that vi

has at least two neighbors, x and z. Consider the unique path P from vj to vi. Both

x and z cannot be on P or T would contain a cycle, so without loss of generality,

we may assume x is not on P . Let y be the neighbor of vj on P . Delete the edges

vix and vjy. This cuts T into three components, one with vi, a second with vj , and

a third with x. Add the edges vivj and xy to connect these components, which does

not introduce any cycles. This results in the desired realization.

Given a degree vector sequence D of an edge-colored graph G, the entries in row

i correspond to the degree sequence of the subgraph of G of color i. So when we

refer to a subset of colors of D, we are actually referring to a subset of row indices

of D. We now define the terms sum degree sequence and support of a subset of a

colors.

Definition 1.0.3. Given a subset of colors C of a degree vector sequence of an

edge-colored graph, the sum degree sequence of C, denoted DC, is the sequence of

column sums of the rows in C.

Definition 1.0.4. Given a subset of colors C of a degree vector sequence of an edge-

colored graph, the support of C is the set of non-zero elements in the sum degree

sequence DC. We let mC refer to the size of the support, that is, mC is the number

of non-zero elements in DC.

The main result of this chapter is Theorem 1.0.12, which relies on the following

result by Carrol and Isaak.

Theorem 1.0.5 ([5]). Let D be a sequence of (k × 1) column vectors with non-

negative entries and non-zero columns sums. Then D is the degree vector sequence

of a k-edge-colored forest if and only if for every subset C of the colors of D, that is,

C ⊆ {1, 2, . . . , k}, the sum degree sequence DC is realizable as a forest.
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We introduce more definitions now.

Definition 1.0.6. A unicyclic graph is a graph which is connected and has exactly

one cycle. A disconnected unicyclic graph is a disconnected graph with exactly

one cycle. A graph is at-most-unicyclic if the graph contains zero cycles or one

cycle.

Note that any subgraph of a unicyclic graph must be an at-most-unicyclic graph.

Also, note that an at-most-unicyclic graph may or may not be connected and so is

either a unicyclic graph, a disconnected unicyclic graph, or a forest. It is interesting

to note that the degree sequences of disconnected unicyclic graphs are almost exactly

those of forests, as shown by the claim below. Claim 1.0.7 shows a structural

result as well, that is, that an integer sequence which is realizable as a disconnected

unicylic graph can be realized by a such a graph where the unique cycle is a triangle

on the vertices of largest degree. This structure is not guaranteed in a k-edge-

colored disconnected unicylic graph. We demonstrate this now. Let D be the vector

sequence below.

(

1

1

)(

1

1

)(

1

1

)(

1

1

)(

0

1

)(

0

1

)

Note that D is the degree vector sequence of the 2-edge-colored disconnected uni-

cyclic graph G shown in Figure 1.1 (a). Figure 1.1(b) shows the unique disconnected

unicyclic graph with a triangle whose degree sequence is the sum degree sequence

of D, which is < 2, 2, 2, 2, 1, 1 >. The reader can verify that there is no way to color

the graph in Figure 1.1(b) so that its degree vector sequence is D.

1

1

2 2
1

(a) (b)

Figure 1.1: Disconnected unicyclic graphs
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Claim 1.0.7. Given a sequence D of n ≥ 5 positive integers, there exists a discon-

nected unicyclic graph with degree sequence D if and only if the sum of D is even

and at most 2n − 2 and at least 3 integers in D are greater than 1. Furthermore,

if these conditions hold and d1, d2, d3 are the three greatest integers in D, then there

exists a disconnected unicylic graph with degree sequence D where the unique cycle

is a triangle on vertices with degrees d1, d2, d3.

Proof. (⇒) Consider a disconnected unicyclic graph G with n vertices of positive

degree and with degree sequence D. There must be a component with a cycle and

a second component with at least one edge, and thus n ≥ 5. Because G has a cycle,

at least 3 elements in D are greater than 1. Add edges between components in G

to obtain a (connected) unicyclic graph which has degree sum 2n by Theorem 1.0.8.

Then the degree sum of the original graph G must have degree sequence with even

sum less than 2n.

(⇐) Proof 1: Let d1, d2, d3 be the largest three integers in D, all of which are greater

than 1. Form the sequence D′ with n − 1 integers by removing d1 and d2 from D

and adding the positive integer d1+ d2− 2. Note that d1+ d2− 2 ≥ 2. Then D′ has

even sum at most 2(n−1)−2. By Claim 1.0.1 D′ is realizable as a forest. Moreover,

by Claim 1.0.2 D′ is realizable as a forest G with a vertex v of degree d1 + d2 − 2

adjacent to a vertex w of degree d3. Note that since d3 > 1, w must have at least

one neighbor s 6= v. Add a vertex u adjacent to v and w. Remove edges between v

and d2− 2 of its neighbors that are not v or w. Add an edge between u and each of

these d2−2 neighbors. The resulting graph G′ has a unique cycle on vertices v, u, w

which have degrees d1+1, d2, d3+1, respectively. Because d1+1 ≥ 3 by hypothesis,

v has some neighbor t that is not on the triangle. Remove the edges vt and ws.

Doing so disconnects the graph into at least 3 components since uvw is the unique

cycle. Add the edge st. The resulting graph is a disconnected unicyclic graph where

the unique cycle is a triangle on vertices v, u, w with degrees d1, d2, d3, respectively.

Proof 2: Optionally, we can prove the claim by induction on n. The base case is

n = 5. The only sequence which fits the conditions is D =< 2, 2, 2, 1, 1 > which
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is realizable as a triangle on the three largest integers in D and a disjoint edge.

Now assume the claim is true for a sequence D with n − 1 ≥ 5 positive integers.

Consider a sequence D with n ≥ 6 integers. The smallest element in D must be a 1

or otherwise D has sum at least 2n. Obtain a new sequence D′ with n− 1 vertices

by removing 1 from D and decreasing the largest degree d1 > 1 by 1. The sum of

D′ is even and at most 2(n−1)−2. If at least 3 elements in D′ are not greater than

1, then D is the sequence < 2, 2, 2, 1 . . . , 1 >. Realize this sequence with a triangle

and a set of disjoint edges. Otherwise, at least 3 elements in D′ are greater than 1.

Then by induction, the claim holds and there exists a disconnected unicyclic graph

G′ with degree sequence D′ where the unique cycle is a triangle on the vertices of

largest degree in D′. Add a vertex adjacent to a vertex v of degree d1 − 1 to obtain

a unicyclic graph G with degree sequence D. If v is not on the triangle, then there

are three degrees in D′ larger than d1 − 1 and so the four largest degrees in the

original sequence D all have value d1. Hence, the triangle in G is indeed a triangle

on the vertices of largest degree in D and the claim holds.

Harary and Boesch in 1978 characterized the degree sequences of unicylic graphs

by proving the two equivalent theorems below.

Theorem 1.0.8 ([8]). Given a sequence D of n positive integers, there exists a

unicyclic graph with degree sequence D if and only if the sum of D is 2n and D is

graphic.

Theorem 1.0.9 ([8]). Given a sequence D of n positive integers, there exists a

unicyclic graph with degree sequence D if and only if the sum of D is 2n and at least

3 elements in D are greater than 1.

The following two claims follow almost immediately from Theorem 1.0.8 and

Theorem 1.0.9.

Claim 1.0.10. A sequence D of n positive integers is the degree sequence of an

at-most-unicyclic graph if and only if D has even sum at most 2n and D is graphic

when the sum is precisely 2n.
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Proof. As noted before, an at-most-unicyclic graph is either a unicyclic graph, a

disconnected unicyclic graph, or a forest. Any degree sequence of a disconnected

unicyclic graph is the degree sequence of a forest per Claim 1.0.7. Thus, D is

a degree sequence of a an at-most-unicyclic graph if and only if D is the degree

sequence of a forest or unicyclic graph. By Claim 1.0.1 and Theorem 1.0.8, the

result thus holds.

Claim 1.0.11. A sequence D of n positive integers is the degree sequence of an

at-most-unicyclic graph if and only if D has even sum at most 2n and D contains

at least three integers greater than 1 when the sum is precisely 2n.

Proof. As in Claim 1.0.10, D is a degree sequence of a an at-most-unicyclic graph if

and only if D is the degree sequence of a forest or unicyclic graph. By Claim 1.0.1

and Theorem 1.0.9, the result thus holds.

We present an example to demonstrate the necessity of condition 2 of Theorem

1.0.12. Consider the vector sequence below.

color 1

color 2

color 3









2

0

0

















2

0

0
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0
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0

1

1

















0

1

1









Color 1 is the degree sequence of a cycle and thus a unicyclic graph. Also, D{2,3},

that is, the sum degree sequence of the colors 2 and 3, is < 2, 2, 2 >, which is again

the degree sequence of cycle and thus a unicyclic graph. Thus, in any 3-edge-colored

graph G that realizes this sequence of vectors, the color 1 subgraph must have a

cycle C1. Also, the color 2 and color 3 subgraph must have a cycle C2. Since the

colors of C1 and C2 are distinct, the cycles are distinct. Thus, G must have two

cycles and cannot be unicyclic. In general, if we consider all subsets C of colors

where the sum degree sequence of C is unicyclic realizable, the intersection of these

subsets must be non-empty. Condition 2 of Theorem 1.0.12 ensures this.
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Theorem 1.0.12. Let D be a sequence of n (k×1) column vectors with non-negative

entries and non-zero columns sums. Then D is the degree vector sequence of a k-

edge-colored at-most-unicyclic graph on n vertices if and only if the following two

conditions hold.

1. Given any subset of colors C, DC has even sum at most 2n and DC is graphic

when the sum is precisely 2n.

2. (Intersection Property) Let C1, C2, · · · , Cs be the list of non-empty subsets of

colors where DCi has sum 2mCi for each i, 1 ≤ i ≤ s. Then the intersection of

all Ci is non-empty.

Proof. (⇒) Consider G, an edge-colored at-most-unicyclic graph with degree vector

sequence D. All subgraphs of G have 0 or 1 cycles, and so given any subset of

colors C, the subgraph consisting of the colors in C is an at-most-unicyclic graph.

Then condition (1) holds by Claim 1.0.10. Now, assume G has exactly one cycle

C. Let C be the colors that appear on C. If for some subset of colors C′, DC′ has

sum 2mC′ , then the subgraph of G whose edges have colors in C′ must contain the

unique cycle C. Thus, C must be contained in C′. As a result, if C1, C2, · · · , Cs is

the list of non-empty subsets of colors where DCi has sum 2mCi for each i, then the

intersection of all Ci contains C and is thus non-empty.

(⇐) If every subset of colors C has row entries which sum to at most 2mC − 2,

then the desired result follows from Theorem 1.0.5. Otherwise, there exists a non-

empty subset of colors S with sum degree sequence DS whose entries sum to exactly

2mS . Consider all non-empty subsets of colors C where DC has sum 2mC . By the

intersection property, there is a set of colors I 6= ∅ which is a subset of any such C.

Hence, I ⊆ S. Choose any color i ∈ I. We change our vector sequence D in the

following manner so that the color i degree sequence has 2 more degree 1 vertices.

Add 2 more column vectors to D where the entries in row i are 1 and all other

entries are 0. Call this new vector sequence D′

We now argue that all subsets of colors in D′ are realizable as a forest. For any

subset of colors C which excludes i, the support of C has not changed and so the
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vector sequence entries corresponding to C in D′ still sum to at most 2mC−2. Thus,

the sum degree sequence of C is still realizable as a forest in D′. Now consider any

subset of colors C where i ∈ C. Let D′
C be the sum degree sequence of C in the new

vector sequence D′. The number of non-zero entries in D′
C is mC + 2. Because the

sum of DC is at most 2mC, the sum of D′
C is at most 2mC + 2 = 2(mC + 2)− 2 and

thus D′
C is realizable as a forest. In specific, note that D′

S has sum 2(mS + 2) − 2

and is thus realizable as a forest and any forest realization of D′
S is connected per

Claim 1.0.1.

Since all subsets of colors are forest-realizable, Theorem 1.0.5 implies that there

exists a k-edge-colored forest G with degree vector sequence D′. Moreover, G has

n + 2 vertices and degree sum at most 2n + 2 = 2(n + 2)− 2. Let v and w be the

vertices in G whose degree vectors correspond to the column vectors added to D to

obtain D′. Recall that any forest realization of D′
S is connected. Thus, all edges

of colors from S appear in the same component U in G. Furthermore, i ∈ I ⊆ S

and so v and w are in this component. We argue that v and w cannot be adjacent.

Otherwise, G− {vw} is an edge-colored forest in which the subset of colors S with

degree sum sequence DS has sum 2mS and so is not realizable as a forest. This

contradicts Theorem 1.0.5.

Since v and w are not adjacent, there exists edges va and wb of color i in G

where a 6= w and b 6= v but possibly a = b. Remove v and w and add the edge ab,

which may be a loop or a duplicate edge. Call the resulting graph G′.

Case 1: a 6= b - If a and b are not adjacent in G, then the addition of the edge

ab creates a unique cycle in U and thus G. Otherwise, the edge ab, which we

assume has color j, exists in G and so G′ is a forest with a duplicate edge

between a and b. Note that possibly j = i. We now argue that there must be

an edge of color i or j disjoint from a and b. Otherwise, the subgraph of G

induced by edges of color i or j consists of a pair of duplicate edges between

a and b with pendants incident to a and b. Then D{i,j} has too big of a sum

to be a graphic degree sequence, thus violating condition 1.

Thus, there must be an edge xy of color i or j disjoint from a and b. We wish
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to show xy is in U . If xy has color i then xy must be in U since U contains all

edges with a color from S. Assume for a moment that xy has color j 6= i and

xy is in a component other than U and we show a contradiction. In this case,

we can delete xy and the edge of color i between a and b and then add edges

ay and bx of color i. Doing so joins two components but creates no cycles.

Hence, the resulting graph is a forest which realizes D. Then the subgraph

consisting of edges from S has no cycle, which contradicts that DS has sum

2mS and so is not a forest by Claim 1.0.1.

As a result, xy is in U , and without loss of generality, assume xy is of color

i. Because xy ∈ U , there exists a path P between a and x. If b is on this

path, switch the roles of a and b. If y is on this path, switch the roles of x

and y. Thus, we may assume b and y are not on this path. Hence, ay and bx

cannot be edges of any color in G′ as the presence of either edge forces a cycle

in G. Delete xy and the edge of color i between a and b and then add edges

ay and bx of color i. Doing so creates a unique cycle which can be traversed

by following ab, bx, and then the path P .

Case 2: a = b - Then the vertex a has a loop of color i in G′. U is thus a tree with

a loop in G′. If no edges of color i are disjoint from a then the degree sequence

of color i is not graphic, thus violating condition 1. Let xy be an edge of color

i disjoint from a. The vertex a cannot be adjacent to both x and y as this

implies G has a cycle besides the loop, a contradiction. If a is adjacent to

neither, then add edges ax and ay of color i and delete xy as well as the loop

at vertex a. Since U was a tree with a loop, doing so creates a unique cycle.

Otherwise, a is adjacent to exactly one of x or y, say x. Still add edges ax and

ay of color i and delete xy as well as the loop at vertex a. The resulting graph

is a forest with a a duplicate edge between a and x. Use the same technique

as in the proof of Case 1 to replace this duplicate edge with a unique cycle.
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Chapter 2

The Factor Problem for Graphs of

Max Degree 2

In any graph of max degree 2, each component is a path or a cycle. Hence, a graph

of max degree 2 is a disjoint union of paths (DUP) together with a disjoint union of

cycles (DUC). First we discuss factors of DUPs, then factors of DUCs, and finally,

factors of graphs with max degree 2. Recall per Definition 0.0.5 that a [d0, d1, d2]-

factor of any graph with max degree 2 is a factor with di vertices of degree i for

0 ≤ i ≤ 2.

2.1 Factors in a Disjoint Union of Paths (DUP)

The first graph family we consider is a disjoint union of paths (DUP) where each

path has at least 2 vertices. Note that any factor of a DUP is in turn a DUP. We

let p correspond to the number of paths and we let 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp be

the non-decreasing list of the orders of the paths. Since a factor is spanning, if a

DUP G has a [d0, d1, d2]-factor, then |V (G)| = d0 + d1 + d2 =
∑p

i=1Ci. Consider

an example of a DUP G with path orders 2, 3, 3, 4, 4, 5, 5, 7. Here |V (G)| = 33 and

p = 8. As an illustration, Figure 2.1 shows a [24, 4, 5]-factor and a [4, 24, 5]-factor

of G.
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(a) A DUP G (b) A [24, 4, 5]-factor of G (c) A [4, 24, 5]-factor of G

Figure 2.1: Factors in DUPs

Notice the [24, 4, 5]-factor in Figure 2.1 has d1
2

= 2 paths. Since each path

requires two endpoints, the number of paths in a factor is exactly half the number

of degree 1 vertices, d1
2
. Hence, d1 must be even if a DUP has a [d0, d1, d2]-factor.

Since degree 2 vertices are internal to a path, if a factor has any degree 2 vertices,

the factor must also have endpoints as well. Thus, if a DUP has a [d0, d1, d2]-factor

and d2 > 0, then d1 > 0 as well. Claim 2.1.1 shows that the two conditions we

just described characterize when there exists some DUP with a [d0, d1, d2]-factor.

Moreover, if such a DUP exists, then more specifically, Claim 2.1.1 shows that there

exists a single path with such a [d0, d1, d2]-factor.

Claim 2.1.1. Let d0, d1, d2 be nonnegative integers. If d1 = 0 and d2 > 0, then no

path or DUP has a [d0, d1, d2]-factor. Otherwise, there exists a path with a [d0, d1, d2]-

factor if and only if d1 is even. Furthermore, if d1 > 0 and a path P with a

[d0, d1, d2]-factor exists, there is a realization of the factor in which an endpoint of

P is a degree 1 vertex in the factor.

Proof. The forward direction is immediate. Consider the backwards direction. If

d1 = 0, then d2 = 0, and we obtain a [d0, 0, 0]-factor by removing all edges from a

path on d0 vertices. Otherwise, d1 > 0 and we let G be the DUP consisting of a

path on d2+2 vertices plus d1−2
2

additional single-edge paths and d0 isolated vertices.
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Then G is a factor of a path P on d0+ d1+ d2 vertices. Also, if we line up the paths

in G from left to right so that the leftmost path is non-trivial, ie, is not an isolated

vertex, then we obtain a factor of P in which the left endpoint is a degree 1 vertex

in the factor G.

Since the question of when there exists some DUP with a [d0, d1, d2]-factor is

straightforward, we concentrate now on a more interesting question. We determine

which DUPs have a [d0, d1, d2]-factor. To do so, we must answer the Factor Problem

for a DUP of specified path orders, which we do in Theorem 2.1.3. Before prov-

ing Theorem 2.1.3, we now present several enlightening examples that demonstrate

necessary conditions for a [d0, d1, d2]-factor to exist within a DUP.

Consider the DUP G in Figure 2.1. We argue that G does not have a [14, 4, 15]-

factor. Such a factor would consist of 2 paths whose internal vertices sum to 15 and

which are subpaths of paths in G. However, even the longest two paths in G only

have a total of 8 internal vertices. Thus, the longest two paths in the factor require

more internal vertices than are available in the longest two paths in G, thus making

it impossible for G to have such a factor. This example demonstrates d2 can be at

most the number of internal vertices within the largest d1
2
paths, i.e.,

d2 ≤

p
∑

i=p−
d1
2
+1

(Ci − 2), (2.1.1)

or equivalently,

d1 + d2 ≤

p
∑

i=p−
d1
2
+1

Ci. (2.1.2)

Notice that the sums in the above conditions are only meaningful when p ≥ d1
2
.

Intuitively, this makes sense. If d1 is small, we need d1
2

of the p paths of G to be

long enough to “fit” all d2 internal vertices of degree 2 and this restricts the size

of d2. However, if d1 is large, specifically, if d1
2

≥ p, then we do not have this

restriction because we can use the internal vertices of any of the p paths to “fit” the

d2 internal vertices of degree 2. Furthermore, we point out that if p = d1
2
then the
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above conditions immediately hold since d0 + d1 + d2 =
∑p

i=1Ci =⇒ d1 + d2 =
∑p

i=p−
d1
2
+1
(Ci − 2).

In our example, 33 = d0 + d1 + d2 and d1 = 4 =⇒ 29 = d0 + d2, and so d2 ≤ 10

if and only if d0 ≥ 19. This suggests that we can restate the condition 2.1.1 as a

lower bound on d0 instead of an upper bound on d2. We see that d2 is no bigger

than the number of internal vertices in the largest d1
2
paths of G if and only if d0 is

at least the number of vertices in the smallest p − d1
2
paths, and we formally show

this now.

Claim 2.1.2. Let d0+d1+d2 =
∑p

i=1Ci and
d1
2
≤ p. Then d1+d2 ≤

∑p

i=p−
d1
2
+1

Ci

if and only if
∑p−

d1
2

i=1 Ci ≤ d0.

Proof. This follows directly from the fact that d0+d1+d2 =
∑p

i=1Ci =
∑p−

d1
2

i=1 Ci+
∑p

i=p−
d1
2
+1

Ci.

Now consider whether or not G from Figure 2.1(a) has a [1, 30, 2]-factor. Here
d1
2

> p so condition (2.1.1) is irrelevant. Since degree 1 vertices in a DUP must

occur in pairs as endpoints of paths, the vertices in an odd path of G cannot each

be degree 1 in any factor of G. Thus, each odd path of G must have at least one

vertex of degree zero or two in any factor of G. Since G has 5 paths of odd order,

this means that d0 + d2 must be at least 5, thus making it impossible for G to have

a [1, 30, 2]-factor. Letting op(G) refer to the number paths with odd order in G, this

demonstrates that another necessary condition is

op(G) ≤ d0 + d2. (2.1.3)

The above explanation sheds light on why inequalities (2.1.1) and (2.1.3) appear

as conditions in the following theorem.

Theorem 2.1.3. Let G be a disjoint union of paths with orders 2 ≤ C1 ≤ C2 ≤

· · · ≤ Cp where p and all Ci are positive integers. Let op(G) refer to the number of Ci

which are odd. Given non-negative integers d0, d1, d2 where
∑p

i=1Ci = d0 + d1 + d2,

G has a [d0, d1, d2]-factor if and only if the following conditions hold:
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1. d1 is even

2. If p > d1
2
then d2 ≤

p
∑

i=p−
d1
2
+1

(Ci − 2) (The RHS sum is 0 when d1 = 0.)

3. op(G) ≤ d0 + d2

Proof. (⇒) Let G′ be a [d0, d1, d2]-factor of G. The sum of any graphical degree

sequence is even. The degree sum for G′ is 0d0+1d1+2d2 which is even if and only

if d1 is even. Hence, condition (1) is clear.

A vertex is an endpoint to a path if and only if it has degree 1. Since G′ has d1

endpoints and each path requires two endpoints, G′ has exactly d1
2

paths. Also, a

vertex is internal to a path if and only if the vertex has degree 2. Then the d1
2
paths

in G′ have a total of d2 internal vertices. If d1 = 0, then G′ has no paths and thus

no internal vertices either and so it must be true that d2 = 0. Thus, condition (2)

holds when d1 = 0. Now assume 0 < d1
2
< p. Since the paths in G′ are subpaths

of paths in G, the d1
2
paths of G′ can be no longer than the longest d1

2
paths in G.

Hence, d2 can be at most the number of internal vertices in the longest d1
2

paths

in G. Noting that a path of order Ci ≥ 2 has Ci − 2 internal vertices, we see that

condition (2) must be true, that is,

d2 ≤

p
∑

i=p−
d1
2
+1

(Ci − 2).

Now assume that a path P of G corresponds to l subpaths in G′. Then 2l vertices

of P are endpoints to paths in G′. So if P has odd order, then at least one vertex

of P has degree zero or two in G′. Since there are op(G) paths of odd order in G,

we see that op(G) ≤ d0 + d2. Thus, condition (3) holds.

(⇐) We note that if d1 = 0, then condition (2) implies that d2 = 0 and so

d0 =
∑p

i=1Ci, in which case the desired factor is a graph of d0 isolated vertices.

Our proof is by induction on p. If p = 1, then G consists of one path with

C1 = d0 + d1 + d2 vertices. If d1 > 0, then the following is a [d0, d1, d2]-factor of G:

a path on d2 + 2 vertices, d1−2
2

paths on 2 vertices, and d0 isolated vertices.
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We now assume that for p − 1 ≥ 1 if
∑p

i=1Ci = d0 + d1 + d2 and if conditions

(1)-(3) hold, then a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp has a [d0, d1, d2]-

factor. We show the claim to be true for G, a DUP with p ≥ 2 paths.

Let P be a path in G with order Cp. We use the notation G − P to denote

the DUP G with the path P removed. Our strategy will be to determine d′i where

0 ≤ d′i ≤ di for i = 0, 1, 2 so that Cp = d′0 + d′1 + d′2 and thus
∑p−1

i=1 Ci = (d0 − d′0) +

(d1 − d′1) + (d2 − d′2). It will be clear that conditions (1)-(3) hold for the chosen d′i

values. We verify that conditions (1)-(3) hold for the di−d′i values, and then we use

the inductive hypothesis to find a [d′0, d
′
1, d

′
2]-factor of P and a [d0−d′0, d1−d′1, d2−d′2]-

factor of G− P . The union of these two factors yields a [d0, d1, d2]-factor of G. We

do not show the details of applying induction to obtain a [d′0, d
′
1, d

′
2]-factor of P as

this is just an instance of the base case.

If p > d1
2
, we choose the d′i values so as to find a [d′0, d

′
1, d

′
2]-factor of P that con-

sists of one long subpath with as many degree 2 vertices as possible. To accomplish

this, we let d′1 = 2, d′2 = min{d2, Cp − 2}, d′0 = Cp − d′1 − d′2. Then d′0 + d′2 = Cp − 2.

We check now that our conditions hold for a [d0 − d′0, d1 − d′1, d2 − d′2]-factor of

G − P . Condition (1) holds since both di and d′i are even. Since the inequality in

condition (2) holds for [d0, d1, d2] and G, we see that for [d0 − d′0, d1 − d′1, d2 − d′2]

and G − P , the RHS of the inequality decreases by Cp − 2 and the LHS either

decreases by Cp − 2 or becomes 0. Thus, condition (2) holds. To show condition

(3), we must show the number of path orders Ci, 1 ≤ i ≤ p − 1, which are odd

is at most (d0 − d′0) + (d2 − d′2) = d0 + d2 − (Cp − 2). This follows since p > d1
2

implies that d0 + d2 is more than the total number of internal vertices in G. Hence,

d0+ d2− (Cp−2) is more than the total number of internal vertices in G−P . Since

each odd path in G− P has an internal vertex, we see then that d0 + d2 − (Cp − 2)

is then an overcount for the number of path orders which are odd. Hence, condition

(3) holds for G−P . Then by induction, G−P has a [d0−d′0, d1−d′1, d2−d′2]-factor

as desired. As previously discussed, the union of this factor plus a [d′0, d
′
1, d

′
2]-factor

of P yields a [d0, d1, d2]-factor of G.

Now assume p ≤ d1
2
. It is helpful to let s = d1 − 2(p − 1). Then s is positive

since p ≤ d1
2
. This quantity s represents how many degree 1 vertices would be left
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Case Choice of di [d′0, d
′
1, d

′
2]-factor of P

Case A: s ≥ Cp Let d′0 = d′2 = 0 and d′1 = Cp
Cp

2
disjoint edges

and Cp is even

Case B: s ≥ Cp Let d′1 = Cp − 1 and let Cp−1
2

disjoint edges and
and Cp is odd d′0 or d′2 be 1 one isolated vertex

and the other 0, OR

depending on which is positive. Cp−3
2

disjoint edges
and one path on 3 vertices

Case C: s < Cp Let d′1 = s and d′2 + d′1 = Cp − s A path on d′2 + 2 vertices,
d′
1
−2

2
disjoint edges,

and d′2 isolated vertices

Table 2.1: Inductive cases of Theorem 2.1.3 when p ≤ d1
2

over if some realization of the factor were to have exactly one non-trivial subpath in

each of the p−1 smallest paths of G. We will choose d′1 so that we lower d1 no more

than s. This forces that p − 1 ≤
d1−d′

1

2
, which is desirable because than condition

(2) is irrelevant for G− P . Table 2.1 shows how to choose d′i. We include the last

column in order to give insight into this choice.

In all cases within Table 2.1, condition (1) holds for [d0−d′0, d1−d′1, d2−d′2] and

G − P . We already noted that condition (2) is irrelevant by choice of d′i. In case

A, the inequality of condition (3) matches that for [d0, d1, d2] and G and so holds.

As for case B, each side of the inequality decreases by 1 and thus holds. In case

C, the quantity (d0 − d′0) + (d2 − d′2) = d0 + d2 − (Cp − s) is more than the total

number of internal vertices in G−P . Since each odd path in G−P has at least one

internal vertex, we see then that d0 + d2 − (Cp − s) is an overcount for the number

of path orders Ci, 1 ≤ i ≤ p− 1, which are odd. Hence, condition (3) holds. Then

by induction G− P has a [d0 − d′0, d1 − d′1, d2 − d′2]-factor. Again, the union of this

factor plus a [d′0, d
′
1, d

′
2]-factor of P yields a [d0, d1, d2]-factor of G.
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2.2 Factors in a Disjoint Union of Cycles (DUC)

We now consider a disjoint union of cycles (DUC) with cycle sizes at least 3. We let

m correspond to the number of cycles and we let 3 ≤ C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m be the

ordered list of cycle sizes. Since a factor is spanning, if a DUC G has a [d0, d1, d2]-

factor, then |V (G)| = d0+d1+d2 =
∑m

i=1C
◦
i . Figure 2.2 illustrates a disjoint union

of cycles (DUC) that has a [3, 8, 1]-factor and a [8, 0, 4]-factor. As with DUPs, degree

1 vertices in any factor are endpoints to paths and so there are d1
2
non-trivial paths

in any [d0, d1, d2]-factor of a DUC. Hence, when d1 = 0, a [d0, d1, d2]-factor consists

of original cycles from G with isolated vertices. Figure 2.2(c) exemplifies this.

(a) A DUC G (b) A [3, 8, 1]-factor ofG (c) An [8, 0, 4]-factor of G

Figure 2.2: Factors in DUCs

Claim 2.2.1 determines when there exists some DUC with a [d0, d1, d2]-factor.

Claim 2.2.1. Let d0, d1, d2 be nonnegative integers whose sum is at least three.

If [d0, d1, d2] are either one of the pathological cases below, then no DUC has a

[d0, d1, d2]-factor.

1. [d0, 0, d2], d0 = 1 or d0 = 2

2. [d0, 0, d2], d2 = 1 or d2 = 2

Otherwise, there exists a DUC with a [d0, d1, d2]-factor if and only if d1 is even.

Proof. (⇒) If a DUC has a [d0, d1, d2]-factor , then the factor has degree sum 0d0 +

d1 + 2d2, which is even if and only if d1 is even. We now consider the pathological

cases. Consider a [d0, d1, d2]-factor H of a DUC G where d1 = 0. We can imagine

removing edges from G to obtain H . Since d1 = 0, H has no degree 1 vertices and

thus no non-trivial paths. Thus, for each cycle in G, we must remove all edges or

no edges to obtain the factor H . If we remove no edges from some cycle in G, then
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d0 ≥ 3. Otherwise, d0 = 0. If we remove all edges from some cycle in G, then

d2 ≥ 3. Otherwise, d2 = 0. Thus, each pathological case in the claim is not the

factor of any DUC.

(⇐) If d1 = 0, then let G be a DUC with a cycle on d0 vertices and a cycle on

d2 vertices. Remove all edges from the cycle with d0 vertices to obtain a [d0,0,d2]-

factor of G. Otherwise if d1 > 0, it follows from Claim 2.1.1 that some path P has

a [d0, d1, d2]-factor H . Add an edge between the endpoints of P to obtain a cycle C

and note that H is a [d0, d1, d2]-factor of C.

Since it is straightforward to determine when there exists some DUC with a

[d0, d1, d2]-factor, we ask a more interesting question, that is, which DUCs have a

[d0, d1, d2]-factor? Theorem 2.2.2 answers this question when d1 > 0, and in doing

so, answers the Factor Problem for a DUC of specified sizes when d1 > 0. As with

DUPs, since degree 1 vertices must occur in pairs in the factor of a cycle, we see

that d1 must be even and that each odd cycle of a DUC must have at least one

vertex of degree 0 or 2 in the factor. Therefore, as with inequality (2.1.3) for DUPs,

it must be true that

oc(G) ≤ d0 + d2. (2.2.1)

Furthermore, a DUC has a pathological case. Consider a DUC G with three

cycles of sizes C◦
1 = C◦

2 = C◦
3 = 5. We explain why G has no [9,2,4]-factor now.

Assume such a factor does exist. Since d1 = 2, the factor must have exactly one

non-trivial path P . Since C◦
i = 5, P is a path on at most 5 vertices. Thus, P (and

so each Ci) is just small enough where P cannot contain all of the d2 = 4 degree 2

vertices in the factor plus the d1 = 2 endpoints. This implies that the vertices of

some other cycle C from G must all be degree 2 in the factor and so G must contain

all of its edges in the factor. However, because d2 = C◦
m − 1 = 4, d2 is just small

enough that this is impossible. In general, this situation occurs when d1 = 2, all

cycles have the same size, and d2 is one less than a multiple of the cycle size, which

forces that d0 is also one less than a multiple of the cycle size. So this situation

occurs when [d0, d1, d2] = [rC◦
m − 1, 2, (m − r)C◦

m − 1] for some integer r ∈ (0, m),
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or equivalently, when [d0, d1, d2] = [(m− r)C◦
m − 1, 2, rC◦

m − 1].

Theorem 2.2.2. Let G be a DUC with cycle sizes 3 ≤ C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m. Let

oc(G) be the number of C◦
i which are odd. Let d0, d1, d2 be non-negative integers

which sum to |V (G)| where d1 > 0. If C◦
1 = C◦

2 = · · · = C◦
m and if [d0, d1, d2] =

[rC◦
m − 1, 2, (m − r)C◦

m − 1] for some integer r ∈ (0, m), then G does not have a

[d0, d1, d2]-factor. Otherwise, G has a [d0, d1, d2]-factor if and only if d1 is even and

oc(G) ≤ d0 + d2.

Theorem 3.3.4 answers the 2-Edge-Coloring Problem for DUCs, and we wait until

after Theorem 3.3.4 to give the proof of Theorem 2.2.2. The reason is as follows. A

DUC is a regular graph. Per Claim 0.0.7, the 2-Edge-Coloring Problem and Factor

Problem are equivalent for regular graphs, meaning, an answer to one leads to an

answer to the other. Thus, Theorem 2.2.2 naturally follows from Theorem 3.3.4.

Care has been taken to prevent any circular arguments.

2.2.1 NP-Completeness of [d0,0,d2]-factors of DUCs

It is very important to notice that Theorem 2.2.2 requires that d1 > 0. When d1 = 0,

we can show that an answer to the decision problem ‘Does a DUC with specified

path orders have a [d0, 0, d2]-factor?’ yields an answer to the Subset Sum Problem

which is a well-known NP-Complete Problem that is solvable in pseudo-polynomial

time [9].

Problem 2.2.1 ([9]). The Subset Sum Problem asks the following question:

Given a finite set A of positive integers and a positive integer s, does there exist a

subset A′ ⊆ A such that the sum of the integers in A′ is exactly s?

The reduction between the Subset Sum Problem and the Factor Problem for

DUCs when d1 = 0 follows immediately from Theorem 2.2.3.

Theorem 2.2.3. Let G be a DUC with cycle sizes 3 ≤ C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m and let

d0, d2 be non-negative integers which sum to |V (G)|. Then G has a [d0, 0, d2]-factor

if and only if some subset of cycle sizes sum to d0, or equivalently, some subset of

cycle sizes sum to d2.
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Proof. If a [d0, 0, d2]-factor exists, since there are no degree 1 vertices, the factor can

be obtained by removing edges from a set of cycles in G whose sizes sum to d0 and

by leaving all edges in a set of cycles whose sizes sum to d2. Also, if if some subset

S of cycle sizes sum to d0, then remove all edges from the cycles in S and leave all

edges in the cycles that are not in S to obtain the desired [d0, 0, d2]-factor.

Subset Sum is known to be pseudo-polynomial or weakly NP-Complete, meaning

that the algorithmic complexity of the problem depends greatly on the encoding of

the problem [9]. For our purposes, the pseudo-polynomial complexity of Subset

Sum translates to the following. In asking whether a DUC with specified sizes has a

[d0, 0, d2]-factor, the input is the set of di values. The question is NP-Complete with

this encoding. However, if we change the encoding and we specify the desired degree

sequence of the factor, i.e., if our input is a list of size d0 + d1 + d2 consisting of di

values of degree i for i = 1, 2, 3, then the encoding becomes unary. The algorithm

implied by Theorem 2.2.3 is polynomial with the unary encoding.

In summary, even though Theorem 2.2.3 characterizes when a [d0, 0, d2]-factor is

possible, we do not expect that an implementation of this characterization can be

done efficiently. This contrasts Theorem 2.2.2 which yields an efficient algorithm to

answer our question when d1 > 0.

Finally, the reader may wonder why finding [d0, 0, d2]-factors of DUCs leads to

a complexity issue whereas finding [d0,0,d2]-factors of DUPs does not. Note that if

d1 = 0 in a factor of a DUP, then the factor has no endpoints to non-trivial paths

and thus has no internal vertices either. In other words, if d1 = 0, all vertices in the

factor of the DUP are forced to be isolated vertices. The hypotheses of Theorem

2.1.3 ensure this.

2.3 Factors of Graphs with Max Degree 2

Claim 2.3.1 describes when there exists some graph with max degree 2 which con-

tains a [d0, d1, d2]-factor.
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Claim 2.3.1. Given non-negative integers d0, d1, d2, there exists a graph of max

degree 2 with a [d0, d1, d2]-factor if and only if the sequence D consisting of di entries

of the integer i for i = 1, 2, 3 is graphical.

Proof. If a graph has a [d0, d1, d2]-factor , then D is the degree sequence of the factor

and is thus graphical. If D is graphical, then D is clearly realizable as a graph with

max degree 2 and is thus a factor of itself.

We now concentrate on determining when a fixed graph of max degree 2 has

a [d0, d1, d2]-factor. Theorem 2.3.3 is the main result of this section and describes

necessary and sufficient conditions for when a fixed graph of max degree 2 has a

[d0, d1, d2]-factor. We prove an auxiliary claim before proving Theorem 2.3.3.

Claim 2.3.2. Consider a list of s integers t1 through ts, each of which is at least 2.

Let d0, d1, d2 be non-negative integers where
∑s

i=1 ti = d0+ d1 + d2. If d1 ≤ 2s, then

the number of ti which are odd is at most d0 + d2.

Proof. Note that d0 + d1 + d2 =
∑s

i=1 ti implies d0 + d1 + d2 − 2s =
∑p

i=1(ti − 2).

Since d1 ≤ 2s, this implies d0 + d2 ≥
∑s

i=1(ti − 2). Since ti ≥ 2, any odd ti is at

least 3 and so contributes at least one to ti − 2. Hence,
∑p

i=1(ti− 2) is an overcount

for the number of ti which are odd. Then the number of ti which are odd is at most
∑s

i=1(ti − 2) ≤ d0 + d2.

The pathological cases and hypotheses of Theorem 2.3.3 are similar to those of

Theorem 2.1.3 and Theorem 2.2.2. This is sensible since a graph with max degree 2

is simply a union of a DUP and DUC. Note that we assume that d1 > 0 in Theorem

2.3.3. Given a graph G with max degree 2, if d1 = 0, then all path vertices in G

must be degree 0 in any [d0, d1, d2]-factor of G. Thus, G has a [d0, d1, d2]-factor if

and only if the cycles of G have a [d0 −
∑p

i=1Ci, 0, d2]-factor. See Section 2.2.1 for

an explanation of why determining whether or not a DUC has such a factor is a

complex question.

Theorem 2.3.3. Let G be a graph with m cycles and p paths where m+ p > 0. Let

the cycle orders be 3 ≤ C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m and the path orders be 2 ≤ C1 ≤ C2 ≤
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· · · ≤ Cp. Let oc(G) be the number of cycles with odd order in G. Let op(G) be the

number of paths with odd order in G. Let d0, d1, d2 be non-negative integers which

sum to
∑m

i=1C
◦
i +

∑p

i=1Ci . In the following pathological cases, G does not have a

[d0, d1, d2]-factor.

(a) m > 0, p = 0, d1 = 2, d2 = rC◦
m − 1 for integer r in (0, m), C◦

1 = · · · = C◦
m

(b) m > 0, p > 0, d1 = 2, d2 = rC◦
m − 1 for integer r in (0, m), Cp ≤ C◦

1 = · · · = C◦
m

(c) m > 0, p > 0, d1 = 2, d2 = (
∑m

i=1C
◦
i )− 1, Cp ≤ C◦

1

(d) m > 0, p > 0, d1 ≥ 2, d2 = (
∑m

i=1C
◦
i )− 1, C1 = · · · = Cp = 2

Assume d1 > 0. Then with the exception of the above pathological cases, G has a

[d0, d1, d2]-factor if and only if the following conditions hold.

1. d1 is even

2. oc(G) + op(G) ≤ d0 + d2

3. If p > d1
2
, then d2 ≤

∑m

i=1C
◦
i +

∑p

i=p−
d1
2
+1
(Ci − 2)

(We let
∑m

i=1C
◦
i = 0 when m = 0.)

Proof. (⇒) Case (a) follows from Theorem 2.2.2. For case (b), assume such a

[d0, d1, d2]-factor H of G exists. Let G◦ refer to the cycles of G and G− refer to the

paths of G. Then H = H◦ ∪H− where H◦ is a factor of G◦ and H− is a factor of

G−. Since Cp ≤ C◦
1 = · · · = C◦

m, we can add isolated vertices to H− so that H− is a

factor of p cycles of size C◦
m. After doing so, H = H◦ ∪H− still has rC◦

m − 1 degree

2 vertices and two degree 1 vertices but now has (p+m−r)C◦
m−1 degree 0 vertices.

Let s = p+m− r. Then H = H◦ ∪H− is a [sC◦
m − 1, 2, (m− s)C◦

m − 1]-factor of a

DUC whose cycles all have size C◦
m. This contradicts Theorem 2.2.2.

For case (c), assume m > 0, p > 0, d1 = 2 and Cp ≤ C◦
1 in G. Consider a

[d0, d1, d2]-factor H which satisfies these hypotheses. We argue that H cannot have

d2 = (
∑m

i=1C
◦
i )− 1 degree 2 vertices. Since d1

2
= 1, there is exactly one non-trivial

path in H . If two vertices of some cycle of G are degree 1 in H , then because there is
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exactly one non-trivial path in H , the path vertices of G must all be degree 0 in H .

Hence, the number of degree 2 vertices in H in this case is at most (
∑m−1

i=1 C◦
i )−2. If

the vertices of some cycle of G are all degree 0 in H , then all degree 2 vertices of H

are within the otherm−1 cycles of G and additionally at most one path of G. Hence,

d2 ≤ (
∑m−1

i=1 C◦
i ) + Cp − 2. Since Cp ≤ C◦

1 ≤ C◦
m, this implies d2 ≤ (

∑m

i=1C
◦
i ) − 2.

Otherwise, no cycle vertices in G are degree 1 in H and no cycle in G has vertices

which are all degree 0 in H . This implies that all cycle vertices in G are degree 2 in

H and so d2 ≥
∑m

i=1C
◦
i . Therefore, no factor can contain exactly d2 = (

∑m

i=1C
◦
i )−1

degree 2 vertices.

Now consider case (d). Because Cp = 2, any vertex which is degree 2 in the

factor is a vertex on a cycle in G. Thus, if such a factor exists, the cycles of G have

a [0, 1, (
∑m

i=1C
◦
i ) − 1]-factor or [1, 0, (

∑m

i=1C
◦
i ) − 1]-factor. Both such factors are

impossible by Claim 2.2.1.

(⇐) Assume none of the pathological cases hold. If m = 0, the claim follows

from Theorem 2.1.3. If p = 0, the claim follows from Theorem 2.2.2. Now assume

that m > 0 and p > 0. We break the proof into the following cases.

Case I: d1 = 2+
∑p

i=1Ci, d2 = rC◦
m− 1 for r in (0, m), C◦

1 = · · · = C◦
m, all Ci even

Case II: d1 ≥ 2p+ 2 and Case I does not hold.

Case III: 2 ≤ d1 ≤ 2p and d2 ≥
∑m

i=1C
◦
i

Case IV: 2 < d1 ≤ 2p and d2 = (
∑m

i=1C
◦
i )− 1

Case V: d1 = 2 and d2 = (
∑m

i=1C
◦
i )− 1

Case VI: d1 = 2 and d2 ≤ (
∑m

i=1C
◦
i )− 2

Subcase (a): d1 = 2, d2 = rCm − 1 where 0 < r < m and C◦
1 = · · · = C◦

m

Subcase (b): d1 = 2 and Subcase (a) does not hold.

Case VII: 2 < d1 ≤ 2p and d2 ≤ (
∑m

i=1C
◦
i )− 2
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We employ the following strategy in each of the above cases. We define non-

negative integers d′0, d
′
1, d

′
2 and d̂0, d̂1, d̂2 where the sum of the primed and hatted

variables is d0 + d1 + d2. We then use Theorem 2.1.3 to show that the p > 0

paths have a [d′0, d
′
1, d

′
2]-factor and Theorem 2.2.2 to show the m > 0 cycles have a

[d̂0, d̂1, d̂2]-factor.

Case I: d1 = 2+
∑p

i=1Ci, d2 = rC◦
m− 1 for r in (0, m), C◦

1 = · · · = C◦
m, all Ci even

The hypothesis that d0 + d1 + d2 =
∑m

i=1C
◦
i +

∑p

i=1Ci and the assumptions

d1 = 2 +
∑p

i=1Ci and d2 = rC◦
m − 1 imply that d0 ≥ 2. Also, if m = 1, then

there is no r in (0, m) for which d2 = rC◦
m − 1 is non-negative. Hence, m ≥ 2.

First assume Cp = 2. Then all paths in G consist of a single edge, and

d1 = 2 +
∑p

i=1Ci = 2p + 2. Let [d′0, d
′
1, d

′
2] = [2, 2p − 2, 0]. Let [d̂0, d̂1, d̂2] =

[d0 − 2, 4, d2]. The primed and hatted variables are non-negative since d0 ≥ 2

and p ≥ 1. Remove a single edge from the paths in G to obtain a [d′0, d
′
1, d

′
2]-

factor of the paths. The cycles have a [d̂0, d̂1, d̂2]-factor by Theorem 2.2.2.

These two factors combine to yield a [d0, d1, d2]-factor of G.

Now assume Cp ≥ 4. Since d1 = 2 +
∑p

i=1Ci, we see that d1 ≥ 6. Since r > 0

and Cm ≥ 3, we see that d2 = rC◦
m − 1 ≥ 2. Let [d̂0, d̂1, d̂2] = [(m − r)C◦

m −

1, 4, rCm−3]. Then d′0+d′2 = mC◦
m−4 ≥ 3m−4. As previously noted, m ≥ 2,

and thus, d′0+ d′2 ≥ 3m− 4 = m+ (2m− 4) ≥ m. Thus, d′0+ d′2 is at least the

number of cycles, m, and so is at least the number of odd cycles, oc(G). Then

by Theorem 2.2.2, the m cycles of G have a [d̂0, d̂1, d̂2]-factor. By choice of

the hatted values, the primed values are forced to be [d′0, d
′
1, d

′
2] = [0, d1−4, 2].

Then d′1 ≥ 2, d′1 is even, all Ci are even, and d′1 ≥ 2p. By Theorem 2.1.3, the

p paths of G have a [d′0, d
′
1, d

′
2]-factor. These two factors combine to yield a

[d0, d1, d2]-factor of G.

Case II: d1 ≥ 2p+ 2 and Case I does not hold.

Let σi = 1 if the path order Ci is odd and let σi = 0 otherwise. Let d′1 =

min{
∑p

i=1(Ci− σi), d1− 2}. The hypotheses imply that we can find d′0 and d′2

such that 0 ≤ d′0 ≤ d0 and 0 ≤ d′2 ≤ d2 so that d′0 + d′2 =
∑p

i=1Ci − d′1. Then
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d′1 ≥ 2 and is even. The σi values ensure that op(G) is at most d′0+ d′2. Recall

d1 − 2 ≥ 2p by assumption. Also,
∑p

i=1Ci − σi ≥ 2p since Ci − σi ≥ 2. Then

by the definition of d′1, d
′
1 ≥ 2p. As a result, all conditions of Theorem 2.1.3

hold and so the p paths have a [d′0, d
′
1, d

′
2]-factor.

Let [d̂0, d̂1, d̂2] = [d0−d′0, d1−d′1, d2−d′2] which sum to
∑m

i=1C
◦
i . The choice of

primed variables imply that d̂1 is even and that d̂1 ≥ 2. If d′1 =
∑p

i=1(Ci−σi),

then the hypothesis that oc(G) + op(G) ≤ d0 + d2 together with the σi values

imply that oc(G) ≤ d̂0 + d̂2. On the other hand, if d′1 = d1 − 2, then d̂1 = 2

and Claim 2.3.2 yields that oc(G) ≤ d̂0 + d̂2. So if it is not true that d̂1 = 2,

d̂2 = rC◦
m − 1, C◦

1 = · · · = C◦
m, and d̂0 = (m − r)C◦

m − 1 for some r ∈ (0, m),

then by Theorem 2.2.2, the m cycles have a [d̂0, d̂1, d̂2]-factor.

Otherwise, d̂1 = 2, d̂2 = rC◦
m − 1 and d′0 = (m− r)C◦

m − 1 for some r ∈ (0, m)

and C◦
1 = · · · = C◦

m. Hence, d̂0 ≥ 1 and d̂2 ≥ 1. Assume for a moment that

d′0 + d′2 > 0. Then either d′0 or d′2 is non-zero. If d′2 > 0, decrease d′2 by

one, increase d′0 by one, and to balance, decrease d̂0 by one and increase d̂2

by 1. Perform a similar procedure if d′2 = 0 and d′0 > 0. Since d̂2 no longer

equals rC◦
m − 1, Theorem 2.2.2 yields that the m cycles have a [d̂0, d̂1, d̂2]-

factor. Furthermore, the changes to the primed variables do not affect that

the p paths have a [d′0, d
′
1, d

′
2]-factor. Now assume d′0+d′2 = 0. Since we earlier

argued that op(G) ≤ d′0 + d′2, we see that all paths have even order. Also, by

choice of d′0 and d′2, we see d′0 + d′2 = 0 =
∑p

i=1Ci − d′1 and so d′1 =
∑p

i=1Ci.

Since d̂1 = 2 = d1 − d′1, then d1 = 2+ d′1 = 2+
∑p

i=1Ci. Thus, we are in Case

I, a contradiction.

Case III: 2 ≤ d1 ≤ 2p and d2 ≥
∑m

i=1C
◦
i

Since d2 ≥
∑m

i=1C
◦
i , we can make all vertices of the m cycles degree 2 ver-

tices in the factor by not removing any edges from the cycles. We now must

argue that the paths have a [d′0, d
′
1, d

′
2]-factor where [d′0, d

′
1, d

′
2] = [d0, d1, d2 −

∑m

i=1C
◦
i ]. Because d′1 = d1 ≤ 2p, Claim 2.3.2 yields that op(G) ≤ d′0 + d′2.

Also, if
d′
1

2
< p, then by hypothesis, d2 ≤

∑m

i=1C
◦
i +
∑p

i=p−
d1
2
+1
(Ci− 2) and so

37



d′2 ≤
∑p

i=p−
d1
2
+1
(Ci − 2). Thus, the hypotheses of Theorem 2.1.3 hold and so

the p paths have a [d′0, d
′
1, d

′
2]-factor.

Case IV: 2 < d1 ≤ 2p and d2 = (
∑m

i=1C
◦
i )− 1

Remove one edge from any cycle. This yields a [0, 2, (
∑m

i=1C
◦
i ) − 2]-factor

of the cycles. We now argue that for [d′0, d
′
1, d

′
2] = [d0, d1 − 2, 1] there is a

[d′0, d
′
1, d

′
2]-factor of the paths. Since d1 ≥ 4, we know that by hypothesis,

pathological case (d) does not hold and so Cp ≥ 3. Hence d′2 = 1 ≤ Cp − 2

and so d′2 ≤
∑p

i=p−
d′
1
2
+1
(Ci − 2). Claim 2.3.2 yields that op(G) ≤ d′0 + d′2 since

d′1 ≤ 2p. Thus, by Theorem 2.1.3, the p paths have a [d′0, d
′
1, d

′
2]-factor.

Case V: d1 = 2 and d2 = (
∑m

i=1C
◦
i )− 1

Because pathological case (c) does not hold, Cp > C◦
1 . Also, since d1 = 2 and

d2 = (
∑m

i=1C
◦
i ) − 1 by assumption, we see that d0 = (

∑p

i=1Ci) − 1. Thus,

d0 ≥ Cp − 1 ≥ C◦
1 . Remove all edges from a cycle of size C◦

1 in the factor and

leave all edges in the rest of the cycles. This yields a [C◦
1 , 0,

∑m

i=2C
◦
i ]-factor

of the cycles. We argue that for [d′0, d
′
1, d

′
2] = [d0 − C◦

1 , 2, d2 −
∑m

i=2C
◦
i ], there

is a [d′0, d
′
1, d

′
2]-factor of the paths. Claim 2.3.2 yields that op(G) ≤ d′0 + d′2

since d′1 ≤ 2p. Also, since d2 = (
∑m

i=1C
◦
i ) − 1 and since Cp > C◦

1 , we see

that d′2 = d2 −
∑m

i=2C
◦
i = C◦

1 − 1 ≤ Cp − 2. Then since d′1 = 2, it is true

that d′2 ≤
∑p

i=p−
d′
1
2
+1
(Ci − 2). Then by Theorem 2.1.3, the p paths have a

[d′0, d
′
1, d

′
2]-factor.

Case VI: d1 = 2, d2 ≤ (
∑m

i=1C
◦
i )− 2

Subcase (a): d1 = 2, d2 = rCm − 1 where 0 < r < m, C◦
1 = · · · = C◦

m

The conditions of this case and the hypothesis that d0 + d1 + d2 =
∑m

i=1C
◦
i +
∑p

i=1Ci imply that d0 = (m−r)C◦
m−1+

∑p

i=1Ci. By hypoth-

esis, pathological case (b) does not hold and so Cp > C◦
1 = C◦

m. Thus,

d0 = (m−r)Cm−1+
∑p

i=1Ci > (m−r)C◦
m−1+C◦

m = (m−r+1)C◦
m−1

and so d0 ≥ (m − r + 1)C◦
m. As a result, we can remove all edges from

m− r+1 of the cycles and leave all edges in the other r− 1 cycles. This
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yields a [(m− r+1)C◦
m, 0, (r− 1)C◦

m]-factor of the cycles. Leave the first

C◦
m edges remain in a path of order Cp > C◦

m. Remove all other edges.

This yields a [Cp − C◦
m − 1 +

∑p−1
i=1 Ci, 2, C

◦
m − 1]-factor of the paths.

Subcase (b): d1 = 2 and Subcase (a) does not hold.

Since d0 + d1 + d2 =
∑m

i=1C
◦
i +

∑p

i=1Ci and this case assumes d1 + d2 ≤
∑m

i=1C
◦
i , we see that d0 ≥

∑p

i=1Ci. Remove all edges from the paths

to yield a [
∑p

i=1Ci, 0, 0] factor of the paths. Let [d̂0, d̂1, d̂2] = [d0 −
∑p

i=1Ci, 2, d2]. Claim 2.3.2 yields that oc(G) ≤ d̂0 + d̂2 since d̂1 ≤ 2m.

Since Subcase (a) does not hold, all hypotheses of Theorem 2.2.2 hold

and so the desired [d̂0, d̂1, d̂2]-factor of the cycles exists.

Case VII: 2 < d1 ≤ 2p and d2 ≤ (
∑m

i=1C
◦
i )− 2

Use Case VI to obtain a [d0 + d1 − 2, 2, d2]-factor H of the m cycles and p

paths in G. This factor has exactly two degree 1 vertices and so at most one

path from G can have degree 1 vertices in H . Thus, the vertices from at least

p− 1 paths from G are degree 0 in H and so are isolated vertices. Thus, there

are at least 2p − 2 ≥ d1 − 2 > 0 isolated vertices in H . Remove d1 − 2 of

these isolated vertices and add d1−2
2

paths on 2 vertices to H . The result is a

[d0, d1, d2]-factor of G.
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Chapter 3

The k-Edge-Coloring Problem for

Graphs with Max Degree 2

In this chapter, we first explore when there exists some k-edge-colored DUP, DUC,

or in general, graph of max degree at most 2 with a given degree vector sequence.

These results extend from previously known results. We then concentrate on a

determining when a fixed DUP, DUC, or graph with max degree at most 2 can be

colored with k = 2 colors so as to realize a given degree vector sequence. Finally,

we discuss why this same question proves so difficult when k ≥ 3.

3.1 The k-Edge-Coloring Problem for DUPs and

DUCs

In Theorem 1.0.5, Caroll and Isaak characterize when a sequence of (k× 1) column

vectors with non-negative integer entries is the degree vector sequence of some k-

edge-colored forest. Also, Alpert et al. provide a different proof of the same result

in [10]. Since a DUP is a forest in which every vertex has degree one or two, the

characterization of degree matrices of k-edge-colored DUPs follows as a corollary to

Theorem 1.0.5. See Definition 1.0.3 and Definition 1.0.4 for the definitions of sum

degree sequence and support.
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Corollary 3.1.1. Let D be a sequence of (k × 1) column vectors with non-negative

integers. D is the degree vector sequence of a k-edge-colored DUP if and only if the

following conditions hold.

1. The sum of the entries in row i of the vectors in D is even for all i where

1 ≤ i ≤ k.

2. The sum of the entries in any column vector of D is at most 2.

3. For every subset of colors I of the colors of D, that is, of {1, 2, . . . , k}, the

sum degree sequence DI is not a sequence consisting of only 2’s and possibly

some 0’s.

Proof. (⇒) For 1 ≤ i ≤ k, the sum of row i must be even because row i is the degree

sequence of the subgraph of the k-edge-colored DUP induced by edges of color i.

Also, the highest degree of any vertex in a DUP is 2 and so each column sum is at

most 2 and so hypothesis (2) holds. For any subset of colors I in a k-edge-colored

DUP, consider the subgraph H induced by edges with a color in I. H is a subgraph

of a forest and so is a forest. Thus, H cannot have degree sequence 2, . . . , 2, 0, . . . , 0

and hypothesis (3) holds.

(⇐) Let I be any subset of colors from {1, 2, . . . k}. Let DI be the sum degree

sequence of I. Because each column sum is at most 2, each entry in DI is 0, 1, or

2, and also, every entry in the vectors in D is 0, 1, or 2. Note that DC has even sum

since each row has even sum. Let mI be the support of DI . If the sum of the entries

in DI is at least 2mI then because each entry in DI is 0, 1, or 2, the sum must be

exactly 2mI . Then DI is the sequence 2, . . . , 2, 0 . . . , 0, which contradicts hypothesis

(3). Thus, the sum of DI is even and at most 2mI-2 and so DI is realizable as a

forest by Claim 1.0.1. It follows from Theorem 1.0.5 that D is the degree vector

sequence of some k-edge-colored forest G. Since every vertex in G has degree at

most 2, G is a k-edge-colored DUP.

In Theorem 3.1.2, Alpert, et al, characterize when a sequence of (k × 1) column

vectors with non-negative integer entries is the degree vector sequence of some k-

edge-colored graph with max degree at most 3. Hence, Theorem 3.1.2 answers the
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k-Edge-Coloring Problem for graphs with max degree at most 2.

Theorem 3.1.2 ([10]). Let D be a sequence of vectors with non-negative integers in

which each of the column sums is at most 3. For a subset of colors I in {1, 2, . . . , k},

let DI be the sum degree sequence of I. Then D is the degree vector sequence of

a k-edge-colored graph with max degree 3 on n vertices if and only the sum degree

sequence DI is graphic for every I ⊆ {1, 2, . . . , k}.

Since a DUC is clearly a graph with max degree at most 3, the characterization

of degree matrices k-edge-colored DUCs is a corollary of Theorem 3.1.2. However,

although a DUP is also a graph with max degree at most 3, the characterization of

degree matrices of k-edge-colored DUPs is not an immediate corollary of Theorem

3.1.2. This is because not every realization of a degree sequence of a DUP is a DUP.

For example, 1, 2, 2, 2, 1 is realized by both a path with 5 vertices as well as by a

single edge and a triangle. On other hand, every realization of the degree sequence

of a DUC is in turn a DUC.

Corollary 3.1.3. Let D be a sequence of (k×1) column vectors with non-negative in-

tegers in which each of the column sums is 2. For a subset of colors I in {1, 2, . . . , k},

let DI be the sum degree sequence of colors in I. Then D is the degree vector se-

quence of a k-edge-colored DUC if and only the sequence DI is graphic for every

I ⊆ {1, 2, . . . , k}.

3.2 The 2-Edge-Coloring Problem for Fixed DUPs

Since determining when some DUP exists which can be colored with k colors so as

to realize a given degree vector sequence, we now concentrate on determining which

DUPs can be colored as such. In this section, we consider only when k = 2 because

the case when k ≥ 3 is less ‘nice’ and we discuss why in Section 3.5. In other words,

we wish to know whether or not a fixed DUP has the desired coloring. We let p

correspond to the number of paths in a DUP and we let 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp be

the ordered list of path orders. Consider the 2-coloring of the path shown in Figure

3.1. The number above the edge indicates the color of the edge.
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1 1 2 2

Figure 3.1: A 2-edge-colored path

As Figure 3.1 demonstrates, each vertex in a 2-coloring of a non-trivial path is

either an endpoint or an internal vertex and is thus incident to exactly one color 1

edge, exactly one color 2 edge, an edge of each color, or two edges of the same color.

Thus, there are five types of degree vectors which can be present in any 2-coloring

of a nontrivial path and so in any 2-coloring of a DUP with path orders of at least

2. We now formally define these five types of vertices and vectors.

Definition 3.2.1. We define type-a1, type-a2, type-x12, type-z1, and type-z2 vertices

and vectors as such:

1. A type-a1 vertex is an endpoint of a 2-edge-colored path and is adjacent to

exactly one color 1 edge ( 1 ). Its degree vector is

(

1

0

)

which we define as

a type-a1 vector.

2. A type-a2 vertex is an endpoint of a of a 2-edge-colored path and is adjacent

to exactly one color 2 edge (
2
). Its degree vector is

(

0

1

)

which we define

as a type-a2 vector.

3. A type-x12 vertex is internal to an 2-edge-colored path and is incident to an

edge of each color (
1 2

). Its degree vector is

(

1

1

)

which we define as a

type-x12 vector.

4. A type-z1 vertex is internal to an 2-edge-colored path and is incident to

exactly two color 1 edges ( 1 1 ). Its degree vector is

(

2

0

)

which we

define as a type-z1 vector.

5. A type-z2 vertex is internal to an 2-edge-colored path and is incident to
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exactly two color 2 edges (
2 2

). Its degree vector is

(

0

2

)

which we define

as a type-z2 vector.

Because we define a type-x12 vertex to be incident to an edge of color 1 and

an edge of color 2, it would be natural to say that a type-x11 vertex is adjacent

to two edges of color 1 or a type-x22 vertex is adjacent to a two edges of color 2.

However, in upcoming theorems, we wish to highlight the roles of these different

types of vertices, and so we chose to use the terminology type-z1 instead of type-x11

and type-z2 instead of type-x22.

It follows from Definition 3.2.1 that a sequence of (2 × 1) column vectors with

a1, a2, x12, z1, z2 vectors of type-a1, type-a2, type-x12, type-z1, and type-z2 vectors,

respectively, corresponds to the degree vector sequence of a 2-edge-colored DUP

G with a1, a2, x12, z1, z2 vertices of type-a1, type-a2, type-x12, type-z1, or type-z2,

respectively, and vice versa. We introduce more definitions now.

Definition 3.2.2. If all edges of an edge-colored path P are color i, then P is

i-monochromatic.

Definition 3.2.3. A DUP G is [a1, a2, x12, z1, z2]-colorable if there exists a 2-

coloring of the edges of G so that there are exactly a1, a2, x12, z1, z2 vertices of type-

a1, type-a2, type-x12, type-z1, and type-z2, respectively. Such a 2-coloring is called

an [a1, a2, x12, z1, z2]-coloring of G.

See Figure 3.3 for an example of a DUP which is [2, 14, 2, 5, 10]-colorable and

[11, 5, 11, 4, 2]-colorable.

Definition 3.2.4. A 2-edge-colored path P with an [a1, a2, x12, z1, z2]-coloring has

the form [a1, a2, x12, z1, z2].

Some examples of path forms are shown in 3.2.

Definition 3.2.5. A segment i subpath in an edge-colored DUP is a maximal

subpath whose edges are all color i.
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[2, 0, 0, 4, 0]
1 1 1 1 1

[0, 2, 0, 0, 4]
2 2 2 2 2

[1, 1, 3, 1, 1]
1 2 2 1 1 2

[0, 2, 4, 0, 1]
2 1 2 1 2 2

Figure 3.2: Different [a1, a2, x12, z1, z2] forms and [a1, a2, x12, z1, z2]-colorings of paths

As an example of segment 1 and 2 subpaths, see Figure (3.3b) which has ex-

actly two segment 1 subpaths, one in each of the top two paths, and eight seg-

ment 2 subpaths, one in each of the eight paths. Furthermore, Figure (3.3c)

has an [11, 5, 11, 4, 2]-coloring with a1+x12

2
= 11+11

2
= 11 segment 1 subpaths and

b+x
2

= 5+11
2

= 8 segment 2 subpaths. We now show that a1+x12

2
and a2+x12

2
are al-

ways the number of segment 1 and 2 subpaths, respectively, in any [a1, a2, x12, z1, z2]-

coloring of G.

Claim 3.2.6. In any [a1, a2, x12, z1, z2]-coloring of a DUP G, there are a1+x12

2
seg-

ment 1 subpaths and a2+x12

2
segment 2 subpaths.

Proof. The endpoints of a segment 1 subpath are type-a1 (
1 ) or type-x12 (

1 2
)

vertices and so there are exactly a1 + x12 endpoints of segment 1 subpaths. Since

each segment 1 subpath requires two endpoints, the number of endpoints, a1 + x12,

must be twice the number of segment 1 subpaths. Similarly, the endpoints of the

segment 2 subpaths are type-a2 or type-x12 vertices and so a2 + x12 must be twice

the number of segment 2 subpaths.

We now present examples that demonstrate basic necessary conditions required

for a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp to be [a1, a2, x12, z1, z2]-

colorable. Let G be the DUP with p = 8 paths and path orders 2, 3, 3, 4, 4, 5, 5, 7.

See Figure 3.3.

Note that Figure (3.3) shows a [2, 14, 2, 5, 10]-coloring of G in which a1+a2
2

=
2+14
2

= 8 = p and a [11, 5, 11, 4, 2]-coloring in which a1+a2
2

= 11+5
2

= 8 = p. In any

[a1, a2, x12, z1, z2]-coloring of G, the endpoints are are either type-a1 or type-a2 and

so there are a total of a1 + a2 endpoints. Since each path requires two endpoints,
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(a) A DUP G

2

2 2

2 2

2 2 2

2 2 2

2 2 2 2

1 1 1 2

1 1 1 1 2 2

(b) [2, 14, 2, 5, 10]-coloring

1

1 2

1 2

1 2 2

1 2 1

1 2 1 2

1 1 2 2

1 1 1 2 1 1

(c) [11, 5, 11, 4, 2]-coloring

Figure 3.3: [a1, a2, x12, z1, z2]-colorings in DUPs

the number of paths is precisely half the number of endpoints, that is,

p =
a1 + a2

2
. (3.2.1)

In Figure 3.3, we also see that a1, a2, x12 have the same parity in both the

[2, 14, 2, 5, 10]-coloring and the [11, 5, 11, 4, 2]-coloring. By Claim 3.2.6, we see that

ai + x12 for i = 1, 2 must be twice the number of segment i subpaths in any

[a1, a2, x12, z1, z2]-coloring of G. Thus, both a1 + x12 and a2 + x12 must be even,

thus explaining why

a1, a2, x12 have the same parity in an [a1, a2, x12, z1, z2]-coloring of a DUP. (3.2.2)

Finally, in Figure 3.3, we see that any type-z1 vertex ( 1 1 ) is internal to a

segment 1 subpath which must end in a type-a1 vertex ( 1 ) or a type-x12 vertex

(
1 2

). Hence, if there are z1 > 0 type-z2 vertices in some [a1, a2, x12, z1, z2]-

coloring of a DUP, then a1 + x12 > 0 as well. The same is true for a segment 2

subpath and so

zi > 0 =⇒ ai + x12 > 0. (3.2.3)

The basic necessary conditions we just exemplified in (3.2.1)-(3.2.3) are proven

in Claim 3.2.8. In the proof of Claim 3.2.8 and others, we rely on results about
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[d0, d1, d2]-factors from Chapter 2. To convert a 2-coloring of a DUP to a [d0, d1, d2]-

factor, we can delete either color 1 or color 2 edges from the 2-coloring. For example,

deleting the color 2 edges from the [2, 14, 2, 5, 10]-coloring in Figure (3.3b) yields the

[24, 4, 5]-factor of G shown in Figure (2.1b). The degree 1 vertices in this factor are

precisely the type-a1 and type-x12 vertices from the [2, 14, 2, 5, 10]-coloring. Thus,

there are d1 = a1+x12 = 4 degree 1 vertices in the factor. The degree 0 vertices are

precisely the type-a2 and type-z2 vertices and so d2 = a2 + z2 = 24. Similarly, the

degree 2 vertices are the type-z1 vertices and so d2 = z1 = 5.

Claim 3.2.7. The color 1 subgraph of an [a1, a2, x12, z1, z2]-coloring of a DUP G

is a [d0, d1, d2]-factor of G where [d0, d1, d2] = [a2 + z2, a1 + x12, z1]. The color 2

subgraph is an [a1 + z1, a2 + x12, z2]-factor of G.

Proof. Deleting the color 2 edges from an [a1, a2, x12, z1, z2]-coloring G yields the

color 1 subgraph H which is a [d0, d1, d2]-factor of G. Then each degree 2 vertex

in H is incident to two color 1 edges in the [a1, a2, x12, z1, z2]-coloring and so is a

type-z1 vertex. Thus, d2 = z1. Each degree 1 vertex in H is incident to one color 1

edge in the 2-coloring and so is a type-a1 or type-x12 vertex. Thus, d1 = a1 + x12.

Finally, each degree 0 vertex in H is incident to no color 1 edges and so is a type-a2

or type-z2 vertex. Thus, d2 = a2+z2. As a result, H is a [a2+z2, a1+x12, z1]-factor.

Similarly, deleting the color 1 edges from an [a1, a2, x12, z1, z2]-coloring of G yields

the color 2 subgraph which is an [a1 + z1, a2 + x12, z2]-factor of G.

Claim 3.2.8. Let G be a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp. Let

a1, a2, x12, z1, z2 be non-negative integers. If G is [a1, a2, x12, z1, z2]-colorable, then

the following are true:

1.
∑p

i=1Ci = a1 + a2 + x12 + z1 + z2 = |V (G)|

2. p = a1+a2
2

3. If z1 > 0, then a1 + x12 > 0. If z2 > 0, then a2 + x12 > 0.

4. a1, a2, x12 have the same parity.
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Proof. Consider any [a1, a2, x12, z1, z2]-coloring of G. Such a coloring has exactly

a1, a2, x12, z1, z2 vertices of type-a1, type-a2, type-x12, type-z1, and type-z2, respec-

tively, and no other vertices. Thus, the number of vertices must be a1 + a2 + x12 +

z1+z2. Also, the total number of vertices in G is the sum of all path orders, namely,
∑p

i=1Ci. This shows that
∑p

i=1Ci = a1 + a2 + x12 + z1 + z2 = |V (G)|.

The endpoints to any path are either type-a1 or type-a2. Thus, there are a1+ a2

endpoints in G. Since each path has two endpoints and there are p paths, we see

that a1 + a2 = 2p =⇒ p = a1+a2
2

.

A type-z1 vertex appears in a segment 1 subpath whose endpoints are either

type-a1 or type-x12 vertex. Therefore, if z1 > 0 then a1 + x12 > 0. A similar

argument shows that if z2 > 0, then a2 + x12 > 0.

The color 1 subgraph of the [a1, a2, x12, z1, z2]-coloring of G is a [d0, d1, d2]-factor

of G where [d0, d1, d2] = [a2 + z2, a1 + x12, z1] by Claim 3.2.7. By Theorem 2.1.3,

we thus know that d1 = a1 + x12 is even. Similarly, the color 2 subgraph of the

[a1, a2, x12, z1, z2]-coloring of G is a [a1 + z1, a2 + x12, z2]-factor of G by Claim 3.2.7.

By Theorem 2.1.3, we thus know that a2 + x12 is even. Since a1 + x12 and a2 + x12

are both even, a1, a2, x12 must have the same parity.

Claim 3.2.9 proves that the equation
∑p

i=1(Ci − 2) = x12 + z1 + z2 holds if the

basic necessary assumptions from Claim 3.2.8 hold. In a DUP G with path orders

2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp, since Ci − 2 is the number of internal vertices in a path of

order Ci, it is sensible that
∑p

i=1(Ci−2) equals the total number of internal vertices

in G, that is, x12 + z1 + z2.

Claim 3.2.9. Consider 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp where Ci are integers. Let
∑p

i=1Ci = a1 + a2 + x12 + z1 + z2 for non-negative integers a1, a2, x12, z1, z2 where

p = a1+a2
2

. Then
∑p

i=1(Ci − 2) = x12 + z1 + z2.

Proof.

p
∑

i=1

(Ci − 2) =

(

p
∑

i=1

Ci

)

− 2p = a1 + a2 + x12 + z1 + z2 − 2p = x12 + z1 + z2
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We now show that the conditions from Claim 3.2.8 are sufficient for a single path

to be [a1, a2, x12, z1, z2]-colorable . We will see that this is not true in general for

DUPs with more than one path.

Theorem 3.2.10. Let P be a path of order C1 ≥ 2. Let a1, a2, x12, z1, z2 be non-

negative integers. P is [a1, a2, x12, z1, z2]-colorable ⇐⇒ The following conditions

hold:

1. C1 = a1 + a2 + x12 + z1 + z2 = |V (P )|

2. a1 + a2 = 2

3. If z1 > 0, then a1 + x12 > 0. If z2 > 0, then a2 + x12 > 0.

4. a1, a2, x12 have the same parity.

Proof. (⇒) Follows from Claim 3.2.8 when p = 1.

(⇐) Assume first that x12 = 0. In this case, we show that the conditions imply

that we can color P so that all edges have the same color. This makes sense because

x12 = 0 implies that an [a1, a2, x12, z1, z2]-coloring of P has no type-x12 vertices and

so cannot switch colors and thus must be monochromatic. Since x12 is even, the

parity condition tells us that a1 and a2 are even too. Since a1 and a2 sum to 2 by

condition (2), we see that either (a1 = 0, a2 = 2) or (a1 = 2, a2 = 0). If ai = 0

for i = 1, 2, then since x12 = 0 by assumption, condition (3) forces that zi = 0. So

if a1 = 0 and a2 = 2, then z2 = C1 − 2. We color all edges of P with color 2 so

that P has the form [0, 2, 0, 0, z2] as shown in Figure 3.4(a). Similarly, if a1 = 2 and

a2 = 0, the conditions imply that we can color all edges with color 1 so that P is

1-monochromatic and has form [2, 0, 0, z1, 0] as shown in Figure 3.4(b).

Now assume x12 > 0. Since a1 and a2 sum to 2, we see that a1 = a2 = 1 or one

of a1 or a2 is 0 and the other is 2. If a1 = a2 = 1, then by the parity condition,

x12 is odd too. Color the first edge with color 1. Continue coloring edges with color

1 until z1 vertices are type-z1. Color the next edge with color 2 thus making the
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2 2 2 2 2 2 2 2{
z2

(a) A Path with Form [0, 2, 0, 0, z2]

1 1 1 1 1 1 1 1{

z1

(b) A Path with Form [2, 0, 0, z1, 0]

1 1 1 2 2 2 1 2 1 2 1 2{ { {

z1 z2 x12 − 1

(c) A Path with Form [1, 1, x12, z1, z2] where x12 is odd

1 1 1 2 2 2 1 2 1 2 1{ { {

z1 z2 x12 − 1

(d) A Path with Form [2, 0, x12, z1, z2] where x12 is even

2 2 2 1 1 1 2 1 2 1 2{ { {

z2 z1 x12 − 1

(e) A Path with Form [0, 2, x12, z1, z2] where x12 is even

Figure 3.4: [a1, a2, x12, z1, z2]-colorings of a path

next vertex a type-x12 vertex. Continue coloring the edges with color 2 until type-z2

vertices are color 2. Alternate the colors of the remaining edges by coloring them as

such: 1, 2, 1, 2, etc. This sequence has x12 − 1 terms which is an even number and

so ends in a 2. The resulting coloring of P is a [1, 1, x12, z1, z2]-coloring as shown in

Figure 3.4(c).

If a1 = 2 and a2 = 0, then x12 is even too. Begin coloring the path as in

the previous case. As before, alternate the colors of the final edges by coloring

them as such: 1, 2, 1, 2, etc. Since this sequence has x12 − 1 terms which is now

an odd number, this sequence instead ends in a 1, and the resulting coloring is a

[2, 0, x12, z1, z2]-coloring. See Figure 3.4(d). Finally, if a2 = 2 and a1 = 0, again

x12 is even as well. Similar to the previous case, we can color the path with a

[0, 2, x12, z1, z2]-coloring, as shown in Figure 3.4(e).

The above arguments show that the only forms that a path can have are as

follows: (i) [0, 2, 0, 0, z2], (ii) [2, 0, 0, z1, 0], (iii) [0, 2, x12, z1, z2] where x12 > 0 is even,

(iv) [2, 0, x12, z1, z2] where x12 > 0 is even, and (v) [1, 1, x12, z1, z2] where x12 > 0 is

odd.
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The details of Theorem 3.2.10 yield the following corollary.

Corollary 3.2.11. Let P be a path of order C1 ≥ 2 where a1, a2, x12, z1, z2 are non-

negative intgers and a1 + a2 + x12 + z1 + z2 = C1 = |V (P )|. P is [a1, a2, x12, z1, z2]-

colorable ⇐⇒ [a1, a2, x12, z1, z2] is one of the following:

1. [2, 0, 0, z1, 0]

2. [0, 2, 0, 0, z2]

3. [0, 2, x12, z1, z2] and x12 > 0 is even

4. [2, 0, x12, z1, z2] and x12 > 0 is even

5. [1, 1, x12, z1, z2] and x12 > 0 is odd

Claim 3.2.12 highlights an important fact which is subtle in Corollary 3.2.11,

that is, the parity of the number of type-x12 vertices in a 2-edge-colored path forces

whether the first and last edges in the path have the same or different colors. Since

a path switches colors at precisely the type-x12 vertices, an odd number of type-

x12 vertices means the path switches colors an odd number of times, thus forcing

the starting and ending colors to be opposite. See Figure 3.4(c) for an example.

Similarly, each path with an even number of type-x12 vertices has the same color on

its starting and ending edges, as in Figure 3.4(d)-(e).

Claim 3.2.12. In any [a1, a2, x12, z1, z2]-coloring of a path P , x12 is odd ⇐⇒ P has

exactly one type-a1 endpoint and one type-a2 endpoint. Also, x12 is even ⇐⇒ P

has two type-a1 endpoints or two type-a2 endpoints.

Proof. Corollary 3.2.11 lists all possible [a1, a2, x12, z1, z2]-colorings of P . This corol-

lary implies that x12 is odd ⇐⇒ P has an [1, 1, x12, z1, z2]-coloring ⇐⇒ P has

a exactly one type-a1 and one type-a2 endpoint. Equivalently, x12 is even ⇐⇒ P

has two endpoints of the same type.
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When a DUP consists of more than just one path, the conditions from Claim 3.2.8

are not sufficient for the DUP to be [a1, a2, x12, z1, z2]-colorable. We give examples

of this now.

In some cases, an [a1, a2, x12, z1, z2]-coloring of a DUPmust have a certain number

of i-monochromatic paths. Claim 3.2.13 gives us a lower bound for the number

of i-monochromatic paths that must exist in any [a1, a2, x12, z1, z2]-coloring of a

DUP. Although the quantities in Claim 3.2.13 are only positive when x12 < a2 and

x12 < a1, the statement is still true if these quantities are non-positive.

Claim 3.2.13. In any [a1, a2, x12, z1, z2]-coloring of a DUP, there are at least a2−x12

2

2-monochromatic paths and a1−x12

2
1-monochromatic paths.

Proof. A 1-monochromatic path has no segment 2 subpaths. A 2-monochromatic

path has no segment 1 subpaths. Claim 3.2.6 shows that there are a1+x12

2
segment

1 subpaths and a2+x12

2
segment 2 subpaths in any [a1, a2, x12, z1, z2]-coloring of G.

Thus, there at most a1+x12

2
paths with a segment 1 subpath and a2+x12

2
paths with a

segment 2 subpath. This implies that in a DUP with p = a1+a2
2

paths, there are at

least p − a1+x12

2
= a1+a2

2
− a1+x12

2
= a2−x12

2
paths without a segment 1 subpath and

p− a2+x12

2
= a1−x12

2
paths without a segment 2 subpath.

Consider again G from Figure 3.3. We now show G is neither [14, 2, 4, 5, 8]-

colorable nor [2, 14, 4, 8, 5]-colorable. For G to be [14, 2, 4, 5, 8]-colorable, there must

be z1 = 5 type-z1 vertices in some coloring. By Claim 3.2.13, there must be at

least a1−x12

2
= 5 1-monochromatic paths. The shortest 5 paths in G have a total

of 6 internal vertices so if these paths were 1-monochromatic, they would require

at least 6 type-z1 vertices. Since z1 = 5, we see that z1 is too small to color

even the smallest 5 paths 1-monochromatic. Thus, z1 is too small to color any 5

paths 1-monochromatic. Hence, G is not [14, 2, 4, 5, 8]-colorable and this example

demonstrates that z1 must be at least as big as the number of internal vertices in

the smallest a1−x12

2
paths. Thus, if G is [a1, a2, x12, z1, z2]-colorable, then

x12 < a1 =⇒

a1−x12
2
∑

i=1

(Ci − 2) ≤ z1. (3.2.4)

52



A similar argument yields that if x12 < a2, then since a2−x12

2
paths must be 2-

monochromatic, z2 must be at least as big as the number of internal vertices in the

shortest a2−x12

2
paths. Thus, if G is [a1, a2, x12, z1, z2]-colorable, then

x12 < a2 =⇒

a2−x12
2
∑

i=1

(Ci − 2) ≤ z. (3.2.5)

Then G cannot be [2, 14, 4, 8, 5]-colorable because such a coloring violates in-

equality (3.2.5). Additionally, switching colors 1 and 2 in a [2, 14, 4, 8, 5]-coloring

would yield a [14, 2, 4, 5, 8]-coloring, thus contradicting that G is not [14, 2, 4, 5, 8]-

colorable.

We now present a necessary a bound on the number of paths of order 3. There

are three possible ways to color a path of order 3 with 2 colors. They are shown in

Figure 3.5.

1 2 1 1 2 2

Figure 3.5: 2-colorings of paths of order 3

Consider again the DUP G in Figure 3.3. If G were [0, 18, 14, 0, 1]-colorable,

then since a1 = 0, we cannot color any order 3 path like the first or second colorings

shown in Figure 3.5 both of which require a type-a1 endpoint. Also, since z2 = 1

only one path of order 3 in G can have a coloring like that of the third coloring

shown in Figure 3.5 which requires a type-z2 vertex. Thus, the given a1 and z2

values force that we can only successfully color at most one order 3 path in any

[0, 18, 14, 0, 1]-coloring of any DUP. However, G has two order 3 paths and so G is not

[0, 18, 14, 0, 1]-colorable. We have just illustrated that if a DUP is [a1, a2, x12, z1, z2]-

colorable, then since the first and second colorings in Figure 3.5 require at least one

type-a1 endpoint and and the third coloring requires at least one type-z2 vertex,

the number of order 3 paths in G is at most a1 + z2. By symmetry, if a DUP is

[a1, a2, x12, z1, z2]-colorable, then the number of order 3 paths in G is at most a2+z1.

Thus, G is not [18, 0, 14, 1, 0]-colorable. In general, it must be true that
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the number of order 3 paths is at most min{a1 + z2, a2 + z1}. (3.2.6)

Moreover, we need a bound on all odd paths, not just order 3 paths. Any odd

path must have at least one internal vertex. If all the internal vertices of an odd

path are type-x12 then by Claim 3.2.12 the path requires a type-a1 and a type-a2

endpoint. Hence, any [a1, a2, x12, z1, z2]-coloring of a DUP can have min{a1, a2} such

odd paths. Any other odd path has a type-z1 or type-z2 internal vertex and there

are at most z1 + z2 such odd paths. Hence, in any [a1, a2, x12, z1, z2]-coloring of a

DUP, it must be true that

the number of odd paths is at most min{a1, a2}+ z1 + z2. (3.2.7)

For example, the DUP G from Figure 3.3 is not [1, 15, 19, 1, 2]-colorable. Since

min{a1, a2} + z1 + z2 = 4 but G has 5 odd paths, inequality (3.2.7) fails. By the

same reasoning, G is not [15, 1, 19, 2, 1]-colorable.

The reader may ask why the order 3 paths are important enough that we specify

a special bound for them but we do not specify a bound for any paths of larger

order. The reason is that the colorings of a order 3 path are so specific that the the

internal vertex actually defines the endpoints. As Figure 3.5 shows, a type-zi vertex

in an order 3 path forces two type-ai endpoints, and a type-x12 vertex forces one

type-a2 and one type-a1 endpoint. On the other hand, paths of larger order have

flexibility between the endpoints and the internal vertex.

For example, consider the [1, 9, 9, 7, 1]-coloring of the DUP in Figure 3.6. Since

a1 + z2 = 2, any DUP which is [1, 9, 9, 7, 1]-colorable can have at most 2 odd paths

by inequality (3.2.6). Even though z1 = 7 is relatively large, the number of order 3

paths must stay small because a type-z1 vertex in a order 3 path requires additional

type-a1 vertices. On the other hand, paths of larger order can have a type-z1 vertex

without having type-a1 endpoints as Figure 3.6 demonstrates.

The previous discussion exemplifies why inequalities (3.2.4)-(3.2.7) appear in

Theorem 3.2.14. Later, in Theorem 3.2.22, we show that the hypotheses of Theorem

3.2.14 along with a few basic assumptions are sufficient.
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1 2

2 2

2 1 1 2

2 1 1 1 1 2

2 1 1 1 1 2 1 2

Figure 3.6: A [1, 9, 9, 7, 1]-coloring of a DUP with path orders 3, 3, 5, 7, 9

Theorem 3.2.14. Let G be a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp.

Let a1, a2, x12, z1, z2 be non-negative integers. Let op(G) refer to the number of path

orders Ci in G which are odd. Let t(G) refer to the number of path orders Ci in G

which are 3. If G is [a1, a2, x12, z1, z2]-colorable, then the following conditions hold:

1. If x12 < a1, then
∑

a1−x12
2

i=1 (Ci − 2) ≤ z1.

2. If x12 < a2 then
∑

a2−x12
2

i=1 (Ci − 2) ≤ z2.

3. t(G) ≤ min{a1 + z2, a2 + z1}

4. op(G) ≤ min{a1, a2}+ z1 + z2

Proof. By Claim 3.2.13, G has at least a1−x12

2
1-monochromatic paths. Since each

1-monochromatic path of order Ci has exactly Ci − 2 type-z1 vertices and since the
a1−x12

2
1-monochromatic paths can be no smaller than the first a1−x12

2
path orders, we

see that
∑

a1−x12
2

i=1 (Ci−2) ≤ z1. A similar argument shows that
∑

a2−x12
2

i=1 (Ci−2) ≤ z2.

An order 3 path has exactly one internal vertex. If any order 3 path has two

type-a2 endpoints, then its internal vertex is type-z2 and so there are at most z2

such order 3 paths in any [a1, a2, x12, z1, z2]-coloring of G. Otherwise, a order 3

path has at least one type-a1 endpoint and there are at most a1 such order 3 paths.

Hence, there are at most a1 + z2 order 3 paths. A similar argument yields that

there are at most a2+z1 order 3 paths in any [a1, a2, x12, z1, z2]-coloring of G. Thus,

t(G) ≤ min{a1 + z2, a2 + z1}.

Any odd path must have at least one internal vertex. If all the internal vertices

of an odd path are type-x12 then by Claim (3.2.12) the path requires a type-a1
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and a type-a2 endpoint. Hence, any [a1, a2, x12, z1, z2]-coloring of a DUP can have

min{a1, a2} such odd paths. Any other odd path contains a type-z1 or type-z2

internal vertex and there are at most z1 + z2 such odd paths. Hence, op(G) ≤

min{a1, a2}+ z1 + z2.

In many cases, the bounds on the number of odd paths and paths of order 3

cannot fail. Claim 3.2.15 characterizes under what conditions these bounds must

hold. This information simplifies upcoming proofs. Note that Claim 3.2.15 relies on

Claim 3.2.16 which is proved in the upcoming Section 3.2.1. We did this so that all

auxiliary claims are stated and proven within the same section. We remark that we

took care to create no circular arguments are made.

Claim 3.2.15. Let G be a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp. Let

a1, a2, x12, z1, z2 be non-negative integers where
∑p

i=1Ci = a1 + a2 + x12 + z1 + z2 =

|V (G)| and p = a1+a2
2

. Let op(G) refer to the number of path orders Ci in G which

are odd. Let t(G) refer to the number of path orders Ci in G which are 3.

(a) If a1 ≤ a2 then t(G) ≤ a2 + z1 and op(G) ≤ a2 + z1 + z2.

(b) If a2 ≤ a1 then t(G) ≤ a1 + z2 and op(G) ≤ a1 + z1 + z2.

(c) If a1 = a2 then t(G) ≤ min{a1+ z2, a2+ z1} and op(G) ≤ min{a1, a2}+ z1 + z2.

(d) Assume x12 ≤ min{a1, a2}. If
∑

a1−x12
2

i=1 (Ci − 2) ≤ z1 when x12 < a1 and if
∑

a2−x12
2

i=1 (Ci − 2) ≤ z2 when x12 < a2, then t(G) ≤ min{a1 + z2, a2 + z1} and

op(G) ≤ min{a1, a2}+ z1 + z2.

Proof. Observe that the number of odd paths and the number of order 3 paths can

clearly be no bigger than p, ie, t(G) ≤ op(G) ≤ p. Also, Claim 3.2.16 yields the key

observation that p ≤ max{a1, a2}. Thus, a1 ≤ a2 =⇒ max{a1, a2} = a2 and thus

p ≤ a2. Since a2 is bigger than p, then a2 + z1 and a2 + z1 + z2 are bigger than t(G)

and op(G), respectively, as well. This proves statement (a). A similar argument

proves statement (b).
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If a1 = a2, then statements (a) and (b) both hold and this implies statement (c).

We now show statement (d) of the claim. If a1 = a2, then by statement (c), the

claim follows, so we assume a1 < a2 or a2 < a1.

Assume first that a1 < a2. By hypothesis, x12 ≤ min{a1, a2} and so we see

x12 ≤ a1 < a2. Since a1 < a2, statement (a) implies t(G) ≤ a2 + z1 and op(G) ≤

a2 + z1 + z2. We now show t(G) ≤ a1 + z2 and op(G) ≤ a1 + z1 + z2 to complete the

claim.

Since x12 ≤ a1 < a2, we see a2 > x12. For each Ci = 3, we see Ci − 2 = 1. Thus,

each order 3 path in the shortest a2−x12

2
paths contributes exactly one to the sum

∑

a2−x12
2

i=1 (Ci−2). Furthermore, the largest p− a2−x12

2
= a1+x12

2
paths can clearly have

at most a1+x12

2
order 3 paths. Thus, it is true that t(G) ≤

∑

a2−x12
2

i=1 (Ci − 2) + a1+x12

2
.

Since
∑

a2−x12
2

i=1 (Ci − 2) ≤ z2 by assumption, the previous inequality implies that

t(G) ≤ z2 +
a1+x12

2
. Recall x12 ≤ a1 and so a1+x12

2
≤ a1. Hence, t(G) ≤ z2 + a1.

Now, since each odd Ci, is at least 3, each odd path contributes at least one

to the sum
∑p

i=1(Ci − 2) and so this sum is an overcount for op(G). Therefore,

op(G) ≤
∑p

i=1(Ci − 2). By Claim 3.2.9,
∑p

i=1(Ci − 2) = x12 + z1 + z2 which is at

most a1 + z1 + z2 since x12 ≤ a1. Thus, op(G) ≤ a1 + z1 + z2.

A similar argument yields the claim when a2 < a1.

3.2.1 Auxiliary Equations and Inequalities

In this section, we include claims which simplify the proofs in Section 3.2.2, where

we show that the conditions of Theorem 3.2.14 are sufficient for determining when

a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp is [a1, a2, x12, z1, z2]-colorable.

Claim 3.2.16 proves immediate observations about p, a1, a2, x12 that result from basic

assumptions.

Claim 3.2.16. Let a1, a2, x12, z1, z2 be non-negative integers where p = a1+a2
2

and

a1, a2, x12 have the same parity. Then the following are all true.

1. p ≤ max{a1, a2} ≤ 2p

57



2. If a1 = a2, then a1 = a2 = p.

3. If a1 = p or a2 = p, then a1 = a2 = p.

4. If a1 > x12 and a2 > x12, then p > x12.

Proof. We prove each condition separately.

1. p = a1+a2
2

≤ 2max{a1,a2}
2

= max{a1, a2}. Also, 2p = a1 + a2 = max{a1, a2}.

2. If a1 = a2, then p = a1+a2
2

= 2a2
2

= a1 = a2.

3. If a1 = p, 2a1 = 2p = a1 + a2 =⇒ 2a1 = a1 + a2 =⇒ a1 = a2. Similarly,

a2 = p =⇒ a1 = a2 = p.

4. a1 > x12, a2 > x12 =⇒ p = a1+a2
2

> x12+x12

2
= x12.

Claim 3.2.17 highlights a helpful parity condition that results from basic assump-

tions.

Claim 3.2.17. Consider 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp where Ci are integers. Let

op(G) refer to the number of path orders Ci in G which are odd. Let a1, a2, x12, z1, z2

be non-negative integers where p = a1+a2
2

and
∑p

i=1Ci = a1 + a2 + x12 + z1 + z2.

Assume a1, a2, x12 have the same parity. Then the quantities op(G), a1 + z1 + z2,

and a2 + z1 + z2 all have the same parity.

Proof. The parity of the number of internal vertices in a DUP must equal the parity

of the number of odd paths in the DUP, that is, op(G). The number of internal

vertices is
∑p

i=1(Ci − 2) which equals x12 + z1 + z2 by Claim 3.2.9. Thus, the

quantities op(G) and x12 + z1 + z2 must have the same parity. Since a1, a2, x12 have

the same parity by hypothesis, we thus see that the quantities op(G), a1 + z1 + z2,

and a2 + z1 + z2 must have the same parity as well.

Claim 3.2.18 proves that due to basic assumptions, if x12 and z1 are “too small,”

then z2 must be “large enough.”
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Claim 3.2.18. Consider 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp where Ci are integers. Let

a1, a2, x12, z1, z2 be non-negative integers where p = a1+a2
2

and
∑p

i=1Ci = a1 + a2 +

x12 + z1 + z2. Assume a1, a2, x12 have the same parity and x12 < a1 and x12 < a2.

If
∑

a1−x12
2

+1

i=2 (Ci − 2) > z1, then
∑

a2−x12
2

+1

i=2 (Ci − 2) ≤ z2.

Proof. Since x12 < min{a1, a2} by hypothesis, Claim 3.2.16 yields that p > x12.

Also, p − x12 = a1−x12

2
+ a2−x12

2
. Since x12 < a1, this implies p − x12 > a2−x12

2
.

Then we can partition the indexing interval [1, p] into the following subintervals:
[

1, a2−x12

2

]

,
[

a2−x12

2
+ 1, p− x12

]

, [p− x12 + 1, p]. Thus, we can write the sum of

C1 − 2 over the indices i ∈ [1, p] as

p
∑

i=1

(Ci − 2) =

a2−x12
2
∑

i=1

(Ci − 2) +

p−x12
∑

i=
a2−x12

2
+1

(Ci − 2) +

p
∑

i=p−x12+1

(Ci − 2). (3.2.8)

Note that the sum over [i ∈ a2−x12

2
+ 1, p − x] has p − x12 −

a2−x12

2
= a1−x12

2
terms

and the sum over i ∈ [p− x12 + 1, p] has x12 terms. We proceed by establishing two

helpful facts.

Since the variables Ci ≥ 2 are ordered by increasing order, if C a1−x12
2

+1
= 2 then

Ci = 2 for all i ≤ a1−x12

2
+ 1. In this case,

∑

a1−x12
2

+1

i=2 (Ci − 2) = 0 ≤ z1, which

contradicts the hypothesis of the claim. Thus, C a1−x12
2

+1 ≥ 3, which implies Ci ≥ 3

for all i ≥ a1−x12

2
+1. Recall a1−x12

2
< p−x12 and so i = p−x12 +1 is a larger index

than i = a1−x12

2
+ 1. Thus, Ci ≥ 3 when i ≥ p − x12 + 1. There are x12 terms in

the sum
∑p

i=p−x12+1(Ci − 2) and so
∑p

i=p−x12+1(Ci − 2)− x12 =
∑p

i=p−x12+1(Ci − 3).

Each term in this new sum is non-negative since Ci ≥ 3 when i ≥ p−x12+1. Hence,
∑p

i=p−x12+1(Ci − 3) is at least as large as its largest term which is Cp − 3. Thus,

p
∑

i=p−x12+1

(Ci − 2)− x12 ≥ Cp − 3. (3.2.9)

Recall the sum
∑p−x12

i=
a2−x12

2
+1
(Ci − 2) has a1−x12

2
terms. Since x12 < a2, we see the

initial index is i = a2−x12

2
+1 ≥ 2. Thus,

∑p−x

i=
a2−x12

2
+1
(Ci−2) must be as large as the
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sum
∑

a1−x12
2

+1

i=2 (Ci − 2) which also has a1−x12

2
terms but which is a sum over lower

indices. Hence,
∑p−x12

i=
a2−x12

2
+1
(Ci − 2) ≥

∑

a1−x12
2

+1

i=2 (Ci − 2) > z1. This implies that

p−x12
∑

i=
a2−x12

2
+1

(Ci − 2)− 1 ≥ z1. (3.2.10)

Assume now that
∑

a2−x12
2

+1

i=2 (Ci − 2) > z2 and we use these facts to show a

contradiction.

z1 + z2 =

p
∑

i=1

(Ci − 2)− x12 by Claim 3.2.9

=

a2−x12
2
∑

i=1

(Ci − 2) +

p−x12
∑

i=
a2−x12

2
+1

(Ci − 2) +

p
∑

i=p−x12+1

(Ci − 2)− x12 by (3.2.8)

≥

a2−x12
2
∑

i=1

(Ci − 2) +

p−x12
∑

i=
a2−x12

2
+1

(Ci − 2) + Cp − 3 by (3.2.9)

=

a2−x12
2
∑

i=1

(Ci − 2) +

p−x12
∑

i=
a2−x12

2
+1

(Ci − 2) + (Cp − 2)− 1

≥

a2−x12
2

+1
∑

i=1

(Ci − 2) +

p−x12
∑

i=
a2−x12

2
+1

(Ci − 2)− 1 since Cp ≥ C a2−x12
2

+1

≥

a2−x12
2

+1
∑

i=1

(Ci − 2) + z1 by (3.2.10)

> z2 + z1 by hypothesis

Thus, we see z1 + z2 > z1 + z2, a contradiction. Hence,
∑

a2−x12
2

+1

i=2 (Ci − 2) ≤ z2.

Claim 3.2.19 simplifies induction in the proof of Theorem 3.2.22.
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Claim 3.2.19. Consider 4 ≤ C1 ≤ C2 ≤ · · · ≤ Cp where Ci are integers. Assume

a1, a2, x12, z1, z2 are non-negative integers where p = a1+a2
2

and
∑p

i=1Ci = a1 + a2 +

x12 + z1 + z2. Assume a1, a2, x12 have the same parity. Given j = 1, . . . , p, let Pj be

any path of order Cj in G. Let op(G − Pj) be the number of odd paths in G − Pj,

which is the number of Ci for i 6= j which are odd. Then z1 + z2 ≥ Cj − 4 + a2 −

x12 + a1+ op(G−Pj). Furthermore, if x12 < a2, then z1 + z2 ≥ Cj − 2+ op(G−Pj).

Proof. p = a1+a2
2

=⇒ 2p− a1 = a2 =⇒

2(p− 1)− a1 = a2 − 2. (3.2.11)

Consider the sum
∑

i 6=j(Ci − 2). Since Ci ≥ 4 for all i, we see Ci − 2 ≥ 2 when

Ci is even and Ci − 2 ≥ 3 when Ci is odd. Thus, each of the p − 1 terms in the

sum
∑

i 6=j(Ci−2) contributes at least 2 to the sum plus an additional 1 if Ci is odd.

Hence,

∑

i 6=j

(Ci − 2) ≥ 2(p− 1) + op(G− Pj). (3.2.12)

We now show the first of the desired inequalities.

z1 + z2

=

p
∑

i=1

(Ci − 2)− x12 by Claim 3.2.9

= (Cj − 2)− x12 +
∑

i 6=j

(Ci − 2)

= (Cj − 4) + (a2 − x12)− (a2 − 2) +
∑

i 6=j

(Ci − 2)

≥ (Cj − 4) + (a2 − x12)− (a2 − 2) + 2(p− 1) + op(G− Pj) by (3.2.11)

= (Cj − 4) + (a2 − x12)− (2(p− 1)− a1) + 2(p− 1) + op(G− Pj) by (3.2.11)

= (Cj − 4) + (a2 − x12) + a1 + op(G− Pj)

Thus, z1+z2 ≥ (Cj −4)+(a2−x12)+a1+op(G−Pj). Since x12 and a2 have the

same parity, if x12 < a2, then we see that x12 ≤ a2−2, or equivalently, a2−x12 ≥ 2.
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Then z1 + z2 ≥ (Cj − 4) + (a2 − x12) + a1 + op(G− Pj) ≥ Cj − 2 + a1 + op(G− Pj).

Since a1 ≥ 0, this implies z1 + z2 ≥ Cj − 2 + op(G− Pj), as desired.

3.2.2 Proofs of Sufficiency

The main result of this section is Theorem 3.2.22 which proves that the following

four conditions are the key drivers for determining when a DUP with path orders

2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp is [a1, a2, x12, z1, z2]-colorable. The necessity of these

conditions are shown in Theorem 3.2.14.

1. If x12 < a1, then
∑

a1−x12
2

i=1 (Ci − 2) ≤ z1.

2. If x12 < a2 then
∑

a2−x12
2

i=1 (Ci − 2) ≤ z2.

3. If a1 < a2 and a1 < x12, then t(G) ≤ a1 + z2 and op(G) ≤ a1 + z1 + z2.

4. If a2 < a1 and a2 < x12, then t(G) ≤ a2 + z1 and op(G) ≤ a2 + z1 + z2.

We use Theorem 3.2.20 and Theorem 3.2.21 to prove two small cases of Theorem

3.2.22. Theorem 3.2.20 shows that the first two conditions are sufficient when all

paths in a DUP have order 2 or 3. Theorem 3.2.21 shows that portions of the third

and fourth conditions are sufficient when z1 = z2 = 0.

Theorem 3.2.20. Let G be a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp≤

3. Let a1, a2, x12, z1, z2 be non-negative integers. Let
∑p

i=1Ci = a1 + a2 + x12 +

z1 + z2 = |V (G)| and p = a1+a2
2

. Let a1, a2, x12 have the same parity. Then G is

[a1, a2, x12, z1, z2]-colorable ⇐⇒ The following conditions hold:

1. If x12 < a1, then
∑

a1−x12
2

i=1 (Ci − 2) ≤ z1.

2. If x12 < a2 then
∑

a2−x12
2

i=1 (Ci − 2) ≤ z2.

Proof. (⇒) Follows from Theorem 3.2.14.
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(⇐) Since 2 ≤ Ci ≤ 3, we see that Ci − 2 = 1 if Ci = 3 and Ci − 2 = 0 if

Ci = 2. Thus, the sum
∑p

i=1(Ci − 2) counts the number of Ci which are 3 and so

t(G) =
∑p

i=1(Ci−2). Furthermore, Claim 3.2.9 yields
∑p

i=1(Ci−2) = x12+ z1+ z2.

Thus, the number of order 3 paths in G is x12 + z1 + z2.

We will show that the hypotheses imply that a1 − x12 − 2z1 ≥ 0 and a2 −

x12 − 2z2 ≥ 0. These inequalities imply that we can color the x12 + z1 + z2 order

3 paths and the remaining order 2 paths of G as such. (See Figure 3.7.) Color

the x12 + z1 + z2 paths of order 3 so that x12 paths have the form [1, 1, 1, 0, 0], z1

paths have the form [2, 0, 0, 1, 0], and z2 paths have the form [0, 2, 0, 0, 1]. The other

p− (x12 + z1+ z2) =
a1−x12−2z1

2
+ a2−x12−2z2

2
paths are order 2. We color a1−x12−2z1

2
of

these order 2 paths with color 1 and the remaining a2−x12−2z2
2

of the order 2 paths

with color 2.

{
{
{
{
{ 1

2

1 1

2 2

1 2x12

z2

z1

a2−x12−2z2

2

a1−x12−2z1

2

Figure 3.7: 2-coloring paths with order 2 or 3

We now show that a1 − x12 − 2z1 ≥ 0 and a2 − x12 − 2z2 ≥ 0. We may assume

a1 ≤ a2 since we can switch colors 1 and 2 if a2 < a1. Recall that t(G) = x12+z1+z2.

Since all paths are order 2 or 3, this implies x12 ≤ p. But p ≤ max{a1, a2} = a2 by

Claim 3.2.16. Hence, x12 ≤ a2. Then either x12 = a2 or x12 < a2. If x12 = a2, then

below we show x12 + z1 ≤
a1+x12

2
, or equivalently, a1 − x12 − 2z1 ≥ 0.

x12 + z1 ≤ x12 + z1 + z2 =

p
∑

i=1

(Ci − 2) ≤ p =
a1 + a2

2
=

a1 + x12

2

If x12 < a2, then the hypotheses yield
∑

a2−x12
2

i=1 (Ci−2) ≤ z2. Note p−
a2−x12

2
= a1+x12

2
,
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and below we show x12 + z1 ≤
a1+x12

2
.

x12 + z1 =

p
∑

i=1

(Ci − 2)− z2 ≤

p
∑

i=1

(Ci − 2)−

a2−x12
2
∑

i=1

(Ci − 2)

=
∑

largest
a1+x12

2
paths

(Ci − 2) ≤
a1 + x12

2

Thus, x12 + z1 ≤ a1+x12

2
and so a1 − x12 − 2z1 ≥ 0. This implies x12 ≤ a1. By

considering when x12 = a1 and x12 < a1, we can now apply the same argument to

show that a2 − x12 − 2z2 ≥ 0.

Theorem 3.2.21. Let G be a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp.

Let a1, a2, x12 be non-negative integers. Let
∑p

i=1Ci = a1 + a2 + x12 = |V (G)| and

p = a1+a2
2

. Let a1, a2, x12 have the same parity. Then G is [a1, a2, x12, 0, 0]-colorable

if and only if the following conditions hold:

1. If a1 < a2 and a1 < x12, then op(G) ≤ a1.

2. If a2 < a1 and a2 < x12, then op(G) ≤ a2.

Proof. (⇒) Follows from Theorem 3.2.14.

(⇐) We assume a1 ≤ a2 since if a1 > a2 we could switch colors 1 and 2 to

achieve a1 ≤ a2. By Claim 3.2.9, we see that x12 =
∑p

i=1(C1 − 2) and so if

G is [a1, a2, x12, 0, 0]-colorable, all internal vertices must be type-x12. Thus, each

path must consist edges of alternating colors. We show how to color G. Since

x12 =
∑p

i=1(C1 − 2) and each odd path order contributes at least one to the this

sum, we see that x12 ≥ op(G).

If a1 < a2 and a1 < x12, then condition (3) yields op(G) ≤ a1. Otherwise,

a1 = a2 or x12 ≤ a1, in which case Claim 3.2.15 yields op(G) ≤ a1. Since op(G) ≤ a1

and op(G) ≤ x12, a1, a2, x12 are large enough to color the op(G) odd paths so that

each has exactly one type-a1 vertex, one type-a2 vertex, and at least one type-x12

vertex. To do this, simply color the first edge of each odd path with color 1 and

then alternate colors on the following edges, as shown in Figure 3.8. Because the

path is odd, Claim 3.2.12 the second endpoint must be type-a2 .
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1 2 1 2 1 2

1 2

Figure 3.8: Paths of form [1, 1, x12, 0, 0]

There are p−op(G) even paths that we must color as well. By Claim 3.2.17, op(G)

and a1 and a2 have the same parity. Then since op(G) ≤ a1 ≤ a2, the quantities
a1−op(G)

2
and a2−op(G)

2
are positive integers. Notice that p− op(G) = a1+a2

2
− op(G) =

a1−op(G)
2

+ a2−op(G)
2

. For each of the smallest a1−op(G)
2

even paths, color the first edge

with color 1 and then alternate the colors. Again by Claim 3.2.12, this coloring

forces each even path to have two type-a1 endpoints. See Figure 3.9.

1 2 1 2 1

1

Figure 3.9: Paths of form [2, 0, x12, 0, 0]

Finally, color each of the largest a2−op(G)
2

even paths starting with the color 2.

Again by Claim 3.2.12, the path must have two type-a2 endpoints. See Figure 3.10

2 1 2 1 2

2

Figure 3.10: Paths of form [0, 2, x12, 0, 0]

We now prove Theorem 3.2.22, the main result of this section. We point out

that the hypotheses of Theorem assume x12 > 0. If x12 = 0 in an [a1, a2, x12, z1, z2]-

coloring of a DUP, then all paths are monochromatic and this introduces a level

of complexity explained in Section 3.2.3. The assumptions of Theorem 3.2.20 and

Theorem 3.2.21 prevent this level of complexity and so these theorems did not

include the hypothesis that x12 is positive.
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Theorem 3.2.22. Let G be a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp.

Let a1, a2, x12, z1, z2 be non-negative integers and let x12 > 0. Let a1, a2, x12 have the

same parity. Let
∑p

i=1Ci = a1 + a2 + x12 + z1 + z2 = |V (G)| and p = a1+a2
2

. Let

op(G) refer to the number of path orders Ci in G which are odd. Let t(G) refer to the

number of path orders Ci in G which are 3. Then G is [a1, a2, x12, z1, z2]-colorable if

and only if the following conditions hold:

1. If x12 < a1, then
∑

a1−x12
2

i=1 (Ci − 2) ≤ z1.

2. If x12 < a2 then
∑

a2−x12
2

i=1 (Ci − 2) ≤ z2.

3. t(G) ≤ a1 + z2 and op(G) ≤ a1 + z1 + z2

4. t(G) ≤ a2 + z1 and op(G) ≤ a2 + z1 + z2

Proof. (⇒) Follows from Theorem 3.2.14.

(⇐) We may assume a1 ≤ a2 since we can switch colors 1 and 2 if a2 < a1. By

Claim 3.2.16 p ≤ max{a1, a2} = a2.

We proceed by induction on p. If p = 1, G consists of one path and Theo-

rem 3.2.10 yields that G is [a1, a2, x12, z1, z2]-colorable. We now assume that if G

consists of p− 1 paths where p ≥ 2 and the conditions of the theorem hold, then G

is [a1, a2, x12, z1, z2]-colorable. Since p ≤ a2 we note that

2 ≤ p ≤ a2. (3.2.13)

The cases we consider are below.

Case I: x12 < a1 ≤ b

Case II: a1 ≤ x12, a1 ≤ b, C1 = 2

Case III: a1 ≤ x12, a1 ≤ b, C1 = 3

Case IV: a1 ≤ x12 < a2, C1 ≥ 4

Case: V a1 ≤ a2 ≤ x12, C1 ≥ 4
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In each case, we adhere to the same strategy, which we summarize now. We

remove the shortest path P which has order C1 from G and call the resulting DUP

G′. We let p′ = p− 1 and we shift the indices on Ci so that C ′
i = Ci when i < j and

C ′
i = Ci+1 for i > j. Then G′ has path orders 2 ≤ C ′

1 ≤ C ′
2 ≤ · · · ≤ C ′

p′. In each

case, we choose a special [â1, â2, x̂12, ẑ1, ẑ2]-coloring of P so that induction implies

there exists a [a1 − â1, a2 − â2, x12 − x̂12, z
′
1 = z1 − ẑ1, and z′2 = z2 − ẑ2]-coloring of

G′.

Thus, â1, â2, x̂12, ẑ1, ẑ2 must be non-negative integers which sum to C1. Also,

[â1, â2, x̂12, ẑ1, ẑ2] must a form from Corollary 3.2.11 so that Corollary 3.2.11 yields

that a path P of order C1 is [â1, â2, x̂12, ẑ1, ẑ2]-colorable. Per Corollary 3.2.11, our

choices of [â1, â2] are [1, 1], [0, 2], or [2, 0] and we choose [â1, â2] so that 0 ≤ â1 ≤ a1

and 0 ≤ â2 ≤ a2. We also choose x̂12 so that the parity of â1, â2, and x̂12 match and

so that 0 ≤ x̂12 < x12. This forces that x− x̂12 > 0 which we need for the next step

of our strategy. Finally, we choose ẑ1 and ẑ2 so that 0 ≤ ẑ1 ≤ z1 and 0 ≤ ẑ2 ≤ z2.

We use primed variables for the leftover amounts, ie, a′1 = a1 − â1, a
′
2 = a2 −

â2, x
′
12 = x − x̂12, z

′
1 = y − ẑ1, and z′2 = z2 − ẑ2. These primed variables will all be

non-negative integers by choice of the hatted variables. Also, since we choose x̂12 so

that x̂12 < x12, we see that x′
12 > 0 which is required by the inductive hypothesis.

We also see that p′ =
a′1+a′2

2
since

a′1+a′2
2

= a1+a2
2

− â1+â2
2

= p− 1 = p′. Furthermore,

the parity of a1, a2, x12 match by hypothesis and we choose â1, â2, x̂12 so that their

parity matches. These facts force that the parity of a′1, a
′
2, x

′
12 match as well. Finally,

since â1, â2, x̂12, ẑ1, ẑ2 sum to C1, we see that

a′1+a′2+x′
12+z′1+z′2 = a1+a2+x12+z1+z2−C1 =

(

p
∑

i=1

Ci

)

−C1 =

p′
∑

i=1

C ′
i = |V (G′)|.

In order to apply induction, we must show in each case that our choices for

the hatted variables imply that the following conditions hold. We refer to these

conditions as the primed inequalities (PI). If we remove the primes, we refer to

these conditions as the original inequalities.

1. If x′
12 < a′1, then

∑

a′
1
−x′

12
2

i=1 (C ′
i − 2) ≤ z′1.
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2. If x′
12 < a′2 then

∑

a′
2
−x′

12
2

i=1 (C ′
i − 2) ≤ z′2.

3. t(G′) ≤ a′1 + z′2 and op(G
′) ≤ a′1 + z′1 + z′2.

4. t(G′) ≤ a′2 + z′1 and op(G
′) ≤ a′2 + z′1 + z′2.

After proving that the primed inequalities hold, we then apply induction to

obtain that G′ is [a′1, a
′
2, x

′
12, z

′
1, z

′
2]-colorable. Then any [a′1, a

′
2, x

′
12, z

′
1, z

′
2]-coloring of

G′ and any [â1, â2, x̂12, ẑ1, ẑ2]-coloring of P yield an [a1, a2, x12, z1, z2]-coloring of G,

thus showing that G is [a1, a2, x12, z1, z2]-colorable.

We apply our strategy now to each of the aforementioned cases.

Case I: x12 < a1 ≤ a2

In this case, x12 < a1 and x12 < a2 and so hypotheses (1) and (2) of the theorem

yield that C1 − 2 ≤ z1 and C1 − 2 ≤ z2. Also, p > x12 by Claim 3.2.16 so any

[a1, a2, x12, z1, z2]-coloring of G has at least p − x12 monochromatic paths. Recall

G′ is the DUP G with a path P of order C1 removed. Our goal is to color P

so that it is i-monochromatic. Thus, we give P an [2, 0, 0, C1 − 2, 0]-coloring or a

[0, 2, 0, 0, C1 − 2]-coloring.

Subcase A:
∑

a1−x12
2

+1

i=2 (Ci − 2) ≤ z1

Let [â1, â2, x̂12, ẑ1, ẑ2] = [0, 2, 0, 0, C1 − 2]. Let [a′1, a
′
2, x

′
12, z

′
1, z

′
2] = [a1, a2 −

2, x, z1, z2−(C1−2)]. Since a2 ≥ 2 by inequality (3.2.13) and since C1−2 ≤ z2

by condition (2), the primed variables are nonnegative integers. Also x′
12 =

x12 > 0.

PI (1) By the assumption of this subcase we see that
∑

a′
1
−x′

12
2

i=1 (C ′
i − 2) =

∑

a1−x12
2

+1

i=2 (Ci − 2) ≤ z1 = z′1

PI (2) The primed inequality is obtained by decreasing

both sides of the original inequality by C1 − 2.

PI (3) & Since x12 < a1 =⇒ x′
12 < a′1, these conditions

PI (4) follow from Claim 3.2.15(d).

68



By induction, G′ is [a1, a2−2, x12, z1, z2−(C1−2)]-colorable. Any such coloring

of G′ together with a [0, 2, 0, 0, C1−2]-coloring of P yields an [a1, a2, x12, z1, z2]-

coloring of G.

Subcase B:
∑

a1−x12
2

+1

i=2 (Ci − 2) > z1

Let [â1, â2, x̂12, ẑ1, ẑ2] = [2, 0, 0, C1 − 2, 0]. Let [a′1, a
′
2, x

′
12, z

′
1, z

′
2] be the values

[a1 − 2, a2, x12, z1 − (C1 − 2), z2]. Since 0 < x12 < a1, we know a1 ≥ 2.

Also, C1 − 2 ≤ z1 by original inequality (1). Then all primed variables are

nonnegative integers and also x′
12 = x12 > 0.

PI (1) The primed inequality is obtained by decreasing

both sides of the original inequality by C1 − 2.

PI (2) Since
∑

a1−x12
2

+1

i=2 (Ci − 2) > z1, Claim 3.2.18 shows us that
∑

a′
2
−x′

12
2

i=1 (C ′
i − 2) =

∑

a2−x12
2

+1

i=2 (Ci − 2) ≤ z2 = z′2

PI (3) & Since x12 < min{a1, a2} =⇒ x′
12 ≤ min{a′1, a

′
2}, these

PI (4) inequalities follow from Claim 3.2.15(d).

By induction, G′ is [a1−2, a2, x12, z1−(C1−2), z2]-colorable. Any such coloring

of G′ together with a [2, 0, 0, C1−2, 0]-coloring of P yields an [a1, a2, x12, z1, z2]-

coloring of G.

Case II: a1 ≤ x12, a1 ≤ a2, C1 = 2

If all paths in G are either order 2 or 3 then it follows from Theorem 3.2.20 that

G is [a1, a2, x12, z1, z2]-colorable. Hence, we may assume that at least the largest

path order Cp is greater than 3. Since C1 = 2 and Cp > 3, at most p− 2 paths have

order 3. Thus,

t(G) ≤ p− 2. (3.2.14)

G′ is the DUP G with a path P of order C1 = 2 removed. Then op(G
′) = op(G)

and t(G′) = t(G). We must color P so that P is a color 1 edge or a color 2 edge.

Intuition from original inequality (3) indicates that some odd path may require a
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type-a1 vertex so we choose to conserve type-a1 vertices and to color P as a color

2 edge. Thus, let [â1, â2, x̂12, ẑ1, ẑ2] = [0, 2, 0, 0, 0]. Let [a′1, a
′
2, x

′
12, z

′
1, z

′
2] = [a1, a2 −

2, x12, z1, z2]. Then since a2 ≥ 2 by (3.2.13), all primed variables are nonnegative

integers and x′
12 = x12 > 0.

PI (1) Holds vacuously since a1 ≤ x12 =⇒ a′1 ≤ x′
12

PI (2) Holds vacuously if a′2 ≤ x′
12. If a

′
2 < x′

12, holds since C1 = 2:
∑

a′2−x′12
2

i=1 (C ′
i − 2) =

∑

a2−x12
2

i=2 (Ci − 2) =
∑

a2−x12
2

i=1 (Ci − 2) =≤ z2 = z′2

PI (3) Holds. Both sides of the primed inequality match those of the

original inequality since op(G
′) = op(G) and t(G′) = t(G).

Primed inequality (4) follows from Claim 3.2.15(a) if a′1 ≤ a′2. Otherwise, if

a′2 < a′1, then a2 − 2 < a1 ≤ a2. Since a1, a2 have the same parity, we see that

a1 = a2. Claim 3.2.16 thus yields a1 = a2 = p. By (3.2.14), t(G) ≤ p− 2 and so the

t(G′) inequality holds: t(G′) = t(G) ≤ p− 2 = a2 − 2 = a′2 ≤ a′2 + z′1.

Furthermore, since C1 = 2 is even, we know that op(G) ≤ p − 1 = a2 − 1 ≤

a2 + z1 + z2 − 1. By Claim 3.2.17, the parity of op(G) and a2 + z1 + z2 must match

and so op(G) ≤ a2 + z1 + z2 − 1 =⇒ op(G) ≤ a2 + z1 + z2 − 2 and the op(G
′)

inequality holds: op(G
′) = op(G) ≤ a2 + z1 + z2 − 2 = a′2 + z′1 + z′2.

Then primed inequality (4) holds. By induction, G′ is [a1, a2 − 2, x12, z1, z2]-

colorable. Any such coloring of G′ together with a [0, 2, 0, 0, 0]-coloring of P yields

an [a1, a2, x12, z1, z2]-coloring of G.

Case III: a1 ≤ x12, a1 ≤ a2, C1 = 3

We let G′ be the DUP G with a path P of order C1 = 3 removed. Then

op(G
′) = op(G)− 1 and t(G′) = t(G)− 1. Any 2-coloring of P has form [1, 1, 1, 0, 0]

or [2, 0, 0, 1, 0] or [0, 2, 0, 0, 1]. To satisfy primed inequality (3), we may need one

type-a1, type-z1, and type-z2 vertex in each odd path if op(G) is large. So we conserve

these types of vertices and we color P with a [1, 1, 1, 0, 0]-coloring (which requires

a1 > 0) or a [0, 2, 0, 0, 1]-coloring (if a1 = 0). However, if x12 < a2, then some path

must be 2-monochromatic in any [a1, a2, x12, z1, z2]-coloring of G so if x12 < a2, then
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our goal is to color P via a [0, 2, 0, 0, 1]-coloring.

Subcase A: a1 = 0 or x12 < a2

Let [â1, â2, x̂12, ẑ1, ẑ2] = [0, 2, 0, 0, 1]. Additionally, we let [a′1, a
′
2, x

′
12, z

′
1, z

′
2] =

[a1, a2 − 2, x12, z1, z2 − 1]. We must show a2 − 2 and z2 − 1 are non-negative.

By (3.2.13), a2 ≥ 2. If x12 < a2, then original inequality (2) implies z2 ≥

C1 − 2 = 1. Otherwise, a1 = 0. Recall t(G) ≥ 1 since C1 = 3. Then since

a1 = 0, original inequality (3) implies 1 ≤ t(G) ≤ a1 + z2 = z2. Then all

primed variables are nonnegative integers. Also, x′
12 = x12 > 0 by hypothesis.

PI (1) Holds vacuously since a1 ≤ x12 =⇒ a′1 ≤ x′
12

PI (2) Since C1 − 2 = 1, the primed inequality is obtained

by decreasing each side of the original inequality by 1:
∑

a′
2
−x′

12
2

i=1 (C ′
i − 2) =

∑

a2−x12
2

i=1 (Ci − 2)− 1 ≤ z2 − 1 = z′2

PI (3) The primed inequality is obtained by decreasing each

side of the original inequality by 1:

t(G′) = t(G)− 1 ≤ a1 + z2 − 1 = a′1 + z′2

op(G
′) = op(G)− 1 ≤ a1 + z1 + z2 − 1 = a′1 + z′1 + z′2

PI (4) If a1 = 0, then clearly a′1 ≤ a′2. If x12 < a2, then

the case assumptions imply that a1 ≤ x12 < a2 =⇒ a′1 ≤ a′2.

Hence, PI (4) follows from Claim 3.2.15(a).

By induction, G′ is [a1, a2−2, x12, z1, z2−1]-colorable. Any such coloring of G′

together with a [0, 2, 0, 0, 1]-coloring of P yields an [a1, a2, x12, z1, z2]-coloring

of G.

Subcase B: a1 > 0 and x12 ≥ a2

Let [â1, â2, x̂12, ẑ1, ẑ2] = [1, 1, 1, 0, 0]. Additionally, let [a′1, a
′
2, x

′
12, z

′
1, z

′
2] = [a1−

1, a2 − 1, x12 − 1, z1, z2]. We must show a1 − 1, a2 − 1, and x12 − 1 are all non-

negative. By (3.2.13) a2 ≥ 2. Also, a1 > 0 by assumption. We see x12 ≥ 2

since x12 ≥ a2 ≥ 2. Then the primed variables are all non-negative, and also,

x′
12 = x12 − 1 > 0.
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PI (1) & Hold vacuously since a1 ≤ a2 ≤ x12 =⇒ a′1 ≤ a′2 ≤ x′
12.

PI (2)

Each side of the original inequality decreases

PI (3) by 1, thus yielding the primed inequalities:

t(G′) = t(G)− 1 ≤ a1 + z2 − 1 = a′1 + z′2

op(G
′) = op(G)− 1 ≤ a1 + z1 + z2 − 1 = a′1 + z′1 + z′2

PI (4) Holds for the same reasoning as PI (3).

By induction, G′ is [a1 − 1, a2 − 1, x12 − 1, z1, z2]-colorable. Any such coloring

of G′ together with a [1, 1, 1, 0, 0]-coloring of P yields an [a1, a2, x12, z1, z2]-

coloring of G.

Case IV: a1 ≤ x12 < a2, C1 ≥ 4

G′ is the DUP G with a path P of order C1 ≥ 4 removed. Since a2 > x12, some

path must be 2-monochromatic in any [a1, a2, x12, z1, z2]-coloring of G and so our

goal is to give P a [0, 2, 0, 0, C1 − 2]-coloring.

Let [â1, â2, x̂12, ẑ1, ẑ2] = [0, 2, 0, 0, C1 − 2]. Let [a′1, a
′
2, x

′
12, z

′
1, z

′
2] = [a1, a2 −

2, x12, z1, z2 − (C1 − 2)]. We must show a2 − 2 and z − (C1 − 2) are non-negative.

By (3.2.13), a2 ≥ 2. Also, since x12 < a2, condition (2) implies z2 ≥ C1 − 2. Then

the primed variables are all nonnegative integers and x′
12 = x12 > 0.

PI (1) Holds vacuously since a′1 ≤ x′
12.

PI (2) The primed inequality is obtained by decreasing each

side of the original inequality by (C1 − 2).

PI (4) Since a1 < a2 =⇒ a′1 ≤ a′2, the primed inequality

follows from Claim 3.2.15(a).

Claim 3.2.19 implies that z1 + z2 ≥ (C1 − 2) + op(G
′). Thus, a′1 + z′1 + z′2 ≥

z1 + z2 − (C1 − 2) ≥ op(G
′). Also, t(G′) = t(G) = 0 since C1 ≥ 4. Thus, primed

inequality (3) holds.
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By induction, G′ is [a1, a2−2, x12, z1, z2−(C1−2)]-colorable. Any such coloring of

G′ together with a [0, 2, 0, 0, C1−2]-coloring of P yields an [a1, a2, x12, z1, z2]-coloring

of G.

Case V: a1 ≤ a2 ≤ x12, C1 ≥ 4

If a2 > p then we know that some path must have two type-a2 vertices in any

[a1, a2, x12, z1, z2]-coloring of G. We lose this certainty when a2 ≤ p and we so

proceed differently in each case.

We assume that z1 + z2 > 0 as otherwise, Theorem 3.2.21 yields that G is

[a1, a2, x12, z1, z2]-colorable.

Subcase A: a2 > p

We let G′ be the DUP G with a path P of order C1 removed. Let σ = 1 if C1

is odd and 0 if C1 is even. Our goal is to color P so that P has as few type-z1

and type-z2 internal vertices as possible since this strategy helps us to ensure

op(G
′) ≤ a′1 + z′1 + z′2. We accomplish this by coloring P so that:

a. P has two type-a2 endpoints and an even number of type-x12 vertices.

b. P has as many type-x12 vertices as possible. Specifically, we want P to

have least two type-x12 vertices and up to x12 − a2 more for a maximum

of x12 − a2 + 2 type-x12 vertices.

c. If P is odd (σ = 1), then P has at least 1 type-z1 or type-z2 vertex.

To satisfy criteria (a) and (c), P can have no more than C1 − 2 − σ type-x12

vertices. Let [â1, â2, x̂12] = [0, 2,min{x12−a2+2, C1−2−σ}]. Then â1, â2, and

x̂12 are even. Also, x̂12 > 0 since x12 ≥ a2 implies x12 − a2 + 2 ≥ 2 and since

C1 ≥ 4 implies C1−2−σ ≥ 2−σ ≥ 1. Let [a′1, a
′
2, x

′
12] = [a1, a2−2, x12− x̂12].

Also, x̂12 < x12 since a2 > p ≥ 2 implies that x̂12 = min{x12 − a2+2, C1− 2−

σ} ≤ x12−a2+2 < x12−p+2 ≤ x12. Then [a′1, a
′
2, x

′
12] = [a1, a2−2, x12− x̂12]

are all nonnegative integers and x′
12 > 0 since x̂12 < x12. With these choices

of a′1, a
′
2, x

′
12, all primed inequalities but primed inequality (3) are immediate.
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PI (1) & Holds vacuously since x′
12 ≥ a′1, x

′
12 ≥ a′2

PI (2)

PI (4) We see that is strictly greater than a1 since

a2 > p = a1+a2
2

≥ a1+a1
2

= a1.

Thus, a1 < a2 =⇒ a′1 ≤ a′2. The primed

inequality then follows from Claim 3.2.15(a).

We show now how to choose ẑ1 and ẑ2. Then since x̂12 > 0 is even, we know

P is [0, 2, x̂12, ẑ1, ẑ2]-colorable by Corollary 3.2.11. Recall that C1 ≥ 4 so as

long as z′2 is non-negative, it is true that t(G′) = 0 ≤ a′1 + z′2. We need only

show that op(G
′) ≤ a′1 + z′1 + z′2

Assume first that C1− 2−σ ≤ x12− a2 +2. If C1 is even, then our strategy is

to color P with alternating colors. Thus, we let ẑ1 = ẑ2 = σ = 0, z′1 = z1, and

z′2 = z2. Then op(G
′) = op(G) ≤ a1 + z1 + z2 = a′1 + z′1 + z′2. Otherwise, C1

is odd and so σ = 1 and we color P with alternating colors and an additional

type-z2 or type-z1 vertex. Since we assumed that z1+ z2 > 0 prior to the start

of this subcase, we know it is possible to either let ẑ1 = 1 and ẑ2 = 0 if z1 is

nonzero or to let ẑ1 = 0 and ẑ2 = 1 otherwise. Let z′1 = z1−ẑ1 and z′2 = z2−ẑ2.

Hence, we see that primed inequality (3) hold when C1− 2−σ ≤ x12− a2+2.

Now assume x12−a2+2 < C1−2−σ, or equivalently, C1−4−σ1+a2−x12 > 0.

We show it is possible to choose ẑ1 ∈ [0, z1] and ẑ2 ∈ [0, z2] so that ẑ1 + ẑ2 =

C1−(â1+â2+x̂12) = C1−2−(x12−a2+2) = C1−4+a2−x12. By Claim 3.2.19,

z1+ z2 ≥ C1− 4+ a2−x12 + a1+ op(G
′). We can drop a1 and subtract σ from

the right hand side to obtain z1 + z2 ≥ C1− 4−σ+ a2−x12 + op(G
′). We can

thus choose non-negative ẑ1 and ẑ2 such that ẑ1+ ẑ2 = C1−4−σ+a2−x12 > 0

and 0 ≤ ẑ1 ≤ z1 and 0 ≤ ẑ2 ≤ z1. Then z′1 = z1 − ẑ1 and z′2 = z2 − ẑ2 satisfy

z′1 + z′2 = z1 + z2 − (C1 − 4− σ + a2 − x12) ≥ op(G
′). Thus, primed inequality

(3) holds when x12 − a2 + 2 < C1 − 2− σ as well.

By induction, G′ is [a1, a2−2, x−x̂12, z1− ẑ1, z2− ẑ2]-colorable. Such a coloring
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of G′ together with a [0, 2, x̂12, ẑ1, ẑ2]-coloring of P yields an [a1, a2, x12, z1, z2]-

coloring of G.

Subcase B: a2 ≤ p

This subcase assumes a2 ≤ p but Claim 3.2.16 yields p ≤ min{a1, a2} = a2.

Thus, a2 = p, in which case, Claim 3.2.16 yields a1 = a2 = p. Then by

inequality (3.2.13), a1 = a2 = p ≥ 2.

We proceed similarly to the previous subcase. We let G′ be the DUP G with

a path P of order C1 removed. Let τ = 1 if C1 is even and 0 if C1 is odd. For

this case, we wish to color P so that:

a. P has one type-a1 and type-a2 endpoint and an odd number of type-x12

vertices.

b. P has as many type-x12 vertices as possible. Specifically, P we want P to

have least one type-x12 vertices and up to x12 − a2 more for a maximum

of x12 − a2 + 1 type-x12 vertices.

c. If P is even (τ = 1), then P has at least one type-z1 or type-z2 vertex.

To satisfy criteria (a) and (c), P can have no more than C1 − 2 − τ type-x12

vertices. Let [â1, â2, x̂12] = [1, 1,min{x12 − a2 + 1, C1 − 2 − τ}]. Then â1, â2,

and x̂12 are odd. We show now that x̂12 < x12.

Since a2 ≥ 2 by (3.2.13), we see that x̂12 = min{x12 − a2 + 1, C1 − 2 − τ} ≤

x12 − a2 + 1 ≤ x12 − 1 < x12. Then [a′1, a
′
2, x

′
12] = [a1 − 1, a2 − 1, x12 − x̂12] are

all nonnegative integers since a1 = a2 ≥ 2, and also, x′
12 > 0 since x̂12 < x12.

We now show how to choose ẑ1 and ẑ2.

Assume C1 − 2 − τ ≤ x12 − a2 + 1. If C1 is odd, then τ = 0 and we set

ẑ1 = ẑ2 = 0. If C1 is even, then τ = 1. Recall that prior to the subcases of

Case V, we assumed that z1 + z2 > 0. Thus, it is possible to set ẑ1 = 1 and

ẑ2 = 0 if z1 is nonzero or to set ẑ1 = 0 and ẑ2 = 1 otherwise. As usual, let

z′1 = z1 − ẑ1 and z′2 = z2 − ẑ2.
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If x12 − a2 + 1 < C1 − 2 − τ , or equivalently, if C1 − 4 − τ + a2 − x12 ≥ 0,

then we show it is possible to choose ẑ1 ∈ [0, z1] and ẑ2 ∈ [0, z2] so that

ẑ1+ ẑ2 = C1− (â1+ â2+ x̂12) = C1− (x12−a2+3). As in the previous subcase,

Claim 3.2.19 yields that z1 + z2 ≥ C1 − 4 − τ + a2 − x12 ≥ 0. Hence, we can

choose non-negative ẑ1 and ẑ2 such that ẑ1 + ẑ2 = (C1 − 4 − τ) − (x12 − a2).

Again let z′1 = z1 − ẑ1 and z′2 = z2 − ẑ2. Then all conditions hold.

PI (1)&(2) Hold vacuously since a′1 ≤ x′
12, a

′
2 ≤ x′

12

PI (3)&(4) Hold since t(G′) = 0 and op(G
′) ≤ p− 1 = a′1 = a′2

By induction, G′ is [a1 − 1, a2 − 1, x12 − x̂12, z1 − ẑ1, z2 − ẑ2]-colorable. Any

such coloring of G′ together with a [1, 1, x̂12, ẑ1, ẑ2]-coloring of P yields an

[a1, a2, x12, z1, z2]-coloring of G.

3.2.3 NP-Completeness of x12 = 0

In this Section, we concentrate on [a1, a2, x12, z1, z2]-colorings of DUPs when x12 = 0.

Consider the following question.

Problem 3.2.1. Let a1, a2, z1, z2 be non-negative integers where a1 and a2 are even

and let p = a1+a2
2

. Given a DUP G with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp which

sum to a1 + a2 + z1 + z2, is G [a1, a2, 0, z1, z2]-colorable?

Let n = |V (G)|. The input is the set of integers {C1, C2, · · · , Cp, a1, a2, z1, z2}.

Each integer in this set is no bigger than n and so each requires at most logn bits.

The size of the set is also no bigger than p+ 4 ≈ p and so we assume the input size

of the problem is p logn. We call Problem 3.2.1 a decision problem because it elicits

a ‘yes’ or ‘no’ response.

Consider any [a1, a2, 0, z1, z2]-coloring of a DUP. Since there are no type-x12 ver-

tices, the edges of each path do not switch from color 1 to color 2 or vice versa and

so each path is monochromatic. For example, let G be a DUP with path orders
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1 1

1 1

1 1 1

2 2 2

2 2 2

1 1 1 1 1

1 1 1 1 1

2 2 2 2 2 2

Figure 3.11: [10, 6, 0, 12, 9]-coloring of a DUP

3, 3, 4, 4, 4, 6, 6, 7. As shown in Figure 3.11, G is [10, 6, 0, 12, 9]-colorable and has

only monochromatic paths.

We say that the internal vertex count of a path of order Ci is the number of

internal vertices in a path, Ci− 2. In Figure 3.11 there are a1
2
= 10

2
= 5 paths which

are 1-monochromatic and whose internal vertex counts sum to z1 = 8. Also, there

are a2
2
= 6

2
= 3 paths which are 2-monochromatic and whose internal vertex counts

sum to z2 = 9. As shown by Claim 3.2.23, determining whether or not a DUP is

[a1, a2, 0, z1, z2]-colorable reduces to determining whether or not there exists a1
2
path

orders whose internal vertex count sums to z1.

Claim 3.2.23. Let a1, a2, z1, z2 be non-negative integers where a1 and a2 are even

and let p = a1+a2
2

. A DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp whose sum

is a1 + a2 + z1 + z2 is [a1, a2, 0, z1, z2]-colorable if and only if there is a subset A of

the internal vertex counts, i.e., of {Ci − 2}i=p

i=1, where |A| = a1
2

and the sum of the

elements in A is exactly z1. [The other a2
2
internal vertex counts are then forced to

sum to exactly z2.]

Proof. Each 1-monochromatic path has exactly two type-a1 vertices as endpoints

and each internal vertex in a 1-monochromatic path is a type-z1 vertex. Thus, we

see that any [a1, a2, 0, z1, z2]-coloring of a DUP must have a1
2
1-monochromatic paths

whose internal vertex counts sum to z1. Similarly, any [a1, a2, 0, z1, z2]-coloring must
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have a2
2
2-monochromatic paths whose internal vertex counts sum to z2.

Claim 3.2.23 gives us a polynomial time algorithm to check the correctness of a

solution to Problem 3.2.1. Simply verify that the number of 1-monochromatic paths

in a given 2-coloring of a DUP is a1
2
and that these paths have internal vertex counts

which sum to z1.

Claim 3.2.23 is reminiscent of the NP-Complete Subset Sum Problem. See Prob-

lem 2.2.1 for details of the Subset Sum Problem. In Theorem 3.2.25, we show that

Problem 3.2.1 reduces from the Subset Sum Problem, which thus shows that Prob-

lem 3.2.1 is NP-Complete. First we give an example.

Given the set C = {1, 1, 2, 2, 2, 4, 4, 5}, we wish to know if some subset A ⊂ C

sums to s = 12. Notice that the entries of C sum to t = 21, so if A exists, the

elements that are not in A sum to t − s = 9. We convert this question to an

instance of Problem 3.2.1 by viewing C as a set of internal vertex counts in a DUP

G. Then G has p = |C| = 8 paths with orders {3, 3, 4, 4, 4, 6, 6, 7}. If there is some

even a1 ∈ [0, 2p] such that G is [a1, 2p− a1, 0, 12, 9]-colorable, then by Claim 3.2.23,

there is a subset A of C with a1
2

elements whose sum is s = 12. If a1 = 10 and

a2 = 6, then Figure 3.11 shows that G is indeed [a1, a2, 0, 12, 9]-colorable. We see

that A = {1, 1, 2, 4, 4} is the set of internal vertex counts of the 1-monochromatic

paths and A does indeed have sum 12. So by asking if there is some even a1 ∈ [0, 2p]

such that G is [a1, 2p−a1, 0, s, t−s]-colorable, we can answer whether or not a subset

A of C sums to s. The previous example helps explain Claim 3.2.24.

Claim 3.2.24. Given a finite multiset of positive integers C = {C1, C2, · · · , Cp}

which sum to t and a positive integer s, there exists a subset A of C with sum

s if and only if there exists even a1 ∈ [0, 2p] such that a DUP with path orders

{C1+2, C2+2, · · · , Cp +2} is [a1, a2, 0, z1, z2]-colorable, where a2 = 2p− a1, z1 = s,

and z2 = t− s.

Proof. (⇒) Let A be a subset of C with sum s. For each Ci in A, create a path of

order Ci+2 and color its edges with color 1. For each Ci 6∈ A, create a path of order

Ci + 2 and color its edges with color 2. This process yields |A| 1-monochromatic
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paths whose internal vertices sum to s and p − |A| 2-monochromatic paths whose

internal vertices sum to t−s. This is precisely an [2|A|, 2p−2|A|, 0, s, t−s]-coloring

of a DUP with path orders {C1 + 2, C2 + 2, · · · , Cp + 2}.

(⇐) Consider an [a1, a2, 0, z1, z2]-coloring of a DUP with path orders {C1+2, C2+

2, · · · , Cp+2} where a ∈ [0, 2p] and a2 = 2p−a1, z1 = s, and z2 = t−s. Notice that

if a path of order Ci + 2 is 1-monochromatic, then it has Ci internal vertices. Also,

the internal vertices of all 1-monochromatic paths are type-z1 and so sum to z1 = s.

Let A be the multiset consisting of internal vertex counts of each 1-monochromatic

paths. Then A ⊂ C and the sum of the elements in A is z1 = s.

Theorem 3.2.25 proves that Problem 3.2.1 is NP-Complete by showing that p

iterations of Problem 3.2.1 yields a polynomial time solution to Subset Sum.

Theorem 3.2.25. Problem 3.2.1 is NP-Complete.

Proof. Assume there is an algorithm to solve Problem 3.2.1 which is polynomial in

the size of its input, p logn where n = |V (G)|. Thus, we can solve Problem 3.2.1 in

O[f(p logn)] time where f(x) is a polynomial in x.

Consider an instance of the Subset Sum Problem. Let C = {C1, C2, · · · , Cp} be

a finite multiset of positive integers which sum to t. Let s be a positive integer. If

s > t, the answer to the Subset Sum Problem is no. Otherwise, by Claim 3.2.24,

there exists a subset A of C with sum s if and only if there exists even a1 ∈ [0, 2p]

such that a DUP with p path orders {C1+2, C2+2, · · · , Cp +2} is [a1, a2, 0, z1, z2]-

colorable, where a2 = 2p− a1, z1 = s, and z2 = t− s.

Since a1 ∈ [0, 2p] and a1 is even, there are at most p even integers to iterate

through to determine if a DUP G with path orders {C1 + 2, C2 + 2, · · · , Cp + 2} is

[a1, 2p−a1, 0, s, t−s]-colorable. Then each iteration is solvable in O[f(p logn)] time

and so p iterations are solvable in O[pf(p logn)] time which is still polynomial in

p logn. Thus, the Subset Sum Problem is polynomial in p log n time, a contradiction.

(To see the details of why Subset Sum is ploynomial with this input, see [9]). Thus,

Problem 3.2.1 is NP-Complete, as shown by our reduction from Subset Sum.
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3.2.4 Algorithm for 2-coloring a fixed DUP G

We now know that there exists an [a1, a2, x12, z1, z2]-coloring of a DUP G if the

hypotheses of Theorem 3.2.22 hold. Furthermore, when these hypotheses hold, the

inductive proof of Theorem 3.2.22 yields an algorithm for how to color a DUP G with

an [a1, a2, x12, z1, z2]-coloring. It is easy to check the correctness of this algorithm

by comparing its details of the proof of Theorem 3.2.22 .

ALGORITHM TO FIND AN [a1, a2, x12, z1, z2]-COLORING OF A DUP

INPUT: a1, a2, x12, z1, z2, C[]

• a1, a2, x12, z1, z2 are non-negative integers.

• C[] is a non-empty array of p integers of order at least 2 indexed 1 through p.

• C[1], . . . , C[p] are ordered smallest to highest.

• Hypotheses of Theorem 3.2.22 hold for a DUP with path orders C[1], . . . , C[p].

OUTPUT: An [a1, a2, x12, z1, z2]-coloring of a DUP with path orders C[1], . . . , C[p].

BEGIN ALGORITHM

Create an array a[] where a[1] = a1 and a[2] = a2.

Create an array z[] where z[1] = z1 and z[2] = z2.

Create an array ẑ[] where ẑ[1] = ẑ[2] = 0.

Create integers x̂12, m,M .

Create a pointer P to a path.

Create a pointer G to an empty graph.

WHILE (C[] is not empty)

Set x̂12 = ẑ[1] = ẑ[2] = 0.
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Set P =null.

IF a[1] ≤ a[2]

Set m = 1 and M = 2.

ELSE

Set m = 2 and M = 1.

IF

∗
∑

am−x12
2

+1

i=2 (C[i]− 2) ≤ z[m], x12 < a[m] (Case IA) OR

∗ a[m] ≤ x12, C[1] = 2, C[p] > 3 (Case II) OR

∗ a[m] ≤ x12, C[1] = 2, C[p] ≤ 3, a[M ]− x12 − 2z[M ] > 0 (Case II) OR

∗ a[m] = 0, C[1] = 3 (Case IIIA) OR

∗ a[m] ≤ x12 < a[M ], C[1] ≥ 3 (Cases IIIA and IV)

THEN

Create a path of order C[1] and set P to be this path.

Color all edges of P with color M .

Set ẑ[M ] = C1 − 2.

ELSE IF

∗
∑

am−x12
2

+1

i=2 (C[i]− 2) > z[m], x12 < am (Case IB) OR

∗ a[m] ≤ x12, C[1] = 2, C[p] ≤ 3, a[M ]− x12 − 2z[M ] = 0 (Case II)

THEN

Create a path of order C[1] and set P to be this path.

Color all edges of P with color m.

Set ẑ[m] = C1 − 2.

ELSE IF

∗ a[m] ≤ a[M ] ≤ x12, C[1] = 3, a[m] > 0 (Case IIIB) OR

∗ a[m] ≤ a[M ] ≤ x12, C[1] ≥ 4, z[1] = z[2] = 0 (Case V)

THEN
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Create a path of order C[1] and set P to be this path.

Color the edges of P as such: M,m,M,m, . . ..

Set x̂12 = C1 − 2.

ELSE:

{

IF (p < aM ) (Case VA)

Let σ = 0 if C[1] is even. Let σ = 1 otherwise.

Let x̂12 = min{x12 − a[M ] + 2, C[1]− 2− σ}.

ELSE (CASE VB)

Let σ = 1 if C[1] is even. Let σ = 0 otherwise.

Let x̂12 = min{x12 − a[M ] + 1, C[1]− 2− σ}.

Create a path P ′ with x̂12 + 2 vertices.

Color the edges of P ′ as such: M,m,M,m, . . ..

WHILE (P ′ has less than C[1] vertices and ẑ1 < z[1])

Subdivide a color 1 edge of P ′.

Increment ẑ1 by 1.

WHILE (P ′ has less than C[1] vertices and ẑ2 < z[2])

Subdivide a color 2 edge of P ′.

Increment ẑ2 by 1.

Set P = P ′.

}

IF the first and last edges of P are both colored m

THEN Set a[m] = a[m]− 2.

ELSE IF the first and last edges of P are both colored M

THEN Set a[M ] = a[M ]− 2.

ELSE:
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Set a[m] = a[m]− 1 and set a[M ] = a[M ]− 1.

Delete C[1] from C[].

Set G = G ∪ P .

Set x12 = x12 − x̂12.

Set z[1] = z[1]− ẑ1.

Set z[2] = z[2]− ẑ2.

Set p = p− 1.

END ALGORITHM

3.3 The 2-Edge-Coloring Problem for Fixed DUCs

We let m correspond to the number of cycles in a DUC. Additionally, we let 3 ≤

C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m be the ordered list of cycle sizes. Consider the 2-coloring of

the DUC shown in Figure 3.12. There are only three types of degree vectors and

vertices in a 2-coloring of a cycle, namely, type-x12, type-z1, and type-z2 vertices as

defined in Definition 3.2.1.

12

2

1

2

2

2

2

1

1

2

1

Figure 3.12: A DUC with 8 type-x12, 1 type-z1, and 3 type-z2 vertices

Given non-negative integers x12, z1, z2, Claim 3.3.1 gives necessary and sufficient

conditions for a single cycle to be colored so that the cycle has x12, z1, z2 vertices of

type-x12, type-z1, and type-z2, respectively.

Claim 3.3.1. Let x12, z1, z2 be non-negative integers where C◦ = x12 + z1 + z2 for

some integer C◦ ≥ 3. There exists a 2-coloring of a cycle with size C◦ with x12, z1, z2

vertices of type-x12, type-z1, type-z2, respectively, if and only if the following condi-

tions hold.
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1. x12 is even

2. If x12 = 0 then either z1 = C or z2 = C.

Proof. (⇒) If x12 = 0, then the 2-edge-colored cycle is monochromatic. Thus,

z1 = C or z2 = C. Moreover, since the colors of the edges must switch an even

number of times in a 2-edge-colored cycle, the number of type-x12 vertices must be

even. Hence, x12 is even.

(⇐) If x12 = 0 and z1 = C◦, then color all edges with color 1. If x12 = 0 and

z2 = C◦, then color all edges with color 2. Otherwise, x12 > 0 and so x12 ≥ 2 since

x12 is even. Then x−1 ≥ 1 and x−1 is odd. Consider a path P with C◦+1 vertices.

By Corollary 3.2.11, we can color a path P so that it has the form [1, 1, x−1, z1, z2].

Glue the endpoints of P together to obtain the desired 2-coloring of a cycle with C◦

vertices.

In Claim 3.3.2, we show that when x12 = 2, coloring a DUC yields a pathological

case. Consider a DUC G with three cycles of sizes C◦
1 = C◦

2 = C◦
3 = 5. We explain

why we cannot color G so that G has x12 = 2 vertices of type-x12, z1 = 4 vertices

of type-z1, and z1 = 9 vertices of type-z2. Since x12 = 2 and type-x12 vertices

appear in a 2-coloring of a cycle, exactly one cycle can have both color 1 and color 2

edges. Also, because z1 = C◦
m − 1 = 4, z1 is just small enough that no cycle can be

1-monochromatic. Therefore, some cycle must contain all of the type-z1 vertices as

well as the two type-x12 vertices. However, because x12 + z1 = 6, the cycle size C◦
m

is just small enough where this is impossible. In general, this situation occurs when

x12 = 2, all cycles have the same size, and z1 = rC◦
m − 1 for some positive integer r,

which forces that z2 = (m− r)C◦
m − 1.

Claim 3.3.2. Let G be a DUC with cycle sizes 3 ≤ C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m. Let

x12, z1, z2 be non-negative integers where x12 = 2 and where
∑m

i=1C
◦
i = x12+z1+z2.

There exists a 2-coloring of G with x12, z1, z2 vertices of type-x12, type-z1, type-z2,

respectively, except when C◦
1 = C◦

2 = · · · = C◦
m and [z1, z2] = [rC◦

m−1, (m−r)C◦
m−1]

for some integer r > 0.
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Proof. We assume that z1 ≤ z2 because otherwise, we can switch colors 1 and 2.

We proceed by induction on the number of cycle sizes m. If m = 1, the claim holds

by Claim 3.3.1. Assume for a moment that m = 2. If z2 < C◦
1 , then the assumption

z1 ≤ z2 and the hypothesis C◦
1 + C◦

2 = 2 + z1 + z2 force that z1 = z2 = C◦
1 − 1

and C◦
1 = C◦

2 . Then [z1, z2] = [rC◦
m − 1, (m − r)C◦

m − 1] for r = 1 and m = 2, a

contradiction. Thus, it must be true that z2 ≥ C◦
1 . Color the cycle of size C◦

1 with

color 2. Claim 3.3.1 yields that we can color the second cycle with size C◦
2 with two

vertices of type-x12, z1 vertices of type-z1, and z2 − C◦
1 vertices of type-z2. Now, if

m ≥ 3, then below we argue that 2z2 > 2C◦
m−1 and so z2 > C◦

m−1.

2z2 ≥ z1 + z2 = (

m
∑

i=1

C◦
i )− 2 ≥ C◦

m + C◦
m−1 + C◦

1 − 2 ≥ 2C◦
m−1 + C◦

1 − 2 > 2C◦
m−1

Since z2 > C◦
m−1, color a cycle of size C◦

m−1 with color 2. We wish to apply induction

in order to color the remaining cycles so that these cycles have z1 vertices of type-z1,

z2−C◦
m−1 vertices of type-z1, and two vertices of type-x12. If the inductive hypotheses

fail, then C◦
1 = · · · = C◦

m−1 = C◦
m and [z1, z2−C◦

m−1] = [rC◦
m−1, (m−1−r)C◦

m−1] for

some integer r > 0. This implies [z1, z2] = [rC◦
m−1, (m−r)C◦

m−1], a contradiction.

Hence, the hypotheses required for induction hold, and so we can color the remaining

cycles as desired.

Like with DUPs, if x12 = 0, a solution to the 2-edge-coloring Problem for DUCs

yields a solution to the NP-Complete Subset Sum Problem. The reduction between

the Subset Sum Problem and the 2-edge-coloring Problem for DUCs when x12 = 0

follows immediately from Theorem 3.3.3.

Theorem 3.3.3. Let G be a DUC with cycle sizes 3 ≤ C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m and let

z1, z2 be non-negative integers which sum to |V (G)|. Then there exists a 2-coloring

of G with z1 vertices of type-z1 and with z2 vertices of type-z2 if and only if some

subset of {C◦
1 , . . . , C

◦
m} of G sum to z1 and the rest sum to z2.

Proof. If such a coloring exists, all cycles are monochromatic. The cycles with color

1 have sizes which sum to z1 and the cycles with color 2 have sizes which sum to z2.
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Also, if some subset S of {C◦
1 , . . . , C

◦
m} sum to z1, color the corresponding cycles

with color 1. Color the others with color 2 for the desired 2-coloring of G.

We now give necessary and sufficient conditions for when we can color a DUC G

so that G has x12, z1, z2 vertices of type-x12, type-z1, and type-z2, respectively. As

with DUCs, there is a bound on the number of odd cycles that G can have. Also,

to prevent the aforementioned complexity issues, the hypotheses assume x12 > 0.

Theorem 3.3.4. Let G be a DUC with cycle sizes 3 ≤ C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m. Let

op(G) be the number of C◦
i which are odd. Let x12, z1, z2 be non-negative integers

where x12 > 0 and where
∑m

i=1C
◦
i = x12 + z1 + z2. If C◦

1 = C◦
2 = · · · = C◦

m

and [x12, z1, z2] = [2, rC◦
m − 1, (m − r)C◦

m − 1] for some integer r ≥ 0, then there

does not exist a 2-coloring of G with x12, z1, z2 vertices of type-x12, type-z1, type-z2,

respectively. Otherwise, there exists such a 2-coloring of G if and only if x12 is even

and op(G) ≤ z1 + z2.

Proof. (⇒) We need only op(G) ≤ z1 + z2 since Claim 3.3.2 yields that the other

conditions hold. If an odd cycle C◦ is monochromatic, then clearly C◦ contains a

type-z1 or type-z2 vertex. Otherwise, C◦ switches between colors 1 and 2 at an even

number of vertices and so contains an even number of type-x12 vertices. Thus, in

order to be odd, C◦ must contain at least one type-zi vertex. Hence, every odd cycle

contains at least one type-z1 or type-z2 vertex and so op(G) ≤ z1 + z2.

(⇐) We proceed by induction on m. If m = 1, then Claim 3.3.1 yields the

desired result. Now consider a DUC with m ≥ 2 cycles. If x12 = 2, Claim 3.3.2

yields the desired result. We proceed differently for 2 < x12 ≤ 2m and x12 > 2m.

Our strategy in both cases is to choose a cycle C◦
i and values x′

12, z
′
1, z

′
2 so that we

can color a cycle of size C◦
i with x′

12, z
′
1, z

′
2 vertices of type-x12, type-z1, type-z2,

respectively, and the other cycles with x12 −x′
12, z1 − z′1, z2− z′2 vertices of type-x12,

type-z1, type-z2, respectively.

Assume 2 < x12 ≤ 2m. Let G′ be the DUC with a cycle of size Cm removed.

Let x′
12 = 2. Since x12 ≤ 2m, the hypothesis

∑m

i=1Ci = x12 + z1 + z2 implies
∑m

i=1 (Ci − 2) ≤ z1 + z2. Hence, for i = 1, 2, we can find z′i such that 0 ≤ z′i ≤ zi
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and C◦
m = 2 + z′1 + z′2. Since C◦

m ≥ 3, at least one of z′1 or z′2, say z′2, is positive.

If C◦
1 = · · · = C◦

m−1 and if z − z′i ≡ −1 mod C◦
m−1 for i = 1, 2, then the inductive

hypotheses fail. In this case, decrease the positive value z′2 by 1 and add 1 to

z′1. With these changes, z − z′i 6≡ −1 mod C◦
m−1 for i = 1, 2. In order to apply

induction, we must show that the number of cycles that are odd in G′ is at most

(z1 − z′1) + (z2 − z′2). It suffices to show that the number of cycles in G′, that is,

m− 1, is at most (z1 − z′1) + (z2 − z′2). Since
∑m

i=1 (C
◦
i − 2) ≤ z1 + z2 and each C◦

i

is at least three, we see that (C◦
m − 2) + (m− 1) ≤ z1 + z2. Since C◦

m − 2 = z′1 + z′2,

it then follows that (m− 1) ≤ (z1 − z′1) + (z2 − z′2). Then by induction, there exists

a coloring of G′ with x12 − x′
12, z − z′1, z − z′2 vertices of type-x12, type-z1, type-z2,

respectively. By Claim 3.3.1, we can color a cycle of size C◦
m with x′

12, z
′
1, z

′
2 vertices

of type-x12, type-z1, type-z2, respectively. These colorings yield the desired coloring

of G.

Now assume x12 > 2m. We choose our primed variables so that x12 − x′
12 ≥

2(m− 1). In doing so, there are enough type-x12 vertices so that each cycle in G′

can feasibly contain at least one pair of type-x12 vertices. This is desirable because

cycles with at least one pair of type-x12 vertices contain both a color 1 and color

2 edge. Therefore, we can imagine subdividing a color i edge in order to insert

additional type-zi vertices as necessary.

We let x′
12 = min{C◦

j − 1, x12 − 2m + 2} if there exists an odd cycle size C◦
j .

Otherwise, we let x′
12 = min{C◦

m, x12 − 2m + 2}. In either case, x′
12 is even. Also,

x′
12 ≥ 2 since C◦

j ≥ 3 and x12 > 2m. Furthermore, since x′
12 ≤ x12 − 2m+ 2, we see

x12 − x′
12 ≥ 2(m− 1), as desired. Note that if x12 − x′

12 = 2, this inequality implies

m = 2.

If some odd cycle size C◦
j exists and x′

12 = C◦
j − 1, then by hypothesis, 1 ≤

op(G) ≤ z1 + z2. Thus, some zi, say z2, is positive. Let z′2 = 1. Then since

op(G) ≤ z1 + z2 in G, we see that the number of odd cycles in G′ is at most

z1 + z2 − 1 = z1 + (z2 − z′2). The induction hypotheses thus hold except possibly

when x12 − x′
12 = 2. Recall that this implies m = 2, in which case, G′ consists of

one cycle and can be colored as desired by Claim 3.3.1. Otherwise, induction yields

that there exists a coloring of G′ with x12 − x′
12, z − z′1, z − z′2 vertices of type-x12,

87



type-z1, type-z2, respectively. Claim 3.3.1 also indicates that we can color a cycle of

size C◦
j with x′

12 = C◦
j − 1 and z′2 = 1 vertices of type-x12 and type-z2, respectively.

These colorings yield the desired coloring of G.

Now, if some odd cycle with size C◦
j exists and x′

12 = x12−2m+2, then x′
12 < C◦

j .

The hypothesis
∑m

i=1C
◦
i = x12 + z1+ z2 implies C◦

j −x′
12 +

∑

i 6=j (C
◦
i − 2) = z1+ z2.

Since C◦
i − 2 ≥ 1, this implies C◦

j − x′
12 + (m − 1) ≤ z1 + z2. Then we can choose

z′i so that 0 ≤ z′i ≤ zi, z
′
1 + z′2 = C◦

j − x′
12, and m − 1 ≤ (z1 − z′1) + (z2 − z′2).

Since G′ has m − 1 cycles, this implies that the number of odd cycles in G′ is at

most (z1 − z′1) + (z2 − z′2). As in the previous case, the induction hypotheses hold

except possibly when x12 − x′
12 = 2, in which case m = 2, and G′ thus consists

of one cycle, so Claim 3.3.1 yields that G′ can be colored as desired. Otherwise,

induction yields that there exists a coloring of G′ with x12−x′
12, z−z′1, z−z′2 vertices

of type-x12, type-z1, type-z2, respectively. Claim 3.3.1 also indicates that we can

color a cycle of size C◦
j with x′

12 = x12 − 2m+ 2, z′1, z
′
2 vertices of type-x12, type-z1,

type-z2, respectively. These colorings yield the desired coloring of G.

Finally, if no cycle is odd, then x′
12 = min{C◦

m, x12−2m+2}. Using logic similar

to the previous cases, we can choose z′i so that 0 ≤ z′i ≤ zi for i = 1, 2, and z′1+ z′2 =

C◦
m−x′

12. The number of odd cycles in G′ is 0 and so op(G) ≤ (z1−z′1)+(z2−z′2). If

x12−x′
12 = 2, thenm = 2 and we use Claim 3.3.1 to color G′ as desired. Otherwise, if

x12−x′
12 > 2, the induction hypotheses hold, and by induction, the desired coloring

of G′ exists.

In Theorem 2.2.2, we translate the details of Theorem 3.3.4 into terminology

involving factors. Since DUCs are regular graphs, due to Claim 0.0.7, it is natural

that an answer to the 2-Edge-Coloring Problem for DUCs leads to an answer to the

Factor Problem for DUCs.

Theorem 2.2.2. Let G be a DUC with cycle sizes 3 ≤ C◦
1 ≤ C◦

2 ≤ · · · ≤ C◦
m. Let

oc(G) be the number of C◦
i which are odd. Let d0, d1, d2 be non-negative integers

which sum to |V (G)| where d1 > 0. If C◦
1 = C◦

2 = · · · = C◦
m and if [d0, d1, d2] =

[rC◦
m − 1, 2, (m − r)C◦

m − 1] for some integer r ∈ (0, m), then G does not have a
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[d0, d1, d2]-factor. Otherwise, G has a [d0, d1, d2]-factor if and only if d1 is even and

oc(G) ≤ d0 + d2.

Proof. Label the vertices of G. We show a bijection between a 2-coloring of G with

x12, z1, z2 vertices of type-x12, type-z1, type-z2, respectively, and a [z2, x12, z1]-factor

of G. Deleting the color 1 edges from a 2-coloring of G yields the color 2 subgraph

H which is a [d0, d1, d2]-factor of G. Then each degree 2 vertex in H is incident to

two color 2 edges the 2-coloring of G and so is a type-z2 vertex. Thus, d2 = z2.

Each degree 1 vertex in H is incident to one color 1 edge and one color 2 edge in the

2-coloring and so is a type-x12 vertex. Thus, d1 = x12. Finally, each degree 0 vertex

in H is incident to two color 1 edges and so is a type-z1 vertex. Thus, d0 = z1.

Hence, H is a [z1, x12, z2]-factor of G. Similarly, given a [d0, d1, d2]-factor of G, make

each non-edge a color 1 edge and each edge a color 2 edge to obtain a 2-coloring of

G with d0, d1, d2 vertices of type-z1, type-x12, type-z2, respectively.

This implies there exists a [z1, x12, z2]-factor of G if and only if there exists a

2-coloring of G with x12, z1, z2 vertices of type-x12, type-z1, type-z2, respectively.

By Theorem 3.3.4, if C◦
1 = C◦

2 = · · · = C◦
m and [d0, d1, d2] = [z1, x12, z2] = [rC◦

m −

1, 2, (m − r)C◦
m − 1] for some integer r > 0, then there does not exist such a 2-

coloring of G and thus no [d0, d1, d2]-factor either. Otherwise, there exists such a

2-coloring, and thus a [d0, d1, d2]-factor of G, if and only if d1 = x12 is even and

oc(G) ≤ z1 + z2 = d0 + d2.

3.4 Factors and 2-Colorings of DUPs

Let G be a DUP with specified path sizes. Let S be the set of (2×1) vector sequences

whose column sums is the degree sequence of G and where the list of entries in row

1 of each vector consists of di entries of the integer i. Per Claim 0.0.6, G has a

[d0, d1, d2]-factor if and only if some non-empty (but possibly proper) subset S ′ of the

vector sequences in S are realizable as a 2-coloring of G. It is interesting to note that

we can use Theorem 3.2.22 to determine which vector sequences of S are in S ′ and are

thus realizable as a 2-coloring of G. We illustrate this now. Using the terminology
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of the previous section, recall that any 2-coloring of a DUP is an [a1, a2, x12, z1, z2]-

coloring with a degree vector sequence consisting of a1, a2, x12, z1, z2 vectors of type-

a1, type-a2, type-x12, type-z1, and type-z2, respectively. Thus, we describe the the

vector sequences in S ′ by listing their corresponding [a1, a2, x12, z1, z2] values.

Let G be a DUP with p = 8 paths with orders {3, 3, 3, 3, 3, 3, 5, 11}. The reader

can verify that G has a [d0, d1, d2]-factor where d0 = 16, d1 = 16, and d2 = 2. For

this example, the set S previously discussed is the set of (2 × 1) vector sequences

where row 1 consists of 16 0’s, 16 1’s, and 2 2’s and whose columns sums is the degree

sequence of G. Also, S ′ is the set of the vector sequences in S which are the degree

vector sequence of an [a1, a2, x12, z1, z2]-coloring of G. Claim 0.0.6 tells us that S ′

is non-empty. Also, per Claim 3.2.7, the color 1 subgraph of any [a1, a2, x12, z1, z2]-

coloring of G with a degree vector sequence in S ′ is a [d0, d1, d2]-factor of G where

[a2 + z2, a1 + x12, z1] = [16, 16, 2]. Additionally, if G is [a1, a2, x12, z1, z2]-colorable,

then per Claim 3.2.8, the number of paths in G is p = 8 = a1+a2
2

and so a1+a2 = 16.

Table 3.1 lists all possible [a1, a2, x12, z1, z2] values for the sequences in the vector

sequences in S ′. Since a1+x12 = 16, Table 3.1 lists all pairs of (a1, x12) values which

sum to 16 by increasing a1 from 0 to 16. The values of (a1, x12) as well as the

equations a1 + a2 = 16 and a2 + z2 = 16 then fix the values of a2 and z2 for each

row. As mentioned before, z1 = 2 for each row as well.

In Table 3.1, we bold those rows whose [a1, a2, x12, z1, z2] values satisfy the

hypotheses of Theorem 3.2.22. Then these rows are precisely those where G is

[a1, a2, x12, z1, z2]-colorable and so the corresponding degree vector sequences are

precisely the sequences in S ′, as desired.

Note that the bolded rows in Table 3.1 are a contiguous block of rows. This will

be true in general for any [d0, d1, d2]-factor H of G and the table corresponding to

H . To see why this is the case, consider the hypothesis
∑

a2−x12
2

i=1 (Ci−2) ≤ z2. If this

hypothesis holds for row i then it holds for all rows after i because z2 increases as

the rows increase. Now consider the hypothesis t(G) ≤ a2+z1. The quantity a2+z1

decreases as the row numbers increase. Hence, if t(G) ≤ a2 + z1 fails at row i, then

it fails for all rows after i. All hypotheses of Theorem 3.2.22 behave in one of these

manners, thus causing the contiguous block property. We remark that the only grey
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a1 a2 x12 z1 z2
0 16 16 2 0
1 15 15 2 1
2 14 14 2 2
3 13 13 2 3
4 12 12 2 4
5 11 11 2 5
6 10 10 2 6
7 9 9 2 7
8 8 8 2 8
9 7 7 2 9
10 6 6 2 10
11 5 5 2 11
12 4 4 2 12
13 3 3 2 13
14 2 2 2 14
15 1 1 2 15
16 0 0 2 16

Table 3.1: Colorings which yield a [16, 16, 2]-factor

area is that Theorem 3.2.22 requires x12 > 0. And so if a contiguous block is at the

end of the table, to determine whether or not the final row where x12 = 0 should be

included in the block reduces to the Subset Sum Problem by Claim 3.2.24.

3.5 k-Edge-Coloring Problem for a fixed DUP or

DUC when k ≥ 3

In order to generalize the notation of the previous section for k ≥ 3, we give the

following definitions.

Definition 3.5.1. Given a k-edge-colored path P and colors i, j, we define a type-ai,

type-xij, and type-zi vertices and vectors as such:

1. A type-ai vertex is an endpoint of a P and is adjacent to exactly one color
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i edge ( i ). Its degree vector is is a column vector with 1 in row i and 0’s

elsewhere, which we define as a type-ai vector.

2. A type-xij vertex, where i 6= j, is internal to a P and is incident to an

edge of color i and an edge of color j ( i j
). Its degree vector is a column

vector with 1 in rows i and j and 0’s elsewhere, which we define as a type-xij

vector.

3. A type-zi vertex is internal to P and is incident to exactly two edges of color

i edges (
i i

). Its degree vector is a column vector with 2 in row i and 0’s

elsewhere, which we define as a type-zi vector.

As before, we use the notation xij to count the number of column vectors of

type-xij or the number of vertices of type-xij . Note that the subscript order is

unimportant in xij , meaning, xij and xji refer to the same variable. To be consistent

with the definition of a type-xij vertex when i 6= j, we always assume xii = 0.

Additionally, we use the notation ai to count the number of column vectors of type-

ai or the number of vertices of type-ai, and we use zi to count the number of column

vectors of type-zi or the number of vertices of type-zi.

By combining colors, every k-coloring of a DUP yields a 2-coloring of a DUP.

For example, in Figure 3.13(a) we show a 4-coloring of a DUP. We let the color

i correspond to the colors 1 and 2 and we let color j correspond to the colors 3

and 4. This yields the 2-coloring shown in Figure 3.13(b). Thus, if a DUP G is

[a1, a2, x12, z1, z2]-colorable, then any partition of the colors into non-empty sets S1

and S2 must satisfy the k = 2 conditions given by Theorem 3.2.22. Claim 3.5.2

stems from this concept.

Claim 3.5.2. Let G be a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp. Let k ≥ 2

be an integer. For 1 ≤ i ≤ k, let ai, xij , zi be integers. Assume that subscript order

does not matter and so xij and xji refer to the same variable. For any i, assume

xii = 0. Let S1 and S2 be non-empty sets which partition the set {1, 2, . . . , k}. Let

aS1
, aS2

, zS1
, zS2

, xS1S2
be defined as follows.

1. Let aS1
=
∑

i∈S1
ai and aS2

=
∑

i∈S2
ai.
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Figure 3.13: Combining colors in DUPs when k ≥ 3

2. Let zS1
=
∑

i∈S1
zi +

∑

i,j∈S1
xij and zS2

=
∑

i∈S2
zi +

∑

i,j∈S2
xij.

3. Let xS1S2
=
∑

i∈S2,j∈S2
xij.

Let op(G) refer to the number of path orders Ci in G which are odd. Let t(G)

refer to the number of path orders Ci in G which are 3. If there exists a k-coloring

of G with ai vertices of type-ai, xij vertices of type-xij, and zi vertices of type-zi for

1 ≤ i ≤ k, then the following conditions hold.

1. For 1 ≤ i ≤ k, ai, xij, zi are non-negative integers.

2. The total sum of ai, xij , zi for all 1 ≤ i ≤ k is the order of G.

3. zi > 0 =⇒ ai +
∑

j xij > 0.

4. p =
∑

ai
2

.

5. For a fixed color i, ai and
∑

j xij have the same parity.

6.
∑

aS1
−xS1S2
2

l=1 (Cl − 2) ≤ zS1

7.
∑

aS2
−xS1S2
2

l=1 (Cl − 2) ≤ zS2
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8. t(G) ≤ aS1
+ zS2

and op(G) ≤ aS1
+ zS1

+ zS2

9. t(G) ≤ aS2
+ zS1

and op(G) ≤ aS2
+ zS1

+ zS2

Proof. Consider any such coloring of G. Re-color the edges so that all edges with a

color in S1 have color 1̂ and all edges with color in S2 have color 2̂. All conditions

then follow from Theorem 3.2.22.

Recall that Theorem 3.2.25 proves that when x12 = 0, answering whether or not

a DUP with path orders 2 ≤ C1 ≤ C2 ≤ · · · ≤ Cp is [a1, a2, 0, z1, z2]-colorable is an

NP-Complete Problem. Given a DUP G with specified path sizes and a sequence of

ai, zi, xij values for 1 ≤ i ≤ k which satisfy the hypotheses of Claim 3.5.2, assume

there exists a partition S1, S2 of the colors {1, 2, . . . , k} so that xS1S2
= 0. Consider

the question of whether or not there exists a k-coloring of G with ai vertices of type-

ai, xij vertices of type-xij , and zi vertices of type-zi for 1 ≤ i ≤ k. If we can answer

this question, then we can answer whether or not G is [aS1
, aS2

, 0, zS1
, zS2

]-colorable,

an NP-Complete Problem. Hence, if such a partition S1, S2 exists where xS1S2
= 0,

the k-Edge-Coloring Problem of a fixed DUP G is again NP-Complete.

One way to avoid this issue is to require that xij > 0 for all i 6= j. To date,

even with this extra assumption, we do not know whether or not the conditions of

Claim 3.5.2 are sufficient when k ≥ 3. We have found no examples that show that

the necessary conditions of Claim 3.5.2 are not sufficient. We conclude by giving a

very basic reason to illustrate why k = 2 is a potentially much more handleable. If

a path has a type-x12 vertex in the k = 2 case, then we know that the set of colors

on the edges of the path is the set of all colors, which in this case is simply {1, 2}.

So for example, we could subdivide edges of either color to increase the type-z1 and

type-z2 vertices as needed. Thus, a helpful strategy in the k = 2 case is maximizing

the number of paths with a type-x12 vertex. In the k ≥ 3 case, knowing that a path

has a type-xij vertex is not helpful if we want to increase the number of type-zl

vertices where l 6= i or l 6= j.
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Chapter 4

The Factor Problem for Grids

Formally, an n × m grid is the cartesian product of Pn and Pm, where Pn, Pm are

paths with n,m vertices, respectively. If n = 1 or m = 1, then a grid is simply a

path. Otherwise, a grid has a box shape. Our goal in this chapter is to characterize

factors of a grids. Since the degree of a vertex in any grid is at most 4, the factors

we seek are [d0, d1, d2, d3, d4]-factors. Figure 4.1 illustrates an n×m grid that has a

[2, 3, 7, 3, 1]-factor.

v vWvE

vN

vS

(a) A 4×4 Grid G

v vW

(b) A [2, 3, 7, 3, 1]-factor of
G

Figure 4.1: Factors in Grids

We formally define the border and interior of a grid now.

Definition 4.0.3. Let G be an n×m grid where n ≥ 2 and m ≥ 2. The border of

G is the the subgraph induced by all vertices of degree less than 4. The interior of

G is the subgraph induced by all vertices of degree exactly 4. The corners of G are

the degree 2 vertices.
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It is well-known that grids have Hamiltonian paths. In the very specific case

when d3 = d4 = 0, if the desired [d0, d1, d2, 0, 0]-factor exists, then clearly each

vertex has degree 0, 1, or 2. In this case, the problem essentially reduces to finding

a factor of a Hamiltonian path through the grid. Due to the DUP results, this is

straightforward to do. When d3+d4 is positive, there are 4 main types of difficulties:

(a) when d1+ d2 is ‘too small’, (b) when d4 is ‘too large’, (c) when d1 or d2 is 0, and

(d) when d1 + d3 < 4.

We now explain what we mean by difficulty (a). It is obvious that each corner in

a grid cannot be degree 3 or degree 4 in a resulting factor. As a result d0+d1+d2 ≥ 4

is a necessary condition in any [d0, d1, d2, d3, d4]-factor. However, degree 0 vertices

on the border in a factor tend to increase the required number of degree 1 and 2

vertices elsewhere in the factor. Therefore, although d0+d1+d2 ≥ 4 is necessary, one

of the first facts we prove (Claim 4.4.1) shows that the more restrictive inequality

d1 + d2 ≥ 4 is necessary in most cases of interest, i.e., when d3 + d4 is positive. The

case when d1 + d2 = 4 is very restrictive and reduces to a case-by-case analysis. We

summarize what we conjecture about factors in the case where d1 + d2 = 4 but we

concentrate on giving results when d1 + d2 ≥ 5, specifically, when d2 ≥ 5. We will

introduce the concept of an imperfect grid, which is in a sense a grid with 5 corners

all of which are degree 2. The concept of an imperfect grid gives intuition for why

the assumption that d2 ≥ 5 could be helpful.

Before discussing difficulty (b), recall that the neighborhood of a vertex v, denoted

N(v), is the set of vertices which are adjacent to v. Given a set of vertices S in a

graph G, the neighborhood of S, denoted by N(S), is the set of vertices in G − S

which are adjacent to a vertex in S. To understand difficulty (b), note two obvious

facts. An n ×m grid G does not have degree 4 vertices if n ≤ 2 or n ≤ 2. Hence,

we always assume n ≥ 3 and m ≥ 3 when d4 > 0. Also, note that no vertex

on the border of a grid G is degree 4 in a factor of G. We generalize this second

obvious fact now. Let H be a factor of a grid and let H4 be the set of vertices

of G which are degree 4 in H . If a vertex v is in the neighborhood of H4 in G,

then v must have positive degree in H . Furthermore, v must have degree 1, 2, or

3 in H since v 6∈ H4. Thus, d1 + d2 + d3 must be at least as big as the number
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of vertices in the neighborhood of H . We let B(n,m, d4) denote the minimum

number of vertices in the neighborhood of H4 for any factor H of an n × m grid

G with d4 > 0 vertices. Then it follows that d1 + d2 + d3 ≥ B(n,m, d4) in any

[d0, d1, d2, d3, d4]-factor of an n × m grid. In Claim 4.6.3, we show that a lower

bound for B(n,m, d4) is max{2n4 + 2, 2m4 + 2} where n4 and m4 are the least

number of rows and columns, respectively, which must contain a degree 4 vertex in

any factor of G. Hence, when d4 > 0, d1 + d2 + d3 ≥ max{2n4 + 2, 2m4 + 2} is a

necessary condition for G to have a [d0, d1, d2, d3, d4]-factor. We concentrate on the

case when d4 > 0 and d1 + d2 + d3 ≥ min{2n4 + 2m − 1, 2m4 + 2n − 1}. When

max{2n4+2, 2m4+2} ≤ d1+ d2+ d3 < min{2n4+2m− 1, 2m4+2n− 1}, we know

of cases when G does and does not have a [d0, d1, d2, d3, d4]-factor, and this range of

d4 values is left for future work.

Now consider difficulty (c). When d1 or d2 is 0, the placement of the edges in the

factor tends to be very specific. Hence, the problem in this case often reduces to a

case-by-case analysis determining the allowable placements. Thus, we often assume

d1 > 0. While discussing difficulty (a), we explained that we often assume d2 ≥ 5

and so this avoids issues that present themselves when d2 = 0.

Finally, consider difficulty (d). Notice that each wall in a grid G is a path.

Thus, any factor of a grid G yields a factor of the walls of G and thus in a sense

yields a factor of a DUP with 4 paths. Recall that Theorem 2.1.3 shows that in any

[d0, d1, d2]-factor of a DUP, each odd path has a vertex which is degree 0 or degree

2 in a factor of the DUP. Similarly, there are cases where each odd wall requires a

degree 1 or degree 3 vertex in the factor. Due to this fact, if all walls are odd the

assumption that d1 + d3 ≥ 4 is helpful. Since the walls of a grid could be even,

d1 + d3 ≥ 4 is certainly not a necessary condition. Nonetheless, the assumption

that d1 + d3 ≥ 4 is weak and we argue this now. We are able to show (Claim 4.2.1)

that d1+ d3 is even in any [d0, d1, d2, d3, d4]-factor of a grid. Thus, by assuming that

d1 + d3 ≥ 4 we are only excluding factors where d1 + d3 = 0 and d1 + d3 = 2. Due

to difficulty (c), we already typically assume that d1 > 0 in many cases, and so by

parity, d1 > 0 implies that d1+d3 ≥ 2. Thus, the assumption that d1+d3 ≥ 4 really

only excludes one additional case, namely, the case when d1 + d3 = 2.
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d1 + d2 < 4
d3 = d4 = 0 All factors characterized (Thm 4.3.2)
d3 = 1, d4 = 0 All factors characterized (Thm 4.4.4)
d3 ≥ 2, d4 > 0 Impossible (Clm 4.4.1)

d1 + d2 = 4 We conjecture the structure of the factors in this case. (Conj 4.5.1)

d1 + d2 ≥ 5

d4 > 0, d1 > 0 BI ≤ d1 + d2 + d3 Possible (Thm 4.6.6)
d2 ≥ 5, BL ≤ d1 + d2 + d3 < BI Open Question

d1 + d3 ≥ 4 d1 + d2 + d3 < BL Impossible (Clm 4.6.3)
d4 > 0, d1 = 0 Open Question
d4 > 0, d2 < 5 Open Question

d4 > 0, d1 + d3 < 4 Open Question

d4 = 0
We identify a list of impossible factors which we

conjecture is complete. (Conj 4.7.1)

Table 4.1: Summary of results for n ≥ 3 and m ≥ 3

Based on our previous discussion concerning difficulties (a)-(d), we summarize

our results in Table 4.1 for the case when n ≥ 3 and m ≥ 3. When n ≤ 2 or m ≤ 2

we are able to characterize all [d0, d1, d2, d3, d4]-factors . For ease of formatting, we

use the variables BL and BI to refer to the true lower bound and our imposed lower

bound, that is, BL = max{2n4+2, 2m4+2} andBI = min{2n4+2m−5, 2m4+2n−5}.

An entry of Impossible means that a grid does not have a [d0, d1, d2, d3, d4]-factor in

that case. An entry of Possible means that we have shown that a grid does have

the desired factor in that case. An entry of All factors characterized means that

we have proven which factors are and are not possible in that case. An entry of

Open Question means that we have found examples of factors which are possible

and others which are impossible in that case.

4.1 Definitions and Notation

In this section, we give basic definitions and notation used throughout the proofs of

the upcoming sections.

It is sensible to use the directions north (N), south (S), east (E), and west

(W) when describing structures of a grid in relation to another and the following
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definitions exhibit this.

Definition 4.1.1. Let vi,j be the vertex in row i and column j of an n×m grid G

where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let H be a factor of G. If i > 1, then vi−1,j is the

N neighbor of vi,j in G or in H. If i < n, then vi+1,j is the S neighbor of vi,j in

G or in H. If j > 1, then vi,j−1 is the W neighbor of vi,j in G or in H. Finally,

if j < m, then vi,j+1 is the E neighbor of vi,j in G or in H. We let vN , vS, vE, and

vW refer to the N, S, E, and W neighbors, respectively, of a vertex v in G or in H.

See Figure 4.1(a) which demonstrates vN , vS, vE , and vW , that is, the N, S, E, W

neighbors, respectively, of a vertex v in the interior of a grid. Figure 4.1(b) shows

a factor of a grid in which the vertex v is no longer adjacent to its W neighbor

vW . Although v and vW are no longer adjacent in this factor H , we still refer to

vW as the W neighbor of v in H . Hence, we define N, S, E, and W neighbors by

adjacencies in the original grid and not the factor.

Definition 4.1.2. The N wall of an n × m grid G where n ≥ 2 and m ≥ 2 is

the path between and including the NE and NW corners of G. The S, E, and W

walls are defined similarly. A wall is odd if the wall is a path on an odd number

of vertices. A wall is even otherwise.

We define the concept of an imperfect grid now.

Definition 4.1.3. Given an integers r, s where 1 ≤ s ≤ n − 1 and 1 ≤ s ≤ m− 1,

an (n,m, r, s)-imperfect grid is an n × m grid with an (n − r) × s grid deleted

from the SE corner.

Typically, s = 1 for our needs and so we give the following definition.

Definition 4.1.4. Given an integer r where 1 ≤ r ≤ n−1, an (n,m, r)-imperfect

grid is an (n,m, r, 1)-imperfect grid with an additional column m with exactly r

vertices. In an imperfect grid, the cutout vertex is the vertex in row r and column

m − 1. When r ≥ 2, the fifth corner of an imperfect grid is the vertex in row r

and column m.
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See Figure 4.2 for an example of an imperfect grid where z is the cutout vertex

and v is the fifth corner. Note that the N wall of an imperfect grid has m vertices,

the S wall has m − 1 vertices, and the W wall has n vertices. The E wall is not

straight and we define the terms E1 wall and E2 wall of an imperfect grid for this

reason.

v
z

{

E1

{

E2

N

S

W

Figure 4.2: (n,m, r)-imperfect grid where n = m = 6 and r = 3

Definition 4.1.5. For 2 ≤ r ≤ n − 1, the E1 wall of an (n,m, r)-imperfect grid

is the path consisting of the r vertices in column m. The E2 wall of an (n,m, r)-

imperfect grid is the path consisting of the final n− r vertices in column m− 1. To

clarify, the endpoints of the E2 wall are the S neighbor of the cutout vertex and the

final vertex in column m− 1.

Definition 4.1.6. The border of an (n,m, r)-imperfect grid is the subgraph induced

by all degree 1, 2, and 3 vertices as well as the cutout vertex.

Claim 4.1.7. The border of an n×m grid where n ≥ 2 and m ≥ 2 has 2n+2m−4

vertices. The border of a (n,m, r)-imperfect grid G also has 2n + 2m − 4 vertices.

There are 2n+2m−5 degree 2 and 3 vertices on the border of G, of which 2n+2m−10

are degree 3. There is also 1 degree 4 vertex (the cutout vertex) on the border. G

in total has (n− 2)(m− 2)− (n− r− 1) degree 4 vertices which includes the cutout

vertex.

Proof. The claim follows from simply counting the vertices on the border of a grid

or imperfect grid.
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4.2 Strategies

We now present observations and strategies that we rely on often throughout the

upcoming sections. A simple observation is that if a grid has a [d0, d1, d2, d3, d4]-

factor, then the sequence consisting of di entries of the integer i is realizable. Claim

4.2.1 uses this fact to show that d1 and d3 have the same parity. This basic necessary

condition repeatedly appears in our upcoming results.

Claim 4.2.1. Let d0, d1, d2, d3, d4 be nonnegative integers that sum to nm. Assume

the sequence consisting of di entries of the integer i is realizable. Then d1 and d3

have the same parity. Also, the quantity d0 + d2 + d4 has the same parity as nm.

Proof. Because the sequence consisting of di entries of the integer i is realizable, the

sum 0d0 + d1 + 2d2 + 3d3 + 4d4 is even. Then d1 + 3d3 and so d1 + d3 must be even

as well. Thus, d1 and d3 have the same parity. Because the di values sum to nm

and d1 + d3 is even, the quantity d0 + d2 + d4 has the same parity as nm.

We will see that results about factors of paths are very helpful when searching

for factors of grids. For example, when n = 1, a 1 × m grid is simply a path on

m vertices and so results concerning factors of DUPs give an answer to the Factor

Problem for a 1×m grid.

Claim 4.2.2. Let G be an n × m grid where n = 1 or m = 1. Let d0, d1, d2 be

nonnegative integers that sum to nm where d1 is even. G has a [d0, d1, d2]-factor

except when d1 = 0 and d2 > 0. Furthermore, if G has a [d0, d1, d2]-factor and

d1 > 0, then there exists a factor in which an endpoint of G is a degree 1 vertex in

the factor.

Proof. Without loss of generality, assume n = 1. Let d3 = d4 = 0. Then d1 is even

per Claim 4.2.1. Because G is a 1×m grid, G is simply a path on m vertices. Then

claim then follows from Claim 2.1.1.

We now assume that n > 1 and m > 1 for the duration of this chapter. If n = 2

or m = 2, then an n×m grid has no degree 4 vertices and so d4 = 0. If n ≥ 3 and
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m ≥ 3, then because only the vertices interior to a grid can be degree 4 vertices in a

factor, it must be true that d4 ≤ (n− 2)(m− 2). Since no corner vertex in a factor

of a grid can be degree 3 or degree 4, we also require that d3 + d4 ≤ nm− 4. These

facts are captured in Claim 4.2.3.

Claim 4.2.3. Let n ≥ 2 andm ≥ 2 and assume an n×m grid has a [d0, d1, d2, d3, d4]-

factor. Then d3 + d4 ≤ nm− 4. Also, if n = 2 or m = 2, then d4 = 0. Otherwise,

d4 ≤ (n− 2)(m− 2).

Claim 4.2.4 shows that a grid is a bipartite graph, and so any integer sequence

which is not bipartite realizable is also not the degree sequence of a factor of a grid.

Recall the well known fact that bipartite graphs are equivalently graphs with no

odd cycles.

Claim 4.2.4. An n × m grid G is a bipartite graph. Let X and Y be the partite

sets of G. Then |X| = |Y | if and only if nm is even. If nm is odd, the number of

vertices in X and Y differ by 1. Finally, any factor of G is also a bipartite graph.

Proof. Let vij be the vertex in row i and column j of G. Notice that for a fixed vij , if

i+ j is even, then the neighbors of vij have row and column indices which have odd

sum. Similarly, if i+j is odd, then the row and column indices of the neighbors of vij

have even sum. Hence, the grid has partite sets X = {vij |1 ≤ i ≤ n, 1 ≤ j ≤ m, i+j

is even } and Y = {vij|1 ≤ i ≤ n, 1 ≤ j ≤ m, i+ j is odd } and G is thus a bipartite

graph. Furthermore, note that these partite sets have an equal number of vertices

if and only if nm is even. If nm is odd, the number of vertices in the sets differ by

1. The final portion of the claim follows because any subgraph of a bipartite graph

is a bipartite graph.

Corollary 4.2.5. If the sequence consisting of di entries of the integer i is not

bipartite realizable where 0 ≤ i ≤ 4, then no grid has a [d0, d1, d2, d3, d4]-factor.

Corollary 4.2.6. If every realization of the sequence consisting of di entries of the

integer i where 0 ≤ i ≤ 4 has an odd cycle, then no grid has a [d0, d1, d2, d3, d4]-

factor.
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We remind the reader of the definitions of a Hamiltonian path and Hamiltonian

cycle.

Definition 4.2.7. A Hamiltonian path in a graph G is a factor of G which is

a single path on the vertices of G. A Hamiltonian cycle of G is a factor of G

which is a single cycle on the vertices of G.

It is well known that by traversing up and down the columns of an n ×m grid

G, we can find a Hamiltonian path. The same is clear for imperfect grids as well.

If G has even order and has a Hamiltonian path then this yields a perfect matching

of G.

Claim 4.2.8. Every n×m grid or (n,m, r, s)-imperfect grid G has a Hamiltonian

path P . If G is a grid, then endpoints of P are 2 corner vertices of G.

Claim 4.2.9. Every n×m grid or (n,m, r, s)-imperfect grid G with an even number

of vertices has a perfect matching.

Proof. Let P be a Hamiltonian path v1v2 . . . vn in G. Then n is even. The edges

vivi+1 where i is odd and 1 ≤ i < n yields a perfect matching of P and so a perfect

matching of G.

It is also well known that n×m grids with even order have Hamiltonian cycles

when n ≥ 2 and m ≥ 2. Claim 4.2.11 gives the analog for imperfect grids. To avoid

cumbersome notation which confuses a simple concept, the proof uses pictures to

illustrate the desired Hamiltonian cycles.

Claim 4.2.10. An n × m grid has a Hamiltonian cycle if and only if n ≥ 2 and

m ≥ 2 and nm is even.

Claim 4.2.11. An (n,m, r, s)-imperfect grid G where n ≥ 3 and m ≥ 3 has a

Hamiltonian cycle if and only if r > 1 and m− s > 1 and G has even order.

Proof. (⇒)If r = 1 or m−s = 1, then G has a degree 1 vertex and so does not have

a Hamiltonian cycle. Because G is bipartite, G cannot have an odd cycle. Hence, if

G has a Hamiltonian cycle, then G must have even order.
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(⇐) We can view G as an n×m grid with an s× (n− r) grid deleted from the

SE corner. Thus, G has nm−s(n−r) = nm−sn+sr vertices and since G has even

order, this quantity must be even. If n is even, then either s or r must be even for

nm − sn + sr to be even. See Figure 4.3(a)-(b) for the Hamiltonian cycle through

G in these cases. Figure 4.3(a) and Figure 4.3(b) require the hypotheses m− s > 1

and r > 1, respectively. Now assume m is even. Then s or n− r must be even. By

reflecting G across a line between the NW corner of G and the cutout vertex of G,

G becomes an (m,n,m− s, n− r)-imperfect grid and the roles of n and m switch.

Thus, finding an Hamiltonian cycle through G reduces to the previous case. Finally,

if n and m are odd, then s and n − r must be odd for nm − s(n − r) to be even,

or equivalently, s must be odd and r must be even. Then m− s is even and Figure

4.3(c) demonstrates the desired Hamiltonian cycle.

{
{{

{

r even

n− r even

n even

m− s > 1

(a)

{
{{ {

r > 1 odd

n− r odd

n even
s even

(b)

{
{

{
r even

m− s even

n odd

(c)

Figure 4.3: Hamiltonian cycles in imperfect grids
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Corollary 4.2.12. An (n,m, r)-imperfect grid G where n ≥ 3 and m ≥ 3 has a

Hamiltonian cycle if and only if r > 1 and G has even order.

Proof. Follows from letting s = 1 in Claim ??.

Theorem 4.2.13. Given integers n ≥ 2 and m ≥ 2, let G be an n × m grid.

Let n′, m′, r′ be positive integers where n′ ≤ n,m′ ≤ m, and 1 ≤ r′ < n. Let

d0, d1, d2, d3, d4 and d′0, d
′
1, d

′
2, d

′
3, d

′
4 be non-negative integers where d

′
i ≤ di and where

d1 and d′1 have the same parity. Let G′ be an (n′, m′, r′)-imperfect grid. If G′ has

a [d′0, d
′
1, d

′
2, d3, d4]-factor H ′, then G has a [d0, d1, d2, d3, d4]-factor if d1 − d′1 > 0 or

if the fifth corner of G′ is degree 1 in H ′. Similarly, if an n′ × m′ grid G′′ has a

[d′0, d
′
1, d

′
2, d3, d4]-factor H

′′, then G has a [d0, d1, d2, d3, d4]-factor if d1− d′1 > 0 or if

any corner of G′′ is degree 1 in H ′′.

Proof. First assume an (n′, m′, r′)-imperfect grid G′ has a [d′0, d
′
1, d

′
2, d3, d4]-factor

H ′. Imagine that G′ corresponds to a subgraph in the NW corner of an n′ ×m grid

Ĝ. In other words, the NW corner of G′ is the NW corner of Ĝ. Let v be fifth

corner of G′. Then v is the vertex in row r and column m of Ĝ. Note that Ĝ− G′

is an imperfect grid. There is a Hamiltonian path P through Ĝ−G′ with endpoint

vS. Let b be the other endpoint of P and note that b is either the NE or SE corner

of Ĝ. If n′ = n, then G′ ∪ P is a factor of an G. Otherwise, n′ < n. Subdivide the

final edge ab of P (n − n′)m times so that G′ ∪ P is a factor of G. See Figure 4.4

for clarification.

Note that d1 − d′1 is even since d1 and d′1 have the same parity. If d1 − d′1 > 0,

then G′ has a [d′0, d
′
1, d

′
2, d3, d4]-factor H

′ by hypothesis and P has a [d0 − d′0, d
′
1 −

d1, d2 − d′2, 0, 0]-factor by Claim 4.2.2. Hence, H ′ ∪P ′ is a [d0, d1, d2, d3, d4]-factor of

G′ ∪ P and thus of G.

Now assume that d1 = d′1. Assume the fifth vertex v of G′ is degree 1 in H ′.

If d2 = d′2, H
′ with d0 − d′0 additional isolated vertices is the desired factor of G.

If d2 − d′2 = 1, add the edge vvS to H ′ and d0 − d′0 additional isolated vertices to

obtain the desired factor of G. Otherwise, d2 − d′2 ≥ 2. By Claim 4.2.2, P has a

[d0 − d′0, 2, d2 − 2, 0, 0]-factor where the endpoint vS of P is degree 1 in P ′. H ′ ∪ P ′
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(b)

Figure 4.4: G′ ∪ P is a factor of G

is a [d0, d1 + 2, d2 − 2, d3, d4]-factor of G
′ ∪ P . Add the edge vvS to H ′ ∪ P ′ to yield

a [d0, d1, d2, d3, d4]-factor of G
′ ∪ P ∪ vvS and thus of G.

Follow a procedure similar as above to show that if an n′ × m′ grid G′′ has a

[d′0, d
′
1, d

′
2, d3, d4]-factor H

′′, then G has a [d0, d1, d2, d3, d4]-factor if d1 − d′1 > 0 or if

any corner of G′′ is degree 1 in H ′′.

Our strategy in upcoming proofs is often to find factors H of an imperfect grid G′

where G′ is a subgraph within a grid G. We then manipulate H to obtain another

factor of G. Furthermore, we often assume H has the property that any vertex

which is degree 4 in G′ is also degree 4 in H . Per Claim 4.1.7, if G′ is an (n,m, r)-

imperfect grid then G′ has (n − 2)(m − 2) − (n − r − 1) degree 4 vertices. Hence,

any factor H with this property is a [d0, d1, d2, d3, (n − 2)(m− 2) − (n − r − 1)] of

G′. Claim 4.2.14 proves a few properties of such a factor H when d0 = 0.

Claim 4.2.14. Let G be an (n,m, r)-imperfect grid where n ≥ 3 and m ≥ 3 and

2 ≤ r ≤ n− 1. Let d1, d2, d3 be non-negative integers where d2 ≥ 5. Let d0, d1, d2, d3

be non-negative integers. If G has a [0, d1, d2, d3, (n−2)(m−2)− (n−r−1)]-factor,

then the following must hold.

1. d1, d2, d3 sum to 2n+ 2m− 5

2. d1 and d3 have the same parity
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3. d1 + d3 ≥ 2

4. d1 + d3 ≥ 4 if n and r are both odd

Proof. There are 2n− 2m− 5 degree 2 and degree 3 vertices on the border of G per

Claim 4.1.7. Thus, d1, d2, d3 must sum to 2n + 2m − 5. By Claim 4.2.1, d1 and d3

have the same parity.

We now show d1 + d3 ≥ 2. Let G′ be a DUP with 4 paths whose orders match

the number of vertices on the N,S,W, and E1 walls. In any factor H of G, let

PN , PS, PE1, PW be the subgraphs of H induced by the vertices on the N, S, E1, W

walls of G, respectively. Then H yields a factor H ′ = PN ∪ PS ∪ PE1 ∪ PW of the

DUP G′. Per Theorem 2.1.3, the number of degree 0 and degree 2 vertices in H ′ is

at least as large as the number of paths with odd order, or equivalently, the number

of walls of the N,S,W, and E1 walls which are odd in G.

A degree 0 vertex v in H ′ corresponds to a degree 1 vertex in H since d0 = 0. A

degree 2 vertex v in H ′ corresponds to a degree 3 vertex in H . Hence, the number

of degree 0 vertices and the number of degree 2 vertices in H ′ is at most d1 + d3.

Thus, d1 + d3 is at least as big as the number of walls from the N,S,W, and E1

walls which are odd in G. Note that the N and S walls have m and m− 1 vertices,

respectively, so one of these is always odd. Hence, d1+ d3 ≥ 1 and so d1+ d3 ≥ 2 by

parity. If n and r are both odd, then the W wall and E1 are odd too. Then the W

wall and E1 wall in addition to either the N or S wall are odd and so d1 + d3 ≥ 3.

Thus, d1 + d3 ≥ 4 by parity.

An imperfect grid has 5 degree 2 corners. For this reason, it is helpful to as-

sume d2 ≥ 5 when examining factors of an imperfect grid. In fact, Theorem 4.2.16

proves that if d2 ≥ 5, then the conditions in Claim 4.2.14 are sufficient to find

a [0, d1, d2, d3, (n − 2)(m − 2) − (n − r − 1)]-factor of an (n,m, r)-imperfect grid.

Theorem 4.2.16 relies on the full rung property, which we define now.

Definition 4.2.15. Let vi,j denote the vertex in row i and column j of an n×m grid

G. Let H be a factor of G. The factor H has the full rung property between

rows i and i+ 1 if the edge vi,jvi+1,j exists in H for all j ∈ [1, m]. The factor H
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has the full rung property between columns i and i + 1 if the edge vj,ivj,i+1

exists in H for all j ∈ [1, n].

Essentially, a factor H of a grid G has the full rung property between rows i and

i+ 1 if all edges between these rows in G exist in H as well. These edges look likes

rungs of a ladder, thus explaining the name of this property. The full rung property

between columns i and i+ 1 is defined similarly. See Figure 4.8 (a) for an example

of a factor with the full rung property between rows 1 and 2 as well as between

columns 1 and 2.

Theorem 4.2.16. Let G be an (n,m, r)-imperfect grid where n ≥ 3 and m ≥ 3

and 2 ≤ r ≤ n − 1. Let d1, d2, d3 be non-negative integers where d2 ≥ 5. G has a

[0, d1, d2, d3, (n− 2)(m− 2)− (n− r − 1)]-factor if the following conditions hold.

1. d1, d2, d3 sum to 2n+ 2m− 5

2. d1 and d3 have the same parity

3. d1 + d3 ≥ 2

4. d1 + d3 ≥ 4 when n and r are both odd.

Furthermore, if d1 > 0 and the above conditions hold, then except in the following

cases, some factor H exists in which the fifth corner of G is degree 1 in H. However,

except when d1 = 1 and r = 2, we may assume a corner vertex other than the fifth

corner of G is degree 1 in H.

Proof. We first make the following definitions.

1. To insert a column with 2 degree 3 endpoints in a factor with the full rung

property between columns i and i + 1 means to do the following. Subdivide

all edges between columns i and i + 1. Let aj be the vertex introduced into

row j. Insert the edges a1a2, a2a3, . . . an−1an. Then a1 and a3 are degree 3 in

the resulting factor.
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2. Let v1, vn be the northmost and southmost vertices in column i, respectively.

Let w1, wn be the northmost and southmost vertices in column i + 1, respec-

tively. To insert 2 columns with 4 degree 2 endpoints between columns i and

i+1 means to do the following. Subdivide all edges that exist between columns

i and i + 1 twice, introducing the vertices aj and bj and the edge ajbj into

row j. Only the northmost and southmost edges maybe missing. If v1w1 is

missing, add 2 vertices a1, b1 to row 1 and an edge between them. Else, delete

a1b1. If vnwn is missing, add 2 vertices a1, bn to row 1 and an edge between

them. Else, delete anbn. Note that a1, an, b1, bn are degree 2 in the resulting

factor.

3. To insert 1 column with 2 degree 1 endpoints in a factor between columns i

and i+1 where the northmost and southmost edges are missing, means to do

the following. Subdivide all edges between columns i and i+ 1. Let aj be the

vertex introduced into row j. Also add the vertices a1, a2. Insert the edges

a1a2, a2a3, . . . an−1an.

4. To insert 1 column with a degree 1 and degree 3 endpoint between columns i

and i+1 where the northmost edge is missing but the southmost edge exists (or

vice versa), means to do the following. Subdivide all edges between columns i

and i + 1, thus introducing a new vertex aj in row j. Assume the northmost

edge is missing. Add the vertex a1 to row 1 between columns i and i + 1.

Insert the edges a1a2, a2a3, . . . an−1an. Then a1 is degree 1 and a3 is degree 3

in the resulting factor.

We start by using induction on m to show the claim holds for n = 3. In this

case, r = 2. Table 4.2 and Table 4.3 shows all factors which satisfy the hypotheses

when m = 3 and m = 4. Notice that each factor has the full rung property between

columns i and i + 1 for some i. Also, if d3 ≤ 1, the factor does not have an edge

between the northmost vertices in columns i and i + 1 nor between the southmost

vertices in columns i and i + 1 for some i ≤ m− 2. Finally, if d1 > 0, then except

when d1 = 1, the fifth corner of G is degree 1 in the given factors. Now consider an
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e1

e2e3e4

e5

e6

e7 e8

d2 d1 d3 edges to remove
5 0 4
5 1 3 e8
5 2 2 e1, e3
5 3 1 e1, e3, e8
5 4 0 e1, e3, e5, e8

Table 4.2: Factors of a (3, 4, 2)-imperfect grid

e1

e2e3e4e5

e6

e7

e8 e9 e10

d2 d1 d3 edges to remove
7 0 4 e4
7 1 3 e4, e10
7 2 2 e1, e4, e9
7 3 1 e1, e4, e6, e9
7 4 0 e1, e3, e4, e6, e9
5 0 6
5 1 5 e10
5 2 4 e1, e3
5 3 3 e1, e3, e10
5 4 2 e1, e3, e6, e10
5 5 1 e1, e3, e4, e6, e10
5 6 0 e1, e3, e4, e6, e9, e10

Table 4.3: Factors of a (3, 5, 2)-imperfect grid

(n,m, r)-imperfect grid G where n = 3 and m ≥ 5.

If d2 ≥ 9, induction yields a [0, d1, d2 − 4, d3, d4]-factor H ′ of an (n,m − 2, r)-

imperfect grid G′. Insert 2 columns with 4 degree 2 endpoints between the columns 1

and 2 in H ′ for the desired factor. If d2 ≤ 8, because d1+d3 is even and d1+d2+d3 =

2n+2m−5 by hypothesis, we see that d2 is odd and so d2 = 5 or d2 = 7. If d1+d3 = 4,
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then d1+d2+d3 = 2n+2m−5 implies that m = 5 and d2 = 7, which is a base case.

Thus, d1 + d3 ≥ 6 . If d3 ≥ 2, induction yields a [0, d1, d2, d3 − 2, d4]-factor H
′ of an

(n,m− 1, r)-imperfect grid G′ and H ′ has the full rung property between columns

i and i + 1 for some i. Insert 1 column with 2 degree 3 endpoints between these

columns for the desired factor. Otherwise, d3 ≤ 1 and so d1 ≥ 5. Induction yields

a [0, d1 − 2, d2, d3, d4]-factor H
′ of an (n,m − 1, r)-imperfect grid G′, and for some

i ≤ m − 2, H ′ does not have an edge between the northmost vertices in columns i

and i+1 nor between the southmost vertices in columns i and i+1. Insert 1 column

with 2 degree 1 endpoints between columns i and i+ 1 for the desired factor.

Hence, the claim holds for n = 3. We now show that the claim holds for n = 4.

In this case r = 2 or r = 3. The reader can verify the claim holds for m = 3.

Otherwise, Table 4.4 through Table 4.7 shows all factors when m = 4 and m = 5.

Notice that each factor has the full rung property between columns i and i + 1 for

some i except when d3 = 0 and r = 2, and in the case where d3 = 1, the column

with the full rung property has an edge in row 1 that is incident to a 2 vertex u. If

d3 ≤ 1, the factor does not have an edge between the northmost vertices in columns

i and i + 1 nor between the southmost vertices in columns i and i + 1 for some

i ≤ m− 2, except again when d3 = 0 and r = 2. If d3 = 0 and r = 2, the factor has

an edge between the northmost vertices in columns 1 and 2, one of which is degree 2

in the factor, and does not have an edge between the southmost vertices in columns

1 and 2. Finally, if d1 > 0, then except when d1 = 1, the fifth corner of G is degree

1 in the given factors.

If d2 ≥ 9, proceed as in the previous case. Otherwise, d2 = 5 or d2 = 7, as

before. Since d1 + d3 + 7 ≥ d1 + d2 + d3 = 2n + 2m − 5 ≥ 8 + 10 − 5 = 10, and

so d1 + d3 ≥ 6. If d3 ≥ 2 and it is not the case that d3 = 2 and r = 2, induction

yields a [0, d1, d2, d3 − 2, d4]-factor H
′ of an (n,m − 1, r)-imperfect grid G′ and H ′

has the full rung property between columns i and i+ 1 for some i. Insert 1 column

with 2 degree 3 endpoints between these columns for the desired factor. If it is the

case that d3 = 2 and r = 2, induction yields a [0, d1 − 1, d2, d3 − 1, d4]-factor H
′ of

an (n,m− 1, r)-imperfect grid G′ and H ′ has a column with the full rung property

where the edge in row 1 is incident to a degree 2 vertex u. Insert 1 column with 2
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e1

e2e3e4

e5

e6

e7

e8 e9

e10

d2 d1 d3 edges to remove
7 0 4 e3
7 1 3 e3, e9
7 2 2 e1, e3, e6
7 3 1 e1, e3, e6, e9
7 4 0 e1, e3, e6, e8, e10
5 0 6
5 1 5 e9
5 2 4 e1, e6
5 3 3 e1, e6, e9
5 4 2 e1, e3, e5, e6
5 5 1 e1, e3, e5, e6, e9
5 6 0 e1, e3, e5, e6, e8, e10

Table 4.4: Factors of a (4, 4, 2)-imperfect grid

degree 3 vertices. Let v be the newly added vertex in row 1. v is a degree 3 vertex

adjacent to u. Delete the edge uv for the desired factor.

Otherwise, d3 ≤ 1. Induction yields a [0, d1−2, d2, d3, d4]-factor H
′ of an (n,m−

1, r)-imperfect grid G′. If it is not the case that d3 = 0 and r = 2, then H ′ does

not have an edge between the northmost vertices in columns m− 1 and m− 2 nor

between the southmost vertices in columns m−1 and m−2. Insert 1 column with 2

degree 1 endpoints between columns m− 1 and m− 2 for the desired factor. If it is

the case that d3 = 0 adn r = 2, then the factor has an edge between the northmost

vertices in columns 1 and 2, and one of these, say w, is degree 2 in the factor, and

the factor also does not have an edge between the southmost vertices in columns 1

and 2. Insert a degree 3 vertex t and a degree 1 vertex in this column. Then tv is

an edge between a degree 3 and a degree 2 vertex. Delete this edge for the desired

factor.

To finish the proof, proceed by induction on n and let n = 3 and n = 4 be the
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e1

e2

e3e4e5

e6

e7

e8

e9 e10

d2 d1 d3 edges to remove
7 0 4 e7
7 1 3 e1, e7
7 2 2 e1, e7, e10
7 3 1 e1, e4, e8, e10
7 4 0 e1, e4, e6, e8, e10
5 0 6
5 1 5 e1
5 2 4 e1, e3
5 3 3 e1, e3, e4
5 4 2 e1, e3, e4, e6
5 5 1 e1, e3, e4, e6, e10
5 6 0 e1, e3, e4, e6, e7, e10

Table 4.5: Factors of a (4, 4, 3)-imperfect grid

base cases. The manipulations are similar to above, except we use the full rung

property between rows as opposed to between columns.

The next 4 auxiliary claims prove to be very helpful. We summarize the differ-

ences between these claims now.

Claim 4.2.17 through Claim 4.2.20 all assume that d1 is as small as possible, that

is, d1 = 0 if d3 is even and d1 = 1 if d3 is odd. Claim 4.2.17 shows that a factor of

a grid is possible when d4 is as large as possible, that is, when d4 = (n− 2)(m− 2).

On the other hand, Claim 4.2.18 through Claim 4.2.20 consider factors when d3 is

as large as desired. As a result, d4 may be small and so we must remove edges

appropriately from the interior of a grid or an imperfect grid to account for this.

Furthermore, in order to allow d3 to be as large as possible, Claim 4.2.18 through

Claim 4.2.20 assume that d2 is small, i.e., d2 = 4 or d2 = 5. This contrasts Claim

113



e1

e2e3e4e5

e6

e7

e8

e9 e10 e11

e12

d2 d1 d3 edges to remove
7 0 6 e7
7 1 5 e7, e11
7 2 4 e1, e4, e7
7 3 3 e1, e4, e7, e11
7 4 2 e1, e4, e7, e10, e11
7 5 1 e1, e4, e6, e7, e10, e12
5 6 0 e1, e3, e4, e6, e7, e10, e12
5 0 8
5 1 7 e11
5 2 6 e1, e4
5 3 5 e1, e4, e11
5 4 4 e1, e4, e10, e11
5 5 3 e1, e4, e8, e10, e11
5 6 2 e1, e4, e7, e8, e10, e11
5 7 1 e1, e3, e4, e7, e8, e10, e11
5 8 0 e1, e3, e4, e5, e7, e8, e10, e12

Table 4.6: Factors of a (4, 5, 2)-imperfect grid

4.2.17 which allows d2 to be as large as possible.

Claim 4.2.17. Let G be an n ×m grid where n ≥ 3 and m ≥ 3. Let d1, d2, d3 be

non-negative integers where d1 = 1 and d3 is odd. If d1, d2, d3 sum to 2n + 2m− 4

and d3 ≥ 3 and d2 ≥ 4, then G has a [0, 1, d2, d3, (n− 2)(m− 2)]-factor H where a

corner vertex of G is degree 1 in H.

Proof. Let r = n − 1 and let G′ be an (n,m, r′)-imperfect grid. Then G′ has 1

less vertex than G. Per Theorem 4.2.16, G′ has a [0, 0, d2 + 1, d3 − 1, d4]-factor H
′.

Since H ′ has no degree 1 vertices, the fifth corner v of G′ is degree 2 in H ′. Add a

pendant adjacent to v in H ′. Doing so decreases the number of degree 2 vertices by

1 and also increases both the number of degree 3 vertices and the number of degree
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e1

e2

e3e4e5e6

e7

e8

e9

e10 e11 e12

d2 d1 d3 edges to remove
7 0 6 e8
7 1 5 e1, e8
7 2 4 e1, e3, e8
7 3 3 e1, e3, e4, e8
7 4 2 e1, e3, e4, e5, e8
7 5 1 e1, e3, e4, e5, e8, e12
5 6 0 e1, e3, e4, e5, e7, e8, e12
5 0 8
5 1 7 e1
5 2 6 e1, e3
5 3 5 e1, e3, e4
5 4 4 e1, e3, e4, e5
5 5 3 e1, e3, e4, e5, e7
5 6 2 e1, e3, e4, e5, e7, e8
5 7 1 e1, e3, e4, e5, e7, e8, e12
5 8 0 e1, e3, e4, e5, e7, e8, e11, e12

Table 4.7: Factors of a (4, 5, 3)-imperfect grid

1 vertices each by 1, thus yielding a [0, 1, d2, d3, d4]-factor of G.

Claim 4.2.18. Let G be an n×m grid where n ≥ 3 and m ≥ 3. Let d1, d2, d3, d4 be

nonnegative integers that sum to nm where d1 + d2 + d3 ≥ 2n+ 2m− 4. Let d1 = 1

if d3 is odd and d1 = 0 otherwise. Then G has a [0, d1, 4, d3, d4]-factor H where any

corner vertex of G is degree 1 in H if d1 > 0. Otherwise, all corners of G are degree

2 in H and are adjacent to 2 degree 3 vertices in H. Also, if d4 > 0, then there

exists a degree 4 vertex in H adjacent to a degree 3 vertex.

Proof. The number of degree 3 vertices on the border of G is 2n+2m−8 and is thus

even. Removing an edge between 2 degree 4 vertices yields 2 degree 3 vertices and

our goal is to remove edges between pairs of degree 4 vertices so as to obtain a factor

115



with d3 degree 3 vertices. Let P be the Hamiltonian path with endpoints through

the interior of G′. If d3 is even (and thus d1 = 0), then the first d3 − (2n+ 2m− 8)

vertices of P yields a subpath with even order and thus has a perfect matching.

Remove this matching for the desired [0, 0, 4, d3, d4]-factor of G. Otherwise, if d3 is

odd (and thus d1 = 1), then use the previous argument to get a [0, 0, 4, d3 + 1, d4]-

factor H of G. All corners are degree 2 vertices adjacent to a degree 3 vertex.

Remove the edge in H between a corner vertex and one of its neighbors. This yields

the desired [0, 1, 4, d3, d4]-factor of G. Note that if d4 > 0, then one of the endpoints

of P is degree 4 in H and is adjacent to a vertex on a wall of G with degree 3 in

H .

Claim 4.2.19. Let G be an n×m grid where n ≥ 3 and m ≥ 3. Let d1, d2, d3, d4 be

nonnegative integers that sum to nm where d1 + d2 + d3 ≥ 2n+ 2m− 4. Let d1 = 1

if d3 is odd and d1 = 0 otherwise. Then G has a [0, d1, 5, d3, d4]-factor H where any

corner vertex of G is degree 1 in H if d1 > 0. Otherwise, all corners of G are degree

2 in H and are adjacent to at least 1 degree 3 vertices in H.

Proof. Per Claim 4.2.18, G has a [0, d1, 4, d3, d4+1]-factorH where any corner vertex

of G is degree 1 in H if d1 > 0. Also, since d4+1 > 0, there exists a degree 4 vertex

u in H adjacent to a degree 3 vertex v. Remove the edge uv from H to obtain the

desired factor of G.

Claim 4.2.20. Let G be an (n,m, r)-imperfect grid where n ≥ 3, m ≥ 3, and 2 ≤ r <

n. Let d1, d3, d4 be nonnegative integers that sum to the order of G and d1+d2+d3 ≥

2n + 2m − 5. Let d1 = 1 if d3 is odd and d1 = 0 otherwise. Then G has a

[0, d1, 5, d3, d4]-factor H where the fifth corner of G is degree 1 in H if d1 > 0 unless

r = 2. Otherwise, all corners of G are degree 2 in H. Also, the cutout vertex is

degree 3 in H and is adjacent in H to the fifth corner of G if d1+d2+d3 > 2n+2m−5.

Proof. Per Claim 4.1.7, there are 2n+2m−10 degree 3 vertices on the border of G.

Let v be the cutout vertex. Let P be the Hamiltonian path with endpoint through

the degree 4 vertices of G. Then one of the endpoints of P is v. If d3 is odd (and

thus d1 = 1), then remove the edge vvN if r > 2. If r = 2, remove an edge adjacent
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to the SE corner of G, that is, the vertex in row n and column m − 1. Then the

border of the resulting factor has 2n+2m−11 degree 3 vertices on the border of G.

The first d3−(2n+2m−11) vertices of P yields a subpath with even order and thus

has a perfect matching. Remove this matching for the desired [0, 1, 5, d3, d4]-factor

of G. When d3 is even, remove a perfect matching from the subpath of P of size

d3 − (2n+ 2m− 10). This yields the desired [0, 0, 5, d3, d4]-factor of G. Note that if

d1 + d2 + d3 > 2n+ 2m− 5 then the fifth corner is adjacent to v which is degree 3

id d1 + d2 + d3 > 2n+ 2m− 5.

4.3 Grid Factors when d3 = d4 = 0

The main result of this section is Theorem 4.3.2 which characterizes [d0, d1, d2, d3, d4]-

factors of grids when d3 = d4 = 0. Hence, Theorem 4.3.2 answers the Factor Problem

for Grids when the desired factor has no degree 3 or 4 vertices. Because this is a

straightforward case, we prove it first for ease of future proofs. Claim 4.3.1 proves

a pathological case.

Claim 4.3.1. No grid has a [d0, 0, d2, 0, 0]-factor where d2 is odd or d2 = 1.

Proof. A [d0, 0, d2, 0, 0]-factor is a realization of the sequence with d2 2’s. If d2 = 1,

the sequence < 2 > is not realizable. If d2 ≥ 3 and odd, then any realization of a

sequence with d2 2’s must have an odd cycle and so is not the factor of a grid per

Corollary 4.2.6.

Theorem 4.3.2. Let G be an n × m grid where m,n > 1. Let d0, d1, d2 be non-

negative integers that sum to nm and assume d1 is even. Then except in the following

cases, G has a [d0, d1, d2, 0, 0]-factor.

1. [d0, 0, 2, 0, 0]

2. [d0, 0, d2, 0, 0], d2 is odd.

Furthermore, if d1 > 0 and G has a [d0, d1, d2, 0, 0]-factor, then there exists such a

factor with a degree 1 vertex at one of the corner vertices in G.
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Proof. Claim 4.3.1 proves the given pathological cases are truly pathological. First

assume d1 > 0. Per Claim 4.2.8, G has a Hamiltonian path P with endpoints u, v

where u and v are corner vertices in G. By Claim 4.2.1, d1 is even. Then per Claim

2.1.1, P (and so G) has the desired factor where u or v is a degree 1 vertex and so

G.

If d1 = d2 = 0, then nm isolated vertices yield the desired sequence. If d1 = 0

and d2 > 0 then d2 is even and at least 4 or we are in a pathological case. If

d2 ≤ 2n, then the desired factor is an even cycle within the first 2 rows of G and

a set of d0 additional isolated vertices. See Figure 4.5 for clarification. If d2 ≤ 2m,

an even cycle within the first 2 columns yields the claim. Now assume d2 > 2n

and d2 > 2m. There exists m′, r such that d2 = nm′ + r where 0 ≤ r < n. Since

d2 > 2n and d2 > 2m, the hypotheses force that n ≥ 3 and m′ ≥ 3. If r = 0,

then an n×m′ grid G′ has even order because d2 = nm′ is even. Per Claim 4.2.10,

G′ has a Hamiltonian cycle. Now if r ≥ 2, an (n,m′, r)-grid G′ has even order

and per Corollary 4.2.12, G′ has a Hamiltonian cycle. These Hamiltonian cycles

with an additional d0 isolated vertices yield the desired factor of G. If r = 1, then

d2 = nm′ +1 implies d2− 2 = nm′ − 1 = n(m′ − 1) + (n− 1). An (n,m′, n− 1)-grid

G′ has even order and per Corollary 4.2.12, G′ has a Hamiltonian cycle on d2 − 2

vertices. The NE corner of G′ is adjacent to vS and vW in this cycle. Add d0 + 2

vertices to this cycle to yield a [d0 + 2, 0, d2 − 2, 0, 0]-factor H of G. Let x be the E

neighbor of vS in G. Delete the edge vvS add the edges vvE and vSw and vEw to

yield a [d0, 0, d2, 0, 0]-factor of G.

Figure 4.5: An even cycle factor within 2 rows of G
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4.4 Grid Factors when d1 + d2 < 4

Theorem 4.4.4 characterizes [d0, d1, d2, d3, d4]-factors when d1 + d2 < 4 and is the

main result of this section. This case is rather trivial because of the following logic.

Every factor of a grid with degree 3 and 4 vertices must have at least 4 ‘corners’ and

these corners must be degree 1 or 2. Claim 4.4.1 formalizes this concept by showing

that any factor of a grid with degree 3 or 4 vertices must have at least 4 degree 1

and degree 2 vertices except in the specific case when d4 = 0 and d3 = 1. Hence,

when d1 + d2 < 4, the list of possible [d0, d1, d2, d3, d4]-factors is short.

Claim 4.4.1. If a grid has a [d0, d1, d2, d3, d4]-factor where d3+d4 > 0, then d1+d2 ≥

4 except possibly when d3 = 1 and d4 = 0.

Proof. First assume d4 > 0. Consider any degree 4 vertex v in H . From vN , walk

along edges in H to vertices that are N or W of the current vertex until this is not

possible. (If we have a choice between N or W, it does not matter which we pick.)

Let a be the final vertex in this walk. Then a cannot have a N or W neighbor.

Hence, the degree of a in the factor is 2 or 1. Similarly, from vE , walk N or E until

doing so is no longer possible. The final vertex in this walk is also degree 2 or 1

and is distinct from a because these walks never intersect. By walking S or E from

vS and by walking S or W from vW until it is no longer possible to do so, we also

arrive at two more distinct vertices of degree 1 or 2. Hence, d1 + d2 ≥ 4.

Now assume that d4 = 0 and d3 ≥ 2. Let v and u be two distinct degree 3

vertices in H . Let G′ be the subgraph induced by v, u, and the neighbors of v and

u. G′ may or may not be connected, but nonetheless, G′ must have at least 4 vertices

distinct from v and u. These vertices may be degree 1, 2, or 3 in the factor H , but

nonetheless, we can again define NE, SE, SW, or NW walks from these vertices to

argue that d1 + d2 ≥ 4, as before. See Figure 4.6 for examples.

We now give two auxiliary claims which prove pathological cases before proving

our main result of this section, Theorem 4.4.4.

Claim 4.4.2. No grid has a [d0, d1, d2, 1, 0]-factor where d1 + d2 < 3.
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Figure 4.6: Assigning NE, SE, NW, SW walks

Proof. A sequence with di entries of the integer i is not realizable if d3 = 1 and

d1 + d2 < 3.

Claim 4.4.3. No grid has a [d0, 1, 2, 1, 0]-factor.

Proof. A [d0, 1, 2, 1, 0]-factor is realization of the sequence < 3, 2, 2, 1 > plus isolated

vertices. However, < 3, 2, 2, 1 > is uniquely realizable and this unique realization

has an odd cycle and so is not the factor of a grid per Corollary 4.2.6.

Theorem 4.4.4. Let G be an n×m grid where n ≥ 2 and m ≥ 2. Let d0, d1, d2, d3, d4

be nonnegative integers that sum to nm where d1 and d3 have the same parity and

d3 + d4 ≤ nm− 4. If d1 + d2 < 4, then the [d0, d1, d2, d3, d4]-factors of G are exactly

the following.

1. [d0, 0, 0, 0, 0]

2. [d0, 2, 0, 0, 0]
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3. [d0, 2, 1, 0, 0]

4. [d0, 3, 2, 1, 0]

Proof. Per Claim 4.4.1, if d1 + d2 < 4, then d3 = 0 or d3 = 1. First assume d3 = 0.

Then the claim holds per Theorem 4.3.2. Now assume d3 = 1 and so by parity d1 is

odd. Since 1 = d3+ d4 ≤ nm− 4, it follows that nm ≥ 5 and so at least n or m, say

m, is at least 3. By Claim 4.4.2, d1+d2 ≥ 3, and by hypothesis, d1+d2 < 4. Hence,

d1 + d2 = 3. If d1 = 1, then d2 = 2 and this case is a pathological case by Claim

4.4.3. If d1 = 3, then d2 = 1 and Figure 4.7 with d0 isolated vertices is a factor of

any n×m grid where n ≥ 2 and m ≥ 3.

Figure 4.7: A [d0, 3, 1, 1, 0]-factor

4.5 Grid Factors when d1 + d2 = 4

In this section, we briefly discuss factors of grids when d1+d2 = 4. If d3 = d+4 = 0,

Theorem 4.3.2 characterizes when such factors are possible. If d3 + d4 > 0, then

Claim 4.4.1 shows that it is impossible for a grid to have a [d0, d1, d2, d3, d4]-factor

when d1+d2 < 4. Therefore, in a sense, any factor where d1+d2 = 4 and d3+d4 > 0

comes very close to being impossible. As a result, it is reasonable that the case when

d1 + d2 = 4 is restrictive. We exemplify this now.

When searching for a factor H of a grid G where d0 > 0, we often wish to ‘deal

with’ degree 0 vertices by removing rows and columns from G until d0 is small, that

is, until d0 < min{n,m}. However, when d0 < min{n,m}, degree 0 vertices on

the border increase the required number of degree 1 and 2 vertices elsewhere in the

factor. Consider the factor shown in Figure 4.8 (a). Since d0 < min{n,m}, any

placement of the degree 0’s on the E wall forces more ‘corners’ in the factor which

cannot be degree 3 or 4. The vertices v and w in Figure 4.8 (a) are examples of
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such ‘corners.’ Even if we place the degree 0 vertices in the interior of the grid, as

shown in Figure 4.8 (b), we can still create more ‘corners.’ These ‘corners’ therefore

force that the value of d1 + d2 becomes greater than 4. Now consider the factors in

Figure 4.8 (c)-(d). Because d1 + d2 = 4 in both factors, the degree 0 vertices must

be carefully arranged to not cause any additional ‘corners.’ This therefore greatly

restricts the final shape of the factor.

v

w

(a) d1 + d2 = 5

v

(b) d1 + d2 = 5

(c) d1 + d2 = 4 (d) d1 + d2 = 4

Figure 4.8: Factors when d1 + d2 is small

Based on this discussion, it is sensible that the case when d1 + d2 = 4 reduces

to a case-by-case analysis. We make the following conjecture about the structure of

factors when d1 + d2 = 4 and d3 + d4 > 0.

Conjecture 4.5.1. Let H be a [d0, d1, d2, d3, d4]-factor of an n × m grid G where

d1 + d2 = 4 and d3 + d4 > 0. Let H+ be the subgraph of H that remains when all

isolated vertices of H are removed. Then H+ is one of the following:

1. A factor of a grid G′ where possibly G′ has subgrids deleted. All edges on the

border of G′ are in H+. [See Figure 4.8 (c).]
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2. A factor of a grid G′ with additional pendants where possibly G′ has subgrids

deleted. All the edges on the border of G′ are in H+. [See Figure 4.8 (d).]

4.6 Grid Factors when d4 > 0 and d1 + d2 ≥ 5

In this section, we summarize what we know concerning factors with degree 4 ver-

tices. As indicated in Claim 4.2.3, an n × m grid when n ≤ 2 or m ≤ 2 has no

degree 4 vertices. Hence, all theorems in this section assume n ≥ 3 and m ≥ 3. The

main result of this section is Theorem 4.6.6, which shows that when d1+ d2+ d3 are

‘large enough’, a [d0, d1, d2, d3, d4]-factor of a grid when d4 > 0 is possible. We now

formalize what me mean by ‘large enough.’

Let H be a factor of a grid and let H4 be the set of vertices of G which are degree

4 in H . If a vertex v is in the neighborhood of H4 in G, then v must have positive

degree in H . Furthermore, v must have degree 1, 2, or 3 in H since v 6∈ H4. Thus,

the vertices in H4 force degree 1, 2, and 3 vertices in H −H4. We wish to know the

minimum number of degree 1, 2, and 3 vertices that are forced by H4. Depending

on the layout of H4, this number changes. For example, Figure 4.9 shows 3 factors

of a grid (minus isolated vertices) where d4 = 12 but the values of d1+d2+d3 differ.

(a) d4 = 12, d2 = 12 (b) d4 = 12, d2 + d3 = 14

(c) d4 = 12, d1 + d2 + d3 = 26

Figure 4.9: Factors where d4 = 12

We define B(n,m, d4) to capture the minimum number of degree 1, 2, and 3

vertices in the neighborhood of H4. We use the variable B to remind us that the
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vertices on the border of H4, that is, the vertices in H4 which are adjacent to vertices

in H −H4, force degree 1, 2, and 3 vertices elsewhere in H .

Definition 4.6.1. Given a factor H of an n × m grid G, let H4 be the set of

vertices of G which are degree 4 in H. Let |N(H4)| denote the number of vertices

in the neighborhood of H4 in H. For a fixed d4 value, let S(n,m, d4) be the set of

all [d0, d1, d2, d3, d4]-factors of G. Define B(n,m, d4) as such:

B(n,m, d4) = min
∀H∈S(n,m,d4)

|N(H4)|

.

It follows immediately from the Definition 4.6.1 that d1+d2+d3 must be at least

as large as B(n,m, d4) in any [d0, d1, d2, d3, d4]-factor of a grid. Claim 4.6.2 captures

this.

Claim 4.6.2. In any [d0, d1, d2, d3, d4]-factor of an n × m grid G where d4 > 0,

d1 + d2 + d3 ≥ B(n,m, d4).

The reader may ask why the value of B(n,m, d4) is dependent on n and m. Note

that the factor in Figure 4.9(a) has the smallest d1 + d2 + d3 value of those shown.

However, this factor clearly does not ‘fit’ in an 3×14 grid whereas the factor shown

in Figure4.9(c) does. The configuration of any factor is constrained by n and m and

thus B(n,m, d4) is as well.

In Claim 4.6.3, we give a lower bound on B(n,m, d4). We can interpret the

quantities n4 and m4 in Claim 4.6.3 to be the least number of rows and columns,

respectively, of G which must have a degree 4 vertex in any [d0, d1, d2, d3, d4]-factor

of G.

Claim 4.6.3. Let G be an n ×m grid. Let n4 = d d4
n−2

e. Let m4 = d d4
m−2

e. Define

B(n,m, d4) as in Definition 4.6.1. If d4 > 0, then B(n,m, d4) ≥ max{2n4+2, 2m4+

2}.

Proof. By definition, n4 indicates the least number of rows of G which must have a

degree 4 vertex in any [d0, d1, d2, d3, d4]-factor of G. Similarly, m4 indicates the least
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number of columns of G which must have a degree 4 vertex in any [d0, d1, d2, d3, d4]-

factor of G. Let H be any [d0, d1, d2]-factor of G. Consider any column i of G with a

vertex that is degree 4 in H . Column i has northmost and southmost vertices v and

w, respectively, which are degree 4 in H . Then vN and vS are neighbors of H4. Since

there are at least m4 such columns, this yields at least 2m4 vertices in N(H4). Now

consider the northwest-most vertex x with degree 4 in H and the northeast-most

vertex y in G with degree 4 in H . Then xW and yE are 2 additional vertices in

N(H4). Thus, any factor H must have at least 2m4+2 vertices in N(H4). A similar

argument yields that B(n,m, d4) ≥ 2m4 + 2 as well.

Corollary 4.6.4. Let G be an n×m grid and let n4 = d d4
n−2

e and m4 = d d4
m−2

e. In

any [d0, d1, d2, d3, d4]-factor of G where d4 > 0, d1+d2+d3 ≥ max{2n4+2, 2m4+2}.

Proof. Per Claim 4.6.2 and Claim 4.6.3, d1 + d2 + d3 ≥ B(n,m, d4) ≥ max{2n4 +

2, 2m4 + 2}.

The bound in Corollary 4.6.4 is tight. An example is the [4, 6, 8, 12, 12]-factor

of a 3 × 14 grid shown in Figure 4.9(c). Here m4 = d d4
n−2

e = d 12
3−2

e = 12. Also,

n4 = d d4
m−2

e = d 12
14−2

e = 1. Note that d1 + d2 + d3 = 26 = max{2n4 + 2, 2m4 + 2}.

As previously illustrated, the values of n and m may prevent a factor from

having a desired [d0, d1, d2]-factor. In an effort to obtain results despite this issue,

we assume d1+ d2+ d3 ≥ 2n+2m4−1. Note that a grid with m4 columns of degree

4 vertices in its interior has m′ = m4 + 2 columns in total. With this in mind,

recall per Claim 4.1.7, an (n,m′, r)-imperfect grid has 2n+2m′ − 5 = 2n+2m4 − 1

degree 1, 2, and 3 vertices on its border. Hence, if d1 + d2 + d3 ≥ 2n+ 2m4 − 1, we

have a possibility of creating factors H where H4 is the shape of an (n,m4 + 2, r)-

imperfect grid. Theorem 4.6.6, the main result of this section, therefore assumes

that d1 + d2 + d3 ≥ min{2n4 + 2m − 1, 2n + 2m4 − 1}. Before proving Theorem

4.6.6, we capture a special case of this theorem, namely, when n = 3 or m = 3,

in Theorem 4.6.5. We mention that there is much similarity between the proof of

these theorems. However, organizing the proofs into two separate theorems prevents

having a single theorem with a long list of cases that are complicated to verify.
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Theorem 4.6.5. Let G be an n × m grid where n or m equals 3 and the other

is at least 3. Let d0, d1, d2, d3, d4 be nonnegative integers that sum to nm where

d1 and d3 have the same parity and d4 ≤ (n − 2)(m − 2). Let n4 = d d4
m−2

e and

m4 = d d4
n−2

e. Assume d4 > 0. If d1 > 0, d2 ≥ 5, d1 + d3 ≥ 4, and d1 + d2 + d3 ≥

min{2n4 + 2m− 1, 2n+ 2m4 − 1}, then G has a [d0, d1, d2, d3, d4]-factor.

Proof. Without loss of generality, assume n = 3. Note that m4 = d4 when n = 3.

We argue now that min{2n4 + 2m − 1, 2n + 2m4 − 1} = 2n + 2m4 − 1. Since

2n + 2m4 − 1 = 6 + 2d4 − 1 = 2d4 + 5, it suffices to show 2n4 + 2m− 1 ≥ 2d4 + 5.

Since d4 ≤ (n − 2)(m − 2) = m − 2, we see that n4 = d d4
m−2

e ≤ 1. Then 2n4 +

2m − 1 ≥ 2 + 2m − 1 = 2m + 1 ≥ 2(d4 + 2) + 1 ≥ 2d4 + 5. Thus, we may assume

d1 + d2 + d3 ≥ 2n+ 2m4 − 1 = 2d4 + 5 for the rest of the claim.

Let m′ = d4+2 so that 2n+2d4− 1 = 2n+2m′ − 5. Let r = 2. Note that there

are (n − 2)(m′ − 2) − (n − r − 1) = d4 degree 4 vertices in an (n,m′, r)-imperfect

grid G∗ per Claim 4.1.7. Claim 4.1.7 also yields that G∗ has 2n + 2m′ − 5 vertices

which are not degree 4 on its border.

Our strategy is as follows. We find a [d′0, d
′
1, d

′
2, d3, d4]-factor H

′ of a grid G′ or

a [d′0, d
′
1, d

′
2, d3, d4]-factor H

′′ an imperfect grid G′′ where G′ and G′′ are subgraphs

of G. Oftentimes, the imperfect grid of interest is G∗. Note that H and H ′′ have

the desired number of degree 3 and degree 4 vertices in the factor that we seek. If

d′1 > 0, we take care to ensure that a corner vertex of G′ is degree 1 in H ′ or the

fifth corner of G′′ is degree 1 in H ′′. This property allows us to use Theorem 4.2.13

to show that a [d0, d1, d2, d3, d4]-factor of G exists.

Let d′2 = d2 and d′1 = d1. Decrease d′2 by 1 and d′1 by 2 until doing so would violate

one of the following inequalities: d′2 ≥ 5, d′1+d3 ≥ 4, and d′1+d′2+d3 ≥ 2n+2m4−1.

Note that d1 and d′1 have the same parity when this process is done.

Case I - d′2 ≥ 6: Since d′2 ≥ 6, we see that d′1+ d′2− 1+ d3 < 2n+2m4− 1 because

otherwise we can decrease d′2 again. Since 2n+2m4−1 ≤ d′1+d′2+d3 < 2n+2m4

we see that d′1 + d′2 + d3 = 2n + 2m4 − 1. By Theorem 4.2.16, G∗ has a

[0, d′1, d
′
2, d3, d4]-factor H

∗ where the fifth corner v is degree 1 in H∗ if d′1 > 0

unless d′1 = 1. If d1 − d′1 > 0 or v is degree 1 in H∗, then G has the desired
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factor per Theorem 4.2.13. Otherwise, d′1 = d1 = 1 and thus d3 is odd and at

least 3 by hypothesis. If d2 = d′2, then add isolated vertices to H∗ to obtain

the desired factor of G. Else d2 ≥ d′2 + 1. Let Ĝ be an n × m′ grid. Note

that Ĝ has one more vertex than G∗ since r = 2 and n = 3. Per Claim 4.2.17,

Ĝ has a [0, 1, d′2 + 1, d3, d4]-factor where a corner vertex is degree 1. Then G

again has the desired factor per Theorem 4.2.13.

Case II - d′2 = 5, d′1 + d3 = 4, d′1 ≤ 1: If d′1 + d′2 + d3 = 2n + 2m4 − 1, follow the

argument of Case I. Otherwise, 2d4 + 5 = 2n + 2m4 − 1 < d′1 + d′2 + d3 = 9

and so 2d4 < 4 or equivalently, d4 < 2 and so d4 = 1. If d′1 = 1, then d3 = 3

since d′1 + d3 = 4. Figure 4.10(a) shows a [0, d′1, 4, d
′
3, 1]-factor Ĝ of a 3 × 3

grid Ĝ with a degree 1 vertex in the corner and so G has the desired factor

per Theorem 4.2.13. If d′1 = 0, then d3 = 4 since d′1 + d3 = 4. Then the 3× 3

grid Ĝ is a [0, 0, 4, d′3, 1]-factor of itself. Since d1 > 0 by hypothesis, we see

that d1 − d′1 > 0. Then G again has the desired factor per Theorem 4.2.13.

v

(a)

v

(b)

v

(c)

v

(d)

Figure 4.10: Factors of 3× 3 grids

Case III - d′2 = 5, d′1 + d3 = 4, d′1 ≥ 2: If d′1 + d′2 + d3 = 2n + 2m4 − 1, then by

Theorem 4.2.16, G∗ has a [0, d′1, d
′
2, d3, d4]-factor H

∗ where the fifth corner v is

degree 1 since d′1 ≥ 2. Use Theorem 4.2.13 to obtain the desired factor of G.

If d′1 + d′2 + d3 > 2n + 2m4 − 1, then as in case II, we can argue that d4 = 1.

Figure 4.10(b)-(d) shows [0, d′1, 4, d
′
3, 1]-factor Ĥ of a 3×3 grid Ĝ when d′1 ≥ 2

with a degree 1 vertex in the corner. Due to this degree 1 vertex in the corner,

G again has the desired factor per Theorem 4.2.13.

Case IV - d′2 = 5, d′1 + d3 > 4, d′1 ≥ 2: By parity, d′1 + d3 > 4 implies d′1 + d3 ≥ 6.

Since d′1 ≥ 2, we see that d′1−2+d′2+d3 < 2n+2m4−1 because otherwise we

can decrease d′1 by 2 again. Since 2n+2m4− 1 ≤ d′1+ d′2+ d3 < 2n+2m4+1
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we see that d′1 + d′2+ d3 = 2n+2m4 − 1 or d′1+ d′2 + d3 = 2n+2m4. However,

d′1 + d3 is even by parity and d′2 = 5 by assumption so d′1 + d′2 + d3 is odd and

thus d′1 + d′2 + d3 6= 2n + 2m4. As a result, d′1 + d′2 + d3 = 2n + 2m4 − 1. By

Theorem 4.2.16, G∗ has a [0, d′1, d
′
2, d3, d4]-factor H

∗ where the fifth corner v

is degree 1 since d′1 ≥ 2. Since v is degree 1 in H∗, G again has the desired

factor per Theorem 4.2.13.

Case V - d′2 = 5, d′1 + d3 > 4, d′1 = 1: Then d3 > 3. If d′1+d′2+d3 = 2n+2m4−1,

follow the argument of Case I. Otherwise, d′1 + d′2 + d3 > 2n+ 2m4 − 1. Since

d′1+d′2 = 6, we see that d3 > 2n+2m4−7, or equivalently, d3 ≥ 2n+2m4−6.

Since n = 3, n divides either d3 + d4 + 6, d3 + d4 + 5, or d3 + d4 + 6. In each

case, it suffices to find a [0, d′1, d
′
2, d3, d4]-factor H of a subgrid of G where a

corner of the subgrid is degree 1 in H . Then Theorem 4.2.13 yields that G

has a [d0, d1, d2, d3, d4]-factor .

If n divides d3 + d4 + 6, then d3 + d4 + 6 = nk = 3k for some integer k. Since

d3 > 3 and d4 > 0, we see that 3k = d3 + d4 + 6 ≥ 11 and so k ≥ 3. Then by

Claim 4.2.19, an n × k grid G′ has a [0, d′1, 5, d3, d4]-factor H ′ where the NE

corner v of G′ is degree 1.

If n divides d3 + d4 + 5, then d3 + d4 + 5 = nk for some integer k. The

argument that k ≥ 3 follows as above. Then by Claim 4.2.18, an n × k grid

G′ has a [0, 0, 4, d3 + 1, d4]-factor H
′ where the NE corner v of G′ is degree 2

in H ′ and is adjacent to a degree 3 vertex w in H ′. Delete the edge vw for a

[0, 1, 4, d3, d4]-factor of G
′ in which v is degree 1.

Otherwise, n divides d3+ d4+4. Thus, d3+ d4+4 = nk for some k. A similar

argument as above shows that k ≥ 3. Per Claim 4.2.19, an n× k grid G′ with

corner u has a [0, 0, 5, d3 − 1, d4, 0]-factor H
′. In H ′, add a pendant v to u to

yield a [0, 1, 4, d3, d4, 0]-factor of an (n, k + 1, 1)-imperfect grid.
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Theorem 4.6.6. Let G be an n×m grid where n ≥ 3 and m ≥ 3. Let d0, d1, d2, d3, d4

be nonnegative integers that sum to nm where d1 and d3 have the same parity and

d4 ≤ (n − 2)(m − 2). Let n4 = d d4
m−2

e and m4 = d d4
n−2

e. Assume d4 > 0. If

d1 > 0, d2 ≥ 5, d1 + d3 ≥ 4, and d1 + d2 + d3 ≥ min{2n4 + 2m − 1, 2n + 2m4 − 1},

then G has a [d0, d1, d2, d3, d4]-factor.

Proof. Without loss of generality, assume min{2n4 +2m− 1, 2n+2m4 − 1} = 2n+

2m4−1. If n = 3 or m = 3, then the claim holds by Theorem 4.6.5 so assume n ≥ 4

and m ≥ 4. Note that 2n+2m4−1 = 2n+2m′−5. Let r = d4−(m4−1)(n−2)+1.

This value is of interest because there are d4 degree 4 vertices in an (n,m′, r)-

imperfect grid G∗.

Our strategy is that of Theorem 4.6.5. To summarize, we find factors H of grids

and imperfect grids which are subgraphs of G. We are careful to verify that an

appropriate corner is degree 1 in H . We then use Theorem 4.2.13 to show that a

[d0, d1, d2, d3, d4]-factor of G exists. Let d′2 = d2 and d′1 = d1. Decrease d′2 by 1 and d′1

by 2 until doing so would violate one of the following inequalities: d′2 ≥ 5, d′1+d3 ≥ 4,

and d′1 + d′2 + d3 ≥ 2n+ 2m4 − 1. Note that d1 and d′1 have the same parity.

Case I - d′2 ≥ 6: Since d′2 ≥ 6, we see that d′1+ d′2− 1+ d3 < 2n+2m4− 1 because

otherwise we can decrease d′2 again. Since 2n+2m4−1 ≤ d′1+d′2+d3 < 2n+2m4

we see that d′1 + d′2 + d3 = 2n + 2m4 − 1. By Theorem 4.2.16, G∗ has a

[0, d′1, d
′
2, d3, d4]-factor H

∗ where the fifth corner v is degree 1 if d1 > 0 unless

d′1 = 1 and r = 2. If d1 − d′1 > 0 or v is degree 1 in H∗ then Theorem 4.2.13

yields the claim. Otherwise, d′1 = d1 = 1 and r = 2 and so d3 is odd by parity.

If d2 = d′2, then add isolated vertices to H∗ to obtain the desired factor of

G. Otherwise, d2 − d′2 ≥ 1. Let Ĝ be an (n,m′, r + 1)-imperfect grid. Since

r+1 = 3 and n ≥ 4, we see that Ĝ is indeed an imperfect grid and not a grid.

Then Ĝ has a [0, 0, d′2 + 2, d3 − 1, d4 + 1]-factor Ĥ by Theorem 4.2.16. Also,

Theorem 4.2.16 yields that the fifth corner u of Ĝ is degree 2 in Ĝ since Ĥ has

no degree 1 vertices. Finally, Theorem 4.2.16 also implies that u is adjacent

to the degree 4 vertex uW in Ĥ . Delete the edge uuW for a [0, 1, d′2+1, d3, d4]-

factor of Ĝ where the fifth corner v is degree 1 and so Theorem 4.2.13 again
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yields that the desired factor exists.

Case II - d′2 = 5, d′1 + d3 = 4, d′1 ≤ 1: If d′1 + d′2 + d3 = 2n + 2m4 − 1, follow the

argument of Case I. Otherwise, 9 = d′1 + d′2 + d3 > 2n + 2m4 − 1 and so

10 > 2n + 2m4 or equivalently, 5 > n + m4. Since we assumed n ≥ 4 and

m4 ≥ 1, this is a contradiction.

Case III - d′2 = 5, d′1 + d3 = 4, d′1 ≥ 2: If d′1+d′2+d3 > 2n+2m4−1, we obtain the

same contradiction as in Case II. So assume that d′1+ d′2+ d3 = 2n+2m4 − 1.

Then by Theorem 4.2.16, G∗ has a [0, d′1, d
′
2, d3, d4]-factor H

∗ where the fifth

corner v is degree 1 since d′1 ≥ 2. Because v is degree 1, Theorem 4.2.13 yields

that the desired factor exists.

Case IV - d′2 = 5, d′1 + d3 > 4, d′1 ≥ 2: By parity, d′1 + d3 > 4 implies d′1 + d3 ≥ 6.

Since d′1 ≥ 2, we see that d′1−2+d′2+d3 < 2n+2m4−1 because otherwise we

can decrease d′1 by 2 again. Since 2n+2m4− 1 ≤ d′1+ d′2+ d3 < 2n+2m4+1

we see that d′1 + d′2+ d3 = 2n+2m4 − 1 or d′1+ d′2 + d3 = 2n+2m4. However,

d′1 + d3 is even by parity and d′2 = 5 by assumption so d′1 + d′2 + d3 is odd and

thus d′1 + d′2 + d3 6= 2n + 2m4. As a result, d′1 + d′2 + d3 = 2n + 2m4 − 1. By

Theorem 4.2.16, G∗ has a [0, d′1, d
′
2, d3, d4]-factor H

∗ where the fifth corner v

is degree 1 since d′1 ≥ 2. Since v is degree 1, Theorem 4.2.13 again yields that

the desired factor exists.

Case V - d′2 = 5, d′1 + d3 > 4, d′1 = 1: If d′1 + d′2 + d3 = 2n + 2m4 − 1, follow the

argument of Case I. Otherwise, d′1+d′2+d3 > 2n+2m4−1. Since d′1+d′2 = 6,

we see that d3 > 2n+ 2m4 − 7, or equivalently, d3 ≥ 2n+ 2m4 − 6.

If n divides d3 + d4 + 6, then d3 + d4 + 6 = nk for some integer k. We argue

now that k ≥ 3. Since m4 ≥ 1 and d3 ≥ 2n+2m4−6, we see that d3 ≥ 2n−4.

Then nk = d3 + d4 + 6 ≥ 2n− 4 + d4 + 6 = 2n+ d4 + 2 > 2n. Hence nk > 2n

and so k > 2, or equivalently, k ≥ 3. Then by Claim 4.2.19, an n × k grid

G′ has a [0, 0, 5, d3 + 1, d4]-factor H
′ where the NE corner v of G′ is degree 1.

Since v is degree 1, Theorem 4.2.13 then yields the desired factor.
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If n divides d3 + d4 + 5, then d3 + d4 + 5 = nk for some integer k. The

argument that k ≥ 3 follows as above. Then by Claim 4.2.18, an n × k grid

G′ has a [0, 0, 4, d3+1, d4]-factor H
′ where the NE corner v of G′ is a degree 2

in H ′ and is adjacent to a degree 3 vertex w in H ′. Delete the edge vw for a

[0, 1, 4, d3, d4]-factor of G
′ in which v is degree 1. As expected, Theorem 4.2.13

yields the desired factor.

If n divides d3+ d4+4, then d3+ d4 +4 = nk for some k. A similar argument

as above shows that k ≥ 3. Per Claim 4.2.20, an imperfect (n, k, n−1)-grid G′

with fifth corner u has a [0, 0, 5, d3−1, d4, 0]-factor H
′. In H ′, add a pendant v

adjacent to u in H ′ to yield a [0, 1, 4, d3, d4, 0]-factor of G
′. Note that v is the

SE corner of an n× k grid, and so Theorem 4.2.13 yields the desired factor.

Finally, assume n does not divide d3+ d4+5 or d3+ d4+5 or d3+ d4+6. Let

d3 + d4 + 6 = nk + r where 0 ≤ r < n. Then r 6= 0, 1, or 2 since n does not

divide d3 + d4 + 6, d3 + d4 + 5, or d3 + d4 + 4. Hence, 3 ≤ r < n. Using the

same arguments as before, we can argue that k ≥ 2 in this case. Let G′ be an

imperfect (n, k + 1, r)-grid G′ with fifth corner v. Then by Claim 4.2.20, G′

has a [0, d′1, d
′
2, d3, d4]-factor H

′ where v is degree 1 in H ′ if d1 > 0 since r 6= 2.

Since d1 − d′1 > 0 or v is degree 1 in H ′, Theorem 4.2.13 yields the desired

factor.

Due to Theorem 4.6.6, we know that when d4 > 0 and d1+ d2+ d3 ≥ min{2n4+

2m− 1, 2m4+2n− 1} and a few other weak conditions hold, an n×m grid G has a

[d0, d1, d2, d3, d4]-factor. We conclude this section by illustrating a [d0, d1, d2, d3, d4]-

factor of a n×m grid G which satisfies all hypotheses of Theorem 4.6.6 except that

max{2n4 +2, 2m4 +2} ≤ d1 + d2 + d3 < min{2n4 +2m− 1, 2m4 +2n− 1}. We also

give an example of a grid which does not have a [d0, d1, d2, d3, d4]-factor in this same

scenario. Thus, we know of cases when G does and does not have a [d0, d1, d2, d3, d4]-

factorwhen max{2n4+2, 2m4+2} ≤ d1+d2+d3 < min{2n4+2m−1, 2m4+2n−1},

and this range of d4 values is left for future work.
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To illustrate a possible factor in this range, add isolated vertices to the factor

show in Figure 4.9(a) so that it is a [12, 0, 12, 0, 12]-factor H of a 6 × 6 grid. Then

d1 + d2 + d3 = 12 and so 8 = max{2n4 + 2, 2m4 + 2} ≤ 12 < min{2n4 + 2m −

1, 2m4 + 2n − 1} = 17. To illustrate an impossible factor in this range, let G be

a n × m grid where n = m = 6. G does not have a [6, 2, 10, 2, 16]-factor and we

explain why. Note that d4 = (n− 2)(m− 2) = 16. Hence, if such a factor H exists,

then all interior vertices must be degree 4 in H . Hence, all vertices on the border of

G except for the corners must have positive degree in H . G has 2n + 2m− 8 = 16

non-corner vertices on its border. But d1 + d2 + d3 = 14 < 16 and so d1 + d2 + d3

is not big enough for these non-corner border vertices to all have positive degree.

Hence, H cannot exist.

4.7 Grid Factors when d4 = 0 and d1 + d2 ≥ 5

In this section, we assume that n ≥ 3 andm ≥ 3 because all results concerning n = 2

or m = 2 are in Section 4.8. We identify a list of impossible factors when d4 = 0.

Identifying these factors required a case-by-case analysis. We first conjecture that

this list is complete when d1 + d2 ≥ 5. We then show that each of the pathological

cases in Conjecture 4.7.1 are truly impossible. In the most extreme cases, that is,

when either d1 = 5 and d2 = 0 or when d1 = 0 and d2 = 5, Claim 4.7.8 and Claim

4.7.4, respectively, show that the conjecture holds true.

Conjecture 4.7.1. Let G be an n × m grid and let d0, d1, d2, d3 be non-negative

integers whose sum is nm where n ≥ 3, m ≥ 3 and d1 and d3 have the same parity.

If d1 + d2 ≥ 5, then G has a [d0, 0, d2, d3, 0]-factor except in the following cases.

1. [0, d1, 0, d3, 0], d1 and d3 are odd (Claim 4.7.2)

2. [d0, 0, d2, 0, 0] and d2 odd (Claim 4.3.1)

3. [d0, 0, 5, 0, 0] (Claim 4.7.4)

4. [d0, 0, 5, 2, 0] (Claim 4.7.4)
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5. [n− 1, 0, 5, n2 − n− 4, 0], d0 = n− 1, n = m ≤ 6 (Claim 4.7.7)

6. [d0, 3, 2, d3, 0], d0 < min{n,m} − 3 (Claim 4.7.7)

7. [d0, 4, 1, d3, 0], d0 < min{n,m} − 2 (Claim 4.7.7)

8. [d0, 5, 0, d3, 0], d0 < 2min{n,m} − 5 (Claim 4.7.7)

9. [d0, 6, 0, d3, 0],min{n,m} > 3 and d0 < min{n,m} − 2 (Claim 4.7.7)

10. [d0, 7, 0, d3, 0], d0 < min{n,m} − 3 (Claim 4.7.7)

In Claim 4.7.2, we show that no grid has a [0, d1, 0, d3, 0]-factor where d1 and d3

are odd. We remark that there are bipartite graphs with degree sequences which con-

sist of d1 1s and d3 3’s, where d1 and d3 are odd. Thus, this pathological case is spe-

cific to grids and not bipartite graphs in general. For example, < 3, 3, 3, 3, 3, 1, 1, 1 >

is the degree sequence of the bipartite graph shown in Figure 4.11. Note that in

Figure 4.11, the partite sets X and Y do not have the same number of vertices. The

proof of Claim 4.7.2 shows that a [0, d1, 0, d3, 0]-factor, where d1 and d3 are odd,

requires that |X| = |Y |, which causes a contradiction. This explanation sheds light

on why such a factor is a pathological case for grids but possibly not for bipartite

graphs in general.

Figure 4.11: A bipartite graph with degree sequence < 3, 3, 3, 3, 3, 1, 1, 1 >

Claim 4.7.2. No grid has a [0, d1, 0, d3, 0]-factor where d1 and d3 are odd.

Proof. Per Claim 4.2.1, d1 and d3 have the same parity and so d1+ d3 is even. Also,

in any n×m grid G with a [0, d1, 0, d3, 0]-factor, nm = d1+ d3 and thus nm is even.
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Let H be a [0, d1, 0, d3, 0]-factor of G. Then < 3, 3, . . . , 3, 1, 1, . . .1 > is the

degree sequence of H . By Claim 4.2.4, H is a bipartite graph with partite sets X

and Y where |X| = |Y |. Let x1, y1 be the number of degree 1 vertices in X, Y ,

respectively. Let x3, y3 be the number of degree 3 vertices in X, Y , respectively.

Then x1 + y1 = d1 and x3 + y3 = d3. Because partite sets in a bipartite graph have

equal degree sum, x1+3x3 = y1+3y3. Since |X| = x1+x3 and |Y | = y1+y3, we see

that x1+3x3 = y1+3y3 implies |X|+2x3 = |Y |+2y3 and so |X|− |Y | = 2(y3−x3).

Since |X| = |Y |, we see that y3 = x3. Then d3 = y3 + x3 is even. Therefore, d1 is

even by Claim 4.2.1. Hence, if an n ×m grid has a [0, d1, 0, d3, 0]-factor H , d1 and

d3 are not odd.

Claim 4.7.3. If n ≤ 6, then a n×n grid G does not have a [n−1, 0, 5, n2−n−4, 0]-

factor. If n ≥ 7, then G has a [n− 1, 0, 5, n2 − n− 4, 0]-factor H with the following

properties:

Proof. The reader can verify that G does not have a [n− 1, 0, 5, n2−n− 4, 0]-factor

when n ≤ 6. The reader should first try to find such a factor H by making the

border vertices of G degree 0 in the factor. This is problematic since no degree 1

vertices are permitted. Thus, the reader should try making the interior vertices of

G degree 0 in the factor. However, because the interior is smallish when n ≤ 6,

factors in which an interior vertex of G is degree 0 in H tend to force some of its N,

S, E, and W neighbors to be degree 2 in H . This is problematic since only 5 degree

2 vertices are permitted.

For n ≥ 7, we show the claim by induction on n. The base cases are n = 7 and

n = 8. For these cases, Figure 4.12(a)-(b) shows [n− 1, 0, 5, n2 − n− 4, 0]-factors of

an n × n grid where each factor is really a factor H ′ of an (n, n, r)-imperfect grid

G′ with n − r additional isolated vertices, where 3 ≤ r ≤ n − 3. All other desired

properties hold as well.

Now assume an n×n grid has such a [n−1, 0, 5, n2−n−4, 0]-factor when n ≥ 9.

We obtain such an [n, 0, 5, (n+1)2−(n+1)−4, 0]-factor of an (n+1)×(n+1) in the
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following manner. By induction, there exists an [n−2, 0, 5, (n−1)2− (n−1)−4, 0]-

factor H of an (n− 1)× (n− 1) grid where H is a factor H ′ of an (n− 1, n− 1, r)-

imperfect grid G′ with n − 1 − r additional isolated vertices where 3 ≤ r ≤ n − 4.

Let u, v, z be the NW, SW, SE corners, respectively, of G′, and by induction, note

that zE is degree 0 in H . To obtain the desired factor, perform the following process

and see Figure 4.12(c) for clarification. Consider a 2 × (n − 2) grid where a, b, c

are the NW, NE, SW corners, respectively. Consider also a (n + 1) × 2 grid with

NE corner d and SE corner s. Add edges av, bz, du, sc and two additional isolated

vertices south of zE in H . This yields a [n, 0, 5, (n + 1)2 − (n + 1) − 4, 0]-factor of

an (n + 1)× (n + 1) grid with the desired properties.

Claim 4.7.4 gives necessary and sufficient conditions for when a n×m grid has

a [d0, 0, 5, d3, 0]-factor.

Claim 4.7.4. No grid has a [d0, 0, 5, 0, 0]-factor or a [d0, 0, 5, 2, 0]-factor. Let G be

an n×m grid and let d0 and d3 be non-negative integers whose sum is nm−5 where

n ≥ 2, m ≥ 2, and d0 is even. Then G has a [d0, 0, 5, d3, 0]-factor H except in the

following cases.

1. [d0, 0, 5, 0, 0]

2. [d0, 0, 5, 2, 0]

3. [d0, 0, 5, d3, 0], n = 2 or m = 2

4. [n− 1, 0, 5, n2 − n− 4, 0], d0 = n− 1, n = m ≤ 6

Proof. Any graph with d0 degree 0 vertices and 5 degree 2 vertices has an odd cycle

and so cannot be a subgraph of a bipartite graph. Thus, no grid has a [d0, 0, 5, 0, 0]-

factor. The partite sets of any bipartite graph have equal sums. As a result, a

[d0, 0, 5, 0, 2]-factor must then have partite sets X, Y where X = {2, 2, 2, 2} with

additional 0’s and Y = {3, 3, 2} with additional 0’s. However, the reader can check

that there is a unique realization of a bipartite graph with partite sets X, Y and

that this realization has an odd cycle. Hence, no grid has a [d0, 0, 5, 2, 0]-factor. If
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(c) Building from the inductive step

Figure 4.12: [n− 1, 0, 5, n2 − n− 4, 0]-factors of n× n grids

d3 is even, d0 = n− 1, and n = m, then Claim 4.7.3 yields that an n×m grid has a

[d0, 0, 5, d3, 0]-factor if and only if n = m ≥ 7, and so case 4 is indeed a pathological

case.

To show pathological case 3, we now argue that 2 ×m grid G does not have a

[d0, 0, 5, d3, 0]-factor when d3 ≥ 4. Note that d2 = 5 and d3 ≥ 4 implies m ≥ 5.

Assume such a factor H of G does exist. If there are columns in G in which both
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vertices are degree 0 in H , then remove these columns from G and H and apply the

following argument to the resulting grid and factor. Hence, we may assume each

column of G has a vertex of positive degree in H . Therefore, the NW or SW corner

of G has positive degree in H . Because corners cannot be degree 3, the NW or SW

corner must then be degree 2, but this forces that both the NW and SW corners are

degree 2 in H . Similarly, the NE and SE corners are degree 2 in H as well. Thus,

all corners of G have degree 2 in H . Then the corners are adjacent in H to the

vertices in columns 2 and m − 1 and so the vertices in columns 2 and m − 1 have

positive degree in H . Because the vertices columns 2 and m−1 have positive degree

in H , all degree 0 vertices in H are between columns 3 and m − 2. Note that by

hypothesis, d0+ d3 = 2m− 5. Since d3 is even, this implies d0 is odd and so at least

one vertex in H must be degree 0.

Because the 4 corners are degree 2 inH , exactly one non-corner vertex has degree

2 in H . Since d0 ≥ 1, we may consider the westmost degree 0 vertex v in H . Note

that v is not in columns 1, 2, m − 1, m since these columns have vertices only of

positive degree in H . Without loss of generality, assume v is in row 1. Since v is

not in columns 1, 2, m− 1, m, we see that vS and vW are not corner vertices of G.

Also, because v has degree 0, vS and vW are not adjacent to v in H and so cannot

have degree 3 in H . By assumption, no column has 2 degree 0 vertices and so vS

has positive degree and thus must be degree 2 in H . Also, since v is the westmost

degree 0 vertex in H , we see that vW also has positive degree in H and must also

be degree 2 in H . The four corner vertices plus vS and vW yield that H has at

least 6 degree 2 vertices, a contradiction. Hence, a 2 × m grid G does not have a

[d0, 0, 5, d3, 0]-factor when d3 ≥ 4

Now assume n ≥ 3, m ≥ 3, d3 ≥ 4, and d3 is even. We argue that an n×m grid

G has the desired factor except when d0 = n− 1 and n = m ≤ 6. If d0 is large, our

strategy at times requires that we remove rows and columns from G to find a factor

of a smaller grid. In doing so, we must take care to ensure that the smaller grid has

at least 3 rows and 3 columns because we just showed that a 2×m or an n× 2 grid

does not have a [d0, 0, 5, d3, 0]-factor otherwise.

The number of vertices with positive degree in the desired factor is d3+5 which is
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at least 9. If d3+5 vertices cannot fill more than two columns or more than two rows,

ie, if d3 +5 ≤ 2max{n,m}, then we perform the zooming transformation, which we

define below. Without loss of generality, assume n ≤ m. We let m′ = dd3+5
3

e.

Definition 4.7.5. To perform the zooming transformation means to remove

n− 3 rows and m−m′ columns from the grid and to decrease d0 by the number of

vertices removed.

Perform the zooming transformation and note that a 3 ×m′ grid results. Find

the desired factor of this resulting grid and then add n−3 rows and m−m′ columns

of isolated vertices for the desired factor. Note that since d3 + 5 ≥ 9 by hypothesis,

we see that m′ ≥ 3. Since d3 + 5 ≥ 9, d3 + 5 vertices fills at least 3 rows and at

least 3 columns in this 3×m grid. For the remainder of this proof, we thus assume

d3 + 5 > 2max{n,m}. Please note a subtle point that is important later. The

zooming transformation results in a 3 ×m grid where m ≥ 3. We now argue that

the zooming transformation cannot place us in pathological case (4) and we call this

Fact (1). If it did, then the shrinking transformation results in a 3 × 3 grid and

d0 = 2. However, because d3 + 5 ≥ 9, we see that d3 = 4, d2 = 9 and so d0 = 0, a

contradiction.

Let d3 + 5 ≡ r mod n and d3 + 5 ≡ s mod m where 0 ≤ r < n and 0 ≤ s < n.

We break the proof into 3 cases: r or s is 0, r ≥ 2 or s ≥ 2, and finally, r = s = 1.

Assume first that r or s is 0 and so either n or m, say n, divides d3 + 5. Then

d3 + 5 = nm′ where m′ ≥ 3 since d3 + 5 > 2max{n,m}. Since d3 + 5 is odd, nm′

is odd too. Claim 4.2.19 implies that a [0, 0, 5, d3, 0]-factor H of an n×m′ grid G′

exists. Adding an additional m − m′ columns of isolated vertices to H yields the

desired factor of G.

Now assume r ≥ 2 or s ≥ 2. Without loss of generality, we assume r ≥ 2 and

we proceed as follows. Then d3 + 5 = nm′ + r for some m′. Also, m′ ≥ 2 since

d3+5 > 2max{n,m}. Consider an (n,m′+1, r)-imperfect grid G′. Per Claim 4.2.20

G′ has a [0, 0, 5, d3, 0]-factor H . Add d0 isolated vertices to H to yield the desired

factor of G.

Finally, assume r = s = 1. Without loss of generality, assume n ≤ m. If d0 ≥ n,
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then because d0 + 5 + d3 = nm, it follows that d3 + 5 ≤ (m − 1)n. We remove a

column from G and we consider an n× (m−1) grid G′ and we argue that m−1 > 3

which is required for G′ to have the desired factor. Since d3 + 5 ≡ 1 mod n, we see

that d3+5 = mk+1 where 0 < k < m. Also, mk+1 = d3+5 > 2max{n,m} = 2m

implies k > 2. Also, mk + 1 = d3 + 5 ≤ (m− 1)n ≤ (m− 1)m, implies k < m− 1.

Then 2 < k < m−1 and som−1 > 3, as desired. Also, d3+5 = (m−1)k+(k+1) and

so d3+5 ≡ k+1 mod m−1. Because 2 < k < m−1 implies 3 ≤ k+1 < m, we see

that d3+5 6≡ 1 mod m−1. Then by the previous cases, G′ has a [d0−n, 0, 5, d3, 0]-

factor H . Add a column of isolated vertices to H to yield the desired factor of

G.

Otherwise, d0 < n. Recall r = s = 1 and so d3 + 5 ≡ 1 mod n ≡ 1 mod m.

Since d0 +5+ d3 = nm, this implies that d0 ≡ −1 mod n ≡ −1 mod m. d0 < n ≤

m, we see that d0 = n − 1 = m − 1 and so n = m. Then d0 + 5 + d3 = nm = n2

and so d3 = n2 − d0 − 5 = n2 − n − 4. Then Claim 4.7.3 yields that G has a

[n−1, 0, 5, n2−n−4, 0]-factor if and only if n = m ≥ 7. If n = m ≤ 6, then we just

argued G does not have the desired factor. If G were a grid that resulted from the

zooming transformation, then the reader may wonder if the original un-transformed

grid could have the desired factor. However, since d0 = n− 1 = m− 1 and n = m,

Fact (1) indicates that the zooming transformation cannot place us in pathological

case (4).

In Claim 4.7.7, we use the term chain of 3’s on the border, which we define now.

As an example, in the factor shown in Figure 4.13, v1v2v3 is a chain of 3′s on the

border with endpoints a and b. Note that the endpoints of a chain of 3’s on the

border are always degree 1 or 2 in the factor.

Definition 4.7.6. A chain of 3’s on the border in a factor H of a grid G is

a maximally connected set of degree 3 vertices in H all of which are on the border

of G. Given a chain of 3’s S on the border in H, let P be the path in H whose

internal vertices are S, the endpoints of a chain of 3’s on the border are the

endpoints of P .
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a
v1v2v3 b

Figure 4.13: A chain of 3’s on the border

Claim 4.7.7. Let G be an n×m grid where n ≥ 3 and m ≥ 3 and let d0, d1, d2, d3

be non-negative integers which sum to nm where d1 and d3 have the same parity. G

does not have a [d0, d1, d2, d3, 0]-factor in the following cases.

1. [d0, 3, 2, d3, 0], d0 < min{n,m} − 3

2. [d0, 4, 1, d3, 0], d0 < min{n,m} − 2

3. [d0, 4, 0, d3, 0], d0 < 2min{n,m} − 4

4. [d0, 5, 0, d3, 0], d0 < 2min{n,m} − 5

5. [d0, 6, 0, d3, 0], d0 < min{n,m} − 2

6. [d0, 7, 0, d3, 0], d0 < min{n,m} − 3

Proof. Without loss of generality, assume n ≤ m. Recall per Claim 4.1.7, there are

2n+ 2m− 4 vertices on the border of G. Because corners cannot be degree 3, note

that a wall of size n can have at most n− 2 degree 3 vertices in a factor. Consider

any chain of 3’s on the border of a factor H . The endpoints to this chain are either

degree 1 or degree 2. Also, a degree 1 vertex in H can be the endpoint to at most 1

chain of 3’s on the border. A degree 2 vertex in H can be the endpoint to at most

2 chain of 3’s on the border.

In a [d0, 3, 2, d3, 0]-factor H , the 2 degree 2 vertices are the endpoints to at most

4 chains of 3’s on the border and each of the 3 degree 1 vertices is the the endpoint

to at most 1 chain. Thus, there are at most 7 endpoints to chains of 3’s on the

border in H . Then there are at most 3 chain’s of 3’s on the border and so at most

3 walls of G have vertices which are degree 3 in H . If all non-corner vertices on
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the N, S, and W (or E) walls are degree 3 in H , then there are 2m+ n− 6 vertices

on the border of G with degree 3 in H . Since d1 + d2 = 5, there are thus at most

2m+n− 1 vertices on the border of G with positive degree in H . Thus, there must

be at least 2n + 2m− 4 − (2m+ n− 1) = n− 3 vertices of degree 0 on the border

in H .

Now consider a [d0, 4, 1, d3, 0]-factor. As in the previous case, we can argue that

there are at most 3 chain’s of 3’s on the border and so at most 3 walls of G have

vertices which are degree 3 in H . Consider any 3 walls, say the N, S, and W walls.

If all non-corner vertices are degree 3 in H on these walls, then the NW and SW

corners both must have degree 2 in H . However, d2 = 1, a contradiction. So if 3

walls of G have vertices which are degree 3 in H , then at least 1 non-corner vertex

on one of these walls is not degree 3 in H . Thus, there are at most 2m + n − 7

vertices (1 less than in the previous case) on the border of G with degree 3 in H .

Since d1+d2 = 5, there are then at most 2m+n−2 vertices on the border of G with

positive degree in H . Thus, there must be at least 2n+2m−4−(2m+n−2) = n−2

vertices of degree 0 on the border in H .

Consider a [d0, 5, 0, d3, 0]-factor H . Because H has no degree 2 vertices, any

chain of 3’s on the border of H has exactly 2 degree 1 endpoints. Since d1 = 5,

there are therefore at most 5 vertices in H which can be endpoints to a chain of 3’s

on the border. Thus, there are at most 2 chain of 3’s on the border and so at most

2 border walls with a degree 3 vertex in H . The maximum number of vertices on

the border of G with degree 3 in H is therefore 2m− 4 and the maximum number

vertices on the border of G with degree 1 in H is d1 = 5. Hence, the maximum

number of vertices on the border of G with positive degree in H is 2m + 1. Thus,

d0 ≥ 2n+2m−4−(2m+1) = 2n−5. A similar argument shows a [d0, 4, 0, d3, 0]-factor

requires d0 ≥ 2n− 4.

Finally, consider a [d0, 7, 0, d3, 0]-factor. As in the previous arguments, at most 3

walls of G have vertices which are degree 3 in H . No 2 chains share an endpoint since

d2 = 0. So if 3 walls have a chain of 3’s, there are exactly 6 endpoints to these chains

on the 3 walls. Thus, at least 2 of these endpoints are not corner vertices. Hence,

the maximum number of vertices on the border of G with degree 3 in H is therefore
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2m+n− 6− 2 = 2m+n− 8 and the maximum number vertices on the border of G

with degree 1 in H is d1 = 7. Thus, d0 ≥ 2n+ 2m− 4− (2m+ n− 8 + 7) = n− 3.

A similar argument shows that a [d0, 6, 0, d3, 0]-factor requires d0 ≥ n− 2.

Similar to Claim 4.7.4, Claim 4.7.8 gives necessary and sufficient conditions for

when a n×m grid has a [d0, 0, 5, d3, 0]-factor.

Claim 4.7.8. Let G be an n×m grid and let d0, d3 be non-negative integers where

d3 is odd and d0 + d3 = nm − 5. Then G has a [d0, 5, 0, d3, 0]-factor except in the

following cases.

1. [0, 5, 0, d3, 0]

2. [d0, 5, 0, d3, 0], d0 < 2min{n,m} − 5

3. [d0, 5, 0, d3, 0], n = 2 or m = 2

Proof. Per claim 4.7.2 no grid has a [0, 5, 0, d3, 0]-factor. Per Claim 4.7.7 no grid

has a [d0, 5, 0, d3, 0]-factor where d0 < 2min{n,m} − 5.

Assume for a moment that n = 2 or m = 2. Without loss of generality, assume

n = 2. Let d0 > 0 since no grid has a [0, 5, 0, d3, 0]-factor. If d3 = 1, then Figure

4.14(a) with additional columns of 0’s is a [d0, 5, 0, 1, 0]-factor of a 2 × m grid. If

d3 = 3, then Figure 4.14(b) with additional columns of 0’s is a [d0, 5, 0, 3, 0]-factor

of a 2 × m grid. We now show a 2 × m grid G does not have a [d0, 5, 0, d3, 0]-

factor where d3 ≥ 5 and d3 > 0. Assume such a factor H exists. No two degree 1

vertices u, v can be adjacent in H because then H −{u, v} is a factor with 3 degree

1 vertices and at least 5 degree 3 vertices, thus contradicting Claim 4.4.1. A degree

3 vertex adjacent to 3 degree 1 vertices also contradicts Claim 4.4.1, as does 2 or

more degree 3 vertices each adjacent to 2 degree 1 vertices. If each degree 1 vertex

is adjacent to a distinct degree 3 vertex, then removing the degree 1 vertices, we

obtain a [d0+5, 0, 5, d3−5, 0]-factor of G, thus contradicting Theorem 4.7.4. Hence,

exactly 1 degree 3 vertex u, say in row 1, is adjacent to 2 degree 1 vertices a, b and

a degree 3 vertex w, and the rest of the degree 3 vertices are adjacent to exactly 1
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degree 1 vertex. See Figure 4.14 (e) Then wS is degree 1, forcing wE to be degree

3. Since d1 = 5, this process can only continue for 3 degree 3 vertices, but d3 ≥ 5,

a contradiction.

(a) n = 2, d3 = 1 (b) n = 2, d3 = 3

(c) n = 3, d3 = 1 (d) n = 3, d3 = 3

(e)

Figure 4.14: [d0, 5, 0, d3, 0]-factors when d3 = 1 or 3

Now assume that 3 ≤ n ≤ m for an n × m grid G. If d3 = 1 or d3 = 3, then

Figure 4.14 (c)-(d) plus additional 0’s is a [d0, 5, 0, d3, 0]-factor of G. Assume d3 ≥ 5

for the rest of the proof. We now show the claim holds for n = 3 and n = 4.

Let n = 3. Figure 4.15 shows the desired [d0, 5, 0, d3, 0]-factors for a 3 × 4 grid

and a 3×5 grid for all di values which satisfy the hypotheses. Notice that all factors

in Figure 4.15 have the full rung property between columns 2 and 3. To show the

desired claim for all 3 ×m grids where m ≥ 6, we use induction on m. Note that

2n− 5 = 1 and so d0 ≥ 1 by hypothesis. If d0 ≥ 4, by induction a [d0− 3, 5, 0, d3, 0]-

factor H of an 3 × (m − 1) grid exists. Add a column of 0’s to this factor for the

desired factor. Otherwise, 1 ≤ d0 ≤ 3. Then d3 = 3m − 5 − d0 ≥ 18 − 5 − 3 = 10.

Hence by parity, d3 ≥ 11 so d3−6 ≥ 5. Then by induction, a [d0, 5, 0, d3−6, 0]-factor

H of an 3× (m− 1) grid exists with the full rung property between columns 2 and

3. Subdivide each edge between columns 2 and 3 twice. Let ai, bi for 1 ≤ i ≤ n

denote the new vertices added to each row. Also add the edges aiai+1 and bibi+1 for

1 ≤ i < n. This preserves the full rung property between these columns.
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(a) [2, 5, 0, 5, 0] (b) [3, 5, 0, 7, 0] (c) [1, 5, 0, 9, 0]

Figure 4.15: [d0, 5, 0, d3, 0]-factors of 3× 4 and 3× 5 grids

Now let n = 4. Figure 4.16 shows H for a 4 × 4 grid and a 4 × 5 grid for all di

values which satisfy the hypotheses. Notice that all factors again have the full rung

property between columns 2 and 3. We must show the claim for a 4×m grid when

m ≥ 6. Note now that 2n − 5 = 3 and so d0 ≥ 3. If d0 ≥ 7, then use the n = 3

case to obtain a [d0 −m, 5, 0, d3, 0]-factor of an 3×m grid and add a row of 0’s. If

3 ≤ d0 < 7, use induction on m as in the n = 3 case.

(a) [4, 5, 0, 7, 0] (b) [4, 5, 0, 11, 0]

Figure 4.16: [d0, 5, 0, d3, 0]-factors of 4× 4 and 4× 5 grids

Finally, assume m ≥ n ≥ 5. If d3 = 5 or d3 = 7, then the factors in Figure

4.15(a)-(b) plus additional 0’s yields the claim. So assume d3 ≥ 9. Let G′ be an

n×(m−2) grid. Then by Claim 4.7.4, there exists a [d0+5−2n, 0, 5, d3−5, 0]-factor

H ′ of G′ unless n = m−2 ≤ 6 and d0+5−2n = n−1, or equivalently, d0 = 3n−6.

Since n ≥ 5, this pathological case can only occur if n = 5, m = 7, d0 = 9 or if

n = 6, m = 8, d0 = 12 and Figures 4.17(a)-(b) show the desired factors in these

cases. Otherwise, H ′ exists, and also by Claim 4.7.4, we may assume that after

removing rows and columns of isolated vertices from H ′, the resulting factor is

either an imperfect grid within G′ where the degree 2 vertices are at the five corners

or the resulting factor is a subgrid within G′ where the corners are degree 2 and the
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fifth degree 2 vertex is on any wall of the subgrid we desire. Add a column of 0’s

to the E and W of H ′ for a [d0 + 5, 0, 5, d3 − 5, 0]-factor of G. Add an edge between

each degree 2 vertex in H ′ and an isolated vertex to obtain a [d0, 5, 0, d3, 0]-factor of

G, as is exemplified at vertices r, s, t, u, v in Figure 4.17(c).

(a) [9, 5, 0, 21, 0]-factor of a 5×7 grid

(b) [12, 5, 0, 31, 0]-factor of a 6×8 grid

r s

t u

v

(c) [d0+5−2n, 0, 5, d3−5, 0] becomes [d0, 5, 0, d3, 0]

Figure 4.17: Factors when m ≥ n ≥ 5 and d3 ≥ 9
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4.8 Grid Factors when n = 2 or m = 2

Recall per Claim 4.2.3 that an n×m grid does not have any degree 4 factors when

n = 2 or m = 2. Hence, in this section we always assume d4 = 0 and the factors

we seek are [d0, d1, d2, d3]-factors. The main result of this section is Theorem 4.8.1,

which characterizes [d0, d1, d2, d3]-factors of a 2×m or n× 2 grid.

Theorem 4.8.1. Let G be a n×m grid where n or m is 2 and the other is at least

2. Let d0, d1, d2, d3 be non-negative integers that sum to nm. Assume d3 ≤ 2m− 4

and assume that the sequence consisting of di entries of the integer i is realizable.

Then G has a [d0, d1, d2, d3]-factor except in the following pathological cases.

1. [d0, 1, 2, 1] (Claim 4.4.2)

2. [d0, 0, d2, 0] where d2 is odd (Claim 4.3.1)

3. [d0, d1, d2, d3] where d3 ≥ 2 and d1 + d2 < 4 (Claim 4.4.1)

4. [d0, 0, 5, d3] where d3 is even (Claim 4.7.4)

5. [d0, 5, 0, d3] where d3 is odd and d3 ≥ 5 (Claim 4.7.8)

6. [0, d1, 0, d3] where d1 and d3 are odd (Claim 4.7.2)

Proof. (⇒) The Pathological cases (PC) follow from the claims listed next to each.

(⇐) This proof is constructive. Without loss of generality, we assume n = 2 and

m ≥ 2. If d3 = 0, then since we are not in pathological case 2, Theorem 4.3.2 yields

that G has a [d0, d1, d2, 0]-factor. Let G′ be a subgrid or an imperfect grid within

G. Our strategy is to find a factor H of G′ that contains d3 degree 3 vertices and a

minimal number of degree 1 and 2 vertices. Furthermore, if d1 > 0, we construct H

so that the 5th corner of G′ (if G′ is an imperfect grid) or a corner of G′ (if G′ is a

subgrid) is degree 1 in H . Then by Theorem 4.2.13, G has the desired factor.

Assume d3 = 1 and so by parity d1 is odd and at least 1. Then d1 + d2 ≥ 3

since otherwise the sequence consisting of di entries of the integer i is not realizable.
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d2 ≥ 3

d2 = 2 d1 + d2 ≥ 3 and PC 1 imply d1 ≥ 3

d2 = 1 d1 + d2 ≥ 3 and the parity of d1 imply d1 ≥ 3

d2 = 0 d1 + d2 ≥ 3 implies d1 ≥ 3. PC 6 implies d0 > 0.

Table 4.8: Theorem 4.8.1 Case: d3 = 1, d1 odd

d1 = 0, d2 even a b

c d

d1 + d2 ≥ 4 implies d2 ≥ 4. Subdivide
the edges ab and cd d2−4

2
times each.

Add d0
2
columns of degree 0 vertices.

d1 = 0, d2 odd a b

c d

d2 odd implies d0 is odd, so d0 ≥ 1. Also,
d1 + d2 ≥ 4 and the parity of d2 implies.
d2 ≥ 5. Then d2 ≥ 7 or else we are in
PC 4. Subdivide ab and cd d2−7

2
times

each. Add d0
2
columns of degree 0 vertices.

d1 = 2 d1 + d2 ≥ 4 implies d2 ≥ 2.

d1 ≥ 4

Table 4.9: Theorem 4.8.1 Case: d3 = 2, d1 even

Table 4.8 shows the desired factor H of G′. Note that each factor has a degree 1

vertex where desired.

For the rest of the proof, we will assume d3 ≥ 2. Since we are not in pathological

case 3, we assume that d1 + d2 ≥ 4 for the rest of the proof. Also, note that since

d0+ d1+ d2+ d3 = 2m and d1 and d3 have the same parity, d0 and d2 must have the

same parity. Now let d3 = 2. Then by parity d1 is even. Table 4.9 describes how to

obtain the desired factor when d1 = 0. Otherwise, Table 4.9 shows a factor with a

degree 1 vertex where desired.

Let d3 = 3. Then by parity d1 is odd and so at least 1. Table 4.10 shows the

desired factor H of G′ where the desired vertex is degree 1.
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d1 = 1 d1 + d2 ≥ 4 implies d2 ≥ 3.

d1 = 3 d1 + d2 ≥ 4 implies d2 ≥ 1.

d1 ≥ 5, d2 > 0 same as previous case

d1 = 5, d2 = 0 By PC 6, d0 > 0 so d0 ≥ 2 by parity.
d1 ≥ 7, d2 = 0 Again, d0 > 0 so d0 ≥ 2 by parity.

Table 4.10: Theorem 4.8.1 Case: d3 = 3, d1 odd

Notice that in Table 4.9 and Table 4.10 except when d1 = 5, and d2 = 0, the

given factor has the full rung property between columns 1 and 2. Also, note that

when d3 > 0, except in the case d1 = d3 = 3 and d2 = 1, the NW corner in the

factor is a degree 2 corner vertex adjacent to a degree 3 vertex.

Now let d3 ≥ 4. Note that if d3 ≥ 5, then because we are not in pathological

case 5, it is not the case that d1 = 5, and d2 = 0. If d3 is even, use Table 4.9 to

get a [d0, d1, d2, 2, 0]-factor H of a 2 × (m − d3−2
2

) grid. Because we are not in the

case that d1 = 5 and d2 = 0, H has the full rung property between columns 1 and

2. Subdivide each edge between these columns in H d3−5
2

times. Let a1 through

a d3−2

2

be the new vertices added to row 1. Let b1 through bd3−2

2

be the new vertices

added to row 2. Add the edges aibi for 1 ≤ i ≤ d3−2
2

to yield d3 − 2 additional

degree 3 vertices in H for the desired factor. If d3 is odd, use Table 4.10 to get a

[d0, d1, d2, 3, 0]-factorH of a 2×(m− d3−3
2

) grid and perform a similar procedure.

4.9 Conclusion

We remind the reader that Table 4.1 includes a summary of our results concerning

factors of grids. This table also includes the cases which remain open. Besides
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considering these open questions, future work includes characterizing factors of hy-

percubes and of grids on a torus.
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Chapter 5

Degree Sequence of Partial 2-trees

In this chapter, our goal is to characterize the degree sequences of partial 2-trees.

A tree can be formed by repeatedly adding degree 1 vertices to an isolated vertex.

A k-tree generalizes this notion. Graph Classes: A Survey [1] gives the following

definition for k-tree.

Definition 5.0.1. A k-tree is recursively defined as follows.

1. A complete graph on k vertices is a k-tree.

2. If G is a k-tree and vertices v1, . . . , vk form a k-clique in G, then the graph

obtained by adding a vertex to G and connecting it by an edge to each of

v1, . . . , vk is a k-tree.

A 1-tree is therefore a tree. We adhere to Definition 5.0.1, but it is not uncom-

mon to see alternative definitions of k-tree. Some places in literature (such as [13]

and [16]) define k-tree similarly, but replace “A complete graph on k vertices” in

Definition 5.0.1 with a “A complete graph on k + 1 vertices.” We refer to this as

alternative definition A. Note that if we add a vertex adjacent to all vertices in a

k-clique, we obtain a k+1 clique, and so the base k-tree of Definition 5.0.1 starts the

recursion one step earlier than the base k-tree of the alternative definition. Thus,

the only graph which is a k-tree by Definition 5.0.1 but not alternative definition A

is a complete graph on k vertices.
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Besides Definition 5.0.1 and alternative definition A, other definitions exist for

k-trees. For example, in [7] and [6], Duke and Winkler work towards characterizing

degree sets of k-trees, which they define as k-uniform hypergraphs that are con-

structed in a recursive style similar to 5.0.1. A degree set of a graph is the set of

elements in its degree sequence. In other words, a degree set ignores the multiplicity

of the elements in the degree sequence of a graph. If we translate the work of Duke

and Winkler into the terminology of Definition 5.0.1, then Duke and Winkler’s re-

sults show the following. In [6], they show that for every k ≥ 1, the list of sets

which are not the degree set of any k-tree is finite. More specifically, in [7], they

show that every degree set D which contains a k for k = 1, 2, 3, is the degree set of

some k-tree. For k = 4, they also show that there is exactly one set {4, 7, 9} which

is not the degree set of any k-tree.

In [1], the following is given as the definition of a partial k-tree.

Definition 5.0.2. A partial k-tree is a spanning subgraph of a k-tree.

Note that Definition 5.0.2 does not force a partial k-tree to be connected. Also,

Definition 5.0.2 implies that deleting edges from a k-tree yields a partial k-tree.

Thus, a k-tree is a partial k-tree. As a result, it immediately follows from Duke and

Winkler’s results that for every k ≥ 1, there is a finite list of sets which are not the

degree sets of any partial k-tree.

For the duration of this chapter, we concentrate specifically on degree sequences

of 2-trees and partial 2-trees, also known as series-parallel graphs. Bose, et. al.,

were able to characterize the degree sequences of 2-trees [13] and we generalize their

results to partial k-trees. These authors use the terminology attaching a vertex to

an edge to describe building 2-trees.

Definition 5.0.3. To attach a vertex v to an edge uw in a graph G means to

add a new vertex v to G and to make v adjacent to both u and w.

With this terminology, Bose, et. al., in [13] state that a 2-tree is either a K3 or is

a graph that results from repeatedly attaching vertices to edges. Hence, they define

2-trees according to alternative definition A instead of Definition 5.0.1. However, a
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single edge is not a partial 2-tree under alternative definition A because a single edge

is not a spanning subgraph of any graph with three or more vertices. Both definitions

imply that any tree on 3 or more vertices is a partial 2-tree. (See Corollary 5.1.11.)

If we accept that a single edge is a partial 2-tree, then we can more simply say that

any non-trivial tree is a partial 2-tree. Thus, we opt to adhere to Definition 5.0.1

throughout this chapter, and so we adopt the convention that a single edge is a

partial 2-tree. This convention only affects work done in Section 5.5, which is the

only section to consider partial 2-trees with degree 1 vertices.

We adopt the following notation from [13]: nk denotes the multiplicity of k in a

given sequence of integers, d(w) denotes the degree of vertex w, and a<b> denotes

the sequence < a, . . . , a > of length b. Additionally, we define an even sequence of

integers in the same manner as the authors of [13] have.

Definition 5.0.4. A sequence of integers is even if each element of the sequence

is an even integer.

The following Theorem appears as Theorem 1 in the paper of Bose, et. al [13].

We comment that using the other hypotheses, we can show that the quantity d in

condition (d) must equal n+1
2
. (See Claim 5.3.4.) Thus, specifying that d = n+1

2

would not change the correctness of Theorem 5.0.5.

Theorem 5.0.5 ([13]). Let D be a sequence of n positive integers. Then D is the

degree sequence of a 2-tree if and only if the following conditions are satisfied:

(a) The sum of D is 4n− 6,

(b) The maximum element of D is at most n− 1,

(c) The minimum element of D is 2 and n2 ≥ 2,

(d) D is not of the form < d, d, d, d, 2<n2> > where d ≥ 5,

(e) n2 ≥
n+3
3

whenever D is even.
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Moreover, if D satisfies Conditions (a)-(e) above, then given any r ∈ D where

r > 2, there exists a 2-tree whose degree sequence is D which has a vertex of degree

r adjacent to a vertex of degree 2.

Our main result is Theorem 5.6.2 which is stated below and is proven in Sec-

tion 5.6. Recall that per Definition 5.0.2, a partial k-tree need not be connected.

Theorem 5.6.2 includes connectedness results. In specific, Theorem 5.6.2 shows that

if a degree sequence D is realizable by some partial 2-tree, D is realizable as a

connected partial 2-tree unless no graph which realizes D is connected. Finally,

we point out that condition (e) of Theorem 5.6.2 is the analog of condition (d) of

Theorem 5.0.5. The proof of Theorem 5.6.2 relies on the proof of 5.0.5.

Theorem 5.6.2. Let D be a sequence of n positive integers. Then D is realizable

as a partial 2-tree if and only if the following conditions hold:

(a) The sum of D is 4n− 6− 2g where g is a non-negative integer.

(b) The maximum element of D is at most n− 1.

(c) n1 + n2 ≥ 2

(d) n2 ≥
n+3−2g

3
whenever D is even.

(e) If g = 0 then D is not of the form < n+1
2
, n+1

2
, n+1

2
, n+1

2
, 2<n−4> > where n ≥ 4.

(f) n1 ≤ g or D is the degree sequence of a star.

If the above conditions hold and the sum of the entries in D is at least 2n− 2, then

there exists a connected partial 2-tree which realizes D. If the above conditions hold

and n1 = 0, then given any r ∈ D where r > 2, there exists a connected partial

2-tree which whose degree sequence is D which has a vertex of degree r adjacent to

a vertex of degree 2. If the sum of entries in D is less than 2n− 2 and even, then

D is realizable as a forest and thus a union of partial 2-trees.

We break down the proof of Theorem 5.6.2 in the following manner. In Sec-

tion 5.1, we discuss certain properties of partial 2-trees and how to obtain new
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partial 2-trees from existing ones. In Section 5.2, we discuss the characterizations of

partial 2-trees when d1 is ‘large’. This allows us to assume d1 is small when apply-

ing induction in later theorems. In Section 5.3, we discuss the characterizations of

partial 2-trees when D is an even sequence. In Section 5.4, we discuss the character-

izations when D has no degree 1 elements regardless of whether the sequence is even

or not. In Section 5.5, we incorporate degree 1 elements. Finally, in Section 5.6, we

combine the results of the previous sections to prove Theorem 5.6.2.

5.1 Properties of Partial 2-trees

We begin by defining a minor, a concept intrinsic to the partial 2-trees graph class.

Definition 5.1.1. [1] A graph H is a minor of a graph G if H can be obtained

from G by a series of zero or more vertex deletions, edge deletions, and/or edge

contractions (i.e., replacing two adjacent vertices v and w by a vertex that is adjacent

to all neighbors of v and w).

A K4 is a complete graph on 4 vertices. Per Theorem 5.1.2, partial 2-trees are

those graphs with no K4-minor. Then clearly no graph with a K4 is a partial 2-tree.

As another example, the graph G in Figure 5.1 is not a partial 2-tree because it has

a K4-minor (but no K4). The reader can check that removing any vertex from G

yields a graph with no K4-minor, and thus, a partial 2-tree.

Figure 5.1: A graph with a K4-minor

Let G be a partial 2-tree. Then G has no K4-minor, and thus, no subgraph of G

has a K4-minor. Thus, subgraphs of partial 2-trees are again partial 2-trees. This

implies that being a partial 2-tree is not only a hereditary property, meaning every

induced subgraph is also a partial 2-tree, but even more generally, any subgraph of

a partial 2-tree is a partial 2-tree.
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In Theorem 5.1.2, we summarize the aforementioned facts about partial 2-trees

as well as additional well-known facts that are noteworthy or useful later.

Theorem 5.1.2. The following are well-known facts about partial 2-trees:

1. 2-trees are 2-connected [13].

2. Partial 2-trees are those graphs with no K4 minor. (p. 174 of [1])

3. Partial 2-trees are equivalent to series-parallel graphs. (p. 174 of [1])

4. Subgraphs of partial 2-trees are partial 2-trees.

Because a partial k-tree is defined to be a spanning subgraph of a k-tree, there

exists a set of edges which when removed from a 2-tree G yields a partial 2-tree G′.

We now define the term gap to capture how many edges must be removed from a

2-tree to obtain a partial 2-tree.

Definition 5.1.3. Let G′ be a partial k-tree and assume G′ is a spanning subgraph

of the k-tree G. The gap g of the partial k-tree G′ is a non-negative integer which

indicates the number of edges which must be removed from G in order to obtain G′.

Note that if the gap of a partial k-tree is 0, then the partial k-tree is a k-tree.

Claim 5.1.4 shows that a partial 2-tree with gap g must have degree sum 4n−6−2g.

Claim 5.1.4. The degree sum of a partial 2-tree with n vertices and gap g is 4n−

6− 2g.

Proof. Consider a partial 2-tree T with gap g. Then T is a spanning subgraph of a

2-tree G, which has degree sum 4n− 6 by Theorem 5.0.5. Since we remove g edges

from G to obtain T , T has degree sum 4n− 6− 2g.

In the upcoming proofs, we strategically form one partial 2-tree and then modify

it to obtain a second partial 2-tree. Definitions 5.1.5 through 5.1.9 are relied upon

often while performing these modifications.
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Definition 5.1.5. Consider a graph G with an alternating cycle abcd, meaning ab

and cd are edges but bc and da are non-edges. To 2-switch ab and cd is to remove

edges ab and cd and add edges bc and da.

Definition 5.1.6. To subdivide an edge xy in a graph means to replace xy with

the path xzy where z is a new vertex.

Below we define gluing vertices. In this paper, we only glue together vertices

from different components and so gluing never creates multi-edges.

Definition 5.1.7. To glue together two vertices v, w in a graph means to add an

edge between v and all neighbors of w and then to remove w from the graph.

Definition 5.1.8. A pendant of a graph is a degree 1 vertex. An ear of a graph

is a degree 2 vertex.

Definition 5.1.9. Let w be an ear with neighbors x and y. To splice an ear

means to subdivide the edge xw to create the path xaw, to subdivide the edge yw to

create the path ybw, and finally, to add the edge ab. See Figure 5.2 for the result of

splicing an ear.

w

a b

x y

Figure 5.2: The result of splicing an ear w

Theorem 5.1.10 proves that many of the modifications we rely on preserve partial

2-trees.

Theorem 5.1.10. Given a partial 2-tree G, performing any of the following proce-

dures to G yields a new partial 2-tree.

1. Deleting an edge or removing a vertex

2. Attaching a vertex to an edge
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3. Adding a pendant adjacent to any vertex

4. Subdividing an edge

5. Splicing an ear

6. Gluing together two vertices, one from G and another from a distinct partial

2-tree

Proof. Let G be a partial 2-tree. Then there exists some 2-tree G′ of which G is a

spanning subgraph.

1. Deleting an edge or removing a vertex from G yields a subgraph of G′ and so

the resulting graph is a partial 2-tree by Theorem 5.1.2.

2. Recall that attaching a vertex to a 2-tree yields a second 2-tree. Thus, attach-

ing a vertex to an edge in G yields a subgraph which spans the 2-tree that

results from attaching a vertex to the same edge in G′.

3. Consider a vertex v in G to which we wish to add a pendant. In the 2-tree G′,

v must be incident to some edge vw since every vertex in a 2-tree has degree

2 or higher. Attach a vertex to vw in G′. This yields a 2-tree which contains

as a spanning subgraph the graph G with an additional pendant adjacent to

v.

4. It is well known that subdividing an edge in a series-parallel graph yields

another series-parallel graph, so by Theorem 5.1.2, subdividing an edge in a

partial 2-tree yields a partial 2-tree.

5. To splice an ear w with neighbors x and y, first subdivide the edge xw into xaw.

Rename w to b and then attach a vertex w to the edge ab. These procedures

preserve partial 2-trees and so the resulting graph is a partial 2-tree.

6. Gluing together vertices from distinct partial 2-trees cannot create a K4 minor

where one did not previously exist. So by Theorem 5.1.2, gluing together two

vertices, each from a distinct partial 2-tree, yields a new partial 2-tree.
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Because adding pendants preserves partial 2-trees, Corollary 5.1.11 follows im-

mediately from Theorem 5.1.10.

Corollary 5.1.11. A tree with at least two vertices is a partial 2-tree.

Claim 5.3 is helpful in Section 5.5. See Figure 5.3 to clarify the details of the

claim.

Claim 5.1.12. Let G be a connected partial 2-tree with an edge ab on a cycle. Let

G′ be a second connected partial 2-tree with an edge vz where v is a pendant. Then

2-switching ab and vz in G∪G′ yields a connected partial 2-tree with the same degree

sequence as G ∪G′.

b

a

G G′

z

v

Figure 5.3: Details of Claim 5.3

Proof. It is clear that 2-switching ab and vz in G∪G′ yields a connected graph with

the same degree sequence as G ∪ G′. To show that the resulting graph is indeed

a partial 2-tree, note that 2-switching ab and vz is equivalent to performing the

following procedures. Glue together the vertices b and v. Delete the edge ab. Add

a pendant adjacent to a. Since all of these procedures preserve partial 2-trees by

Theorem 5.1.10, the resulting graph is indeed a partial 2-tree.
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5.2 Partial 2-Tree Degree Sequences When d1 Is

Large

When the maximum element in the degree sequence D of a partial 2-tree is close

to n − 1, we can obtain a realization of D by creating a forest F and then adding

a vertex v adjacent to most of F . This is the re-occurring strategy in this section.

Claim 5.2.1 shows that adding a vertex adjacent to all vertices in a forest yields a

partial 2-tree.

Claim 5.2.1. Given a forest G, adding a vertex v to G and all edges between v

and G yields a connected partial 2-tree H. Furthermore, if G is a tree, then H is a

2-tree.

Proof. We first show that adding a vertex adjacent to all vertices in a tree is a 2-tree.

This is a well-known fact but we prove it here for completeness. If n = 1, then G

is an isolated vertex. Adding a vertex adjacent to this vertex yields an edge, which

is a 2-tree by Definition 5.0.1. For the inductive hypothesis, assume that adding

a vertex adjacent to all vertices in a tree with n vertices yields a 2-tree. Consider

any leaf v and it’s neighbor w in a tree G with n + 1 vertices. Remove v to obtain

the tree T\{v}. Add a vertex y adjacent to all vertices in the tree T\{v}. The

resulting graph is a 2-tree by induction. Now attach the vertex v to the edge wy.

The resulting graph is still a 2-tree. Also the resulting graph is simply the graph

obtained by adding a vertex adjacent to all vertices in G.

Now we show the claim holds true for a forest G. Add a set of edges E ′ to

G to obtain G′, a tree. By the claim in the previous paragraph, adding a vertex

adjacent to all vertices in G′ is a 2-tree H . Delete the edges E ′ from H to obtain

G′, a subgraph of H and so a partial 2-tree. G′ is precisely the forest G with an

additional vertex adjacent to all vertices in G.

Corollary 5.2.2. A cycle on n ≥ 3 vertices is a partial 2-tree.

Proof. Consider a path P = v1 . . . vn−1 on at least two vertices. By Claim 5.2.1,

adding all edges between a new vertex vn and P yields a 2-tree G. Delete all edges
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incident to vn except v1vn and vn−1vn, thus yielding a partial 2-tree by Theorem

5.1.10. Note that this partial 2-tree is simply a cycle.

Claim 5.2.3 obtains a partial 2-tree realization of a sequence of integers D whose

largest element is exactly n − 1 by using the following strategy. First we create a

forest and then we add a vertex adjacent to all the vertices in the forest. Note that

the hypotheses of Claim 5.2.3 require that all elements of D are at least 2. This is

because our strategy can fail if D contains a 1.

Claim 5.2.3. Let D be a sequence of integers d1 ≥ d2 ≥ . . . ≥ dn ≥ 2. Assume

that d1 = n− 1 and
∑

di = 4n− 6− 2g where g is a non-negative integer. Then D

is the degree sequence of a connected partial 2-tree. Moreover, if di and dj, i 6= j,

are not both 2, then there exists a connected partial 2-tree with degree sequence D

which has a vertex of degree di is adjacent to a vertex of degree dj.

Proof. Remove d1 and subtract 1 from d2 through dn, thus decreasing the sum of D

by n−1−d1 = 2(n−1). Call the new sequence D′. Then D′ has n′ = n−1 nonzero

elements because dn ≥ 2. D′ has even sum since D does. Below we show that the

sum of D′ is at most 2n′ − 2 and thus is realizable as a forest by Claim 1.0.2.

n
∑

i=2

(di − 1) = 4n− 6− 2g − 2(n− 1) = 2n− 4− 2g ≤ 2(n− 1)− 2 = 2n′ − 2

Thus, D′ is realizable as a forest. Given di and dj , i 6= j, not both 2, we see that

di−1 and dj−1 are not both 1. Thus, by Claim 1.0.2, there exists a realization of D′

with a vertex v of degree di−1 adjacent to a vertex w of degree dj−1. Add a vertex

adjacent to each vertex in G. This is a connected partial 2-tree by Claim 5.2.1, and

also, v and w are adjacent with degrees di and dj.

As mentioned prior to Claim 5.2.3, the strategy employed by Claim 5.2.3 can

fail if a sequence of integers D includes a 1. For example, consider the sequence

D =< 7, 5, 3, 3, 3, 3, 1, 1 >, which has n = 8 elements and maximum element equal
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to n− 1. In any graph whose degree sequence is D, the vertex of degree 7 must be

adjacent to all other vertices. Removing the vertex of degree 7, the resulting graph

has degree sequence < 4, 2, 2, 2, 2, 0, 0 >. If we tried to use the strategy of Claim

5.2.3, we would need to create a forest F with degree sequence < 4, 2, 2, 2, 2, 0, 0 >

and then add a vertex adjacent to every vertex in F to obtain a partial 2-tree

realization of D. However, < 4, 2, 2, 2, 2, 0, 0 > has too large of a sum to be the

degree sequence of a forest by Claim 1.0.1. However, if we assume that n1 ≤ g,

this issue can be prevented. The necessity of condition n1 ≤ g is explained in more

detail in Section 5.5 where we characterize degree sequences of partial 2-trees with

at least one vertex of degree 1 and where we use Corollary 5.2.4 below.

Corollary 5.2.4. Let D be a sequence of integers d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 with

sum 4n−6−2g where g is a non-negative integer. Also assume that d1 = n−1 and

n1 + n2 ≥ 2. If n1 ≤ g and n ≥ 4, then D is realizable as a connected partial 2-tree.

Proof. If d2 > n − 1 − n1, then below we show that 4n − 6 − 2g > 4n − 6 − 2n1.

Rearranging this inequality, we obtain n1 > g, a contradiction.

4n− 6− 2g =

n
∑

i=1

di ≥ d1 + d2 + 2(n− n1 − 2) + n1

> (n− 1) + (n− 1− n1) + 2(n− n1 − 2) + n1

= 4n− 6− 2n1

Hence, d2 ≤ n − 1 − n1. Remove the n1 1’s from D and replace d1 = n − 1

with n− 1− n1. Since d2 ≤ n− 1− n1, n− 1− n1 is the maximum element in the

resulting sequence D′. Also, D′ has n− n1 elements, the smallest of which is 2, and

has sum exactly 4(n − n1) − 6 − 2(g − n1). Then by Claim 5.2.3, D′ is realizable

as a connected partial 2-tree G′. Add n1 pendants adjacent to a vertex of degree

n− 1− n1 in G′ to obtain G, a realization of D. Adding pendants preserves partial

2-trees by Theorem 5.1.10 and so G is a connected partial 2-tree.
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2-trees must have at least two vertices of degree 2. Therefore, a partial 2-tree

must have at least two vertices of degree at most 2, i.e., n1 + n2 ≥ 2. For example,

< 5, 3, 3, 3, 3, 3 > cannot be realizable as a partial 2-tree. The hypothesis that

d1 = n− 1 of Claim 5.2.3 together with the other hypotheses of Claim 5.2.3 imply

that n2 ≥ 2. Therefore, even though n2 ≥ 2 is not included as a hypothesis in

Claim 5.2.3, this property does indeed hold. In the following claim, however, we

relax the hypothesis that d1 = n − 1, and in doing so, we introduce the possibility

that n2 < 2. As a result, the following claim must include the hypothesis that

n2 ≥ 2 in D.

Theorem 5.2.5. Let D be a sequence of integers d1 ≥ d2 . . . ≥ dn ≥ 2 with
∑

di = 4n − 6 − 2g where g is a non-negative integer. If n − 1 − g ≤ d1 ≤ n − 1

and n2 ≥ 2, then D is realizable as a connected partial 2-tree. Moreover, if di and

dj, i 6= j, are not both 2, then there exists a connected partial 2-tree with degree

sequence D which has a vertex of degree di adjacent to a vertex of degree dj.

Proof. We first show that if n2 = 2, then g = 0. If n2 = 2 then all other di are at

least 3. Below we show that this fact and the hypotheses imply that g = 0 as when

n2 = 2, as desired.

4n− 6− 2g =

n
∑

i=1

di ≥ (n− 1− g) + 3(n− 3) + 2 + 2 = 4n− 6− g

=⇒ 4n− 6− 2g ≥ 4n− 6− g =⇒ g = 0

We now proceed to prove the theorem by induction on g. If g = 0, then d1 = n−1

and Claim 5.2.3 yields the desired result. For the inductive hypothesis, assume the

claim is true for a sequence D with sum 4n− 6− 2(g − 1) where g > 0. Consider a

sequence D with sum 4n− 6− 2g. If d1 = n− 1, then Claim 5.2.3 again yields the

desired result so assume n− 1− g ≤ d1 ≤ n− 2. Since g > 0, we know that n2 > 2

because at the start of this proof we showed that if n2 = 2, then g = 0. Remove a

2 from D to get D′, a sequence with n′ = n− 1 elements, whose maximum element

is d1 ≤ n′ − 1, and whose smallest two elements are both 2. Also, let g′ = g − 1
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and notice that the sum of D′ is 4n − 6 − 2g − 2 = 4n′ − 6 − 2g′. Furthermore,

d1 ≥ n − 1 − g = n′ − 1 − g′. Then by induction, D′ is realizable as a connected

partial 2-tree and there exists a connected realization G′ where a vertex v of degree

di is adjacent to a vertex w of degree dj when i 6= j and when both di and dj are not

both 2. Finally, let xy be any edge in G′ except vw. Subdivide xy and the resulting

graph has degree sequence D, is connected, has vertices of degree di and dj which

are adjacent, and is still a partial 2-tree by Theorem 5.1.10.

5.3 Partial 2-Trees with Even Degree Sequences

The main result of this section is Theorem 5.3.7 which characterizes the degree

sequences of partial 2-trees with even degree sequences. Condition (e) of Theo-

rem 5.0.5 shows that even degree sequences of 2-trees require a lower bound on n2.

As with 2-trees, even degree sequences of partial 2-trees require a lower bound on

n2. The next theorem proves the necessity of this bound.

Theorem 5.3.1. Let D be the degree sequence d1 ≥ d2 ≥ . . . ≥ dn ≥ 2 of a

partial 2-tree. If D is even, then n2 ≥
n+3−2g

3
.

Proof. We proceed by induction on g, the gap of any partial 2-tree realizing D. If

g = 0, then condition (e) of Theorem 5.0.5 indicates that n2 ≥ n+3
3
, as desired.

Assume the claim holds for D with degree sum 4n − 6 − 2(g − 1), where g ≥ 1.

Consider D with degree sum 4n− 6− 2g.

Let G be any partial 2-tree realization of D. Because g ≥ 1, G has gap at least

one and so there exists some edge xy which we can add to G and the result is still a

partial 2-tree. Now add an ear adjacent to this edge. Thus, we increased the degrees

of both x and y by 2 and so all degrees remain even. Therefore, the resulting graph

G′ is a partial 2-tree which realizes an even degree sequence D′ with n′ = n + 1

vertices and with gap g′ = g − 1. Both, neither, or exactly one of x or y might be

degree 2 vertices in G, but in any case, due to the additional ear and edge xy, G′

has at most n′
2 ≤ n2 + 1 degree 2 vertices. By induction, n′

2 ≥ n′+3−2g′

3
. Below we

show that this implies n2 ≥
n+3−2g

3
.
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n2 ≥ n′
2 − 1 ≥

n′ + 3− 2g′

3
− 1 =

n+ 6− 2g

3
− 1 =

n+ 3− 2g

3

When a sequence consists of only 2’s and 4’s, the condition n2 ≥ n+3−2g
3

is

equivalent to n2 ≥
n+9
5

as shown in Claim 5.3.2.

Claim 5.3.2. Let D be a sequence of n integers where D =< 4<n−n2>, 2<n2> >.

Assume D has sum 4n−6−2g where g is a non-negative integer. Then n2 ≥
n+3−2g

3

if and only if n2 ≥
n+9
5
.

Proof. Since n = n2 + n4, we see that 4n − 6 − 2g = 4(n4 + n2) − 6 − 2g. Since

D consists of only 4’s and 2’s, D also must sum to 4n4 + 2n2. Thus, 4n4 + 2n2 =

4(n4 + n2) − 6 − 2g. Solving for g, we see that g = n2 − 3. Then n2 ≥ n+3−2g
3

=
n+3−2n2+6

3
= n+9

3
− 2n2

3
⇐⇒ 5n2

3
= n+9

3
⇐⇒ n2 ≥

n+9
5
.

Theorem 5.3.3 proves that when a sequence D consists only of 2’s and 4’s, the

bound n2 ≥
n+9
5

is sufficient for knowing that there exists some partial 2-tree with

degree sequence D. Therefore, the equivalent bound n2 ≥ n+3−2g
3

from Theorem

5.3.1 is tight. Theorem 5.3.3 is helpful in the proof of Theorem 5.3.7.

Theorem 5.3.3. Consider a sequence D of the form < 4<n4>, 2<n2> > where n4 ≥

1. Let n = n2 + n4. Then D is realizable as a partial 2-tree if and only if n ≥ 5 and

n2 ≥ n+9
5
. Moreover, if these conditions hold, then there exists a connected partial

2-tree with degree sequence D which has a degree 4 vertex is adjacent to a degree 2

vertex.

Proof. (⇒) If D is realizable as a partial 2-tree G, then the maximum degree in

G is d1 = 4 since n4 ≥ 1. Since d1 ≤ n − 1 is necessary for realizability, we see

that n ≥ 5. Also, Theorem 5.3.1 shows that n2 ≥
n+3−2g

3
, which by Claim 5.3.2, is

equivalent to n+9
5
. Finally, given any realization of D, let U be a component with

a degree 4 vertex in the realization. U is a partial 2-tree and thus has at least two

degree 2 vertices. Because U is connected, one of these degree 2 vertices must be

adjacent to a degree 4 vertex.
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(⇐) We point out that because n = n2+n4,the hypothesis
n+9
5

≤ n2 is equivalent to
n4+9
4

≤ n2. We proceed to show by induction on n2 that if n ≥ 5 and n4+9
4

≤ n2, a

sequence D of the form < 4<n4>, 2<n2> > where n4 ≥ 1 is realizable as a connected

partial 2-tree. Since n4 ≥ 1 and n2 ≥
n4+9
4

, we see that n2 ≥ 3.

If n2 = 3, then n ≥ 5 and n4+9
4

≤ n2 force that D is either < 4, 4, 2, 2, 2 > or

< 4, 4, 4, 2, 2, 2 >, both of which are realizable as 2-trees as shown in Figure 5.4.

4, 4, 2, 2, 2 4, 4, 4, 2, 2, 2

Figure 5.4: Base case of Theorem 5.3.3 when n2 = 3

If n2 = 4 then the bounds n ≥ 5 and n4+9
4

≤ n2 force that n4 ≤ 7. For n4 = 2 or

3, consider the realization of < 4, 4, 2, 2, 2 > or < 4, 4, 4, 2, 2, 2 > shown in Figure 5.4.

Repeatedly subdivide an edge in this realization so as to introduce the appropriate

number of degree 2 vertices required for a realization of D. This realization is a

partial 2-tree since subdividing an edge of a partial 2-tree yields another partial

2-tree by Theorem 5.1.10. For n4 = 1, 4, 5, 6 or 7, Figure 5.5 shows a partial 2-tree

realization of D. Notice that in each of these figures, two 2-trees are glued together

at a vertex. Theorem 5.1.10 shows that gluing vertices preserves partial 2-trees.

For our inductive hypothesis, we assume that if n4+9
4

≤ n2 − 1 and n2 ≥ 5,

then < 4<n4>, 2<n2−1> > is realizable as a connected partial 2-tree. Consider the

sequence < 4<n4>, 2<n2> >.

If n4 ≤ 4, then let n′
2 = 4 and n′

4 = n4. The base cases show a partial 2-

tree realization for < 4<n′

4>, 2<n′

2> >. Repeatedly subdivide any edge xy in this

realization in order to replace xy with a path with n2 − 4 internal vertices. By

Theorem 5.1.10, this yields a partial 2-tree realization of < 4<n4>, 2<n2> >.

Otherwise, n4 ≥ 5. Let n′
2 = n2 − 1 and n′

4 = n4 − 4. Then n′
2 ≥ 4 and the fact

that n4+9
4

≤ n2 implies that
n′

4
+9

4
≤ n′

2. By induction, < 4<n′

4>, 2<n′

2> > is realized

by some connected partial 2-tree G′. Let v be any degree 2 vertex in G′. Glue v to

an ear w in the partial 2-tree H shown in Figure 5.6 to obtain a graph G which is a
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4, 2, 2, 2, 2

4, 4, 4, 4, 2, 2, 2, 2 4, 4, 4, 4, 4, 2, 2, 2, 2

4, 4, 4, 4, 4, 4, 2, 2, 2, 2 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2

Figure 5.5: Base case of Theorem 5.3.3 when n2 = 4

partial 2-tree by Theorem 5.1.10. Because v becomes a degree 4 vertex in G, G is a

partial 2-tree consisting of four more degree 4 vertices than G′ and one more degree

2 vertex. Thus, G is a connected partial 2-tree realization of < 4<n4>, 2<n2> >.

v w

HG′

Figure 5.6: Inductive step of Theorem 5.3.3

Claim 5.3.4 to Claim 5.3.6 simplify the proof of Theorem 5.3.7 and the proofs of

theorems in future sections.

Claim 5.3.4. Let D be the sequence of n integers < d, d, d, d, 2<n2> > where d ≥ 5.

Assume D has sum 4n − 6 − 2g where g is a non-negative integer. If g = 0, then

D is not realizable as a partial 2-tree and thus not as a 2-tree. If g > 0, then D is

realizable as a connected partial 2-tree. Moreover, there exists a connected partial
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2-tree with degree sequence D which has a vertex of degree d adjacent to a vertex of

degree 2.

Proof. Note that n = n2 + 4. Because the sum of D is 4n − 6 − 2g as well as

4d+2n2 = 4d+2(n− 4), we see that 4n− 6− 2g = 4d+2(n− 4) and so d = n+1−g

2
.

If g = 0, then the claim holds by Theorem 5.0.5. Assume g > 0. It is helpful to

note that n2 ≥ 2d− 4, which we show now. The hypotheses imply that D has sum

4d+2n2 = 4n−6−2g = 4(n2+4)−6−2g. Solving for n2, we see that n2 = 2d+g−5.

However, since g > 0, we see that n2 ≥ 2d− 4, as desired.

Since n2 ≥ 2d− 4, the connected graph shown in Figure 5.7 realizes D. Further-

more, the graph in Figure 5.7 is indeed a partial 2-tree because it can be constructed

in the following method. Create a cycle abcd on 4 vertices, which is a partial 2-tree

by Corollary 5.2.2. The graph in Figure 5.7 can be constructed from abcd by at-

taching d − 2 vertices to edge ab, attaching another d − 2 vertices to edge cd, and

subdividing edge bc so that it becomes a path with n2 − (2d− 4) internal vertices.

After doing so, vertices a, b, c, d of the original cycle become the degree d vertices

that are shown in Figure 5.7. By Theorem 5.1.10, these operations preserve partial

2-trees and so the graph in Figure 5.7 is indeed a partial 2-tree.

d

d

d

d

}

}

}

d− 2

d− 2

n2 − (2d− 4)

Figure 5.7: Partial 2-tree realization of < d, d, d, d, 2<n2> > when d = n+1
2 ≥ 5 and

g > 0

Claim 5.3.5. Let D be a sequence of integers d1 ≥ d2 . . . ≥ dn ≥ 2 such that
∑

di = 4n−6−2g where g = 1, d1 = n−3, and n ≥ 7. If D is even and n2 ≥
n+3−2g

3
,

167



then D is realizable as a connected partial 2-tree. Moreover, if r > 2 and r ∈ D,

then there exists a connected partial 2-tree with degree sequence D which has a vertex

of degree r adjacent to to a vertex of degree 2.

Proof. Since n ≥ 7 and g = 1, the assumption that n2 ≥
n+3−2g

3
implies that n2 ≥ 3.

Create a new integer sequence D′ with n elements as follows. Add 1 to d1 and replace

a 2 in D with a 3. D′ has sum 4n − 6 − 2g + 2 = 4n − 6 and so has gap 0. We

now show that all hypotheses of Theorem 5.0.5 hold now. The new multiplicity of

2 in D′ is n2 − 1 ≥ 2. Since d1 = n − 3 the maximum element in D′ is n − 2.

Furthermore, since D′ includes a 3, D′ cannot be even and D′ cannot be of the form

< d, d, d, d, 2<n2> > where d ≥ 5. By Theorem 5.0.5, D′ is realizable as a 2-tree.

Consider r ∈ D where 2 < r < n− 3. Then r ∈ D′ and Theorem 5.0.5 also implies

that there exists a 2-tree realization of D′ in which a vertex s of degree r is adjacent

to a vertex t of degree 2. Let G′ be this realization of D′. Recall that 2-trees are

2-connected (see Theorem 5.1.2) and so G′ is connected.

Our strategy is to argue that the unique vertex v of degree d1 = n− 2 must be

adjacent to the unique vertex w of degree 3 in G′. Then we can delete the edge vw

to obtain a realization of D. Assume that v and w are not adjacent. Then w has

neighbors a, b, c, and moreover, v is adjacent to all vertices but w. If there exists a

path P between a and b that does not go through v and w, then the cycle wavbw,

the path P , and the path wcv yields a K4 minor, thus contradicting Theorem 5.1.2.

For the same reason, all paths between any two of a, b, or c must go through v and

w. Thus, G − {v, w} has components Ua, Ub, Uc, which contain a, b, c, respectively.

Furthermore, if G − {v, w} has any other components, then v is a cut vertex in

G. Since Theorem 5.1.2 states that a 2-tree is 2-connected, this is a contradiction.

Thus, Ua, Ub, Uc are the only components of G− {v, w}. See Figure 5.8.

Remove w and consider the resulting subgraph H of G, which is partial 2-tree

by Theorem 5.1.2. The vertex v is a cut vertex in H . The degree sum of H is

4n− 6− 6 = 4(n− 1)− 6− 2 and so H has gap 1. Thus, there is some edge e which

when added to H yields a 2-tree H ′. However, e is an edge between at most two of

Ua, Ub, and Uc. Thus, v is still a cut vertex in H ′. This contradicts Theorem 5.1.2
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d(v) = n− 2

d(w) = 3

ba c

Ua Ub Uc

Figure 5.8: Components Ua, Ub, Uc

which states that a 2-tree is 2-connected.

We now know that v is adjacent to w in G′. Delete vw to yield a realization

G of D. Deleting edges preserves partial 2-trees. We argue now that deleting vw

cannot disconnect the graph. After deleting vw, every vertex except two are still

adjacent to v since d(v) = n− 3 in G. Because all vertices have degree at least 2 by

hypothesis, these two vertices each must be adjacent to at least one neighbor of v.

Hence, there is a path between any vertex and v and so G′ is connected.

Recall that G′ has a vertex s with degree 2 < r < n− 3 where r ∈ D is adjacent

to a vertex t of degree 2. Since v has degree n − 3, s 6= v. Also, since 3 is not a

degree in D, s 6= w. Thus, the edge st is distinct from vw and the degrees of s and

t do not change when vw is deleted. Hence, s and t are still adjacent and so G still

has a vertex of degree 2 < r < n − 3 adjacent to a vertex of degree 2, as desired.

Finally, note that v must be adjacent to a degree 2 vertex in G since d1 = n−3 and

n2 ≥ 3. Hence, there is also a vertex of degree n − 3 adjacent to a degree 2 vertex

in G. We have just shown that G is a connected partial 2-tree realization of D in

which a vertex of degree r ∈ D where r > 2 is adjacent to a vertex of degree 2.

Claim 5.3.6. Let D be a sequence of n positive integers with sum 4n−6−2g where

g is a non-negative integer. Then the following inequalities hold.
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1. 3n1 + 2n2 + n3 ≥ 6 + 2g

2. If n1 = 0 and g > 0, then 2n2 + n3 ≥ 8.

3. If D is even, then 2n2 ≥ g + 3 + n− n4.

Proof. Note that n = n1 + n2 + n3 + n4 +
∑

k≥5 nk. Then we see that:

4n− 6− 2g =
∑

di = n1 + 2n2 + 3n3 + 4n4 +
∑

k≥5

knk =⇒

4(n1 + n2 + n3 + n4 +
∑

k≥5

nk)− 6− 2g = n1 + 2n2 + 3n3 + 4n4 +
∑

k≥5

knk =⇒

3n1 + 2n2 + n3 = 6 + 2g +
∑

k≥5

(k − 4)nk

Thus, 3n1+2n2+n3 = 6+2g+
∑

k≥5(k−4)nk. This implies 3n1+2n2+n3 ≥ 6+2g.

So if n1 = 0 and g > 0, it immediately follows that 2n2 + n3 ≥ 8. If D is even, then

nk = 0 when k is odd. So if D is even, 3n1 + 2n2 + n3 = 6 + 2g +
∑

k≥5(k − 4)nk

implies 2n2 = 6+ 2g +
∑

k≥6(k − 4)nk, or equivalently, n2 = 3+ g +
∑

k≥6
(k−4)(nk)

2
.

The following string of inequalities uses the fact that k−4
2

≥ 1 when k ≥ 6 to show

that n2 ≥ 3 + g + n− n2 − n4, as desired.

n2 = 3 + g +
∑

k≥6

(k − 4)(nk)

2
≥ 3 + g +

∑

k≥6

nk = 3 + g + n− n2 − n4

We now have the tools to prove the main result of this section.

Theorem 5.3.7. Let D be the sequence of integers d1 ≥ d2 ≥ . . . ≥ dn ≥ 2

with sum 4n− 6 − 2g where g is a non-negative integer. Assume D is even. Then

D is realizable as a partial 2-tree if and only if the following conditions hold:

1. d1 ≤ n− 1

2. n2 ≥
n+3−2g

3
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3. If g = 0, then D is not of the form < d, d, d, d, 2<n2> > where d = n+1
2

≥ 5.

Furthermore, if the above conditions hold, then D is realizable as a connected partial

2-tree. Moreover, if the above conditions hold and r ∈ D where r > 2, then there

exists a connected partial 2-tree with degree sequence D which has a vertex of degree

r adjacent to a vertex of degree 2.

Proof. (⇒) This direction is clear by Theorem 5.0.5 and Theorem 5.3.1.

(⇐) We proceed by induction on n. We take care to show that at each step of

the induction, D is realizable as a connected partial 2-tree. The base cases are

3 ≤ n ≤ 6. The integer sequences that fit the hypotheses are shown below.

< 2, 2, 2 > < 2, 2, 2, 2 > < 2, 2, 2, 2, 2 > < 2, 2, 2, 2, 2, 2 >

< 4, 2, 2, 2, 2 > < 4, 4, 2, 2, 2 > < 4, 2, 2, 2, 2, 2 > < 4, 4, 2, 2, 2, 2 >

If the sequence consists only of 2’s, then a cycle of size n is a partial 2-tree (by

Corollary 5.2.2) which realizes the sequence. Otherwise, the sequence consists of 4’s

and 2’s, in which case, Theorem 5.3.3 indicates that the sequence is realizable as

a connected partial 2-tree and that there exists a connected realization in which a

degree 4 vertex is adjacent to a degree 2 vertex.

Assume that when n ≥ 7 and the hypotheses of the theorem hold, an even

sequence D with n − 1 positive integers is realizable as a connected partial 2-tree,

and additionally, for r ∈ D where r > 2, there exists a connected partial 2-tree with

degree sequence D which has a vertex of degree r adjacent to a vertex of degree 2.

Let D be an even sequence of n integers with sum 4n − 6 − 2g, where d1 ≤ n − 1

and n2 ≥
n+3−2g

3
.

If g = 0, then the claim holds for D by Theorem 5.0.5. We therefore assume

that g > 0. If D is a sequence such that d1 ≥ n − 1 − g, then the desired claim

holds for D by Theorem 5.2.5. We therefore also assume that d1 < n− 1− g. Since

g > 0, d1 < n− 1− g implies d1 < n− 2.

Case: n4 ≥ 2
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If d1 = 4, then the desired claim holds by Theorem 5.3.3. Thus, assume d1 > 4.

Let r > 4 be an arbitrary element in D. Remove two 4’s and one 2 from D

and replace r with r− 2. This decreases the sum of D by 12, and since r > 4,

the resulting sequence which we call D′ has exactly one less 2. Then D′ is

an even sequence with n′ = n − 3 elements, with a multiplicity of 2 equal to

n′
2 = n2− 1, and with sum 4n− 6− 2g− 12 = 4n′− 6− 2g. Hence, D′ has gap

g′ = g. We now show that n′
2 ≥

n′+3−2g′

3
. By hypothesis, n2 ≥

n+3−2g
3

. Thus,

n′
2 = n2 − 1 ≥ n+3−2g

3
− 1 = n′+3−2g′

3
.

We let d′1 be the maximum element in D′. Then d′1 ≤ d1. (Note that if d
′
1 < d1,

then r = d1.) In order to apply the inductive hypothesis, we must show d′1 to

be at most n′ − 1 = n− 4.

So if d′1 ≤ n−4, then by induction, the claim holds and there exists a connected

partial 2-tree G′ of D′ in which a vertex v of degree r − 2 is adjacent to a

vertex w of degree 2. Add an ear z to the edge vw and then proceed to add

an ear u to the edge vz and another ear to the edge wz. See Figure 5.9.

By Theorem 5.1.10, adding ears to edges preserves partial 2-trees, and so the

resulting graph G is still a partial 2-tree. Furthermore, v becomes a degree r

vertex in G, w becomes a degree 4 vertex in G, and z is an additional degree 4

vertex in G. Thus, G is a connected realization of D in which a degree r > 4

vertex is adjacent to a degree 2 vertex. Finally, G is also a realization in which

a degree 4 vertex, namely z, is adjacent to a degree 2 vertex, namely u.

d(w) = 2d(v) = r − 2

(a) G′

d(w) = 4

z

u

d(v) = r

(b) G

Figure 5.9: Insert < 4, 4, 2 > and increase r to r − 2

Now assume d′1 ≥ n − 3. Prior to this case, we assumed that d1 < n − 2, or
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equivalently, d1 ≤ n − 3. Then n − 3 ≤ d′1 ≤ d1 ≤ n − 3 and so d1 = n − 3.

Also prior to this case, we assumed that n ≥ 7, g > 0, and d1 < n − 1 − g.

Since d1 = n − 3, we see that n − 3 < n − 1 − g and so g < 2. Then g = 1

since g > 0. Because g = 1, d1 = n− 3, and n ≥ 7, the claim holds for D by

Claim 5.3.5.

Case: n4 ≤ 1

Recall that prior to any cases, we assumed that d1 < n − 2. Let D′ be the

same sequence as D but with one less 2. Thus, D′ is an even sequence with

n′ = n − 1 elements, with a multiplicity of 2 equal to n′
2 = n2 − 1 with sum

4n− 6− 2g − 2 = 4n′ − 6− 2(g − 1). Hence, D′ has gap g′ = g − 1. Also, the

maximum element in D′ is d′1 = d1 < n− 2. Thus, d′1 < n′ − 1. Now, if g′ = 0

and D′ is of the form < d, d, d, d, 2<n2> > where d ≥ 5, then the desired claim

holds for the original sequence D by Claim 5.3.4. Thus, we may assume it is

not the case that g′ = 0 and D′ is of the form < d, d, d, d, 2<n2> > where d ≥ 5.

In order to apply the inductive hypothesis, we need only show n′
2 ≥

n′+3−2g′

3
.

Below, we first show an auxiliary inequality, namely, 2n2 > n+ 1.

2n2 ≥ g + 3 + n− n4 by Claim 5.3.6

≥ g + 3 + n− 1 since n4 ≤ 1

> n+ 1

Since 2n2 > n+1, subtracting 2 from both sides yields that 2(n2−1) ≥ n−1,

and thus, 2n′
2 ≥ n′. Then n′

2 ≥ n′

2
. But n′

2
≥ n′+3

3
as long as n′ ≥ 6, which

holds since n ≥ 7. Thus, we can apply induction, and so D′ is realizable as

a connected partial 2-tree and there exists a connected realization G′ with a

vertex of degree r ≥ 4 adjacent to a vertex of degree 2. Subdivide any edge

xy in G′ to obtain the desired realization of D. Subdividing edges preserves

partial 2-trees by Theorem 5.1.10.
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5.4 Degree Sequences of Partial 2-Trees When

dn = 2

Theorem 5.4.1 generalizes Theorem 5.3.7 and characterizes all partial 2-tree degree

sequences (even or not) with no degree 1 vertices.

Theorem 5.4.1. Let D be the sequence of integers d1 ≥ d2 ≥ . . . ≥ dn > 0

with dn ≥ 2. Let D have sum 4n− 6 − 2g where g is a non-negative integer. Then

D is realizable as a partial 2-tree if and only if the following conditions hold:

1. n2 ≥ 2

2. d1 ≤ n− 1

3. If D is even, then n2 ≥
n+3−2g

3
.

4. If g = 0, then D is not of the form < d, d, d, d, 2<n2> > where d ≥ 5.

Furthermore, if the above conditions hold, then D is realizable as a connected partial

2-tree. Moreover, if the above conditions hold and r ∈ D where r > 2, then there

exists a connected partial 2-tree with degree sequence D which has a vertex of degree

r is adjacent to to a vertex of degree 2.

Proof. (⇒) By hypothesis, all elements in D are at least 2. Since a partial 2-tree

is a subgraph of a 2-tree and any 2-tree has at least 2 ears, n2 must be at least

2. Furthermore, in any graphical sequence, d1 ≤ n − 1. Condition (3) holds by

Theorem 5.3.7. Condition (4) holds by Theorem 5.0.5.

(⇒) We proceed by induction on n. We take care to show that at each step of the

induction, D is realizable as a connected partial 2-tree. If n = 3 or 4, the only integer

sequences that fit the hypotheses are < 2, 2, 2 >, < 3, 3, 2, 2 >, and < 4, 2, 2, 2 >.

The reader can verify that all are uniquely realizable as connected partial 2-trees
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and that in these realizations, any vertex with degree higher than 2 is adjacent to a

degree 2 vertex.

For the inductive hypothesis, assume that if n ≥ 5 and if the hypotheses of the

theorem hold, a sequence D with n− 1 positive integers is realizable as a connected

partial 2-tree, and additionally, for r ∈ D where r > 2, there exists a connected

partial 2-tree with degree sequence D which has a vertex of degree r adjacent to a

vertex of degree 2.

Now consider an integer sequence D of n elements which satisfies the hypothe-

ses. If D is even, then Theorem 5.3.7 yields the desired claim. If g = 0, then

Theorem 5.0.5 yields the desired claim. If d1 ≥ n − 1 − g, then Theorem 5.2.5

yields the desired claim. Thus, assume that D is not even, that g > 0, and that

d1 < n− 1− g. The assumptions g > 0 and d1 < n− 1− g imply that d1 ≤ n− 3.

We first observe that either n2 or n3 must be at least 3. Otherwise, 2n2+n3 < 8.

This contradicts Claim 5.3.6 which indicates that 2n2 + n3 ≥ 8.

If n3 ≥ 3, remove two 3’s from D thus decreasing the sum of D by 6 and call

the resulting sequence D′. Then D′ is a sequence n′ = n− 2 elements, has has sum

4n − 6 − 2g − 6 = 4n′ − 6 − 2(g − 1), and so has gap g − 1. D′ has maximum

element d1 ≤ n− 3 = n′ − 1 and the multiplicity of 2 in D′ is n2 ≥ 2. Since D′ still

has at least one 3, D′ is not even and is not of the form < d, d, d, d, 2<n2> > where

d ≥ 5. Thus, all conditions hold. Let r be any element in D′ or D. (Although

the multiplicities of elements in D and D′ differ, the set of elements in each are the

same.) By induction, there exists a connected realization G′ of D′ with a vertex u

of degree r adjacent to a degree 2 vertex v. Since G′ has at least two ears, there is

an ear w 6= v. Splice the ear w to obtain a new graph G. (Recall Definition 5.1.9

describes splicing and Figure 5.2 demonstrates this procedure.) Since w 6= v, uv is

still an edge in G and so a vertex of degree r is adjacent to a vertex of degree 2 in

G. Since G has two additional degree 3 vertices, G is a realization of D. Finally,

splicing an ear preserves partial 2-trees by Theorem 5.1.10 and so G is the desired

partial 2-tree realization of D.

If n2 ≥ 3, remove a 2 from D to create D′, a sequence with n′ = n− 1 elements

and n′
2 = n2− 1 2’s and with sum 4n− 6− 2g− 2 = 4n′− 6− 2(g− 1). Then D′ has
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gap g′ = g − 1 ≥ 0 and is not even since D is not. Also, D′ has maximum element

d1 ≤ n − 3 < n′ − 1. If g′ = 0 and D′ is of the form < d, d, d, d, 2<n′−4> > where

d ≥ 5, then the original sequence D has form < d, d, d, d, 2<n2> > where d ≥ 5

and g > 0. In this case, the result holds by Claim 5.3.4. Otherwise, all conditions

required for inductive hypothesis hold, and so there exists a connected realization

G′ of D′ with a vertex of degree r adjacent to a degree vertex v. Subdivide any edge

xy in G′ with edge. Subdividing an edge preserves partial 2-trees by Theorem 5.1.10

and so the resulting graph is the desired realization of D.

5.5 Degree Sequences of Partial 2-Trees When

dn = 1

The main result of this section is Theorem 5.5.1, which characterizes the degree

sequences of partial 2-trees with at least one degree 1 vertex. Recall that Theo-

rem 5.4.1 characterizes degree sequences of partial 2-trees with no degree 1 vertices.

Furthermore, Theorem 5.4.1 also includes an adjacency result, namely, that a degree

2 vertex can be made adjacent to any vertex of higher degree. However, such an

adjacency result does not hold true for partial 2-trees with at least one degree 1

vertex. For example, < 4, 3, 3, 3, 3, 1, 1 > is realizable as a partial 2-tree but the

reader can check that a degree 4 vertex is not adjacent to degree 1 vertex in any

realization. Thus, Theorem 5.5.1 does not include adjacency results.

We present an example now to help the reader understand condition (3) in

Theorem 5.5.1 which states that n1 ≤ g in a partial 2-tree with degree 1 vertices.

This condition is intuitive. Consider any partial 2-tree which is not simply a single

edge. Because there are no degree 1 vertices in such a 2-tree, every degree 1 vertex

in such a partial 2-tree must be ‘missing an edge.’ Thus, each degree 1 vertex in a

partial 2-tree forces the gap to increase by 1, that is, n1 ≤ g. The exceptional case

is a star, in which n1 = g + 1.

While the explanation in the previous paragraph gives intuition for why n1 ≤ g,

176



it does not suffice as a proof. In order to help the reader understand the proof

of necessity of n1 ≤ g as given in Theorem 5.5.1, we give the following example.

Consider the sequence D =< 5, 5, 5, 3, 1, 1, 1, 1, 1, 1 >, which has sum equal to 4n−

6 − 2g = 24 where n = 10, n1 = 6, g = 5 and so clearly n1 > g. D is realizable

but not realizable as a partial 2-tree. If there were a partial 2-tree G which realized

D, then removing the pendants from G leaves the subgraph H on nH = 4 vertices.

By Theorem 5.1.2, H is also a partial 2-tree and so the edges of H can contribute

at most 4nH − 6 = 10 to the degree sum of G. Also, the n1 = 6 pendants in G

contribute at most 2n1 more to the degree sum of G. Thus, the sum of D can be at

most (4nH − 6) + 2n1 = 10 + 12 = 22, which contradicts that D has sum 24.

In summary, the degree sum of the subgraph H of G induced by vertices of

degree higher than 1 was simply too large for D to be realizable as a partial 2-tree.

Although D may appear to have a large gap, this gap is introduced by the large

number of 1’s in D. Then the gap is not well-distributed, and so in any realization

of D, too many edges must exist between the vertices of degree 5 and 3, thus making

the degree sum of these vertices too large.

Unlike theorems in previous sections, Theorem 5.5.1 does not and cannot guar-

antee that any degree sequence D which is realizable as a partial 2-tree is also

realizable as a connected partial 2-tree. In general, any connected graph must have

degree sum at least 2n − 2 in order to have a spanning tree. In previous sections,

we assumed that dn ≥ 2, i.e., that all elements of a given sequence D were at least

2, and so the sum of D can be no smaller than 2n− 2. This allows for connectivity.

However, if we allow D to include a 1 as we do in this section, then the sum of D

can be less than 2n − 2, in which case there is no connected partial 2-tree which

realizes D. Hence, in Theorem 5.5.1, we must assume D has sum at least 2n− 2 for

connectedness.

We remind the reader that in Section 5, we explained that we adhere to Definition

5.0.2, and thus we adopted the convention that a single edge is indeed a partial 2-

tree.

Theorem 5.5.1. Let D be the integer sequence d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 with
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sum 4n − 6 − 2g where g is a non-negative integer. Assume n1 ≥ 1. Then D is

realizable as a partial 2-tree if and only if the following conditions hold:

1. n1 + n2 ≥ 2

2. d1 ≤ n− 1

3. n1 ≤ g or D is the degree sequence of a star.

If the above conditions hold and the sum of the entries in D is at least 2n − 2,

then there exists a connected partial 2-tree which realizes D. If the sum of entries

in D is even and less than 2n− 2, then D is realizable as a forest and thus a union

of partial 2-trees.

Proof. (⇒) Since a 2-tree has at least two ears, a partial 2-tree must have at least

2 vertices of degree less than 3. Hence, n1 + n2 ≥ 2. In any graphical sequence,

d1 ≤ n − 1. We now prove condition (3). Any realization of D is or is not a star.

Assume D is not realizable as a star. Then n > 2 because if n = 2, the only partial

2-tree is a single edge, which is a star. Since n > 2 and D is not realizable as a star,

then n1 ≤ n − 2. Let H be the subgraph induced by all vertices of degree greater

than 1. Note that H has at least two vertices since n1 ≤ n− 2. Also, since H is a

subgraph of a partial 2-tree, H is also a partial 2-tree by Theorem 5.1.2. Thus, we

can view any realization G of D as the partial 2-tree H with n1 additional pendants,

some of which may be adjacent to vertices in H and some of which may be adjacent

to each other. See Figure 5.10.

H

Figure 5.10: Partial 2-tree H with n1 pendants

Consider the degree sequence DH of H , which has n− n1 ≥ 2 vertices. Because

DH is realizable as a partial 2-tree, the sum of DH is at most 4(n− n1)− 6. Due to
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the pendants of G−H , G has degree sum at most (4(n−n1)−6)+2n1 = 4n−2n1−6.

Then 4n− 6− 2g ≤ 4n− 2n1 − 6. Rearranging this inequality, we obtain n1 ≤ g, as

desired.

(⇐) If the sum of entries in D is less than 2n − 2, then because the sum of D is

4n − 6 − 2g and is thus even, D is realizable as a forest G by Claim 1.0.1. Every

component of G is a tree on at least two vertices and is thus a partial 2-tree by

Corollary 5.1.11. Hence, D is realizable as a union of partial 2-trees. We assume

that the sum of D is at least 2n− 2 for the rest of this proof.

If n = 2 or n = 3, then the only sequences which satisfy all hypotheses are

< 1, 1 > and< 2, 1, 1 >. These sequences are realizable as trees, which are connected

and are partial 2-trees, again by Corollary 5.1.11. For the duration of the proof, we

assume that n ≥ 4. We proceed by induction on n1. Assume n1 = 1 for the base case.

Since n ≥ 4 and n1 = 1, D is not realizable as a star. Thus, n1 ≤ g by condition (3).

Our strategy is to create a second sequence D′ and to use Theorem 5.4.1 to obtain

a connected partial 2-tree realization of D′.

Base Case A: n1 = 1 and n2 ≥ 2

Replace the 1 in D with a 3, thus increasing the sum of D by 2. Let D′

be the resulting sequence and we verify now that D′ satisfies the hypotheses

of Theorem 5.4.1. D′ has zero degree 1 vertices, n vertices, and n2 ≥ 2

degree 2 vertices. If 3 is the maximum element in D′, then since n ≥ 4,

the maximum element of D′ is at most n − 1. Otherwise, the maximum

element in D′ is that of D and so is d1 ≤ n − 1. Also, D′ has sum equal to

4n− 6− 2g + 2 = 4n− 6− 2(g − 1) and so the gap of D′ is now g − 1. Since

1 ≤ n1 ≤ g, we see that g − 1 ≥ 0 and thus the gap pf D′ is non-negative.

Since D′ has a 3, D′ is not even and is not of the form < d, d, d, d, 2<n2> >

where d ≥ 5. Hence, by Theorem 5.4.1, D′ is realizable as a connected partial

2-tree with a degree 3 vertex u adjacent to a degree 2 vertex v. Delete the

edge uv. If uv is not a cut edge, this yields a connected partial 2-tree which

realizes D. If uv is a cut edge, then no component of G − uv can be a tree
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since n1 = 1 and every tree has at least two leaves. Thus, each component has

a cycle. Let C be a cycle in the component containing u. Let ab be any edge

on C. Let vz be the edge incident to v. 2-switch ab and vz. By Claim 5.1.12,

this procedure yields a connected partial 2-tree which realizes D.

Base Case B: n1 = 1 and n2 < 2

Because n2 < 2, the hypothesis n1 + n2 ≥ 2 implies n2 = 1. If d1 = n − 1,

then Corollary 5.2.4 yields the desired claim, so assume d1 ≤ n − 2. Since

n1 = n2 = 1 and n ≥ 4 by assumption, we know d1 ≥ d2 > 2. If there exists

an even di > 2 in D, let D′ be the sequence with di replaced by di + 1 and

1 replaced by 2, thus increasing the sum of D by 2 and n2 by 1 so that the

multiplicity of 2 in D′ is n′
2 = 2. Then D′ is not even and has maximum

element d1 + 1 which is at most n − 1 since d1 ≤ n − 2. If D′ is of the form

< d, d, d, d, 2<n′

2
> > where d ≥ 5, then D is < d, d, d, d− 1, 2, 1 >. However,

this is impossible since the reader can check that condition (3) does not hold

for < d, d, d, d− 1, 2, 1 > when d ≥ 5. By Theorem 5.4.1, D′ is then realizable

as a connected partial 2-tree with a degree d1 + 1 vertex u adjacent to a

degree 2 vertex v. Delete the edge uv. If uv is not a cut edge, then this

yields a connected partial 2-tree realization of D. If uv is a cut edge, follow

the reasoning of Base Case A to obtain the desired connected partial 2-tree

realization of D.

Now, if there does not exist an even di > 2 in D, then d1 and d2 must both be

odd since d1 ≥ d2 > 2. Form D′′ by replacing d1 with d1 + 1 and replacing 1

by 2. The argument then follows the argument for D′.

We now assume the following. When conditions (1)-(3) hold for a degree sequence

D whose sum 4n− 6 − 2g is at least 2n− 2 and in which 1 has multiplicity n1 − 1

for n1 ≥ 2, then there exists a connected partial 2-tree realization of D. Consider

a sequence D where 1 has multiplicity n1. If D is realizable as a star, then D is a

tree which is connected and which is a partial 2-tree by Corollary 5.1.11. We now
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assume that D is not realizable as a star and so by condition (3), we assume n1 ≤ g.

Since 2 ≤ n1 ≤ g, the gap is nonzero.

If d1 = n−1, then Corollary 5.2.4 yields the desired claim, so assume d1 ≤ n−2.

If n3 ≥ 1, then replace a 3 with a 2 and remove a 1 from D to create the sequence

D′ with even sum equal to 2 less than that of D. D′ is a sequence with n′ = n− 1

elements, n′
1 = n1 − 1 degree 1 elements, n′

2 = n2 + 1 degree 2 elements, and

a maximal element of at most n − 2 = n′ − 1 (since d1 ≤ n − 2). Notice that

n1 + n2 ≥ 2 implies n′
1 + n′

2 ≥ 2. Also, since n ≥ 4, n′ ≥ 3. The sum of D is

4n− 6− 2g− 2 = 4(n− 1)− 6− 2(g− 1) and so the new gap is g′ = g− 1. Then g′

is non-negative and n′
1 ≤ g′. By induction, D′ is realizable by a connected partial

2-tree. Add a pendant adjacent to the vertex with degree 2 to yield a connected

realization of D which is still a partial 2-tree by Theorem 5.1.10.

Otherwise, n3 = 0. If d1 = 2, then D is a sequence of 2’s and two 1’s and

since D has sum at least 2n − 2, D is a sequence of n2 2’s and exactly two 1’s.

Thus, D can be realized by a path on n2 + 2 vertices. This is connected and is

a partial 2-tree by Corollary 5.1.11. So we assume that d1 > 2. Replace d1 with

d1 − 1 and remove a 1 from D to create a sequence D′ with even sum two less

than that of D. D′ is a sequence with n′ = n − 1 elements, n′
1 = n1 − 1 degree

1 elements, and a maximal element of at most n − 2 = n′ − 1. The sum of D is

4n − 6 − 2g − 2 = 4(n − 1) − 6 − 2(g − 1) and so the gap has again decreased by

1. Then the new gap is g′ = g − 1 and is non-negative and n′
1 ≤ g′. We must

now show that D′ has at least two elements of degree 1 or 2. If not, then since

n1 + n2 ≥ 2 and n1 ≥ 2, we know that n1 = 2 and n2 = 0 in D. Claim 5.3.6 yields

that 3n1+2n2 +n3 ≥ 6+ 2g. Since g > 0 and n3 = 0, the values n1 = 2 and n2 = 0

contradict this inequality. Thus, it must be true that D′ has at least two elements

of degree 1 or 2. By induction, D′ is realizable by a connected partial 2-tree. Add a

pendant adjacent to the vertex with degree d1 − 1 to yield a connected realization

of D, which is still a partial 2-tree by Theorem 5.1.10.
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5.6 Combined Results

We can now prove our main result, Theorem 5.6.2. We combine the results of the

previous section, specifically Theorem 5.4.1 and Theorem 5.5.1, to do so. We first

prove Claim 5.6.1 because both directions of the proof of Theorem 5.6.2 rely on this

claim.

Claim 5.6.1. Let D be a sequence of n positive integers with sum 4n−6−2g where

g is a non-negative integer. If D has the form < d, d, d, d, 2<n2> >, then d = n+1−g

2
.

Also, if g = 0, then D has the form < d, d, d, d, 2<n2> > for some integer d ≥ 5 if

and only if D has the form < n+1
2
, n+1

2
, n+1

2
, n+1

2
, 2<n2> > for some n ≥ 9.

Proof. Assume D has the form < d, d, d, d, 2<n2> >. Per Claim 5.3.4, d = n+1−g

2
.

Assume now that g = 0. Then d = n+1−g

2
= n+1

2
, and rearranging this for n, we see

n = 2d− 1. Thus, the rest of the claim follows since d ≥ 5 if and only if n ≥ 9.

Theorem 5.6.2. Let D be a sequence of n positive integers. Then D is realizable

as a partial 2-tree if and only if the following conditions hold:

(a) The sum of D is 4n− 6− 2g where g is a non-negative integer.

(b) The maximum element of D is at most n− 1.

(c) n1 + n2 ≥ 2

(d) n2 ≥
n+3−2g

3
whenever D is even.

(e) If g = 0 then D is not of the form < n+1
2
, n+1

2
, n+1

2
, n+1

2
, 2<n−4> > where n ≥ 4.

(f) n1 ≤ g or D is the degree sequence of a star.

If the above conditions hold and the sum of the entries in D is at least 2n− 2, then

there exists a connected partial 2-tree which realizes D. If the above conditions hold

and n1 = 0, then given any r ∈ D where r > 2, there exists a connected partial

2-tree which whose degree sequence is D which has a vertex of degree r adjacent to

a vertex of degree 2. If the sum of entries in D is less than 2n− 2 and even, then

D is realizable as a forest and thus a union of partial 2-trees.
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Proof. (⇒) Except for condition (e), the forward direction follows immediately from

Theorem 5.4.1 and Theorem 5.5.1. By Theorem 5.0.5, if g = 0, D is not of the form

< d, d, d, d, 2<n2> > for d ≥ 5. By Claim 5.6.1, we thus know that D is not of

the form < n+1
2
, n+1

2
, n+1

2
, n+1

2
, 2<n2> > where n ≥ 9. We show now that D is

not of this form for 4 ≤ n ≤ 8 either. If n is any even number, specifically, if

n = 4, 6, 8, then d = n+1
2

is not an integer and D is not a sequence of integers, a

contradiction. If n = 7, then D =< 4, 4, 4, 4, 2, 2, 2 > and so D is an even sequence.

But n2 <
n+3
3
, thus contradicting condition (d). If n = 5, then D =< 3, 3, 3, 3, 2 >,

which contradicts (c). Thus, the form is not realizable for n ≥ 4.

(⇐) For the backward direction, we point out that condition (e) cannot fail if

n1 > 0 and that condition (f) cannot fail if n1 = 0. Also, note that dn ≥ 2 if and

only if n1 = 0, in which case D has sum at least 2n. So if the sum of D is less than

2n− 2, it must be true that n1 > 0.

If n1 > 0, the claim follows from Theorem 5.5.1. Now assume that n1 = 0. If

g = 0, condition (e) and claim 5.6.1 imply D is not of the form < d, d, d, d, 2<n2> >

for d ≥ 5. Because D has sum at least 2n, we must show that D can be realized

by a connected partial 2-tree. This follows from Theorem 5.4.1. Furthermore,

Theorem 5.4.1 also yields that if there exists r ∈ D where r > 2, there exists a

connected partial 2-tree which whose degree sequence is D which has a vertex of

degree r adjacent to a vertex of degree 2.
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Chapter 6

Conclusion and Future Work

In summary, via this dissertation, my original contributions to the field of mathe-

matics include the following items.

1. Characterization of degree vector sequences of k-edge-colored unicyclic graphs

(Chapter 1)

2. Characterization of degree vector sequences of factors of fixed DUPs, fixed

DUCs, and fixed graphs with maximum degree at most 2 (Chapter 2)

3. Characterization of degree sequences of 2-edge-colored fixed DUPs and fixed

DUCs and proof that one restricted case for each is NP-Complete (Chapter 3)

4. Characterization of degree sequences of partial 2-trees (Chapter 4)

5. Characterization of degree sequences of grid factors in a subset of cases (Chap-

ter 5)

There are several clear pathways for future work. For unicyclic graphs, it is

interesting to consider whether or not the results for k-edge-colored unicylic graphs

from Chapter 1 generalize to k-edge-colored graphs in which each component has

at most 1 cycle. As discussed in Chapter 3, our characterization of degree vector

sequences of 2-edge-colored fixed DUPs and fixed DUCs yields necessary conditions
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(Claim 3.5.2) for characterizing the degree vector sequences of k-edge-colored fixed

DUPs and fixed DUCs when k ≥ 3. It is natural to continue our analysis of whether

or not these necessary conditions are sufficient for the case k ≥ 3. Regarding our

results on grid factors, Table 4.1 gives open cases for which we have no results. It

would be interesting to consider these open cases.

Finally, as mentioned in the Introduction, it may be possible to answer the

k-Edge-Coloring Problem or the related Factor Problem for cacti graphs, Halin

graphs, and edge-maximal outerplanar graphs. We leave the exploration of these

graph families for future work.
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