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 ABSTRACT 

In the first part of this study, we investigate the impact of grain-boundary variability 

on mass transport behavior in a polycrystal. More specifically, we perform both 

numerical and analytical studies of steady-state diffusion in prototypical microstructures 

in which there is either a discrete spectrum of grain-boundary activation energies or else a 

complex distribution of grain-boundary character, and hence a continuous spectrum of 

boundary activation energies. An effective diffusivity is calculated for these structures 

using simplified multi-state models and, in some cases, employing experimentally 

obtained grain-boundary energy data in conjunction with the Borisov assumption. For 

some condition, we find marked deviations from Arrhenius behavior, and we are able to 

quantify these deviations analytically. 

The second part of this work is devoted to fluid imbibition via diffusion in 

deformable solid which results in solid stresses that may, in turn, alter subsequent fluid 

uptake. To examine this interplay between diffusional and elastic fields, we employ a 

hybrid Monte Carlo–molecular dynamics scheme to model the coupling of a fluid 

reservoir to a deformable solid, and then simulate the resulting fluid permeation into the 

solid. By monitoring the instantaneous structure factor and solid dimensions, we are able 

to determine the compositional strain associated with imbibition, and the diffusion 

coefficient in the Fickian regime is obtained from the time dependence of the fluid 

uptake. Finally, for large, mobile fluid atoms, a non-Fickian regime is highlighted and 

possible mechanisms for this behavior are identified. 
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1.  

INTRODUCTION 

 

 

1.1 Diffusive processes in materials science and 

engineering 

Solid-state diffusion is defined as an atomic migration from one point to another 

through the solid. At a macroscopic level, a concentration gradient provides the driving 

force for this phenomenon. However, at atomic scale, diffusion can be explained in terms 

of the thermal motion of atoms and molecules.  

Diffusion plays a crucial role in many materials science and engineering phenomena. 

For example, it controls the kinetic behavior of many processes, including: nucleation, re-

crystallization, grain growth, segregation and precipitation. It is also important in 

understanding electrical conductivity of ionic crystals, the corrosion in metallic systems 

and, at elevated temperatures, oxidation and creep (e.g., in turbine blades). However, 
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many room temperature processes involve diffusion as well. Examples here include the 

permeation of fluid through membranes and catalytic reactions. Moreover, most of the 

time, diffusion is not a lone process, as it occurs concomitantly with chemical reactions, 

phase transformations, plastic deformation, crack initiation and fracture. Given its 

ubiquitous nature, diffusion studies yield a great deal of information about the physics of 

crystals and provide a key understanding of the complex and varied behavior of solids. 

In this dissertation we consider diffusive processes in two separate scenarios at 

different length scales and materials systems. In the first scenario, we investigate the 

impact of grain-boundary variability on mass transport behavior in a polycrystal. More 

specifically, we perform both numerical and analytical studies of steady-state diffusion in 

prototypical microstructures for a variety of grain boundary diffusivities. This study all 

takes place at the macroscopic scale, and both numerical and analytical model are 

developed under a continuum assumption. 

In the second scenario mostly we consider fluid imbibition via diffusion in a 

deformable solid that results in solid stresses that may, in turn, alter subsequent fluid 

uptake. To examine this interplay between diffusional and elastic fields, we employed a 

hybrid Monte Carlo–molecular dynamics scheme to model the coupling of a fluid 

reservoir to a deformable solid, and then simulate the resulting fluid permeation into the 

solid. This chapter is divided into two sections that provide background information for 

both selected topics.   
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1.2 Variable diffusivity in polycrystalline grain 

boundaries 

Grain boundary (GB) diffusion plays a key role in many processes occurring in 

materials science at elevated temperatures, such as Coble creep, sintering, diffusion-

induced GB migration, different discontinuous reactions, recrystallization and grain 

growth [1].  

Since 1927 that for the first time the idea of fast diffusion along grain boundary was 

proposed [2], there have been many studies seeking to clarify the particular role of grain 

boundaries in polycrystal diffusion.  The first direct evidence of GB diffusion was 

obtained in the early 1950s using autoradiography [3]. Fig. 1-1 shows a classic example 

of the GB contribution to diffusion in a polycrystal [4]. As it is evident from the figure, at 

low temperature, the polycrystalline sample shows higher effective diffusivity that 

indicates the presence of high- diffusivity paths along grain boundaries.  

 

Figure 1-1   Illustration of diffusion fast path through GB’s by comparing effective diffusivity of silver in 

single crystal and polycrystal. [5] 
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These efforts were followed by two major achievements in the study of GB 

diffusion.  The first milestone was the advent of the famous Fisher model of GB diffusion 

in 1951 [6], followed by the development of the radiotracer serial sectioning technique. 

Fisher introduced the idea of an Isolated Grain Boundary (IGB) embedded between two 

semi-infinite low diffusivity regions as a framework for GB diffusion analysis. He solved 

the non-steady-state diffusion problem analytically and found that the logarithm of 

average concentration in the boundary varies linearly with penetration depth [6].  

 

Figure 1-2   Schematic of an isolated grain boundary model [7] 

Although Fisher’s finding was applicable to the analysis of experimental data, the 

large number of approximations employed led to questions about its validity. In 1954 

Whipple obtained the exact solution for an isolated grain boundary in contact with 

constant source [8], and Suzuoka  solved the problem for an instantaneous source in 

1961[9]. Both solutions were exact, but mathematically more complex than Fisher’s 

treatment.  
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As mentioned above, around the same time, other researchers developed new models 

that applied to more realistic situations.  For example, Levine and MacCallum [10] 

considered a polycrystalline body and assumed that both lattice and boundary diffusion 

mechanisms could be dominant in different penetration regimes. Their result showed that 

the logarithm of the average concentration varies as the 6/5 power of penetration depth, 

which was more accurate than Fisher’s prediction. Their findings and the complementary 

analysis by Claire [11] paved the route for applying analytical solutions in serial 

sectioning experiments to measure GB diffusivity.  

All aforementioned studies were associated with self-diffusion. However, the effects 

of impurity segregation were also investigated, first by Bokshtain in 1958 and then by 

Gibbs in 1966. Based on their work, the effect of segregation could be incorporated into 

the analysis by using a segregation factor in an expression for the GB width [2]. 

In 1961 Harrison proposed a kinetic classification for non-steady state diffusion in a 

polycrystalline microstructure. This classification is given in terms of a comparison 

between the diffusion characteristic length in the lattice (    ) and that along the grain 

boundaries (     ) and microstructure parameters such as grain size ( ) and grain 

boundary width ( ) [12]. As described in Fig. 1-3, in the type A regime, the diffusion 

length of the lattice is comparable to the diffusion length of grain boundary. This is the 

case for nano-crystalline materials, very long diffusion anneals, high volume diffusion 

coefficients or temperatures close to the melting point. If the temperature is lower or the 

annealing period is shorter or the grain size is larger than in the previous case, then 

diffusion is dominated by the so called B regime. In the type B regime, lattice and grain 
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boundary diffusion are both important, but concentration fields from adjacent grain 

boundaries do not overlap into the crystalline grain. In the type C regime, diffusional 

behavior of the polycrystal is almost dominated by grain boundary diffusion, and so 

lattice diffusion can be neglected due to low temperature or short annealing time [ 

1,12&13].  

 

Figure 1-3   Schematic illustration of type A, B and C diffusion kinetics according to Harrison’s 

classification. Where   is the grain boundary width,   is the grain size;    is the diffusion characteristic 

length in the lattice and     is the diffusion characteristic length in the grain boundary. [13] 
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Although these studies produced important results in the field, subsequent 

investigations have continued to advance the field. For instance, in 1976 Gilmer and 

Farrell applied the single high-diffusivity plane model to a thin film system. They found 

that the thin film boundary conditions led to corrections in the classical analysis [14]. In 

the 1990’s, with increasing computing power, more sophisticated models were 

developed. For example, Mishin and Herzig [1] reviewed the results of atomistic 

simulations of GB diffusion. These studies were done by employing either molecular 

dynamics or kinetic Monte Carlo simulation and revealed some interesting information 

about diffusion coefficients and mechanisms. At the same time, Swiler and Holm, 

introduced the first numerical continuum model of mass transport for a polycrystalline 

structure. In particular, they used a finite- difference scheme to simulate transient and 

steady-state mass transport through a 2D microstructure and examined the effect of 

average grain size and GB topology [15]. In 1999 another paper, inspired by Fisher’s 

work, was published that considered diffusion along the short circuit paths inside a grain, 

such as dislocations, sub-grain boundaries and interface planes. In their model, the lattice 

was treated as a stochastic mixture of defect-free crystalline regions and short-circuits 

paths [16].   

Some authors have studies systems in which diffusion and chemical reactions both 

occur. One such study proposed a mathematical model for surface and GB kinetics and 

also obtained an analytical solution for the evolution of impurity concentration [17]. In 

2005, the impact of a complex microstructure on polycrystalline diffusion was 

investigated by using both numerical and analytical methods. In this study, the diffusion 

equation was numerically integrated using the finite-difference method to obtain the 
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concentration profile for a diffusant in a simplified microstructural representation and 

then applied to a Voronoi model of a microstructure. The diffusive behavior is quantified 

by obtaining uptake curves as a function of time for different ratios of grain boundary to 

lattice diffusivity.  In addition, approximate analytical equations describing  diffusant 

uptake in polycrystalline microstructural models were developed [18]. 

Beyond studies focused on the mechanisms of GB diffusion, other workers have 

studied the impact of GB connectivity on the effective diffusion response of a 

polycrystalline microstructure. Such studies naturally involve percolation theory and 

Effective Medium Theory (EMT). 

For example, studies of GB networks began in 1989 with the calculation of the 

percolation threshold for randomly assembled 2D and 3D grain-boundary networks. In 

2003, Schuh et al. calculated percolation thresholds for several networks that were 

constrained based on crystallographic principles. They discovered that triple-junction 

(TJ) distributions were connected with correlated percolation [19].  In a later study, Chen 

and Schuh determined the domain of validity for EMT and percolation theory for a 2D 

honeycomb network of grain boundaries having different diffusivity contrasts. For 

simplicity, the lattice diffusivity was not taken into account [20].  Asymmetric effective 

medium equations and power-law scaling relationships were employed to evaluate the 

effective diffusivity for a general isotropic polycrystal. They also examined the grain size 

and temperature dependence of polycrystalline diffusion in terms of the apparent grain 

size exponent and activation energy to assess dominant diffusion processes and construct 

generalized diffusion mechanism maps [21]. 
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In formulating these models, one usually assumes that all boundaries have identical 

diffusivities and hence, the same activation energies for diffusion. In reality, however, 

grain boundary character is inherently variable [22], and therefore there is a spectrum of 

diffusivities associated with mass transport in a polycrystal that needs to be considered. 
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1.3 Fluid uptake in deformable solid structures 

The behavior of a solid matrix under fluid infiltration is of significance for designing 

new materials in various applications ranging from analytical separations to drug 

delivery. Several diffusion models have been developed for modeling mass transport 

processes. Among them is a model proposed by Fick that is commonly used because of 

its simplicity and mathematical tractability. This is also known as Case I or Fickian 

diffusion. 

    
  

  
 (1-1) 

  

  
  

  

  
  (1-2) 

Fick’s first law (Eq. 1-1) assumes that the flux ( ) passing through a unit area of 

material is proportional to concentration ( ) gradient measured normal to the material, 

where the constant of proportionality is known as a diffusion coefficient ( ).  Fick’s 

second law (Eq. 1-2) describes the concentration change over the time as a change in flux 

with respect to position [23]. Although Fickian diffusion theories have been thoroughly 

developed, many matrix-diffusant systems do not follow such a simplified description. In 

fact, Fickian diffusion is rarely seen for transport of liquid through a deformable solid 

systems, such as glassy polymers, metal-organic frameworks (MOF), zeolitic materials, 

etc.  For a compliant matrix, the distortion that attends fluid uptake can lead, for example, 

to swelling in polymeric systems and concomitant non-Fickian diffusive behavior [24-

26]. 
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Considering Fick’s second law, the mass uptake ( ) can initially be represented by 

     , where   is the time and   and   are constants.  The Fickian diffusion regime 

then corresponds to       and the slope in uptake curve (Fig.1-4 a), is also related to 

diffusion coefficient ( ). Case II is associated by     and an anomalous diffusion 

regime is characterized by         , as shown in Fig.1-4 b,c [ 23,27]. 

 

 

Figure 1-4   Mass uptake for different diffusion regimes; a) Fickian, b) Anomalous, c) Case II. [27] 

Deviations from Fickian behavior are identified as non-Fickian diffusion regimes 

(Fig. 1-4 b,c). This type of behavior is usually caused by local deformation inside the 

matrix due to the presence of diffusant molecules that introduces a new stress field 

through the entire system. This local deformation, which is also called compositional 

strain, can affect the diffusional behavior and elastic properties of the solid [27].  

Initial attempts to incorporate stress into Fick’s diffusion equation date back to the 

work of Hartley in 1949 [28]. One plausible mechanism to describe this phenomenon is 

to add a stress gradient term to the normal Fickian flux. The stress in turn evolves in 

response to the concentration of the diffusant [29-31]. The Fickian flux in near-

equilibrium transport theory is usually derived from            , where   is the 
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chemical potential of the diffusant and is defined as      , where   is the system's 

internal energy. For ideal thermodynamic behavior          , which results linear 

diffusion. Pressure on the diffusant from the material stress will increase the system's 

internal energy and so increase the chemical potential               , where   is the 

material stress and   is some constant. Then the flux is given by              

         . [32] 

The theoretical framework described above, is the common way to address the role 

of stress in fluid uptake through the solid. However, the process by which small 

molecules penetrate a deformable solid is very complex, and so far no mathematical 

model has been able to provide a complete explanation of this phenomenon. In these 

processes, a crucial role is played by adsorption and transport of the guest molecules. 

During the last decades, molecular simulation has become a powerful tool to investigate 

these phenomena at an atomistic length and timescale. While molecular simulations of 

equilibrium adsorption have reached a state where the predicted quantities (adsorption 

isotherms, isosteric heats) are in reasonable agreement with experiments for all but the 

most complex guest–host systems, this is still not the case for transport properties [33]. 

Several approaches exist for modeling fluid uptake in such systems. For example, 

Gelb and Hopkins [34] used molecular dynamics simulation to study the dynamics of 

fluid flow into empty cylindrical pores in which the pore-wall atoms were immobile. 

Ahadian et al. subsequently simulated imbibition of a simple fluid into a nanochannel 

using atomistic simulation to investigate the wall-fluid interaction [35]. More recently, 

Joly [36] employed molecular dynamics (MD) simulation to examine water uptake by a 
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carbon nanotube, and Stukan et al. [37] also used MD to investigate the role of nanopore 

roughness on fluid imbibition.  

Given the inherent computational demands of simulating fluid imbibition at the 

atomic scale, most such simulations of this process take the matrix atoms to be immobile. 

This assumption is often justified, especially for fluid atoms having small radii, in 

situations where elastic energy considerations are relatively unimportant [33]. However, 

the modeling of elastic deformation that attends fluid uptakes necessitates the 

incorporation of matrix stresses via the inclusion of matrix-atom coordinates.  
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2.  

SIMULATION METHODS 

 

 

2.1 Simulation in materials science and engineering 

Computational modeling has been employed in science and engineering for many 

years, but recent development in computer technology have led to significant increases in 

computational power and, hence, greater capabilities.  Moreover, the relatively easy 

access to high- performance computing resources has led to the application of 

computational methods that between theory and experiment. The role of these methods is 

twofold.  On one hand, computational methods can be used to examine current available 

theories, enabling materials properties predictions.  On the other hand, disagreements 

between simulation and experiment indicate that the underlying theory may need 

revision.  This back and forth between theory and experiment thereby generates unique 

insights into the problem under study.  If the simulation results agree with experimental 
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findings, the underlying theory is validated and may be employed in the discovery and 

design of new materials.   Hence, finding more accurate simulation methods is a win-win 

proposition that can serve both theorists and the experimental community.[38,39]  

There are several simulation methods that are appropriate for different length and 

time scales.  Fig. 2.1 describes this broad range of methodologies in a schematic manner.  

 

 

Figure 2-1   Multi-scale methods used for materials model development and computer simulations.[40] 

From continuum mechanics all the way down to quantum mechanics, different 

methods can predicts variable materials properties depending on the length and time 

scales involved. In the continuum approach, finite-element (FE) and finite-difference 

(FD) simulations mostly deal with bulk properties and are appropriate for describing heat 

and mass transport, mechanical properties and so on. (We note that these methodologies 

can sometime be employed in the mesoscale regime as well.)  At smaller length scales, 
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mesoscale methods are used to describe microstructural evolution that occurs, for 

example, during solidification, crystallization and grain growth. At the atomic scale, 

atomistic simulation is appropriate, and molecular dynamics (MD) and Monte Carlo 

(MC) simulations are the most important methods at this scale. These methods are 

established based on a Hamiltonian and therefore involve canonical quantities, such as 

atomic positions and, in the case of MD, momenta.  Finally, in the quantum-mechanical 

domain, ab-initio and density-functional theory (DFT) are appropriate.  The ultimate goal 

of these methods is to be able to predict the electronic structure of the materials in 

different situations. These methods are extremely computational intensive, involving only 

a couple of hundred atoms, but they are helpful in revealing basic information about 

electronic structure. This type of information is useful for designing new materials and 

also could be used as initial information for input into higher-level simulations, such as 

MD and MC.  Obviously each simulation method has its own limitations and drawbacks 

that should be taken into account when choosing one for a particular problem. In 

following sections, we describe three different methods that we have used in this research 

in some detail.                
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2.2 Finite Difference Simulation 

The finite-difference method is particularly useful for the continuum modeling of 

materials. In particular, this method enables the approximate solution of differential 

equations that describe physical processes such as mass diffusion, heat transfer and fluid 

flow, as well as the electrostatic field resulting from charge distributions in space.  All 

techniques we are going to develop in this section are immediately available for 

application in these different areas. The main idea of this method is to find a 

mathematical description of the problem of interest based on flux laws and conservation 

principles, and then try to solve the appropriate differential equation by employing 

numerical method. These numerical methods are classified by their method of 

discretization. Since in our research we are used Control-Volume based Finite 

Difference, in following discussion we examine this method in some detail for diffusion 

problems [41]. 

2.2.1 Control Volume Formulation 

In this method, the calculation domain is divided into a non-overlapping control-

volumes and the differential equation is integrated over each of them. Every control 

volume has a grid point inside it, and its piecewise profile expresses the variation of 

concentration (in a case of diffusion) between the grid points. The result a discretized 

equation containing the value of concentration (C) for all grid points. We start from two-

dimensional steady-state diffusion equation given by  

 

  
  

  

  
  

 

  
  

  

  
       (2-1) 
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where   is the diffusion coefficient and   is a source term. Fig. 2-2 shows schematic of a l 

control volume with grid point P and its neighbors : East, West, North and South. 

 

Figure 2-2   Schematic of a control volume with its associated grid points and faces 

To integrate the governing equation over the control volume we have; 

  
 

  
  

  

  
  

 

  
  

  

  
           (2-2) 

Where   is the area. 
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In a case that source term depends on concentration (diffusion-reaction problem), we 

can express this dependency in a linear form as        . Where    is a rate coefficient 

and    is a constant. 
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Using central difference scheme and taking first integrals led to;  

    
  

  
 
 
   

  

  
 
 
         

  

  
 
 
   

  

  
 
 
     

 

 

 

 

  (  +     ∆   =0  (2-5) 

Considering ∆  and ∆  as control volume sides we will get; 
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Figure 2-3   Piecewise linear vs. stepwise profile assumptions [41] 
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At this point, we need to evaluate gradient terms based on proper assumption to 

finalize our discretization. Fig.2-3 shows two different assumptions for profiling 

concentration between the points. As it is obvious, we are using piecewise linear profile 

for our discretization. 
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 (2-7) 
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       ∆ +  ∆ +    ∆ =0  (2-8) 

Factoring and reordering above equation conducts us to;  
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  ∆   +  ∆ =0  (2-9) 

By replacing all parenthesis with             and    respectively and put b = 

  ∆  we will get; 

                              (2-10) 

In this order the final equation for evaluation of concentration at point P based on its 

neighbors would be; 

                              (2-11) 

Or 

                  (2-12) 

To have final evaluation of concentration field in entire computational domain, 

equation 2-12, should be written for all grid points and all neighbor coefficients should be 
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determined. Solving this large set of equations is only possible by applying numerical 

methods based on boundary conditions. There are different numerical methods to solve 

such problems, all of them employing iterative methods and following same principles as 

follows: 

1. Guess or estimate for initial value of concentration at all grid points. 

2. Calculate tentative values of the coefficients from initial concentrations 

3. Solve the nominally linear set of algebraic equation to get new C’s 

4. With new C’s as a better guess, return to step 2 and repeat the process until 

further iterations cease to produce any significant change in C’s (as a criteria for 

convergence). 

In our model we applied the Tri-Diagonal Matrix Algorithm (TDMA), which is 

based on the principles outlined above.  More detailed information about this algorithm 

can be found at [41,42].  

The aforementioned model is capable of modeling diffusion phenomena in a steady-

state condition. However, by changing the governing equations, one can transform the 

procedure to model non-steady state diffusion.  As our focus here is on the steady-state 

regime, we refer the reader to the references for a discussion of the methodology for the 

non-steady-state regime. [41] 
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2.3 Monte-Carlo Simulation 

The Monte Carlo method was developed at Los Alamos National Laboratory, where 

for the first time it was proposed by Ulam and von Neumann as a means for evaluating a 

multivariable integral to describe the diffusion of neutrons in fissionable materials.  In 

1947 Metropolis coined the name of “Monte Carlo” due to extensive use of random 

numbers in this method and since then it has been developed to model various 

phenomena in different fields. The typical problem that can be addressed by MC is a 

system with a known Hamiltonian at given temperature that obeys Boltzmann 

statistics.[43]  

In statistical mechanics, the Boltzmann distribution is defined as a probability 

distribution ( ) over various possible states of a system, with the form 

                   (2-13) 

where     is state potential energy, and       is the product of  Boltzmann's 

constant and thermodynamic temperature, which is called as     in statistical mechanics. 

This distribution applied to systems having fixed composition that are in thermal 

equilibrium. In other words, it describes the average distribution of weakly interacting 

particles over various energy states in thermal equilibrium and is applicable when the 

temperature is high enough (above Debye temperature) or the particle density is low 

enough to render quantum effects negligible. The Boltzmann distribution can be 

employed to obtain the mean value of some macroscopic variable, say A, by taking an 

integral over all the phase space using the expression 

http://en.wikipedia.org/wiki/Statistical_mechanics
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Microstate_(statistical_mechanics)
http://en.wikipedia.org/wiki/Boltzmann%27s_constant
http://en.wikipedia.org/wiki/Boltzmann%27s_constant
http://en.wikipedia.org/wiki/Thermodynamic_temperature
http://en.wikipedia.org/wiki/Thermal_equilibrium
http://en.wikipedia.org/wiki/Thermal_equilibrium
http://en.wikipedia.org/wiki/Thermal_equilibrium
http://en.wikipedia.org/wiki/Phase_space
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  (2-14) 

In the equation above,    stands for the coordinates of all N particles. The denominator is 

the partition function (Z), which plays a key role in statistical mechanics and reveals 

information about all available energy states in the system, is given by 

                     (2-15) 

It is very difficult, in general, to determine the partition function for a given system. 

However, what we wish to know is the ratio of two integrals, as in Eq. (2-14).  

Metropolis et al. showed that it is possible to devise an efficient Monte Carlo scheme to 

sample such a ratio, by biasing the state’s selection itself, and weighting each state 

equally. In this manner, the calculation wastes less time exploring configurations that 

don’t contribute to the average. [38] 

2.3.1 Metropolis Algorithm 

To illustrate the implementation of the Metropolis method, consider atoms confined 

to a simulation cell, as shown in Fig. 2-3. Each particle could be considered as a single 

atom or molecule. Interactions between the atoms can be described in terms of an 

interaction potential that depends on the nature of the bonding in the system.  For 

simplicity, we are going to use the Lennard-Jones potential, which is usually used to 

approximate the interaction between a pair of neutral atoms or molecules, and is given by 

         
 

 
 
  

  
 

 
 
 

   (2-16) 

where   is the depth of the potential well,   is the finite distance at which the inter-

particle potential is zero and   is the distance between two particles. 

http://en.wikipedia.org/wiki/Potential_well
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Figure 2-4   Schematic plot for Lennard-Jones potential. 

As shown in Fig. 2-2,    is the distance at which the potential reaches its minimum 

value (  ). This distance represents the equilibrium bound distance between two given 

particles, and one can easily determine that           by direct differentiation.  These 

parameters can be fitted to reproduce experimental data or accurate first-

principles calculations. Due to its computational simplicity, the Lennard-Jones potential 

is used extensively in computer simulations, even though more accurate potentials 

exist.[39,44] 

 

Figure 2-5   Schematic of initial configuration for implementing Metroplois algorithm[1] 

http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Quantum_chemistry
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Fig. 2-5 shows schematic of system configuration at state m. Using the Metropolis 

method, the system can transit from current state (m) into any one of its neighboring 

states n with equal probability. A MC move begins by randomly picking particle i and 

giving it a random displacement along each coordinate direction, with a maximum 

displacement in each direction of      . In other words, the particle displacement is 

confined to a square (cube in 3D) with a side length of        . Once this move is made, 

the energy difference between old and new configurations is calculating using the 

interatomic potential.  

The energy calculation is the most computationally expensive part of this type of 

modeling, since it has to be done for every pair of particle in the system.  There are, 

however, some shortcuts that can reduce this calculation time. First of all, there is no 

need to calculate the energy of entire system after every single move. Once the total 

energy is calculated at the beginning of the simulation, subsequent calculations involve 

only the energy difference between two consecutive moves.  Thus, for a pair potential, 

we need only calculate the interaction energy between particle i and the rest of the system 

before and after an attempted atomic displacement. This is possible because an attempted 

MC move involves just one particle, so only the change in the configuration of particle i 

must be considered.  The second trick is that, even for particle i, we don’t need to 

consider all of the other particles. The only relevant particles are the ones that are close 

neighbors. The reason for this is that, as is clearly shown in Fig. 2-4, the interaction 

energy between two particles vanishes after certain distance.  Thus, there is no need to 

calculate the interaction energy for particles by more than the cut-off radius. This cut-off 
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radius is determined for each system based on its particular potential. In Lennard-Jones 

potential it is usually assumed that        . 

 

Figure 2-6   System transition from state m into the state n through one MC move. [38] 

Another issue that should be addressed is the size of the system. The ultimate goal of 

MC simulation and other atomistic modeling is to reveal some information about bulk 

properties of the system.  However, even by using most powerful supercomputer in the 

world, we cannot model more than couple millions particles, which is still tiny amount in 

comparison with Avogadro’s number (          ) for one mole of material.  Another 

problem is that, for system with small number of particles, a large fraction of particles 

may be near a surface and will therefore not experience a bulk environment.  

To avoid all these shortcomings in modeling bulk properties, it is necessary to 

construct boundary conditions that mimic the presence of bulk surrounding the system. 

This is usually achieved by applying periodic boundary conditions. In this method, the 

entire system is considered as a unit cell and is repeating periodically in space. With this 
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construction, all particles inside the original unit cell see an infinite bulk around 

themselves. Considering the cut-off radius for interaction, each particle needs to probe 

the square area of          around itself for energy calculation. The calculation of 

interparticle distances using this approach is explained in detail in [38,39]. 

 

 

Figure 2-7   Schematic representation of periodic boundary condition [39] 

As mentioned above, by calculating the distance for all particles within the cut-off 

radius, the energy difference (    ) for each move can be obtained from 

           
   

          
   

     (2-17) 

Based on Metropolis method, the value of      is used to decide whether or not to 

accept a trial move. To explain this in more detail, it is good to again consider partition 

function and its ability to generate a computable ratio to determine the probability of 

having our system in state m, namely 
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  (2-18) 

 The probability ratio between new and old states is therefore given by 

  

  
 

                

                
                 (2-19) 

There are two possibilities here.  If        the new state has an equal or lower energy 

relative to the old state.  In that case the move always is being accepted.  

 

Figure 2-8   Acceptance criteria for MC move [38] 

However, if        , the move is accepted with a probability proportional to 

              .  This is accomplished in practice by selecting a random number   that 

is generated uniformly in the range of [0,1).  If this random number is less than 

              the move is accepted.  Otherwise, the move is rejected.   This procedure 

is illustrated schematically in fig. 2-8. A good rule of thumb is that the 

acceptance/rejection ratio is about 50%. Adjusting this ratio can be done by 

changing      , which determines the size of a trial move. If this parameter is too small, 

a majority of moves will be accepted as little change has been made to the system 
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configuration in a trial move move.  If, however,       is large, the rejection rate may be 

too high given possible particle overlaps.  It is also necessary to all particles have a 

chance to attempt a displacement.  Finally, a MC time step is defined such that each 

particle in the system has an opportunity to move at least once. [38,39]    
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2.4 Molecular Dynamics Simulation 

Molecular dynamics simulation is another method for computing the thermodynamic 

and transport properties of many-body system.  In this approach, the motion of particles 

(atoms or molecules) obeys the laws of Newtonian physics. This assumption can cover 

wide range of materials with reasonable accuracy. Only for modeling the translational 

and rotational motion of light atoms and molecules (e.g., He, H2, D2) or vibrational 

motion with a frequency        is it necessary to consider quantum effects.  MD 

simulation is in many aspects similar to real experiment. We first initialize our system 

and evolve the system by solving Newton’s equations of motion for the entire system 

until equilibrium is obtained.  At this point one can compute equilibrium averages. What 

MD simulation provides us are the positions and momenta of the particles at each time 

step that have been obtained by following the dynamics of the system.  The equilibrium 

averages can be calculated from this raw data.   For example, applying the  equipartition 

theorem to all degrees of freedom in the system leads to the average kinetic energy 

relation 

 
 

 
     

 

 
     (2-20) 

where   and   are particle mass and velocity, respectively.  Using the above relation in 

the simulation, we can determine temperature of the system as 

      
    

    

    

 
     (2-21) 

Here, we measure total kinetic energy of the system and divide that by the number of 

degrees of freedom (  ) to acquire temperature at each time step. One can also calculate 
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the pressure.  For pairwise additive interaction one can evaluate pressure based on the 

virial theorem as follows,  

       
 

  
                  (2-22) 

where   is a dimensionality of the system, < > denote an equilibrium average and        

is the force between particles   and   at a distance    .[39] 

 

2.4.1 MD Algorithm 

The steps in a molecular dynamics program can be summarized as follows. 

 System setup 

 System Initialization 

 Force calculation 

 Integration of Newton’s equation of motion 

 Quantity measurements 

To start simulation we must determine the size of the system under consideration 

(i.e., the dimensions of the simulation cell), the number of particle in the cell and the 

interaction potential. To initialize the system, each particle is assigned a position and 

velocity. It is common to use a crystal lattice for the spatial assignment, while the 

velocities may be assigned according to a probability distribution.  For example, the 

Maxwell distribution function can be used to generate initial velocity components in all 

three directions using Eq. 2-21 to obtain a target temperature.  
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The force calculation is the most time consuming part of the MD program as one 

must calculate the force on all of the particles. In the simplest case, if we consider a pair 

potential, we must account for the contribution from all of a particle’s neighbors.  For 

particles i and j, the distance, r,  is calculated from  

          
 
        

 
        

 
  (2-23) 

If we only consider the interaction from the nearest image of another particle then, 

for a system with   particles, we must evaluate           pair distances. However, 

we already know that we can reduce this number by the methods mentioned at MC 

section, such as  doing force calculations just for     . In classical mechanics, the force 

                   , and so for the x component of force we have that 

       
     

  
   

 

 
 

     

  
  (2-24) 

Thus, for the Lennard-Jones potential, one finds that 

      
   

   
 

       
 

     (2-25) 

Similar calculations can be done on for the other directions for each pair of particles 

and the results added together to evaluate the force on particle i.  Since                 

one can also reduce the number of calculations that must be done. 

After computing all of the required forces, one can integrate Newton’s equations of 

motion to predict the next configuration of the system.  One way to do this is  by using 

the Verlet algorithm this is widely used in MD simulations. This method is based on 

Taylor expansions for     ∆   and     ∆  , where t is the integration time step.  

Upon summing these two expansions one obtains 
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    ∆               ∆   
    

 
∆    (2-26) 

To update the velocities, we need to evaluate force again for the new configuration. 

One can then calculate the new velocity from the relation 

    ∆        
    ∆       

  
∆   (2-27) 

Once the particle positions and velocities are calculated, one can generate the next 

configuration for the system.  The system trajectory in phase space is generated by 

repetitively calculating forces and updating particle positions and momenta. Fig. 2-9 

shows a flowchart for MD simulation program. 
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Figure 2-9   Flowchart of Molecular Dynamics program 
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In a conventional MD simulation, as described above, the total energy of the system 

and its total linear momentum are conserved during the run and are therefore constants of 

motion. These two criteria are commonly used to ensure the accuracy of a program (i.e., 

to verify that the integration of Newton’s equation of motion is correct). In the language 

of statistical mechanics, a system having constant N,V,E (number of particles, volume, 

and total energy) is called the micro-canonical ensemble. By contrast, a conventional MC 

simulation is based on the canonical (constant N,V,T) ensemble. There are other 

ensembles, such as the grand-canonical ensemble ( ,V,T) which applies at constant 

chemical potential, , or the isobaric-isothermal ensemble which applies at pressure and 

temperature constant. The use of these ensembles provides flexibility in computing 

different properties via statistical averaging. The detailed implementation of these 

ensembles in a computer simulation is described in more detail elsewhere [38,39].          
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3.  

VARIABLE GRAIN BOUNDARY 

DIFFUSIVITY IN POLYCRYSTALLINE 

MICROSTRUCTURE 

 

 

 

3.1 Background 

Most models of grain-boundary (GB) diffusion in polycrystals assume, for 

tractability, that all boundaries have identical diffusivities and, hence, the same activation 

energies for diffusion. For all but the simplest of microstructures the reality is, of course, 

much more complex. In particular GB character is inherently variable [45], and therefore 

there is a spectrum of diffusivities associated with the boundaries that comprise 

polycrystal. Moreover, there is accumulating evidence that layering transitions (i.e., 

complexion) [46, 47] can occur at grain-boundaries as a function of temperature or 

pressure, thereby altering boundary structure and chemistry and, therefore, boundary 

kinetics. The interplay among these factors in systems with interconnected GB networks 
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makes the determination of the effective diffusion response for polycrystals non-trivial in 

many cases. In particular, the effective activation energy may be a function of 

temperature and will be dictated by a complicated microstructural average. 

A number of simplified models of polycrystalline mass transport in idealized 

geometries have been formulated and quantitative results have been obtained in certain 

diffusive regimes. For example, Whipple and Suzuoka considered an isolated, isotropic 

grain-boundary (GB) region with a high diffusivity surrounded by a lower diffusivity 

bulk region and were able to obtain approximate, analytical solutions to the diffusion 

equation [8, 9]. The solutions can be applied to the description of polycrystalline 

diffusion in the case of well-separated boundaries (i.e., large grain size) and small lattice 

diffusion lengths (i.e., type-B diffusion kinetics) [48]. More recently, this analysis has 

been generalized to the case of thin films by Gilmer and Farrell [14, 49]. Moreover, 

Fisher [6] also employed an idealized representation of an isolated grain boundary to 

obtain the concentration profile in the boundary when there is a constant surface source, 

neglecting volume diffusion from that source. As the aforementioned models are based 

on structureless boundaries, other workers [50] have extended these treatments by 

incorporating more realistic descriptions of low-angle boundary structure in diffusive 

models that comprise arrays of dislocations. In addition, others have sought to include 

microstructural features of a polycrystal in their analysis [10], and to formulate numerical 

models of non-steady state diffusion in idealized polycrystals [18]. 

In recent years, some investigators have begun to examine the role of GB variability 

in the context of diffusion in polycrystalline media. For example, Schuh and coworkers 

[19] have modeled diffusion on a heterogeneous GB network comprising boundaries with 
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two distinct diffusivities and assessed the accuracy of effective medium approximations 

in determining an effective diffusivity. More recently, using a similar approach, Li and 

Holland [52] examined the interplay between network topology and boundary character, 

as described by two distinct GB diffusion coefficients. While this work provides an 

important connection between boundary structure and measurable kinetic properties, it is 

also desirable to link the effective diffusivity to realistic GB character distributions and to 

examine the temperature dependence of the activation energy for diffusion to identify 

diffusive regimes and to quantify deviations from Arrhenius behavior. 

 

3.2 Objectives  

In this work we assess the impact of GB variability on mass transport behavior in 

two models of a polycrystal by employing both numerical and analytical methods to 

extract an effective diffusivity from a steady-state diffusion profile. We consider both 

idealized cases in which the spectrum of GB diffusivities is discrete and the case in which 

there is a continuous spectrum of diffusivities. In this latter case, we link the distribution 

of boundary diffusivities to experimentally obtained GB character data and determine the 

effective diffusivity for two prototypical microstructures. The dependence of the 

corresponding effective activation energies on temperature is also calculated and 

compared to standard Arrhenius behavior. Finally, we examine the impact of GB phase 

transition known as a complexion transition on diffusion in a polycrystal. 
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3.3 Simulation Methodology 

Steady-state GB diffusion in a two-dimensional system having a polycrystalline 

microstructure is modeled here by employing a control-volume based, finite-difference 

method to solve numerically for the concentration field,       , as a function of position, 

    . For this inhomogeneous system in a cell of size     , one can regard the 

diffusivity,       ,  can also be regarded as a function of   . The determination of an 

effective diffusivity,      , for the system begins with the assignment of diffusivities and 

initial concentrations        ,  to both lattice and GB sites of a square lattice, along with 

the imposition of the Dirichlet boundary conditions             and             and 

the Neumann conditions                         (see Fig. 3-1).  

 

3-1 A schematic of the simulation cell showing the location of the applied boundary conditions. 
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Standard central-difference methods [42] are then used to discretize the differential 

equation 

                           (3-1) 

and a tridiagonal matrix algorithm is employed to obtain a numerical solution [41]. 

Verification of numerical solution is explained in appendix A. 

 After convergence to the steady-state concentration profile         , the 

corresponding flux vector                              , is calculated for every control 

volume.      is then obtained by first performing 

                      (3-2) 

where the angle brackets denote an average over the area of the system [53]. 

We will consider here two prototypical microstructures, namely a series of parallel 

boundaries and a polycrystal comprising Voronoi grains. These two characteristic 

structures are shown in Fig.’s 3-2a and 3-2b, respectively. The former structure is 

consistent with parallel transport and will be discussed in Sec. IV. The microstructure 

shown in Fig. 3-2b was generated from a centroidal Voronoi tessellation (CVT) 

algorithm comprising 100 generators [54].  
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3-2 Two prototypical microstructures used to calculated an effective diffusivity,      [55]. a.) A parallel 

arrangement of grain boundaries (shown in black). In general, each boundary has a different diffusivity and 

b.) a Voronoi microstructure resulting from randomly distributed generators. 

By contrast with the standard Voronoi tessellation based on randomly distributed 

generators, the CVT is constructed from generators that are the mass centroids of the 

resulting grains. Consequently, the CVT algorithm leads to a more uniform distribution 

of nearly-equiaxed grains. In our discretized representation, the grain boundaries of this 

microstructure are matched with a group of lattice sites such that neighboring control 

volumes share at least one side. Moreover, grain boundaries are assigned widths of at 

most three control volumes. To obtain statistically meaningful results,         at a 

temperature   is averaged over approximately 50 independent microstructures, each 

having the same number of generators. Finally, the corresponding effective activation 

energy is obtained by differentiation from the relation                            

        . 
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3.4 Polycrystalline Mass Transport 

As indicated above, mass transport in polycrystals is a complex phenomenon owing 

to several factors, including the variability of GB activation energies and the connectivity 

of the GB network. The interplay between these factors determines the effective 

diffusivity of the system and its dependence on temperature, stress, etc. In this section we 

first outline two descriptions of boundary kinetics in terms of the probability density of 

the boundary activation energy. While these models are necessarily idealized, a 

connection will be made with experimental data. We next highlight two prototypical 

microstructural models that constitute a collection of interconnected, fast diffusive 

pathways contained in a bulk region. For these models we obtain approximate analytical 

expressions for the effective diffusivity. In the Results section, we determine          for 

the two prototypical microstructures using the aforementioned kinetic models to describe 

the distribution of activation energies. 

3.4.1 Variability of Activation Energies 

As noted above, in most treatments of GB diffusion in polycrystals one makes the 

simplifying assumption that all boundaries have the same diffusivity and, hence, identical 

activation energies for diffusion [8, 9], While this assumption makes subsequent analyses 

tractable, in reality there is a distribution of GB character, and therefore a spectrum of 

diffusivities and associated activation energies,    
 

              , for the    grain 

boundaries comprising a given microstructure. Thus, it is useful to regard the activation 
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energy for diffusion,  , as a continuous random variable with a corresponding density of 

states,      , and an associated probability density function,       .  

3.4.1.1 Discrete Model 

A discrete model of microstructural kinetics having   GB activation energies and a 

Lattice (L) activation energy,   , would take the form 

                   
 
        

    (3-3) 

where    is the volume fraction of GB sites,    is the volume fraction of lattice and 

     is the Dirac delta function. These volume fraction variables obey the constraint    

   
 
    . This simplified kinetic model will be considered in some detail below. 

3.4.1.2 Continuous Model 

A more realistic, continuous model for GB diffusion must account for the 

microstructural complexity of a polycrystal. Consider the distribution of GB energy, for a 

ferritic steel, as obtained by Beladi and Rohrer [56], shown in Fig. 3-3. In the following 

development we will neglect, to a first approximation, the temperature dependence of  .  

One can approximate the logarithmic dependence of boundary population on    

shown in the figure by defining a GB population,     , such that the associated 

population density   

      
     

        
    
    

             (3-4) 
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where   is the (temperature-dependent) slope of the plot,   is a constant and 

           is the minimum (maximum) GB energy in the range considered. Proper 

normalization of this density leads to 

 

      
     

  
  

 

                        
           (3-5) 

 

where the total number of            
    

    
 . 

 

 

3-3 The logarithm of the number of grain boundaries as a function of GB energy, , for a ferritic steel, as 

obtained by Beladi and Rohrer [56]. 

The distribution of GB energies can be related to the distribution of GB activation 

energies for diffusion by employing an empirical relation due to Borisov that relates   to 

    at a temperature  [57-60]. This relation can be written conveniently as, 
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    (3-6) 

where   is the average atomic distance and           is the diffusional prefactor for a 

GB (the lattice). Given the Borisov relation, one can now perform a transformation of 

variables to obtain from Eq. (3-5) the expression 

       
  

        
             

    
               

         
               

 (3-7) 

Where   is the GB volume fraction,         ,        is a step function and 

   
                   

    

   
    

   
                   

    

   
    

  (3-8) 

In section 3.6.3, we will calculate an effective diffusivity based on this relation as a 

function of  ∆     
       

   . 
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3.4.2 Grain Boundary Network Connectivity 

Given the probability density for  ,      , one can determine an approximate 

expression for the effective diffusivity,         , for a particular microstructure. As noted 

above, we will consider two cases here, namely a parallel arrangement of boundaries and 

a CVT microstructure constructed from a collection of distributed generators. These 

prototypical microstructures are shown in Fig.’s 3-2a and 3-2b, respectively.  

3.4.2.1 Independent, Parallel Grain Boundaries 

To a good approximation the diffusion kinetics associated with the microstructure in 

Fig.3-2a is describable in terms of parallel transport processes. This approximation is 

valid to the extent that the different boundary regions are kinetically independent and, 

hence, when the boundary diffusivities are much greater than the lattice diffusivity. Thus, 

for a common prefactor,   , one may write that [61,62] 

    
    

  

  
               

 

   
 

 

 
  (3-9) 

And identify corresponding effective activation energy 

    
    

                
 

   
 

 
 

               
 

   
 

 
 

  (3-10) 

In this regard     
    is analogous to the classical partition function in statistical 

mechanics [63], an analogy that will be exploited further below.  
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3.4.2.2 Centroidal Voronoi Microstructure  

For the case of the centroidal Voronoi microstructure shown in Fig. 2b, it is useful to 

obtain analytically an approximate value for      . For this purpose, one can regard this 

system as a composite medium comprising elements having different kinetic properties. 

As such, there are several approaches that can be taken to determine      , including the 

establishment of rigorous bounds [64,65] and the use of a Maxwell-Garnett effective-

medium artifice [66, 67]. Following the Maxwell-Garnett approach as applied to mass 

transport [68], an approximation for      can be obtained as follows. For a system with a 

single GB diffusivity     , one can approximate the medium as a collection of lattice 

(grain interior) regions embedded in a GB matrix (see Fig. 3-4).  

 

 

3-4  A schematic of an idealized microstructure showing the geometry associated with the Maxwell-Garnett 

calculation of      . 

This assignment of regions is necessary to create a series of spatially compact 

domains surrounded by a common matrix. By solving for the steady-state concentration 
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fields in the lattice, grain boundary and embedded medium, one obtains, in two 

dimensions, 

            
                

                        
   (3-11) 

For systems having more than one GB diffusivity, one can take the same approach 

described above, except that one must define      to reflect the spectrum of GB 

diffusivities. Two prescriptions were employed here. The first prescription assumes that 

there is a mixture of GB diffusivities outside the percolation regime. Following 

Kirkpatrick [67], one finds, for a square lattice, that 

     
    

     

   
     

     
      (3-12) 

where      
   is the probability density function for the GB diffusivity. The second 

prescription, also known as Hart approach [65], assumes that the GB diffusivities can be 

combined independently . Thus, for two GB diffusivities, 

              
   

     
   

   

   
        

       
   

   

   
   (3-13) 

where     
  and     

  are the diffusional prefactors for the two boundaries. Both 

prescriptions will be used to interpret our results, as described below. 
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3.5 Analytical Results: Parallel Boundaries 

We first examine the case of diffusion in a system comprising parallel grain 

boundaries, as shown in Fig. 3-2a. As noted above, in the limit that the GB diffusivities 

are much larger than the lattice diffusivity, the boundaries constitute nearly independent, 

fast diffusive pathways. Thus, in this limit, we can calculate      directly from Eq.(3-9) 

without appealing to numerical methods. 

3.5.1 Two Boundary Types – Discrete Model  

For this case, consider two distinct GB boundary types, with corresponding 

activation energies    
   

 and    
   

 and volume fractions    and    . The effective 

diffusivity, found using Eq. (3-3), is 

                  
  

   
         

   
   

   
          

   
   

   
   (3-14) 

Figure 3-5a shows the dependence of the logarithm of         on     for the case 

of two distinct boundaries with coefficients given by       ,         and    

     and corresponding activation energies       ,    
   

     and    
   

      

(in units of eV). For this parameter set, there are broadly two diffusive regimes, as 

determined by the relative activation energies and the relative volume fraction of sites. 

This behavior is characteristic of kinetic quantities in systems having different activation 

energies, such as the electrical conductivity of an extrinsic semiconductor [69]. The 

effective activation energy is displayed in Fig. 3-5b. It is evident that there are two 
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regimes characterized by different activation energies. In Fig. 3-5c the temperature 

derivative              is shown as a function of  . This quantity plays a role 

analogous to the heat capacity in statistical physics, and exhibits a “Schottky” peak that is 

characteristic of multi-level systems. Indeed, from the location of this peak one can 

define a transition temperature separating the two kinetic regimes. More generally, the 

shape of this peak embodies information about the spectrum of activation energies that 

characterizes this system.  
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Figure 3-5 a.) The logarithm of               on inverse temperature, ∆     , for the case of two distinct 

boundaries with volume fractions given by         ,           and           and corresponding 

activation energies         ,    
   

       and    
   

        (in units of eV). b.) The effective activation 

energy,        , versus inverse temperature,      , for this case. c.) The quantity              versus 

temperature,  . Note the peak that is characteristic of multi-state systems.  
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3.5.1 Continuous Distribution of Activation Energies 

More generally, for the continuous distribution of activation energies given in Eq. (3-

7), one can calculate      using Eq. (3-9). Upon substituting Eq. (3-7) into Eq. (3-9) one 

obtains 

            
  

   
  

          

        
                                  (3-15) 

where the dimensionless parameters     ∆ ,   ∆     ,         
    ∆   and 

       ∆ . Nicholas found a similar expression for an effective reaction rate when 

considering the problem of parallel activated processes involving multiple catalytic sites 

[26]. Before examining the corresponding     
   , it is useful to obtain first the 

normalized, relative activation energy, calculated using Eq. (3-15), in the somewhat 

artificial, boundary-dominated limit          . One finds that  

      
         

   

∆ 
 

 

   
 

 

           
  (3-16) 

In the zero-temperature limit (   )         for   finite, while in the high-

temperature limit (   )       
 

 
 as      and         as     . Thus, if there is 

little variability in the distribution of GB activation energies over a range of width ∆ , 

     increases by an amount approximately equal to the average of    
    and    

   at 

high temperatures. If, however, there is substantial variability in the distribution of 

activation energies, then      varies over the full range from    
   

 to    
   

 as the 

temperature increases. 
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Figure 3-6 The dependence of the normalized, effective activation energy                
     ∆  on 

  ∆      for         (solid line),     (dashed line) and      (dot-dashed line). The ratio of lattice to 

GB volume fractions is          , and the normalized lattice activation energy       . 

In most cases, the behavior outlined above is masked by lattice diffusion due to the 

high volume fraction of lattice sites. At nanocrystalline length scales, however, where the 

volume fraction of grain boundaries can be 50% [70], one expects a competition between 

GB and lattice diffusion. Figure 3-6 shows the dependence of       on   (temperature) for 

three different values of   for the case that           and a normalized lattice activation 

energy        . As expected, at high temperatures       saturates at a value somewhat 

above that in the boundary-limited case since lattice diffusion is operative at these 

temperatures. 
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3.6 Simulation results: CVT microstructure 

For the case of a CVT, as shown in Fig. 3-2b, we obtain      by numerical solution 

of the steady state diffusion equation, as described above. For this microstructure, we 

investigate the transport behavior for three different scenarios, namely: 1.) two types of 

boundaries (i.e., boundaries having different activation energies and prefactors), 2.) a 

system undergoing a complexion transition in which a fraction of the boundaries 

transforms at a temperature   , and 3.) Boundaries having a spectrum of activation 

energies distributed according to Eq. (3-7). Rather than explore a wide range of 

parameter space, we focus here on a few illustrative cases that exhibit different diffusive 

regimes. 

3.6.1 Two Boundary Types – Discrete Model 

In this scenario two distinct grain boundary types, with diffusivities described by 

different activation energies and prefactors, comprise the microstructure. The goal here is 

to investigate the role of boundary type in determining the effective diffusivity. We 

consider two parameter sets, as summarized in Table 3-1. The first set corresponds to a 

typical situation in which grain boundaries constitute high-diffusivity paths (with 

relatively low associated activation energies) relative to the lattice owing to their 

relatively open structure. By contrast, the second set corresponds to a scenario in which 

the GB activation energies exceed that of the lattice. While this situation may be 

somewhat counterintuitive as it does not occur in metals, larger activation energies for 

GB diffusion have been reported for some ceramic systems [71]. For this latter case, the 
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effective diffusivity is dominated by grain boundaries at high temperatures while, for low 

temperatures, lattice diffusion is dominant. 

 

Table 1.  A summary of the kinetic parameters for the two cases comprising Scenario 1. The total volume 

fraction of boundary sites is 0.105 with approximately 40% of the boundaries being type 1.  

 Case I Case II 

   
   

    0.3 1.5 

   
   

    0.7 1.25 

    
   

    
   

  0.0001 100 

 

For the first case, Fig. 7a shows the dependence of          on inverse temperature 

as obtained from numerical solution of the steady-state diffusion equation and from two 

implementations of effective medium theory. Figure 7b shows the dependence of the 

associated effective activation energy,         , on temperature,  . More specifically, 

     is calculated in two different ways, using either the Kirkpatrick (see Eq. 3-12) or the 

Hart (see Eq. 3-13) approach.      is then obtained for each case by substituting      

into Eq. (3-11). As is evident from Fig. 3-7a, at high temperatures both implementations 

reproduce the numerical data well while, at low temperatures, the use of Eq. (3-13) in the 

effective medium approximation is superior. Moreover, the temperature dependence of 

         highlights two diffusive regimes with a kinetic transition temperature at 

       . The low-temperature regime is dominated, as expected, by the grain 

boundaries.  
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Figure 3-7 a.) The dependence of the logarithm of the effective diffusivity,            , on inverse 

temperature,       , for Case I (Scenario 1) as determined by the solution of the steady-state diffusion 

equation (circles) and from the Kirkpatrick (dashed line) and Hart (solid line) effective medium theories. 

b.) The associated effective activation energy         as a function of temperature,   (circles). Also 

shown is the GB contribution to     , calculated using the Hart approach (solid line), and the lattice 

contribution to      (dotted line). Note that there are, broadly speaking, two distinct diffusive regimes.  
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Case II corresponds to a scenario in which the GB activation energies exceed that of 

the lattice. While this situation may be somewhat counterintuitive as it does not occur in 

metals, larger activation energies for GB diffusion have been reported for some ceramic 

systems [71]. For this case, Fig. 3-8a shows the dependence of         on inverse 

temperature as obtained from numerical solution of the steady-state diffusion equation, 

by the Maxwell-Garnett effective medium theory (with the Hart approach) and by a 

hybrid approach described below. The use of the standard Maxwell-Garnett effective 

medium theory is not wholly adequate here, as indicated in the figure. The reason for this 

inadequacy is that the large volume fraction of lattice sites employed here and the higher 

lattice diffusivity implies that the lattice phase, rather than the grain boundaries, should 

be considered as the matrix phase at low temperature. Thus, one can apply the Maxwell-

Garnett approach as before in the high-temperature regime while, in the low-temperature 

regime, one should interchange the roles of GB and lattice. The resulting, hybrid effective 

medium theory is seen to reproduce the data well over the wide range of temperatures 

considered here. Figure 3-8b shows the dependence of the associated effective activation 

energy,         , on temperature. It should be noted that, by contrast with the previous 

case, the low-temperature regime is dominated by lattice kinetics while the high-

temperature regime reflects grain-boundary kinetics. 
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Figure 3-8  a.) The dependence of the logarithm of the effective diffusivity,            ,, on inverse 

temperature,       , for Case II (Scenario 1) as determined by the solution of the steady-state diffusion 

equation (circles). Also shown are the results of the hybrid effective medium theory (solid line) and the 

conventional Maxwell-Garnett approach (dashed line). b.) The associated effective activation energy 

        as a function of temperature,   (circles). Also shown is the GB contribution to     , calculated 

using the Hart approach (solid line), and the lattice contribution to      (dotted line). 
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3.6.2 Complexion Transition – Discrete Model 

In this scenario a fraction of the boundaries undergo a complexion transition as a 

function of temperature. As discussed above, such complexion transitions involve 

structural and chemical changes at a boundary, and therefore have implications for 

boundary kinetics [46]. Previous studies have led to the identification of a series of 

complexion types and the realization that property changes, such as changes in GB 

mobility or embrittlement [72], are associated with complexion transitions [73]. In this 

case, it is assumed that changes in GB diffusion attend these structural and chemical 

changes at interfaces. For simplicity, we again consider two distinct GB types having the 

parameter set summarized in Table 3-2. For temperatures below    this set corresponds to 

that for Case I of Scenario 1. To model a complexion transition, it is assumed that a 

transition occurs at a temperature        , and that there is an associated change in 

the diffusional prefactor corresponding to one of the grain boundaries. 

 

Table 2 A summary of the kinetic parameters for Scenario 2. The total volume fraction of boundary sites is 

0.105 with approximately 40% of the boundaries being type 1. The complexion transition temperature is 

        

 GB1 GB2 

       0.3 0.7 

         0.0005 

5.0       

50.0       
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Figure 3-9 The dependence of the logarithm of the effective diffusivity,            , on inverse 

temperature,       , for Scenario 2; Complexion transition as determined by the solution of the steady-

state diffusion equation (circles) and from the Kirkpatrick (dashed line) and Hart (solid line) effective 

medium theories. 

Figure 3-9 displays the dependence of         on inverse temperature as obtained 

from numerical solution of the steady-state diffusion equation and, in addition, as 

calculated using both the Kirkpatrick and the Hart effective medium theories. As is 

evident from the figure, the Hart approach again captures the diffusive response over a 

wide range of temperatures. Moreover, there is a jump in the value of      due to a 

change in a GB diffusional prefactor at   . This jump in the effective diffusivity translates 

into an increase in      at the same temperature. Thus, one must be careful in the 

interpretation of such plots to determine whether a change in      is due to a change in 

activation barriers or, as in this scenario, a change in attempt frequencies (i.e., 

prefactors). More generally, one would expect that different boundary types would have 
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one or more different complexion transition temperatures, and so the sharp jump evident 

in Fig. 3-9 would be replaced by a smoother transition. 

3.6.3 Continuous Distribution of Activation Energies 

In this scenario the activation energy for a given boundary is drawn from the 

distribution of activation energies given in Eq. (3-7). To draw from this distribution, one 

generates a uniform deviate and, from the logarithm of this deviate, obtains the desired 

exponentially distributed random variable [70]. The diffusivities obtained in this manner 

are then randomly assigned to the grain boundaries in the system. For this distribution of 

activation energies, we performed several simulations for different values of ∆  at a 

fixed value of              . This value of   was determined from the slope of the plot 

in Fig. 3-3, assuming that a typical value for the maximum   is about          .  

 

3-10 The logarithm of               as a function of ∆      for various values of   for a continuous 

distribution of GB activation energies. The solid lines represent the simulation results and the dashed lines 

are calculated using effective medium theory. The values of   from top to bottom are  
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The results from the aforementioned simulations are displayed in Fig. 3-10, which 

shows               as a function of        for several different values of      ∆ . 

Also shown are the predictions of effective medium theory, obtained by using Eq. (3-12) 

to calculate     for use in Eq. (3-11). As can be seen from the figure, effective medium 

theory reproduces much of the simulation data, especially at small ∆ . This agreement 

for small is intuitively reasonable since the effective medium approximation should work 

best for single activation energy or, in general, for a very narrow range of activation 

energies. 
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3.7 Conclusion 

In this work we employed both analytical and numerical methods to examine the 

impact of GB variability (i.e., a spectrum of boundary activation energies) on diffusion in 

a polycrystal [74]. In particular, we calculated an effective diffusivity,     , and 

associated activation energy,      , as a function of temperature for different 

microstructures using simplified, multi-state models and models based on experimentally 

obtained GB energy distributions. The main conclusions of this study are as follows. 

1. The variability in polycrystalline GB character leads, via the Borisov relation, to a 

probability density for GB activation energies and an associated effective diffusivity that 

can be characterized by a few parameters. 

2. From the effective diffusivity one can obtain temperature dependent effective 

activation energy. From this activation energy, one can identify different diffusive 

regimes and transition temperatures. 

3. Effective medium theory can be generalized to incorporate both lattice and 

multiple GB diffusivities. This theory describes the effective diffusivity in some 

polycrystalline systems over a wide range of temperatures. 

4. Complexion transitions affect the spectrum of GB activation energies, and one can 

assess their impact on GB diffusion using the numerical procedure described above. 
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4.  

HYBRID ATOMISTIC SIMULATION OF 

FLUID UPTAKE IN A DEFORMABLE 

SOLID 

 

 

4.1 Introduction 

The behavior of a matrix under fluid infiltration is of significance for designing 

new materials in various applications ranging from analytical separations to drug 

delivery. For a compliant matrix, the distortion that attends fluid uptake can lead, for 

example, to swelling in polymeric systems and concomitant non-Fickian diffusive 

behavior [24-26]. For the particular case in which the fluid permeates a porous solid and 

generates stresses that couple with the fluid concentration field, the resulting poroelastic 

response can alter the kinetic and structural response of the system [76,77]. While the 
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conceptual framework for poroelasticity was developed in the early work of Biot [78], the 

field remains active given the technological relevance of this phenomenon.  

Several approaches exist for modeling fluid imbibition in a system. For example, 

Gelb and Hopkins [34] used molecular dynamics simulation to study the dynamics of 

fluid flow into empty cylindrical pores in which the pore-wall atoms were immobile. 

Ahadian et al. subsequently simulated imbibition of a simple fluid into a nanochannel 

using atomistic simulation to investigate the wall-fluid interaction [35]. More recently, 

Joly [36] employed molecular dynamics (MD) simulation to examine water uptake by a 

carbon nanotube, and Stukan et al. [37] also used MD to investigate the role of nanopore 

roughness on fluid imbibition. As in the work of Gelb and Hopkins [34], the atoms 

comprising the pore walls were static. At longer length scales, a phase-field model was 

developed to investigate fluid infiltration in a weakly anisotropic, poroelastic solid. It was 

found that imbibition depended on the strength of the anisotropy and the relative 

orientation of the propagating fluid front [79,80]. 
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4.2 Objectives  

Given the inherent computational demands of simulating fluid imbibition at the 

atomic scale, most such simulations of this process take the matrix atoms to be immobile. 

This assumption is often justified, especially for fluid atoms having small radii, in 

situations where elastic energy considerations are relatively unimportant. The modeling 

of elastic deformation that attends fluid uptakes necessitates, however, the incorporation 

of matrix stresses via the inclusion of matrix-atom coordinates. As an illustration of a 

simple system that exhibits coupling between diffusional and elastic fields, we explore in 

this study the impact of elastic deformation, as described by a compositional strain, on 

fluid uptake in a face-centered cubic solid that is in contact with a reservoir. Our aim is to 

explore the consequences of this coupling on the elastic response of the solid and the 

diffusional transport of the permeating fluid. For this purpose, we have tailored a hybrid 

MonteCarlo–molecular dynamics scheme to model fluid uptake in the solid from a 

reservoir that is maintained at a constant chemical potential for the fluid species. In 

particular, a grand-canonical Monte Carlo (GCMC) simulation is employed to maintain a 

fixed chemical potential in a reservoir of fluid atoms that is in contact with a solid. The 

trajectories of both fluid and solid atoms in the solid are obtained using MD simulation. 

By monitoring the fluid uptake, as well as the instantaneous structure factor and lattice 

parameter for the solid, we develop a description of fluid permeation in a deformable 

medium. 
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4.3 Background 

In the background section, we are going to review the concept of fluid uptake and 

compositional strain which have been both frequently addressed in this work. These two 

concepts play crucial roles in our analysis and brief explanation of them can help to 

follow the proposed analytical approach easier.     

4.3.1 Fluid Uptake 

Our analysis of fluid uptake,      , at time t begins with a comparison to ideal, 

Fickian imbibition, defined here as uptake following the standard diffusion equation with 

a constant diffusion coefficient,  . Consider a spatially uniform, solid slab confined to 

the region        having a diffusant concentration,         , that is in contact with a 

diffusant (fluid) reservoir at its boundaries,     . For the case in which             

in the slab and           , one finds that [81] 

 

     

  
    

 

             
            

     
     (4-1) 

 

where    is the uptake at saturation (i.e.,     ) and the superscript “F” denotes 

Fickian behavior (i.e., following from the standard diffusion equation). 

Thus, systems characterized by the uptake function given by Eq. (4-1) are, by our 

definition, Fickian in nature, and we are especially interested here in characterizing any 

deviations from this behavior observed in our simulations. Such deviations may occur for 
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various reasons, including, for example, stress generation in the matrix and time-

dependent structural changes (e.g., in polymers) [82,23]. In the context of this work, it is 

expected that the permeation of relatively large diffusant atoms in an elastic solid will 

generate stresses that will impede further diffusion. A link between the spatiotemporal 

evolution of          and generated self-stresses is described below. 

 

4.3.2 Compositional strain 

The diffusion of fluid atoms through the void space in a crystalline solid leads to 

self-stress, and therefore local strains, that depend on         . If the reference state of the 

system is associated with a uniform concentration   , then, in a cubic system, one can 

specify the components of the compositional strain tensor as    
             [83] 

where    is the compositional strain parameter and     is the Kronecker delta. For small 

strain, the corresponding stress is proportional to the elastic strain and so, in the absence 

of an external stress, 

                 
     (4-2) 

where     are the components of the stress tensor and       are the components of the 

elastic constant tensor. Extended tensor for equation (4-2) can be written as 
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Here,   and   are Young’s modulus and Poisson’s ratio and    is the increase in 

concentration of liquid into the solid. For a cubic solid one can readily obtain the 

pressure,  , in terms of the compositional strain. Taking the trace of both sides of Eq. (4-

2) and noting that             (with the summation convention), one finds that 

                   (4-4) 

where   is the bulk modulus. For cases in which the pressure in the reference state is 

nonzero,          
 

 
  . Equation (4-4) can be used to determine the compositional 

strain in a simulation from knowledge of the bulk modulus of a material and its 

dimensional changes resulting from the permeation of a fluid. One aim of this paper is to 

relate        to  . 
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4.4 Simulation Methodology 

A hybrid Monte Carlo–molecular dynamics scheme was employed here to model 

the coupling of a fluid reservoir to a deformable solid. From a number of such approaches 

developed in recent years [84–87], we selected a methodology for this study that is an 

extension of an earlier scheme that is well suited to the study of fluid uptake [84].  

4.4.1 Simulation Setup 

Our simulations are based on a layered geometry wherein, initially, a face-

centered cubic (fcc) solid slab comprising    atoms of radius    is in contact with a 

fluid “reservoir”
1
 containing    atoms of radius    , as shown in Fig. 4-1(a). The 

system is subject to periodic boundary conditions in each principal direction. The 

chemical potential of the reservoir,     , is held fixed using GCMC (see below), and so 

the number of fluid atoms in the reservoir fluctuates during the course of a simulation.  

The interactions in this binary system are governed by a modified Lennard-Jones 

potential developed by Broughton and Gilmer [88]. The interatomic potential is given by 

       

 
 
 

 
       

   

 
 
  

  
   

 
 
 

             

   
   

 
 
  

    
   

 
 
 

    
 

   
 
 

                   

          

 

 (4-5) 

 

                                                 

1
 In this context, the reservoir has a finite extent. It is connected, via a GCMC scheme, to a particle reservoir that 

maintains its chemical potential. 
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where     and     are the usual energy and length parameters, respectively, and   

and   denote atom types (i.e., solid or fluid)
2
. The energy and length parameters were 

calculated using the Lorentz-Berthelot mixing rules,                  and 

           . To express our results in reduced units, we take         and 

        where        denotes solid (fluid) atoms. The other potential parameters are 

given, in units of  , by             ,             ,            ,     

           and             . 

 

 

Figure 4-1    (a)A schematic of the simulation cell used to simulate fluid uptake from a reservoir into a 

deformable solid. (b) A snapshot showing fluid atoms dissolved in the solid. 

                                                 

2
 As is customary, the symbols   and   are used here for potential parameters, with superscripts to denote atom types. 

They should not be confused with the symbols for the components of the strain and stress, which are second-rank 

tensors. 
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A simulation begins with          solid atoms and          or          

fluid atoms, with masses        and         , in a simulation cell of fixed volume 

with dimensions          , where          and          , in the    , and   

directions, respectively. The solid atoms constitute a fcc crystal with a lattice parameter 

chosen to yield zero pressure for an isolated crystal at the desired temperature,   , using 

the results of Broughton and Gilmer [88]. These authors performed a series of constant-

volume molecular dynamics runs in which the lattice parameter was varied from run to 

run to obtain zero pressure.  

4.4.2 Simulation Procedure 

As fluid atoms diffuse into the solid, the solid is strained tetragonally, and 

therefore the volume of the fluid reservoir decreases correspondingly, consistent with a 

fixed simulation cell volume. A driving force for diffusion is created by maintaining the 

chemical potential of the fluid atoms in the reservoir at a fixed value,     . For this 

purpose, we adapted the approach of Heffelfinger and van Swol [84], who combined 

GCMC simulation with an isothermal molecular dynamics simulation to fix      while 

allowing for diffusional transport on long time scales.  

Our procedure, after setting up the simulation system, is as follows. First, fluid 

atoms in the reservoir are equilibrated with the conventional metropolis Monte Carlo 

method at fixed   . Then the chemical potential of the equilibrated reservoir,     ., is 

determined by using Widom’s method (Appendix B) [89]. Next, the system is evolved 

for 50 steps, with each time step being 0.005 (reduced units), using isothermal MD. 
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Temperature control was achieved via velocity rescaling at every time step. Following 

this step, the chemical potential of the reservoir is readjusted to      by applying GCMC 

algorithm [84], with approximately 50 attempts for atomic insertion or deletion [39]. An 

insertion attempt of fluid particle in the reservoir is accepted by: 

                   
 

       
   

    ∆  

   
  (4-6) 

 

where  ,   and   are the volume, current number of fluid particles in the reservoir and 

initial chemical potential, respectively.     as a Boltzmann’s constant,   as the 

temperature,     as the energy difference after insertion and   as the de Broglie 

wavelength.  Upon the insertion was accepted, its velocities were assigned based on a 

Maxwell-Boltzmann distribution. Same approach was applied for particle deletion by 

following probability  

                   
   

 
   

    ∆  

   
   (4-7) 

 

Each course for controlling the chemical potential was included 44 attempts of 

adjustment which randomly distributed between insertion and deletion. Test result for 

reservoir chemical potential consistency (                ) is shown in figure 4-2. The 

average fluctuation is about 3% which indicates GCMC algorithm effectiveness in 

controlling chemical potential of the reservoir.     
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Figure 4-2 Test results for reservoir chemical potential consistency 

Widom’s method is used periodically to verify that the chemical potential has 

been set correctly. This sequence of steps is repeated until the solid is saturated with fluid 

atoms. Depending upon the magnitude of        , typical runs consisted of 

approximately         to         MDS. Finally, to obtain statistically meaningful 

data, simulation results were averaged over many realizations of the system (typically 

60–80 runs). 

  



78 

 

4.5 Results 

The transport behavior of a fluid in a deformable solid was modeled using two 

different atomic size ratios, namely             and      , to explore the impact of 

elastic deformation on diffusion. As both ratios are much less than one, it is expected that 

fluid atoms will dissolve into the interstitial voids in the fcc structure, though 

preferentially into the larger octahedral voids for the larger fluid atoms. Figure 4-1(b) 

shows a snapshot of the atomic coordinates after some elapsed time that highlights the 

dissolution of the fluid atoms. 

Consider first a system with             at temperature        . Figure 4-3(a) 

shows the uptake function,          , as a function of square root of simulation time, 

   , where time is measured in units of   . As expected, fluid uptake increases 

monotonically with time until saturation at late times. To facilitate the interpretation of 

these data, the uptake curve is replotted in Fig. 4-3(b) as a function of scaled time, 

      . The diffusion coefficient,  , was determined by fitting the Fickian uptake given 

in Eq. (4-1) to the data. More specifically, we define a parameter 

                              , where the sum is over simulation times and 

the superscript “F” denotes the Fickian result [Eq. (4-1)]. The coefficient   is chosen to 

minimize   . For this system it was found that                 . For comparison, 

the corresponding Fickian uptake function,          , is also displayed in Fig. 4-3(b). 

As is evident from the figure, the simulation data is well described by a Fickian profile, 

as might be expected for particles that are able to fit readily into interstices. 
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Figure 4-3   (a) The uptake function,          , as a function of the square root of time,   , for        

    . The results were averaged over 60 independent runs with mean fractional error of 0.074 at each 

recorded time step. (b) The uptake function vs scaled time,       in comparison with the corresponding 

Fickian uptake function from Eq. (4-1) (solid line) 
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While the fluid particles can be accommodated by the voids in the solid, there is, 

nevertheless, an expansion of the solid due to the compositional strain that attends fluid 

permeation. To highlight this expansion and also confirm that the solid remains intact, 

one can calculate the instantaneous structure factor,          , for the solid atoms for a few 

fcc reciprocal lattice vectors. Figure 4-4(a) shows           versus time for              

,          , and         , where   is the lattice parameter. The relatively large values 

for these quantities indicate that the lattice remains intact, and the tetragonal strain in the 

  directions splits their degeneracy. In other words, the structure factors in Fig. 4-4 show 

that the solid lattice, while distorted due to the presence of interstitials, remains 

crystalline. Moreover, the smaller value of                      at late times indicates 

that the solid is lengthening in the   direction. Detail explanation about structure factor 

calculation can be found in appendix (B). 
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Figure 4-4   (a) The instantaneous structure factor,          , vs time for the wave vectors 

            (○),          (■) and          (▲), respectively, for 

            . (b) The same as in panel (a), except that             . 
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A more direct measure of expansion is given in Fig. 4-5(a), which shows the 

strain component         as a function of time. Clearly,     increases with time until 

saturation as the simulation cell expands to accommodate fluid atoms. The value of the 

strain at saturation,         , can be used to determine the associated compositional 

strain parameter   using Eq. (4-4). At this temperature, the bulk modulus              

and so, given the calculated pressure at saturation, one finds that         . 

Consider next a system with               , again held at temperature    

    . Figure 4-6(a) shows the uptake function,          , as a function of square root of 

simulation time,   , and Fig. 4-6(b) shows the uptake function and the corresponding 

Fickian uptake function versus      . As before, the value for   was determined from a 

best fit using the    parameter, and the compositional strain parameter          was 

determined from    at saturation [see Fig.4- 5(b)], as above, by using Eq. (4-4). As is 

evident from the figure, the uptake function is not accurately described by the Fickian 

uptake function. The origin of this non-Fickian behavior is discussed below. 
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Figure 4-5   The tetragonal strain component,        , vs time for  a)             and b)         

     , respectively.  
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Figure 4-6   (a) The uptake function,          , as a function of the square root of time,   , for        

     . The results were averaged over 80 independent runs with mean fractional error of 0.074 at each 

recorded time step. (b) The uptake function vs scaled time,       in comparison with the corresponding 

Fickian uptake function from Eq. (4-1) (solid line) 
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The strain is, of course, associated with diffusant atoms distorting the local atomic 

environment around structural voids. These local distortions are reflected in          , as 

displayed in Fig. 4-4(b), for the same high-symmetry reciprocal lattice vectors used 

above. The tetragonal strain induced in the   direction again splits the degeneracy in the 

structure factor, the relatively large value of                     , due to the fact that 

large interstitials constrain the vibrations of lattice atoms.  

 

 

Figure 4-7   The partial radial distribution function,        , vs distance,   where   and   denote the solid 

and fluid species, respectively, for               (thin curve) and                (thick curve). The 

arrows indicate the location of octahedral interstices. Note that the peaks corresponding to the octahedral 

locations are more pronounced for                

The spatial distribution of the fluid atoms in the available interstices is highlighted 

in Fig. 4-7, which shows the partial radial distribution function,        , versus distance, 

 , where s (f ) denotes the solid (fluid) atoms, for both                and         
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      . In principle, diffusant atoms can reside in either octahedral or tetrahedral 

interstices, though larger elastic strains (and therefore larger strain energy) are associated 

with the tetrahedral voids. However, as noted from the figure, the peaks corresponding to 

the octahedral voids (indicated by the positions of the arrows) become more pronounced 

for                as these larger voids are required to accommodate larger atoms. 
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4.6 Discussion 

As noted above, the normalized uptake function for a diffusant with         

        is not well described by the corresponding Fickian uptake function given in Eq. 

(4-1). There are at least two possible reasons for this disagreement. First, in stressed 

solids, the chemical potential is a function of both concentration and stress (i.e.,    

          ), and therefore the diffusive flux is, in general, a function of the stress state of 

the system. For cases in which diffusing atoms are relatively large, the flux will depend 

on the resulting self-stresses and therefore  . In some cases this stress dependence leads 

to a flux that depends on the concentration throughout the system, rather than simply on 

the gradient of the local concentration. In the appendix (C) we discuss in more detail the 

role of self-stress on diffusion in our problem. It is found that, in our case, the flux 

depends only on the gradient of the local concentration, and the corresponding diffusion 

equation is therefore spatially local. Thus, the dependence of the driving force for 

diffusion on stress does not explain the observed behavior of the uptake function. 

Another possible reason for the observed non-Fickian behavior is that the 

diffusion coefficient is a function of the local concentration,  , as might be expected for 

interacting diffusant atoms [90]. Such interactions arise from the interatomic potential 

and from the elastic coupling of centers of dilatation moving in an anisotropic medium. 

Thus, in our system, one would expect diffusive motion to occur readily for c small, but 

to become slower for larger c as stresses generated by the diffusant atoms constrict 

interstices and migration pathways. To examine this possibility, we consider a simple, 

two-step parametrization of the diffusion coefficient, namely 
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                                       (4-8) 

where   ,   , and    are constants that depend on the compositional strain parameter   

and   denotes the unit step function. For this parametrization, we solved the associated 

one dimensional diffusion equation 

  

  
 

 

  
     

  

  
   (4-9) 

numerically using the method of lines [91] for our thin-slab geometry. The corresponding 

uptake function is displayed in Fig. 4-8, along with the simulation results, for the 

choices              ,               and       . 

 

 

Figure 4-8    The uptake function,          , as a function of the square root of the simulation time,   , 

for             . Also shown is the uptake as calculated using Eqs. (4-5) and (4-6) (solid line). 

This simplified parametrization of       is seen to provide a good description of the 

simulation results. From these considerations one can infer the behavior of these 
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parameters as a function of  . For example, one can see that    increases as   decreases, 

with        as      . In addition, it is clear that    is a monotonically decreasing 

function of   as larger atoms are associated with greater strain along diffusive pathways. 

 

4.7 Conclusion 

In this work, a hybrid Monte Carlo–molecular dynamics scheme is employed to 

model the coupling of a fluid reservoir to a deformable solid, and the resulting 

permeation of the fluid into the solid was examined to highlight the interplay between 

diffusional and elastic fields. Both Fickian and non-Fickian regimes are identified and 

described in terms of the relative size of the fluid and solid atoms. The impact of self-

stresses on solid-state diffusion were investigated by monitoring the fluid uptake and 

evolving partial structure factors and radial distribution functions. 
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5.  

CONCLUSIONS 

 

 

 

 

5.1 Major Achievements 

In first project unique methodology is developed to determine the effective 

diffusivity of the given microstructure based on the information provided by experiment. 

In this methodology, we have been able to transfer GB energy probability density 

(obtained by experiment) to a distribution function of GB activation energy and then use 

that in FD numerical simulation for calculating effective diffusivity and also effective 

activation energy of entire microstructure. 

Second project is also proposing a new framework for investigating elastic behavior 

of solid under fluid infiltration in atomistic scale. Setting a deformable solid in contact 

with infinite fluid reservoir can provide more realistic conditions for modeling of fluid 

diffusion through the solid matrix. This framework can be employed for various 

applications ranging from membranes and porous materials to grain boundary diffusion. 
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5.2 Summary of Findings  

In first part of this work we employed both analytical and numerical methods to 

examine the impact of GB variability (i.e., a spectrum of boundary activation energies) 

on diffusion in a polycrystal. In particular, we calculated an effective diffusivity,  , and 

associated activation energy,      , as a function of temperature for different 

microstructures using simplified, multi-state models and models based on experimentally 

obtained GB energy distributions. The main conclusions of this study are as follows. 

1. The variability in polycrystalline GB character leads, via the Borisov relation, to a 

probability density for GB activation energies and an associated effective diffusivity that 

can be characterized by a few parameters. 

2. From the effective diffusivity one can obtain temperature dependent effective 

activation energy. From this activation energy, one can identify different diffusive 

regimes and transition temperatures. 

3. Effective medium theory can be generalized to incorporate both bulk and multiple 

GB diffusivities. This theory describes the effective diffusivity in some polycrystalline 

systems over a wide range of temperatures. 

4. Complexion transitions affect the spectrum of GB activation energies, and one can 

assess their impact on GB diffusion using the numerical procedure described above. 
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In the second part, a hybrid Monte Carlo–molecular dynamics scheme is 

employed to model the coupling of a fluid reservoir to a deformable solid, and the 

resulting permeation of the fluid into the solid was examined to highlight the interplay 

between diffusional and elastic fields. Both Fickian and non-Fickian regimes are 

identified and described in terms of the relative size of the fluid and solid atoms. The 

impact of self-stresses on solid-state diffusion were investigated by monitoring the fluid 

uptake and evolving partial structure factors and radial distribution functions. 
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5.3 Future Works 

Several extensions of this work are currently underway. For the first project, it is of 

interest to determine how microstructural descriptors, such as grain size and shape, 

affect      . With regard to grain size, stereological arguments can be used to estimate the 

fraction of GB sites. For example, for a Poisson Voronoi structure the average GB 

perimeter per grain is      , where   is the areal grain density [74]. Thus, it is 

straightforward to estimate the fraction of boundary sites for a fixed number of grains. 

Second, as indicated above, the assignment of activation energies to boundaries in this 

work was, for simplicity, taken to be random. In reality, one would expect GB properties 

to be spatially correlated, and it would therefore be of interest to examine quantitatively 

how spatial correlations influence      . This may be accomplished by introducing a 

correlation length in the distribution of GB properties that would extend no more than 

one or two average grain diameters. Finally, in many studies of GB diffusion in 

polycrystals the grains coarsen during the course of an experiment. The introduction of 

grain coarsening in our model represents a significant future challenge. 

The results obtained in atomistic project suggest that analogous simulation studies 

of fluid uptake in porous media will be useful in elucidating the roles of pore geometry 

and stress on diffusion. Given the geometric complexity of a porous medium, it will be of 

interest to characterize the interconnectivity of the porous network and to calculate the 

local stresses [92] in different regions of the system. It is expected that the swelling of 

portions of this network that attend diffusion will alter the corresponding diffusive flux. 

A simulational study of fluid uptake by a porous medium is the subject of future work.  
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 APPENDIX A 

In all simulation studies, it is common to verify model by a classic example with 

already known answer. As mentioned before Whipple analytical solution for isolated 

grain boundary is precise and exact. In this order we employed that to verify our 

numerical solution. The schematic of framework setup for Whipple solution can be seen 

in figure A-1. As it is shown, isolated grain boundary is embedded in bi-crystal system in 

contact with constant source at the bottom. Diffusants are able to penetrate through the 

both grains as well as the grain boundary. Since grain boundary diffusivity is much 

higher than grains (in this case             ), diffusion front advances into the grain 

boundary faster than the grains. This advancement leads to a severe concentration 

gradient between grain boundary and grains. Consequently, secondary diffusion accrues 

as a leakage from the grain boundary through the grains.         
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Figure A-1  Schematic of isolated grain boundary for Whipple analytical solution 

To model this problem, we solved Fick’s second equation (Unsteady-state condition) 

in the domain by considering zero gradient (Neumann) boundary condition at top and 

lateral sides and constant concentration at bottom. The prediction of model then 

compared with Whipple analytical solution [8,2]. Figure A-2 shows the concentration 

contours obtained by model at certain time.  

 

 

Figure A-2  An example of concentration contours obtained by model 
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Whipple worked out his solution by using the Fourier-Laplace transformation 

technique. His solution is valid for narrow grain boundary under certain conditions as 

follows [2]; 

         

     and    are independent of concentration, position and time 

 Flux continuity at GB/Lattice interface 

Considering all above, diffusant concentration in bulk can be calculated by 

 

                      
   

      
            

      
 

 
     

 

 
 
∆  

∆  
 
   

   
   

 
     

 (A1) 

Where  ,   and   are dimensionless variables corresponding to     and   , respectively 

and ∆ is a dimensionless parameter define as; 

  
     

         (A2) 

        
     (A3) 

  
 ∆    

          (A4) 

∆ 
   

  
  (A5) 

These dimensionless variables have physical meaning as well.   represents direct 

volume diffusion from source into the grains. On the other hand,   stands for volume 

diffusion from grain boundary in to the grains.   can be described as a ratio between 

GB/Bulk diffusion lengths. To have accurate measurement in sectioning experiments   

must be greater than 10 to hold essential condition for this analytical solution [2]. 
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Whipple equation has been solved numerically by using Mathematica software 

dimensionless variables determined for our system. Then we have been able to make 

comparison between model predictions and Whipple analytical solution.      

 

Figure A-3  Plot of concentration change in   direction for       and       , as determined by the 

unsteady-state diffusion model (circles) and from the Whipple analytical solution (solid line)  

As shown in figure A-3, results have been predicted by model are in reasonable 

consistency with Whipple analytical solution. Only 1% deviation from analytical solution 

was observed. This small inconsistency was also expected owing to employing finite 

difference control volume in numerical model which solves diffusion equation in discrete 

manner rather than continues approach used by Whipple [15, 18]. This level of precision 

in model prediction assured us about reliability of employed numerical solution.    
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 APPENDIX B 

In this appendix, we are going to explain some statistical mechanics approaches for 

calculating desire thermodynamics and structural properties of the system modeled in 

atomistic scale. 

Widom Method to Determine Chemical Potential 

Widom insertion method [89] is a simple and precise way to measure chemical 

potential in low density fluid. The statistical mechanics behind this method is quit 

intuitive and comes from original definition of chemical potential   in thermodynamics. 

   
  

  
 
  

    
  

  
 
  

 (B1) 

Where   and   are the Helmholtz free energy and entropy. In this order, by following the 

expression of Helmholtz free energy                  and Eq.(B1), one can 

derive chemical potential for a large  as; 

                   (B2) 

By using partition function, above equation could be written in statistical mechanics as; 

         
    

   
        

                    

                   
   (B3) 

Equation (B3) can be separated an ideal gas contribution     and the excess part    as 

           (B4) 

Since the ideal gas contribution can be evaluated analytically, we are here interested 

in    . Considering that ∆                we can write     as; 

                       ∆      (B5) 

Or  
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                 ∆     (B6) 

Where        ∆     stands for canonical ensemble average of Boltzmann factor over 

the configuration of N-particle system. Eq. (B6) can be simply utilized by conventional 

Metropolis sampling. In practice, the procedure is as follow; 

 Conventional Monte-Carlo simulation carried out on the system of N particle 

 In predetermined interval, imaginary particle (   ) inserts to the random 

coordination generated into the system to compute       ∆   at     . 

 Previous step repeats to reach to reasonable average for       ∆     

     is determined without imposing any change to the N-particle system. 

The important point in Widom method is that although it has many similarities with 

Metropolis and GCMC algorithms, but during the run we never accept any trial 

insertions. We just evaluate response of N-particle system to presence of an extra particle 

and use that to determine chemical potential of N-particle system.[39]   
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Statistic Structure Factor 

In solid state physics and crystallography, the static structure factor is a mathematical 

function describing the amplitude and phase of a wave diffracted from crystal lattice 

planes characterized by Miller indices (h,k,l). In that sense, it is able to reveal information 

about the amount of atom displacements from their original coordination in crystalline 

structure.  The structure factor        can be expressed as; 

                                           B(7) 

where the sum is over all atoms in the unit cell, x(j),y(j),z(j) are the positional 

coordinates of the j
th

 atom. Assuming we are going to compute structure factor in (1,1,1) 

direction. The procedure in simulation would be as take a following summation over all 

atoms in the system 

       
   

 
                          B(8) 

Where    is a lattice constant and then          could be calculated as; 

         
 

   
     )  B(9) 

Where    is a complex conjugate of  . Ideally this value should be one, but in reality 

its actual value for crystalline materials is close to one. Higher value for this parameter 

indicates fewer changes in original crystal structure.[93] 

  

http://reference.iucr.org/dictionary/Miller_indices
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 APPENDIX C 

In this appendix, we examine the dependence of the diffusive flux on the 

concentration field. The diffusive flux depends on the gradient of the chemical potential 

of the diffusing species and, as discussed above for a deformable solid, this potential 

depends on the stress state of the system. With the assumption that mechanical 

equilibrium obtains quickly on the time scale of mass diffusion, it can be shown that in 

some cases the stress is a functional of the concentration field, thereby rendering 

diffusion spatially nonlocal and therefore non-Fickian. One such case is that of mass 

transport in an infinite, elastically anisotropic solid having cubic symmetry [94]. Another 

example is that of diffusion in an elastically isotropic plate in which one side of the plate 

is in contact with a fluid, with a resulting asymmetric concentration profile [83]. The 

system considered here is a thin, elastically anisotropic plate having cubic symmetry in 

contact with a fluid on two faces. We consider below the diffusive flux in this system. 

Larch´e and Cahn [94] have shown that the components of the diffusive flux,    , 

can be written as 

     
 

   
                      (C1) 

where   is a kinetic coefficient,    is a part of the chemical potential that depends on 

concentration, and   is the density. It has been assumed here that the elastic constants of 

the system do not depend on  . 

Assuming that the elastic fields relax quickly on the time scale of atomic 

diffusion,    can be expressed in terms of  . This may be accomplished by starting with 

the equations of compatibility [95] 
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    (C2) 

Where      are the components of the Levi-Civita tensor, and rewriting them in terms of 

the stress. 

The components of the strain tensor can be written in terms of those of the stress 

tensor by inverting Eq. (4-2) to obtain 

                
   (C3) 

where the      are the components of the compliance tensor. For a cubic solid [96], 

                                       (C4) 

where    is the Kronecker   and         if               and otherwise zero. Also, 

for this case,    
            . The coefficients in Eq. (C4) can be written in terms of 

the elastic constants (in Voigt notation) as 

   
   

                   
 

  
 

    
     (B5) 

  
 

             
 

where the anisotropy factor                      vanishes for an isotropic 

solid. Upon inserting Eqs. (C3) and (C4) into Eq. (C2) and taking a trace, one finds that 

        
 

       
     

 

       
   

     

   
  

     

   
  

     

   
      (C6) 

For an isotropic solid, Eq. (C6) can be simplified to read 

        
   

   
       (C7) 

where   and   are the Young’s modulus and Poisson’s ratio, respectively. 
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We first consider the isotropic case. Following Larch´e and Cahn [83], one has 

that 

     
   

   
         (C8) 

where   and   are constants. Since the boundary conditions for the thin slab are the same 

at•  ,      , and so                            and the flux is therefore spatially 

local
3
 [32]. 

For the case of medium with cubic anisotropy modeled here, the stresses     and 

    are independent of   and   as the system is translationally invariant in the    plane. 

Moreover, since          =, a solenoidal stress implies that     is constant and 

so Eq. (C6) becomes 

        
 

       
       (C9) 

Given the discussion above, one again concludes that         depends only on      and that 

the flux is spatially local. 

 

  

                                                 

3
 We note that Larch´e and Cahn considered the case of a slab in contact with fluid only along one face. For this case, 

the flux is nonlocal [16]. 
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