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Abstract

Mixed Integer Second Order Cone Optimization (MISOCO) problems allow practitioners

to mathematically describe a wide variety of real world engineering problems including

supply chain, finance, and networks design. A MISOCO problem minimizes a linear func-

tion over the set of solutions of a system of linear equations and the Cartesian product of

second order cones of various dimensions, where a subset of the variables is constrained

to be integer. This thesis presents a technique to derive inequalities that help to obtain a

tighter mathematical description of the feasible set of a MISOCO problem. This improved

description of the problem usually leads to accelerate the process of finding its optimal so-

lution. In this work we extend the ideas of disjunctive programming, originally developed

for mixed integer linear optimization, to the case of MISOCO problems. The extension

presented here results in the derivation of a novel methodology that we call disjunctive

conic cuts for MISOCO problems. The analysis developed in this thesis is separated in

three parts. In the first part, we introduce the formal definition of disjunctive conic cuts.

Additionally, we show that under some mild assumptions there is a necessary and sufficient

condition that helps to identify a disjunctive conic cut for a given convex set. The main

appeal of this condition is that it can be easily verified in the case of MISOCO problems.

In the second part, we study the geometry of sets defined by a single quadratic inequality.

We show that for some of these sets it is possible to derive a close form to build a dis-

junctive conic cut. In the third part, we show that the feasible set of a MISOCO problem

1



with a single cone can be characterized using sets that are defined by a single quadratic

inequality. Then, we present the results that provide the criteria for the derivation of

disjunctive conic cuts for MISOCO problems. Preliminary numerical experiments with

our disjunctive conic cuts used in a branch-and-cut framework provide encouraging results

where this novel methodology helped to solve MISOCO problems more efficiently. We

close our discussion in this thesis providing some highlights about the questions that we

consider worth pursuing for future research.
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Notation

m, n, `, . . . Indices are natural numbers and they are denoted with lower case letters.

R The blackboard bold R denotes the set of real numbers.

Z The blackboard bold Z denotes the set of integer numbers.

α, β, . . . Scalars are denoted with Greek letters.

|α| The two vertical bars denote the absolute value of the scalar α ∈ R.

a, b, x, . . . Vectors are denoted with lower case letters and they are assumed to be column

vectors.

xi The subindex in this notations denotes the i-th component of vector x.

x2:n The colon in this notation denotes the vector formed with components 2 to

n of vector x.

‖x‖ The two double vertical bars denote the norm of vector x; all norms in this

thesis are assumed to be Euclidean.

ei This denotes a column vector that has all its components equal to zero except

for the i-th component that is equal to 1.

A, B, . . . Matrices are denoted with capital letters.

3



Ai: The colon in this notation is used to denote the row i of matrix A.

A:i The colon in this notation is used to denote the column i of matrix A.

P � 0 The curly greater than denotes that the matrix P is positive definite.

P � 0 The curly greater than or equal denotes that the matrix P is positive semi-

definite.

ID1 This denotes that a matrix is indefinite with exactly one negative eigenvalue,

and all other eigenvalues are positive.

A, B, . . . Sets are denoted with calligraphic letters.

A The upper bar in this notation denotes the complement of the set A.

Ln The blackboard bold L denotes a second order cone (Lorentz cone), the su-

perscript gives the dimension of the cone.

(P, p, ρ) This triplet represents the set {x ∈ Rn | x>Px+ 2p>x+ ρ ≤ 0}.

4



Chapter 1

Introduction

A Mixed Integer Second Order Cone Optimization (MISOCO) problem is that of min-

imizing a linear function over the set of solutions of a system of linear equations and

the Cartesian product of second order cones of various dimensions, where a subset of the

variables is constrained to be integer. Specifically, a MISOCO problem is given as

minimize: c>x

subject to: Ax = b (MISOCO)

x ∈ K

x ∈ Zd × Rn−d,

where A ∈ Rm×n, with rank(A) = m; c ∈ Rn; b ∈ Rm; and x =
(
(x1)>, (x2)>, . . . , (xk)>

)>
;

xi ∈ Rni ; K = Ln1
1 × · · · × Lnkk ; Lni = {xi ∈ Rni | xi1 ≥ ‖xi2:ni

‖}, for i = 1, . . . , k, with∑k
i=1 ni = n.

There are many areas of engineering in which applications of MISOCO problems arise.

In computer vision models, Kumar et al. [2006] used a MISOCO problem as a relaxation of

Markov random fields. Atamtürk et al. [2012] consider the design of a supply chain system

5



CHAPTER 1. INTRODUCTION

where a supplier ships products to different retailers, each with random demand.They re-

formulate these joint location-inventory models as MISOCO problems. Aktürk et al. [2009]

strengthen the formulation of a machine-job assignment problem with separable convex

costs using a polynomial number of conic quadratic constraints. The design of telecommu-

nication networks with a minimum length connection network is a Euclidean Steiner tree

problem, for which Fampa and Maculan [2004] present a MISOCO relaxation. Cheng et al.

[2012] consider the problem of joint base station selection and multi-cell beam-forming and

present a MISOCO formulation for this problem. In finance, cardinality-constrained port-

folio optimization gives another example of applications of MISOCO problems [Bertsimas

and Shioda, 2009]. Finally, turbine balancing is an engineering problem that can be for-

mulated as a MISOCO problem as it is discussed by Drewes [2009], and White [1996].

These references represent a set of problems in the literature that motivate the research

and underline the necessity of solving MISOCO problems.

During the last decade, a number of techniques have been developed to solve MISOCO

problems. Most of these developments have aimed at extending results shown previously

to be effective for Mixed Integer Linear Optimization (MILO) problems to the case of MIS-

OCO problems. One of these approaches uses outer linear approximations of second order

cones. Vielma et al. [2008], and Vielma [2009] used the polynomial-size polyhedral relax-

ation introduced by Ben-Tal and Nemirovski [2001b] in their “lifted linear programming”

branch-and-bound algorithm for MISOCO problems. Krokhmal and Soberanis [2010] gen-

eralized this approach to integer p-order conic optimization. Drewes [2009] presented

subgradient-based linear outer approximations for the second order cone constraints. This

allows one to approximate the MISOCO problem by a MILO problem in a hybrid outer

approximation branch-and-bound algorithm.

Stubbs and Mehrotra [1999] generalized the lift-and-project algorithm of Balas et al.

[1993] for 0-1 MILO to 0-1 mixed integer convex optimization. Later, Çezik and Iyengar

6



CHAPTER 1. INTRODUCTION

[2005] investigated the generation of valid convex cuts for 0-1 Mixed Integer Conic Opti-

mization (MICO) problems problems and discussed how to extend the Chvátal-Gomory

[Gomory, 1958] procedure for generating linear cuts for MICO problems and the exten-

sion of lift-and-project techniques for MICO problems. In particular, they showed how to

generate linear and convex quadratic valid inequalities using the relaxation obtained by a

projection procedure. Recently, Drewes [2009] reviews the ideas proposed by Çezik and

Iyengar [2005] and Stubbs and Mehrotra [1999] and applies them to MISOCO problems.

Atamtürk and Narayanan [2010, 2011] proposed two procedures for MISOCO prob-

lems to generate cuts. They first studied a generic lifting procedure for MICO, and then

extended the Mixed integer rounding [Nemhauser and Wolsey, 1990, 1999] procedure to

the MISOCO case. The main idea of the procedure is to reformulate a second order conic

constraint using a set of two-dimensional second order cones. In this new reformulation

the set of inequalities are called polyhedral second-order conic constraint. The authors used

polyhedral analysis for studying these inequalities separately. This allowed the derivation

of a mixed-integer rounding procedure, which yields a nonlinear conic mixed-integer round-

ing. A generalization of the use of polyhedral second-order conic constraints is presented

by Masihabadi et al. Sanjeevi [2012].

Dadush et al. [2011] studied the split closure of a strictly convex body. In their work a

conic quadratic inequality is presented as an example of a non-polyhedral split closure. In

particular, the authors showed that it is necessary to consider conic quadratic inequalities

in order to describe the split closure of an ellipsoid. This independently yielded a conic

quadratic inequality that coincides with the cylindrical and conic cut for MISOCO problems

presented in Chapter 4 for cases where the feasible set of the relaxation is an ellipsoid.

7



CHAPTER 1. INTRODUCTION

1.1 Background

In this section, we present some fundamental concepts of convex analysis and mixed integer

optimization that are used in the developments of this thesis. This is not intended to be a

comprehensive review of these areas. We provide some references for the reader interested

in the proofs or additional results not contained in this section.

1.1.1 Convex analysis

We summarize the most relevant definitions and results of convex analysis that are used

in this dissertation. For detailed presentation of convex analysis, the interested reader can

review [Barvinok, 2002, Boyd and Vandenberghe, 2006, Rockafellar, 1970]. The results

presented in this section are well known in the field of convex analysis. For that reason,

they are stated here without proof.

We start with the definition of the concepts of affine combination and convex combi-

nation.

Definition 1.1 (Affine combination). Given a set of points u1, . . . , ut ∈ Rn, a point

v =
t∑
i=1

λiu
i, where λi ∈ R, i = 1, . . . , t, and

t∑
i=1

λi = 1

is called an affine combination of u1, . . . , ut.

Geometrically speaking, the set of all affine combinations of two given vectors u, v ∈ Rn

gives the line determined by these two points. Now, we can define an affine set based on

Definition 1.1.

Definition 1.2 (Affine set). A set L ∈ Rn is said to be affine if for any two given points

8



CHAPTER 1. INTRODUCTION

u, v ∈ L and λ ∈ R we have that

(1− λ)u+ λv = u+ λ(v − u) ∈ L. (1.1)

Definition 1.3 (Affine Hull). Given a set S ∈ Rn, the affine hull L = aff(S) of S is given

by the set of all affine combinations of all points in S.

The following is a key theorem for the analysis of the feasible set of (MISOCO). The

proof of Theorem 1.1 can be found in Rockafellar [1970].

Theorem 1.1. Given d ∈ Rm and D ∈ Rm×n, the set

L = {u ∈ Rn | Du = d} (1.2)

is an affine set in Rn. Furthermore, every affine set may be represented in this way.

Hence, the feasible set of (MISOCO) is the intersection of an affine set and the cone

K. Note also that a half-space is a special affine set given by a single linear equality,

i.e., A= = {u ∈ Rn | a>u = α}, for some a ∈ Rn and α ∈ R. Now we define an affine

transformation.

Definition 1.4 (Affine transformation). A mapping L : Rn → Rm is called an affine

transformation if

L((1− λ)u+ λv) = (1− λ)L(u) + λL(v),

for every u, v ∈ Rn and λ ∈ R.

An important property of affine transformations is that they preserve collinearity and

ratios between distances. In other words, if two points lie in a line, they will still lie in a

line after the transformation, and the mid point of a line segment will stay the midpoint

after the transformation. Hence, after an affine transformation parallel lines will remain

9



CHAPTER 1. INTRODUCTION

parallel. The following theorem provides the explicit form of affine transformations from

Rn to Rm. The proof of this theorem is given in Rockafellar [1970].

Theorem 1.2. The affine transformations from Rn to Rm are the mappings L of the form

L(u) = Mu+ d, where u ∈ Rn, M ∈ Rm×n and d ∈ Rm.

We now define a convex combination, which is a fundamental concept used in this

dissertation.

Definition 1.5 (Convex combination). Given a set of vectors u1, . . . , ut ∈ Rn, the vector

u =

t∑
i=1

λiu
i, where λi ∈ R, λi ≥ 0, i = 1, . . . , t, and

t∑
i=1

λi = 1,

is called a convex combination of u1, . . . , ut.

Geometrically speaking, the set of all convex combinations of two given vectors u, v ∈

Rn is the line segment connecting the two vectors. Now, we can define a convex set based

on Definition 1.5.

Definition 1.6 (Convex set). A set S ∈ Rn is said to be convex if for any two given

vectors u1, u2 ∈ S and 0 ≤ λ ≤ 1 we have that

(1− λ)u1 + λu2 ∈ S.

Definition 1.7 (Convex hull). The convex hull conv(S) of a set S ∈ Rn is given by the

set of all convex combinations of all finite subsets of points of S.

Theorem 1.3. The intersection of a given collection of convex sets is convex.

Theorem 1.4. Given a set S ∈ Rn, the set conv(S) is the smallest convex set containing
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S, i.e.,

conv(S) =
⋂
U⊇S
U convex

U .

Theorem 1.4 describes a key property of convex hulls, which is used in the analysis

of the conic cuts introduced in Chapter 2. Now, we introduced three standard results

from convex analysis needed in Chapter 2. Before doing so, we recall that a hyperplane

A= = {u ∈ Rn | a>u = α} defines two half-spaces A+ = {u ∈ Rn | a>u ≥ α} and

A− = {u ∈ Rn | a>u ≤ α}.

Definition 1.8 (Separation). Let S1 and S2 be non-empty sets in Rn. A hyperplane A=

is said to separate S1 and S2 if S1 is contained in one of the closed half-spaces A+ or A−

and S2 lies in the other closed half-space. The hyperplane A= is said to separate S1 and

S2 properly if not both S1 and S2 are contained in A= itself.

Definition 1.9 (Supporting half-space and supporting hyperplane). Let S ⊂ Rn be a

closed convex set. A supporting half-space A to S is a closed half-space which contains

S and has a point of S in its boundary hyperplane A=. The hyperplane A= is called a

supporting hyperplane to S.

Definition 1.10 (Exposed Face). Let S ⊂ Rn be a closed convex set. A set Sf ⊂ S is

called a exposed face of S if there exist a supporting hyperplane A= such that Sf = S∩A=.

The set Sf may be empty. A non-empty face Sf 6= S is called a proper face of S.

Before presenting the next separation result we need to introduce the definition of

relative interior. The relative interior of a set S ∈ Rn, denoted by ri(S), is defined as

ri(S) = {x ∈ S | ∃ε > 0, such that O(x, ε) ∩ aff(S) ⊂ S} ,

where O(x, ε) = {y ∈ Rn | ‖y − x‖ ≤ ε} is the ball of radius ε with center x ∈ Rn. In other

words, the relative interior of S is its interior relative to aff(S). We can now state the
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following theorem about the existence of a separation hyperplane, the proof can be found

in Rockafellar [1970].

Theorem 1.5. Let S1 and S2 be two non-empty convex sets in Rn. Then, there exists a

hyperplane separating S1 and S2 properly, if and only if ri(S1) ∩ ri(S2) = ∅.

We now introduce the definition of a cone, which is a fundamental concept used for

the definition of the cuts discussed in this dissertation.

Definition 1.11 (Cone). We say that K ⊆ Rn is a cone if 0 ∈ K and if for all x ∈ K and

λ ≥ 0 we have λx ∈ K.

If a cone K is a convex set, then it is called a convex cone. Alternative, we can use the

following definition of a convex cone.

Definition 1.12 (Convex Cone ). A set K ⊆ Rn is a convex cone if for any two points

u, v ∈ K and for any θ, ϑ ≥ 0, we have θu+ ϑv ∈ K.

Definition 1.13 (Ray). Given a cone K ∈ Rn and u ∈ K, then the set Ru = {λu | λ ≥ 0}

is called a ray of K.

Definition 1.14 ( Extreme Ray). Let K ∈ Rn be a cone and Ru be a ray of K. We say that

Ru is an extreme ray of K if for any u ∈ Ru and any v, w ∈ K, whenever u = λv+(1−λ)w

for some 0 ≤ λ ≤ 1, we must have u, v ∈ Ru.

Note that an extreme ray of a convex cone is always an exposed face of the convex

cone. We use the concept of a pointed cone in the proofs presented in Chapter 2. Here we

present its formal definition.

Definition 1.15 (Pointed Cone). A cone K ∈ Rn is pointed if it contains no line, i.e.,

u ∈ K and −u ∈ K only if u = 0.

We provide a separation theorem that is used in the proofs of Chapter 2.

12
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Theorem 1.6. Let S be a non-empty set in Rn, and K be a cone in Rn. If there exist a

hyperplane that separates S and K properly, then there exists a hyperplane that separates

S and K properly and the hyperplane passes through the origin.

We close this summary with the definition of a convex cylinder as is used in Section

2.2, which a fundamental concept used for the definition of the cuts discussed in this

dissertation.

Definition 1.16 (Convex Cylinder). Given a convex set D ⊂ Rn and a vector d0 ∈ Rn,

the set C = {x ∈ Rn | x = d + λd0, d ∈ D, λ ∈ R} is called a convex cylinder in Rn. The

vector d0 is called the direction of C.

1.1.2 Quadrics

In Chapter 3 we use the concept of quadric sets to analyze the geometry of the feasible

set of MISOCO problems.

Definition 1.17 (Quadric). Let P ∈ Rn×n, p, w ∈ Rn and ρ ∈ R, then the quadric Q is

the set defined as

Q = {w ∈ Rn | w>Pw + 2p>w + ρ ≤ 0}. (1.3)

This definition is based on the definition of quadric surfaces. In this work, we limit

our interest to quadrics where the matrix P is symmetric and it has at most one negative

eigenvalue. More comprehensive study of quadric surfaces can be found in Snyder and

Sisam Snyder and Sisam [1914], Cox et al. [Cox et al., 1997, Chp. 8], and in Harris [Harris,

1992, Chp. 22]. In what follows, we use the triplet (P, p, ρ) as a simplified representation

of a quadric.
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1.1.2.1 Shapes of quadrics where P has at most one non-positive eigenvalue

In the analysis of the feasible set of MISOCO problems we need the analysis of quadrics

where the matrix P is symmetric and it has at most one non-positive eigenvalue. For that

reason, in this section we describe the possible shapes for quadrics in this category. We

start by introducing a key concept needed in the classification of such quadrics.

Definition 1.18 (Inertia Meyer [2000]). The inertia In(P ) of a symmetric matrix P ∈

Rn×n is defined by the triplet (ϑ, ψ, ι), in which ϑ is the number of negative eigenvalues,

ψ is the number of zero eigenvalues, and ι is the number of positive eigenvalues.

The classification for the shapes of the quadric (P, p, ρ) is determined by two quantifiers:

the inertia of matrix P and the quantity p>P−1p − ρ. Note that if P has k > 1 zero

eigenvalues, we can use the eigenvalue decomposition of P to express Q as the intersection

of an affine set and a quadric in Rn−k+1. For that reason, we assume w.l.o.g. that the zero

eigenvalue has multiplicity 1. We consider three cases:

1. Let us assume first that P is non-singular. Then we can rewrite the defining inequal-

ity in (1.3) as (
w + P−1p

)>
P
(
w + P−1p

)
≤ p>P−1p− ρ, (1.4)

and either P � 0 or P is indefinite with exactly one negative eigenvalue (ID1). The

possible shapes of the quadric (P, p, ρ) in this case are summarized in the following

table:

p>P−1p− ρ
> 0 = 0 < 0

P is PD ellipsoid point empty set

P is ID1
hyperboloid

cone
hyperboloid

of one sheet of two sheets

Table 1.1: Shapes of the quadric Q when the matrix P is non-singular.

14



CHAPTER 1. INTRODUCTION

In all of these cases, either the center of the ellipsoid or the intersection of the

asymptotes of the hyperboloids is at −P−1p.

2. Now, assume that P is positive semi-definite (P � 0) but not positive definite, i.e.,

the smallest eigenvalue of P is 0 with multiplicity 1. Then, there are two cases:

Case 1: If there is a vector wc such that Pwc = −p, then Q is:

• empty, if (wc)>Pwc − ρ < 0;

• a line through wc in the direction of the eigenvector of the zero eigenvalue

of P , if (wc)>Pwc − ρ = 0;

• a cylinder with its center line through wc in the direction of the eigenvector

of the zero eigenvalue of P , if (wc)>Pwc − ρ > 0.

Case 2: If there is no vector wc such that Pwc = −p, then Q is a paraboloid.

3. Finally, assume that P is indefinte and singular, where In(P ) = (1, 1, n− 2). Then,

there are two cases:

Case 1: If there is a vector wc such that Pwc = −p, then Q is a cylinder in the

direction of the eigenvector of the zero eigenvalue of P , and its cross section is:

• a hyperbolic cylinder of one sheet, if (wc)>Pwc − ρ > 0;

• a conic cylinder, if (wc)>Pwc − ρ = 0;

• a hyperbolic cylinder of two sheets, if (wc)>Pwc − ρ < 0.

Case 2: If there is no vector wc such that Pwc = −p, then Q is a hyperbolic

paraboloid.

1.1.3 Disjunctive sets

Disjunctive sets are a fundamental concept needed for the development of the analysis in

this dissertation. For that reason we give a brief introduction to the concept of disjunctive
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sets here. Our discussion is based on the concepts described in Balas [1979], Mahajan

[2009]. First we need to introduce the logical operator “or”, denoted by ∨. In a disjunction

s1 ∨ s2 the operands s1 and s2 are called the disjuncts of the disjunction. The operands

s1 and s2 are propositions such that if one of them is true, then the disjunction results in

“true”. In the context of linear systems, we can define a linear disjunction with respect a

given x ∈ Rn as follows ∨
i∈I

Dix ≥ di, (1.5)

where Di ∈ Rmi×n, di ∈ Rmi , and I is an index set that may or may not be finite. Then,

we say that the disjunction (1.5) is true for x̂ ∈ Rn if and only if there exist at least one

i ∈ I such that Dix̂ ≥ di. A disjunctive set is given by the set of all points x ∈ Rn for

which the disjunction (1.5) is true, i.e., it is given by

⋃
i∈I

{
x ∈ Rn | Dix ≥ di

}
.

A disjunction is said to be valid for (MISOCO) if

{
x ∈ Zd × Rn−d | Ax = b, x ∈ K

}
⊆
⋃
i∈I

{
x ∈ Rn | Dix ≥ di, Ax = b, x ∈ K

}
.

In this thesis we focus on valid linear disjunctions for (MISOCO) of the form

a>x ≤ α
∨
h>x ≥ β, x ∈ Rn, (1.6)

where a, h ∈ Rn, α, β ∈ R, and the vectors (a>, α), (h>, β) are not scalar multiples of each

other. The disjunctive set over Rn associated with (1.6) is given by

{
x ∈ Rn | a>x ≤ α

}⋃{
x ∈ Rn | h>x ≥ β

}
. (1.7)
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Now, if we relax the integrality constrain in (MISOCO), then the intersection of the

set (1.7) and the continuous relaxation of (MISOCO) is

{
x ∈ Rn | Ax = b, a>x ≤ α, x ∈ K

}⋃{
x ∈ Rn | Ax = b, h>x ≥ β, x ∈ K

}
. (1.8)

We assume in this thesis that

{
x ∈ Rn | Ax = b, a>x ≤ α, x ∈ K

}⋂{
x ∈ Rn | Ax = b, h>x ≥ β, x ∈ K

}
= ∅. (1.9)

Then, the set (1.8) is the union of two disjoint convex sets, which is a non-convex set.

One of the goals in this dissertation is to characterize the convex hull of the set (1.8). We

show in this work that this characterization yields the derivation of novel conic cuts for

MISOCO problems.

1.1.4 Branch-and-Bound algorithm

The algorithm we use to solve a MISOCO problem in this thesis is based on the branch

Branch-and-Bound (BB) algorithm. For that reason we present a brief description of the

BB algorithm for MISOCO problems in this section.

Before describing the algorithm we need to introduce the continuous relaxation of the

MISOCO problem. The main challenge faced when solving the problem (MISOCO) is

associated with the integrality constraint in some of its variables. If we relax the integral-

ity requirement in those variables we obtain the continuous relaxation of the MISOCO
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problem. This relaxation is a second order cone optimization (SOCO) problem

minimize: c>x

subject to: Ax = b (1.10)

x ∈ K ⊂ Rn,

where cone K is defined in page 5. For that reason we will refer to the continuous re-

laxation of the MISOCO problem as its SOCO relaxation. The SOCO is a well studied

problem, and there are polynomial time algorithms for solving this problem, see, e.g., Al-

izadeh and Goldfarb [2003], Andersen et al. [2003], Ben-Tal and Nemirovski [2001a], Kuo

and Mittelmann [2004], Lobo et al. [1998], Sturm [2002], Toh et al. [1999]. State of the

art solvers, such as CPLEX [2011] and MOSEK [2011], can solve SOCO problems with

thousands of variables fast and accurately.

The BB algorithm uses a “divide and conquer” approach, where the feasible region

is divided into smaller sets, which define optimization problems over which we then re-

cursively optimize. This algorithm has been broadly studied in the literature for the

solution of mixed integer optimization problems, see, e.g., Belotti et al. [2009], Lawler and

Wood [1966], Mahajan [2009], Nemhauser and Wolsey [1999], Stubbs and Mehrotra [1999],

Vielma et al. [2008], Vielma [2009], Schrijver [1986]. In the case of a MISOCO problem,

these sub-problems obtained after the division are MISOCO problems as well. For each

of these sub-problems we solve its SOCO relaxation to iteratively improve the upper and

lower bounds of the optimal value of the original MISOCO problem until these bounds

are equal, at which point the algorithm stops. This allows us to exploit the capability to

efficiently solve the SOCO relaxations. In particular, CPLEX [2011] and MOSEK [2011]

use BB-based algorithms for the solution of MISOCO problems.

We start describing how the BB algorithm can be used for solving a MISOCO problem.
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Let Π0 denote a given MISOCO problem, F0
r = {x ∈ Rn | Ax = b, x ∈ K} be the feasible

region of its SOCO relaxation, F0 = F0
r ∩ (Zd × Rn−d) be its feasible set, and ζ∗ be the

optimal value of Π0. Throughout the algorithm, we maintain and update four elements:

• the best solution x∗ found for Π0, which is also known as the incumbent solution;

• the tightest upper bound known for ζ∗, denoted by ζ and it is initialized to ∞;

• the tightest lower bound known for ζ∗, denoted by ζ and it is initialized to −∞;

• a set M of active MISOCO problems, which is initialized to M = {Π0}.

The BB algorithm starts by solving the SOCO relaxation of Π0. Let xr be the solution

of the SOCO relaxation ofΠ0 and ζr the optimal value of this relaxation. Then, ζr provides

a lower bound for ζ∗ and we can do the update ζ = ζr. Now, any feasible solution to Π0,

i.e., a solution where the integrality constraints are satisfied, provides an upper bound for

ζ∗. Hence, if xr ∈ F0, then ζ = ζ = ζ∗, and the algorithm terminates. Otherwise, let P i,

i = 1, . . . , t, denote t polyhedra such that ∪ti=1P i is a valid linear disjunction for F0. Let

Π i, i = 1, . . . , t, denote the problem of minimizing c>x for x ∈ F i = P i∩F0. Also, let ζi be

the optimal value of the SOCO relaxation of Π i, and xi be the solution of this relaxation.

We have that mini∈{1,...,t} ζ
i is a lower bound for ζ∗, and also ζr ≤ mini∈{1,...,t} ζ

i ≤ ζ∗.

Note that the first inequality may be strict if xr /∈ F0∩(∪ti=1P i). Hence, using the partition

F i, i = 1, . . . , t we may be able to obtain a tighter lower bound for ζ∗ with the update

ζ = mini∈J ζi. If we apply this procedure recursively to each problem Π i, i = 1, . . . , t, we

obtain a BB algorithm to solve MISOCO problems.

During the execution of the BB algorithm it is possible that some of the solutions xi

may be feasible to Π0. However, none of these solutions may be certified as optimal until

the gap between ζ and ζ is closed. Nevertheless, we use these intermediate solutions to

improve the upper bound ζ during the execution of the algorithm. Hence, if there is a
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xi ∈ F i, then xi is a feasible solution for Π0. Let J be the subset of indices i = 1, . . . , t

such that xi ∈ F i. Hence, we have that ζ∗ ≤ mini∈J ζi. If mini∈J ζi ≤ ζ, then the

update ζ = mini∈J ζi provides a tighter upper bound for ζ∗. Additionally, the incumbent

solution is updated x∗ with the solution xj , where j ∈ J is the index of the problem Πj

corresponding to the mini∈J ζi. At termination, the algorithm either finds an optimal

solution, which is returned in x∗, or declares the problem infeasible..

Most implementations of the BB algorithm use a partition in each recursion with t = 2.

With this choice, a disjunction of the form a>x ≥ α
∨
h>x ≤ β arise as the natural choice

for creating the partition F i = P i ∩ F0, which defines the branching step. In particular,

a commons choice for branching is a disjunction of the form xi ≤ bxjc
∨
xi ≥ dxje, which

is known as branching on variables. Algorithm 1 presents the steps of a BB algorithm

when this is the branching choice, which is the base algorithm we use in this thesis to

solve MISOCO problems. In this description Πa denotes the problem over which we are

currently executing the recursion, its feasible set is denoted by Fa. The problems resulting

from the partition defined by the valid disjunction are stored in the set of active problems

denoted by M. This set stores the problems for which are pending for applying the

recursion that defines the BB algorithm.

In Algorithm 1 we have a number of algorithmic choices. On one hand we have the

branching strategy. For this choice we need to decide what is the disjunctive set that would

be used to do the partition process. The performance of the BB algorithm for different

branching strategies in the solution of convex problems has been analyzed Achterberg et al.

[2005], Bonami et al. [2011], Gupta and Ravindra [1985]. Another algorithmic choice in

the BB algorithm is the search strategy, which defines how to choose the next problem to

process with the recursive step from the setM. Note that the Algorithm 1 does not specify

the branching or the search strategy. The definition of these criteria and its effect in the

algorithm performance for MISOCO problems is explored in some preliminary experiments
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Algorithm 1 Branch-and-Bound algorithm with binary partitions

Data: M =
{
Π0
}

, ζ =∞, ζ = −∞, and the index set I of integer variables in Π0

while M 6= ∅ do
Select an active problem Πa from M, which has a feasible set Fa
M←M\Πa

Solve the SOCO relaxation of Πa

if If the SOCO relaxation of Πa is feasible then . (prune by infeasibility)
ζr ← optimal value of SOCO relaxation of Πa

xr ← optimal solution of SOCO relaxation of Πa

if ζr ≤ ζ then . (prune by value dominance)
if xr ∈ Fa then . (prune by integrality)

ζ ← ζr . (update upper bound)
x∗ ← xr

Delete all Π i ∈M such that ζi ≥ ζ
else . (branch)

Select a branching variable xj /∈ Z, j ∈ I
M← {M,min{c>x | x ∈ Fa, xj ≥ dxje},min{c>x | x ∈ Fa, xj ≤ bxjc}}
ζ ← min{ζi | Π i ∈M}. . (update lower bound)

end if
end if

end if
if ζ − ζ = 0 then
M← ∅

end if
end while
if ζ <∞ then

ζ∗ ← ζ
else

No feasible solution was found
end if
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Chapter 5. Finally, we consider the pruning strategy, which is based in detecting feasibility

of the problem and the dominance of the upper bound ζ. This upper bound is as important

as the branching strategy, and they are strongly related. In Algorithm 1 this bound is

updated any time a new integer feasible solution is found.

1.1.5 Cutting-plane algorithms and disjunctive cuts

In this section we review the cutting-plane algorithm and the concept of disjunctive cuts

for MILO problems. Recall that a MILO is a problem given as

minimize: c>x

subject to: Ax = b (MILO)

x ∈ Zd × Rn−d,

where A ∈ Rm×n, with rank(A) = m; c ∈ Rn; b ∈ Rm; A, b have rational entries. Let

P = {x ∈ Rn | Ax = b} and let F = P ∩ Zd × Rn−d be the feasible set of (MILO).

For describing the cutting-plane algorithm we need first to introduce the concept of

valid inequalities and cuts, see e.g. Cornuéjols [2008]. We say that an inequality is valid

for a set if it is satisfied by every point in the set. Now, a valid inequality is a cut with

respect to a point x /∈ conv(F) if it is a valid inequality for conv(F) that is violated by x.

The cutting-plane algorithm for a given MILO starts solving its continuous relaxation,

which is also known as its Linear Optimization (LO) relaxation. If the LO relaxation is

infeasible or unbounded, we stop and declare the MILO infeasible or unbounded. Other-

wise, the solution of the LO relaxation provides a lower bound for the optimal value of

the MILO problem. If the optimal solution of the LO relaxation, denoted by xr, satisfies

the integrality constraints in the MILO problem, then it is optimal for the MILO, and the

algorithm stops. Otherwise, one can add a cut with respect to xr to the LO relaxation
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of the MILO problem, which is usually a cutting plane. This improved formulation is

resolved, and the process is repeated until the solution of the improved LO problem is

feasible to the MILO problem, or the LO problem becomes infeasible, in which case the

MILO problem is declared infeasible.

Disjunctive programming Balas [1979] has been one of the most successful techniques

used for generating cuts for (MILO). Let the disjunction a>x1:d ≥ α + 1
∨
a>x1:d ≤ α,

a ∈ Zd and α ∈ Z, be a valid disjunction for F . Additionally, let A = {x ∈ Rn | a>x1:d ≥

α + 1} and B = {x ∈ Rn | a>x1:d ≤ α}. Then, we have that F ⊆ P ∩ (A ∪ B). Thus, a

inequality h>x ≤ η that is valid for P ∩ (A∪B) is also valid for F . An inequality h>x ≤ η

is called a disjunctive inequality if there exist a a ∈ Zd and a α ∈ Z such that h>x ≤ η is

valid for P ∩ (A ∪ B), see, e.g., Cornuéjols [2008]. Additionally, if the inequality h>x ≤ η

is a cut with respect to a point x /∈ conv(F), it is called a disjunctive cut.

In this thesis we define disjunctive cuts for the intersection of a closed convex set

S ∈ Rn and a disjunctive set as follows. Consider a disjunctive set U ∪ V where U =

{x ∈ Rn | u>x ≥ ϕ} and V = {x ∈ Rn | v>x ≤ $}, u>, v> ∈ Rn. We assume that

S ∩ (U ∪ V) = ∅. An inequality is a disjunctive inequality associated with S, U and V if it

is a valid inequality for S ∩ (U ∪ V). Additionally, if the inequality is a cut with respect

to a point x /∈ conv(S ∩ (U ∪ V)), we called a disjunctive cut. In Chapter 2 we analyze a

special case of disjunctive cuts that is defined by a conic inequality.

One way to improve the bounding process in Algorithm 1 is to incorporate the use of

cuts to strengthen the relaxation of Πa solved in each iteration. In Algorithm 1, this can

be done after solving the relaxation Πa. The new algorithm resulting with the addition of

this extra step is called a “branch-and-cut algorithm”, which in MILO is a mixed between

BB and cutting-planes. For MILO problems, the incorporation of linear cuts was essential

in the development of efficient branch-and-cut algorithms Balas [1979], Cornuéjols [2008],

Martin [2001], Nemhauser and Wolsey [1999], Schrijver [1986]. This technique has been
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generalized to mixed integer nonlinear optimization problems as well Grossmann [2002]. In

this thesis we research the development and usage of disjunctive cuts for MISOCO problems

in a branch-and-cut algorithm. In Chapter 5 we present the details of the branch-and-cut

algorithm used in this work and its performance is some preliminary experiments.

1.2 Dissertation overview

In this thesis, we study the derivation of Disjunctive Conic Cuts (DCCs) for MISOCO

problems. Our main goal is to extend the ideas of disjunctive programming that have

shown to be successful in the derivation of linear cuts for MILO. In this work, we describe

how this ideas can be applied to MISOCO problems for generating conic cuts. Additionally,

we present some preliminary numerical results that show that a certain class of cuts, which

used in a branch-and-cut framework, can effectively help to accelerate the solution process.

In Chapter 2 we introduce the definition of disjunctive conic cuts and analyze some of

their properties. In particular, we consider the intersection of a certain full dimensional

closed convex set E ∈ Rn and a disjunctive set in Rn of the form (1.6). We define a

DCC as a cone such that its intersection with the set E is equal to the convex hull of the

intersection of E with the disjunctive set. We then present the conditions under which a

cone can be identified as a DCC, and we are able to prove that a cone satisfying these

conditions is unique. We also show that the assumptions made in this chapter are required

for uniqueness of that cone. In the second part of the chapter we define the Disjunctive

Cylindrical Cones (DCyC) as cylinders that characterize the convex hull of the intersection

of E and disjunctive set in Rn of the form (1.6). In this case we also provide the conditions

to identify when a cylinder is a DCyC, and we are also able to prove that a cylinder

satisfying these conditions is unique.

In Chapter 3 we present the analysis of the intersection of a quadric with two hyper-

planes. The main result of this chapter is the characterization of the family of quadrics
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having the same intersection with two given hyperplanes. This family is analyzed for two

different cases: when the hyperplanes are parallel and when the hyperplanes are nonparal-

lel. In the first case, we present a full characterization of the family when there is a quadric

in it that is defined by a matrix with at most one non-positive eigenvalue. We prove that

in this case, there is always a cylinder or a cone in the family. In the second case, we

present a full characterization of the behavior of the family when there is a quadric in it

that is defined by a positive definite matrix. We also prove that in this case there is always

a cylinder or a cone in that family.

In Chapter 4, we present a procedure for the derivation of DCCs and DCyCs separating

a given point from the feasible set of a MISOCO problem. This procedure that can be

embedded in a branch-and-cut framework. First, we characterize the quadric associated

with the feasible set of a MISOCO problem with a single cone. Second, we provide the

theoretical basis for a procedure to derive either DCCs or DCyCs when the disjunctive set

is defined by two parallel hyperplanes. Third, we provide the results for the derivation of

DCCs and DCyCs when the disjunctive set is define by two nonparallel hyperplanes. In

this case, the results are limited to cases for which the intersection of the hyperplanes with

the feasible set of the relaxed MISOCO problem are bounded. We close the chapter with

a comparison of the DCCs with nonlinear conic mixed-integer rounding inequalities.

In Chapter 5, we briefly describe our implementation of the procedure of Chapter 4.

First, we provide a short description of the well known branch-and-cut algorithm. We also

discuss briefly issues surrounding branching rules, node selection, and the selection of the

seed to create the DCCs. Second, we describe how the procedure described in Chapter 4

can be adapted to cases when the MISOCO problem has more than one cone. We finish the

chapter with a short description of our computational framework and some consideration

about the implementation of DCCs. In Chapter 6, we describe the test sets used for the

preliminary experimentation with the DCCs analyzed in this thesis. For each test set,
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we give their main characteristics and present the results of the experiments performed.

Additionally, we comment about the insights that these preliminary results provide about

the effectiveness of the DCCs.

This thesis aims to provide a full analysis of the derivation of DCCs for MISOCO

problems. For the reader interested in a full understanding of our results we suggest to

read this document in the order it is provided. However, Chapters 2, and 3 are self-

contained and they only depend on the well-known results presented in this introduction.

For that reason, the reader may switch the order of reviewing these two chapters without

affecting the understanding of their results. These two chapters are provided to support

the main results of Chapter 4. For the reader interested specifically in the derivation of

the DCCs, it is possible to skip Chapter 2, but it is recommended to first read Sections

3.2 and 3.3 of Chapter 3, which provide results essential to understanding the derivation

of the DCCs and DCyCs described in Chapter 4. For the reader interested in knowing

about the performance of the DCCs in our preliminary experiments we suggest reading

Chapters 5 and 6 after becoming familiar with DCCs, since in these two chapters, details

of the derivations are omitted. Finally, the results presented in Appendix A are provided

to support the proofs of the results in Chapter 4. They are not essential to understand

the derivation procedure. However, the interested reader is welcome to read them in order

to acquire a full understanding of the proofs.
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Chapter 2

Disjunctive conic cuts

In this chapter we present the definition of disjunctive conic cuts and some of their prop-

erties. Let E ⊂ Rn, n > 1 be a full dimensional closed convex set. Additionally, con-

sider two half-spaces A = {x ∈ Rn|a>x ≥ α} and B = {x ∈ Rn|b>x ≤ β}, where

a, b ∈ Rn, and (a>, α), (b>, β) are not scalar multiple of each other, i.e., @η ∈ R such that

(a>, α) = η(b>, β). Throughout this chapter we refer to the sets A= = {x ∈ Rn|a>x = α}

and B= = {x ∈ Rn|b>x = β}, the boundary hyperplanes defining the half-spaces A and

B, respectively. Additionally, we assume the following about the set E ∩ (A ∪ B):

Assumption 2.1. The intersection A ∩ B ∩ E is empty.

We show that the set conv(E ∩ (A ∪ B)) can be fully characterized using disjunctive

conic cuts. The results presented here are based on the results from Belotti et al. [2012].

The characterization of the set conv(E∩(A∪B)) is divided into two different cases. Section

2.1 presents the conditions to identify when conv(E ∩ (A∪B)) is obtained by intersecting

the set E with a cone, while Section 2.2 presents conditions in which the convex hull is

obtained by intersecting E with a cylinder.
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2.1 Disjunctive conic cuts

For discussing the case when the set conv(E ∩ (A∪B)) can be obtained intersecting E with

a cone K we need an additional assumption about the set E ∩ (A ∪ B) to facilitate the

proofs. We show later that this condition is required for uniqueness of the cone.

Assumption 2.2. The intersections E ∩ A= and E ∩ B= are nonempty and bounded.

Recall Definition 1.12 of a convex cone. We introduce now the definition of a translated

cone, which is a generalization of a standard cone.

Definition 2.1. A set K ∈ Rn, is called a translated cone if there exists a vector x∗ ∈ K,

called the vertex of K, such that for every θ ≥ 0 and x ∈ K, we have x∗ + θ(x− x∗) ∈ K.

Associated with any translated cone K ∈ Rn, is a set K0 = {y ∈ Rn | y = x− xt, x ∈

Kt}, which is a cone in the sense of Definition 1.12. Although translated cones arise

naturally in this setting, we assume w.l.o.g. that all cones have a vertex at the origin

unless otherwise specified.

Definition 2.2. A closed convex cone K ∈ Rn with dim(K) > 1 is called a Disjunctive

Conic Cut (DCC) for E and the disjunctive set A ∪ B if

conv(E ∩ (A ∪ B)) = E ∩ K.

The following proposition gives a necessary and sufficient condition for a convex cone

to be a DCC for the set E ∩ (A ∪ B).

Proposition 2.1. A closed convex cone K ∈ Rn with dim(K) > 1 is a DCC for E and the

disjunctive set A ∪ B, if and only if,

K ∩A= = E ∩ A= and K ∩ B= = E ∩ B=.
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Figure 2.1 illustrates Proposition 2.1 where the set E is the epigraph of a paraboloid

in R3. Before proving Proposition 2.1, see page 33 for the proof, we first provide a set of

(a) A=, B=, and E (b) The cone yielding conv(E ∩ (A ∪ B))

(c) E ∩ K (d) conv(E ∩ (A ∪ B))

Figure 2.1: Illustration of a disjunctive conic cut as specified in Proposition 2.1

lemmas that will make the proof more compact. To begin, let us recall the definition of a

base of a cone, see Barvinok [Barvinok, 2002, page 66].
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Definition 2.3 ( Base of a cone Barvinok [2002]). Let K ∈ Rn be a convex cone. A set

V ⊂ K is called a base of K if 0 /∈ V and for every vector u ∈ K, u 6= 0, there is a unique

v ∈ V and λ > 0 such that u = λv.

Lemma 2.1 shows a key relationship between a DCC and the hyperplanes A= and B=.

Lemma 2.1. Consider a half space G = {x ∈ Rn | g>x ≤ %}. Assume that E ∩ G= is

nonempty, bounded, and does not contain the origin 0. If there exist a closed convex cone

K ∈ Rn, with dim(K) > 1 and K ∩ G= = E ∩ G=, then E ∩ G= is a base of K.

Proof. From the assumptions in the lemma, we have that 0 /∈ K ∩ G= = E ∩ G=. We may

assume w.l.o.g. that 0 ∈ G. First, since K ∩ G= = E ∩ G= is bounded we know that there

exists no ray of K parallel to G=. Now, let us assume to the contrary that E ∩ G= is not a

base of K. From Definition 2.3 we know that there must exists a vector u ∈ K such that

the ray Ru = {λu | λ ≥ 0} does not intersect with K ∩ G= = E ∩ G=, i.e., there is a ray in

K parallel to the hyperplane G=. This implies that the set K ∩ G= is unbounded, which

contradicts the boundedness Assumption 2.2. Therefore, E ∩ G= is a base for K.

From the result of Lemma 2.1 we obtain that if there exists a DCC for E ∩ (A ∪ B),

then both E ∩ A= and E ∩ B= are bases of that disjunctive cone. Now, we show that a

convex cone that satisfy Lemma 2.1 is a pointed cone, which is an important result for our

further development.

Lemma 2.2. Any closed convex cone K satisfying Lemma 2.1 must be pointed.

Proof. Recall Definition 1.15 of a pointed cone. Now, assume to the contrary that K is

not pointed. This means that K contains a line. Hence, there exist two vectors r̂, r̄ ∈ K

such that r̂ = −r̄. Additionally, from the convexity of K we have that µr̂ + νr̄ ∈ K, for

any µ, ν > 0. Now, since E ∩ A= is a base of K, there exists a vector x̂ ∈ E ∩ A= in the

ray Rr̂ = {µr̂ | µ ≥ 0} such that x̂ = µr̂, for some µ > 0. Similarly, there exists a vector
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x̄ ∈ E ∩ A= in the ray Rr̄ = {νr̄ | ν ≥ 0} such that x̄ = νr̄, for some ν > 0. Given that

A= is an affine set, we have

γx̂+ (1− γ)x̄ ∈ A=, ∀γ ∈ R.

Expressing x̂ and x̄ in term of r̂ and r̄ gives

γx̂+ (1− γ)x̄ = γ(µr̂) + (1− γ)(νr̄)

= −γ(µr̄) + (1− γ)(νr̄)

= νr̄ − γ(µ+ ν)r̄.

Hence, if γ = 0 then νr̄ ∈ K. On the other hand, if γ < 0 we obtain that νr̄−γ(µ+ν)r̄ ∈ K,

since it is a vector on the ray defined by r̄. Finally, if γ > 0 then νr̄ − γ(µ + ν)r̄ =

νr̄ + γ(µ + ν)r̂ ∈ K, since it is a positive combination of two vectors in the cone K.

Hence, K ∩ A= contains a whole line, which contradicts the assumption that K ∩ A= is

bounded.

We can now prove that the vertex of a convex cone that satisfies Lemma 2.1 belongs

exclusively to one of the half spaces A or B. Observe that this does not imply that the

set A ∩ B is empty. It only means that the vertex of the convex cone is not contained in

A ∩ B if it is nonempty.

Lemma 2.3. Let K ∈ Rn be a closed convex cone, with dim(K) > 1, such that E ∩ A= =

K∩A= and E ∩B= = K∩B=. Then, the origin x0 = 0 is either in A, or in B, but not in

A ∩ B.

Proof. By Lemma 2.1 we have that E∩A= and E∩B= are bases of the cone K. Additionally,

by Lemma 2.2 we know that the cone K is pointed. Consider the ray Rr, where r ∈ K

is such that ‖r‖ = 1. Then, there are two vectors r̂ ∈ E ∩ A= and r̄ ∈ E ∩ B= such that
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r̂ = µr and r̄ = νr for some µ, ν > 0.

First we prove that x0 ∈ A ∪ B. Let us assume to the contrary that x0 /∈ A ∪ B. Let

u ∈ Rr, then for any γ < min{ν, µ} we have that u ∈ A ∩ B, and we may assume w.l.o.g.

that ν < µ. Note that ν = µ cannot happen as, by Assumption 2.1, A ∩ B ∩ E = ∅.

Additionally, for any γ ≥ ν we have that u ∈ B, so the vector r̂ is contained in the half

space B, and A ∩ B ∩ E 6= ∅, which contradicts Assumption 2.1.

Second we prove that x0 /∈ A ∩ B. Let us assume now that x0 ∈ A ∩ B, and let

u = γr̄ + (1− γ)r̂ for some 0 ≤ γ ≤ 1. Then, we have that u ∈ A or u ∈ B. When ν < µ

for γ = 0 we have u ∈ A∩B=∩E . Similarly, when µ < ν for γ = 1 we have u ∈ A=∩B∩E .

Hence, x0 ∈ A∩B implies A∩B ∩ E 6= ∅, which contradicts Assumption 2.1. The proof is

complete.

We are able now to show that E ∩ (A ∪ B) ⊂ K. This will facilitate the proof of the

relation conv(E ∩ (A ∪ B)) ⊆ E ∩ K.

Lemma 2.4. Assume that there exist a closed convex cone K with dim(K) > 1, such that

E ∩ A= = K ∩A= and E ∩ B= = K ∩ B=. Then

(E ∩ A) ⊂ K and (E ∩ B) ⊂ K.

Proof. We prove that (E∩A) ⊆ K. Let us assume to the contrary that there exists a vector

u such that u ∈ (E ∩ A) but u /∈ K. First, by Theorem 1.5, there exists a hyperplane H

separating u and K that contains a ray of K and does not contain u. Here, the assumption

of dim(K) > 1 is needed, since the hyperplane H does not exist when n = 1.

Additionally, given the assumptions of the lemma, Assumption 2.2, and using Lemma

2.1, we have that the sets E ∩A= and E ∩B= are bases for the cone K. Hence, there exists

a vector v ∈ E ∩ B= such that Rv = {γv | γ ≥ 0} ⊆ H.

Given that the set E is convex, λu+ (1−λ)v ∈ E for all 0 ≤ λ ≤ 1. On the other hand,
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since v is a vector on a exposed face of K, we have that λu+ (1− λ)v /∈ K for 0 < λ ≤ 1.

Furthermore, since u ∈ (E ∩A) and A∩B∩E = ∅, we have a>u ≤ α and a>v > α. Hence,

from the equation a>(λu+ (1− λ)v) = λa>u+ (1− λ)a>v, we obtain that there exists a

λ ∈ (0, 1] such that a>(λu+ (1− λ)v) = α. Therefore, there is a vector w = λu+ (1− λ)v

for some λ ∈ (0, 1], such that w ∈ E ∩ A=, but w /∈ K, which contradicts the assumptions

of the lemma. Hence, (E ∩ A) ⊆ K. One can prove (E ∩ B) ⊆ V analogously.

Finally, recall that the sets E ∩A= and E ∩B= are disjoint and nonempty. Then, given

the assumptions of the lemma we have that E ∩A 6= K and E ∩B 6= K, this completes the

proof.

Now we present the proof of Proposition 2.1.

Proof of Proposition 2.1. First, we prove that if E ∩ A= = K ∩A= and E ∩ B= = K ∩ B=

then K is a disjunctive cone. Consider a vector u ∈ (E ∩A)∪ (E ∩B). Then, from Lemma

2.4 we have that u ∈ E ∩ K. Now, consider two given vectors u, v ∈ (E ∩ A) ∪ (E ∩ B).

Then, since both K and E are convex, for any 0 ≤ λ ≤ 1 we have λu+ (1− λ)v ∈ E ∩ K.

Hence, conv(E ∩ (A ∪ B)) ⊆ E ∩ K.

We need to prove now that E ∩ K ⊆ conv(E ∩ (A ∪ B). Consider a vector u ∈ E ∩ K.

First, if u ∈ E ∩ A or u ∈ E ∩ B, we have that u ∈ conv(E ∩ (A ∪ B)). Assume then that

u /∈ (E ∩ A) ∪ (E ∩ B), which implies u ∈ (A∩ B ∩K). Furthermore, by Lemma 2.1, there

are two vectors v ∈ E ∩ A= and x̄ ∈ E ∩ B= such that, for some µ, ν > 0, v = µu and

w = νx. From Lemma 2.3, the vertex of the cone is either in A or B but not in both.

Assume w.l.o.g. that the vertex of the cone is in B. Then, ν < 1 < µ and there exists a
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γ ∈ (0, 1) such that γν + (1− γ)µ = 1. Hence, we can write

γw + (1− γ)v = γνu+ (1− γ)µu

= (γν + (1− γ)µ)u

= u.

Therefore, u can be expressed as a linear convex combination of two vectors in (E ∩A=)∪

(E ∩ B=). Hence, any vector u ∈ E ∩ K can be written as a linear convex combination of

two vrctors in (E ∩ A) ∪ (E ∩ B). Thus, (E ∩ K) ⊆ conv(E ∩ (A ∪ B)). Finally, since the

subset relation is valid in both directions, this proofs that (E ∩ K) = conv(E ∩ (A ∪ B)).

Second, we prove that if K is a DCC for E ∩ (A ∪ B), then E ∩ A= = K ∩ A= and

E∩B= = K∩B=. From Assumptions 2.1, 2.2 and Definition 2.2 we have that E∩A= ⊆ E∩K,

then for a given x ∈ E ∩A= we have that x ∈ K∩A=. Henceforth, E ∩A= ⊆ K∩A=. We

can show similarly that E ∩ B= ⊆ K ∩ B=.

Assume now that E ∩ A= is a proper subset of K ∩A=, i.e., E ∩ A= ⊂ K ∩A=. Then,

there is a vector u ∈ E ∩ A= such that u /∈ K ∩ A=, which implies that u /∈ K. Hence,

u ∈ conv(E ∩(A∪B)) but u /∈ E∩K, which violates Definition 2.2 of a DCC for E ∩(A∪B).

Similarly, we can show that E ∩ B= is not a proper subset of K ∩ B=. Therefore, we have

that E ∩ A= = K ∩A= and E ∩ B= = K ∩ B=. This completes the proof.

We need to add an additional comment to complete this analysis. In Lemma 2.1, we

assumed that none of the intersections A= ∩ E and B= ∩ E contain the vertex of the cone

K. However, if one of these intersections is a single point, then this single point must be

the vertex of K and the other intersection must be a base of K. In this case, we don’t need

Lemma 2.3, and the rest of the proof follows.

Lemma 2.5. If a DCC K ∈ Rn with dim(K) > 1 exists for the set E ∩ (A∪B), then K is

unique.
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Proof. Assume to the contrary that there are two different cones K1 and K2 that satisfy

Definition 2.2. Thus, from Proposition 2.1 we have K1 ∩ A= = K2 ∩ A= and K1 ∩ B= =

K2 ∩ B=. Let v1 ∈ K1 be the vertex of K1 and v2 ∈ K2 be the vertex of K2. Now, assume

w.l.o.g. that v1 = 0 and that v2 6= 0, i.e., K2 is a translated cone.

First, we prove that if either E ∩ A= or E ∩ B= is a single point, then K1 = K2. Since

dim(K) > 1 we have that E ∩A= and E ∩ B= cannot be both single point sets. Let u ∈ E ,

and assume that E ∩ A= = {u}, then K1 ∩ A= = {u} and K2 ∩ A= = {u}. Now, if

u 6= v1, then we have that K1 = {θv1 | θ ≥ 0}, which implies that the set E ∩ B= is a

single point. Thus, we have that u = v1. On the other hand, if u 6= v2, then we have

that K2 = {v ∈ Rn | y = v2 + θ(u − v2), θ ≥ 0}, which also implies that the set E ∩ B=

is a single point. Hence, we have that u = v2. Therefore, we have that v1 = v2. Finally,

from Lemma 2.1 we know that E ∩ B= is a base for K2 and K1. Therefore, we have that

K1 = K2. The same argument would show that K1 = K2 if E ∩ B= = {z}.

Second, we show that if {v1, v2} ∩ (A= ∪ B=) = ∅, then v1 ∈ K2 and v2 ∈ K1. Assume

to the contrary that v1 /∈ K2. Here use a similar argument to the one in the proof of

Lemma 2.4. By the separation Theorem 1.5, there exists a hyperplane H separating v1

and K2 properly and does not contain v1. From Lemma 2.1, we know that the sets E ∩A=

and E ∩B= are bases for K2. Hence, there exists a vector w ∈ E∩B= such that the extreme

ray Rw = {v2 + γ(w − v2) | γ ≥ 0} of K2 is in H. Additionally, by Lemma 2.3 we have

that v1 is either in A or B but not in A ∩ B. Assume w.l.o.g. that v1 ∈ A. Given that

K1 is convex, λv1 + (1 − λ)w ∈ K1 for all 0 ≤ λ ≤ 1. On the other hand, since w is a

vector on an exposed face of K2, for 0 < λ ≤ 1 we have λv1 +(1−λ)w /∈ K2. Furthermore,

since v1 ∈ A, by Assumption 2.1, we have a>v1 ≤ α and a>w > α. Hence, from the

equation a>(λv1 + (1− λ)w) = λa>v1 + (1− λ)a>w, we may obtain 0 < λ ≤ 1 such that

a>(λx∗ + (1 − λ)w) = α. Therefore, there exists a vector u = λv1 + (1 − λ)w for some

0 < λ ≤ 1, such that u ∈ K1 ∩ A=, but u /∈ K2, which contradicts K1 ∩ A= = K2 ∩ A=.

35



CHAPTER 2. DISJUNCTIVE CONIC CUTS

Hence, we obtain that v1 ∈ K2. Using a similar argument one can proof that v2 ∈ K1.

Third, we show that if v1 6= v2, then they cannot be both in A or in B. Assume to

the contrary that v1 ∈ A and v2 ∈ A, then if α > 0 we have v1 /∈ A, thus α ≤ 0. On one

hand, since v1 ∈ K2 we have that Rv1 = {(1 − θ)v2 | θ ≥ 0} ⊆ K2. Hence, if a>v2 ≤ 0

then Rv
1 ∈ A which implies that A∩K1 is unbounded. On the other hand, since v2 ∈ K1

we have that Rv2 = {θv2 | θ > 0} ⊆ K1. Hence, if a>v2 ≥ 0, then Rv2 ∈ A, which implies

that A ∩ K1 is unbounded. Hence, if v1 ∈ A and v2 ∈ A, then we obtain a contradicts to

Assumption 2.2. Similarly, we can prove that if v1 and v2 cant not be simultaneously in

B.

Finally, we show that if v1 and v2 are in different halfspaces and {v1, v2}∩(A=∪B=) =

∅, then it contradicts the assumption that K1 ∩ A= = K2 ∩ A= and K1 ∩ B= = K2 ∩ B=.

Assume that v1 ∈ A and v2 ∈ B. Recall that in this case v1 ∈ K2 and v2 ∈ K1, thus the set

Rv1 = {(1 − θ)v2 | θ ≥ 0} ⊆ K2 and Rv2 = {θv2 | θ > 0} ⊆ K1. Now, since dim(K1) > 1

and B= ∩ K1 is a base of K1, there is at least one extreme ray Rw = {γw | γ ≥ 0} of K1

such that v2 /∈ Rw and w ∈ K1∩B= is a vector in the boundary of K1. Then, we have that

w ∈ K2 ∩ B= and is a vector in the boundary of K2. This is true because if w ∈ ri(K2),

then since K2 ∩ B= is bounded and is a base of K2 we have that w ∈ ri(K2 ∩ B=). Thus,

in that case there exist a vector u ∈ K2 ∩ B= such that u /∈ K1 ∩ B=, which contradicts

K1 ∩ B= = K2 ∩ B=.

Now, since w ∈ K2 then {v2 + γ(w − v2) | γ ≥ 0} ∈ K2. Even more, since v2 ∈ B

and w ∈ B=, there exist a γ̂ > 1 such that a>(v2 + γ̂(w − v2)) = α. However, since w is

in the extreme ray Rw of K1 and v2 /∈ Rw, then the vector (v2 + γ̂(w − v2)) /∈ K1. This

contradicts the assumption K1 ∩ A= = K2 ∩ A=. The same contradiction is found if we

assume that v1 ∈ B and v2 ∈ A. Hence, since v1 and v2 cannot be in different halfspaces,

then v1 = v2. In conclusion, we have that K1 = K2, since E ∩ A= and E ∩ B= are bases

for K1 and K2, which proof that the disjunctive conic cut is unique.
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Figure 2.2 illustrates how Lemma 2.5 fails when the intersections E ∩ A= or E ∩ B=

are unbounded. In this case, one can see that only the cone K gives the convex hull of

E∩(A∪B). The other two cones K1 and K2 have the same intersections with A= and B= as

the convex set E . However, the intersections K1∩E and K2∩E fail to give conv(E∩(A∪B)).

Figure 2.2: Example of unbounded intersections.

Another important case to consider here is when the set E ∩ (A ∪ B) is of dimension

n = 1. Figure 2.3(a) illustrates this case. Here, the set E is given by the solid line segment,

and the sets A= and B= are given by the two circles. In particular, we can see that the

uniqueness Lemma 2.5 fails in this case too. Observe the cone K1 in Figure 2.3(b) and

the cone K2 in Figure 2.3(c), which are represented by two dashed half lines. These two

cones have the same intersections with A= and B= as the set E . However, the intersections

E ∩ K1 and E ∩ K2 differ from conv(E ∩ (A ∪ B)). In this case, only the cone K in Figure

2.3(d), given by a whole line, is such that E ∩K = conv(E ∩ (A∪B)). Finally, in these two

examples the condition given in Proposition 2.1 is still necessary, but it is not a sufficient

condition.
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(a) A=, B=, and E .

(b) Cone K1 does not give conv(E ∩ (A ∪ B)).

(c) Cone K2 does not give conv(E ∩ (A ∪ B)).

(d) K ∩ E = conv(E ∩ (A ∪ B)).

Figure 2.3: Example when the set E ∩ (A ∪ B) has dimension n = 1.

2.2 Disjunctive cylindrical cuts

Let us first define the concept of a base of a cylinder, which is based on Definition 2.3 of

a base of a cone and on Definition 1.16.

Definition 2.4 (Base of a Convex Cylinder). Let C ⊂ Rn be a convex cylinder with the

direction d0 ∈ Rn. A set D ⊂ C is called a base of C if for every vector x ∈ C, there is a

unique d ∈ D and σ ∈ R such that x = d+ σd0.

Definition 2.5 (Disjunctive Cylindrical Cut). Let E be a closed convex set. A closed

convex cylinder C is a Disjunctive Cylindrical Cut (DCyC) for the set E and the disjunctive

set A ∪ B if

conv(E ∩ (A ∪ B)) = C ∩ K.

For the results in this section, Assumption 2.2 may be relaxed.

Assumption 2.3. The intersections E ∩ A= and E ∩ B= are nonempty.
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Assumption 2.1 and 2.3 are assumed to hold in the remainder of this section. The

following proposition gives a necessary and sufficient condition for a convex cylinder C to

be a DCyC.

Proposition 2.2. A convex cylinder C ∈ Rn with a unique direction d0 ∈ Rn, such that

a>d0 6= 0 and b>d0 6= 0, is DCyC for E and the disjunctive set A ∪ B if and only if

C ∩ A= = E ∩ A= and C ∩ B= = E ∩ B=. (2.1)

Figure 2.4 illustrates Proposition 2.2 where the set E is the epigraph of a paraboloid.

Before proving Proposition 2.2, we first provide a set of lemmas that help to develop the

proof.

Lemma 2.6. Let C ⊂ Rn be a convex cylinder with a unique direction d0 ∈ Rn. Consider

a half space G = {x ∈ Rn|g>x ≤ %}, such that g>d0 6= 0 and E ∩ G= is nonempty. If

C ∩ G= = E ∩ G=, then E ∩ G= is a base for C.

Proof. Consider the convex cylinder C = {x ∈ Rn | x = d + σd0, d ∈ D, σ ∈ R}, where

D ∈ Rn is a convex set and d0 ∈ Rn. Assume that C ∩ G= = E ∩ G=. Observe that if

g>d0 = 0, then for any u ∈ C such that u /∈ G= we have that {v ∈ Rn | v = u + σd0, σ ∈

R} ∩ C ∩ G= = ∅. Thus, if g>d0 = 0 the set C ∩ G= is not a base of C. Assume now that if

g>d0 6= 0, then for any vector w ∈ C there is a σ̃ ∈ R such that w + σ̃d0 ∈ G= ∩ C. That

is, the set G= ∩ C is a base of C. Thus, since C ∩ G= = E ∩ G= we have that E ∩ G= is a

base of C.

The next lemma states the relationship between cylinder C and the intersections of E

with the half spaces A and B.

Lemma 2.7. Let C be a convex cylinder C with a unique direction d0 ∈ Rn, such that

39



CHAPTER 2. DISJUNCTIVE CONIC CUTS

(a) A=, B=, and E (b) The cylinder C yielding conv(E∩(A∪
B))

(c) E ∩ C (d) conv(E ∩ (A ∪ B))

Figure 2.4: Illustration of a disjunctive cylindrical cut as specified in Proposition 2.2

a>d0 6= 0 and b>d0 6= 0, and for which condition (2.1) holds. Then

(E ∩ A) ⊂ C and (E ∩ B) ⊂ C.

Proof. Note that if a>d0 6= 0, then from condition (2.1) and Assumption 2.1 we have

that b>d0 6= 0, otherwise A ∩ B ∩ E 6= ∅. Now, we prove first that (E ∩ A) ⊆ C. Let us

assume to the contrary that u ∈ (E ∩ A) but u /∈ C. First, by the separation theorem,

there exists a hyperplane H properly separating u from C. From the definition of C
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we have that H is parallel to d0. Now, let H be a supporting hyperplane of C, which

implies that H ∩ C is an exposed face of C. Note that for any v ∈ H ∩ C the inclusion

{w ∈ Rn | w = v + σd0, σ ∈ R} ⊆ H ∩ C holds. Additionally, since a>d0 6= 0, then by

condition (2.1), and Lemma 2.6, the sets E ∩A= and E ∩B= are bases for C. Hence, there

exists a vector ŵ ∈ E ∩ B= such that ŵ ∈ H, and ŵ is in an exposed face of C.

Convexity of E implies λu + (1 − λ)ŵ ∈ E for any λ ∈ [0, 1]. On the other hand, the

vector ŵ is in an exposed face of C, then by convexity of C we obtain that λu+(1−λ)ŵ /∈ C

for 0 < λ ≤ 1. Since u ∈ (E ∩A) and A∩B ∩ E = ∅, we have that a>u ≤ α and a>ŵ > α.

Hence, from the equation a>(λu+ (1− λ)ŵ) = λa>u+ (1− λ)a>ŵ, we obtain that there

exists a value 0 < λ ≤ 1 such that a>(λu+ (1−λ)ŵ) = α. Therefore, there is a 0 < λ ≤ 1

such that ũ = λu + (1 − λ)ŵ ∈ E ∩ A=, but ũ /∈ C, which contradicts condition (2.1).

Hence, (E ∩ A) ⊆ C. One can prove (E ∩ B) ⊆ C analogously.

Recall that the sets E ∩ A= and E ∩ B= are disjoint and nonempty. Then, Definition

2.5 implies that E ∩ A 6= C and E ∩ B 6= C, this proofs the lemma.

We can now present the proof of Proposition 2.2.

Proof of Proposition 2.2. First, consider a vector u ∈ (E ∩A)∪ (E ∩B). Then, Lemma 2.7

implies that u ∈ E ∩ C. Consider any two vectors u, v ∈ (E ∩ A) ∪ (E ∩ B). Then, since

both C and E are convex, for all 0 ≤ λ ≤ 1 the convex combination λx+ (1− λ)y ∈ E ∩ C.

Hence, conv(E ∩ (A ∪ B)) ⊆ (E ∩ C).

Consider now a vector u ∈ (E ∩ C). First, if u ∈ (E ∩ A) or u ∈ (E ∩ B), we have that

u ∈ conv(E ∩ (A ∪ B)). Suppose now that u /∈ (E ∩ A) ∪ (E ∩ B). Then, u ∈ (A ∩ B ∩ C).

Furthermore, by Lemma 2.6 there are two vectors v ∈ E ∩ A= and w ∈ E ∩ B= such that

u = v + µd0 and u = w + νd0, for some µ, ν ∈ R. Thus, given that u /∈ (E ∩ A) ∪ (E ∩ B)

we can assume w.l.o.g. that ν > 0 and µ < 0. Then, we have that u = λv + (1 − λ)w,

where λ = ν/(ν − µ) and 0 < λ < 1. In other words, u is a convex combination of v and
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w. Since u is an arbitrary vector we have that any vector u ∈ (E ∩ C) can be written as

a convex combination of two vectors in (E ∩ A) ∪ (E ∩ B). As a conclusion, we have that

(E ∩ C) ⊂ conv(E ∩ (A ∪ B)).

Now we prove that if C is a disjunctive cylindrical cut for E ∩ (A∪ B), then E ∩ A= =

C ∩ A= and E ∩ B= = C ∩ B=. From Assumption 2.1 and Definition 2.5 we have that

E ∩ A= ⊆ C ∩ A=, then for a given u ∈ E ∩ A= we have that u ∈ C ∩ A=. Henceforth,

E ∩ A= ⊆ C ∩ A=. We can show similarly that E ∩ B= ⊆ C ∩ B=.

Assume now that E ∩ A= is a proper subset of C ∩ A=, i.e., E ∩ A= ⊂ C ∩ A=. Then,

there is a vector u ∈ E ∩ A= such that u /∈ C ∩ A=, which implies that u /∈ C. Hence,

u ∈ conv(E ∩ (A∪B)) but u /∈ E ∩C, which violates Definition 2.5 of a disjunctive cylinder

for E ∩ (A ∪ B). Similarly, we can show that E ∩ B= is not a proper subset of C ∩ B=.

Therefore, we have that E ∩ A= = C ∩ A= and E ∩ B= = C ∩ B=.

Lemma 2.8. If a DCyC C ∈ Rn with a direction d0 ∈ Rn exists for E and the disjunctive

set A ∪ B, such that a>d0 6= 0 and b>d0 6= 0, then C is unique.

Proof. Assume that there exist two different DCyC C1 = {x ∈ Rn | x = d + σd0, d ∈

D1, σ ∈ R} and C2 = {x ∈ Rn | x = h + γh0, h ∈ D2, γ ∈ R} such that a>d0 6= 0 and

a>h0 6= 0. Then, we have that C1 ∩ A= = C2 ∩ A= and C1 ∩ B= = C2 ∩ B=.

Given that C1 6= C2 there must exist a vector u that belongs only to one cylinder, and

w.l.o.g. we assume that u ∈ C1 and u /∈ C2. Observe that, by Assumption 2.1, u /∈ A ∩ B.

Let us begin assuming that u ∈ Ā ∩ B̄. Then, given that E ∩ A= is a base for both

cylinders there exists a σ1 ∈ R such that u = d1 +σ1d
0 for some d1 ∈ E ∩A= = C1 ∩A= =

C2 ∩ A=. On the other hand, since E ∩ B= is a base for C1, there exist σ2 ∈ R such that

u = d2 + d0σ2 for some d2 ∈ E ∩ B= = C1 ∩ B=. Hence, u = λd1 + (1 − λ)d2 where

λ = σ1/(σ1 − σ2) ≤ 1, since σ1 and σ2 must have opposite signs. Additionally, given

that the two cylinders are convex we obtain that d2 /∈ C2. Then, C1 ∩ B= 6= C2 ∩ B=, a

contradiction.
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Let us assume now that u ∈ A and u /∈ B. By the separation Theorem 1.5, there

exists a hyperplane H properly separating u from C2. From Definition 1.16 of a cylinder,

we have H is parallel h0. Now, let H be a supporting hyperplane of C2, which implies

that H ∩ C2 is an exposed face of C2. Note that for any v ∈ H ∩ C2 we have that

{w ∈ Rn | w = v+ σh0, σ ∈ R} ⊆ H∩C2. Additionally, we know that the sets E ∩A= and

E ∩ B= are bases of C2. Hence, there exists a vector w̄ ∈ E ∩ B= such that w ∈ H, and w

is contained in an exposed face of C2.

Convexity of C1 implies that for any λ ∈ [0, 1], λu + (1 − λ)w̄ ∈ C1. On the other

hand, since w̄ ∈ H is on exposed face of C2, λu + (1 − λ)w̄ /∈ C2 for 0 < λ ≤ 1. Since

u ∈ A ∩ C1 and A ∩ B ∩ C1 = ∅, we have that a>u ≤ α and a>w̄ > α. Hence, from the

equation a>(λu + (1 − λ)w̄) = λa>u + (1 − λ)a>w̄, there exists a value 0 < λ ≤ 1 such

that a>(λu+ (1− λ)w̄) = α. Therefore, there exists a vector ū = λu+ (1− λ)w for some

0 < λ ≤ 1, such that ū ∈ C1 ∩ A=, but ū /∈ C2, which is a contradiction. An analogous

argument can be used when u ∈ B and u /∈ A. This proof the lemma.

In this section we kept the assumption that dim(E) ≥ 2. This assumption is needed

in the proofs of Proposition 2.2 and Lemma 2.7 for the sake of the separation argument.

However, this assumption excludes the case when the DCyC is be a line. In this case,

the separation argument is not needed and the result becomes trivial. In particular if

E ∩ A= and E ∩ B= are to points, then the disjunctive cylindrical cut C must be a line.

In this case, the sets E ∩ A and E ∩ B must be either two half lines or two points, since

E is a convex set. As a direct consequence we have that E ⊂ C, which implies that

E ∩ C = E = conv(E ∩ (A ∪ B)).

43



Chapter 3

Analysis of quadrics

In this chapter, we consider a given quadric Q represented by (P, p, ρ), where P ∈ R`×`

is a symmetric matrix with at most one non-positive eigenvalue, p ∈ R` and ρ ∈ R. In

particular, we focus on the intersection of the quadric represented by (P, p, ρ) an two

given hyperplanes. The results described here are based on those reported in Belotti

et al. [2013b] and Belotti et al. [2013a]. We begin the discussion with a description of

some affine transformations in Section 3.1 that will simplify the algebra in the analysis

of Sections 3.2 and 3.3. In Section 3.2, we consider the case when the two hyperplanes

are parallel. Finally, in Section 3.3, we analyze the case when the two hyperplanes are in

general position. In this chapter, we use a set of well known results of linear algebra. The

interested reader can find an extensive review of these concepts and results in textbooks,

such as like Golub and Van Loan [1996], Lancaster and Tismenetsky [1985], Searle [1982].

3.1 Affine transformations of quadrics

In this section, we define some convenient affine transformations that will simplify the

algebra in Sections 3.2.3 and 3.3.2. The affine transformation defined here can be applied

to the quadric represented by (P, p, ρ) to transform it into a simpler object. This will
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allow us to focus our analysis on the geometry of this simpler object independent of its

representation.

Since P is a real symmetric matrix, it is well known that P can be factorized as

P = V DV >, where V ∈ R`×` is an orthonormal matrix and D ∈ R`×` is a diagonal matrix

Searle [1982]. This factorization gives the eigenvalue and eigenvector decomposition of

P , where the diagonal elements of D are the eigenvalues of P and the columns of V are

the normalized eigenvectors of P . Now, recall the concept of inertia of a matrix given in

Definition 1.18. Then, it is clear that In(P ) = In(D).

The rest of the discussion about affine transformations defined in this section is sepa-

rated into two cases. We discuss the case when P is a non-singular matrix in Section 3.1.1

and the case when P is a singular matrix in Section 3.1.2.

3.1.1 The matrix P is non-singular

Consider the case when the matrix P is non-singular and recall expression (1.4). Then the

quadric represented by (P, p, ρ) can be given by

{
w ∈ R` | (w + P−1q)>P (w + P−1p) ≤ pP−1p− ρ

}
. (3.1)

We can use the eigenvalue and eigenvector decomposition P = V DV > to rewrite (3.1) in

terms of V and D. First, let J̃ be the `× ` diagonal matrix defined as

J̃i,i =
Di,i

|Di,i|
, i = 1, . . . , `. (3.2)

Observe that J̃ is the identity if P � 0. On the other hand, if Dk,k < 0 for some

k ∈ {1, . . . , `}, then we have that J̃k,k = −1, thus we have that In(J̃) = In(P ). Now, let

D̃ ∈ R`×` be a diagonal matrix defined as D̃i,i = |Di,i|, i = 1, . . . , `. Therefore, the set
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(3.1) has the following equivalent description

{w ∈ R` |
(
w + P−1p

)>
(V D̃

1
2 )J̃(D̃

1
2V >)

(
w + P−1p

)
≤ p>P−1p− ρ}. (3.3)

Consider an affine transformation L : R` 7→ R` defined by

L(w) = D̃
1
2V >

(
w + P−1p

)
. (3.4)

Recall that V is a an orthonormal matrix, and we know that D̃ is non-singular by definition.

Hence, the matrix D̃
1
2V > is non-singular. Using (3.4) we show that there is a one-to-one

mapping between every element of (3.3) to elements in the quadric

{
u ∈ Rn | u>J̃u ≤ δ

}
, (3.5)

where the value of the scalar δ depends on the quantity p>P−1p− ρ.

In first place, if p>P−1p− ρ 6= 0, then this quantity can be either positive or negative.

With this in mind, let us define

u =
1√

|p>P−1p− ρ|
L(w) and δ =

p>P−1p− ρ
|p>P−1p− ρ|

. (3.6)

Then, since D̃
1
2V > is non-singular, using (3.6) we obtain a one-to-one mapping between

every element of the set (3.3) and the set (3.5). On the other hand, if p>P−1p − ρ = 0,

define

u = L(w) and δ = 0. (3.7)

In this case, using (3.7) we obtain a one-to-one mapping between the sets (3.3) and (3.5)

as well.

A consequence of using transformation (3.4) is that the classification of the quadrics

46



CHAPTER 3. ANALYSIS OF QUADRICS

(3.1) and (3.5) in Table 1.1 is the same. The shape of the quadrics is determined by the

inertia of P , which is the same of J̃ , and the sign of the quantities p>P−1p− ρ, which is

the same as the sign of δ. Hence, these two conditions show that (3.1) and (3.5) have the

same classification in Table 1.1.

3.1.2 The matrix P is singular

Now, consider the case when P is a singular matrix. Recall that P has at most one non-

positive eigenvalue. Also, recall the representation of a quadric given in Definition 1.17,

which is {
w ∈ R` | w>Pw + 2p>w + ρ ≤ 0

}
. (3.8)

If P is singular, its non-positive eigenvalue is zero. Hence, there exist a j ∈ {1, . . . , `} such

that Dj,j = 0 for the matrix D from the diagonalization of P . In this case we can define a

diagonal matrix D̄ ∈ R`×` as D̄i,i = Di,i for i ∈ {1, . . . , `} \ j and D̄j,j = 1. Additionally,

let J̄ ∈ R`×` be a diagonal matrix defined as

J̄i,i = 1, i ∈ {1, . . . , `} \ j, and J̄j,j = 0. (3.9)

Thus, for the set (3.8) we have the following equivalent description

{
w ∈ R` | w>V D̄

1
2 J̄D̄

1
2V >w + 2(p>V D̄−

1
2 )(D̄

1
2V >w) + ρ ≤ 0

}
, (3.10)

Consider an affine transformation L : R` 7→ R` defined by

L(w) = D̄
1
2V >w. (3.11)

Recall that V is a an orthonormal matrix, and we know that D̄ is non-singular by definition.

Hence, the matrix D̄
1
2V > is non-singular. We show now that there is a one-to-one mapping
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between every element of (3.10) and the quadric

{
u ∈ R` | u>J̄u+ 2p̄>u+ ω ≤ 0

}
, (3.12)

where the definition of p̄ and the scalar ω depend on ρ.

In the first place, if ρ 6= 0, then it can be either positive or negative. Consequently, let

us define

u =
1√
|ρ|

L(w), p̄ =
1√
|ρ|
D̄−

1
2V >p, ω =

ρ

|ρ|
. (3.13)

Then, since D̄
1
2V > is non-singular, using (3.13) we obtain a one-to-one mapping between

every element of (3.10) and the elements of the set (3.12). Now, if ρ = 0, then we can

define

u = L(w), p̄ = D̄−
1
2V >p, ω = 0. (3.14)

In this case, using (3.14) we obtain a one-to-one mapping between the sets (3.10) and

(3.12) as well.

We need to verify now that the sets (3.8) and (3.12) have the same shape. From Section

1.1.2.1 we know that the shape of these quadrics depends on one hand on the inertia of

P , which is the same of J̄ . The next criteria given in Section 1.1.2.1 is to verify is if

there exist both a vector wc ∈ R` such that Pwc = −p, and a vector uc ∈ R` such that

J̄uc = −p̄. Let us assume first that there is no vector xc such that Pxc = −p. Then,

from the system V DV >xc = −p we have that DV >xc = −V >p, and we may conclude

that p is not orthogonal to the eigenvector associated with the zero eigenvalue of P . As a

consequence, we have that p̄j 6= 0, and there is no vector uc such that J̄uc = −p̄. Thus,

from Case 2 in Section 1.1.2.1 we have that (3.8) and (3.12) are two paraboloids.

Let us assume now that a vector wc such that Pwc = −p exists. Then p must be

orthogonal to the eigenvector associated with the zero eigenvalue of P . As a consequence,
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we have that p̄j = 0, which ensures the existence of a vector uc ∈ R` such that J̄zc =

−p̄. We know from Case 1 in Section 1.1.2.1 that in this case the set (3.8) is empty if

(wc)>Pwc − ρ < 0, is a line if (wc)>Pwc − ρ = 0, and a cylinder if (wc)>Pwc − ρ > 0.

Similarly, the shape of the set (3.12) is determined by the quantity (uc)>J̄uc − ω. Thus,

if ρ = ω = 0, using (3.14) we can define uc = D̄
1
2V >wc, and we obtain

(uc)>J̄uc = (wc)>V D̄
1
2 J̄D̄

1
2V >wc = (wc)>Pwc.

Hence, (uc)>J̄uc = (wc)>Pwc ≥ 0, since P � 0, and from (3.14) we have that J̄uc = p̄. In

this situation we have from Case 1 in Section 1.1.2.1 that (3.8) and (3.12) are two cylinders

if (wc)>Pwc > 0, and two lines if (wc)>Pwc = 0. On the other hand, if ρ 6= 0, then from

(3.14) we obtain that ω 6= 0, and the two quantities share the same sign. Additionally, we

can define uc = 1√
|ρ|
D̄

1
2V >wc, and we obtain

(uc)>J̄uc − ω =
1

|ρ|

(
(wc)>Pwc − ρ

)
.

Thus, from Case 1 in Section 1.1.2.1 we know that (3.8) and (3.12) are empty if (wc)>Pwc−

ρ < 0; are lines if (wc)>Pwc − ρ = 0; and cylinders if (wc)>Pwc − ρ > 0. In brief, this

shows that using the transformation 3.11 the classification of the quadrics (3.8) and (3.12)

according to Case 1 or Case 2 of Section 1.1.2.1 is always the same.

Tow final remarks about the transformations described in Sections 3.1.2 and 3.1.1 are

needed. An advantage of using transformations (3.4) and (3.11) is that affine transfor-

mations preserve straight lines and ratios between distances. Thus, after an affine trans-

formation parallel hyperplanes will remain parallel. Recall that the goal of this chapter

is to analyze the geometric properties of the intersection of quadrics of the form (3.1)

and (3.8) and two given hyperplanes. Then, if P is non-singular we can analyze these

properties using the intersection of a quadric of the form (3.5) and the two given hyper-
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planes transformed using (3.6) or (3.7). On the other hand, if P is singular we can analyze

these properties using the intersection of a quadric of the form (3.12) and the two given

hyperplanes transformed using (3.13) or (3.14).

Another important advantage of the transformations (3.4) and (3.11) is that the matri-

ces D̃
1
2V > and D̄

1
2V > are non-singular. Thus, the inverse mapping L(x)−1 is well defined

in both cases. This allows us to translate the results of the analysis in the transformed

sets to the original sets. This last property is important for the practical application of

this results in Chapter 4.

3.2 Intersections with parallel hyperplanes

In this section, we investigate the intersection of the quadric Q with two parallel hyper-

planes. For the sake of simplifying the algebra, w.l.o.g we may assume throughout this

section that the quadric Q is one of the sets (3.5) or (3.12). Recall that the results obtained

for this two sets can be generalized using the inverse transformations (3.4) or (3.11). Now,

let A= = {w ∈ R` | a>w = α} and B= = {w ∈ R` | a>w = β} be two given parallel

hyperplanes for some a ∈ R` and α, β ∈ R, where α 6= β, and w.l.o.g. we may assume that

‖a‖ = 1. Additionally, assume that the intersections Q ∩ A= and Q ∩ B= are nonempty.

We first present in Section 3.2.1 a theorem that characterizes a family of quadrics having

the same intersection with the hyperplanes A= and B= as the quadric Q. Then, in Section

3.2.2, we recall some results from linear algebra about the eigenvalues of a diagonal matrix

modified by a rank one update. Finally, we analyze the family of quadrics to show that

there is always a quadric in the family that is either a cone or a cylinder. The analysis

of the family is divided in three parts. First, in Section 3.2.3, we consider the case when

P � 0 . Then, in Section 3.2.4, we analyze the case when P has one zero eigenvalue.

Finally, in Section 3.2.5, we consider the case when P has one negative eigenvalue.
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3.2.1 The family of quadrics with fixed parallel planar sections

First we recall the definition of a pencil of quadrics as it is given in Snyder and Sisam

[1914].

Definition 3.1. Consider two given quadrics represented by (P1, p1, ρ1) and (P2, p2, ρ2),

for P1, P2 ∈ R`×`, p1, p2 ∈ R` and ρ1, ρ2 ∈ R. The family of quadrics {Q(τ) | τ ∈ R} is

called a pencil of quadrics, where Q(τ) is represented by P̂ (τ) = P1 +τP2, p̂(τ) = p1 +τ p̃2,

and ρ̂(τ) = ρ1 + τ ρ̃2.

Now we characterize a family of quadrics having the same intersection with two hyper-

planes A= and B= as the quadric Q.

Theorem 3.1. Let a quadric Q ∈ R` represented by (P, p, ρ), where P ∈ R`×`, p ∈ R`,

ρ ∈ R, and two parallel hyperplanes A= = {x ∈ R` | a>x = α} and B= = {x ∈ R` | a>x =

β} be given. The uni-parametric family of quadrics having the same intersection with A=

and B= as the quadric Q is defined by the pencil of quadrics {Q(τ) | τ ∈ R}, where Q(τ)

is represented by (P (τ), p(τ), ρ(τ)), and

P (τ) = P + τaa>,

p(τ) = p− τ (α+ β)

2
a,

ρ(τ) = ρ+ ταβ.

Proof. Consider the set A= ∪ B=, which can be described as

{x ∈ R` | (a>x− α)(a>x− β) = 0},

and observe that

(a>x− α)(a>x− β) = x>aa>x− (α+ β)a>x+ αβ = 0. (3.15)

51



CHAPTER 3. ANALYSIS OF QUADRICS

Now, let

P̃ = aa>, p̃ = −(α+ β)

2
a, ρ̃ = αβ.

Then, the set of solutions of equation (3.15) can be written as a quadric surface Q̃ repre-

sented by (P̃ , p̃, ρ̃). Now, consider a pencil {Q(τ) | τ ∈ R}, where Q(τ) is represented by

P̂ (τ) = P + τP̃ , p̂(τ) = p+ τ p̃, and ρ̂(τ) = ρ+ τ ρ̃. Let x̄ ∈ R` be a given vector satisfying

x̄>P̃ x̄+ 2p̃>x̄+ ρ̃ = 0. Then, for τ ∈ R we have x̄ ∈ Q(τ) if and only if

x̄>(P + τP̃ )x̄+ 2(p+ τ p̃)>x̄+ (ρ+ τ ρ̃) = x̄>Px̄+ 2p>x̄+ ρ ≤ 0.

Hence, we have x̄ ∈ Q(τ) ∩ (A= ∪ B=) if and only if x̄ ∈ Q ∩ (A= ∪ B=) for τ ∈ R.

We call the attention of the reader to the fact that Theorem 3.1 is rather general in

that Q does not need to be constrained to one of the quadrics represented by (J̃ , 0, δ) or

(J̄ , q̄, ω). This assumption is made for the sake of simplifying the algebra in the analysis

of the subsequent sections.

3.2.2 Eigenvalues of a diagonal matrix modified by a rank one update

A key component in the analysis of Section 3.2.3 is the inertia of the matrix P (τ) of

Theorem 3.1. Recall that in this chapter we assume that the matrix P ∈ R`×` is symmetric

and has at most one non-positive eigenvalue. In this section we provide exact formulas for

the computation of the eigenvalues of the matrix

P + τaa>,

where τ ∈ R, and a ∈ R` is a vector with ‖a‖ = 1.
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The eigenvalues of P + τaa> can be computed finding the roots of the equation

det(P + τaa> − λI) = 0,

which is shown in Golub [1973] to be equivalent to the characteristic equation

n∏
i=1

(Pi,i − λ) + τ

n∑
i=1

a2
i

n∏
j=1
j 6=i

(Pi,i − λ) = 0. (3.16)

We use this equation in Sections 3.2.3, 3.2.4, and 3.2.5 to find a specific formula for the

eigenvalues of P + τaa> suitable for each case.

3.2.3 Classification of the family {Q(τ) | τ ∈ R} when P � 0

Here we focus on the case when P � 0, i.e., we assume that the quadric Q is an ellipsoid.

A consequence of this assumption is that the sets Q ∩ A= and Q ∩ B= are bounded. We

may assume w.l.o.g. that the quadric Q is not a single point, since otherwise α = β.

Recall the affine transformation defined in Section 3.1.1. Hence, to simplify the algebra,

we may assume w.l.o.g. that Q is a unit hypersphere centered at the origin, and recall

that ‖a‖ = 1. Thus, we have that P = I, p = 0, and ρ = −1, and the representation of

Q(τ) in this section is defined by

P (τ) = I + τaa>, p(τ) = −τ α+ β

2
a, ρ(τ) = −1 + ταβ. (3.17)

Our goal is to characterize the behavior of the family {Q(τ)|τ ∈ R} defined by (3.17)

as a function of the parameter τ . First, we need a result about the inertia of P (τ).

Lemma 3.1. The matrix P (τ) can be classified as a function of parameter τ as follows:

• P (τ) � 0 if τ > −1,

53



CHAPTER 3. ANALYSIS OF QUADRICS

• P (τ) � 0 with one zero eigenvalue if τ = −1,

• P (τ) is ID1 if τ < −1.

Proof. If P = I, then the characteristic polynomial (3.16) simplifies to

(1− λ)n−1(1− λ+ τ ‖a‖2) = (1− λ)n−1(1− λ+ τ) = 0.

Thus, in this case the eigenvalues are 1 with multiplicity n − 1 and 1 + τ . Hence, the

eigenvalues of P (τ) are all positive if τ > −1. The matrix P (τ) has n − 1 positive

eigenvalues and one zero eigenvalue if τ = 1. Finally, the matrix P (τ) has n − 1 positive

eigenvalues and one negative eigenvalue if τ < −1. This proves the lemma.

Given the result in Lemma 3.1 we have two cases to analyze: P (τ) is non-singular and

P (τ) is singular. In the following sections, we analyze these two cases separately.

3.2.3.1 P (τ) is non-singular

If τ 6= −1, we obtain from Lemma 3.1 that P (τ) is non-singular, which relates to the cases

in Table 1.1 in the background section. Hence, we show here the existence of a τ ∈ R for

which p(τ)>P (τ)−1p(τ)− ρ̄(τ) = 0, i.e., for which Q(τ) is a cone.

We use the Sherman-Morrison-Woodbury formula Golub and Van Loan [1996] to com-

pute the inverse of P (τ):

P (τ)−1 =
(
I + τaa>

)−1
= I − τ

1 + τ
aa>. (3.18)

As expected from Lemma 3.1, the inverse does not exist if τ = −1. This case is discussed

in Section 3.2.3.2.

Now, using (3.18) and the expressions in (3.17) we can express the quantity p(τ)>P (τ)−1p(τ)−
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ρ(τ) in terms of α an β. Then, we have:

p(τ)>P (τ)−1p(τ)− ρ(τ) =

(
−τ(α+ β)

2
a

)> (
I + τaa>

)−1
(
−τ(α+ β)

2
a

)
− (−1 + ταβ)

=
τ2 (α+ β)2

4
a>
(
I − τ

1 + τ
aa>

)
a− (ταβ − 1)

=
τ2(α+ β)2

4

(
1− τ

1 + τ

)
− (ταβ − 1)

=
τ2(α+ β)2

4

(
1

1 + τ

)
− (ταβ − 1)

=
τ2(α+ β)2 − 4ταβ + 4− 4τ2αβ + 4τ

4(1 + τ)

=
4τ2

(
(α+β)2

4 − αβ
)

+ 4τ(1− αβ) + 4

4(1 + τ)

=
τ2 (α−β)2

4 + τ(1− αβ) + 1

(1 + τ)
. (3.19)

Since τ 6= −1, then the denominator in (3.19) is non-zero. Hence, we need to focus only

on the roots of the numerator in (3.19). Let f : R 7→ R the function defined as value is

f(τ) = τ2 (α− β)2

4
+ τ(1− αβ) + 1. (3.20)

Clearly f(τ) is a quadratic function of τ , and let τ̄1 and τ̄2 represent the roots of f .

The discriminant of f is:

(1− αβ)2 − 4

(
(α− β)2

4

)
= (1− α2)(1− β2). (3.21)

Therefore, if (1− α2) ≥ 0 and (1− β2) ≥ 0, then f has real roots. Thus, since Q is a unit

sphere we have that f has real roots when Q ∩ A= 6= ∅ and Q ∩ B= 6= ∅, which were our

assumptions. Note that if either (1 − α2) = 0 or (1 − β2) = 0 but not both, then one of

the hyperplanes is tangent to Q. Now, observe that when (1− α2) = 0 and (1− β2) = 0,
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then |α| = |β| = 1 and there are two particular cases to consider. First, if α and β have

the same sign, then f(τ) = 1 for τ ∈ R. In other words, the set Q ∩ A= ∩ B= is a single

point, however this case is not possible with the assumption α 6= β. Second, if α and β

have opposite signs, then f(τ) = (τ + 1)2 and the two roots of f are equal to −1. This

last case is cover with the discussion in Section 3.2.3.2.

Now, given two different hyperplanes, i.e., α 6= β, the coefficient of τ2 in f(τ) is positive.

For the coefficient of τ in f(τ) we have 1−αβ ≥ 0, where the inequality is implied by the

assumption that Q ∩ A= 6= ∅ and Q ∩ B= 6= ∅. This shows that all three coefficients in

f(τ) are non-negative. Hence, we have τ̄1 < 0 and τ̄2 < 0.

Let us see how the two roots of f compare to −1, at which value P (τ) becomes singular.

We have

f (−1) =
(α− β)2

4
− (1− αβ) + 1 =

(α+ β)2

4
≥ 0, (3.22)

thus −1 is not between the two roots of f . Next, we check the derivative of f(−1) to

decide on which branch of f the value −1 lies. We have

f ′ (−1) = −(α− β)2

2
+ 1− αβ = 1− α2 + β2

2
≥ 0,

where the inequality follows from the assumption that Q∩A= 6= ∅ and Q∩B= 6= ∅. This

shows that both τ̄1 < −1 and τ̄2 < −1. As a result, Q(τ̄1) and Q(τ̄1) are both cones.

Summary of shapes According to the values of the discriminant (3.21) we can classify

the shapes of Q(τ) at the roots of f . Recall that τ 6= −1, τ̄1 6= −1, and τ̄2 6= −1. We may

further assume w.l.o.g. that τ̄1 ≤ τ̄2. We have the following cases:

• If the discriminant (3.21) is not equal to zero, then −1 > τ̄2 > τ̄1, and there are two

different cones at τ = τ̄1 and τ = τ̄2 in the family Q(τ). For illustrations see Figure
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3.1.

(a) τ = τ̄1 (b) τ = τ̄2 (c) τ = −1

Figure 3.1: f(τ) has two distinct roots which do not coincide with −1.

• If the discriminant(3.21) is equal to zero, then −1 > τ̄2 = τ̄1, and there is a unique

cone in the family Q(τ) at τ = τ̄1 = τ̄2. Observe that in this case, if either α2 = 1

or β2 = 1, then one of the hyperplanes is tangent to the ellipsoid. See Figure 3.2.

(a) One hyperplane is tangent
to the ellipsoid.

(b) τ = τ̄1 = τ̄2 (c) τ = −1

Figure 3.2: The two roots of f(τ) coincide, but are different from τ̂ .

3.2.3.2 P (τ) is singular

It follows from Lemma 3.1 that P (τ) is singular when τ = −1. In this case we have that

P (−1) � 0 with one zero eigenvalue. Thus, from Section 1.1.2.1 we have that Q(−1) is

57



CHAPTER 3. ANALYSIS OF QUADRICS

either a line, a cylinder, or a paraboloid. The shape of Q(−1) can be decided by verifying if

p(−1) is in the range of P (−1). Particularly, we have that P (−1)a = (I−aa>)a = a−a = 0,

then a is an eigenvector of P (−1) associated to the zero eigenvalue of P (−1). Then, p(−1)

is in the range of P (−1) if p(−1)>a = 0. We have

p(−1)>a =

(
α+ β

2
a

)>
a =

α+ β

2
. (3.23)

Hence, p(−1)>a is zero if and only if α = −β, i.e., the two hyperplanes A= and B=

are symmetric about the center of the hypersphere Q. Therefore, if α = −β any vector

xc = ηa, for all η ∈ R, satisfies the condition P (−1)xc = p(−1) of Case 1 in Section

1.1.2.1. On the other hand, if α 6= −β, then p(−1) is not orthogonal to a, and there is

no xc such that P (−1)xc = −p(−1). Recall that this is true because a is an eigenvector

corresponding to the zero eigenvalue of P (−1). Then, from Case 2 in Section 1.1.2.1 we

conclude that Q(−1) is a paraboloid. For illustrations, see Figures 3.1(c) and 3.2(c).

Summary of shapes According to equation (3.23) and the values of the discriminant

(3.21) we can classify the shapes of Q(τ) at −1, τ̄1, τ̄2 when p(−1)>a = 0. We may assume

w.l.o.g. that τ̄1 ≤ τ̄2. We may have the following cases:

• If the discriminant (3.21) is not equal to zero and −1 = τ̄2 > τ̄1, then for the vector

xc = a we obtain from (3.23) that (xc)>P (−1)xc − ρ(−1) = (1− α2) > 0, and from

Case 1 in Section 1.1.2.1 we have that Q(−1) is a cylinder. Additionally, Q(τ̄1) is

a cone. For illustrations see Figure 3.3.

• If the discriminant (3.21) is zero and −1 = τ̄2 = τ̄1, then for the vector xc = a from

(3.23) we obtain that (xc)>P (−1)xc − ρ(−1) = (1 − α2) = 0, and from Case 1 in

§1.1.2.1 we have that Q(−1) is a line. For illustrations see Figure 3.4.
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(a) τ = τ̄1 (b) τ = −1

Figure 3.3: f(τ) has two distinct roots, but the larger root coincides with −1.

(a) The two hyperplanes are tangent to the
ellipsoid.

(b) τ = −1

Figure 3.4: The two roots of f(τ) coincide with −1.
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3.2.3.3 Summarizing the shapes of Q(τ)

We can summarize the shapes of the quadrics in the family {Q(τ) | τ ∈ R} using τ̄1, and

τ̄2 in the following theorem. We assume w.l.o.g. that τ̄1 ≤ τ̄2.

Theorem 3.2. The following cases may occur for the shape of Q(τ):

• τ̄1 < τ̄2 < −1: Q(−1) is a paraboloid, and Q(τ̄1), Q(τ̄2) are two cones.

• τ̄1 = τ̄2 < −1: Q(−1) is a paraboloid and Q(τ̄1) is a cone.

• τ̄1 < τ̄1 = −1: Q(−1) is a cylinder and Q(τ̄1) is cone.

• τ̄1 = τ̄2 = −1: Q(−1) is a line.

This completes the description of the family {Q(τ) | τ ∈ R} of quadrics when P � 0 and

A= and B= are parallel.

3.2.4 Classification of the family {Q(τ) | τ ∈ R} when P is singular

Recall our assumption that the matrix P ∈ R`×` is symmetric and has at most one non-

positive eigenvalue. Here we focus on the case when P � 0 and has one zero eigenvalue,

i.e., we assume that the quadric Q is either a paraboloid or a cylinder. Recall the affine

transformation defined in Section 3.1.2. To simplify the algebra we may assume w.l.o.g.

that Q is given as a quadric in the form (3.12), where P1,1 = 0. Note that in the discussion

of Section 3.1.2 we considered the general case where Pj,j = 0 for some j ∈ {1, . . . , n}.

For the sake of simplifying the discussion, here we assume that j = 1. Thus, we have that

P = J̄ , and the representation of Q(τ) in this section is defined by

P (τ) = J̄ + τaa>, p(τ) = p− τ α+ β

2
a, ρ(τ) = ρ+ ταβ. (3.24)
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Recall that ‖a‖ = 1, ρ ∈ {−1, 0, 1}, and J̄ ∈ Rn×n is defined as

J̄ =

0 0>

0 I

 .
We now characterize the behavior of the family {Q(τ)|τ ∈ R} defined by (3.24) as a

function of parameter τ . For this characterization we need first to discuss the inertia of

P (τ) in Section 3.2.4.1. Then we divide the analysis of the classification in three cases.

In Section 3.2.4.2 we discuss the case when a is such that a1 6= 0. In Section 3.2.4.3 we

discuss the case when there exist a vector xc ∈ R` solving the system Pxc = −p. Finally, in

Section 3.2.4.4 we discuss the case when there is no vector xc solving the system Pxc = −p.

3.2.4.1 The eigenvalues of P (τ)

In this case the characteristic polynomial (3.16) simplifies to

(1− λ)n−2(λ2 − λ(1 + τ ‖a‖2) + τa2
1) = (1− λ)n−2(λ2 − λ(1 + τ) + τa2

1) = 0.

Thus, 1 is an eigenvalue of P with multiplicity n− 2. The other two eigenvalues are given

by the roots of λ2 − λ(1 + τ) + τa2
1 = 0, which are

(1 + τ)±
√

(1 + τ)2 − 4τa2
1

2
. (3.25)

The inertia of P + τaa> in this case is defined by the signs of the two roots in (3.25).

Since 0 ≤ |a1| ≤ 1, we have that (1 + τ)2 − 4τa2
1 ≥ 0, and both eigenvalues are reals.

3.2.4.2 Classification when a1 6= 0

The behavior of the family {Q(τ) | τ ∈ R} in this case can be characterized analogous

to the analysis developed in Section 3.2.3. First, consider the following results about the
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subfamily {Q(τ) | τ > 0}.

Lemma 3.2. If a1 6= 0, then for any τ > 0 the quadrics in the family {Q(τ) | τ ∈ R}

represented by (3.24) are ellipsoids.

Proof. First, we have that 1 + τ > 0 and 4τa2
1 > 0 for τ > 0. Hence, the two eigenvalues

of the matrix P (τ) in (3.24) given by (3.25) are positive. As a consequence, any quadric

Q(τ) in the family {Q(τ) | τ ∈ R} represented by (3.24) is an ellipsoid for τ > 0.

Thus, if a1 6= 0, then Lemma 3.2 proves that the quadrics in the subfamily {Q(τ) | τ >

0} are ellipsoids. Now, since the domain of τ in the family {Q(τ) | τ ∈ R} is the whole

real line, we can analyze its behavior using any of the quadrics in the family. Particularly,

for the characterization of the family {Q(τ) | τ ∈ R} in this case, we can use the quadric

Q(1). Since this quadric is an ellipsoid, this family is characterized already by the analysis

developed in Section 3.2.3. Then, Theorem 3.2 summarizes the possible shapes for the

family in this case.

3.2.4.3 Classification when Px = −p is solvable and a1 = 0

Here we characterize the family {Q(τ) | τ ∈ R} defined by (3.24) when a1 = 0 and

there exists a vector wc ∈ R` solving the system Pwc = −p. The behavior of the family

{Q(τ) | τ ∈ R} in this case is strongly related to the analysis developed in Section 3.2.3.

First, we need to know the inertia of the matrix P (τ).

Lemma 3.3. If a1 = 0, then one of the eigenvalues of the matrix P (τ) is always zero for

all the quadrics in the family {Q(τ) | τ ∈ R}.

Proof. From (3.25), if a1 = 0, then we have that for τ ∈ R the two eigenvalues given by

this expression are 0 and 1 + τ .

Lemma 3.3 tells us that the characterization of the behavior of the family {Q(τ) | τ ∈

R} is determined by the eigenvalue 1 + τ of P (τ). This eigenvalue will be positive for
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τ > −1, zero for τ = −1, and negative for τ < −1. Now, we have that a solution wc to

the system Px = −p exists only if p1 = 0. Additionally, observe that for τ ∈ R the first

row and column of P (τ) are always zero vectors. Hence, we have that any quadric Q(τ)

in the family {Q(τ) | τ ∈ R} is a cylinder in the direction of (1, 0>), where 0 ∈ R`−1 is the

all zeros vector. In other words, a quadric Q(τ) in the family {Q(τ) | τ ∈ R} is given by

the set ⋃
δ∈R

{
{Q(τ) | τ ∈ R} ∩ {x ∈ R` | (1, 0>)x = δ}

}
.

Thus, to classify the shape of these cylinders for τ ∈ R, it is enough to analyze the

shapes of a base of these cylinders on the hyperplane {w ∈ R` | (1, 0>)w = 0}. A base

of any cylinder in the family {Q(τ) | τ ∈ R} in this hyperplane is a quadric in Rn−1,

represented by

P̃ (τ) = I + τa2:na
>
2:n, p̃(τ) = p2:n − τ

α+ β

2
a2:n, ρ(τ) = ρ+ ταβ.

Note that these sets are fully analyzed in Section 3.2.3. Therefore, we know that a base

of a cylinder in the family {Q(τ) | τ ∈ R} would be an ellipsoid if τ > −1, a hyperboloid

or a cone if τ ≤ −1, and a paraboloid or a cylinder if τ = −1.

3.2.4.4 Classification when Px = −p is not solvable and a1 = 0

Here we characterize the family {Q(τ) | τ ∈ R} define by (3.24) when a1 = 0 and there

is no vector xc ∈ R` such that Pxc = −p. We show that in this case there is a parabolic

cylinder in the family {Q(τ) | τ ∈ R}.

First, we can easily characterize the behavior of the family for τ 6= −1. Note that

the system Px = −p is not solvable only if p1 6= 0. Then, since a1 = 0 we have that

p(τ)1 6= 0. On the other hand, from Lemma 3.3 we know that one eigenvalue of P (τ) is
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always zero. Then, since 1 is an eigenvalue of P (τ) with multiplicity ` − 2, the behavior

of the family is determined by the eigenvalue 1 + τ . Thus, the quadrics in the subfamily

{Q(τ) | τ > −1} are paraboloids, and the quadrics in the subfamily {Q(τ) | τ < −1} are

hyperbolic paraboloids.

To complete the characterization we need to analyze the quadric Q(−1), which is

classified in Lemma 3.4. Figure 3.5 illustrates this result.

Lemma 3.4. If Q is a paraboloid and a1 = 0, then the quadric Q(−1) in the family

{Q(τ) | τ ∈ R} defined by (3.24) is a parabolic cylinder.

Proof. First of all, we have that zero is an eigenvalue of the matrix P (τ), with multiplicity

2. We perform the proof in three steps. First, we find a basis for the null space of P (−1).

Then, we find a direction in that space that is orthogonal to p(−1). Finally, we show that

F(τ) is a cylinder in that direction.

Recall that for τ ∈ R the first row and column of P (−1) are zero vectors. Since ‖a‖ = 1,

and a1 = 0, we have that

P (−1)a =
(
J̄ − τaa>

)
a = a− a = 0.

Thus, a and (1, 0>) are eigenvectors of P (−1) associated with the 0 eigenvalue, and form

a basis for the null space of P (−1). Hence, any vector of the form (γ, a>2:n), γ ∈ R, belongs

to the null space of P (−1).

Define γ̃ as

γ̃ =
−p>2:na2:n − α+β

2

p1
.
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(a) Set Q (b) Set Q intersected with two parallel hyper-
planes

(c) Quadric Q(−1), sharing the same intersec-
tion with the hyperplanes that Q has

(d) Set Q intersected with the quadric Q(−1)

Figure 3.5: Illustration of Lemma 3.4.
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The vector (γ̃, a>2:n) is orthogonal to p(−1), since

p(−1)>

 γ̃

a2:n

 =

(
p> +

α+ β

2
a

)−p>2:na2:n−
α+β
2

p1

a2:n


= −p>2:na2:n −

α+ β

2
+
α+ β

2
+ p>2:na2:n = 0.

Let w̃ ∈ R` be a vector such that w̃ ∈ Q(−1) ∩ (A= ∪ B=), then we have that

w̃>P (−1)w̃ + 2p(−1)>w̃ + ρ(−1) ≤ 0.

Now, let ũ> = w̃> + θ(γ̃, a>2:n) for some θ ∈ R, then we have that

ũ>P (−1)ũ+ 2p(−1)>ũ+ ρ(−1)

= w̃>P (−1)w̃ + θ(γ̃, a>2:n)P (−1)w̃ + θ2(γ̃, a>2:n)P (−1)

 γ̃

a2:n

+ 2p(−1)>ũ+ ρ(−1)

= w̃>P (−1)w̃ + 2p(−1)>w̃> + 2θp(−1)>

 γ̃

a2:n

+ ρ(−1)

= w̃>P (−1)w̃ + 2p(−1)>w̃> + ρ(−1) ≤ 0,

where the last inequality follows from the assumption x̃ ∈ Q(−1)∩ (A= ∪B=). Hence, the

distance of a vector z̃> to the boundary of Q(−1) is constant for any θ ∈ R. Therefore,

Q(−1) is a parabolic cylinder in the direction (γ̃, a>2:n)>.

3.2.5 Classification of the family {Q(τ) | τ ∈ R} when P is indefinite

Here we focus on the case when P is an indefinite matrix with one negative eigenvalue and

`−1 positive eigenvalues. Recall the affine transformation defined in Section 3.1.1. Hence,
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to simplify the algebra we may assume w.l.o.g. that Q is a quadric of the form (3.5),

where P1,1 = −1. Note that in the discussion of Section 3.1.1 we considered the general

case where Pj,j = −1 for some j ∈ {1, . . . , n}. For the sake of simplifying the discussion,

here we assume that j = 1. Thus, we have that P = J̃ , p = 0, and the representation of

the quadrics Q(τ) in the family {Q(τ) | τ ∈ R} in this section is defined by

P (τ) = J̃ + τaa>, p(τ) = −τ α+ β

2
a, ρ(τ) = ρ+ ταβ. (3.26)

Recall that ‖a‖ = 1, ρ ∈ {−1, 0, 1}, and J̃ ∈ Rn×n is defined as

J̃ =

−1 0>

0 I

 .
We characterize the behavior of the family {Q(τ) | τ ∈ R} defined by (3.26) as a

function of the parameter τ . For this characterization we discuss in Section 3.2.5.1 the

inertia of P (τ). Based on the eigenvalues of P (τ), we divide the analysis in two cases:

1) a1 > 1/2; and 2) a1 ≤ 1/2. In Section 3.2.5.2 we discuss the case when a1 > 1/2.

To analyze the case when a1 ≤ 1/2 we discuss in Section 3.2.5.3 the function g(τ) =

p(τ)>P (τ)−1p(τ) − ρ(τ). Based on the analysis of f(τ) we identify four cases that need

to be considered in order to completely analyze the family {Q(τ) | τ ∈ R} when P (τ) is

indefinite. First, in Section 3.2.5.4 we consider the case when a1 = 1/2. Second, in Section

3.2.5.5 we analyze the case when a1 < 1/2 and ρ = 0, i.e., when Q is a cone. Third, in

Section 3.2.5.6 we characterize the case when a1 < 1/2 and ρ = 1. Finally, in Section

3.2.5.7 we complete the characterization of the family with the case when a1 < 1/2 and

ρ = −1 .
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3.2.5.1 The eigenvalues of P (τ)

Here we provide a closed formula to compute the eigenvalues and the inertia of P (τ) when

P is indefinite. Recall that P1,1 = −1, then in this case the characteristic polynomial

(3.16) simplifies to

(1−λ)`−2

(
λ2 − λτ ‖a‖2 + (τa2

1 − τ
∑̀
i=2

a2
1 − 1)

)
= (1−λ)`−2(λ2−λτ+(2τa2

1−τ−1)) = 0.

Thus, 1 is an eigenvalue of P with multiplicity `− 2. The other two eigenvalues are given

by the roots of λ2 − λτ + (2τa2
1 − τ − 1) = 0, which are

τ ±
√
τ2 + 4 + 4τ(1− 2a2

1)

2
. (3.27)

The inertia of P + τaa> in this case is defined by the signs of the two roots given by

(3.27). Since 0 ≤ |a1| ≤ 1, we have that (2+τ)2−8τa2
1 ≥ 0, thus both of those eigenvalues

are real. We need to consider three cases:

1. If a2
1 >

1
2 , (1− 2a2

1) < 0. Thus, we have:

• if τ > − 1
(1−2a21)

, then both eigenvalues are positive,

• if τ = − 1
(1−2a21)

, then there is a zero and a negative eigenvalue,

• if τ < − 1
(1−2a21)

, then there is a positive and a negative eigenvalue.

2. If a2
1 = 1

2 , then the eigenvalues are

τ ±
√
τ2 + 4

2
. (3.28)

In this case we have a positive eigenvalue and a negative eigenvalue.

3. If a2
1 <

1
2 , then (1− 2a2

1) > 0. Thus, we have:
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• if τ > − 1
(1−2a21)

, then there is a positive and a negative eigenvalue,

• if τ = − 1
(1−2a21)

, then there is a zero and a negative eigenvalue,

• if τ < − 1
(1−2a21)

, then both eigenvalues are negative.

3.2.5.2 Classification when a2
1 >

1
2

The behavior of the family {Q(τ) | τ ∈ R} in this case can be characterized by utilizing

the analysis developed in Section 3.2.3. Recall from Section 3.2.5.1 that the eigenvalues

of P (τ) are 1 with multiplicity `− 2 and the two values in (3.27). We have the following

result.

Lemma 3.5. If a1 >
1
2 , then the quadrics {Q(τ) | τ > − 1

(1−2a21)
} are ellipsoids, where

Q(τ) is defined by (3.26).

Proof. From Section 3.2.5.1, we know that if a2
1 >

1
2 , then the values in (3.27) are positive

for τ > − 1
(1−2a21)

. Thus, if a2
1 > 1

2 , then Lemma 3.5 shows that the quadrics in the

subfamily {Q(τ) | τ > − 1
(1−2a21)

} are ellipsoids.

Observe that, since the domain of τ in the family {Q(τ) | τ ∈ R} is the whole real

line, we can analyze its behavior using any of the quadrics in the family. Then, for

the characterization of the family {Q(τ) | τ ∈ R} in this case, we can use the quadric

Q(1− 1
(1−2a21)

). Since this quadric is an ellipsoid, the family {Q(τ) | τ ∈ R} in this case is

characterized already by the analysis developed in Section 3.2.3. In particular, Theorem

3.2 summarizes the possible shapes for the family in this case.

69



CHAPTER 3. ANALYSIS OF QUADRICS

3.2.5.3 Analysis of the function g(τ) = p(τ)>P (τ)−1p(τ)− ρ(τ)

Before discussing the classification of the quadrics when a2
1 ≤ 1

2 , we need to analyze the

function

g(τ) = p(τ)>P (τ)−1p(τ)− ρ(τ) =

(
−τ α+ β

2
a

)> (
J + τaa>

)−1
(
−τ α+ β

2
a

)
− (ρ+ ταβ).

For the classification of the cases when a2
1 ≤ 1

2 we use similar steps to those in the

analysis in Section 3.2.3. First, we show in this section that the roots of the function g(τ)

coincide with the roots of a quadratic polynomial of τ .

Using the Sherman-Morrison-Woodbury formula Golub and Van Loan [1996] to com-

pute the inverse of P (τ) we obtain:

P (τ)−1 =
(
J̃ + τaa>

)−1
= J̃ −

τ

−a1

a2:n

[−a1 a2:n

]
1 + τ(‖a2:n‖2 − a2

1)
. (3.29)

Note that for τ = − 1
(1−2a21)

= − 1
(‖a2:n‖2−a21)

the inverse does not exist, as was expected

from case 3 in Section 3.2.5.1. On the other hand, when a2
1 = 1

2 the inverse of P (τ) always

exists. Now, for computing the polynomial in τ we assume that P (τ) is non-singular,

i.e., that τ 6= − 1
(1−2a21)

. The cases when τ = − 1
(1−2a21)

will be consider explicitly Sections

3.2.5.4, 3.2.5.5, 3.2.5.6, and 3.2.5.7.

When we substitute P (τ)−1, p(τ), and ρ(τ) in g(τ) using the expressions (3.26) and
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(3.29), we obtain

g(τ) =

(
−τ α+ β

2
a

)> (
J + τaa>

)−1
(
−τ α+ β

2
a

)
− (ρ+ ταβ)

=
τ2(α+ β)2

4
a>


J̃ −

τ

−a1

a2:n

[−a1 a2:n

]
1 + τ(1− 2a2

1)


a− (ρ+ ταβ)

=
τ2(α+ β)2

4

(
(1− 2a2

1)− τ(1− 2a2
1)2

1 + τ(1− 2a2
1)

)
− (ρ+ ταβ)

=
τ2(α+ β)2

4

(
1− 2a2

1

1 + τ(1− 2a2
1)

)
− (ρ+ ταβ)

=
τ2(1− 2a2

1)((α+ β)2 − 4αβ)− 4τ(ρ(1− 2a2
1) + αβ)− 4ρ

4(1 + τ(1− 2a2
1))

=
τ2(1− 2a2

1) (α−β)2

4 − τ(ρ(1− 2a2
1) + αβ)− ρ

1 + τ(1− 2a2
1)

. (3.30)

Obviously g(τ) = 0 when the numerator of (3.30) is zero. Let f : R→ R be a function

defined by

f(τ) = τ2(1− 2a2
1)

(α− β)2

4
− τ(ρ(1− 2a2

1) + αβ)− ρ (3.31)

which is a quadratic function of τ . Recall that α 6= β. If a2
1 = 1/2, then f is a linear

function of τ . Let us assume now that a2
1 < 1/2 and let τ̄1 and τ̄2 be the two roots of f .

We can now check the value of f(τ̂), and the value of the derivative f ′(τ̂), which are

used to compare the two roots of f with the critical value τ̂ = −1/(1 − 2a2
1). First, we

have

f(τ̂) =
(α− β)2

4(1− 2a2
1)
− ρ+

αβ

(1− 2a2
1)

+ ρ =
(α− β)2 + 4αβ

4(1− 2a2
1)

=
(α+ β)2

4(1− 2a2
1)
≥ 0, (3.32)

and since the coefficient of τ2 is positive, this implies that τ̂ is not between the two roots
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of f . For the derivative we have

f ′(τ̂) = −(α− β)2

2
− (ρ(1− 2a2

1) + αβ), (3.33)

which depends on the scalar ρ.

Finally, the discriminant of f is:

(ρ(1− 2a2
1) + αβ)2 + ρ(1− 2a2

1)(α− β)2

= ρ2(1− 2a2
1)2 + α2β2 + ρ(1− 2a2

1)α2 + ρ(1− 2a2
1)β2

= ρ(1− 2a2
1)(ρ(1− 2a2

1) + β2) + α2(ρ(1− 2a2
1) + β2)

= (α2 + ρ(1− 2a2
1))(β2 + ρ(1− 2a2

1)), (3.34)

which also depends on the scalar ρ.

Based on the values of a2
1 and ρ, and the discriminant (3.34) of f , we have to separate

the analysis in the following cases:

• If a2
1 = 1/2, then f is a linear function of τ , this case is analyzed in Section 3.2.5.4.

• If a2
1 < 1/2 and ρ = 0, then the roots of f are real since its discriminant is positive,

this case is analyzed in Section 3.2.5.5.

• If a2
1 < 1/2 and ρ = 1, then the roots of f are real since its discriminant is positive,

this case is analyzed in Section 3.2.5.6.

• If a2
1 < 1/2 and ρ = −1, then f has real roots only if:

� β2 ≤ 1− 2a2
1 and α2 ≤ 1− 2a2

1, or

� β2 ≥ 1− 2a2
1 and α2 ≥ 1− 2a2

1.

This case is analyzed in Section 3.2.5.7.
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3.2.5.4 Classification when a2
1 = 1

2

In this case we can show that there is a single cone in the entire family {Q(τ) | τ ∈ R}.

We show that this cone occurs when τ = − ρ
αβ .

Recall that in this case the function f is linear an is given by

f(τ) = −αβτ − ρ,

Moreover, if a2
1 = 1

2 , then from Section 3.2.5.1 we know that P (τ) has ` − 1 positive

eigenvalues and a negative eigenvalue for τ ∈ R. Now, if either α = 0 or β = 0, then

f(τ) = ρ for τ ∈ R. Thus, if ρ 6= 0, and either α = 0 or β = 0, then all the quadrics in the

family {Q(τ) | τ ∈ R} are hyperboloids. On the other hand, if ρ = 0, and either α = 0 or

β = 0, then all the quadrics in the family {Q(τ) | τ ∈ R} are scaled second order cones.

The following lemma characterizes the shape of the quadric found at the root of f when

a2
1 = 1

2 , α 6= 0, and β 6= 0.

Lemma 3.6. If a2
1 = 1

2 , α 6= 0, and β 6= 0, then for τ̄ = − ρ
αβ the quadric Q(τ̄) in the

family {Q(τ) | τ ∈ R} is a cone.

Proof. In this case we have from Section 3.2.5.1 that P (τ) is always an invertible matrix

with one negative eigenvalue. On the other hand, we have from (3.31) that p(τ̄)P (τ̄)−1p(τ̄)−

ρ(τ̄) = 0 for τ̄ = −ρ/αβ. Hence, from the classification in Table (3.31) we have that the

quadric Q(τ̄) in the family {Q(τ) | τ ∈ R} is a cone.

3.2.5.5 Classification when a2
1 < 1/2 and ρ = 0

In this case we show first that one of the roots of f(τ) is always zero. Then, we prove that

the matrix P (τ) has at most one negative eigenvalue when τ equals to the non-zero root

of f(τ). Finally, we characterize the shape of the quadric at the non-zero root of f .
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As discussed, the roots of f(τ) coincide with the roots of g(τ). In this case (3.31)

simplifies to

f(τ) = τ2(1− 2a2
1)

(α− β)2

4
− ταβ.

Recall that if α 6= β, then the roots of f(τ) are

2

(
αβ ± |αβ|

(1− 2a2
1)(α− β)2

)
. (3.35)

Hence, one root is zero and the other root, denoted by τ̄ , can be positive or negative

depending on the sign of the product αβ.

Lemma 3.7. If a2
1 < 1

2 and ρ = 0, then the matrix P (τ) has at most one negative

eigenvalue at the non-zero root of f .

Proof. We first show that

τ̄ ≥ − 1

(1− 2a2
1)
.

The most negative value τ̄ can take is achieved when αβ < 0. We have

−4 |αβ|
(1− 2a2

1)(α− β)2
=

(
−1

(1− 2a2
1)

)(
4 |αβ|

(α− β)2

)
≥ −1

(1− 2a2
1)
. (3.36)

The last inequality follows because if αβ < 0, then α2− 2αβ+β2 ≥ 4 |αβ| since α2 +β2 ≥

2 |αβ|.

Now, from Section 3.2.5.1 we know that P (τ̄) has one negative eigenvalue and n − 1

positive eigenvalues if the inequality (3.36) is strict. If (3.36) is satisfied with equality, then

P (τ̄) has one negative eigenvalue, one zero eigenvalue, and n− 2 positive eigenvalues.

Now we can characterize the shapes of Q(τ̄). Figure 3.6 illustrates the result in Theo-

rem 3.3.

74



CHAPTER 3. ANALYSIS OF QUADRICS

(a) The set Q. (b) Set Q intersected with two parallel hyper-
planes.

(c) Quadric Q(τ̄), sharing the same intersection
with the hyperplanes that Q has.

(d) Set Q intersected with the quadric Q(τ̄).

Figure 3.6: Illustration of Theorem 3.3.
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Theorem 3.3. If a2
1 <

1
2 and ρ = 0 in (3.26), then the shape of the quadric Q(τ̄) in the

family {Q(τ) | τ ∈ R} is:

• a cone if the τ̄ > − 1
(1−2a21)

,

• a hyperbolic cylinder of two sheets if τ̄ = − 1
(1−2a21)

.

Proof. If τ̄ > − 1
(1−2a21)

, then from Lemma 3.7 and Section 3.2.5.1 we obtain that Q(τ̄)

is a cone. Now, we analyze the case when τ̄ = − 1
(1−2a21)

, which by (3.36) can happen

only when β = −α. In this case P (τ̄) is singular, p(τ̄) = 0, and ρ(τ̄) > 0. Recall

that since P (τ̄) is symmetric, then there exist D(τ̄) ∈ R`×` and V (τ̄) ∈ R`×` such that

P (τ̄) = V (τ̄)>D(τ̄)V (τ̄).

Let us now characterize the shape of the quadric Q(τ̄). First, recall that when τ̄ =

− 1
(1−2a21)

then P (τ̄) has one negative eigenvalue, one zero eigenvalue, and ` − 2 positive

eigenvalues. We may assume w.l.o.g. that D1,1(τ̄) < 0, D2,2(τ̄) = 0, and Di,i(τ̄) > 0,

i ∈ {3, . . . n}. Then P (τ̄) = V (τ̄)D̂(τ̄)
1
2 ĴD̂(τ̄)

1
2V (τ̄)>, where D̂(τ̄) is a diagonal matrix

with D̂i,i(τ̄) = |Di,i(τ̄)|, i ∈ {1, . . . n} \ {2}, and D̂2,2(τ̄) = 1. Additionally, Ĵ is a diagonal

matrix defined as Ĵ1,1 = −1, Ĵ2,2 = 0, and Ĵi,i = 1, i ∈ {3, . . . n}. Thus, using the

transformation

u =
D̂(τ)

1
2V (τ)>w√
ρ(τ̄)

, ∀w ∈ Q(τ̄),

we obtain that Q(τ̄) is an affine transformation of the set

{u ∈ R` | u>Ĵzu ≤ −1}, (3.37)

which is a hyperbolic cylinder of two sheets. The right hand side of the quadratic equation

in (3.37) is −1 because

ρ(τ̄) = − βα

(1− 2a2
1)

=
α2

(1− 2a2
1)
> 0.
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Finally, given that Ĵ and P (τ̄) have the same inertia, we have shown that Q(τ̄) is a

hyperbolic cylinder of two sheets.

3.2.5.6 Classification when a2
1 < 1/2 and ρ = 1

In this case we begin again computing the two roots of the function f . Then, we compare

these roots with the critical value τ̂ = − 1
(1−2a21)

. Based on this comparison, we close this

section by classifying the shapes of the quadrics Q(τ) at the two roots of f . In this case

(3.31) simplifies to

f(τ) = τ2(1− 2a2
1)

(α− β)2

4
− τ(1− 2a2

1 + αβ)− 1, ∀τ ∈ R. (3.38)

Recall that α 6= β, and then the roots τ̄1 and τ̄2 of f(τ) are

2
(

1− 2a2
1 + αβ ±

√
(1− 2a2

1 + αβ)2 + (1− 2a2
1)(α− β)2

)
(1− 2a2

1)(α− β)2
. (3.39)

Hence, since (1 − 2a2
1)(α − β)2 > 0, we have that one root is positive and the other is

negative. We may assume w.l.o.g. that τ̄1 ≤ τ̄2. Also, observe that in this case the roots

are always different since the discriminant (3.34) of f is never zero for a2
1 < 1/2.

Let us compare these two roots with the critical value τ̂ = − 1
(1−2a21)

. First of all, we

know from (3.32) that τ̂ is not between the two roots. Additionally, if α 6= −β, then the

inequality in (3.32) is strict, i.e., f(τ̂) > 0. To complete the comparison we need to check

the value of the derivative f ′(τ̂) to verify in which branch of f the value τ̂ lies. We have

that

f ′(τ̂) = −(α− β)2

2
− (1− 2a2

1 + αβ) = −(α2 + β2)

2
− (1− 2a2

1) ≤ 0.

Hence, the inequality τ̂ ≤ τ̄1 is always satisfied, and it is strict if α 6= −β.

From Section 3.2.5.1, we know that if τ̂ < τ̄1, then InP (τ̄1) = {1, 0, `−1} and InP (τ̄2) =
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(a) The set Q. (b) Set Q intersected with two parallel hyper-
planes.

(c) QuadricQ(τ̄1), sharing the same intersection
with the hyperplanes that Q has.

(d) Set Q intersected with the quadric Q(τ̄1).

Figure 3.7: Illustration of Theorem 3.4.
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(a) The set Q. (b) Set Q intersected with two parallel hyper-
planes.

(c) QuadricQ(τ̄1), sharing the same intersection
with the hyperplanes that Q has.

(d) Set Q intersected with the quadric Q(τ̄1).

Figure 3.8: Illustration of Theorem 3.4.
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{1, 0, ` − 1}, i.e, they have ` − 1 positive eigenvalues and one negative eigenvalue. As a

result, Q(τ1) and Q(τ2) are two different scaled second order cones. On the other hand, if

α = −β, then the roots of f are given by

2
(

1− 2a2
1 − α2 ±

√
(1− 2a2

1 − α2)2 + 4(1− 2a2
1)α2

)
4(1− 2a2

1)α2

=
2
(

1− 2a2
1 − α2 ±

√
(1− 2a2

1 + α2)2
)

4(1− 2a2
1)α2

.

Thus, τ̂ = τ̄1 when the hyperplanes are symmetric with respect to the origin. From Section

3.2.5.1 we know that InP (τ̄1) = {1, 1, `− 2}. Additionally, note that

ρ(τ̄1) = 1 +
α2

(1− 2a2
1)
> 0.

Thus, similarly to the proof of Theorem 3.3, one can use the eigenvalue decomposition of

P (τ̄1) to show that Q(τ̄1) is an affine transformation of the set (3.37). Thus, Q(τ̄1) is a

cylindrical hyperboloid of two sheets. Finally, since τ̄1 < τ̄2, then InP (τ̄2) = {1, 0, `− 1},

and we obtain from Table 1.1 that Q(τ̄2) is a cone. The results are summarize in Theorem

3.4, and they are illustrated in Figures 3.7 and 3.8.

Theorem 3.4. If a2
1 < 1/2 and ρ = 1 in (3.26), then for the shape of the quadrics Q(τ̄1)

and Q(τ̄2) we have the following cases:

• if β 6= α, then both quadrics are cones,

• if β = α, then Q(τ̄1) is a hyperbolic cylinder of two sheets and Q(τ̄2) is a cone.

3.2.5.7 Classification when a1 < 1/2 and ρ = −1

The structure of this section follows the same order given in Section 3.2.5.6. We begin

computing the two roots of the function f . Then, we compare these roots to the critical

80



CHAPTER 3. ANALYSIS OF QUADRICS

value τ̂ = − 1
(1−2a21)

. Based on this comparison, we close this section by classifying the

shapes of the quadrics Q(τ) at the two roots of f . In this case (3.31) simplifies to

f(τ) = τ2(1− 2a2
1)

(α− β)2

4
+ τ((1− 2a2

1)− αβ) + 1. (3.40)

Recall that if α 6= β, then the two roots τ̄1 and τ̄2 are

2
(
αβ − (1− 2a2

1)±
√

(αβ − (1− 2a2
1))2 − (1− 2a2

1)(α− β)2
)

(1− 2a2
1)(α− β)2

.

We may assume w.l.o.g. that τ̄1 < τ̄2. The discriminant of f(τ) can be factorized as follows

(αβ − (1− 2a2
1))2 − (1− 2a2

1)(α− β)2 = (α2 − (1− 2a2
1))(β2 − (1− 2a2

1)).

Hence, the roots τ̄1 and τ̄2 are reals only if:

• β2 ≤ 1− 2a2
1 and α2 ≤ 1− 2a2

1, or

• β2 ≥ 1− 2a2
1 and α2 ≥ 1− 2a2

1.

We need to compare now τ̄1 and τ̄2 with the critical value τ̂ = −1/(1− 2a2
1). We know

from (3.32) that τ̂ is not between the two roots and that f(τ̂) > 0 if α 6= −β. Hence, to

complete the comparison we need to check the value of the derivative f ′(τ̂) to verify in

which branch of f the value τ̂ lies. We have that

f ′(τ) = −(α− β)2

2
− (αβ − (1− 2a2

1)) = −(α2 + β2)

2
+ (1− 2a2

1).

For this comparison first we consider the case α 6= −β. Then, f(τ̂) > 0 and we have two

possibilities:

• If β2 ≤ (1 − 2a2
1) and α2 ≤ (1 − 2a2

1), then f ′(τ̂) > 0 and we obtain the inequality
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τ̄2 < τ̂ . As a result, neither Q(τ̄1) nor Q(τ̄2) are cones, which implies that there are

no cones in the family {Q(τ) | τ ∈ R} in this case.

• If β2 ≥ (1 − 2a2
1) and α2 ≥ (1 − 2a2

1), then f ′(τ̂) < 0 and we obtain the inequality

τ̂ < τ̄1. As a result, the quadrics Q(τ̄1) and Q(τ̄2) are two different cones in this

case.

To complete the comparison we consider now the case α = −β, i.e., when the two

hyperplanes are symmetric with respect to the origin. Then, the roots τ̄1 and τ̄1 of f are

given by

−α2 − (1− 2a2
1)±

√
(α2 + (1− 2a2

1))2 − 4(1− 2a2
1)α2

2(1− 2a2
1)α2

=
−α2 − (1− 2a2

1)±
√

(α2 − (1− 2a2
1))2

2(1− 2a2
1)α2

.

On one hand, if β2 ≤ (1−2a2
1) and α2 ≤ (1−2a2

1), then we obtain the equality τ̂ = τ̄2. On

the other hand, if β2 ≥ (1− 2a2
1) and α2 ≥ (1− 2a2

1), then we obtain the equality τ̂ = τ̄1.

Additionally, recall from Section 3.2.5.1 that In(P (τ̂)) = {1, 1, `−2}. Then, we can divide

the classification of the quadric Q(τ̂) in three cases:

• If α2 < (1− 2a2
1), then

ρ(τ̂) = −1 + τ̂αβ = −1 +
α2

(1− 2a2
1)
< 0.

Thus, similarly to the proof of Theorem 3.3, one can use the eigenvalue decomposition

of P (τ̂) to show that in this case Q(τ̂) is an affine transformation to the set

{z ∈ R` | z>Ĵz ≤ 1}.

Thus, because In(P (τ̂)) = In(J), Q(τ̂) is a hyperbolic cylinder of one sheet.
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• If α2 > (1− 2a2
1), then

ρ(τ̄2) = −1 + τ̄1αβ = −1 +
α2

(1− 2a2
1)
> 0.

Again, similarly to the proof of Theorem 3.3, one can use the eigenvalue decom-

position of P (τ̂) to show that in this case Q(τ̂) is an affine transformation of the

set

{u ∈ R` | u>Ĵu ≤ −1}.

Hence, because In(P (τ̂)) = In(J), Q(τ̂) is a hyperbolic cylinder of two sheets.

• If α2 = (1− 2a2
1), then

ρ(τ̂) = −1 + τ̂αβ = −1 +
α2

(1− 2a2
1)

= 0.

Again, similarly to the proof of Theorem 3.3, one can use the eigenvalue decom-

position of P (τ̂) to show that in this case Q(τ̂) is an affine transformation of the

set

{z ∈ R` | z>Ĵz ≤ 0}.

Hence, because In(P (τ̂)) = In(J), Q(τ̂) is a conic cylinder.

The results a summarize in the following theorem.

Theorem 3.5. If ρ = −1 and a1 < 1/2 in (3.26), then for the shape of the quadrics Q(τ̄1)

and Q(τ̄2) in the family {Q(τ) | τ ∈ R} we have the following cases:

• if β2 ≤ (1−2h2
k), α

2 ≤ (1−2h2
k), and β 6= −α, then there are no cones in the family;

• if β2 ≥ (1− 2h2
k), α

2 ≥ (1− 2h2
k), and β 6= −α, then both quadrics are cones;

• if β = −α, then we have the following sub-cases:
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� if α2 < (1− 2h2
k), then τ̂ = τ̄2 and Q(τ̂) is a hyperbolic cylinder of one sheet;

� if α2 > (1− 2h2
k), then τ̂ = τ̄1 and Q(τ̂) is a hyperbolic cylinder of two sheets,

and Q(τ̂2) is a cone;

� if α2 = (1− 2h2
k), then τ̂ = τ̄1 = τ̂2 and Q(τ̂) is a conic cylinder.

3.3 Intersections with nonparallel hyperplanes

In this section, we investigate the intersection of the quadric Q ∈ R` with two hyperplanes

in general position. For the sake of simplifying the algebra we may assume w.l.o.g. through-

out this section that the quadric Q is unit hypersphere in R` centered at the origin. Recall

that using the inverse transformation of (3.4) the results obtained for the unit hypersphere

can be generalized. Let A= = {x ∈ R` | a>x = α} and B= = {x ∈ R` | b>x = β}, for some

a, b ∈ R` and α, β ∈ R, be two given hyperplanes in general position. Additionally, we

may assume w.l.o.g. that ‖a‖ = ‖b‖ = 1. Here we consider nonparallel hyperplanes, i.e.,

the vectors (a1, α1) and (a2, α2) are not scalar multiples of each other. We assume that

both the intersections Q∩A= and Q∩B= are nonempty. We first present a generalization

of Theorem 3.1 to the case of two hyperplanes in general position. Then, in Section 3.3.2

we analyze the behavior of the new family of quadrics when P � 0, to show that a quadric

always exists that satisfies the definition of either a cone or a cylinder as is given in Section

1.1.2.1. Finally, we discuss how these results can be generalized to some cases when Q is

not a unit hypersphere.

3.3.1 The family of quadrics with fixed planar sections

Here we generalize the results presented in Theorem 3.1 to the case when A= and B= are

not parallel. We use the Definition 3.1 of a pencil of quadrics.
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Theorem 3.6. Let a quadric Q ∈ R` represented by (P, p, ρ), where P ∈ R`×`, p ∈ R`,

ρ ∈ R, and two non-parallel hyperplanes A= = {x ∈ R` | a>x = α}, B= = {x ∈ R` |

b>x = β}, where a, b ∈ R` and α, β ∈ R, be given. The uni-parametric family of quadrics

having the same intersection with A= and B= as the quadric Q is defined by the pencil of

quadrics {Q(τ) | τ ∈ R}, where Q(τ) is represented by (P (τ), p(τ), ρ(τ), and

P (τ) = P + τ
ab> + ba>

2
,

p(τ) = p− τ βa+ αb

2
,

ρ(τ) = ρ+ ταβ.

Proof. Consider the set A= ∪ B=, which can be described as

{x ∈ R` | (a>x− α)(b>x− β) = 0},

and observe that

(a>x− α)(b>x− β) = x>ab>x− (αb> + βa>)x+ αβ

= x>
(
ab> + ba>

2

)
x− (αb> + βa>)x+ αβ = 0. (3.41)

Now, let

P̃ =
ab> + ba>

2
, p̃ = −(αb+ βa)

2
, ρ̃ = αβ.

Then, the set of solutions of the equation (3.41) can be described by the quadric surface

Q̃ represented by (Q̃, q̃, ρ̃). Now, consider the pencil {Q(τ) | τ ∈ R}, where Q(τ) is

represented by P (τ) = P + τP̃ , p(τ) = p+ τ p̃, and ρ(τ) = ρ+ τ ρ̃ . Let x̄ be a given vector
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satisfying x̄>P̃ x̄+ 2p̃>x̄+ ρ̃ = 0. Then, for τ ∈ R we have x̄ ∈ Q(τ) if and only if

x̄>(P + τP̃ )x̄+ 2(p− τ p̃)>x̄+ (ρ+ τ ρ̃) = x̄>Px̄+ 2p>x̄+ ρ ≤ 0.

Hence, we have x̄ ∈ Q(τ) ∩ (A= ∪ B=) if and only if x̄ ∈ Q∩ (A= ∪ B=) for all τ ∈ R.

We call the attention of the reader to the fact that Theorem 3.6 is rather general in

that Q does not need to be constraint to be an ellipsoid. This assumption is made for the

sake of simplifying the algebra in the analysis of the subsequent sections. Additionally, if

a = b, theorem 3.6 simplifies to the result of Theorem 3.1.

3.3.2 Classification of the family {Q(τ) | τ ∈ R} when P � 0

In what follows, and until the end of Section 3.3 we assume that the quadric Q is an

ellipsoid, i.e., P � 0. In other words, we consider the case when the sets Q ∩ A= and

Q ∩ B= are bounded. If not said otherwise, we assume that the quadric Q is not a single

point. Recall the affine transformation described in Section 3.1. Hence, to simplify the

algebra, we may assume w.l.o.g. that Q is a unit hypersphere centered at the origin, and

that ‖a‖ = ‖b‖ = 1. In this case we have that P = I, p = 0, and ρ = −1, and the

representation of Q(τ) is defined by

P (τ) = I + τ
ab> + ba>

2
, p(τ) = −τ βa+ αb

2
, ρ(τ) = −1 + ταβ. (3.42)

We characterize the behavior of the family {Q(τ) | τ ∈ R} in (3.42) as a function of

parameter τ . First, we discuss the inertia of P (τ). Then, we analyze the cases: 1) when

the matrix P (τ) is non-singular, and 2) when the matrix P (τ) is singular. Finally, we

present a summary of the shapes of the family {Q(τ) | τ ∈ R} in Theorem 3.7.
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3.3.2.1 The eigenvalues of P (τ)

One of the characteristics deciding the shape of Q(τ) is the number of negative or zero

eigenvalues of P (τ), i.e., its inertia. Since P is modified with a rank-2 matrix in (3.42),

P (τ) may possibly have two negative eigenvalues. The following lemma shows that this

cannot happen when P � 0.

Lemma 3.8. If P � 0, then P (τ) can have at most one non-positive eigenvalue.

Proof. The eigenvalues of

P (τ) =
(
I +

τ

2

(
ab> + ba>

))
(3.43)

are as follows:

• 1 is an eigenvalue with multiplicity `− 2, the corresponding eigenvectors are orthog-

onal to a and b;

• 1 + τ
2

(
a>b+ 1

)
, with the eigenvector (a+ b);

• 1 + τ
2

(
a>b− 1

)
, with the eigenvector (b− a).

Since
∣∣a>b∣∣ ≤ ‖a‖ ‖b‖, for

τ̂1 =
−2

a>b+ 1
(3.44a)

τ̂2 =
−2

a>b− 1
, (3.44b)

we have that τ̂1 < 0 < τ̂2. This implies that P (τ) is positive definite if τ ∈ (τ̂1, τ̂2). It

has a zero eigenvalue if τ = τ̂1 or τ = τ̂2, and it is indefinite with exactly one negative

eigenvalue otherwise.
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From Lemma 3.8 we have that the possible shapes for Q(τ) are the ones given in

Section 1.1.2.1. We distinguish two cases: P (τ) is non-singular, and P (τ) is singular. In

the following sections, we analyze these two cases separately.

3.3.2.2 P (τ) is non-singular

If τ 6= τ̂1, τ̂2, then it follows from Lemma 3.8 that P (τ) is non-singular, which restricts the

quadrics to the shapes in Table 1.1. Hence, to verify the existence of a cone in the family

Q(τ), it is necessary to identify a τ for which p(τ)>P (τ)−1p(τ)− ρ(τ) = 0.

We use the Sherman-Morrison-Woodbury formula Golub and Van Loan [1996] to com-

pute the inverse of P (τ):

P−1(τ) =

I +

[
a b

]0 τ
2

τ
2 0


a
b



−1

= I −

[
a b

] τ2 −2τ − τ2a>b

−2τ − τ2a>b τ2


a
b


τ2
(

1− (a>b)
2
)
− 4a>bτ − 4

= I − (aa> + bb>)τ2 − (a>bτ2 + 2τ)(ba> + ab>)

τ2
(

1− (a>b)
2
)
− 4a>bτ − 4

. (3.45)

Note that the roots of denominator of the second term in (3.45) are τ̂1 and τ̂2, given in

(3.44a) and (3.44a). These are the values for which P (τ) is singular, as it was show by

Lemma 3.8.

Now, we evaluate p(τ)>P−1(τ)p(τ) − ρ(τ). Substituting p(τ), P−1(τ), and ρ(τ) from
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(3.42) we obtain

p(τ)>P−1(τ)p(τ)− ρ(τ)

=p(τ)>

I − (aa> + bb>)τ2 + (a>bτ2 + 2τ)(ba> + ab>)

τ2
(

1− (a>b)
2
)
− 4a>bτ − 4

 p(τ)− ρ(τ)

=
(1− (a>b)2 + 2αβa>b− α2 − β2)τ2 + 4(αβ − a>b)τ − 4

τ2
(

1− (a>b)
2
)
− 4a>bτ − 4

=

(
(1− α2)(1− β2)− (αβ − a>b)2

)
τ2 + 4(αβ − a>b)τ − 4

τ2
(

1− (a>b)
2
)
− 4a>bτ − 4

=

(
(αβ − a>b)2 − (1− α2)(1− β2)

)
τ2 + 4(a>b− αβ)τ + 4

τ2
(

(a>b)
2 − 1

)
+ 4a>bτ + 4

. (3.46)

Recall that the denominator of (3.46) is non-zero if τ 6= τ̂1, τ̂2, then we need to focus only

on its numerator. Let f : R 7→ R be the numerator of (3.46) as function of τ :

f(τ) =
(

(αβ − a>b)2 − (1− α2)(1− β2)
)
τ2 + 4(a>b− αβ)τ + 4.

This is a quadratic function of τ , whose discriminant is

16(1− α2)(1− β2). (3.47)

Thus, since Q is a unit hypersphere, we know that f has real roots if Q ∩ A= 6= ∅ and

Q ∩ B= 6= ∅. Let the roots of f be denoted by τ̄1 and τ̄2. We may assume w.l.o.g. that

τ̄1 ≤ τ̄2.

Summary of shapes We need to compare the roots of f with τ̂ and τ̂2 to characterize

the shapes of Q(τ). Recall that in this section we consider the case when P (τ) in non-

singular, i.e., τ 6= τ̂1, τ̂2. We first analyze the case when τ̂1 < τ̄i < τ̂2, for some i = 1, 2. In
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such case it follows from Lemma 3.8 that for the root of f that is between τ̂1 and τ̂2 we

have that P (τ̄i) � 0. Now, since

p(τ̄i)
>P−1(τ̄i)p̄(τ̄i)− ρ(τ̄i) = 0,

from Table 1.1 in Section 1.1.2.1 we know that Q(τ̄i) is a point. This is possible only if

Q is a point and A= ∩ B= 6= ∅, because Q ∩ (A= ∪ B=) = Q(τ) ∩ (A= ∪ B=) for τ ∈ R.

This implies that p>P−1p − ρ = 0 and α = β = 0. Hence, p(τ) = 0 and ρ(τ) = 0 for all

τ ∈ R, which simplifies the characterization of all the shapes of Q(τ) for τ ∈ R. First,

for any τ̂1 < τ < τ̂2 the quadric Q(τ) is a point. Second, the identity −P (τ̂i)0 = p(τ̂i)

holds for τ̂1 and τ̂2, where 0 is the all zeros vector in R`. Thus, it follows from Case 1 in

Section 1.1.2.1 that the quadrics Q(τ̂1) and Q(τ̂2) are lines. Finally, for τ < τ̂1 and τ > τ̂2,

the quadrics in the family {Q(τ) | τ ∈ R} are cones.

Now, if neither τ̄1 /∈ (τ̂1, τ̂2) nor τ̄2 /∈ (τ̂1, τ̂2), then the shapes of the quadrics Q(τ̄1),

Q(τ̄2), Q(τ̂1), Q(τ̂2), depend on the value of the discriminant (3.47). We have the following

cases:

• If the discriminant (3.47) of f is not equal to zero, then τ̂2 < τ̄1 < τ̄2, or τ̄1 <

τ̄2 < τ̂1, or τ̄1 < τ̂1 < τ̂2 < τ̄2. In these cases we have that Q(τ̂1) and Q(τ̂2) are

two paraboloids, and Q(τ̄1) and Q(τ̄2) are two different cones. For illustrations see

Figure 3.9.

• If the discriminant (3.47) of f is zero, then τ̄1 = τ̄2 < τ̂1 or τ̂2 < τ̄1 = τ̄2. In these

cases Q(τ̂1) and Q(τ̂2) are two paraboloids, and there is a unique cone Q(τ̄1) =

Q(τ̄2). Observe that in these cases one of the hyperplanes must be tangent to the

hypersphere Q. For illustrations see Figure 3.10.
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(a) τ = τ̄1 (b) τ = τ̄2

Figure 3.9: Function f has two distinct roots τ̄1 and τ̄1, which are different from τ̂1 and
τ̂2.
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(a) One of the hyperplanes is tan-
gent to the ellipsoid.

(b) τ = τ̄1 = τ̄2

Figure 3.10: The two roots of f coincide, but are different from τ̂1 and τ̂2.

3.3.2.3 P (τ) is singular

If τ = τ̂1 or τ = τ̂2, then it follows from Lemma 3.8 that P (τ̂i), i = 1, 2 is singular. In

this case we have P (τ̂i) � 0 but not P (τ̂i) � 0. Thus, from Section 1.1.2.1 we have that

Q(τ̂i) is either a line, a cylinder, or a paraboloid. The shape of Q(τ̂i) can be decided by

verifying if p(τ̂i) is in the range of P (τ̂i). This happens exactly when p(τ̂i) is orthogonal
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to the eigenvector corresponding to the zero eigenvalue of P (τ̂i). Lemma 3.9 provides the

eigenvectors corresponding to the zero eigenvalue of P (τ̂1) and P (τ̂2).

Lemma 3.9. The eigenvector for the zero eigenvalue of P (τ̂1) is (b+ a), and for the zero

eigenvalue of P (τ̂2) is (b− a).

Proof. For P (τ̂1), direct computation yields

P (τ̂1) (b+ a) =

(
I − ab> + ba>

a>b+ 1

)
(b+ a)

= (b+ a)−
(b+ a)

(
a>b+ 1

)
a>b+ 1

= 0,

and similarly for p(τ̂2), we obtain

P (τ̂2) (b− a) =

(
I − ab> + ba>

a>b− 1

)
(b− a)

= (b− a)−
(b− a)

(
a>b− 1

)
a>b− 1

= 0.

We used here that a and b are linearly independent, otherwise they would be parallel and

the analysis would reduce to the case in Section 3.2. Thus the two eigenvectors are not

the zero vector. This completes the proof.

Now we can compute the inner product of these eigenvectors with p(τ̂1) and p(τ̂2).

Consider first p(τ̂1), then we obtain:

p(τ̂1)> (a+ b) =
(αb> + βa>) (a+ b)

a>b+ 1
= α+ β. (3.48)

For the case p(τ̂2) we obtain:

p(τ̂2)> (b− a) =
(αb> + βa>) (b− a)

a>b− 1
= β − α. (3.49)
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Recall that if (3.48) or (3.49) is not zero, then we have that either −p(τ̂1) is not in the range

of P (τ̂1) or −p(τ̂2) is not in the range of P (τ̂2). These to cases can occur simultaneously.

Hence, from Case 2 in Section 1.1.2.1 either Q(τ̂1) or Q(τ̂2), or both are paraboloids.

Summary of shapes We use the discriminant of f in (3.47) to complete the classifi-

cation the shapes of the quadrics Q(τ̄1), Q(τ̄2), Q(τ̂1), Q(τ̂2). Recall that τ̄1 ≤ τ̄2 and

τ̂1 ≤ τ̂2. Then, we have the following cases:

• If the discriminant (3.47) of f is not equal to zero, then we need to consider two

possibilities:

� Both τ̂1 = τ̄1 and τ̂2 = τ̄2, which is illustrated in Figure 3.11. In this case

f(τ̂1) = f(τ̂2) = 0, thus

(α+ β)2 = 0 (3.50)

(α− β)2 = 0, (3.51)

which implies that α = β = 0, i.e., both hyperplanes intersect at the origin,

which is the center of Q. Hence, for the vector wc = 0 the identity −P (τ̂i)w
c =

p̄(τ̂i) holds for τ̂1 and τ̂2. Furthermore, since p(τ̂i) = 0 and ρ̄(τ̂i) = −1, then

p(τ̂i)
>p(τ̂i)p(τ̂i) − ρ(τ̂i) = 1 > 0 for i = 1, 2. Thus, it follows from Case 1 in

Section 1.1.2.1 that the quadrics Q(τ̂i), i = 1, 2, are two cylinders.

� Exactly one of the roots τ̄1 or τ̄2 is equal to either τ̂1 or τ̂2, which is illustrated

in Figure 3.12. Recall that if the discriminant is not equal to zero, then |α| < 1

and |β| < 1, i.e., neither of the hyperplanes A= or B= are tangent to Q. Assume

that one of the roots is equal to τ̂1. It follows from equations (3.50) and (3.48)
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(a) τ = τ̄1 = τ̂1 (b) τ = τ̄2 = τ̂2

Figure 3.11: τ̄1 6= τ̄2, and τ̄1 = τ̂1, τ̄2 = τ̂2.

that α = −β, and that (a+ b) is orthogonal to p(τ̂1). Now, let

wc =
β

2
(b− a). (3.52)

Then, we have

P (τ̂1)wc =

(
I − (ab> + ba>)

(a>b+ 1)

)(
β(b− a)

2

)
=
β

2

(
(b− a)− (a− a>ba+ a>bb− b)

(a>b+ 1)

)
=
β

2

(
(b− a)− (a>b− 1)(b− a)

(a>b+ 1)

)
=
β(b− a)

2

(
(a>b+ 1)− (a>b− 1)

(a>b+ 1)

)
=− β(a− b)

(a>b+ 1)
= −p(τ̂1). (3.53)
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Additionally, for the choice of xc in (3.52) we have that

(wc)>P (τ̂1)wc − ρ(τ̂1) =
β2(b− a)>(b− a)

2(a>b+ 1)
− ρ(τ̂1)

=
β2(1− a>b)
(a>b+ 1)

+
2αβ

(a>b+ 1)
+ 1

=
β2(1− a>b)
(a>b+ 1)

− 2β2

(a>b+ 1)
+ 1

=− β2(a>b+ 1)

(a>b+ 1)
+ 1

=1− β2 > 0, (3.54)

where the strict inequality holds in the case |β| < 1. As a result, from Case 1

in Section 1.1.2.1 we obtain that the quadric Q(τ̂1) is a cylinder.

Similarly, when one of the roots equals to τ̂2, then we can choose

wc =
β

2
(b+ a) . (3.55)

In this case, it follows from equations (3.51) and (3.49) that α = β, and that

(b− a) is orthogonal to p(τ̂2). Additionally, we have that

P (τ̂2)xwc =

(
I − (ab> + ba>)

(a>b− 1)

)(
β(b+ a)

2

)
=
β(b+ a)

2
− β(a+ a>ba+ a>bb+ b)

2(a>b− 1)

=
β

2

(
(b+ a)− (a>b+ 1)(b+ a)

(a>b− 1)

)
=
β(b+ a)

2

(
(a>b− 1)− (a>b+ 1)

(a>b− 1)

)
=− β(b+ a)

(a>b− 1)
= −p(τ̂2). (3.56)
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Additionally, for the choice of wc in (3.55) we have that

(wc)>p(τ̂2)wc − ρ(τ̂2) =− β2(b+ a)>(b+ a)

2(a>b− 1)
− ρ(τ̂2)

=− β2(1 + a>b)

(a>b− 1)
+

2αβ

(a>b− 1)
+ 1

=− β2(1 + a>b)

(a>b− 1)
+

2β2

(a>b− 1)
+ 1

=− β2(a>b− 1)

(a>b− 1)
+ 1

=1− β2 > 0, (3.57)

where the strict inequality holds in the case |β| < 1. As a result, from Case 1

in Section 1.1.2.1 we obtain that the quadric Q(τ̂2) is a cylinder.

(a) τ = τ̄1 (b) τ = τ̄2 = τ̂1

Figure 3.12: Function f(τ) has two distinct roots, but one of them coincides with either
τ̂1 or τ̂2.

• If the discriminant of f in (3.47) is zero, then the two roots of f are equal, i.e.,

τ̄ = τ̄1 = τ̄2. Let τ̄ = τ̂1, then from equation (3.50) we obtain the identity α = −β.
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(a) Two hyperplanes are tangent to
the ellipsoid.
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(b) τ = τ̄1 = τ̄2 = τ̂1

Figure 3.13: The two roots of f(τ) coincide with either τ̂1 or τ̂2.

Now, since the discriminant of f is zero, we have

α2 = β2 = 1, (3.58)

and, since Q is a unit hyper-sphere, it follows that the hyperplanes A= and B=

are both tangent to the ellipsoid Q. Recall that from Equation (3.53) for wc in

(3.52) we have P (τ̂1)wc = −p(τ̂1). Furthermore, from (3.54) and (3.58) we have that

(wc)>P (τ̂1)wc − ρ(τ̂1) = 0. Hence, the quadric Q(τ̂1) is a line.

Similarly, if τ̄ = τ̂2, then from equation (3.51) we obtain β = α, and the identity

(3.58) still holds. Then, from equation (3.56) for wc in (3.55)) we have P̄ (τ̂2)wc =

−p(τ̂2), and from (3.57) we have that (wc)>P (τ̂2)wc − ρ(τ̂2) = 0. Then, the quadric

Q(τ̂1) is a line in this case as well. For illustrations of these cases see Figure 3.13.

3.3.2.4 Summarizing the shapes of Q(τ)

We can now summarize the possible shapes of the quadrics in the family {Q(τ) | τ ∈ R}

at τ̂1, τ̂2, τ̄1, and τ̄2, where τ̂1 < τ̂2 and τ̄1 < τ̄2.
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Theorem 3.7. The following cases may occur for the shape of Q(τ):

• τ̂2 < τ̄1 < τ̄2, or τ̄1 < τ̄2 < τ̂1, or τ̄1 < τ̂1 < τ̂2 < τ̄2: Then both Q(τ̂1), and Q(τ̂2) are

paraboloids, and both Q(τ̄1), and Q(τ̄2) are cones.

• τ̄1 = τ̄2 < τ̂1 or τ̂2 < τ̄1 = τ̄2: Then both Q(τ̂1), and Q(τ̂2) are paraboloids, and

Q(τ̄1) = Q(τ̄2) is a cone.

• τ̄1 = τ̂1 and τ̂2 = τ̄2: Then both Q̂(τ̂1) = Q(τ̄1), and Q(τ̂2) = Q̂(τ̄2) are cylinders.

• τ̄1 6= τ̂2 and exactly one of τ̄1 or τ̄2, is equal to either τ̂1 or τ̂2: Then either Q(τ̂1) is a

cylinder and Q(τ̂2) is a paraboloid, or Q(τ̂2) is a cylinder and Q(τ̂1) is a paraboloid.

In both cases exactly one of Q(τ̄1) or Q(τ̄2) is a cone.

• τ̄1 = τ̄2 = τ̂1 or τ̂2 = τ̄1 = τ̄2: Then either Q(τ̂1) is a line and Q̂(τ̂2) is a paraboloid,

or Q(τ̂2) is a line and Q(τ̂1) is a paraboloid.

This completes the description of the family {Q(τ) | τ ∈ R} of quadrics when P � 0 and

A= and B= are non-parallel.

3.3.3 Generalization

In Section 3.3.2 we assumed that the initial quadric Q is an ellipsoid. This assumption

indeed facilitates the analysis of the family. However, recall that the domain of τ is the

whole real line. Hence, the results obtained in Section 3.3.2 cover also the cases where Q

has an ID1 matrix P and the intersection with the hyperplanes are bounded. We formalize

this result, which follows directly from Theorem 3.6 and Lemma 3.8, as the following

corollary.

Corollary 3.1. If there exists a τ̃ ∈ R such that the quadric Q(τ̃) ∈ {Q(τ) | τ ∈ R} has

a matrix P (τ̃) � 0, then P (τ) has at most one non-positive eigenvalue for any τ ∈ R.

Hence, in this case to characterize the family we may use Q(τ̃), which is an ellipsoid.

98



Chapter 4

Disjunctive conic cuts for

MISOCO problems

In this chapter, we describe the procedure to obtain DCCs for MISOCO problems. The

fundamental problem considered in this section is a MISOCO problem with a single cone,

i.e., a problem of the form

minimize: c>x

subject to: Ax = b (4.1)

x ∈ Ln

x ∈ Zd × Rn−d,

where A ∈ Rm×n is a matrix with full row rank, c ∈ Rn, and b ∈ Rm.

The relaxation of the integer variables in (4.1) to continuous variables yields the SOCO
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problem

minimize: c>x

subject to: Ax = b (4.2)

x ∈ Ln.

We show in this chapter how a DCC can be derived for (4.1) when the feasible set of

(4.2) is intersected with a disjunctive set U ∪ V, where U = {x ∈ Rn | u>x ≥ ϕ} and

V = {x ∈ Rn | v>x ≤ $}.

We start in Section 4.1 describing the relation of the feasible set of (4.2) and quadrics.

Then, in Section 4.2 we use the results of Chapters 2 and 3 to derive disjunctive conic cuts

when the disjunctive set used is defined with parallel hyperplanes. We close this chapter

in Section 4.3 discussing the derivation of DCCs when the disjunctive set used is defined

with non-parallel hyperplanes.

4.1 Properties of the quadric Q associated with the feasible

set of problem (4.2)

Recall the definition of quadric sets given in Section 1.1.2. In this section we find an

equivalent representation of the feasible set of (4.2), given by

F = {x ∈ Rn | Ax = b, x ∈ L}, (4.3)

in terms of a quadric set. Then, provided a quadric for the equivalent representation of

F , we show that it is possible to derive cuts for problem (4.2) using that quadric. Finally,

we analyze the possible shapes that the quadric in the representation of F can take.

For this analysis, we use a representation of the set {x ∈ Rn | Ax = b} in terms of an
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orthonormal basis of the null space of A. To define this representation, consider a vector

x0 ∈ F , and let Hn×` be a matrix whose columns form an orthonormal basis for the null

space of A, where ` = n −m. We may assume that ` > 0, since otherwise Ax = b has a

unique solution and the set F reduces to a point. Then, we have the identity

{x ∈ Rn | Ax = b} = {x ∈ Rn | ∃w ∈ R`, x = x0 +Hw}. (4.4)

We can use (4.4) to rewrite the set F in (4.3) in terms of a quadric as follows. We first

find a quadric Q represented by a matrix P ∈ R`×`, a vector p ∈ R`, and a scalar ρ, which

are defined in terms of H and x0. Let J ∈ Rn×n be a diagonal matrix defined as

J =

−1 0

0 I

 ,
and let us relax the constraint x ∈ Ln to x>Jx ≤ 0. Substituting x = x0 + Hw in the

relaxed constraint we obtain

(x0 +Hw)>J(x0 +Hw) ≤ 0

w>H>JHw + 2(x0)>JHw + (x0)>Jx0 ≤ 0. (4.5)

Define P = H>JH, p = H>Jx0, and ρ = (x0)>Jx0. Now, substituting P , p, and ρ in

(4.5) we obtain the constraint

w>Pw + 2p>w + ρ ≤ 0. (4.6)

Let us define the following quadric

Q = {w ∈ R` | w>Pw + 2p>w + ρ ≤ 0}. (4.7)
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Thus, the set F admits the following equivalent representation

F = {x ∈ Rn | x = x0 +Hw, with w ∈ Q, and x1 ≥ 0}. (4.8)

Our goal in this chapter is to generate cuts for the set F using the set Q in (4.7). This

can be achieved by using the affine transformation x = x0 +Hw. To justify this, we need

to show first that the cuts derived for Q are effective on excluding the undesired solutions

x in F .

Lemma 4.1. Given a vector x̂ ∈ F and a vector ŵ ∈ Q such that x = x0 +Hẑ, a cut cuts

off the vector x̂ from F if it cuts off ŵ from Q.

Proof. Recall the alternative representation of F given in (4.8). Note that any x ∈ F is

define by linear combination of x0 and the columns of H. Additionally, recall that the

columns of H are linearly independent. Then, the vector ŵ defining x̂ is unique. Therefore,

given a cut that excludes ŵ from Q, it excludes x̂ from F .

Now, the cuts presented in this chapter are disjunctive cuts for problem (4.2). In other

words, the disjunctive cuts introduced in this chapter result from convexification of the set

{x ∈ Rn | Ax = b, x ∈ L, x ∈ U ∪ V}. (4.9)

We show that the set U ∪V has an equivalent representation in terms of w. Note that the

sets U and V admit the following equivalent representation

U = {x ∈ Rn | ∃w ∈ Rn, x = x0 +Hw, u>Hw ≥ ϕ− u>x0},

and

V = {x ∈ Rn | ∃w ∈ Rn, x = x0 +Hw, v>Hw ≤ $ − v>x0}.

102



CHAPTER 4. DISJUNCTIVE CONIC CUTS FOR MISOCO PROBLEMS

Define a = u>H, d = v>H, α = ϕ − u>x0 and β = $ − v>x0. Now, let A = {w ∈ R` |

a>w = α} and B = {w ∈ R` | d>w = β}. Therefore, we can rewrite (4.9) in terms of the

set A ∪ B as follows

{x ∈ Rn | x = x0 +Hw, with w ∈ Q, x1 ≥ 0, and w ∈ A ∪ B}. (4.10)

Thus, for the generation of the DCCs introduced in this chapter we will focus on convexi-

fying the set Q∩ (A ∪ B).

Let us now focus on the shapes of the set Q. Recall from Section 1.1.2 that the inertia

of matrix the P in the representation of Q is one of the elements defining its shape. We

have the following result about the inertia of P .

Lemma 4.2. The matrix P in the representation of the quadric Q has at most one non-

positive eigenvalue, and at least `− 1 positive eigenvalues.

Proof. First of all, we have that

J = I − 2

1 0

0 0

 .
Now, recall that the columns of H form an orthonormal basis for the null space of A. Thus

P = H>JH = I − 2H>

1 0

0 0

H = I − 2H1:H
>
1: ,

where H1: is the first row of H. From Section 3.2.2 we know that 1 is an eigenvalue of P

with multiplicity ` − 1, and the last eigenvalue is 1 − 2H>1:H1:. Thus, P has at most one

non-positive eigenvalue.

Hence, from Lemma 4.2 we have that the shapes of the quadric Q are limited to those
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described in Section 1.1.2.1. However, there are some shapes considered in Section 1.1.2.1

that the quadric Q will never take. For that reason, we need to refine further the analysis

of possible shapes for Q. We may assume that Q is not an empty set, otherwise there is

no need for classification. Now, for the analysis of the shapes of Q we need the following.

First, recall that Ax0 = b, then the system Hw = x0 will have a solution if and only if

b = 0. Second, recall that P = H>JH, and that H1: is the first row of H. Then we have

that

PH1: = (H>JH)H1: = (I − 2H1:H
>
1: )H1: = (1− 2H>1:H1:)H1:.

As a result, we obtain that H1: is an eigenvector of P associated with the eigenvalue

(1− 2H>1:H1:). Third, let us define the set

Fr = {x ∈ Rn | Ax = b, x>Jx ≤ 0}, (4.11)

which is a relaxation of F . Note that due to the constraint x>Jx ≤ 0, the set Fr contains

a whole line if and only if the zero vector is an element of Fr, i.e., if b = 0. We divide the

classification of the shapes of Q in two cases: P is singular, and P is non-singular.

Let us begin classifying the shapes of Q when P is singular. First of all, from Lemma

4.2 we know that if P is singular, then P � 0 and (1 − 2H>1:H1:) = 0. Consequently, H1:

is an eigenvector of P associated with its zero eigenvalue. Now, from Section 1.1.2.1 we

know that Q may be a paraboloid or a cylinder. The criteria to decide this is if the system

Pw = −p is solvable. On one hand, if Pw = −p has not solution, then we obtain that

Q is a paraboloid. On the other hand, if the system Pw = −p is solvable, then Q is a

cylinder. We show now that if Pw = −p, then in our context Q is always a line, i.e., a

cylinder which base is a point.

Let wc ∈ R` be such that Pwc = −p. First, we show that wc can be found by solving

the system Hw = −x0. Consider the vector wc + σH1:, where σ is a scalar. Note that
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(wc + σH1:) ∈ Q for any σ ∈ R, because

(wc + σH1:)
>P (wc + σH1:) + 2p>(wc + σH1:) + ρ = (wc)>Pwc + 2p>wc + ρ ≤ 0.

The last inequality follows from the assumption that Q is not an empty set. Thus, H1: is

the vector defining the direction of the cylinder Q. Now, let us define the set

S = {x ∈ Rn | x = x0 +H(wc + σH1:), σ ∈ R}.

If Q is a cylinder, then S ⊆ Fr. Additionally, S ⊆ Fr only if b = 0. Now, if b = 0, then the

system Hw = −x0 is solvable because −x0 is in the null space of A. Let wc be the solution

of Hw = −x0, which is unique since the columns of H are linearly independent. Then,

we have that Pwc = H>JHwc = −H>Jx0. Furthermore, we have that (wc)>Pwc − ρ =

(wc)>H>JHwc − (x0)>Jx0 = 0. Hence, if the system Pw = −p is solvable, then from

Section 1.1.2.1 we know that Q is a line.

We now classify the shapes of Q when P is non-singular. Recall that (4.6) is equivalent

to (
w + P−1p

)>
P
(
w + P−1p

)
≤ p>P−1p− ρ. (4.12)

Additionally, recall from Section 1.1.2.1 that the shape of Q in this case is determined

by the inertia of P and the value of the right hand side of (4.12). First of all, we know

that if P � 0, then Q is an ellipsoid. Thus, to complete the classification of Q we need to

consider the case when P is an ID1 matrix. Recall from Section 1.1.2.1 that in this case,

we have the following cases:

• if p>P−1p− ρ ≤ 0, then Q is a hyperboloid of two sheets;

• if p>P−1p− ρ = 0, then Q is a scaled second order cone;

• if p>P−1p− ρ ≥ 0, then Q is a hyperboloid of one sheet.

105



CHAPTER 4. DISJUNCTIVE CONIC CUTS FOR MISOCO PROBLEMS

We show here that in our context p>P−1p − ρ ≤ 0. In other words, we show that Q is

never a hyperboloid of one sheet.

The vector −P−1p is either the vertex of a scaled second order cone or the intersection

of the asymptotes of a hyperboloid. Even more, if Q is a cone or a hyperboloid of one

sheet, then −P−1p ∈ Q. On the other hand, if Q is a hyperboloid of two sheets, then

−P−1p /∈ Q. Now, from Lemma 4.2 we know that if P is ID1, then (1 − 2H>1:H1:) < 0.

Consequently, H1: is an eigenvector of P associated with its negative eigenvalue. Consider

the vector (−P−1p+ σH1:) for σ ∈ R, then

(−P−1p+ σH1: + P−1p)>P (−P−1p+ σH1: + P−1p) = σ2H>1:PH1: ≤ 0.

Define the set

T = {x ∈ Rn | x = x0 +H(−P−1p+ σH1:), σ ∈ R}

Hence, T ⊂ Fr if and only if p>P−1p − ρ ≥ 0. Recall that T ⊆ Fr if and only if b = 0,

and if b = 0, then there is a vector wc ∈ R` such that Hwc = −x0. Further, we have that

(wc + P−1p)>P (wc + P−1p) = (wc)>Pwc + 2p>P−1wc + p>P−1p

= (wc)>H>JHwc + 2(x0)>JHwc + p>P−1p

= p>P−1p+ (x0)>Jx0 − 2(x0)>Jx0

= p>P−1p− ρ.

On the other hand, we have that

P (wc + P−1p) = Pwc + p = H>JHwc +H>Jx0 = −H>Jx0 +H>Jx0 = 0.

Hence, if b = 0, then p>P−1p−ρ = 0. As a conclusion, we have that the quadric Q cannot
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be a hyperboloid of one sheet.

In summary, we have the following possible shapes for Q:

• if P � 0, then Q is an ellipsoid, see Figure 4.1(a) for an illustration;

• if P � 0 and singular, then Q is:

� a parabolid if there is no vector wc ∈ R` such that Pwc = −p, see Figure 4.1(b)

for an illustration;

� a line if there is a vector wc ∈ R` such that Pwc = −p;

• if P is ID1, then Q is:

� a hyperboloid of two sheets if p>P−1p− ρ < 0, see Figure 4.1(c) for an illustra-

tion;

� a cone if p>P−1p− ρ = 0, see Figure 4.1(d) for an illustration.

4.2 Building a disjunctive conic cut with parallel disjunc-

tions

Before describing the procedure let us illustrate the concept of building a DCC cut with

the following MISOCO problem

minimize: 3x1 +2x2 +2x3 +x4

subject to: 9x1 +x2 +x3 +x4 = 10

(x1, x2, x3, x4) ∈ L4

x4 ∈ Z.

(4.13)

Let F denote the feasible set of this problem. The quadric Q ∈ R3 associated with the

feasible set F is an ellipsoid. In this case Q can be written in terms of the variables x2,
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(a) Ellipsoid. (b) Paraboloid.

(c) Hyperboloid. (d) Cone.

Figure 4.1: Illustration of the shapes of Q.

x3, x4, and the problem can be reformulated as follows

minimize: 1
3 (10 + 5x2 + 5x3 + 2x4)

subject to:

[
x2 x3 x4

]
8 − 1

10 − 1
10

− 1
10 8 − 1

10

− 1
10 − 1

10 8



x2

x3

x4

+ 2

[
1 1 1

]
x2

x3

x4

− 10 ≤ 0

x4 ∈ Z.
(4.14)

The feasible set of the continuous relaxation of the reformulation is shown in Figure 4.2.
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Figure 4.2: Feasible region of the reformulation of Problem (4.13).

We can build a disjunctive cut for Problem (4.14) in three steps. First, we relax the

constraint x4 ∈ Z and solve the SOCO problem associated with (4.13). The optimal

solution of this relaxation is

x∗soco =

[
1.36 −0.91 −0.91 −0.45

]
,

with and optimal objective value ζ∗soco = 0.00. Clearly, x∗soco /∈ F , since the variable x4

takes a fractional value.

Second, we identify a disjunction that is violated by x∗soco. The solution of (4.14) must

be contained either in the set A = {x ∈ R4 | x4 ≥ 0} or in the set B = {x ∈ R4 | x4 ≤ −1}.

Hence, the disjunction A∨B is violated by the solution of the continuous relaxation x∗soco,

which is illustrated in Figure 4.3.

Third, we convexify the non convex set Q ∩ (A ∪ B). In particular, we want to find

the set conv(Q ∩ (A ∪ B)). Recall from Theorem 1.4 that this is the smallest convex set

containing Q∩(A∪B). Additionally, we have that F ⊂ conv(Q∩(A∪B)). In this case, this
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Figure 4.3: Disjunction violated by the solution x∗soco to the continuous relaxation of (4.14).

is the tightest convex formulation we can obtain for the continuous relaxation of Problem

(4.14). To find conv(Q∩ (A∪B)), in this example it is enough to add a conic constrain to

Problem (4.14). Figure 4.4 illustrates the addition of a conic constraint to the formulation

of Problem (4.14).

Figure 4.4: Scaled second order cone as a constrain of Problem (4.15)
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The new formulation of Problem (4.14) after adding the conic cut is given by

min: 3x1 +2x2 +2x3 +x4

s.t: 9x1 +x2 +x3 +x4 = 10

−0.04x2 −0.04x3 −3.56x4 +x5 = 10.14

−6.28x2 −6.28x3 +0.14x4 +x6 = 1.65

6.36x2 −6.36x3 +x7 = 0

(x1, x2, x3, x4) ∈ L4

(x5, x6, x7) ∈ L3

x4 ∈ Z .

(4.15)

In particular the conic constraint illustrated in Figure 4.4 is described by the constraints

−0.04x2 −0.04x3 −3.56x4 +x5 = 10.14

−6.28x2 −6.28x3 +0.14x4 +x6 = 1.65

6.36x2 −6.36x3 +x7 = 0

(x5, x6, x7) ∈ L3 .

These constraints define a translated and scaled second order cone in the space of variables

x1, x2, and x3, which is a DCC. The feasible set of the continuous relaxation of Problem

(4.15) is illustrated in Figure 4.5, which is conv(Q∩ (A ∪ B)).

Now, if we solve the continuous relaxation of Problem (4.15) we obtain the solution

x∗soco =

[
1.32 −0.93 −0.93 0.00 10.06 −10.06 0.00

]

with an optimal objective value ζ∗soco = 0.24. Note that in this case x4 = 0.00, which is

integer. Hence, since F ⊂ conv(Q ∩ (A ∪ B)), we have that this is in fact optimal for

Problem (4.13).
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Figure 4.5: Feasible set of Problem (4.15)

Our goal in this section is to show that the procedure described for Problem (4.13) can

be generalized. With this on mind, let us review two important characteristics of the cone

illustrated in Figure 4.4 and defined by (4.2). First, the constraints in (4.2) are equivalent

to the constraint

[
x2 x3 x4

]
8 − 1

10 − 1
10

− 1
10 8 − 1

10

− 1
10 − 1

10 −1.27



x2

x3

x4

+ 2

[
1 1 −3.63

]
x2

x3

x4

− 10 ≤ 0, (4.16)

which define a quadric in the space of x2, x3, and x4. Second, the quadric in the feasible

set of Problem (4.14) and the quadric defined by (4.16) have the same intersection with

the hyperplane A= = {[x2 x3 x4] ∈ R3 | x4 = 0}, which is a quadric in R2 defined by

[
x2 x3

] 8 − 1
10

− 1
10 8


x2

x3

+ 2

[
1 1

]x2

x3

− 10 ≤ 0.
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Similarly, both the feasible set and the quadric have the same intersection with the hyper-

plane B= = {[x2 x3 x4] ∈ R3 | x4 = −1}, which is a quadric in R2 defined by

[
x2 x3

] 8 − 1
10

− 1
10 8


x2

x3

+ 2

[
8
10

8
10

]x2

x3

− 4 ≤ 0.

These two characterizations are key for the derivation of the DCCs proposed in this section.

Let us consider now a given quadric Q associated with Problem (4.2) and a disjunctive

set A ∪ B, where A = {x ∈ Rn | a>x ≥ α} and B = {x ∈ Rn | a>x ≤ β}. From

Chapter 3 we know that it is always possible to find a quadric Q̃, that is a cone or a

cylinder, that has the same intersection with A= and B= than Q. Additionally, using the

general results of Chapter 2 and some additional analysis for particular cases, we can show

that Q ∩ Q̃ = conv(Q ∩ (A ∪ B)). Hence, it is possible to generalize the derivation of

DCCs for MISOCO problems and parallel disjunctions. To simplify the algebra, we may

assume w.l.o.g. that the quadric Q has been transformed using the affine transformation

described in Section 3.1. Additionally, we may assume w.l.o.g. that ‖a‖ = 1. We separate

the analysis in two cases. In Section 4.2.1 we study the cylinder case, and in Section 4.2.2

the cone case.

4.2.1 Cylinders

We begin with the analysis of the cases in which we can derive DCyCs. We need to consider

four cases, given the possible shapes of the quadric Q as listed in Section 4.1. Hence, we

have that Q can be an ellipsoid, a paraboloid, a scaled second order cone, or a hyperboloid

of two sheets. Recall from Theorem 3.1 that given a disjunctive set A ∪ B, we can define

a family of quadrics Q(τ), τ ∈ R, having the same intersection with the hyperplanes A=

and B=, as Q ∈ Q(τ) has. In particular, in Chapter 3 we can find a characterization of

a family where the DCyC is a cylinder for each of the cases considered here. Hence, we
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have that:

• if Q is an ellipsoid, then we need to consider the third and fourth cases in Theorem

3.2;

• if Q is a paraboloid, then we need to consider the family in Lemma 3.4;

• if Q is a hyperboloid of two sheets, we need to consider the second case in Theorem

3.4;

• if Q is a cone, then we need to consider the second case in Theorem 3.3.

An important observation in all these cases is that in the associated family of quadrics

Q(τ) there exist only one cylinder. These cylinders are fully identified in each of the cases

mentioned. Hence, the next step is to verify that they are DCyCs for Problem (4.1). The

verification divides the cases in two groups. First we consider the cases in Theorems 3.2

and 3.4, which are convex cylinders. Second, we consider the cases in Theorems 3.4 and

3.3, which are hyperbolic cylinders of two sheets.

4.2.1.1 Case when the DCyC is an ellipsoidal or parabolic cylinder

We start with the verification that the second and fourth cases in Theorem 3.2, and the case

in Lemma 3.4 are DCyCs for Problem (4.1) when Q is either an ellipsoid or a paraboloid,

respectively. In these cases the quadric given by Q(−1) is a cylinder. Furthermore, we

know that P (−1) � 0, thus they are convex cylinders. On the other hand, in the cases in

Theorem 3.2 the vector a defines the direction of the cylinder. Additionally, in the case of

Lemma 3.4 we know that a1 = 0 and that the direction of the cylinder is [γ a>2:n]>. Hence,

in both cases the product of the normal vector of the hyperplanes a with the direction of

the cylinder is different from 0. Hence, it follows from Theorem 2.2 and Lemma 4.1 that

Q(−1) is a DCyC for Problem (4.1). Finally, since P (−1) � 0 this cylinders are second

order cone representable, see for example Ben-Tal and Nemirovski [2001a].
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4.2.1.2 Case when the DCyC is a branch of a hyperbolic cylinder

We verify now that the second cases of Theorems 3.4 and 3.3 are DCyCs for Problem

(4.1) when Q is either a cone or a hyperboloid of two sheets, respectively. In these cases

the quadric Q(τ̂), where τ̂ = − 1
(1−2a21)

, is a hyperbolic cylinder of two sheets, which is a

non-convex quadric. Even more, recall that both cases of Theorems 3.3 and 3.4 happen

only when α = −β, then we have that p(τ̂) = 0, ρ(τ̂) > 0 and

Q(τ̂) = {x ∈ R` | x>P (τ̂)x ≤ −ρ(τ̂)}.

Consider the eigenvalue decomposition P (τ̂) = V (τ̂)D(τ̂)V (τ̂)>, where D(τ̂) ∈ R`×`, and

V (τ̂) ∈ R`×` is non-sigular. We may assume w.l.o.g. that D1,1 = −1, D2,2 = 0, and

Di,i > 0, i ∈ {3, . . . , n}. Now, let W (τ̂) = V (τ̂)D̄(τ̂)
1
2 , where D̄(τ̂) is a diagonal matrix

such that D̄(τ̂)i,i = |D(τ̂)i,i|. Let W (τ̂)3:n be the matrix that has the last n− 2 columns

of W (τ̂), and W (τ̂)1 the firs column of W (τ̂). Then,

Q(τ̂) =

{
x ∈ R`

∣∣∣∣ ∥∥∥W (τ̂)>3:nx
∥∥∥2
≤ −ρ(τ̂) +

(
W (τ̂)>1 x

)2
}
.

Let us define the following two sets

Q+(τ̂) =

{
x ∈ Rn

∣∣∣∣∣ ∥∥∥W (τ̂)>3:nx
∥∥∥ ≤ ξ, ∥∥∥∥∥

[
ξ
√
ρ(τ̂)

]>∥∥∥∥∥ ≤W (τ̂)>1 x

}
,

Q−(τ̂) =

{
x ∈ Rn

∣∣∣∣∣ ∥∥∥W (τ̂)>3:nx
∥∥∥ ≤ ξ, ∥∥∥∥∥

[
ξ
√
ρ(τ̂)

]>∥∥∥∥∥ ≤ −W (τ̂)>1 x

}
.

Thus, Q(τ̂) = Q+(τ̂)∪Q−(τ̂), and each of these branches of Q(τ̂) are a convex cylinders in

the direction V (τ̂)2, which is the 2nd column of V (τ̂). Also, note that Q+(τ̂)∩Q−(τ̂) = ∅.

Recall that in the cases we are analyzing the set Q is either a cone or a hyperboloid of two

sheets. Let Q+ be the set of vectors in Q such that for w ∈ Q+ we have x0 + Hw ∈ F .
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Similarly, let Q− be the set of vectors in Q such that for w ∈ Q− we have x0 +Hw /∈ F .

Hence, from equation (4.8) we know that Q+ and Q− are the two branches of Q. The last

statement follows from the fact that H1: is an eigenvector associated with the negative

eigenvalue of Q. Hence, Q+ and Q− are convex sets and Q+ ∪ Q− = Q. We have the

following result.

Lemma 4.3. In the second case in Theorem 3.3 and the second case in Theorem 3.4 the

set (A= ∪ B=) ∩Q+ is a subset of a single branch of Q(τ̂).

Proof. We show that if the set (A= ∪B=)∩Q+ is not a subset of a single branch of Q(τ̂),

then (A= ∪ B=) ∩Q = (A= ∪ B=) ∩Q(τ̂) is contradicted.

Let u, v ∈ (A= ∪ B=) ∩ Q+ be two vectors such that u ∈ Q+(τ̂) and v ∈ Q−(τ̂). Note

that if a>u = α and a>v = α, or a>u = β and a>v = β, then in that case there must exists

a 0 ≤ λ̃ ≤ 1 such that w = λ̃v+(1− λ̃)u ∈ (A=∪B=)∩Q+ but w /∈ (A=∪B=)∩Q(τ̂). This

statement is true because Q+, Q+(τ̂), and Q−(τ̂) are convex, and Q+(τ̂) ∩Q−(τ̂) = ∅.

Now, assume that a>u = α and a>v = β and let ã = [−a1 a
>
2:n]>. Recall from Section

3.2.5 that P (τ̂) = J̃ − aa>

(1−2a21)
, then for any θ ∈ R

(v + θã)>P (τ̂)(v + θã) + ρ(τ̂) = v>P (τ̂)v + ρ(τ̂) ≤ 0.

Similarly,

(u+ θã)>P (τ̂)(u+ θã) + ρ(τ̂) = u>P (τ̂)u+ ρ(τ̂) ≤ 0,

Additionally, since a>ã 6= 0, then ∃θ̂ such that a>(u+ θ̂ã) = β, and ∃θ̃ such that a>(v +

θ̃ã) = α. Hence, Q−(τ̂) ∩ A= 6= ∅ and Q+(τ̂) ∩ B= 6= ∅.

Now, we show that Q+(τ̂) ∩ B= ∩ Q+ = ∅ and Q−(τ̂) ∩ A= ∩ Q+ = ∅. Assume to the

contrary that Q+(τ̂)∩B=∩Q+ 6= ∅. Then, for any s ∈ Q+(τ̂)∩B=∩Q+ there must exists

a 0 ≤ λ̃ ≤ 1 such that w = λ̃s + (1− λ̃)v ∈ (A= ∪ B=) ∩ Q+ but w /∈ (A= ∪ B=) ∩ Q(τ̂).

This is true because Q+ is convex, Q+(τ̂) ∩ Q−(τ̂) = ∅, v ∈ Q−(τ̂), and a>v = β.
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A similar contradiction would be obtain if Q−(τ̂) ∩ A= ∩ Q+ 6= ∅. Hence, we have that

Q+(τ̂)∩B=∩Q− 6= ∅ and Q−(τ̂)∩A=∩Q− 6= ∅, because (A=∪B=)∩Q = (A=∪B=)∩Q(τ̂).

Let w ∈ Q+(τ̂) ∩ B= ∩ Q−. Then, λw + (1 − λ)u ∈ Q+(τ̂) for 0 ≤ λ ≤ 1, since

Q+(τ̂) is convex. Now, if Q is a hyperboloid, then there exist a 0 ≤ λ̃ ≤ 1 such that

λ̃w + (1 − λ̃)u /∈ Q, because u ∈ Q+ and w ∈ Q−. This contradicts (A= ∪ B=) ∩ Q =

(A= ∪ B=) ∩ Q(τ̂). On the other hand, if Q is a cone, then there exist a λ̃ such that

either λ̃w + (1 − λ̃)u /∈ Q or λ̃w + (1 − λ̃)u is the zero vector. In the first case, we find

a contradiction to (A= ∪ B=) ∩ Q = (A= ∪ B=) ∩ Q(τ̂) again. In the second case, let us

consider a vector s ∈ Q−(τ̂) ∩ A= ∩ Q−. Then, λs + (1 − λ)v ∈ Q−(τ̂) for 0 ≤ λ ≤ 1,

since Q−(τ̂) is convex. In this case, then there exist a λ̄ such that λ̄s + (1 − λ̄)v /∈ Q.

The last statement is true because v ∈ Q+ and s ∈ Q−, the zero vector is in Q+(τ̂) and

Q−(τ̂) ∩Q+(τ̂) = ∅. This contradicts (A= ∪ B=) ∩Q = (A= ∪ B=) ∩Q(τ̂) again.

From Proposition 2.2 and Lemma 4.3, we know that the branch of Q(τ̂) containing the

set (A= ∪ B=) ∩Q+ is a DCyC for Problem (4.1). Finally, we need to define a criteria to

identify the branch of Q(τ̂) that defines the cylindrical cut. First, consider the case when

Q+ = {x ∈ R` | x ∈ Q, x1 ≥ 0}. Then, if W (τ̂)>1 e1 ≥ 0, then the cylindrical cut is given

by Q+(τ̂). On the other hand, if W (τ̂)>1 e1 ≤ 0, then the cylindrical cut is given by Q−(τ̂).

Now, consider the case when Q+ = {x ∈ R` | x ∈ Q, x1 ≤ 0}. Then, if −W (τ̂)>1 ek ≥ 0,

then the cylindrical cut is given by Q+(τ̂). On the other hand, if −W (τ̂)>1 e1 ≤ 0, then

the cylindrical cut is given by Q−(τ̂).

4.2.2 Cones

We analyze the cases for which we can derive DCCs. Given the possible shapes of the

quadric Q as listed in Section 4.1, we need to consider the cases when Q is an ellipsoid, a

cone, or a hyperboloid of two sheets. Recall from Theorem 3.1 that given the disjunctive

set A∪B, there is a family of quadrics {Q(τ) | τ ∈ R}, having the same intersection with
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the hyperplanes A= and B=, as Q ∈ Q(τ) has. In particular, in Chapter 3 we can find

a characterization of the families that can be used to derive DCC for each of the cases

considered here. Hence, we have that:

• if Q is an ellipsoid, then we need to consider the first and second cases in Theorem

3.2;

• if Q is a hyperboloid of two sheets, we need to consider the first case in Theorem

3.4;

• if Q is a cone, then we need to consider the first case in Theorem 3.3.

An important observation in these cases is that in the associated family {Q(τ) | τ ∈ R} of

quadrics there exists more than one candidate cone. For that reason we need to analyze

the three cases separately.

For the derivation of the cuts, we show the existence of a convex cone in the first cases

of Theorems 3.4 and 3.3 that satisfy Proposition 2.1. Recall from Sections 3.2.3 and 3.2.5

that the first cases in Theorems 3.4 and 3.3 consider the quadrics found at the roots of the

function f(τ), which is defined in (3.20) and (3.31), respectively. Also, recall that τ̄1 and

τ̄2 denote the roots of f(τ), and that we assume τ̄1 ≤ τ̄2. Before analyzing each of the cases

considered here, we show that the quadrics Q(τ̄1) and Q(τ̄2) in the family {Q(τ) | τ ∈ R}

of each theorem can be written as the union of two scaled second order cones.

The quadric Q(τ̄i), i = 1, 2, is defined by the triplet (P (τ̄i), p(τ̄i), ρ(τ̄i)), where P (τ̄i) ∈

R`×`, p(τ̄i) ∈ R`, and ρ(τ̄i) is a scalar. From Sections 3.2.3 and 3.2.5 we know that Q(τ̄i)

is a cone, with vertex x(τ̄i) = −Q(τ̄i)
−1q(τ̄i). Hence, P (τ̄i) is a symmetric non-singular

matrix that has exactly one negative eigenvalue and ` − 1 positive eigenvalues. Now,

the eigenvalue decomposition of P (τ̄i) is given by V (τ̄i)D(τ̄i)(V (τ̄i)
>, where V (τ̄i) is an

orthonormal matrix and D(τ̄i) is a diagonal matrix having the eigenvalues of P (τ̄i) in its

diagonal. We may assume w.l.o.g. that D(τ̄i)1,1 < 0, and let W (τ̄i) = V (τ̄i)D̄(τ̄i)
1/2,
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where D̄(τ̄i)j,k = |D(τ̄i)j,k|, j = 1, . . . , `, k = 1, . . . , `. Thus, we may write Q(τ̄i) in terms

of W (τ̄i) as follows

{
x ∈ Rn | (x− x(τ̄i))

>W (τ̄i)2:nW (τ̄i)
>
2:n (x− x(τ̄i)) ≤

(
W (τ̄i)

>
1 (x− x(τ̄i))

)2
}
,

where W (τ̄i)2:n has the columns 2, . . . , n of W (τ̄i) and W (τ̄i)1 is the first column of W (τ̄i).

Now, let us define the sets Q+(τ̄i), Q−(τ̄i) as follows

Q+(τ̄i) =
{
x ∈ Rn |

∥∥∥W (τ̄i)
>
2:n(x− x(τ̄i))

∥∥∥ ≤W (τ̄i)
>
1 (x− x(τ̄i))

}
, (4.17)

Q−(τ̄i) =
{
x ∈ Rn |

∥∥∥W (τ̄i)
>
2:n(x− x(τ̄i))

∥∥∥ ≤ −W (τ̄i)
>
1 (x− x(τ̄i))

}
. (4.18)

These sets are two scaled and translated second order cones with vertex x(τ̄i), which satisfy

Definition 2.1. It is easy to verify that Q(τ̄i) is equal to Q+(τ̄i) ∪Q−(τ̄i). Also, it is clear

from (4.17) and (4.18) that Q+(τ̄i), Q−(τ̄i) are two convex cones. This shows that the

quadrics Q(τ̄1) and Q(τ̄2) can be written as the union of two convex cones. Our next step

is to define a criteria to identify which of the quadrics Q(τ̄1) and Q(τ̄2) provides a DCC.

First, we show that in the cases of Theorem 3.2, the DCCs are found at the largest root

of the polynomial (3.20). Second, we show separately that in the first cases of Theorems

3.4 and 3.3, the DCCs are found at smallest root of the polynomial (3.31).

4.2.2.1 DCC when Q∩A and Q∩ B are bounded

We focus here on the DCC that are derived from the first and second cases of Theorem

3.2. In this case we may assume that Q is an ellipsoid and thus we can use the results on

Section 3.2.3. Recall that P = I, p = 0, ρ = −1, ‖a‖ = 1, and that the polynomial in the

numerator of (3.19) is

f(τ) = τ2 (α− β)2

4
+ τ(1− αβ) + 1.
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Given the convex cones Q+(τ̄1), Q−(τ̄1), Q+(τ̄2), and Q−(τ̄2), we need a criteria to

identify which cone gives the convex hull of E ∩ (A ∪ B). First, we decide between the

quadrics Q(τ̄1) and Q(τ̄1). For the proof of the following result we need to show that the

vertex x(τ̄2) is either in A or in B. This step is omitted here for the sake of readability,

and the details are presented in Lemma A.6 in Appendix A.

Lemma 4.4. The quadric Q(τ̄2) found at the larger root of f(τ) in the family {Q(τ) | τ ∈

R} of the first and second cases of Theorem 3.2 contains a cone that satisfies Definition

2.2.

Proof. From Theorem 3.1 we know that Q(τ̄2)∩A= = Q∩A= and Q(τ̄2)∩B= = Q∩B=.

Additionally, we have that Q(τ̄2) = Q+(τ̄2)∪Q−(τ̄2), where Q+(τ̄2), Q−(τ̄2) are two convex

cones with vertex x(τ̄2). From Lemma A.1 we know that the vertex x(τ̄2) is either in A

or in B. Thus, since the intersections Q(τ̄2) ∩ A= and Q(τ̄2) ∩ B= are bounded, then one

of the following two cases holds:

• Case 1: Q+(τ̄2) ∩ A= = E ∩ A= and Q+(τ̄2) ∩ B= = E ∩ B=;

• Case 2: Q−(τ̄2) ∩ A= = E ∩ A= and Q−(τ̄2) ∩ B= = E ∩ B=.

Consequently, we have that one of the cones Q+(τ̄2) and Q−(τ̄2) found at the root τ̄2

satisfy Proposition 2.1.

This result reduces the choices to the cones Q+(τ̄2) and Q−(τ̄2). We need to decide

now between the two cones using the sign of −W (τ̄2)>1 x(τ̄2). Thus, we choose Q+(τ̄2) if

−W (τ̄2)>1 x(τ̄2) > 0, and we choose Q−(τ̄2) when −W (τ̄2)>1 x(τ̄2) < 0. Finally, it follows

from Proposition 2.1 that the selected cone gives a DCC for Problem (4.1). Note that if

x(τ̄2) = 0, then the center of the ellipsoid Q coincides with the vertex of the selected cone.

In this case the feasible set is a single point. Thus, by identifying this unique solution, the

problem is solved. This completes the procedure.
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4.2.2.2 DCC when Q∩A and Q∩ B are unbounded

We focus here on the DCCs that are derived from the family {Q(τ) | τ ∈ R} associate

with the first cases of Theorems 3.3 and 3.4.

In the case of Theorem 3.3, we have from Section 3.2.5.5 that Q = {y ∈ Rn | ‖y2:n‖2 ≤

y2
1}. In this case we define Q+ = {y ∈ Rn | ‖y2:n‖ ≤ y1} and Q− = {y ∈ Rn | ‖y2:n‖ ≤

−y1}, then Q = Q+ ∪Q− and Q+ ∩Q− = 0. Also, note that Q+ and Q− are two second

order cones.

In the case of Theorem 3.4, we have from Section 3.2.5.6 that Q = {y ∈ Rn | ‖y2:n‖2 ≤

y2
1 − 1}. In this case, we define Q+ = {y ∈ Rn | y>y ≤ w, ‖(w, 1)‖ ≤ y1} and Q− = {y ∈

Rn | y>y ≤ w, ‖(w, 1)‖ ≤ −y1}, then Q = Q+ ∪ Q− and Q+ ∩ Q− = ∅. Also, note that

Q+ and Q− are two convex sets.

Since the result for cones and hyperboloids of two sheets is the same, we will useQ+ and

Q− without making any difference for which set it is defined. Whenever the specification

is needed, we make explicit whether the definition corresponds to a cone or a hyperboloid

of two sheets. We may assume w.l.o.g. that the feasible set F of (4.2) is contained in

the branch Q+. Here, we can use the results in Sections 3.2.5.5 and 3.2.5.6 about the

characterization of the shapes in the family {Q(τ) | τ ∈ R}. Recall that τ̄1 and τ̄2 denote

the roots of the function f(τ) in (3.31), and assume τ̄1 ≤ τ̄2. Hence, we need a criteria to

identify which cone Q+(τ̄1), Q−(τ̄1), Q+(τ̄2), and Q−(τ̄2), characterizes the convex hull of

E ∩ (A ∪ B). For the proof of the next result, we use some intermediate results that are

omitted here for the sake of readability. For the reader interested on the details of this

steps, they are presented in the appendix in Lemmas A.2, A.3, A.4, A.5.

Theorem 4.1. The quadric found at the smallest root of f(τ) in the family {Q(τ) | τ ∈ R}

of the first case of Theorems 3.3 and 3.4 contains a cone that satisfies Definition 2.2.

Proof. We divide the proof on two parts. First, we show that theorem is true for the first
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case of Theorem 3.3 when 0 ∈ Q ∩ (A ∪ B). Second, we show that the theorem is true

when Q is a hyperboloid of two sheets or Q is a cone and 0 /∈ Q ∩ (A ∪ B).

DCC when Q is a cone and the vector zero is an element of Q ∩ (A ∪ B):

This occurs when α and β have the same sign. Then, the smallest root of f(τ) in this

case is τ̄1 = 0. Hence, it is enough to show that Q+ = conv(Q+ ∩ (A ∪ B)) in this case.

First of all, since Q+ is a convex set, we have that conv(Q+ ∩ (A ∪ B)) ⊆ Q+. Thus,

to complete the proof of the first part we need to show that Q+ ⊆ conv(Q+ ∩ (A ∪ B)).

From Definition 1.7 of convex hull it is clear that Q+ ∩ (A ∪ B) ∈ conv(Q+ ∩ (A ∪ B)).

Now, let x̂ ∈ Q+ be such that x̂ /∈ A ∪ B. Then, we have that β ≤ a>x̂ = σ ≤ α.

Assume first that 0 ≤ β ≤ α, then the vector zero is contained in B. Since Q+ is a

cone, then γx̂ ∈ Q+ for γ ≥ 0. Now, we have that a>(γx̂) = γσ. Then, for γ1 = α
σ

we obtain a>(γ1x̂) = α, and for γ2 = β
σ we obtain a>(γ2x̂) = β. Now, consider the

convex combination λ(γ1x̂) + (1 − λ)(γ2x̂), 0 ≤ λ ≤ 1. For λ̂ = 1−γ2
γ1−γ2 we obtain that

0 ≤ λ̂ ≤ 1, and λ(γ1x̂) + (1− λ)(γ2x̂) = x̂. Since γ2x̂ ∈ Q+ ∩ B and γ1x̂ ∈ Q+ ∩ A, then

x̂ ∈ conv(Q+ ∩ (A∪B)). Now, if β ≤ α ≤ 0, it can be shown with a similar argument that

x̂ ∈ conv(Q+ ∩ (A∪B)). Hence Q+ ⊆ conv(Q+ ∩ (A∪B)), and it satisfies Definition 2.2,

i.e., it is a DCC for Q+ and the disjunctive set A ∪ B.

DCC when Q is a hyperboloid of two sheets or Q is a cone and the vector

zero is not an element of Q ∩ (A ∪ B): In this case we have from Lemma A.5 that

Q+ ∩ (A∪B) ∈ Q+(τ̄1) or Q+ ∩ (A∪B) ∈ Q−(τ̄1). Assume w.l.o.g. that Q+ ∩ (A∪B) ⊆

Q+(τ̄1). Since Q+(τ̄1) is a convex set we have that conv(Q+ ∩ (A ∪ B)) ⊆ (Q+ ∩Q+(τ̄1).

To complete the proof we need to show that Q+ ∩ Q+(τ̄) ⊆ conv((A ∪ B) ∩ Q+).

For this purpose, we need to show first that Q+ ∩ A= = Q+(τ̄1) ∩ A= and Q+ ∩ B= =

Q+(τ̄1) ∩ B=. Observe that Q+ ∩ A= ⊆ Q+(τ̄1), then Q+ ∩ A= ⊆ Q+(τ̄1) ∩ A=. Thus,

it is enough to show that Q+(τ̄1) ∩ A= ⊆ Q+ ∩ A=. Let u ∈ Q+ ∩ A=. Recall that

Q∩ (A= ∪B=) = Q(τ̄1)∩ (A= ∪B=), hence if Q+(τ̄1)∩A= 6⊆ Q+ ∩A=, then there exist a
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vector v ∈ Q−∩A=∩Q+(τ̄1). We know that Q+∩Q− = 0 if Q is a cone, and Q+∩Q− = ∅

if Q is a hyperboloid of two sheets. Even more, in this case if Q is a cone, we know that

0 /∈ Q ∩ A=. Hence, from Theorem 1.5 there exist a hyperplane H = {x ∈ R` | h>x = η}

separating Q+ and Q−, such that 0 ∈ H. Then, there exist a 0 ≤ λ ≤ 1 such that

λu + (1 − λ)v ∈ Q+(τ̄1) ∩ A= and h>(λu + (1 − λ)v) = η, i.e., (λu + (1 − λ)v) /∈ Q.

This contradicts Q ∩ (A= ∪ B=) = Q(τ̄1) ∩ (A= ∪ B=). Hence, Q+(τ̄1) ∩ A= ⊆ Q+ ∩ A=.

Similarly, we can show that Q+ ∩ B= = Q−(τ̄1) ∩ B=.

Now, for any x ∈ Q+∩(A∪B), we have that x ∈ Q+∩Q+(τ̄) and x ∈ conv(Q+∩(A∪B)).

Next, we need to consider a vector x̃ ∈ Rn such that x̃ ∈ Q+(τ̄) ∩ Q+ ∩ Ā ∩ B̄, where

Ā and B̄ are the complements of A and B respectively. From Lemma A.2 we have that

x(τ̄1) ∈ A or x(τ̄1) ∈ B. Assume w.l.o.g. that x(τ̄1) ∈ B. Since Q+(τ̄) is a translated

cone, then {x ∈ Rn | x = x(τ̄1) + θ(x̃ − x(τ̄1)), θ ≥ 0} ⊆ Q+(τ̄). Thus, there exist a

scalar 0 < θ1 < 1 such that a>(x(τ̄1) + θ1(x − x(τ̄1))) = β and a scalar 1 < θ2 such that

a>(x(τ̄1) + θ2(x− x(τ̄1))) = α. Let λ = (1− θ1)/(θ2− θ1), then x̃ = (1−λ)(x(τ̄1) + θ1(x−

x(τ̄1)))+λ(x(τ̄1)+θ2(x−x(τ̄1))). Therefore, x̃ ∈ conv((A∪B)∩Q+). The same conclusion

is found if we assume that x(τ̄1) ∈ A. This proves that Q+∩Q+(τ̄1) ⊆ conv((A∪B)∩Q+).

Henceforth, the cone Q+(τ̄1) is a DCC for Q+ and the disjunctive set A ∪ B. Finally, if

Q+ ∩ (A ∪ B) ⊆ Q−(τ̄1), then we can use a similar argument to prove that Q−(τ̄1) is a

DCC for Q+ and the disjunctive set A ∪ B.

Now we define a criteria to identify which branch of Q(τ̄1) in Theorem 4.1 defines a

DCC. First, consider the case when the feasible set of 4.2 is contained in Q+. Then, if

W (τ̂)>1 e1 ≥ 0, then the conic cut is given by Q+(τ̂1). On the other hand, if W (τ̂)>1 e1 ≤ 0,

then the conic cut is given by Q−(τ̂). Second, consider the case when the feasible set of

(4.2) is contained in Q−. Then, if −W (τ̂)>1 e1 ≥ 0, then the conic cut is given by Q+(τ̂).

On the other hand, if −W (τ̂)>1 e1 ≤ 0, then the conic cut is given by Q−(τ̂).
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4.3 Building a disjunctive conic cut for nonparallel disjunc-

tions

Some of the results in Section 4.2 can be extended to general disjunctions A ∪ B. In this

case, we have that A = {x ∈ Rn | a>x ≥ α} and B = {x ∈ Rn | b>x ≤ β}, and there

is no κ ∈ R such that b = κa. However, we assume that Q is in a family of quadrics

{Q(τ) | τ ∈ R} that contains an ellipsoid. From Corollary 3.1 we know that it is possible

to apply the results of the analysis presented in Section 3.3 in this case. This assumption

implies that both Q ∩ A= and Q ∩ B= are bounded. These type of disjunctions are

illustrated in Figure 4.6(a) for Problem (4.13) using A = {x ∈ R4 | 0.45x3 + 0.89x4 ≥ 0}

and B = {x ∈ R4 | x4 ≤ −1} to define A ∪ B.

We want to characterize the set conv(Q∩ (A∪B)). For this purpose, we use the results

of the geometrical analysis of Section 3.3 to derive DCCs from the cases in Theorem 3.7.

Additionally, using the general results in Chapter 2, we show that one of the quadrics Q(τ̄)

in the family {Q(τ) | τ ∈ R} satisfies the condition Q∩Q(τ̄) = conv(Q∩(A∪B)). Observe

that given Assumption 2.1, the third case in Theorem 3.7 cannot occur. Hence, this case is

not considered for building a cut for general disjunctions. To simplify the algebra, we may

assume w.l.o.g. that the quadric Q has been transformed using the affine transformations

described on Section 3.1. Additionally, we may assume w.l.o.g. that ‖a‖ = 1 and ‖b‖ = 1.

We separate the analysis in two cases. In Section 4.3.1 we study the cylinder case, and in

Section 4.3.2 and the cone case.

4.3.1 Cylinders

We start with the verification that the fourth and fifth cases in Theorem 3.7 allow the

derivation of DCyCs for Problem (4.1). Recall that the classification given in Theorem 3.7

is derived using the roots of the numerator and denominator in (3.46). Let τ̄1 and τ̄2 be
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(c) The cone yielding conv(Q∩ (A ∪ B)).

Figure 4.6: Convex hull of the intersection between a non-parallel disjunction and an
ellipsoid.

the roots of the numerator, and τ̂2 or τ̂1 be the roots of the denominator. In the fourth

and fifth cases in Theorem 3.7, the cylinder is found at one of the quadrics Q(τ̂1) or Q(τ̂2).

The cylinder can be identified by comparing τ̂2 or τ̂1 with the roots τ̄1 and τ̄2 using the

criteria described in Theorem 3.7. Let τ̂ be a value such that Q(τ̂) is a cylinder. From

Lemma 3.8, we know that P (τ̂) is a positive semi-definite matrix. From equation (1.3), it

is easy to verify that Q(τ̂) is a convex set. Consequently, from Proposition 2.2, we obtain

that Q(τ̂) ∩ Q = Q ∩ (A ∪ B). Finally, note that the cylinder Q(τ̂) can be represented

in terms of a second order cone, see for example Ben-Tal and Nemirovski [2001a]. This
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shows that Q(τ̂) is a DDc.

4.3.2 Cones

We focus now on the cones described in the first and fourth cases of Theorem 3.7. Let

τ̄i 6= τ̂1, τ̂2, i = 1, 2. In these two cases, Q(τ̄i) is a symmetric and non-singular matrix with

exactly one negative eigenvalue. This is a similar situation as the first and third cases

of Theorem 3.2. From the analysis in Section 4.2 follows that Q(τ̄i) = Q(τ̄i)
+ ∪ Q(τ̄i)

−,

where Q(τ̄i)
+,Q(τ̄i)

− are the second order cones (4.17) and (4.18). Observe that x(τ̄i) =

−Q(τ̄i)q(τ̄i) is the vertex of Q(τ̄i)
+ and Q(τ̄i)

−. Then, using Lemma 2.3, we can verify

if there is a cone in Q(τ̄i)
+,Q(τ̄i)

−, i = 1, 2, that satisfies Proposition 2.1. In particular,

we need to prove that there is one x(τ̄i), i = 1, 2, that is either in A or B. This step is

omitted here for the sake of readability. The interested reader can find the details of this

step in Lemma A.6 in Appendix A.

Lemma 4.5. In the first and fourth cases of Theorem 3.7, the cone Q(τ̄2) contains a cone

that satisfies Definition 2.2.

Proof. From Theorem 3.6 we know that Q(τ̄2)∩A= = Q∩A= and Q(τ̄2)∩B= = Q∩B=.

Additionally, we have that Q(τ̄2) = Q+(τ̄2)∪Q−(τ̄2), where Q+(τ̄2), Q−(τ̄2) are two convex

cones with their vertices at x(τ̄2). From Lemma A.6 we know that the vertex x(τ̄2) is either

in A or B. Thus, since the intersections Q(τ̄2) ∩ A= and Q(τ̄2) ∩ B= are bounded, then

one of the following two cases is true:

• Case 1: Q+(τ̄2) ∩ A= = E ∩ A= and Q+(τ̄2) ∩ B= = E ∩ B=.

• Case 2: Q−(τ̄2) ∩ A= = E ∩ A= and Q−(τ̄2) ∩ B= = E ∩ B=.

Consequently, we have that one of the cones Q+(τ̄2), Q−(τ̄2) found at the root τ̄2 satisfies

Proposition 2.1.
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Now we can define a procedure to identify a conic cut. We need to identify which

of the cones Q(τ̄2)+,Q(τ̄2)− gives the conic cut. For this purpose we use the sign of

W (τ̄2)>1 (−Q−1q − x(τ̄2)). Hence, we choose Q(τ̄2)+ if W (τ̄2)>1 (−Q−1q − x(τ̄2)) > 0, and

we choose Q(τ̄2)− when W (τ̄2)>1 (−Q−1q − x(τ̄2)) < 0. This completes the procedure.

4.4 Disjunctive conic cut vs Nonlinear conic mixed-integer

rounding inequality

Atamtürk and Narayanan Atamtürk and Narayanan [2010] present a procedure for gen-

erating a nonlinear conic mixed-integer rounding inequality. Since this is a conic cut, we

examine how it compares to the DCC introduced here. For this purpose, let us consider

the following example

minimize: −x1 −x2

subject to:

∥∥∥∥∥∥∥
x1 − 4

3

x2 − 1

∥∥∥∥∥∥∥ ≤ 4
3 −

x1
2 −

x2
2

x1 ∈ Z, x2 ∈ R

(4.19)

First, notice that the example in (4.19) is in the form used in Atamtürk and Narayanan

[2010], which is different from the one in (MISOCO). The main difference is the way we

write the conic constraint. Despite this difference we can still construct a DCC, because

the feasible region of this problem is an ellipsoid in the (x1, x2) space.

Using a branch and bound procedure one can easily solve the integer problem in (4.19),

and get that the optimal solution is (x∗1, x
∗
2) = (1, 1) with the optimal cost of −2.

We can rewrite problem (4.19) in the following form:
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minimize: −x1 −x2

subject to: x1 +x2 +2x3 = 8
3√

(x1 − 4
3)2 + (x2 − 1)2 ≤ x3

x1 ∈ Z, x2, x3 ∈ R.

(4.20)

Figure 4.7 presents the feasible region of this equivalent problem.

Figure 4.7: Feasible region of the sample problem (4.19).

Relaxing the integrality constraint, the resulting relaxation from problem (4.20) can

be solved analytically using calculus. First, notice that this relaxation is just a problem of

maximizing a linear function over an ellipsoid. In particular, we can rewrite the relaxation

of problem (4.20) as

minimize: −x1 − x2

subject to: 3
4x

2
1 + 3

4x
2
2 − 1

2x1x2 − 4
3x1 − 2

3x2 + 1 ≤ 0

x, x2 ∈ R.

(4.21)

The feasible set of this problem in terms of the variables x1, x2 is presented in Figure

4.8. The feasible set is an ellipsoid, the optimal objective function value is −2.471,

and the relaxed optimal solution for the example in problem (4.19) is (x∗1, x
∗
2, x
∗
3) =

(1.402, 1.069, 0.098).
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Figure 4.8: Optimal solution of the sample problem (4.19).

The problem reformulation (4.20) presents a case similar to the one studied in Example

1 in Atamtürk and Narayanan [2010], which shows how to obtain a nonlinear conic mixed-

integer rounding inequality for the set

T0 =

{
(x1, x2, x3) ∈ Z× R× R :

√
(x1 −

4

3
)2 + (x2 − 1)2 ≤ x3

}
, (4.22)

which relates closely to the last constraint in (4.20). In general, the procedure discussed

by Atamtürk and Narayanan Atamtürk and Narayanan [2010] focuses on generating the

convex hull for each polyhedral second-order conic constraint in the problem. Then, by

adding those new cuts, the original formulation is tightened. In particular, applying that

procedure to the set in (4.22) they obtain the cut

√(x1

3

)2
+ (x2 − 1)2 ≤ x3, (4.23)

which is a valid cut for the problem in (4.20).

Analyzing the relaxed solution showed in Figure 4.8, we can see that the solution is not

feasible for the integer problem. First, observe that if we use the disjunction x1 ≤ 1∨x1 ≥ 2
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it is not possible to apply the DCC here, because the line x = 2 does not intersect the

set of feasible solutions that is an ellipsoid, violating one of the assumptions in Chapter 2.

However, we can still use the nonlinear conic mixed-integer rounding inequality procedure.

Figure 4.9 shows the result of applying the nonlinear conic cut (4.22) to the problem in

(4.20). The point (x∗1, x
∗
2, x
∗
3) = (1, 1, 1/3) is the new optimal solution for the continuous

relaxation of the resulting problem with the cut added, which turns out to be optimal for

the integer problem. The optimal objective value is −2.

0.8 1 1.2 1.4 1.6 1.8 2
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

x

y

x ≥ 2x ≤ 1 Optimal
Solution

Relaxed Optimal
Solution

Nonlinear
conic MIR cut

Feasible
Region

Figure 4.9: Nonlinear conic mixed-integer rounding inequality.

Now, let us modify the first constraint in (4.20) as follows

x1 + x2 + 2x3 =
14

3
.

Figure 4.10 shows the new feasible region. With this modification the relaxed optimal

solution is (x∗1, x
∗
2, x
∗
3, ) = (1.81, 1.48, 0.68), which is not feasible for the integer problem.
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Now, for this example, we can use the disjunction x1 ≤ 1∨ x1 ≥ 2 and obtain a DCC that

can be represented in the (x1, x2) space as follows:

√
(x2 − 0.33x1 + 0.22)2 ≤ 2.67− 0.93x1. (4.24)

Observe that the nonlinear conic mixed-integer rounding inequality (4.23) stays the same,

since we have not modified the conic constraint. Figure 4.10 shows these two cuts and

highlights the difference between applying the nonlinear conic mixed-integer rounding

inequality and our DCC to the modified problem. As expected, the DCC gives the convex

hull of the intersection between the disjunction x1 ≤ 1 ∨ x1 ≥ 2 and the feasible set

of problem (4.20). This is not the case for the nonlinear conic mixed-integer rounding

inequality (4.23). The new optimal solution for the relaxed problem when either of the

cuts is applied is (x∗1, x
∗
2, x
∗
3) = (2.0, 1.25, 0.71). In particular, we can see that any of the

cuts is enough to find the optimal solution. The optimal value for the objective function

is −3.25.

Finally, we perform an additional test modifying the first constraint in (4.20) as follows:

x1 + x2 + 2x3 = 8.

In this case we use the disjunction x1 ≤ 2 ∨ x1 ≥ 3. Then, we can obtain a DCC that can

be represented in the (x1, x2) space as follows:

√
(x2 − 0.33x1 + 1.33)2 ≤ 6.04− 1.21x1.

For this example the nonlinear conic mixed-integer rounding inequality (4.23) fails to

eliminate the continuous optimal solution of the relaxed problem, as illustrated in Figure

4.11. Thus, there is no gain in adding this cut to the problem. However, the DCC is
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Figure 4.10: The DCC and the nonlinear conic mixed-integer rounding inequality cutting
off the relaxed optimal solution.

violated by the current fractional solution, and the addition of the DCC is enough to find

the integer solution of the problem.
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optimal solution of the relaxed problem.
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Chapter 5

Implementation

In this chapter we discuss the implementation of the DCCs in a branch and cut framework.

The implementation presented here was developed in C++ using the CHiPPS framework

Xu et al. [2009, 2005]. We begin in Section 5.1 describing the branch-and-cut algorithm.

Then, in Section 5.2 we present how the procedure to generate conic cuts can be applied

when a MISOCO problem has multiple cones. Finally, in Section 5.3 we give a brief

description of the elements of our implementation.

5.1 Branch-and-cut Algorithm

In this section we describe the branch-and-cut algorithm that is used in our implementation

to solve MISOCO problems. This algorithm is based in the BB algorithm 1 described in

Section 1.1.4, the modified algorithm is presented in 2. Branch-and-cut algorithms are

widely and successfully used for solving MILO problems Balas [1979], Cornuéjols [2008],

Xpress, GUROBI [2013], CPLEX [2011], Mitchell [2002], MOSEK [2011], Nemhauser and

Wolsey [1999], Ralphs et al. [2011], Schrijver [1986], and currently some commercial solvers

used it to solve MISOCO problems as well GUROBI [2013], CPLEX [2011], MOSEK [2011].

From the description of the BB algorithm in Section 1.1.4, we can observe that the speed
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Algorithm 2 Branch-and-Cut

Data: M =
{
Π0
}

, ζ∗ = ∞, the index set of integer variables J , and the maximum
number of rounds for adding DCCs maxrounds.
while M 6= ∅ do

Select an active problem Πa from M, which has a feasible set Fa
M←M\Πa

addcuts ← true
rounds ← 0
branch ← true
while addcuts = true and rounds ≤ maxrounds do

Solve the continuous relaxation Πr of Πa

if Πr is feasible then . (prune by infeasibility)
ζr ← optimal objective value of Πr

xr ← optimal solution of Πr

if ζr ≤ ζ∗ then . (prune by value dominance)
if xr ∈ Fa then . (prune by integrality)

ζ∗ ← ζr, . (update upper bound)
x∗ ← xr, . (update incumbent)
branch ← false

else if addcuts then
Search for DCCs that are violated by xr,
if any found add them to Πr, else addcuts ← false

end if
else

branch ← false
end if

else
branch ← false

end if
rounds ← rounds + 1

end while
if branch then

Select a branching variable xj /∈ Z, j ∈ J
M←

{
M,min

{
c>x | x ∈ Fa, xj ≥ dxje

}
,min

{
c>x | x ∈ Fa, xj ≤ bxjc

}}
end if

end while
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and success of a BB algorithm relies on three aspects:

• early detection of infeasible nodes;

• early findings of integer solutions that enable the fathoming of the search tree

branches;

• improvement of the lower bounds.

In MILO, the use of pre-processing and heuristics plays a crucial role in speeding up

the solution time in a mixed integer solver Fischetti et al. [2005], Mahajan [2010], Martin

[2001], Savelsbergh [1994]. Pre-processing helps to simplify the mathematical formulation

of the problem as well as to verify its correctness and detect infeasibility. Heuristics help

in the early detection of integer solutions, which allow to early fathom branches of the

tree. The detection of an integer solution may improve the upper bound in the algorithm,

which helps the early detection of sub-optimal solutions in the search tree. Although these

are crucial elements in the development of an effective implementation of a branch-and-cut

algorithm, these are not the focus of our experiments.

The last aspect mentioned in our list is the improvement of the lower bound during the

execution of a branch-and-cut algorithm. A common technique used to achieve improve-

ments in the lower bound is the addition of linear cuts and nonlinear cuts Drewes [2009],

Xpress, GUROBI [2013], Grossmann [2002], CPLEX [2011], MOSEK [2011], Ralphs et al.

[2011]. In MILO, this has shown to be an effective and successful technology used in the

solution of large scale problems. A sharp lower bound is crucial for a quick termination of

the algorithm. On one hand, observe that in Algorithm 2, at each node, the improvement

of its lower bound can lead to the early pruning of a tree branch by objective value dom-

inance. Additionally, it is possible that the addition of valid cuts may result in finding

an integer solution, which enables the early pruning of a tree branch by integrality. Our

goal in this section is to investigate the effect of DCCs in the tree search and solution time
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when used in a branch and cut algorithm.

Finally, it is well-know in the literature from empirical experience that the performance

of Algorithm 2 is affected by three critical decisions. First, in Section 5.1.1 we discuss the

selection of the branching variable. This decides which new problems will be added to

the set M. Second, in Section 5.1.2 we discuss the criteria for selecting the seed to create

a DCC. This will affect the effectiveness of the cuts on the relaxed problem during the

evaluation of each node. Third, in Section 5.1.3 we discuss the selection rules for next

node to be explored.

5.1.1 Strategies for branching

On of the algorithmic choices in Algorithm 5.1 is associate with the selection of the disjunc-

tive set that would be used to do the partition process. This defines the branching step.

This selection is govern by the branching rules in a BB-based algorithm, which have been

extensively studied for MILO and for some mixed integer nonlinear optimization problems,

see, e.g., for example Bonami et al. [2011], Martin [2001], Drewes [2009], Achterberg et al.

[2005]. Based on previous work, we choose to implement three rules. Two of them, trong

branching and Reliability Branching, have been shown to work well in general Bonami

et al. [2011], Achterberg et al. [2005]. We implement the most fractional rule too, which

is a simple rule to keep a base for comparison.

Most fractional : Although it is a naive approach, given its simplicity, this strategy

has been always considered as an option in computational testing Bonami et al. [2011],

Gupta and Ravindra [1985], Drewes [2009]. The results in Bonami et al. [2011] for this

strategy show that in principle it is not a good strategy, although it outperforms a random

branching strategy. We will consider this strategy in the tests as a base measure.

Strong branching Bonami et al. [2011]: This rule usually shows the best performance in

terms of the number of nodes explored, see for example Bonami et al. [2011], Achterberg
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et al. [2005], for the cases of MILO and convex mixed integer nonlinear problems. Let x∗

be an optimal relaxed solution and ζ∗ its optimal objective value. Then, in each node the

rule perform the following procedure. First, identify the index set J of all the fractional

variables in the relaxed solution. Then, it computes the relaxations for the two child node

relaxations of all the fractional variables and assign the relaxed objective function values

to ζ+
j and ζ−j , j ∈ J . Using ζ+

j , ζ−j , and a parameter 0 ≤ γ ≤ 1 it assigns a score ξj to

each fractional variable computed as follows

ξj := (1− γ) min(ζ−j − ζ
∗, ζ+

j − ζ
∗) + γmax(ζ−j − ζ

∗, ζ+
j − ζ

∗).

Finally, it chooses a variable with maximal branching score ξj as the branching variable.

The main concern with this rule is that it requires to solve a large number of problems

before making the choice. For this reason, this rule usually do not come first in solution

time.

Reliability Branching Bonami et al. [2011]: The key of this procedure is to avoid

solving to many problems to make a branching decision. Then, for each variable xj , it

keeps estimates Ψ−j and Ψ+
j of the potential change per unit in the objective functions if we

add the inequality xj ≤ bxjc and dxje ≤ xj , respectively. For each direction the estimate

is computed as the average of the gain over all the objective per unit change in variable

j in all the problems in which it has been used for branching. Using this estimates, the

predicted objective function values are computed as

ζ−j = ζ∗ + Ψ−j (x∗j − bxjc) and ζ+
j = ζ∗ + Ψ+

j (dxje − x∗j ).

These values are used for computing the branching score ξj . The problem with the es-

timates Ψ−j and Ψ+
j is that they cannot be computed at the beginning of the tree. In

order to initialize the estimates and improve their veracity strong branching is executed
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a fixed number of times k. This rule is reported in Bonami et al. [2011] to outperforms

strong branching in solution time while keeping a good improvement in the number of

nodes explored.

One of the major issues with these strategies is related to the solver choice. The tests

in Bonami et al. [2011] show that using a Non-Linear Optimization Solver can reduce the

number of nodes required for solving the problem. However, it will be more expensive in

terms of cpu time.

In this case, we will use IPM to solve the second order cones problems at each node.

We note that the lack of effective warm-start methods for IPM may affect the perfor-

mance of the algorithm. Specially during using branching. One of the goals with this

experimentation is to observe how this characteristic of IPMs affects the solution strategy

for MISOCO problems.

5.1.2 Strategies for selecting the seed to formulate a DCC cut

In general, we will have more than one cone in the formulation of the problem to solve.

In this case, we need to find the cones for which the relaxed solution is in the boundary.

This is necessary because adding a DCC based on a cone that is not active will not cut

off the relaxed solution. Once the cones have been identified, the next decision to make

is which violated disjunction to use. Here, we only consider disjunctions of the form

xi ≤ bxic
∨
xi ≥ dxie. Then, for each cone we can potentially have more than one violated

disjunction. In our implementation we use the fractional part f0 = x− bxic of a variable

as a measure of the strength for the candidate cuts. Then, we choose the most fractional

variable, i.e., the variable in each cone with a value closest to 0.5.
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5.1.3 Strategies for selecting the next node to explore

In addition to the choice of the branching variable, we need to provide criteria to decide

what node to process. In our implementation, we provide following rules for this decision:

• Best first chooses the node with the best objective function.

• Depth first chooses the node furthest away from the root node of the search tree.

The first rule aim to chose the node that will improve the lower bound the most. In

other words, best first search focus on ensuring that no solution better than the current one

exists. However, it requires a lot of memory, since the list of unprocessed nodes can grow

quite fast. The second one has the advantage that it requires less memory. Additionally,

the experience with MILO has shown that an integer solution is more likely to be found

deep in the tree. However, the lower bound usually does not improve significantly while

exhausting one branch of the tree. This can affect the termination of the algorithm.

Hence this rule can result in very large search trees. For more on node selection rules see

Linderoth and Savelsbergh [1999], Nemhauser and Wolsey [1999], Ralphs [2006].

5.2 Multiple cones in the MISOCO

In the disjunctive conic cut theory and in the procedure presented in Chapters 3 and 4, we

assume that the problems had a single second order. This is not the general case; thus it

is necessary to explore how to extend this procedure to include problems with more than

one cone.
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Recall the MISOCO problem

minimize: cTx (5.1)

subject to: Ax = b (MISOCO) (5.2)

x ∈ K (5.3)

x ∈ Zd × Rn−d, (5.4)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm, x =
(
(x1)>, (x2)>, . . . , (xk)>

)>
, Lni = {xi|xi1 ≥

‖xi2:ni
‖} are Lorentz cones, K = Ln1

1 ×· · ·×L
nk
k , and the rows of A are linearly independent.

We propose a reformulation of the problem using the null space of the matrix A. The

objective is to build blocks of variables that can be separated for using the cones in the

model independently. Then, let Hn×(m−n) be a matrix with its columns being orthogonal

and forming a basis for the null space of A. We can rewrite the MISOCO problems in

term of H as follows,

minimize: c>x̂+ c>Hw

subject to: x = x̂+Hw

x ∈ K

x ∈ Zd × Rn−d

w ∈ Rm−n,

where Ax̂ = b. In this reformulation we can brake H and x̂ using the blocks of variables
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in x =
(
(x1)>, (x2)>, . . . , (xk)>

)>
as follows

minimize: c>x̂+ c>Hw

subject to: xi = x̂i +H iw, i = 1, . . . , k

xi ∈ Lni , i = 1, . . . , k

x ∈ Zd × Rn−d

w ∈ Rm−n,

where H i is the set of rows in H corresponding to the block of variables xi. Similarly, x̂i

is the block of x̂ corresponding to the block of variables xi. If the integer constraints are

relaxed, we get the relaxed problem formulation

minimize: c>x̂+ c>Hw

s.t: w>(H i)>JH iw + 2(x̂i)>JH iw + (x̂i)>Jx̂i ≤ 0 ∀ i = 1, . . . k (5.5)

w>(H i
1:)
> + x̂i1 ≥ 0 ∀ i = 1, . . . k

w ∈ Rm−n,

where (H i
1:)
> is the first row of matrix H i, and x̂i1 is the first component of vector x̂i.

Then, we could potentially use each of the k quadrics in the first set of constraints of (5.5)

to build disjunctive conic cuts.
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We illustrate the procedure with the following example

minimize: 3x1 +x2 +2x3 +x4 +x7 +x8

subject to: 9x1 +x2 +x3 +x4 +x5 = 10

x1 +9x5 +x6 +x7 +x8 = 10

x1 +x3 +x5 +x8 = 2

x1 +x2 +x5 +x6 +x7 = 1

+x2 x5 +x6 +3x8 = 1

(x1, x2, x3, x4) ∈ L4

(x5, x6, x7, x8) ∈ L4

x2, x6 ∈ Z.

If we solve the relaxation of this problem, we get the solution

x∗soco = (1.22,−0.88,−0.34,−0.77, 0.10, 0.51,−0.85, 0.12),

with an optimal objective value of ζ∗soco = 0.72. This solution is not feasible since x2, and
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x6 are fractional. We can rewrite this problem in the w space as follows:

minimize: 0.72 + 0>w

subject to: 0.15w1 + 0.04w2 + 0.07w3 + 1.06 ≥ 0

−0.04w1 − 0.07w2 − 0.09w3 + 1.0596 ≥ 0

w>


0.93 −0.13 −0.01

−0.13 0.18 0.23

−0.01 0.23 0.52

w + 2


−0.09

0.14

0.17


>

w − 0.91 ≤ 0

w>


0.02 0.12 −0.01

0.12 0.80 −0.25

−0.01 −0.25 0.45

w + 2


0.01

−0.09

−0.13


>

w − 0.76 ≤ 0

(w1, w2, w3) ∈ R3.

The feasible region of the problem in the w space is shown in Figure 5.1.
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Figure 5.1: Feasible set of problem in the w space.

Then, since x2 and x6 are in two different cones, we could get a disjunctive conic cut

from each of the variables. For x2, we use the disjunction {x ∈ R8|x2 ≥ 0}∪ {x ∈ R8|x2 ≤
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−1} and for x6 we use the disjunction {x ∈ R8|x6 ≥ 1} ∪ {x ∈ R8|x6 ≤ 0}. With the

reformulation in the null space of A we can take each cone independently to build the cuts.

In this example we have that for the two cones, the intersection is an ellipsoid. Then it

is easy to verify that all the assumptions in Chapter 2 are satisfied. We can follow the

procedure in Chapter 4 to construct the DCCs for each ellipsoid. These cuts are illustrated

in Figure 5.2.

(a) (b)

Figure 5.2: Adding cuts in the presence of multiple cones.

5.3 Computational Framework

Here, we briefly describe the implementation of the branch-and-cut algorithm with dis-

junctive conic cuts, which is used for our experiments. For this implementation, we used

the COIN-OR High Performance Parallel Search Framework (CHiPPS) framework. In

particular, we extended the Branch, Constrain, and Price Software (BiCePS) for our im-

plementation. This library is the data-handling layer needed in addition to the Abstract

Library for Parallel Search (ALPS) to support relaxation-based branch-and-bound algo-
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rithms. The ALPS library provides the fundamental classes that can be extended to

implement the algorithmic components required to specify a tree search. The interested

reader interested in a detailed description of the frameworks can see Xu et al. [2009, 2005].

Our implementation is built based on the BiCePS Linear Integer Solver (BLIS) and

uses most of its features. We kept the BLIS knowledge management structures given

in the classes BlisConstraint, BlisVariable, BlisSolution, and BlisNodeDesc with

some minor modifications. The modifications were needed to include the link between

variables and constrains with the second order cones present in a MISOCO problem. This

modifications are included in IclopsConstraint, IclopsVariable, IclopsSolution, and

IclopsNodeDesc. On the other hand, we use the branching methods provided by BLIS:

strong branching, reliability branching, and most fractional branching.

For the knowledge structures of BLIS given in the classes BlisModel and BlisTreeNode

we made substantial changes. Additionally, we added some extra components for the

derivation of conic cuts and the interaction with the conic solver. We describe briefly our

major modifications and enhancements in the following sections.

5.3.1 Class IclopsModel

This class provides all the data structures needed to describes a MISOCO model. It is based

on the class BlisModel with some modifications. First, it includes some extra structure to

handle the second order cones in the model description. Additionally, we added some extra

methods to manage all the possible status of the interior point method solver. Finally, we

redesigned the method needed for the initialization of the cut generators. In the BLIS case,

these are designed for the COIN-OR Cut Generator Library, while in our implementation.

these are adjusted to use our conic cut generator.
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5.3.2 Class IclopsTreenode

This class includes the data structures and the methods needed to store and evaluate each

node in the tree. The major difference with BlisTreeNode is contained in the method

used to do the bounding and decide the branching of each node. Essentially, this method

implements the inner while cycle and the branching part in Algorithm 2. Here we replace

the section in BlisTreeNode that adds linear cuts with a new section based on our conic

cuts generation tools. Additionally, we eliminated the call to heuristics that where present

there.

5.3.3 Class IclopsSolver

This class is an interface of our branch-and-cut implementation with the conic solver. It

provides a shell listing all the methods that are essential for our implementation to interact

with the solver. Particularly, how to call the solves to solve the continuous relaxation of the

MISOCO problem, and the query the status of the solution and the problem. Additionally,

we need to be able to handle all the modifications in the problem performed in each node.

Specifically, the changes in the bounds of some variables and the addition of the conic cuts.

In our current development, we have implemented this interface to interact with MOSEK

for processing the relaxation in each node.

5.3.4 Class IclopsConicCutGenerator

This class provides the data structure to store a quadric associated with the MISOCO

problem that can be used to executed the procedure described in Chapter 4. In this

description we store the triplet (P, p, ρ) that describes the quadric, where P ∈ R` × `,

p ∈ R` and ρ is a scalar. Additionally, we identify the classification of the quadric. This

facilitates the identification of which of the procedures presented in Section 4.2 should be

applied to create the cut.
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There are two options for the creation of these objects. In the first, place the user

can specify a cone and a subset of the linear constrains in the MISOCO problem. In

this case, the quadric is constructed using the procedure described in Section 4.1. This

method considers the fact that in general a MISOCO problem may have multiple cones in

its formulation. For that reason the implementation is designed to build the quadrics for

each cone using the procedure described in Section 5.2. On the other hand, some times

it is easy to formulate the quadric in terms of the original variables, as is the case in the

example used in Section 4.2. For that reason, in this class we implemented the option to

create a conic cut generator using the explicit description of the quadric provided by the

user.

5.3.5 Class IclopsConicCut

This class provides the methods to build DCCs, and the structures to store them. Note

that we can generate several cuts starting from the same quadric. For that reason, this class

does not store information about the quadric, which avoid storing duplicate information.

Instead, this objects points to one of the conic cut generators initialized and stored with

the model. Using this information, based on the classification of the quadric of the conic

cut generator, we apply here one of the methods described in Section 4.2. Finally, in this

class we provide a method to add the resulting conic constraint to the model.

5.3.6 Input format

Currently, our implementation admits MISOCO problems in the extended mps format of

MOSEK, which allows the modeling of second order cones. Additionally, the user must

provide an additional input file describing the parameters to be used in the generation of

the conic cuts. In this file the user must provide in the same order the following set of

parameters:
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• numConicCutGenerators: Defines the number of conic cut generators to be created.

• MaxPoolSize: Defines the maximum size of the pool of cuts to be available at any

time during the exploration of the tree.

• MaxNumCuts: Defines the maximum number of cuts to add to the problem when

processing a node.

• MaxCutRounds: Limits the number of cut generation rounds that can be executed

when processing a node.

• BoundaryDistance: Limits how far from the boundary of a cone a solution can be

to be considered good to define a DCC.

• CutsParams: This is an array that defines the parameters of the cone. The first

component of the array defines the number of rows to be used in the creation of the

cut. The second parameters is the index of a variable that belongs to the cone used

in the creation of the cut. The last parameter is 1 if the cut is created using a primal

form, i.e., using the procedure in Section 5.2. On the other hand, it is −1 if the

cut is created using a dual form, or providing the description of the quadric in the

original variables.

• CutsRows: A list of the rows of the matrix A that is used in the creation of the cut.

5.4 Implementation considerations

We close this chapter with some comments about several consideration that are needed in

the implementation of the DCC for solving MISOCO problems.
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5.4.1 Building the quadrics to derive DCCs

One of the challenges in the implementation of the DCCs is the construction of the quadrics

needed to derive them. In our implementation, we rely on the knowledge of the user about

the structure of the problem. In particular, in our input format, we require the user to

identify the cone and the set of constraints that will be used for the derivation of the

DCCs. However, it is not necessary true that this knowledge is available to the user. For

that reason, it is sill necessary to develop procedures that can be run in a pre-processing

phase that identifies the quadrics needed for deriving DCCs. Ideally, this should be as

transparent to the user as it is in MILO solvers.

Assuming that the quadrics are available, there is still an additional consideration. It

is important to identify whether the quadric is classified as a cone or as a cylinder. In

these cases, there is a limitation in the possibility of generating tight cuts for the problem.

First, if the quadric is a cone, we can create tight cuts only if the disjunctive set A∪B does

not contain the vertex of the cone. It is shown in the first case of the proof of Theorem

4.1 that if the vertex of the cone is in A∪B, then the DCC is the original cone. A similar

situation is faced when the quadric is a cylinder. In this case, we can only use disjunctive

sets, where the normal vector a defining the hyperplanes A= and B= is orthogonal to

the direction of the cylinder. It that is not the case, again then the DCC is the original

cylinder.

Finally, recall that an important goal associated with adding a cut in a branch an

bound algorithm is to improve the lower bound of the problem. This can be achieve if

the DCC successfully excludes a solution x∗ that is not feasible for the integer problem.

If we use an Interior Point Method solver it is possible to get an optimal solution x∗ of

the relaxed problem in the relative interior of the optimal set. This is also reported in

Bonami et al. [2011], Drewes [2009]. In this case it is not possible to generate a cut that

separates the relaxed solution, thus it is better to branch. However, if this is not verified it
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is still possible to generate a DCC that is not tight for x∗. To avoid this we use a tolerance

parameter ε ≥ 0. Then, given a quadric Q = {x ∈ Rn | x>Qx+ 2q>x+ ρ ≤ 0}, the goal is

to check how tight is Q for the solution x∗. Thus, if (x∗)>Qx∗ + 2q>x∗ + ρ ≤ ε, then we

use Q to generate a cut, otherwise we branch or choose another quadric in the problem.

By default this parameter is set to 10e− 8, but it may be defined by the user in the input

file with the value BoundaryDistance.

5.4.2 Managing the addition of DCCs

Consider the following extreme case, illustrated by the problem

min c>x

s.t.: d>x = δ

‖x2:n‖ ≤ x1,

(5.6)

where d ∈ Rn, δ ∈ Rm, c ∈ Rn, and recall that x2:n are the vector with the components

2, . . . , n of x. We illustrate the effect on the problem size when adding a DCC with this

problem. For convenience, we do all the operation in the original variables space. The

feasible set F of Problem (5.6) can be rewritten as F = {x ∈ Rn | x1 =
d>2:nx2:n

d1
, x1 ≥

0, x>2:nQx2:n + 2qx2:n + ρ ≤ 0}, where

Q = I − 1

d2
1

d2:nd
>
2:n, q =

δ

d2
1

d2:n, ρ = −
(
δ

d1

)2

.

Now if we use the disjunction x2 ≤ σ and x2 ≥ σ+1, we know from Section 4.2 in Chapter 4

that ∃τ̄ ∈ R for which the quadric Q(τ̄) = {x>2:n ∈ Rn−1 | x>2:nQ(τ̄)x2:n+2q(τ̄)x2:n+ρ(τ̄) ≤

0} allows us to derive a DCC for the Problem (5.6), where

Q(τ̄) = Q+ τ̄ e1e
>
1 , q(τ̄) = q − τ̄ 2σ + 1

2
e1, ρ(τ̄) = ρ+ τ̄(σ2 + σ).

151



CHAPTER 5. IMPLEMENTATION

In our implementation, we represent the DCC as a second order cone. For the sake of

this example, let us assume that Q(τ̄) is non-singular and ID1. Now, consider its eigenvalue

decomposition Q(τ̄) = V DV >, and assume that the DCC derived from Q(τ̄) is

Q(τ̄)+ =
{
x>2:n ∈ Rn−1

∣∣∣ ∥∥∥V >2:n

(
x>2:n +Q(τ̄)−1q(τ̄)

)∥∥∥ ≤ V >1 (x>2:n +Q(τ̄)−1q(τ̄)
)}

.

If we add this cut in Problem (5.6) we obtain

min c>x

s.t.: d>x = δ

V >x>2:n − w = V >Q(τ̄)−1q(τ̄))

‖x2:n‖ ≤ x1

‖w2:`‖ ≤ w1,

where ` = n − 1 and w ∈ R`. Hence, the addition of the DCC implies in this case the

addition of n−1 new variables and constraints. Now, typically we have a set of constraints

Ax = b, where A ∈ Rm×n, b ∈ Rm, n ≤ m, and rank(A) = m. Then, from Section 4.1

we know that dimension of the DCC in this case is ` = n − m, and this will imply the

addition of ` new variables and constraints.

Although this is a challenge, this is a problem that has to be faced in general when

cuts are used in a branch-and-cut algorithm. For managing this increase, we currently

have a cut manager that limits the number of cuts that can be added to the problem. This

number can be defined in the input file using the parameter MaxNumCuts. Additionally to

this limit, we keep a measures of the “age” of the cuts, and they are deactivated after they

reach certain age. We use the concept of age described in Martin [2001]. The age of the

cuts is set to zero when the cut is created. Then, before using the cut in a node we verify

that it is indeed violated. Every time the cut is not tight we increase the age of the cut
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by one in the current branch. Once the cut reaches certain age limit, it is deactivated in

that branch.

Finally, to control the use of memory to store cuts, every time a cut is created it is

placed in a pool of cuts. Then, in each node of the tree we use the cuts that were used

in its parent. If these cuts do not exceed the number of cuts allowed, we then generate

additional cuts in that node. Each node owns the cuts created when it is being evaluated.

Then, those cuts are eliminated when the node is pruned.

5.4.3 Numerical challenges when building DCCs

During the derivation of a DCC we need to decide if the result is a cylinder or a cone.

For the implementation of this decision we use a tolerance parameter ε > 0. Then, given

the computed τ̄ defining the DCC Q(τ̄), we compare it with the value of τ̂ , in which case

we classify the DCC as a cylinder. This help us to avoid the computation of eigenvalues

for the classification of the DCC. Then if |τ̄ − τ̂ | < ε we classify the DCC as a cylinder.

On the other hand, if |τ̄ − τ̂ | > ε104, then we classify the DCC as a cone. Now, consider

the case where ε < |τ̄ − τ̂ | < ε104. In this case the DCC can be a narrow cone if the

intersections A= ∩Q and B= ∩Q are bounded. On the other hand, it can be a wide cone

if the intersections A= ∩ Q and B= ∩ Q are unbounded. In this case, we have observe

that the addition of DCC can lead to numerical problems with the continuous solver. This

can be explained by the fact that in this cases, there may be a big difference between the

eigenvalue close to zero and the rest of the eigenvalues. Currently, in our implementation

we discard this case as candidate for DCCs. This has helped to avoid problems with the

continuous solver, but the definition of the rejection tolerances is still the subject of more

analysis.
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Computational experiments

In this chapter we describe the test sets that were used for performing some preliminary

experimentation with the DCCs presented in Chapter 4 for parallel disjunctions. This

test sets are also described in Çay et al. [2013]. With each test set we performed some

computational experiments, and here we present and analyze the main findings. These

experiments are provided in the spirit of a proof of concept, and more extensive experi-

mentation is needed before we can draw any strong conclusion about the performance of

the DCCs and DCyCs.

6.1 Random problems

The first set used during the experimentation consists of randomly generated problems.

This sets were generated so that the problems are feasible and bounded. The main char-

acteristics of these problems are:

• The cuts can be derived from quadrics that are ellipsoids.

• The problems in this set all have multiple cones.
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• The set of variables is divided into integer and continuous, but all the cones in the

set have integer variables.

• The integrality constraint defines general integer variables.

Finally, we have the following naming convention for this problem set: R#.C#.Con#.Int#,

where the first component gives the number of rows, the second gives the total number

of columns, the third gives the number of cones, and the fourth one gives the number of

integer variables.

6.1.1 Experiments with randomly generated MISOCO problems

In this case, we have collected 30 problems, which are listed in Appendix B. We present

here two different computational experiments. First, we use two different branching rules,

combined with different criteria to select the seed to create the DCCs. Second, using the

branching pseudo cost branching rule we test two different criteria to select the seed to

create the DCCs.

6.1.1.1 Experiments with branching rules

In this experiments we tested our 30 problems using two branching rules: reliable branching

and strong branching. With each rule we ran three experiments. First we solve the

problems with pure branch and bound. Second, we solve the problems using the most

fractional criteria for selecting the seed to create the DCCs. Finally, we solve the problems

using the pseudo costs for selecting the seed to create the DCCs. In each of these two last

experiments we added tree DCCs at the root node, and then one DCC is added every 10

nodes with a limit of 10 DCCs in total.

The results for the experiments using pseudo costs branching are listed in Appendix

B.1.1. This results are summarized in performance profiles as follows. In Figure 6.1, we
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Figure 6.1: Performance profile for pseudo cost branching using the size of the tree as
performance measure.

have the performance profile using pseudo cost branching and using the size of the search

tree as a performance measure. In this profile we compare the size of the final search tree

of pure branch and bound with the size of the final tree for branch and cut using two rules

to select the seed to create a DCC: most fractional and the pseudo cost. In Figure 6.2,

we use the solution time as a performance measure. In this case we compare the solution

time of pure branch and bound with the solution time for branch and cut using two rules

to select the seed of the DCC: most fractional and the pseudo cost.

The results for the experiments using strong branching are listed in Appendix B.1.2.

These results are summarized in performance profiles as follows. In Figure 6.3 we have

the performance profile using strong branching and using the size of the search tree as a

performance measure. In this profile we compare the size of the final search tree of pure

branch and bound with the size of the final tree for branch and cut using two rules to

select the seed to derive a DCC: most fractional and the pseudo cost. In Figure 6.4 we use

the solution time as a performance measure. In this case we compare the solution time of
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Figure 6.2: Performance profile for pseudo cost branching using the solution time as per-
formance measure.

pure branch and bound with the solution time for branch and cut using two rules to select

the seed of the DCC: most fractional and pseudo cost.

6.1.1.2 Experiments with cut manager

In this experiments we tested our 30 problems using pseudo costs branching and our

implementation of a cut manager. We ran three experiments. First we solve the problems

with pure branch and bound. Second, we solve the problems using the most fractional

criteria for selecting the seed to create the DCCs. Finally, we solve the problems using

the pseudo costs for selecting the seed to create the DCCs. In each of these two last

experiments we created one DCC in every node for each cone as long as a limit of 15

DCCs is not reached. In this experiments we set the limit age for a DCC to be 10.

The results for the experiments are listed in Appendix B.2. These results are sum-

marized in performance profiles as follows. In Figure 6.5 we have the performance profile

using the size of the search tree as performance measure. In this profile we compare the
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Figure 6.3: Performance profile for strong branching using the size of the tree as perfor-
mance measure.
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Figure 6.4: Performance profile for strong branching using the solution time as performance
measure.
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Figure 6.5: Performance profile with cut manager using the size of the tree as performance
measure.

size of the final search tree of a pure branch and bound with the size of the final tree for

a branch and cut using two rules to select the seed of the DCC: most fractional and the

pseudo cost. In Figure 6.6 we use the solution time as performance measure. In this case

we compare the solution time of a pure branch and bound with the solution time for a

branch and cut using two rules to select the seed of the DCC: most fractional and the

pseudo cost.

6.1.1.3 Main findings

The main conclusion from these experiments is that the use of DCCs help to decrease the

size of the tree significantly. This conclusion can be drawn from the results presented in

the profiles in Figures 6.1, 6.3, and 6.5. In each of these cases we can see that the addition

of cuts helped the branch and cut to outperform pure branch and bound when the tree
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Figure 6.6: Performance profile for strong branching using the solution time as performance
measure.
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size is use as the performance measure. Additionally, we can see from these results that

the criteria for selecting the disjunction affects the performance of branch and cut using

DCCs. More specifically, the most fractional rule seems to perform better than using the

pseudo cost to select the DCCs seed. Finally, from Figure 6.5 we can see that the usage of

the cut manager helped to improve the performance of the branch and cut using the most

fractional criteria to select the DCCs seed.

On the other hand, it is clear from the results in Figures 6.2, 6.4, and 6.6, that the use

of DCCs may affect the solution time significantly. The reason behind this behavior is that

the addition of DCCs to the problem may increase the solution time of the relaxations

in each node significantly. This is one of the reasons why the number of DCCs added at

each node has to be limited. However, in Figure 6.6 we can see that the usage of the cut

manager helped to improve the performance of the branch and cut when using the most

fractional criteria to select the DCCs seed. This improvement is explain by the significant

reduction in the tree size in many of the problems in this case. For example, in problem

R17.C30.Cones3.Int18 in Appendix B.2 we finished with a tree less than a quarter the size

of the tree of pure branch and bound. Another example is problem R27.C50.Cones5.Int40,

where we obtained a final tree that is almost halt the size of the tree of pure branch and

bound. This is important to notice because the solution time for the relaxations still

increases with the addition of cuts in this case.

Finally, in the addition of the DCCs, we have to consider the numerical difficulties that

arise when adding too many DCCs. For example, after certain number of cuts the solver

may complain about constraints that are close to be linearly dependent, this forces us to

limit the number of DCCs to add. In general, the generation of DCCs faces numerical

issues similar to the ones seen when adding disjunctive cuts in MILO Cook et al. [2009],

Cornuéjols et al. [2012], Margot [2009]. We still need to do a more extensive research in

this difficulties in order to tune our implementation and improve the effectiveness of the
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DCCs.

6.2 Problems from public libraries

The second source we have considered is public test set libraries of problems which have

convex quadratic problems. Currently, we have a small set of problems taken from the open

source MINLP project source MINLP Project. These are Constrained Layout (CLay) prob-

lems, which were presented in Bonami et al. [2008]. The main characteristic of these prob-

lems is the presence of convex quadratic constraints that are three dimensional paraboloids.

For example, one of the constraints in problem CLay0304M is

(x1 − 17.50)2 + (x5 − 7.00)2 + 6814b33 ≤ 6850. (6.1)

This constraint is illustrated in Figure 6.7(a).

An important observation in this constraint is that b33 is a binary variable. Hence, we

can create a DCC for this variable using the disjunction b33 ≤ 0, b33 ≥ 1, which is shown

in Figure 6.7(b). The DCC in this case is derived using the result in Lemma 4.4. The

resulting DCC for (6.1) is given by

√
(x1 − 15.50)2 + (x5 − 7.00)2 ≤ 82.77− 76.76b33, (6.2)

which is illustrated in Figure 6.7(c). Finally, the intersection between the quadric defined

by the quadratic constraint (6.1) and the DCC defined by (6.2) is shown in Figure 6.7(d),

where 0 ≤ b33 ≤ 1. Note that since b33 is binary, in this case the DCC (6.2) dominates the

constrain (6.1), hence we can replace it with the DCC to obtain a leaner formulation of the

problem. Thus, for these problems DCCs may be use to tighten the problem formulation

in the preprocessing phase.
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(a) CLay Quadratic Constraint. (b) Disjunction b33 ≤ 0, b33 ≥ 1.

(c) Resulting DCC for the CLay constraint. (d) Feasible set using the DCC formulation.

Figure 6.7: Preprocessing the CLay problems by DCCs.

6.2.1 Experiments with CLay problems

In our experiments, we replace all the quadratic constraints with the corresponding DCCs

before solving the problem. Additionally, note that once this is done, we have exhausted

all the DCCs that can be derived for this problem. For that reason, our goal in this case
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is to compare the original formulation with the formulation that is the result of using the

DCCs.

Table 6.1 presents some of the main characteristics of the CLay problems. There we

show how many variables are in the problem and how many of those variables are binary.

Additionally, we give the number of constraints present in the problem, and how many of

those constraints a quadratic constraints in the form (6.1).

0203M 0204M 0205M 0303M 0304M 0305M

Var 31 52 81 34 57 86
Binary 18 21 50 21 36 55

Constraints 55 91 136 67 107 156
Quad 24 32 40 36 48 60

Table 6.1: Description of the CLay problems

Using CPLEX 12.4 we solved the original problems and also the preprocessed problems

where all the quadratic constraints are replaced by the DCCs. The results are shown in

Tables 6.2 and 6.3, and the comparison is shown in Table 6.4.

0203M 0204M 0205M 0303M 0304M 0305M

Time 0.84 1.12 2.03 1.001 2.02 4.04
Nodes 167 738 8212 453 2549 11188
Iter 1677 3601 47125 6483 23560 65174
Obj 41572.98 6545.00 8092.5 26668.75 40261.08 8092.5

Table 6.2: Results for the original formulation when solved by CPLEX 12.4.

0203M 0204M 0205M 0303M 0304M 0305M

Time 0.44 0.41 1.56 0.467 1.19 1.80
Nodes 165 656 6244 481 1336 8957
Iter 1285 3302 37118 3190 11336 62290
Obj 41565.61 6545.00 8092.5 26662.49 40241.57 8092.5

Table 6.3: Results for the DCC formulation when solved by CPLEX 12.4.

We repeated the previous experiment with MOSEK 6.0. The results are shown in

Tables 6.5 and 6.6, and the comparison is shown in Table 6.7.
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0203M 0204M 0205M 0303M 0304M 0305M

Time 48% 63% 23% 53% 41% 55%
Nodes 1% 11% 24% -6% 47% 20%
Iter 23% 8% 21% 51% 52% 4%

Table 6.4: Comparison of the original and the DCC formulation when solved by CPLEX
12.4.

0203M 0204M 0205M 0303M 0304M 0305M

Time 3.06 16.91 339.40 7.15 101.98 621.41
Nodes 484 1974 25400 868 8467 38184
Iter 6981 28450 377914 12674 130714 570935
Obj 41573.26 6545.00 8092.5 26669.10 40262.38 8092.50

Table 6.5: Results for the original formulation when solved by MOSEK 6.0.

0203M 0204M 0205M 0303M 0304M 0305M

Time 2.29 15.10 207.90 5.84 76.74 487.46
Nodes 400 2194 20528 838 7013 32875
Iter 5272 27714 271433 10944 104978 455239
Obj 41565.75 6545.00 8092.50 26652.50 40241.57 8092.50

Table 6.6: Results for the DCC formulation when solved by MOSEK 6.0.

0203M 0204M 0205M 0303M 0304M 0305M

Time 25% 11% 39% 18% 25% 22%
Nodes 17% -11% 19% 3% 17% 14%
Iter 24% 3% 28% 14% 20% 20%

Table 6.7: Comparison of the original and DCC formulation when solved by MOSEK 6.0.

6.2.1.1 Main findings

We can see from Table 6.4 that the addition of the DCCs in all the problems resulted in

a reduction of the solution time when solved by 12.4. The average of this reduction is

47%. In general, we can observe a reduction in the search tree as well, except for problem

0304M. Hence, in this experiments it is apparent that the use of the DCCs helped to speed

up the solution process.

From table Table 6.7 we can see also a consistent result, i.e., the addition of the DCCs

in all the problems resulted in a reduction of the solution time when solved by MOSEK 6.0.
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The average of this reduction in this case is 23.3%. In general, we can observe a reduction

in the search tree as well, except for problem 0205M. Hence, from these experiments it is

apparent that the use of the DCCs helped to speed up the solution process significantly.
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Chapter 7

Conclusions and Future Research

In this thesis, we investigated the derivation of disjunctive conic cuts (DCCs) and Disjunc-

tive Cylindrical Cuts (DCyC) for MISOCO problems. This was achieved by extending the

ideas of disjunctive programming that have been applied successfully for obtaining linear

cuts for MILO problems. We introduced first the concept of DCCs and DCyCs, which

are an extension of the disjunctive cuts that have been well studied for MILO problems.

We were able to show under some mild assumptions that the intersection of this cuts with

a closed convex set is the convex hull of the intersection of the same set with a linear

disjunction. This property makes this cuts the tightest cuts possible for the last intersec-

tion. We have also provided the characterization of the family of quadrics having the same

intersection with two given hyperplanes. We show the existence of a cylinder or a cone in

that family in two cases:

• when the hyperplanes are parallel and there is a quadric in the family that is defined

by a matrix with at most one non-positive eigenvalue;

• when the hyperplanes are non-parallel and there a quadric in the family that is

defined by a positive definite matrix.
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The two aforementioned analysis are then put together to provide a procedure for the

derivation of DCCs and DCyCs separating a given point from the feasible set of a MIS-

OCO problem. Some preliminary experiments performed with our test sets have shown

encouraging results about the usage of the DCCs. However, these are still to limited to

draw any conclusive results about their performance.

Giving the encouraging results in our preliminary experiments, we believe that it would

be interesting to pursue a more extensive study about the performance of this cuts. Spe-

cially, considering the computational challenges that are mentioned in Chapter 5. Another

issue is related with the lack of warm starting and purification algorithms in interior point

methods based solvers. This two issues have shown to be a challenge during our experi-

ments. On one hand, the lack of warm start is reflected with the increase in the solution

time of the SOCO relaxations in each node of the search tree. On the other hand, the

lack of purification algorithms affected the performance of the algorithm depending on the

branching rule and the criteria for selecting the seed to derive the DCC cuts. Overall, we

believe that a more extensive experimentation would provide more insight to move towards

a practical use of DCCs and DCyCs for solving problems in real engineering applications.

An important effort in this direction is the construction of a MISOCO test set library with

different problem structures, and applications.

Finally, we think that another interesting research direction would be associated with

the extensions of the idea of DCCs and DCyCs to p-cone and positive-semidefinite opti-

mization. Given the generality of the result provided in Chapter 2, we believe is worth to

explore how to extend the ideas developed for the MISOCO problems to re realm of these

two problems.
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Appendix A

Additional lemmas for Chapter 4

Lemma A.1. In the first and second cases of Theorem 3.2 the vertex x(τ̄2) of the quadric

Q(τ̄2) is either in A or B.

Proof. Recall from Section 3.2.3 that the quadrics Q(τ̄1) and Q(τ̄1) in the family {Q(τ) |

τ ∈ R}, are computed using the roots of the function (3.20), which is

f(τ) = τ2 (α− β)2

4
+ τ(1− αβ) + 1.

The roots of f(τ) are

τ̄1 = 2

(
αβ − 1−

√
(1− α2)(1− β2)

(α− β)2

)
,

τ̄2 = 2

(
αβ − 1 +

√
(1− α2)(1− β2)

(α− β)2

)
,

where τ̄1 ≤ τ̄2. Note that if α = β, then f(τ) does not have two roots. In this case we

would have that A = B and is easy to verify that conv(Q∩ (A∪B)) = Q. However, recall

that our assumption is β 6= α. Hence, for the rest of this proof we assume that α 6= β.

The vertices of the cones Q(τ̄1) and Q(τ̄2) are x(τ̄i) = −P (τ̄i)
−1p(τ̄i), i = 1, 2. We can
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express x(τ̄i) in terms of a, α, and β as follows

x(τ̄i) = −P (τ̄i)
−1p(τ̄i) = −

(
I − τ̄i

(1 + τ̄i)
aa>

)(
−τ̄i

(α+ β)

2
a

)
= τ̄i

(α+ β)

2

(
1− τ̄i

(1 + τ̄i)

)
a

= τ̄i
(α+ β)

2(1 + τ̄i)
a.

Consider the inner product

a>x(τ̄i) = −a>P (τ̄i)
−1p(τ̄i) = τ̄i

(α+ β)

2(1 + τ̄i)
a>a = τ̄i

(α+ β)

2(1 + τ̄i)
.

Note that if α = −β then a>x(τ̄i) = 0. Recall from Section 3.2.3.2 that in that case Q(τ̄1)

is a cylinder, and its analysis is presented in Section 4.2.1. For that reason, we assume

that α 6= −β for the rest of this proof.

Next, we analyze where the vertices x(τ̄1) and x(τ̄2) are located with respect to the

half-spaces A and B. Recall from Section 4.2 the assumption that β ≤ α. First of all,

from Section 3.2 we know that τ̄1 ≤ τ̄2 < −1, |α| ≤ 1, and |β| ≤ 1. Now, we have that

1 + 1
τ̄i
> 0,

a>x(τ̄i) = τ̄i
(α+ β)

2(1 + τ̄i)
=

(α+ β)

2(1 + 1
τ̄i

)
,

and

lim
τ̄i→−∞

a>x(τ̄i) =
(α+ β)

2
.

To complete the proof we need to consider two cases:

• First assume that |β| < |α|, which implies that α > 0. Then, since α + β > 0 we

obtain that a>x(τ̄i) > 0 and

lim
τ̄i↗−1

a>x(τ̄i) =∞.
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Additionally, since (α+β)
2 > β we obtain that a>x(τ̄i) > β. Let us now evaluate when

a>x(τ̄i) ≥ α, then we have that

τ̄i
(α+ β)

2(1 + τ̄i)
≥ α⇒ τ̄i ≥

2α

(β − α)
.

On one hand, for τ̄1 we obtain that

τ̄1 = 2

(
αβ − 1−

√
(1− α2)(1− β2)

(α− β)2

)
≤ 2

(
αβ − 1

(α− β)2

)
≤ 2

(
αβ − α2

(α− β)2

)
=

2α

(β − α)
.

On the other hand, for τ̄2 we obtain that

τ̄2 = 2

(
αβ − 1 +

√
(1− α2)(1− β2)

(α− β)2

)
≥ 2

(
αβ − 1 +

√
(1− α2)2

(α− β)2

)

= 2

(
αβ − 1 + (1− α2)

(α− β)2

)
=

2α

(β − α)
.

Hence, if |β| < |α|, then x(τ̄1) /∈ A ∪ B and x(τ̄2) ∈ A.

• Second, assume that |α| < |β|, which implies that β < 0. Then, since α + β < 0 we

obtain that a>x(τ̄i) < 0 and

lim
τ̄i↗−1

a>x(τ̄i) = −∞.

Additionally, since (α+β)
2 < α we obtain that a>x(τ̄i) < α. Let us now evaluate when

a>x(τ̄i) ≤ β, then we have that

τ̄i
(α+ β)

2(1 + τ̄i)
≤ β ⇒ τ̄i ≥

2β

(α− β)
.
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For τ̄1 we obtain that

τ̄1 = 2

(
αβ − 1−

√
(1− α2)(1− β2)

(α− β)2

)
≤ 2

(
αβ − 1

(α− β)2

)
≤ 2

(
αβ − β2

(α− β)2

)
=

2β

(α− β)
.

On the other hand, for τ̄2 we obtain that

τ̄2 = 2

(
αβ − 1 +

√
(1− α2)(1− β2)

(α− β)2

)
≥ 2

(
αβ − 1 +

√
(1− β2)2

(α− β)2

)

= 2

(
αβ − 1 + (1− β2)

(α− β)2

)
=

2β

(α− β)
.

Hence, if |α| < |β|, then x(τ̄1) /∈ A ∪ B and x(τ̄2) ∈ B.

Lemma A.2. In the first cases of Theorems 3.3 and 3.4 the vertex x(τ̄1) of the quadric

Q(τ̄1) is either in A or B.

Proof. From Section 3.2.5.5 we have that

a>x(τ̄1) = τ̄1
(α+ β)(1− 2a2

1)

2(1 + τ̄1(1− 2a2
1))

.

Recall also that − 1
(1−2a21)

≤ τ̄1. Hence,

lim
τ̄i→∞

a>x(τ̄1) =
(α+ β)

2
.

On the other hand, we have

lim
τ̄i↘− 1

(1−2a21)

a>x(τ̄1) =


−∞ if α+ β > 0

+∞ if α+ β < 0.
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Thus, if α+ β > 0, then a>x(τ̄1) < α. Now, if a>x(τ̄1) ≤ β is true, then we obtain that

τ̄1
(α+ β)(1− 2a2

1)

2(1 + τ̄1(1− 2a2
1))
≤ β that implies τ̄1 ≤

2β

(α− β)(1− 2a2
1)
.

On the other hand, if α+ β < 0, then a>x(τ̄1) > β. Now, if a>x(τ̄1) ≥ α is true, then we

obtain that

τ̄1
(α+ β)(1− 2a2

1)

2(1 + τ̄1(1− 2a2
1))
≥ α that implies τ̄1 ≤

−2α

(α− β)(1− 2a2
1)
.

Recall that β < α. Then, α + β > 0 implies that α > 0 and α > |β|. Additionally,

α+ β < 0 implies that β < 0 and β < − |α|.

For the first case of Theorem 3.3 we need to consider two cases. On one hand if αβ ≥ 0,

then τ̄1 = 0. In this case if α+ β > 0, then 2β
(α−β)(1−2a21)

≥ 0, and x(τ̄1) ∈ B. Additionally,

if α + β < 0, then −2α
(α−β)(1−2a21)

≥ 0, and x(τ̄1) ∈ A. On the other hand, if αβ ≤ 0, then

τ̄1 = 4αβ
(1−2a21)(α−β)2

≤ 0. Hence, if α+ β > 0, then

4αβ

(1− 2a2
1)(α− β)2

=

(
2β

(1− 2a2
1)(α− β)

)(
2α

(α− β)

)
≤ 2β

(α− β)(1− 2a2
1)
,

and the vertex x(τ̄1) ∈ B. Additionally, if α+ β < 0, then

4αβ

(1− 2a2
1)(α− β)2

=

(
2α

(1− 2a2
1)(α− β)

)(
2β

(α− β)

)
≤ −2α

(α− β)(1− 2a2
1)
,

and the vertex x(τ̄1) ∈ A.
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For the first case of Theorem 3.4 recall that

τ̄1 =
2
(

1− 2a2
1 + αβ −

√
(1− 2a2

1 + αβ)2 + (1− 2a2
1)(α− β)2

)
(1− 2a2

1)(α− β)2

=
2
(

1− 2a2
1 + αβ −

√
(1− 2a2

1 + α2)(1− 2a2
1 + β2)

)
(1− 2a2

1)(α− β)2
.

Hence, if α+ β > 0, then

2
(

1− 2a2
1 + αβ −

√
(1− 2a2

1 + α2)(1− 2a2
1 + β2)

)
(1− 2a2

1)(α− β)2
≤

2
(
1− 2a2

1 + αβ − (1− 2a2
1 + β2)

)
(1− 2a2

1)(α− β)2

=
2
(
αβ − β2

)
(1− 2a2

1)(α− β)2

=
2β

(α− β)(1− 2a2
1)
,

and the vertex x(τ̄1) ∈ B. Additionally, if α+ β < 0, then

2
(

1− 2a2
1 + αβ −

√
(1− 2a2

1 + α2)(1− 2a2
1 + β2)

)
(1− 2a2

1)(α− β)2
≤

2
(
1− 2a2

1 + αβ − (1− 2a2
1 + α2)

)
(1− 2a2

1)(α− β)2

=
2
(
αβ − α2

)
(1− 2a2

1)(α− β)2

=
−2α

(α− β)(1− 2a2
1)
,

and the vertex x(τ̄1) ∈ A. This shows that x(τ̄1) is contained in one of the sets A or B.

Lemma A.3. In the first cases of Theorems 3.3 and 3.4 we have that Q∩(A∪B) ⊆ Q(τ̄1).

Proof. Recall that Q(τ1) = {x ∈ R` | x>P (τ̄1)x+2p(τ̄1)>x+ρ(τ̄1) ≤ 0}, then from Section

3.2.5.5 we have

x>P (τ̄)x+ 2p(τ̄)>x+ ρ(τ̄) = x>Jx+ τ̄1

(
(a>x)2 − αa>x− βa>x+ αβ

)
,
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and from Section 3.2.5.6 we have

x>P (τ̄)x+ 2p(τ̄)>x+ ρ(τ̄) = x>Jx+ 1 + τ̄1

(
(a>x)2 − αa>x− βa>x+ αβ

)
.

From (3.35) and (3.39) we know that τ̄1 ≤ 0 and for x̃ ∈ Q we have either x̃>Jx̃ ≤ 0

or x̃>Jx̃+ 1 ≤ 0. Now, observe that (a>x)2 − αa>x− βa>x+ αβ = (a>x− α)(a>x− β).

On one hand, if x̃ ∈ B ∩Q, then (a>x̃− α) ≤ 0 and (a>x̃− β) ≤ 0. On the other hand, if

x̃ ∈ A∩Q, then (a>x̃−α) ≥ 0 and (a>x̃−β) ≥ 0. Thus, if x̃ ∈ Q∩ (A∪B), we have that

(a>x̃)2 − α(a>x̃)− β(a>x̃) + αβ ≥ 0,

and we obtain that x̃>P (τ̄)x̃+2p(τ̄)>x̃+ρ(τ̄) ≤ 0 for x̃ ∈ Q+∩(A∪B). Thus, Q∩(A∪B) ⊆

Q(τ̄1).

Lemma A.4. In the first case of Theorems 3.3 and 3.4 we have that each of the subsets

Q+ ∩ A, Q+ ∩ B, Q− ∩ A, Q− ∩ B, is a subset of one of the branches Q+(τ1) or Q−(τ1).

Proof. First, we show that either Q+ ∩A ⊆ Q+(τ̄1) or Q+ ∩ A ⊆ Q−(τ̄1). We know from

the definition of the sets in Section 4.2.2 that Q+ ∩ A, Q+(τ̄1), Q−(τ̄1) are convex sets

and from Lemma A.3 we have that Q+ ∩ A ⊆ Q(τ̄1). Recall from Chapter 3 that Q(τ̄1)

is a cone, which vertex is denoted by x(τ̄1), and recall also that Q+(τ̄1) ∩Q−(τ̄1) = x(τ̄1).

Then, observe that if Q+∩A∩Q+(τ̄1) 6= ∅, and Q+∩A∩Q−(τ̄1) 6= ∅, then x(τ̄1) ∈ Q+∩A,

otherwise Q+ ∩ A 6⊆ Q(τ̄1). We have

x(τ̄1) = −P (τ̄1)−1p(τ̄1) = −
(
J − τ̄1

Jaa>J

1 + τ̄1(1− 2a2
1)

)(
−τ̄1

α+ β

2
a

)
= τ̄1

α+ β

2

(
1− τ̄1

(1− 2a2
1)

1 + τ̄1(1− 2a2
1)

)
Ja

= τ̄1
α+ β

2(1 + τ̄1(1− 2a2
1))

Ja.
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Then, we obtain that

x(τ̄1)>Jx(τ̄1) = τ̄2
1

(α+ β)2(1− 2a2
1)

4(1 + τ̄1(1− 2a2
1))2

≥ 0.

Now, if τ̄1 = 0, then Q(τ̄1) = Q, and it is clear that Q+ is a subset of Q+(τ̄1). On the

other hand, if τ̄1 6= 0, then x(τ̄1) /∈ Q. For that reason, x(τ̄1) /∈ Q+ ∩ A, and either

Q+ ∩A∩Q+(τ̄1) = ∅ or Q+ ∩A∩Q−(τ̄1) = ∅. Hence, Q+ ∩A must be a subset of either

Q+(τ̄1) or Q−(τ̄1). A similar argument can be build to show that each subset Q+ ∩ B,

Q− ∩ A, Q− ∩ B, must be a subset of either Q+(τ̄1) or Q−(τ̄1).

To complete the proof, note that if one of the sets Q+ ∩B, Q+ ∩B, Q− ∩A, or Q− ∩B

is empty, then the result is trivially true for that set.

Lemma A.5. In the first case of Theorems 3.3 and 3.4 if Q+ ∩ A 6= ∅ and Q+ ∩ B 6= ∅,

then we have either Q+ ∩ (A ∪ B) ⊆ Q+(τ̄1) or Q+ ∩ (A ∪ B) ⊆ Q−(τ̄1).

Proof. From Lemma A.4 we know that Q+ ∩ A and Q+ ∩ B are subsets of one of the

branches Q+(τ1) or Q−(τ1). Recall that Q+, Q−, Q+(τ1), and Q−(τ1) are convex sets.

Assume to the contrary that Q+ ∩ A ⊆ Q+(τ̄1) and Q+ ∩ B ⊆ Q−(τ̄1). We need

to consider two cases. First, if Q is a cone and 0 ∈ A ∪ B, then we know from Section

3.2.5.5 that τ̄1 = 0, i.e., Q = Q(τ̄1). Hence it is clear that Q+ ∩ (A ∪ B) ⊆ Q+(τ̄1), which

contradicts the assumption.

Second, if Q is a hyperboloid of two sheets, or Q is a cone and 0 /∈ A ∪ B, then from

the proof of Lemma A.4 we know that x(τ̄1) /∈ Q. Recall that Q+(τ̄1) ∩ Q−(τ̄1) = x(τ̄1).

Hence, from Theorem 1.5 we know that there exist a hyperplane H = {x ∈ R` | h>x = η}

separating Q+(τ̄1) and Q−(τ̄1), such that x(τ̄1) ∈ H. Given the assumption Q+ ∩ A ⊂

Q+(τ̄1) and Q+ ∩B ⊂ Q−(τ̄1), we have that H must separate Q+ ∩A and Q+ ∩B as well.

Hence, H must be parallel to A and B, and β ≤ η ≤ α. Now, if β < η < α, then we obtain

that x(τ̄1) /∈ A∪ B, which contradicts Lemma A.2. On the other hand, if η = α or η = β,
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we obtain that x(τ̄1) ∈ Q, which is also a contradiction. This proofs the lemma.

Lemma A.6. In the first and fourth cases of Theorem 3.7 the cone Q(τ̄2) has its vertex

x(τ̄2) exclusively in either A or B.

Proof. Recall from Section 3.3.2 that the quadrics Q(τ̄1) and Q(τ̄1) in the family {Q(τ) |

τ ∈ R} of Theorem 3.7, are computed using the roots of the function

f(τ) =
(

(αβ − a>b)2 − (1− α2)(1− β2)
)
τ2 + 4(a>b− αβ)τ + 4.

The roots of f(τ) are

τ̄1 = 2

(
αβ − a>b−

√
(1− α2)(1− β2)

(αβ − a>b)2 − (1− α2)(1− β2)

)
=

2

αβ − a>b+
√

(1− α2)(1− β2)
,

τ̄2 = 2

(
αβ − a>b+

√
(1− α2)(1− β2)

(αβ − a>b)2 − (1− α2)(1− β2)

)
=

2

αβ − a>b−
√

(1− α2)(1− β2)
,

where τ̄1 ≤ τ̄2.

The vertex of the cone Q(τ̄2) is x(τ̄2) = −P (τ̄2)−1p(τ̄2). We can express x(τ̄2) in terms

of a, b, α, and β as follows

x(τ̄2) = −P (τ̄2)−1p(τ̄2)

= −
(
I − (aa> + bb>)τ2

2 − (a>bτ2
2 + 2τ2)(ba> + ab>)

(1− (a>b)2)τ2
2 − 4a>bτ2 − 4

)(
−τ2

βa+ αb

2

)
=
τ2

((
(α− a>bβ)τ2 − 2β

)
a+

(
(β − a>bα)τ2 − 2α

)
b
)

(1− (a>b)2)τ2
2 − 4a>bτ2 − 4

.

Consider the inner products

a>x(τ̄2) =
τ2

(
(1− (a>b)2)ατ2 − 2(a>bα+ β)

)
(1− (a>b)2)τ2

2 − 4a>bτ2 − 4
,
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and

b>x(τ̄2) =
τ2

(
(1− (a>b)2)βτ2 − 2(a>bβ + α)

)
(1− (a>b)2)τ2

2 − 4a>bτ2 − 4
,

Next, we show that in the first and second cases of Theorem 3.7 the vertex x(τ̄2) cannot

be in the set Ā ∩ B̄. Assume to the contrary that x(τ̄2) ∈ Ā∩ B̄. Let τ̂1 ≤ 0 and 0 ≤ τ̂2 be

the roots of (1− (a>b)2)τ2 − 4a>bτ − 4. Now, since we are analyzing the first and second

cases of Theorem 3.7 we know that τ̂2 < τ̄1, or τ̄2 < τ̂1, or τ̄1 < τ̂1 < τ̂2 < τ̄2. Hence, since

1 − (a>b)2 ≥ 0 we have that (1 − (a>b)2)τ2
2 − 4a>bτ2 − 4 ≥ 0. Thus, if a>x(τ̄2) ≤ α and

b>x(τ̄2) ≥ β, then

(a>bα− β)τ2 ≤ −2α and (a>bβ − α)τ2 ≥ −2β. (A.1)

Substituting τ̄2 in (A.1) we obtain that α√
1−α2

= − β√
1−β2

, which implies that α = −β.

This is possible if τ̄2 = τ̂2, which is not in the cases being considered. Hence, in the first

and second cases of Theorem 3.7 x(τ̄2) cannot be in the set Ā ∩ B̄.

Similarly, we can show that in the first and second cases of Theorem 3.7 the vertex

x(τ̄2) cannot be in the set A ∩ B. Thus, if a>x(τ̄2) ≥ α and b>x(τ̄2) ≤ β, then

(a>bα− β)τ2 ≥ −2α and (a>bβ − α)τ2 ≤ −2β. (A.2)

Substituting τ̄2 in (A.2) we obtain that α√
1−α2

= − β√
1−β2

. This implies that τ̄2 = τ̂2,

which is not in the cases being considered. Hence, the vertex x(τ̄2) cannot be in the set

A ∩ B.

186



Appendix B

Tables of computational results for

Chapter 6

This appendix include the tables with the results of the experiments described in Chapter

6.

B.1 Experiments comparing branching rules

B.1.1 Pseudo-costs

Experiments using pseudo-costs branching rule and no cut manager.

Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R12.C15.Cones5.Int10

# of Nodes 69 69 69

CPU time (s) 0.08 0.09 0.08

R12.C15.Cones5.Int15

# of Nodes 27 27 27

CPU time (s) 0.04 0.04 0.05
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Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R14.C18.Cones3.Int12

# of Nodes 439 487 437

CPU time (s) 0.48 0.62 0.57

R14.C18.Cones3.Int15

# of Nodes 377 319 375

CPU time (s) 0.42 0.44 0.48

R14c18.Cones3.Int18

# of Nodes 193 165 193

CPU time (s) 0.22 0.24 0.24

R14.C18.Cones3.Int9

# of Nodes 3035 NaN 3039

CPU time (s) 2.84 NaN 3.35

R17.C20.Cones5.Int15

# of Nodes 35 35 35

CPU time (s) 0.06 0.05 0.04

R17.C20.Cones5.Int20

# of Nodes 35 35 35

CPU time (s) 0.06 0.06 0.08

R17.C30.Cones3.Int12

# of Nodes 85 83 81

CPU time (s) 0.13 0.16 0.20

R17.C30.Cones3.Int15

# of Nodes 845 845 1035

CPU time (s) 1.21 1.42 1.69

R17.C30.Cones3.Int18

# of Nodes 544859 544641 895759

CPU time (s) 6228.15 6921.47 20488.52

R17.C30.Cones3.Int21

# of Nodes 540405 540039 393405

CPU time (s) 4736.22 5282.25 2110.55

R17.C30.Cones3.Int24

# of Nodes 530541 513407 1115158

CPU time (s) 4500.23 4890.14 27000.65
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Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R17.C30.Cones3.Int27

# of Nodes 382885 411409 628865

CPU time (s) 2558.90 3142.05 7639.67

R22.C30.Cones10.Int20

# of Nodes 3687 3687 3687

CPU time (s) 4.18 4.23 4.56

R22.C40.Cones10.Int20

# of Nodes 77 75 75

CPU time (s) 0.14 0.18 0.16

R22.C40.Cones10.Int30

# of Nodes 5165 5795 5165

CPU time (s) 8.25 10.82 9.49

R22.C40.Cones10.Int40

# of Nodes NaN NaN NaN

CPU time (s) NaN NaN NaN

R23.C45.Cones3.Int21

# of Nodes 358 346 370

CPU time (s) 0.68 0.80 0.87

R23.C45.Cones3.Int24

# of Nodes 1121 1113 1115

CPU time (s) 1.99 2.44 2.42

R23.C45.Cones3.Int27

# of Nodes 646406 661936 656103

CPU time (s) 10837.79 13833.93 13681.17

R27.C50.Cones5.Int25

# of Nodes 959 949 1019

CPU time (s) 1.85 2.10 2.31

R27.C50.Cones5.Int30

# of Nodes 239844 247740 238856

CPU time (s) 1359.73 1867.03 1541.55

R27.C50.Cones5.Int35

# of Nodes 2226749 2227761 2186683

CPU time (s) 67741.79 85598.07 84121.83
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Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R27.C50.Cones5.Int40

# of Nodes 2795427 2793409 3021927

CPU time (s) 116732.87 129797.32 146040.20

R27.C50.Cones5.Int45

# of Nodes 2795427 2793091 3021925

CPU time (s) 125739.27 119388.25 160034.31

R27.C50.Cones5.Int50

# of Nodes 2795427 NaN 3021913

CPU time (s) 135873.60 NaN 145516.09

R32.C60.Cones15.Int30

# of Nodes 270 250 266

CPU time (s) 0.52 0.61 0.54

R32.C60.Cones15.Int45

# of Nodes 217115 216787 214887

CPU time (s) 893.78 936.39 1012.89

R52.C75.Cones5.Int60

# of Nodes 359195 418927 418865

CPU time (s) 2140.95 3179.29 3253.12
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B.1.2 Strong Branching

Experiments using pseudo-costs branching rule and no cut manager.

Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R12.C15.Cones5.Int10
# of Nodes 33 33 33

CPU time (s) 0.10 0.10 0.10

R12.C15.Cones5.Int15
# of Nodes 17 17 17

CPU time (s) 0.04 0.05 0.05

R14.C18.Cones3.Int12
# of Nodes 139 139 139

CPU time (s) 0.63 0.70 0.72

R14.C18.Cones3.Int15
# of Nodes 109 107 109

CPU time (s) 0.70 0.81 0.77

R14.C18.Cones3.Int18
# of Nodes 95 95 95

CPU time (s) 0.74 0.78 0.82

R14.C18.Cones3.Int9
# of Nodes 2217 2107 2247

CPU time (s) 5.00 5.46 6.05

R17.C20.Cones5.Int15
# of Nodes 37 37 37

CPU time (s) 0.10 0.10 0.12

R17.C20.Cones5.Int20
# of Nodes 35 35 35

CPU time (s) 0.10 0.10 0.10

R17.C30.Cones3.Int12
# of Nodes 32 32 32

CPU time (s) 0.46 0.50 0.54

R17.C30.Cones3.Int15
# of Nodes 536 504 516

CPU time (s) 6.97 7.66 7.85
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Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R17.C30.Cones3.Int18
# of Nodes 225983 227637 226117

CPU time (s) 2427.99 2652.17 2795.93

R17.C30.Cones3.Int21
# of Nodes 314773 314763 313707

CPU time (s) 4707.02 5463.58 5439.03

R17.C30.Cones3.Int24
# of Nodes 144123 113837 143985

CPU time (s) 1816.35 1764.01 2151.07

R17.C30.Cones3.Int27
# of Nodes 42109 42525 41515

CPU time (s) 578.36 670.54 671.66

R22.C30.Cones10.Int20
# of Nodes 1657 1657 1657

CPU time (s) 6.02 6.01 6.04

R22.C40.Cones10.Int20
# of Nodes 41 41 41

CPU time (s) 0.33 0.43 0.38

R22.C40.Cones10.Int30
# of Nodes 1659 1659 1659

CPU time (s) 20.24 22.40 22.90

R22.C40.Cones10.Int40
# of Nodes 1881 1881 1797

CPU time (s) 19.87 23.15 22.09

R23.C45.Cones3.Int21
# of Nodes 229 237 226

CPU time (s) 7.95 9.67 9.48

R23.C45.Cones3.Int24
# of Nodes 6154 5530 6042

CPU time (s) 209.59 217.01 247.99

R23.C45.Cones3.Int27
# of Nodes NaN NaN NaN

CPU time (s) NaN NaN NaN
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Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R27.C50.Cones5.Int25
# of Nodes 579 575 579

CPU time (s) 17.04 18.67 19.29

R27.C50.Cones5.Int30
# of Nodes 918268 1069228 918266

CPU time (s) 40554.40 61384.48 50489.82

R27.C50.Cones5.Int35
# of Nodes NaN NaN NaN

CPU time (s) NaN NaN NaN

R27.C50.Cones5.Int40
# of Nodes NaN NaN NaN

CPU time (s) NaN NaN NaN

R27.C50.Cones5.Int45
# of Nodes 4367595 NaN NaN

CPU time (s) 318614.20 NaN NaN

R27.C50.Cones5.Int50
# of Nodes 3796593 3492829 NaN

CPU time (s) 211121.87 205883.77 NaN

R32.C60.Cones15.Int30
# of Nodes 117 119 117

CPU time (s) 2.73 2.84 2.81

R32.C60.Cones15.Int45
# of Nodes 89307 NaN 94583

CPU time (s) 1445.38 NaN 1648.51

R52.C75.Cones5.Int60
# of Nodes NaN NaN NaN

CPU time (s) NaN NaN NaN
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B.2 Experiments using cut manager

In all experiments of this section we use the pseudo cost for branching rule an two different

rules to select the disjunction.

Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R12.C15.Cones5.Int10
# of Nodes 68 45 68

CPU time (s) 0.08 0.08 0.08

R12.C15.Cones5.Int15
# of Nodes 27 17 27

CPU time (s) 0.06 0.05 0.05

R14.C18.Cones3.Int12
# of Nodes 427 365 424

CPU time (s) 0.96 3.20 0.57

R14.C18.Cones3.Int15
# of Nodes 365 307 363

CPU time (s) 0.42 0.44 0.48

R14.C18.Cones3.Int18
# of Nodes 186 163 186

CPU time (s) 0.22 0.24 0.24

R14.C18.Cones3.Int9
# of Nodes 3031 2868 3035

CPU time (s) 7.48 12.21 3.35

R17.C20.Cones5.Int15
# of Nodes 34 34 34

CPU time (s) 0.06 0.05 0.04

R17.C20.Cones5.Int20
# of Nodes 34 34 34

CPU time (s) 0.06 0.06 0.08

R17.C30.Cones3.Int12
# of Nodes 58 44 51

CPU time (s) 0.13 0.16 0.20
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Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R17.C30.Cones3.Int15
# of Nodes 512 437 624

CPU time (s) 2.54 5.73 1.69

R17.C30.Cones3.Int18
# of Nodes 380651 43014 631544

CPU time (s) 6228.15 610.74 20488.52

R17.C30.Cones3.Int21
# of Nodes 431459 148625 365051

CPU time (s) 4736.22 3002.25 2110.55

R17.C30.Cones3.Int24
# of Nodes 447048 140184 841094

CPU time (s) 4500.23 1762.77 27000.65

R17.C30.Cones3.Int27
# of Nodes 293040 313762 524041

CPU time (s) 2558.90 3142.05 7639.67

R22.C30.Cones10.Int20
# of Nodes 3556 3556 3556

CPU time (s) 4.18 4.23 4.56

R22.C40.Cones10.Int20
# of Nodes 58 57 56

CPU time (s) 0.14 0.18 0.16

R22.C40.Cones10.Int30
# of Nodes 4713 5336 4713

CPU time (s) 8.25 10.82 9.49

R22.C40.Cones10.Int40
# of Nodes 22600 32874 NaN

CPU time (s) 91.06 331.39 NaN

R23.C45.Cones3.Int21
# of Nodes 184 178 190

CPU time (s) 0.68 0.80 0.87

R23.C45.Cones3.Int24
# of Nodes 770 764 776

CPU time (s) 1.99 2.44 2.42
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Selection of Disjunctive Conic Cut

Rows.Cols.Cones.IntV No cuts added Max Inf Pseudo Cost

R23.C45.Cones3.Int27
# of Nodes 393265 402801 399196

CPU time (s) 10837.79 13833.93 13681.17

R27.C50.Cones5.Int25
# of Nodes 494 488 521

CPU time (s) 1.85 2.10 2.31

R27.C50.Cones5.Int30
# of Nodes 153067 157791 153654

CPU time (s) 1359.73 1867.03 1541.55

R27.C50.Cones5.Int35
# of Nodes 1910190 1296983 1881604

CPU time (s) 67741.79 65263.15 84121.83

R27.C50.Cones5.Int40
# of Nodes 2400487 1277814 2607452

CPU time (s) 116732.87 62859.13 146040.20

R27.C50.Cones5.Int45
# of Nodes 2400487 2442754 2607451

CPU time (s) 125739.27 119388.25 160034.31

R27.C50.Cones5.Int50
# of Nodes 2400487 1462856 2607458

CPU time (s) 135873.60 81770.02 145516.09

R32.C60.Cones15.Int30
# of Nodes 213 182 209

CPU time (s) 0.52 0.61 0.54

R32.C60.Cones15.Int45
# of Nodes 184948 184642 183230

CPU time (s) 893.78 936.39 1012.89

R52.C75.Cones5.Int60
# of Nodes 328676 381938 381858

CPU time (s) 2140.95 3179.29 3253.12
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