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Abstract 

 Sound localization is a critically important task for many animals including 

humans.  Due to physical constraints acting on the circuits that process sound localization 

cues, many neural specializations have evolved.  One of the key features and the focus of 

this dissertation is inhibitory input.  To assess the impact of inhibition, I employ in vitro 

patch clamp techniques to observe cellular and synaptic physiology in brainstem circuits 

dedicated to sound localization processing. 

 Using a mammalian model, I test the impact that GABAB receptor (GABABR) 

activation has on the inputs to the medial superior olive (MSO), the first area where 

sound localization computations take place.  Activation of GABABRs modulates both 

excitatory and inhibitory inputs such that the magnitude of these inputs is decreased and 

the time course of inhibitory inputs is slowed.  The functional significance of this 

modulation was tested using a bilateral stimulation protocol, which simulates the 

coincidence of in vivo excitatory inputs.  Here, activation of GABABRs increased the 

sensitivity of MSO neurons to simulated interaural time disparity (ITD), the main cue for 

low frequency sound localization.  To expand on these results, a computational model 

was used to show that each GABAB dependent modulation had a beneficial impact on 

ITD sensitivity in the MSO. 

 In an avian system, I described the synaptic activity involving the superior olivary 

nucleus (SON), which provides the main inhibitory input in the avian sound localization 

circuit.  At the SON itself, synaptic transmission consists of both GABA- and glycinergic 

components where glycine release is the result of co-release with GABA.  I also show 

that functional glycine receptors localize at brainstem nuclei and that high frequency 
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stimulation results in the release glycine onto nucleus magnocellularis neurons, a feature 

of the avian brainstem that has not been observed previously. 

 In related experiments, I evaluate possible interactions that may occur when both 

GABA and glycine receptor systems are activated simultaneously.  Here, a pre-activation 

of GlyRs leads the a decrease in conductance through the GABAAR likely due to changes 

in Cl- ion concentrations which manipulate the driving force of the ion. 
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CHAPTER I 

Introduction to sound localization circuitry 
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 For many vertebrate species, sound localization is an integral task for survival and 

social communication.  Unlike the senses of touch and vision where the sensory surface 

is topographically organized such that neurons that respond to stimuli from a given 

location are next to each other, there is no place code on the sensory surface in hearing 

that correlates to the position of a sound in space.  Therefore, sound location must be 

computed in the brain.  This computation is performed by comparing sounds at the two 

ears.  The binaural cues that are available include differences in timing and intensity that 

are created when a sound originates from a place lateral to a listener’s midline.  These 

cues are often small which has led to the evolution of many specializations in the circuits 

that perform sound localization computations.  Inhibitory inputs play a key role in 

maintaining sensitivity to the cues used for sound localization over the broad range of 

auditory stimulus magnitudes experienced by listeners. 

 

Sound Localization Cues 

 Sound localization in the horizontal plane (azimuth) is localized using two main 

binaural cues mentioned above, the timing and intensity differences created by lateralized 

sounds.   These cues are used differentially across the range of sound frequencies.  High 

frequency sounds defined as wavelengths shorter than the width of a listener’s head will 

be attenuated as they travel around the head and therefore be louder in the ear closer to 

the sound source.  This cue is called interaural level difference (ILD).  For low frequency 

sounds, wavelengths are longer than the width of the head and will not be significantly 

attenuated.  However, a lateralized sound will impinge on the ear closer to the source  
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Figure 1.1:  Schematic representations of the generation of sound localization cues.  A.  
Interaural time disparity (ITD) is the difference in arrival time of a sound between the two 
ears.  This is the primary cue used for low frequency sound localization.  B.  Interaural level 
difference (ILD) is the difference in intensity of a sound at the two ears.  This results from a 
sound being attenuated as it travels around the head and is the primary cue used in the 
localization of high frequency sounds.  Modified from Grothe et al. 2010. 
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first, then moments later the other ear.  This difference in timing is the main cue used to 

localize low frequency sound and is called interaural time difference (ITD) (Fig 1.1).   

 These two cues vary systematically with the location of a sound source where 

there is no difference for a sound originating from directly in front of an individual and 

the maximum difference occurs at 90º lateral to a listener’s midline (Thompson 1882, 

Rayleigh 1907).  This study focuses on ITD processing in two animal models with good 

low frequency hearing; the gerbil, a mammal, and the chicken, an avian. 

 

Jeffress Model of Sound Localization    

 A model circuit for ITD discrimination was proposed in 1948 by Lloyd Jeffress 

(Jeffress 1948).  The model relies on three main features of the circuit: time-locked 

inputs, coincidence detectors, and a series of delay lines with varying input lengths to the 

coincidence detectors (Fig 1.2).  Since ITD is a timing cue, temporal features of sound 

stimuli must be preserved  (i.e. time-locked input).  Phase-locking is a response property 

of auditory neurons whereby they fix their spiking output to a certain phase of the 

stimulus waveform (Fig 1.2A).  “Coincidence detectors” are neurons that respond 

maximally when they receive input from both ears simultaneously.  These neurons are 

found in the medial superior olive (MSO) in mammals and the nucleus laminaris (NL) in 

birds and receive phase-locked excitatory input from both ears.  The “delay lines” refer to 

the anatomical arrangement of axons leading to the coincidence detector such that the 

combination of the conduction times down the axon and the ITD will cause a small 



 

7 

 

 
 

 

Figure 1.2:  Schematic representation of features of the Jeffress model.  A. Example of a 
neuron phase-locking to a tonal stimulus.  Raster plot shows that the neuron fires predictably 
at a certain phase of the pure tone stimulus.  Phase-locking provides the time locked inputs 
necessary for this model.  B. ITDs vary systematically with position in the horizontal plane.  
C. Representation of the Jeffress model circuit where coincidence detecting neurons are 
innervated by an array of delay lines with varying axon lengths.  The pairing of ITD and 
varying conduction times results in the maximum activation of one or a few coincidence 
detecting neurons.  Color coding of the neurons matches the speaker location (B) that would 
theoretically evoke maximum response.  B & C modified from Seidl et al. 2010. 
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number of neurons to receive coincident binaural input.  A coincidence detecting neuron 

responding maximally to an ITD of zero should theoretically have equal conduction times  

from each ear.  This model has been an integral part of sound localization research and 

shares many features with biological circuits in both birds and mammals (barn owl: Carr 

and Konishi 1990, chicken: Overholt et al. 1992, Seidl et al. 2009).  While recent work 

has strengthened the relationship between the avian circuit and the Jeffress model, studies 

in the mammalian system have began to depart from this view.   

 

Animal Models and Evolution 

 For this research, gerbils and chickens were used as animal models.  Both of these 

vertebrates possess hearing organs that have a tympanic membrane or eardrum.  Fossil 

records indicate that the tympanic ear appeared approximately 200 million years ago after 

the divergence of mammals and birds.  No common ancestor of mammals and birds has 

been discovered that possessed this anatomical feature leading scientists to believe that it 

has evolved independently in each group (Fig 1.3).  Therefore, sound localization circuits 

have also evolved independently in mammals and birds (Clack 1997, 2002).  The 

physical nature of sound and small head size of most mammals and birds has constrained 

the evolution of hearing systems such that convergent evolution had lead to similar 

systems in both vertebrate groups.  Many features that are now considered hallmarks of 

sound localization circuitry are found in gerbils and chickens.  Since the auditory system 

operates over a large range of intensities, many mechanisms contribute to the auditory 

systems ability to remain sensitive to low intensity stimuli but also respond dynamically  



 

9 

 

 

Figure 1.3:  Fossil evidence suggests the tympanic ear evolved separately in birds (Aves) 
and mammals.  Since no common ancestor of these two groups possessed a tympanic ear, 
sound localization mechanisms have also evolved separately. From Grothe et al. 2010. 
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at high intensities.  These mechanisms include synaptic depression (Kuba et al. 2002, 

Cook et al. 2003), receptor desensitization (Raman and Trussell 1992), suppression of 

neurotransmitter release (Brenowitz et al. 1998) and populations of cells with a range of 

thresholds and spontaneous rates. 

 

Neural Encoding of Sound 

 Due to the physical nature of sound (pressure waves of differing frequency and 

amplitude) and the evolution of the tympanic ear as a transduction mechanism, two key 

features of sounds that can be extracted by the hearing organ and transduced into 

electrical impulses are frequency and intensity. Frequency information is extracted 

initially in the cochlea.  Physical characteristics of the basilar membrane (basilar papilla 

in the chicken) of the cochlea cause each frequency to resonate a specific area along the 

membrane’s basal-apical extent. High frequencies displace the membrane near the base 

of the cochlea, low frequencies near the apex.  This topographic representation of 

frequencies is called tonotopy. Tonotopic organization of neural response properties is 

generally maintained as a “place map” of frequency in the nuclei of the auditory 

brainstem and higher order auditory areas of the brain (von Bekesy 1970). 

       Intensity information is transduced from sound waves into electrical impulses 

(action potentials) in the cochlea as well.  Hair cells along the basilar membrane 

depolarize with the displacement of the membrane via mechanically gated ion channels.  

More intense sounds cause greater displacement of the membrane, increased 

neurotransmitter release from the hair cells and increased activity of the auditory nerve 
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fibers.  Generally, neurons in the auditory nuclei respond to greater intensity with 

increased firing rate up to a point of saturation.   

 

Sound Localization Circuitry 

 In the mammalian ITD processing circuit (Fig 1.4), auditory nerve fibers enter the 

brainstem and synapse with bushy cells in the ventral cochlear nucleus (CN).  These 

neurons are specialized for temporal signaling and show an improvement in phase-

locking vector strength over their auditory nerve fiber inputs (Joris et al. 1994).  Spherical 

bushy cells project ipsilaterally to innervate the MSO (Warr 1966, Osen 1969, Cant and 

Casseday 1986, Smith et al. 1993) while globular bushy cells project contralaterally to 

the medial nucleus of the trapezoid body (Smith et al. 1991).  This synapse called the 

Calyx of Held is one of the largest synapses in the brain and is specialized in order to 

convert the excitatory signal from the CN into an inhibitory signal while maintaining 

temporal precision and minimizing latency (Held 1893, Morest 1968, Smith et al. 1998, 

von Gershdorff and Borst 2002).  MSO neurons have bilaterally oriented dendritic arbors 

where ipsilaterally derived inputs synapse on the lateral dendrite and contralaterally 

derived inputs synapse on the medially oriented dendrite (Ramon y Cajal 1907, 

Rautenberg et al. 2009).  The MSO is innervated bilaterally by excitatory inputs from 

spherical bushy cells of the ventral cochlear nucleus.  MSO neurons also receive their 

main inhibitory input from the ipsilateral MNTB which is driven by globular bushy cells 

in the contralateral ventral CN (Morest 1968, Wenthold et al. 1987, Smith et al. 1991).  

The MSO also receives ipsilateral inhibitory input from the lateral nucleus of the   
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Figure 1.4:  Schematic representation of the mammalian auditory system.  Coincidence 
detecting neurons in the medial superior olive (MSO) receive bilateral excitatory input from 
bushy cells in the anteroventral cochlear nucleus (AVCN).  Additionally they receive their 
primary inhibitory input from the ipsilateral medial nucleus of the trapezoid body (MNTB) which 
switches contralaterally derived excitation from the AVCN into inhibition.  The MSO also 
receives an inhibitory input from the ipsilateral lateral nucleus of the trapezoid body. 



 

13 

 
trapezoid body (Cant and Hyson 1992).  The MSO integrates all of these inputs and the 

strength and timing of each plays a role in the output of the neuron.  MSO neurons send 

projections to the dorsal nucleus of the lateral lemniscus and the inferior colliculus for 

higher order processing (Thompson and Schofield 2000). 

 In birds, auditory nerve fibers enter the brainstem where they bifurcate to 

innervate the cochlear nuclei, the NA and the NM (Parks and Rubel 1975) (Fig 1.5).   The 

NA provides glutamatergic input to the SON in the brainstem and higher order auditory 

nuclei involved in intensity discrimination. The NM is a relay in the timing circuit 

involved in ITD discrimination.  NM neurons receive large secure synapses from the 

auditory nerve which provide phase-locked glutamatergic excitatory input (Koppl 1994, 

Carr and Koppl 1997, Konishi 2003).  NM then relays phase-locked signals to both the 

ipsi- and contralateral NL.  Anatomical studies show that while NM sends similar length 

projections to innervate the ipsilateral NL, its contralateral projections to the NL increase 

in length along the medio-lateral axis of the nucleus.  Only the contralateral projection 

pattern bears a semblance to the delay lines modeled by Jeffress (Parks and Rubel 1975, 

Seidl et al. 2010).  NL neurons have symmetric dendritic arbors that are innervated 

dorsally by the equal length axons from the ipsilateral NM and ventrally by axons 

increasing in length medial to lateral by the contralateral NM.  NL provides sound 

location information to the inferior colliculus and other higher auditory nuclei.  NL also 

provides input to the ipsilateral SON.  The SON is the major source of inhibitory 

feedback for the auditory brainstem.  It receives input from the ipsilateral NA and NL and  
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Figure 1.5:  Avian auditory brainstem schematic.  Auditory nerve (nVIII) fibers enter the 
brainstem and bifurcate to innervate the cochlear nuclei, nucleus magnocellularis (NM) and 
nucleus angularis (NA).  Coincidence detecting neurons in the nucleus laminaris receive bilateral 
excitatory input from the NM.  NA and NL innervate the superior olivary nucleus (SON). The 
SON provides inhibitory feedback ipsilaterally to the NM, NL and NA and also sends a 
projection to the contralateral SON. 
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the contralateral SON, and provides descending inhibitory feedback to the ipsilateral NA, 

NM and NL as well as ascending inhibition to the contralateral SON (Lachica et al. 1994, 

Conlee and Parks 1986, Burger et al., 2005.)   

 

ITD computation 

 Although many characteristics of the ITD circuit are similar between mammals 

and avians, the current view is that the computation of ITDs is fundamentally different in 

the two groups.  While avians are observed to follow the tenants of the Jeffress model, 

many studies involving the mammalian ITD circuit have yielded results that are at odds 

with the delay line theory.   

 The avian system, as described mainly through studies in barn owls and chickens, 

is remarkably similar to the Jeffress model.  Delay lines are evident in the NM’s 

contralateral projection to the coincidence detecting neurons in the NL (Parks and Rubel 

1975, Young and Rubel 1983, Overholt et al. 1992, Seidl et al. 2010).  These delay lines 

have been shown to impart a systematic arrangement of peak ITD responses in NL in 

both in vitro and in vivo experiments (Carr and Konishi 1988, 1990, Overholt et al. 1992, 

Joseph and Hyson 1993, Koppl and Carr 2008).  It is therefore expected that the auditory 

space map is created by the peak ITD responses of a few neurons tuned to discrete 

location in the horizontal plane around a listener.  Recent data supporting this model is 

shown in Figure 1.6 along with a schematic representation of the ITD circuit in birds. 
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Figure 1.6:  Auditory space is represented by a neural place code in birds.  A. Schematic of 
the avian ITD circuit where delay lines to coincidence detecting neurons impart each neuron 
with a unique ITD function (lower panel) whose peak falls within the physiologically relevant 
range of ITDs.  B. In vivo recordings from the NL show the systematic arrangement of best 
ITDs from medial to lateral in one isofrequency band.  Adapted from Grothe et al. 2010.  Panel 
B originally from Koppl and Carr 2008. 
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 In mammals, the ITD circuit abides by the first two points in the Jeffress model, 

time-locked inputs and binaurally innervated coincidence detecting neurons.  But 

anatomical evidence for the existence of delay lines in the mammalian circuit has led to 

mixed conclusions and no systematic arrangement has been confirmed over the 

population (Smith et al. 1993, Beckius et al. 1999).  Additionally, the majority of neurons 

in the MSO display peaks in their ITD functions at delays outside of the physiologically 

relevant range of ITDs that the animal could experience (McAlpine et al. 2001, Brand et 

al. 2002, Pecka et al. 2008).  These best ITDs (bITD) correlated with the characteristic 

frequency of the neuron such that there was a decrease in bITD as CF increased.  A 

comparison of the phase difference (bIPD) in relation to the CF revealed that the bIPD 

was remarkably similar for the population (bIPD = 0.12 ± 0.04 cycles).  This shift in the 

ITD function towards the contralateral ear aligned the slope of the function at the midline 

(0 ITD) such that the steepest part occurs through the physiologically relevant range of 

ITDs experienced by the listener (Brand et al. 2002).  This arrangement allows for the 

greatest degree of spike rate modulation to occur with physiologically relevant ITDs.  

These discoveries lead to the development of the two-channel model where the average 

response of the population of neurons in each hemisphere is compared and the specific 

ratio of activity in between the hemispheres represents specific positions in the azimuth 

(McAlpine et al. 2001, Hancock and Delgutte 2004, Siveke et al. 2006, Pecka et al. 

2008).  A schematized view of the two-channel model is shown in Figure 1.7. 
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Figure 1.7:  Schematic of ITD encoding in mammals.  A. Integration of the inputs in the 
MSO results in populations of neurons that fire preferentially with sounds that lead in the 
contralateral ear.  The source is determined by a comparison of spiking in the population in 
each hemisphere.  B. ITD tuning curves from three neurons in the gerbil MSO show peaks 
outside the physiologically relevant range, but slopes in the physiologically relevant range.  
Modified from Grothe et al. 2010, B originally from Pecka et al. 2008. 



 

19 

 
Role of Inhibition in ITD processing 

 As previously mentioned the principal mode of inhibitory neurotransmission is 

different between the two systems, glycinergic feed-forward inhibition in mammals, and 

GABAergic feedback inhibition in avians.   However, to begin the discussion on 

inhibition in ITD processing let us first look at a shared role in both systems.  Neurons in 

the cochlear nuclei of mammals and birds provide the phase-locked inputs to the 

coincidence detecting neurons.  At the cochlear nuclei, feedback inhibition has several 

functions.  These include increasing frequency selectivity, maintaining firing rates below 

saturation during high intensity stimuli, and improving the phase-locking ability above 

that of the auditory nerve fiber inputs (mammal: Caspary et al. 1994, Kopp-Scheinpflug 

et al. 2002, Dehmel et al. 2010, Kuenzel et al. 2011; bird: Koppl 1997, Fukui et al. 2006, 

Fukui et al. 2010).  These modulatory effects ensure high fidelity in the output to the 

coincidence detectors. 

 In mammals, glycinergic transmission works on a cycle-by-cycle basis where 

precisely timed inhibition modulates the response of MSO neurons to phase-locked 

excitatory input.  The impact of the timing of inhibition was shown in several in vivo 

studies in the gerbil MSO where pharmacological block of glycine receptors with 

strychnine resulted in increased firing rates and a shift of the peak of the ITD tuning 

curve towards 0ITD (Brand et al. 2002, Pecka et al. 2008).  The conclusion from these 

studies was that the contralaterally derived glycinergic inhibition from the MNTB 

preceded the contralateral excitation and was responsible for shifting the ITD tuning 

curve towards the contralateral ear (see Fig 1.8 for further description).  This temporal  
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Figure 1.8:  Precisely timed inhibition imparts the ITD tuning in MSO neurons 
necessary for the two-channel encoding model.  A. ITD turning curves from an MSO 
neuron in control and GlyR block reveals shift of the curve towards zero ITD in strychnine.  
B. Population data for MSO neurons shows the peak of the ITD tuning curve in strychnine 
and the steep part of the slope around zero in control.  C. Schematic representation of the 
integration of inputs in the MSO in the control condition showing how timing of inhibitory 
input shifts the peak of the tuning curve towards sounds leading in the contralateral ear.  D. 
Integration scheme when inhibition is blocked resulting in a peak at zero ITD. Adapted from 
Pecka 2008. 
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integration of the glycinergic inhibition with the bilateral excitation sets up the 2-channel 

model for ITD discrimination in the mammalian circuit. 

 

 In the avian system the vast majority of research has focused on GABAergic 

inhibition.  In the neurons known to be directly involved in ITD processing, the NM and  

NL, high cytosolic concentrations of Cl- result in the efflux of Cl- ions during activation 

of GABA receptor channels.  Therefore, opening of Cl- channels caused by GABA input 

will lead to an efflux of Cl-, taking negative charge out of the neuron and depolarizing it 

(Hyson 1995, Lu and Trussell 2000, 2001, Monsivais and Rubel 2001).  This 

depolarization has an inhibitory effect because it activates low voltage activated (LVA) 

K+ channels at NM and NL.  This K+ conductance has a shunting action, effectively 

lowers the input resistance, speeds up the membrane time constant and decreases the 

ability of non-coincident inputs from resulting in spike transmission (Bruckner and 

Hyson 1998, Funabiki et al. 1998, Kuba et al. 2002, Howard et al. 2010) (Fig 1.9).  

Additionally, the slight depolarization of the GABAergic inhibition presumably causes 

inactivation of sodium channels and raises the spiking threshold (Monsivais et al. 2001).   

 In addition to the GABAA receptor system, metabotropic GABAB receptors are 

also prevalent in the avian auditory brainstem nuclei (Burger et al., 2005b).   GABAB 

receptor activation in the NM has a suppressive effect on excitatory postsynaptic currents 

(EPSCs).  This suppression has been shown to preserve phase-locking ability of NM 

neurons at higher frequencies by limiting neurotransmitter release and reducing the short-

term depressive effects of high frequency stimuli (Brenowitz et al., 1998).   
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SON as a Gain Control  

 Sound localization circuitry operates over a very broad range of input intensities 

and ITD selectivity in the NL is maintained even at high stimulus intensities (>70dB) 

(Pena et al. 1996.)  It is therefore likely that the feedback inhibition from the SON plays a 

role in this maintenance.  The SON receives input proportional to sound intensity from 

the NA and provides inhibitory input to its ipsilateral targets the NA, NM and NL and the 

contralateral SON (Fig 1.10).  The ipsilateral feedback loop and reciprocal connection 

form an inhibitory circuit that has been implicated as the source of gain control in this 

system (Burger et al. 2005a, Dasika et al. 2005, Hyson 2005) and is capable of equalizing 

imbalances in intensity that occur.   In an in vivo study, Nishino et al. (2008) found that 

lesioning the SON reduced ITD selectivity in the ipsilateral NL in the chicken.  

Additionally, pharmacologically blocking GABAA receptor mediated inhibition to the 

NM caused increased spiking and decreased phase-locking in NM neurons in vivo (Fukui 

et al. 2010). Both the data from the model by Dasika et al. (2005) and the two in vivo 

studies support the idea that the SON functions to balance inputs to the NL. 
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Figure 1.9:  Inhibitory feedback from the SON modulates response properties of 
brainstem neurons.  A. Schematic of the avian brainstem representing the inhibitory feedback 
loops in each brain hemisphere coupled by the reciprocal inhibitory connection between the 
superior olivary nuclei.  B. Depiction of rate vs. intensity functions in the NM in control and 
after lesioning of the ipsilateral SON reveals inhibitory feedback during high intensity stimuli 
modulates the output of NM neurons.  C. Schematized representation of ITD tuning curves 
from neurons in the NL shows a compression of the tuning curve with ipsilateral SON lesion. 
Adapted from Burger et al. 2011. 
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Rationale 

 The research in this dissertation broadens our understanding of inhibition in a 

circuit that relies on the maintenance of temporal features of sound.  In the first group of 

experiments I examined the role of inhibitory modulation of inputs at the site of 

coincidence detection in the mammal.  This approach allowed me to investigate 

mechanisms involved in sound localization that may be applicable to humans.  In the 

second group of experiments I evaluate the nature of inhibitory feedback across several 

nuclei in the avian circuit in order to understand how a single major inhibitory input 

could possibly serve multiple computational functions.   

 Providing consistent input to coincidence detectors over a broad range of stimulus 

intensities is an important task in these circuits.  The inhibitory feedback loop involving 

the reciprocal connectivity of the SONs in the avian system aids in this task.  However, in 

the mammalian system, the inhibition is primarily feed forward.   In the alternative 

branch of the sound localization circuit where ILDs are processed, Magnusson et al. 

(2008) observed the activity dependent release of GABA from lateral superior olive 

neurons that functioned as a retrograde signal to modulate presynaptic transmitter release.  

In the mammalian system, I test the hypothesis that GABABR activation modulates inputs 

to the MSO in a way that improves ITD selectivity using pharmacological manipulations 

during in vitro patch clamp experiments on gerbil brainstem tissue.  This work was 

supported by computational modeling that resolved subtle aspects of GABAB modulation.

 Previous studies of inhibition in the avian brainstem have revolved around the 

unique depolarizing GABAergic inhibition seen in the timing nuclei (NM and NL).  
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However, a recent paper comparing the inhibitory input to the NM, NL and NA showed 

that inhibition in the NA contains both GABA- and glycinergic components (Kuo et al. 

2009).  Additionally, using immunohistochemistry, they showed that presynaptic 

terminals at NM, NL and NA stain positively for glycine.  This was a surprising 

discovery since glycinergic transmission has never been observed in the NM or NL.  

Building off of these recent discoveries, I first focused on detailing the synaptic 

physiology of inhibitory inputs in the SON and show that similar to results in the NA, 

inhibition in the SON is mediated by both GABA and glycine transmission.  I then 

looked at glycine receptor staining and function in the NM where glycine transmission 

had not been documented.  I observed that prolonged high frequency stimulation evokes a 

slowly emerging glycinergic component of inhibition.  In the final chapter I discuss the 

possible interactions that may arise at neurons where both GABA and glycine 

transmission occur. 
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CHAPTER II 

Modulation of synaptic input by GABAB receptors improves 

coincidence detection for the computation of sound location 
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Abstract  
 

Interaural time disparities (ITDs) are the primary cues for localization of low 

frequency sound stimuli. ITDs are computed by coincidence detecting neurons in the 

medial superior olive (MSO) in mammals. Several previous studies suggest that control 

of synaptic gain is essential for maintaining ITD selectivity as stimulus intensity 

increases. Using P7-P24 acute brain slices from Mongolian gerbils, I confirm that 

activation of GABAB receptors reduces the amplitude of excitatory and inhibitory 

synaptic currents to MSO and, moreover, show that the decay kinetics of IPSCs are 

slowed in mature animals. During repetitive stimuli, activation of GABAB receptors 

reduced the amount of depression observed, while PSC suppression and the slowed 

kinetics were maintained.  Additionally, I utilized physiological and modelling 

approaches to test the potential impact of GABAB activation on ITD encoding in MSO 

neurons. Current clamp recordings from MSO neurons were made while 

pharmacologically isolated excitatory inputs were bilaterally stimulated using pulse trains 

that simulate ITDs in vitro. MSO neurons showed strong selectivity for bilateral delays. 

Application of both GABAB agonists and antagonists demonstrate that GABAB 

modulation of synaptic input can sharpen ITD selectivity. I confirmed and extended these 

results in a computational model that allowed for independent manipulation of each 

GABAB dependent effect. Modelling suggests that modulation of both amplitude and 

kinetics of synaptic inputs by GABAB receptors can improve precision of ITD 

computation. Our studies suggest that in vivo modulation of synaptic input by GABAB 

receptors may act to preserve ITD selectivity across various stimulus conditions. 
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Introduction  

 

Interaural time disparities (ITDs) are the primary cues animals use to localize low 

frequency sounds. ITD values available to an animal depend largely on head width and 

are on the order of tens to hundreds of microseconds. Neurons in the medial superior 

olive (MSO) of mammals compute ITDs by performing cross-correlation between inputs 

that are phase-locked to the stimulus waveform (Goldberg & Brown 1969, Yin & Chan 

1990). These inputs are both excitatory and inhibitory and derive from both ears, 

although the dominant inhibitory input is glycinergic and is evoked from stimulation of 

the contralateral ear via the ipsilateral medial nucleus of the trapezoid body (MNTB) 

(Kuwabara & Zook 1992, Cant & Hyson 1992, Grothe & Sanes 1993, Smith et al. 2000, 

Pecka et al. 2008, Grothe et al. 2010). As ITDs vary, MSO neurons show robust rate 

modulation resulting from the convergence of these inputs (Goldberg & Brown 1969, Yin 

& Chan 1990). While the phase-locked nature of each input is stable or even improves 

with increases in stimulus intensity, the firing rate for each input fibre increases several 

fold over a 30-50 dB range of intensities (Joris et al. 1994, Kopp-Scheinpflug et al. 

2008), suggesting that MSO neurons are likely to receive summed synaptic conductances 

that vary greatly in magnitude with stimulus intensity. Thus, a computational challenge 

for neurons that cross correlate intensity dependent inputs is the maintenance of stable 

ITD selectivity over a large range of input magnitudes.   

 Despite these challenges, it is known that coincidence-detecting neurons in birds 

and mammals maintain stable ITD selectivity over a large range of stimulus intensities 
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(Pena et al. 1996, Pecka et al. 2008, Pecka et al. 2010). Behavioural performance in 

human and non-human primate studies confirms that localization ability improves over 

the first ~20 dB above threshold and remains stable at higher sound intensities (Su & 

Recanzone 2001, Recanzone & Beckerman 2004). 

 The precision of ITD selectivity relies on several mechanisms in the ITD circuitry 

that preserve computational fidelity. These may include receptor desensitisation (Kuba et 

al. 2002, Cook et al. 2003), EPSP normalisation by voltage-gated conductances (Scott et 

al. 2010) and as recently shown, GABAB receptor (GABABR) dependent suppression of 

synaptic inputs in both birds (Brenowitz & Trussell 1998, Lu et al. 2005) and mammals 

(Magnusson et al. 2008; Hassfurth et al. 2010). Inhibitory feedback circuits have been 

shown to influence ITD processing circuitry in birds (Pena et al. 1996, Burger et al. 

2005a, Nishino et al. 2008, Fukui et al. 2010), and may operate similarly at the level of 

the cochlea in mammals (Darrow et al. 2006) but its influence on ITD coding in 

mammals has not yet been demonstrated. 

 In this report, I confirm recent results showing that GABABR activation 

suppresses the magnitude of synaptic input to the MSO (Hassfurth et al. 2010). 

Additionally, I demonstrate that this alters the decay kinetics of inhibitory postsynaptic 

currents (IPSCs). I also describe the effects of GABABR activation and block on synaptic 

depression during repetitive stimuli.  I tested the hypothesis that these effects could 

contribute to the preservation of ITD selectivity using two complementary approaches. In 

vitro current clamp experiments showed that pharmacological manipulation of GABABR 

signalling strongly influenced simulated ITD tuning. These results were confirmed and 

extended using a computational model that demonstrated that the small changes in IPSC 
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kinetics observed with GABABR activation may influence ITD selectivity.  IPSC decay 

dependent influences on ITD selectivity were robust over a broad range of input 

conditions where IPSC delay and magnitude values were varied.  
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Methods 

 
In vitro brain-slice preparation 

 All procedures were approved by Lehigh University's Institutional Animal Care 

and Use Committee. Mongolian gerbils at postnatal day 7 to 24 (P7-P24) were 

anesthetized with isofluorane and rapidly decapitated. The brainstem containing auditory 

nuclei was removed, blocked, and submerged in oxygenated artificial cerebrospinal fluid 

(ACSF) (containing in mM: 125 NaCl, 2.5 KCl, 25 glucose, 1.25 NaH2PO4, 25 

NaHCO3, 2 CaCl2, 1 MgCl2, 0.4 ascorbic acid, 3 myo-inositol, 2 pyruvic acid) at 22°C. 

Chemicals were obtained from Sigma-Aldrich, St. Louis, MO unless otherwise indicated. 

Following cerebellum removal the brainstem was placed dorsal surface (4th ventricle) 

down on the stage of a vibrating microtome (Microm 650V, Walldorf, Germany). 

Horizontal sections (100-200 µm) containing the MSO were obtained and submerged in 

an incubation chamber of continuously oxygenated ACSF and incubated at 37°C for 

approximately one hour. Slices were then kept at room temperature until used for 

recording.  

 Brainstem slices were placed in a custom recording chamber on a retractable 

chamber shuttle system (Siskyou Design Instruments, Oregon, USA) and neurons were 

visualised with a Nikon FN-1 Physiostation microscope using infrared differential 

interference contrast optics. Video images were captured using a CCD camera 

(Hamamatsu C7500-50, Hamamatsu City, Japan) coupled to a video monitor.  The 

recording chamber was continuously perfused with ACSF at a rate of 2-4 ml/min.  An 
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inline feedback temperature controller and heated stage were used to maintain chamber 

temperature at 35 ± 1°C (TC344B, Warner Instruments, Hamden, CT, USA).  

PSC Recordings 

For PSC recordings, a concentric bipolar electrode with tungsten core 

(TM53CCINS, WPI, Sarasota, FL) was lowered to the tissue surface with a 

micromanipulator and placed in a position medial to the MSO near the MNTB. Here, the 

excitatory fibres from the contralateral AVCN as well as the inhibitory fibres from the 

ipsilateral MNTB could be stimulated.  Principal MSO neurons were identified based on 

their characteristic bipolar morphology and low input resistance upon achieving a whole-

cell configuration (Scott et al. 2005). 

 Patch pipettes were pulled from thick walled borosilicate glass capillary tubes 

(WPI 1B120F-4) to a resistance of 4-8 MΩ using a two-stage puller (Narashige PC-10, 

Tokyo, Japan) and back-filled with internal solution (containing in mM: 145 K-Glu, 5 

KCl, 1 MgCl2, 10 HEPES, 5 EGTA [pH adjusted to 7.2 with KOH]) used for both 

current and voltage clamp recordings. The potential values reported here were adjusted to 

include the calculated liquid junction potential of 15mV. For PSC recordings, 5 mM 

QX314 was added to the internal solution to prevent antidromic action potentials. In 

many cases, 0.4% biocytin was added to the internal solution to label the neurons 

following the protocol of Scott et al. (2005). MSO principal neurons had an average 

whole-cell capacitance of 44.6 ± 0.9 pF and an average series resistance of 13.5 ± 0.4 

MΩ.  In voltage clamp, series resistance was compensated at 60-80%. EPSCs were 

recorded during bath application of SR95531 (20 µM) and strychnine (500 nM) to block 
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GABAAergic and glycinergic inputs respectively.  Membrane voltage was clamped at –75 

mV using a Multiclamp 700B amplifier, digitized with a Digidata 1440 data acquisition 

board and recorded using Clampex software (Molecular Devices, Sunnyvale, CA). 

Excitatory PSCs (EPSCs) were evoked with 50 µsec stimulus pulses (Isoflex, A.M.P.I. 

inc., Israel). Stimulus magnitude (range 10-90 V) was gradually increased until PSC 

amplitudes stabilised at their maximum amplitude. After collection of control data, 

GABABR activity was modulated by bath application of the agonist (±)baclofen (10 µM 

or 0.1 µM) or the antagonist CGP55845 (2uM) (Tocris Biosciences, Minneapolis, MN) 

and the stimulus protocols were subsequently repeated. Then the drugs were washed out 

and data were collected until control conditions recovered or the recording was lost. To 

isolate inhibitory inputs, ACSF containing kynurenic acid (4 mM) or a cocktail of 6,7-

dinitroquinoxaline-2,3-dione (DNQX) (40 µM) and D-2-amino-5-phosphonopentanoic 

acid (AP5) (50 µM) (Tocris Biosciences, Minneapolis, MN) was used to block 

glutamatergic input. Measures of IPSC amplitudes and kinetics did not differ between 

kynurenic acid and DNQX/AP-5 treatment groups (data not shown).  Membrane voltage 

was clamped at –25 mV for IPSC data collection.   

PSC amplitudes and kinetics were analyzed using Clampfit software. Rise and 

decay time constants, expressed hereafter as tau (τ) values, were calculated from single 

exponential fits to PSCs.  Baclofen, CGP55845 and recovery condition amplitudes were 

normalized to control PSCs, and treatment groups were assessed for statistical 

significance using paired Student's t-tests. In addition to the unitary stimulus protocols, 

10 pulse trains at several frequencies (50-200hz) were also used to assess the role of 
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GABABRs in synaptic depression of EPSCs and IPSCs. The degree of depression of the 

PSC response was calculated with the following equation: 

% depression = [1 – (mean amplitude of pulse 10 / mean amplitude of pulse 1)] x 100 

 

Simulated ITDs, bilateral stimulation 

 ITDs were simulated in vitro using bilateral stimulation protocols (Funabiki et al. 

1998, Overholt et al. 1992).  Stimulating electrodes were placed medial and lateral to the 

MSO in order to stimulate contralateral and ipsilateral AVCN input fibres.  Ionotropic 

inhibitory inputs were blocked with SR95531 (20 µM) and strychnine (500 nM). Whole-

cell current clamp protocols were used to monitor voltage responses during evoked 

synaptic activity.  Stimuli consisted of 10-pulse trains delivered at 50 or 100 Hz.  For 

both ipsilateral and contralateral inputs, stimulus magnitude was increased until a single 

unilateral stimulus pulse evoked near-threshold EPSPs.  In each trial, unilateral stimuli 

were delivered prior to the pulse train to simulate "monaural" conditions and to confirm 

that there was little or no spiking evoked with unilateral stimuli.  Following the 

"monaural pulses", pulse train stimuli were presented bilaterally with a range of timing 

offsets to simulate ITDs (e.g. ±1 ms/0.1 ms interval for P7-P16 animals (Fig 5C), or ±500 

µs/50 µs interval for >P16 animals (Fig 6A)). A given simulated ITD (sITD) was 

presented pseudorandomly and multiple sequences were presented in each condition.  

Data collected for each sITD were summed over several trials. The stimuli were repeated 

under exposure to bath applied GABABR agonists or antagonists, baclofen (0.1 µM) or 
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CGP55845 (2 µM) respectively, or both. The drug was then washed out and the stimuli 

again repeated to obtain recovery data.  Action potentials for each sITD were identified 

using a thresholding algorithm in Clampfit.  All ITD tuning curves were constructed by 

fitting functions to the spike counts at each sITD for both the positive and negative halves 

of the ITD function. Best fits were achieved using the sum of two sigmoid functions, and 

halfwidth was calculated as the width of the fitted ITD curves at half maximal spike rate. 

The fit equation is as follows: 

  

where A is the lower limit, K is the upper limit, B is the growth rate, and M is the time 

shift, T is a dimensionless fitting coefficient. 

 Data are reported and illustrated as mean ± SEM unless otherwise stated. 

Computational Modelling of MSO neurons 

 Model MSO neurons were constructed in NEURON as multi-compartment 

models substantially modified from that published by Zhou et al. (2005).  Each model 

MSO neuron was composed of a soma, two dendrites, and an axonal segment that 

contained the spike initiation zone. I modified the Zhou et al. (2005) model to incorporate 

empirically derived values for synaptic inputs from the current study and made 

anatomical adjustments according to current understanding of MSO morphology (Scott et 

al. 2005, Rautenberg et al. 2009). Major modifications included: 1) the axon and spike 
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initiation zone originates from the centre of the soma compartment, 2) The ion channel 

density distributions and channel dynamics of MSO neuron voltage gated K+ and Na+ 

channels were recently characterized in two papers from the Golding laboratory (Scott et 

al. 2010, Mathews et al. 2010). Our model was populated with somatic and dendritic 

voltage gated channel densities that were arranged to reflect these recent findings as 

follows: 

 i) Potassium channel kinetics and density on the soma and dendrite compartments 

were adapted from Mathews et al. (2010):   

€ 

g = gmax ∗w
4 ∗ z  
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Vrev = −106mV
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Where w and z are activation and inactivation respectively.  

 ii) Sodium channel kinetics and distribution on the soma were based on findings 

of Scott et al. (2010):  

€ 

g = gmax ∗m
4 ∗ (0.993* h) + 0.007[ ]  
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Where m and h are activation and inactivation respectively.  

 

iii) Ih channel kinetics were identical to those used by Zhou et al. (2005), but channel 

density distribution on the membrane is modeled after Mathews et al. (2010). 

Input model: 

 Each of the two dendrites in the model cell received input from 10 independent 

excitatory synaptic inputs, and the soma received input from 10 independent inhibitory 

synaptic inputs.  The experimenter manipulated the vector strength, maximum firing rate, 

and peak synaptic conductance.  
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 We modelled all synaptic conductance kinetics with a double exponential so that 

when normalized, PSG shape would closely approximate PSGs derived from recordings 

shown in the results as follows: 

 
 
Where guni is the unitary synaptic conductance, θ1 = 0.2598 and θ2=0.2639 for EPSG’s, 

θ1 = 0.2723 and θ2 = 1.313 for control IPSG’s and θ1 = 0.6484 and θ2 = 1.348 for IPSG’s 

under the influence of baclofen.  k is set to normalize the curve. Reversal potential was 20 

mV for EPSGs and either -70 mV (Zhou et al. 2005) or -90 mV (Magnusson et al. 2005) 

for IPSGs.   Synaptic input magnitude was scaled in the simulations according to average 

sound intensity values.  Synchrony of model inputs were set to 10 and 20 for EPSGs and 

IPSGs respectively.  Expressed as vector strength values, these correspond to 

approximately 0.95 for AVCN fibers and 0.99 for MNTB fibers.  GABABR input 

magnitude modulation was modeled by reducing synaptic conductance magnitude to the 

maximum value observed empirically in 10 µM baclofen.  The maximum suppression for 

mature neurons was approximately 40% for EPSCs and 60% for IPSCs.  Synaptic 

depression of PSGs was modeled based on data illustrated in Figures 3&4 with the 

following function: 

Ginput= Ginitial(a+(b*exp(c*t))) 
 
where “a” constrains the steady state amplitude; “b” constrains the initial amplitude; and 

“c” controls the rate at which the initial conductance (Ginitial), which is set by the 

experimenter, declines with activity to the depressed input conductance (Ginput), which is 
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the conductance provided to the model cell. Input variable values for the depression 

function are given in Table 1.  

 The MNTB provides a phase-locked, contralaterally derived, glycinergic 

inhibition to the MSO. The timing of these phase-locked inputs relative to the excitation 

is unknown.  In vivo and in vitro observations suggest that inhibitory input shifts peak 

ITD selectivity toward the contralateral ear (Brand et al. 2002, Chirila et al. 2007, Pecka 

et al. 2008, 2010).  I systematically varied the delay of the leading inhibition in an 

iterative modeling experiment.  I found that when the inhibitory input leads the 

contralaterally evoked excitation by 1.0 ms, the model most effectively reproduced the 

peak ITD function shift into the contralateral hemifield (Peak model ITD value: 30 dB: 

+74 µsec; 45 dB: +139 µsec; 60dB: +127 µsec). Thus, this delay was chosen for 

subsequent tests of the model.  The effect of delay is demonstrated in the results and 

discussed in detail. 

 ITD selectivity in the model was measured using two metrics.  First, I use the 

halfwidth of the ITD tuning curve that was constructed using the same fitting parameters 

as the sITD curves in vitro (see above).  Additionally I calculated the firing rate 

modulation through the physiologically relevant range of ITDs experienced by a gerbil, 

±130 µsec (Maki & Furukawa, 2005). 
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Results 

 
 In the following sections I first demonstrate the effect of GABABR activation on 

excitatory and inhibitory synaptic currents in MSO neurons. I evaluated GABABR 

dependent influences on both the magnitude and temporal aspects of these inputs as well 

as the effects on synaptic depression. I then tested whether the effects that I observed 

could influence the computation of ITD tuning using an in vitro current clamp assay. 

Finally, in order to further investigate the relative importance of each GABAB dependent 

synaptic current modification, I developed a computational model for which each 

GABABR dependent change in synaptic input was evaluated separately.  

 

Effects of GABAB R activation on EPSC amplitude and kinetics 

 Our initial goal was to evaluate the influence of GABABR activation on inputs to 

the MSO under various stimulus conditions.  First, pharmacologically isolated EPSCs 

and IPSCs were evoked via stimulation of the afferent fibre tracts medial to MSO in 

gerbils aged P7 through P24. Bath application of ACSF containing 10 µM baclofen 

effectively reduced EPSC magnitude (Fig 2.1). Figure 2.1A shows average traces of 

EPSC recordings from a P18 MSO neuron in control, 10 µM baclofen, 2 µM CGP55845 

and recovery conditions. EPSC amplitudes were affected across the age range but the 

degree of GABAB dependent suppression declined significantly with age as was also 

observed by Hassfurth et al. (2010) (% suppression: P7-P16, 73.6 ± 2.4%; >P16, 48.5 ± 

4.6%). However, as late as P24, the oldest age tested, reduction of EPSC amplitude by 

GABABR activation remained >40%. PSC amplitude and kinetics mature rapidly with  
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Figure 2.1:  GABABR activation suppresses evoked EPSCs in MSO principal neurons.   
A. Average of 10 EPSC traces from a P18 MSO neuron evoked via stimulation of 
contralateral AVCN fibers show amplitude suppression during baclofen (10µM) application 
and no change with application of CGP55845 (2µM).  B. Normalized traces from panel A 
show no difference in kinetics between treatments.  C. Baclofen significantly reduces 
amplitude of EPSCs (p<0.001, n=16) in P17-P24 MSO neurons, while CGP55845 has no 
effect (p>0.05, n=11).  D. EPSC τDecay values are unchanged by application of baclofen or 
CGP55845 (p>0.05).  E. Effect of baclofen on ESPC τDecay does not correlate with age 
(r=0.272, p=0.237, n=26), dashed line indicates ratio value of 1, indicative of no change in 
τDecay with baclofen treatment.  r-values are Pearson correlations. 
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age in MSO neurons following hearing onset around age P12 (Smith & Forsythe 2000, 

Scott et al. 2005).  However, most of the maturational changes I observed in synaptic 

input asymptote at about P16, thus I divided our analysis into two age groups P7-P16 and 

P17-24. Population data for GABAB dependent suppression are reported for P17-P24 

neurons and are shown in Fig. 1C for EPSCs (baclofen suppression was 44.4 ± 6.1%, 

p<0.005, n=16). The amplitude suppression of EPSCs was also apparent at reduced 

concentrations of baclofen.  Application of 0.1µM baclofen significantly suppressed 

EPSC amplitude by 20.6 ± 5.1% (p<0.05, n=4). EPSC amplitudes measured in the 

presence of the GABAB R antagonist, CGP55845, were not significantly different than 

control (91.2 ± 4.3% of control, p>0.05, n=11). 

Measurements of EPSC kinetics were not influenced by GABABR activation. 

Figure 2.1B shows normalized average traces for the neuron from 2.1A demonstrating the 

stability of EPSC kinetics in all conditions.  Average τRise(data not shown) and τDecay (Fig. 

2.1D: P17-P24 age group shown) were not different in the baclofen condition across the 

population (τRise: Control, 0.48 ± 0.06ms; Baclofen, 0.37 ± 0.06ms, p=0.79;  τDecay: 

Control, 0.50 ± 0.04ms; Baclofen, 0.52 ± 0.05ms, p=0.96, n=16), and unlike IPSCs 

(shown below), the ratio of baclofen/control τDecay values did not correlate with age (Fig. 

2.1F). EPSC kinetics measured in the presence of CGP55845 were not significantly 

different than control (τRise : 0.58 ± 0.09ms, p>0.05; τDecay : 0.59 ± 0.10ms, p>0.05, n=11). 

 IPSCs were also suppressed by GABABR activation. Figure 2.2A shows average 

traces from a P18 neuron. In contrast to EPSCs, IPSC suppression magnitude did not  
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Figure 2.2:  Activation of GABABRs suppresses IPSC amplitude and slows kinetics.  
 A. Average traces of IPSCs in each condition.  B. Normalized average traces from panel A 
depict baclofen effect on IPSC kinetics.  C. Population data from P17-P24 MSO neurons 
reveals that IPSC amplitudes were significantly reduced by application of baclofen (p<0.01, 
n=18), but remained unchanged in CGP55845 (p>0.05).  D. Baclofen significantly increased 
τDecay kinetics (p<0.001).  E. Effect of baclofen on τDecay correlates with age (r=0.687, 
p<0.001, n=30).  Ea. Normalized IPSC traces in control (black) and baclofen (grey) show a 
decrease in τDecay at younger ages (top, triangle), and an increase in τDecay at older ages 
(bottom, square) with GABABR activation.  r-values are Pearson correlations. 
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change across the tested age range (data not shown). Figure 2.2C shows the average 

suppression for >P16 neurons at 10 µM baclofen (63.9 ± 4.3%, p<0.001, n=18).  In the 

presence of 0.1 µM baclofen, IPSC suppression remained prominent at 44.8 ± 8.1% 

(p<0.01, n=4).  

 Unlike EPSCs, IPSC decay kinetics were influenced by baclofen (Fig. 2.2B,D,E). 

Furthermore, the effect of GABAB activation on IPSC decay kinetics was strongly age 

dependent. Baclofen application increased the τDecay by ~50% (P17-23, 51.0 ± 10.1%, 

p<0.0005, n=18).  Interestingly, Figure 2.2E shows the effect of baclofen on τDecay 

normalized to control values as a function of age. At early ages baclofen caused IPSCs to 

decay more rapidly, while at later ages GABAB activation slowed decay (r= 0.687, 

p<0.001, n=30, Pearson correlation). Figure 2.2Ea shows typical examples of IPSC 

kinetic changes under control and baclofen conditions for a P12 (triangle) and a P18 

(square) neuron. Across the population of neurons aged P17 and above, the decay was 

significantly longer in the presence of baclofen compared to the control condition (P17-

23, Control, 2.15 ± 0.20ms; Baclofen, 3.07 ± 0.30ms, p<0.0005, n=18). IPSC amplitude 

and kinetic measures in the presence of CGP55845 were not significantly different than 

control (amplitude: 92.1 ± 9.2% of control, p>0.05; τDecay: 1.95 ± 0.27ms, p>0.05, n=6).  

τRise values were not significantly different from control in either condition but did 

exhibit a trend toward slower kinetics (τRise: control, 0.25 ± 0.02ms; baclofen, 0.29 ± 

0.03ms; CGP55845, 0.24 ± 0.02ms; p>0.05 for both). 
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GABAB dependent influences on synaptic depression: 

 The excitatory and inhibitory inputs to MSO neurons are phase-locked and can 

sustain high firing rates (Yin & Chan 1990, Joris et al. 1994; Rhode & Greenberg 1994, 

Kopp-Scheinpflug et al. 2008), conditions that typically induce synaptic depression (von 

Gersdorff et al. 1997, Smith et al. 2000, Hermann et al. 2007).  Indeed, synaptic 

depression has been shown to contribute to ITD selectivity in coincidence detecting 

neurons (Kuba et al. 2002, Cook et al. 2003).  GABAB activation has been shown to 

reduce depression in avian cochlear nucleus neurons that process phase-locked 

information, especially at high stimulus frequencies (Brenowitz et al. 1998). In order to 

investigate GABAB dependent effects on temporally patterned activity I evoked EPSCs 

and IPSCs with pulse trains at 50-200 Hz in the presence of baclofen or CGP55845 in 21 

MSO neurons aged >P16.  

 Figure 2.3A shows typical EPSC responses evoked by 10 pulse trains at 100 Hz in 

a P18 MSO neuron. When the responses are normalized to the amplitude of the first peak, 

the effect of GABABR activation on reducing depression is evident (Fig 2.3B). The 

excitatory response to 100 Hz stimulus trains is shown in Figure 2.3C for each condition.  

I assessed depression by comparing the PSC amplitude of the 10th pulse relative to the 

response to the initial pulse (see Methods). Across the population EPSC amplitude 

depressed by 39.5 ± 2.2% in control ACSF (Fig 2.3C&D).  Similar to results of our 

unitary stimulus protocols, inclusion of 10 µM baclofen reduced the overall response 

amplitude including the first pulse (Fig 3A middle traces), however, depression was 

limited to 19.3 ± 3.9% (p<0.01, n=8) during the train (Fig 2.3C&D). These findings are 

consistent with those reported in the avian cochlear nucleus (Brenowitz et al. 1998).  
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Figure 2.3:  Modulation of GABABRs effects rates of depression of EPSCs during 
repetitive stimuli.  A. Average of 20 trials of 100Hz stimulus trains.  B. Normalized traces of 
control and baclofen condition show the reduction in depression during activation of 
GABABRs.  C. Population data for depression at each pulse during the stimulus shows the 
reduction in depression during application of baclofen and CGP55845.  The percent 
depression at the 10th pulse was significantly different from control with baclofen (p<0.01, 
n=8) and CGP55845 (p<0.01, n=15) application.  D. Population data for percent depression 
values at three stimulus frequencies.  EPSC trains in baclofen showed significantly less 
depression at all frequencies tested (50Hz, n=7; 200Hz, n=3).  CGP55845 application also 
mildly but significantly reduced EPSC depression at 50 (n=7) and 100Hz (at 200Hz, p=0.06; 
n=3). ** p<0.01, * p<0.01.  
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Washout of baclofen reversed this effect and depression returned to near control levels 

(35.0 ± 2.4%) (Fig 2.3C&D).  Application of the GABABR antagonist CGP55845 did not 

change initial pulse response amplitude (Fig 2.3A), but did mildly reduced synaptic 

depression compared to control to 31.2 ± 2.7% (p<0.01, n=15) (Fig 2.3C&D).  This result 

suggests that in contrast to the single pulse stimulus protocol shown in Figures 2.1 & 2.2, 

the 100 Hz stimulus paradigm evokes endogenous GABA release and subsequent 

GABAB activation in the control condition that is only revealed when the antagonist is 

applied.  While variation of stimulation frequency (50, 100, or 200 Hz) influenced the 

overall magnitude of depression, GABABR pharmacological manipulations resulted in 

similar patterns with respect to depression at 50 and 200 Hz to those illustrated for 100 

Hz (Fig 2.3D).  Pulse-train stimuli also evoked depression in IPSCs that was similarly 

sensitive to GABAB agonist and antagonist application. Figure 2.4A shows results for a 

P18 neuron stimulated at 50 Hz.  The normalized IPSC traces (Fig 2.4B), as for EPSCs, 

show that the trailing pulses in the baclofen condition are less depressed relative to the 

control responses. In the control condition, IPSC amplitude was reduced by 55.1 ± 5.4% 

by the 10th pulse (100hz stimulus, n=6). The degree of depression was reduced in the 

presence of baclofen (16.4 ± 9.2%, p<0.01, n=6) and moderately reduced in CGP55845 

compared to control (41.6 ± 2.6%, p<0.05, n=4). Washout of baclofen restored 

depression to near control levels (41.1 ± 2.7%) (Fig 2.4C&D).  A similar pattern of 

modulation was seen with a 50Hz stimulus (Fig 2.4D). As previously described, IPSCs 

evoked using single pulse stimuli revealed a GABAB dependent slowing of decay kinetics 

(Fig 2.2).  Interestingly, this shift in τDecay values persisted throughout the train stimulus  
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Figure 2.4:  Depression rates of IPSCs are affected by modulation of GABABRs during 
repetitive stimuli.  A. Average of 20 trials of 50Hz stimulus trains.  B. Normalized traces of 
control and baclofen condition show the reduction in depression during activation of 
GABABRs.  Additionally the slowing of IPSC kinetic seen in unitary responses are maintained 
in responses throughout the stimulus train (open arrowhead).  C. Population data (100hz 
trains) for depression at each pulse during the stimulus shows the reduction in depression 
during application of baclofen and CGP55845.  Percent depression at the 10th pulse was 
significantly different from control in baclofen (p<0.01, n=6) and CGP55845 (p<0.05, n=4).  
D. Population data for percent depression at the two frequencies tested for IPSC train stimuli.  
Similar data patterns are observed at each frequency where both baclofen and CGP55845 
reduced the amount of depression observed during the train (50Hz, n=5).  
** p<0.01, * p<0.01.  
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(Fig 2.4B).  The IPSC τDecay of the 10th pulse was not significantly different than that to 

the first pulse within any condition (IPSC Control τDecay: pulse1 3.35 ± 0.47, pulse10 3.32 ± 

0.62, p=0.61; Baclofen: pulse1 6.20 ± 1.16, pulse10 6.00 ± 1.04ms, p=0.31).  However, the 

kinetic shift observed was significant when τDecay of the tenth pulse response was 

compared between the baclofen and control conditions (p<0.05, n=6). 

 

Effects of Baclofen on Simulated ITDs 

 GABAB activation strongly modulates both IPSC and EPSC amplitudes. I sought 

to test whether these effects could function to influence ITD processing in MSO neurons. 

First, I simulated ITD-like conditions in vitro by stimulating the bilateral afferent inputs 

to MSO neurons recorded in whole-cell current clamp under excitation only conditions 

(Fig 2.5A).  To prevent simultaneously evoking IPSPs from stimulation of neighbouring 

inhibitory fibre tracts, EPSPs were pharmacologically isolated with bath application of 20 

µM SR95531 and 500 nM strychnine to block ionotropic GABAergic and glycinergic 

transmission, respectively. Afferent fibres were stimulated bilaterally with voltage pulse 

trains (10 pulses at 50 or 100 Hz) while the relative timing between the ipsilateral and 

contralateral stimulating electrodes was shifted pseudorandomly through a range of 

simulated ITD (sITD) values (see Methods). Stimulus amplitude was initially adjusted in 

the control condition so that postsynaptic potentials from each side resulted in PSPs that 

were near but below threshold.  Each sITD value was sampled at least 10 times, and spike 

count data for each sITD value were summed. Figure 2.5B shows representative traces 

from a P13 neuron at two sITDs. Baclofen had a small effect on spike rate at the response 

maxima evoked at 0 µsec sITD.  However, at the 200 µsec sITD, responses were strongly  
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Figure 2.5:  ITD sensitivity is modulated by GABABR activation.  A. Schematic of 
bilateral stimulation protocol used to simulate ITDs in vitro (see Methods).  B. Representative 
current clamp traces from the peak and +0.2 msec sITD time points from a MSO neuron 
(P13).  Total spike counts are the sum of 10 trials at each simulated ITD.  C. sITD tuning 
curves  constructed using data from the neuron in B.  D. Population data for sITD experiments 
show a significant decrease in sITD tuning curve halfwidth with application of 0.1 µM 
baclofen that was recovered after washout (p<0.05, n=25). 
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suppressed during baclofen treatment. sITD tuning curves (Fig 2.5C) were constructed 

from spike count data that was normalized to the peak and fitted with a sigmoid function 

(see Methods). The peaks of all fitted sITD curves were centred at 0 µsec ITD in order to 

directly compare halfwidths between conditions. Using this experimental paradigm, 

25/31 neurons aged P11-19 tested showed ITD selectivity in the control condition. The 

ITD tuning curve halfwidth in control conditions decreased during development; the 

average halfwidth for P7-P16 neurons was 974 ± 110 µsec while in the >P16 group, it 

was 382 ± 21 µsec.  This result mirrors changes in input resistance occurring over this 

time frame (series resistance, P7-P16: 14.3 ± 0.6mV, n= 84; >P16: 11.8 ± 0.6mV, n=39, 

p<0.01). Bath application of ACSF containing 0.1 µM baclofen effectively decreased the 

range of ITDs that would evoke discharges in 22/25 cells.  ITD tuning curve halfwidth 

was reduced by 19.5 ± 5.4% over the entire population, (Fig 2.5D, p<0.001) and was 

similar in both P7-P16 (15.3 ± 8.0%, n=14) and P17-P24 (24.9 ± 6.9%, n=11) MSO 

neurons (p=0.39).  

 While spike counts under baclofen were reduced throughout the stimulus trains by 

24.4% on average, analysis of responses to each pulse revealed that response probability 

was most labile for later pulses in the train compared to the initial pulses.  These results 

are consistent with the depression of EPSC amplitude.  For example, in the control 

condition at 0 µsec sITD the initial pulse evoked a spike in 99.2 ± 1.1% of trials, while in 

the presence of baclofen the initial response probability declined slightly to 93.3 ± 3.3%.  

However, for the 10th pulse the control probability was 58.5 ± 10.4% while the baclofen 
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probability was 35.0 ± 8.5%.  These results are consistent with the known role of 

depression in shaping ITD selectivity (Kuba et al. 2002, Cook et al. 2003).     

 To further confirm the observed GABAB dependence of changes in halfwidth, I 

utilized the in vitro sITD approach during application of the GABABR antagonist 

CGP55845 (n=12) or sequential application of baclofen and CGP55845 (n=3).  Data from  

a representative neuron that was exposed to antagonist alone is shown in Figure 2.6A.  

Figure 2.6B shows the population’s increase in halfwidth with CGP55845 application 

(134.7 ± 11.9% of control, p<0.01, n=12). Figure 2.6C shows a representative neuron for 

which agonist and antagonist were presented sequentially. In this P18 neuron, baclofen 

caused a reduction in halfwidth to 64.3% from control baseline levels (indicated by 

dashed line) within 8 minutes. Co-application of CGP55845 followed by withdrawal of 

baclofen caused a stepwise broadening of ITD tuning to 131% of control when 

CGP55845 was presented alone. Finally, washout with normal ACSF caused ITD tuning 

halfwidth to return to the baseline control levels. In the three cells tested in this manner, 

baclofen reduced sITD halfwidth to 72.4 ± 4.6% of control while CGP55845 broadened 

tuning curves to 125 ± 2.9% of control. The increase in sITD halfwidth observed with 

agonist application is consistent with our PSC recordings, which suggest that a basal level 

of endogenous GABABR activation is evoked by high frequency train stimuli from 

endogenous sources under control conditions. 
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Figure 2.6:  Blocking GABABR activity broadens sITD tuning curves.  A. CGP55845 
(2µM) application (diamond symbols) broadens sITD tuning curves relative to control (square 
symbols) in a P18 neuron. Recovery from inactivation is shown with open squares.   B. 
Population data shows significant broadening of sITD halfwidth during CGP55845 application 
(* indicates p<0.01, n=12).  C. Sequential application of baclofen and CGP55845 
demonstrates the time course of the effect on ITD halfwidth. 
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Computational modelling of GABABR activation 

 The results presented thus far suggest that GABABR activation modulates both the 

magnitude of excitatory and inhibitory inputs to MSO as well as the kinetics of 

inhibition.  Increased response selectivity to sITDs in baclofen suggests that GABAB 

modulation of EPSCs may sharpen ITD tuning in vivo.  In order to explore the relative 

contributions of input magnitude and IPSC kinetic modulation by GABABRs to ITD 

selectivity, I generated a computational model of an MSO neuron in which these effects 

could be independently controlled. 

 We utilized the model neuron architecture developed by Zhou and colleagues 

(2005) as a framework for our MSO model, but I made significant alterations to the 

inputs, the voltage dependent membrane properties, and anatomical characteristics based 

on both recent empirical data (Mathews et al. 2010, Scott et al. 2010) and data from the 

current study (see Methods). For the input model I simulated firing characteristics of 

bushy cells of the AVCN and principal neurons of the MNTB, which represented 

bilateral excitatory and contralateral inhibitory input respectively. Model synaptic inputs 

included intensity dependent entrainment (spikes per cycle) with fixed synchrony values 

for each bushy cell input based on published anteroventral cochlear nucleus (AVCN) 

rate-intensity data from Joris et al. (1994) (Fig 2.7A). In simulations that included 

inhibition, our model included a contralaterally evoked glycinergic input based on gerbil 

MNTB rate-intensity data from Kopp-Scheinpflug et al. (2008) (Fig 2.7B). Stimuli were 

500 ms, 200 Hz tones at three intensity values; 30, 45, and 60 dB SPL designated low, 

moderate, and high intensity which correspond to near threshold, mid dynamic range, and  
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Figure 2.7:  Model parameters for excitatory and inhibitory inputs.  A. Modeled 
excitatory input rates are derived based on published AVCN input/output functions adapted 
from Joris et al., (1994) solid line.  Data are expressed as both firing rate and entrainment 
values.  Computational ITD simulations utilized three sample intensities on the entrainment 
curve to simulate MSO input near threshold (30 dB triangle), at moderate intensity (45dB 
square) and high intensity near saturation (60 dB circle).  B. Input/output function for gerbil 
MNTB neurones adapted from Kopp-Scheinpflug et al., 2008.  The same three intensity 
conditions are sampled as in the excitation only model shown in panel A.  
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saturated firing rates respectively (Fig 2.7).  Synaptic depression was modeled with 

functions based on data illustrated in Figures 2.3 & 2.4 (see Methods). 

 We tested the contributions of the three known influences of GABAB modulation 

relevant to the model. GABABRs modulate the amplitude of both EPSCs and IPSCs and 

also modulate the kinetics of IPSCs.  In order to assess the effect of the amplitude and 

kinetic modulation of PSCs on ITD encoding separately, I modelled the system in four 

conditions at each test intensity: 1) control conditions, in which there was no GABAB 

modulation on any input; 2) kinetic-only conditions, in which the IPSC kinetics were 

changed to match the GABAB modulated conditions (i.e. Fig 2.2Ea), but the PSC 

amplitudes were unchanged; 3) amplitude-only conditions, in which EPSC and IPSC 

amplitudes were suppressed but the IPSC kinetics model was identical to the control 

condition;  4) finally, the combined condition modulation where EPSC and IPSC 

amplitudes were modulated as well as IPSC kinetics. Figure 8 panels A-C show the 

model output, normalized ITD functions, halfwidth changes and firing rate modulation 

(see Methods) at each of the three test intensities under each condition.  

 First, I modelled normal EPSC and IPSC amplitude and only included the 

GABAB dependent modulation of IPSC decay kinetics.  GABAB modulated IPSC kinetics 

caused a small change or mild suppression of the peak output-firing rate in the low and 

moderate intensity conditions, but not the high intensity condition (Fig 2.8, Aa-Ca, red 

triangles). Surprisingly, at moderate and high intensities IPSC kinetic modulation alone 

was sufficient to narrow ITD halfwidth, and was more efficacious as intensity increased 

(Halfwidth change: 30 dB: +10.2%; 45 dB: -17.8%; 60 dB: -43.8%).  The kinetic 

modulation also improved FR modulation versus control through the physiologically 
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relevant range at all intensities (Fig 2.8Ad-Cd). These results suggest that the temporal 

aspects of the IPSCs may play a major role in shaping ITD selectivity in vivo, and that the 

modulation by GABABRs of inhibitory input may actively shape ITD selectivity by 

changing kinetics. 

 Next I tested amplitude-only conditions, in which both the EPSC and IPSC 

amplitude were suppressed by GABABR activation (Fig 2.8A-C, blue circles), but IPSC 

kinetics were unchanged from controls.  Suppression of PSCs for the simulations shown 

was at the maximum values observed in the voltage clamp recordings; 40% for EPSCs 

and 60% for IPSCs.   Simultaneous suppression of inputs resulted in an expected strong 

reduction in peak output-firing rate at low and moderate intensities. Normalized ITD 

functions of the model show that amplitude suppression of both EPSCs and IPSCs 

resulted in improved ITD selectivity at each intensity. Halfwidth values are shown in 

Figure 2.8, c panels, and were improved by PSC amplitude suppression (Halfwidth 

reduction: 30 dB: 19.6%; 45 dB: 35.6%; 60 dB: 34.5%).  FR modulation was also 

improved (Fig 8Ad-Cd). These results suggest that input amplitude suppression is 

sufficient to improve ITD selectivity alone even while inhibitory input is also reduced.  

Interestingly, amplitude modulation efficacy stabilized at or above the moderate intensity 

while the kinetic modulation reported above showed a linear increase in efficacy as 

intensity increased (Fig 2.8D). At high intensity, the kinetic only modulation was similar 

in efficacy to the amplitude only modulation in reducing ITD halfwidth (Fig 2.8Cc).   

 Finally, I simulated the combined GABABR activation effects that I documented 

on both EPSC and IPSC magnitudes and IPSC kinetics.  When GABABRs were activated 
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on all inputs, halfwidth of normalized responses was narrowed at all intensities 

(Halfwidth reduction: low: 9.0%; moderate: 30.7%; high 40.6%).  Across intensity 

conditions, the combined GABAB dependent modulation resulted in relatively stable 

narrowed ITD functions, and tended to increase in efficacy as intensity increased, but to a 

lesser degree than the kinetic only modulation (Fig 2.8D).  This feature is interesting 

because it suggests that while kinetic or amplitude modulation influences halfwidth 

differentially across intensity, the net output when both are taken into account results in 

stable halfwidth reduction derived from GABABR activation.  FR modulation was 

improved at moderate and high intensities in the combined modulation condition (Fig 

2.8Ad-Cd).  Overall, the results of model suggest that both IPSC kinetics and PSC 

suppression may play a role in maintaining ITD selectivity in vivo. 

Model Tolerance to IPSC onset timing and relative E/I magnitude 

 Model parameters were chosen based on our current understanding of the cellular 

and synaptic physiology of the MSO and informed by in vivo observations of gerbil MSO 

neuron physiology.  For the model output data presented thus far, IPSC inputs were 

presented with a 1.0 ms lead relative to contralateral excitation because model output best 

approximated the contralateral shift in peak ITD observed in vivo with this value (Brand 

et al. 2002, Pecka et al. 2010). The IPSC kinetic shift was a surprisingly potent modulator 

of ITD selectivity, but it is unclear to what extent this effect is a consequence of the 

particular model parameters that were chosen especially considering kinetic changes may 

be particularly sensitive to IPSC delay.  

 To test whether the GABAB dependent improvements in ITD selectivity that I 

observed were robust independent of relative input timing, I systematically varied IPSC 
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lead-time in 0.2 ms intervals over a range comprising 1.4-0.6 ms. Over the range, the 

effect of delay on ITD selectivity was remarkably linear (Fig 2.9A). At all lead times 

tested, the GABAB dependent IPSC kinetic shift narrowed ITD function halfwidth (Fig 

2.9A, open triangles).  Furthermore, the relative influence of IPSC kinetics and PSC 

magnitude was consistent and linear at every lead-time tested.  These data indicate that 

the GABAB induced shift in synaptic input features is predicted to have a robust influence 

on ITD selectivity in MSO neurons over a broad range of possible IPSC/EPSC arrival 

times. 

 The relative magnitude of excitation and inhibition received by MSO neurons in 

vivo and how these inputs vary with intensity remains unknown.  However, in vitro 

measurements suggest that each MSO neuron receives at least 4-8 excitatory inputs and 

2-4 inhibitory inputs. The summed conductance of excitation and inhibition are likely 

equal since each inhibitory input was estimated to have twice the conductance value of 

each excitatory input (Couchman et al. 2010). In order to test whether relative strength of 

excitation and inhibition would influence the GABAB dependence of the results, the 

inhibition was manipulated in two ways.  First I altered inhibitory strength by changing 

IPSG reversal potential, thus influencing the driving force on Cl- current. Two reversal 

potentials for IPSGs,  -70 mV (Zhou et al. 2005) or -90 mV (Magnusson et al. 2005) (-90 

mV is shown in Fig 2.8), were modelled.  This manipulation did not significantly affect 

the relative GABAB dependent changes observed in ITD functions.  Second, I adjusted 

the magnitude ratio of excitatory and inhibitory inputs in the model. Peak IPSC 

magnitude was tested at three values with respect to EPSC magnitude (Fig 2.9B).  I  
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Figure 2.9:  GABABR dependent improvements in ITD selectivity are maintained over a 
range of input parameters in the E/EI model.  A. Halfwidth values for each condition at the 
five different inhibitory lead times. ITD selectivity improved with GABABR dependent 
modulations regardless of inhibitory lead time.  B. Halfwidth values at the three different 
ratios of excitatory to inhibitory input magnitude.  GABABR dependent changes in PSCs led 
to a decrease in halfwidth regardless of the relative input magnitude but ITD selectivity was 
greatest at the ratio where inhibition dominated.  
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found that regardless of the relative size of IPSCs and EPSCs, the GABAB dependent 

IPSC kinetic shift and magnitude reduction resulted in greater ITD sensitivity compared 

to the control condition. Not surprisingly, as the magnitude of IPSCs increased, the 

influence of GABAB dependent kinetic shifts also increased, but ITD selectivity was 

improved with GABABR activation at all IPSC magnitudes.  Further, the relative 

contributions of GABAB dependent changes in IPSC kinetics and PSC magnitude to ITD 

selectivity were similar regardless of the initial magnitude of the IPSCs.
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Discussion 

 This report comprises four main findings.  First, I demonstrated that both EPSC 

and IPSC amplitudes are modulated by GABABRs in the MSO and that the suppression 

of EPSCs is age dependent, consistent with data recently reported by Hassfurth et al. 

(2010). Second, IPSC decay kinetics are dependent on GABABR activation and the 

magnitude and direction of this effect changes during development.  Third, I showed that 

synaptic depression of IPSCs and EPSCs in the MSO is reduced during GABABR 

activation. Fourth, I tested the hypothesis that PSC magnitude and/or kinetic modulation 

by GABAB receptor activation improves coincidence detection in MSO neurons using 

both physiological and modelling approaches.  Our model data also showed that GABAB 

dependent changes in inhibitory kinetics are well suited to influence ITD computation 

and this effect may act independently of the input magnitude effects.  Finally, the results 

from our model show robust tolerance to key features of the circuit such as the magnitude 

ratio and relative timing of excitation and inhibition.  

GABAB dependent EPSC amplitude modulation sharpens ITD selectivity 

 A principal finding of this study is that modulation of EPSC amplitude strongly 

influences ITD selectivity.  Bath application of a low concentration of baclofen 

sharpened sITD selectivity in 22/25 neurons bilaterally stimulated with pulse trains. This 

result was consistent regardless of age.  Since EPSC amplitude was reduced by activation 

of GABABRs, the temporal window during which these smaller synaptic events could 

sum to reach threshold was narrowed. Bath application of the GABAB antagonist, 

CGP55845, significantly increased sITD halfwidth relative to both the baclofen and 

control conditions. While CGP55845 had no effect on unitary evoked EPSCs, I showed 



 

64 

that it did have an effect on the magnitude of EPSCs during the train stimuli by reducing 

synaptic depression. The latter result indicates that when using train stimuli in our 

experimental protocol, a low level of GABABR activation was endogenously evoked in 

the control condition.  Thus, our estimate of GABAB dependent suppression is likely to 

be conservative since it is based on baclofen application alone relative to control and did 

not include an estimate of stimulus induced GABAB activation in the slice.  

 The sITD experiments also showed that GABAB dependent suppression of PSCs 

was more potent for trailing spikes when compared to onset spikes.  These data are 

consistent with the data presented in Figure 2.3, which showed substantial depression of 

EPSCs for ongoing stimulus trains.  Baclofen application reduced EPSC depression 

overall but at the expense of the initial pulse response magnitude.  Taken together, the 

PSC depression and spike output data suggest that the GABAB dependent effects shown 

here will differentially influence the processing of ongoing sounds compared to 

computation of ITD at stimulus onset. 

 sITDs measured using the bilateral stimulation paradigm became more temporally 

selective over development.  However, the contribution of GABAB activation to 

sharpening sITD halfwidth was essentially stable over all ages that I tested. Halfwidth 

declined substantially with postnatal age in the control condition from 974 ± 110 µsec in 

P7-P16 animals to 382 ± 21 µsec in P17-P24 neurons. Despite this large change in 

control halfwidth, GABABR activation sharpened sITD tuning curves between 15-25% at 

every age tested. The developmental consistency of this result is interesting considering 

that several physiological properties of the neurons are rapidly changing during this 

period including PSC characteristics (Spirou & Berrebi 1997, Smith et al. 2000, Scott et 
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al. 2005, Couchman et al. 2010).  It is possible that the reduction of GABAB modulation 

of EPSCs that I observed is regulated to maintain a stable level of ITD selectivity 

throughout development.  

 In the computational model, I further investigated the dependence of the 

suppression of EPSCs on ITD tuning as a function of stimulus intensity. ITD tuning 

systematically improved with GABAB activation, but did so at the expense of maximum 

firing rate (Fig 2.8 panels Aa-Ca).  The low intensity sound condition under maximum 

GABABR activation yielded only a few responses near the peak of the ITD response.  

 It is a question then whether GABABR activation simply improves ITD selectivity 

by reducing overall spike rate.  Both the in vitro data and the modelling data appear to 

refute that assertion.  In the model, intensity dependent changes in spike rate under the 

control condition are indeed associated with a decrease in halfwidth (Fig 2.8) from 1.4 ms 

at 60 dB to 1.0 ms at 30 dB.  However, GABAB dependent reductions in halfwidth 

exceed those observed for spike rate alone, suggesting that coincidence detection depends 

on other features of the input characteristics beyond firing rate.  

 In this report, I used halfwidth and/or firing rate modulation as an assessment of 

ITD sensitivity.  I showed that activation of GABABRs effectively improved selectivity 

by decreasing halfwidth of ITD tuning curves. Although in the model neuron at high 

intensity, our control ITD functions were rather broad relative to the biologically relevant 

range of ITDs, in our in vitro simulated ITD experiments, the animals age P17 and above 

had an average tuning curve halfwidth of ~380 µsec. ITD tuning curves for our modelling 

data were generally around 800 µsec with GABABR modulation included.  Brand et al. 

(2002) showed that ITD tuning of MSO neurons in vivo is stimulus frequency dependent 
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with the broadest functions generated at low frequencies. Although in vivo data from low 

frequency MSO neurons are relatively rare, estimates of halfwidth from previous studies 

appear similar to our results (Brand et al. 2002, Pecka et al. 2008, Day & Semple, 2011).   

Additionally, the firing rate modulation through the biologically relevant range of ITDs 

improved with GABABR activation in our model.  Our improvements were modest due to 

the limited peak shift (only ~100µs) I observed in the model which was about half of the 

shift observed in vivo (Brand et al. 2002, Pecka et al. 2008). 

 The finding that GABAB activation strongly reduced responses in the MSO at low 

sound intensity has important implications for the proposed function of GABAB 

dependent signalling in the system.  It suggests that GABABR activation in vivo would 

most optimally be positively correlated with sound intensity. Such an arrangement would 

allow MSO neurons to encode ITDs at low intensity with larger, but more sparsely 

evoked EPSCs.  Under low intensity conditions when GABA signalling is proportional to 

sound intensity, GABABR activation would be minimal and EPSC amplitude would be 

preserved.  High intensity stimuli, however, would presumably recruit a stronger GABA 

signal, resulting in amplitude suppressed, but highly entrained EPSCs. Thus, the 

GABABR system could function to normalize summed excitatory synaptic current 

magnitude across a broad range of stimulus intensities assuming that the GABAergic 

signal is also activity dependent.  Our data suggest such activity dependence is possible 

as blocking GABABRs had a noticeable effect on EPSC depression during trains of 

stimuli, but not during unitary stimulus protocols.  In vivo recordings from MSO neurons 

in which GABAB signalling is manipulated will be required to test this hypothesis. 
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 It is of great interest to determine the source of acoustically driven GABA 

available to MSO neurons.  MSO neurons are known to receive GABAergic terminals 

and to express GABAA receptors into maturity (Korada & Schwartz 1999).  However the 

origin of the putative GABAergic input is unknown.  Interestingly, train stimulation in 

the presence of antagonist showed that GABAB activation occurs under repeated 

stimulation of fibres medial to the MSO.  This fibre bundle contains both excitatory 

AVCN and inhibitory MNTB fibres.  Early in development MNTB neurons are known to 

co-release glycine, GABA, and glutamate (Smith et al. 2000, Nabekura et al. 2004, 

Gillespie et al. 2005). However, this co-release diminishes with age and the output of the 

MNTB is predominantly glycinergic by P17, although residual GABA release was still 

detected at this age (Nabekura et al. 2004). Some reports suggest that the superior 

periolivary nucleus, a GABAergic structure, provides input to the MSO, but these reports 

are not yet well substantiated by replication (see review: Thompson & Schofield, 2000).  

The lateral nucleus of the trapezoid body (LNTB), a known source of afferents to the 

MSO, also has a population of GABAergic cells (Spirou & Berrebi 1997). Finally, an 

intriguing possibility was recently revealed by Magnusson et al. (2008), which showed 

that in the neighbouring lateral superior olive (LSO), principal neurons appear to release 

GABA at dendritic terminals to modulate their presynaptic inputs via GABABR 

activation, although these neurons do not release GABA to their postsynaptic targets.  

However, recent results show that, in contrast to LSO, activation of GABABR in MSO 

does not depend on the activity of the MSO principal neurons themselves, which makes 

such a mechanism unlikely (Hassfurth et al. 2010). 
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The role of GABAB dependent modulation of IPSCs 

 Our computational model is one of several in recent studies to probe the relative 

importance of inhibitory input in shaping ITD selectivity (Brand et al. 2002, Zhou et al. 

2005, Leibold 2010).  Glycinergic inhibition, from the MNTB and perhaps the LNTB is 

known to shape ITD function magnitude and shift the peak response toward the 

contralateral ear in vivo (Brand et al. 2002, Pecka et al. 2008, reviewed in: Grothe et al. 

2010).  The precise temporal pattern of phase-locked EPSCs and IPSCs evoked in MSO 

neurons in vivo remains unknown.  However, several modelling and empirical studies in 

brain slices suggest that inhibition which leads excitation each stimulus cycle is most 

effective at replicating the in vivo observations (Brand et al. 2002, Zhou et al. 2005, 

Chirila et al. 2007, Leibold 2010).  Jercog et al. (2010) found differences in contra- 

versus ipsilateral excitatory input kinetics which contributed to shifts in ITD tuning 

curves. They utilised a thick-slice in vitro preparation in which stimulation of intact 

afferent fibres from their origins in VCN evoked PSPs in MSO neurons.  Using our 

bilateral stimulation protocol, with direct stimulation of AVCN fibres proximal to MSO 

neurons, I did not observe any significant differences in EPSP rise slopes (data not 

shown).  In our current model, I used bilaterally symmetric PSCs with relative 

IPSC/EPSC timing derived from an iterative approach where I systematically shifted the 

relative timing until the model output best replicated published in vivo data from gerbil 

MSO recordings (Brand et al. 2002, Pecka et al. 2008, 2010).  I found that inhibition 

leading by 1.0 ms was most effective at shifting the best ITD peak toward the 

contralateral ear to values that approximate in vivo observations.  However, I also showed 

that the GABAB dependent effects on PSC kinetics and/or magnitude described here 
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contribute similarly to ITD selectivity across a broad range of IPSC delays. The halfwidth 

declined at every delay of IPSC, but the degree of sharpening depended on the particular 

delay (Fig 2.9A). 

 Our model demonstrated that slowing the decay kinetics of the IPSC by ~40% 

(corresponding to the data shown in Fig 2.2E), was sufficient to sharpen ITD functions at 

all stimulus intensities.  When the kinetic and amplitude suppression were modulated 

together, they modulated ITD sensitivity at a level intermediate to the two individual 

effects. Interestingly, the kinetic effect differed from the amplitude suppression effect in 

that the kinetic effect increased in efficacy with increased intensity. The narrowing of 

ITD functions was also associated with an increase in the firing rate modulation through 

the physiological range of ITDs (Fig 2.8 panels c and d).  

In a recent study, Couchman et al. (2010) showed that EPSC and IPSC 

magnitudes are likely to be similar in the mature MSO.  Our modelling tested the GABAB 

dependent effects over a range of relative EPSC/IPSC magnitudes and showed their 

effects to be similar regardless of input ratio.  These results suggest that the GABAB 

dependent modulation of IPSC kinetics in conjunction with PSC amplitudes may have 

robust important functions in ITD processing. 

 The developmental dependence of shift in IPSC decay kinetics was a novel and 

unexpected finding in this study.  GABAB receptor activation shortened IPSC decay in 

young animals while extending it in older animals.  This occurs in the context of a 

process of speeding IPSC decay over the same time frame (Smith et al. 2000) due 

primarily to a transition from mixed GABAergic/glycinergic MNTB input to one 

dominated by glycine during this period of development. A variety of factors have been 
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shown to influence evoked PSC kinetics in several systems including reduction of quantal 

content leading to better synchrony (Brenowitz et al. 1998), phosphorylation state of 

GABAA receptor (Hahner et al. 1991), and competitive occlusion of current among 

glycine and GABA receptors (Li et al. 2003).  Some of these have even been shown to 

depend on GABAB activation such as the reduction in IPSP duration during GABABR 

blockade (Price et al. 2008) and the speeding up of EPSC decay time constants (Otis & 

Trussell 1996). The exact mechanism of this change in MSO neurons was not a central 

focus for this study, and our experiments did not address which, if any of these multiple 

factors may contribute to the observed kinetic effects. Resolution of these mechanisms 

will be a focus of future investigation.   

 

Summary and Conclusions 

 Control of synaptic gain is a general problem confronting all neurons that must 

make stable and accurate computations when input varies in magnitude.  MSO neurons 

have several synaptic and intrinsic mechanisms that allow them to stabilize PSC 

amplitude.  ITD computation is a remarkably demanding computation, where 

coincidence-detecting neurons in the avian nucleus laminaris (NL) and mammalian MSO 

modulate their firing rate several fold with sub-millisecond variation in ITD.  These ITD 

computations in MSO neurons are sensitive to changes in synaptic gain as our model 

showed prominent degradation of ITD selectivity as stimulus amplitude increased in the 

absence of compensatory mechanisms.   In vivo, however, ITD coding is remarkably 

stable with changes in stimulus intensity in both NL and MSO, suggesting that 

mechanisms to reduce the impact of changes in input firing rate exist.  Inputs to MSO 
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neurons are highly synchronized to the stimulus waveform at all intensities, but as 

intensity increases, firing rate can increase 300-400% for each input fibre.  While it is 

unknown precisely how many inputs impinge on each MSO neuron from each ear, the 

size of the summed synaptic conductance may vary widely over changes in stimulus 

intensity.  I have demonstrated that GABABRs are a possible mechanism that components 

of the MSO circuitry may use to normalize synaptic strength, preventing saturation under 

intense stimulus conditions, and preventing failures during low amplitude stimuli.  

 

 

Table 2.1: Depression variable values for depression of EPSG and IPSG magnitude in the 

computational model expression Ginput=Ginitial(a+(b*exp(c*t))) 

 Control GABABR activation 
 EPSG IPSG EPSG IPSG 
a 0.428785 0.467342 0.686903 0.88245 
b 0.574672 0.531022 0.336557 0.118218 
c -0.0675269 -0.0440469 -0.686903 -0.0466922 
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Synaptic physiology of inhibitory inputs in the 
 

superior olivary nucleus 
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Abstract 
 

 

Inhibitory input provides an important mechanism for modulating activity in the 

circuit that performs computations necessary for accurate sound localization.  Neurons in 

the superior olivary nucleus (SON) in the avian brainstem provide the main inhibitory 

input to this circuit.  Studies involving inhibition in the avian brainstem have focused on 

the depolarizing GABAergic inhibition provided by the SON to its targets while few 

experiments have addressed the physiology of the SON itself, or its inputs. This study 

describes the characteristics of inhibitory synaptic transmission at the SON, which 

receives a putative inhibitory input from the contralateral SON.  On the synaptic level, I 

found in all SON neurons that I sampled, evoked and spontaneous IPSCs were modulated 

by both GABAergic and glycinergic inhibition, similar to recently published observations 

of inhibition at the nucleus angularis (NA).  Immuno-histochemical evidence and analysis 

of sIPSCs revealed that SON cells receive a mixture of both purely GABAergic 

terminals, as well as terminals from which GABA and glycine are co-released.  

Additionally, SON neurons had a staining pattern similar to the terminal staining where 

some cells were immunopositive for GABA and others were co-labled for GABA and 

glycine.  Evidence for glycinergic signaling within the SON is a novel result that may 

have important implications for the role of inhibition in the auditory brainstem. 
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Introduction 

  

 In the avian brainstem, inhibition is an integral part of maintaining sensitivity to 

interaural time disparities (ITDs), the main cue for localizing low frequency sounds.  In 

the sound localization circuit, ITDs are processed by coincidence detecting neurons that 

receive input from both ears.  These neurons are located in the nucleus laminaris (NL) in 

birds (Parks and Rubel 1975, Sullivan and Konishi 1986, Carr and Konishi 1990, Peña et 

al. 1996, Burger and Rubel 2008, Grothe et al. 2010, Burger et al. 2011).  In order to 

accurately process ITDs, input to the NL must be precisely timed and consistent over a 

broad range of input intensities.  Inhibitory input plays a key role in modulating inputs to 

ensure accurate computations. 

 The main source of inhibitory input in this circuit is the superior olivary nucleus 

(SON).  The SON provides inhibitory feedback to ipsilateral targets, nucleus magno-

cellularis (NM), nucleus angularis (NA) and NL as well as feed-forward inhibition to the 

contralateral SON (Carr et al. 1989, Lachica et al. 1994, Westerberg and Schwarz 1995, 

Yang et al. 1999, Burger et al. 2005a).  Investigation of inhibition in this system has 

focused on the depolarizing GABAergic inhibition observed at the targets of the SON 

involved in ITD computations (mainly NM and NL).  In vitro experiments have 

demonstrated that this inhibition improves both phase-locking in NM and ITD sensitivity 

in NL by minimizing the time window where two inputs can sum to reach threshold 

(Bruckner and Hyson 1998, Funabiki et al. 1998, Yang et al. 1999, Monsivais et al. 2000, 

Kuba et al. 2002, Howard et al. 2007).  In vivo experiments confirm these results.  

Lesioning of the ipsilateral SON resulted in a decrease in the ability of NM neurons to 
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phase-lock to auditory stimuli (Fukui et al. 2010).  The same lesioning protocol also a 

decreased ITD selectivity in NL neurons due to compression of the dynamic range of the 

ITD tuning curves (Nishino et al. 2008). 

 Despite the breadth of investigation on the impact the SON has at its target nuclei, 

little is known about the physiology of the SON itself.  Using a combination of in vivo 

and in vitro methods our lab described the response properties of SON neurons to 

acoustic stimuli, and the synaptic physiology of inhibitory inputs to the SON (Coleman et 

al. 2011).  The main findings of the in vivo experiments are detailed below in order to 

preface the in vitro synaptic physiology results, which are the focus of this chapter. 

 

Response properties of SON neurons to acoustic stimuli 

 The responses of SON neurons to monaural acoustic stimuli were tested by 

presenting 50ms tone bursts at the neuron’s best frequency.  Spiking was assessed using 

in vivo extracellular recording techniques.  Response patterns to these stimuli were 

diverse and fell into several groups.  The vast majority of neurons in the SON were 

driven by acoustic stimulation (~95%).  Of these cells, two-thirds exhibited a sustained 

pattern with a peak response near the onset of the stimulus tone followed by continued 

firing throughout the stimulus.  The other one-third had an onset pattern where they fired 

only a few spikes at the onset of the stimulus.  Approximately 5% of SON neurons were 

inhibited by acoustic stimulation.  These neurons typically had high spontaneous firing 

rates that were suppressed during the stimulus tone. 

 Neurons that exhibited the sustained response pattern were tested for phase-

locking ability at best frequency.  Approximately 50% of these neurons showed 
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significant capability to phase-lock.  This was a surprising result given previous reports 

suggesting the intrinsic properties of SON neurons were not apt for preservation of 

temporal aspects of stimuli (Lachica et al. 1994, Yang et al. 1999, Monsivais et al. 2000).   

 The impact of inhibition on acoustically driven responses was assessed by 

pharmacological block of GABA and/or glycine receptors by iontophoresis of receptor 

antagonists.  GABAA receptor block resulted in an increase in firing rate and a decrease 

in phase-locking efficiency.  Glycine receptor block yielded similar results, suggesting 

that glycinergic transmission occurs at the SON and like GABAergic inhibition, acts to 

modulate the responses to acoustic stimuli. 

 

Glycinergic transmission in the avian brainstem 

 The in vivo results regarding the modulation of response properties by glycine 

were intriguing considering the recent discovery of glycinergic transmission as a 

component of inhibition in the NA of chickens (Kuo et al. 2009).  In addition to the 

physiological demonstration of synaptic glycine transmission, immunohistochemical 

analysis also revealed the presence of glycine in presynaptic terminals at the NM, NL and 

NA.  Here, glycine co-localized in terminals that were also immunopositive for GABA.  

Coleman et al. (2011) confirmed these results and established that glycine also co-

localized with GABA in presynaptic terminals surrounding SON neurons.  Additionally, 

both transmitters are observed in the cell bodies of some SON neurons indicating that the 

SON is the likely source of glycine in this circuit. 

 This chapter is a detailed description of the in vitro experiments published in 

Coleman et al. (2011).  These experiments describe the synaptic physiology of inhibitory 
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inputs to the SON.  I demonstrate that inhibition here is similar to that in the NA where 

inhibitory postsynaptic currents are mediated by both GABA- and glycinergic 

components.  Further, I provide evidence for the hypothesis that glycinergic inhibition 

here is the result of the co-release of GABA and glycine from the same vesicles. 
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Methods 
 
 

In vitro brain-slice preparation                                                                                  

 For synaptic physiology, 12 white leghorn chickens aged E17-P5 were rapidly 

decapitated and the brainstem containing auditory nuclei was removed, blocked, and 

submerged in oxygenated artificial cerebrospinal fluid (ACSF) (containing in mM: 130 

NaCl, 3 KCl, 10 glucose, 1.25 NaH2PO4, 26 NaHCO3, 3 CaCl2, 1 MgCl2) at 22°C.  The 

brainstem was placed rostral surface down on the stage of a vibrating microtome 

(Microm 650V, Walldorf, Germany).  Coronal sections (150-200 µm) containing the 

SON were collected, submerged in an incubation chamber of continuously oxygenated 

ACSF and incubated at 37°C for approximately one hour.  Slices were then maintained at 

room temperature until used for recording. 

 Brainstem slices were placed in a custom recording chamber on a retractable 

chamber shuttle system (Siskiyou Design Instruments, Oregon, USA) and neurons were 

visualized with a Nikon FN-1 Physiostation microscope using infrared differential 

interference contrast optics. Video images were captured using a CCD camera 

(Hammamatsu C7500-50, Hamamatsu City, Japan) coupled to a video monitor.  The 

recording chamber was continuously perfused with ACSF at a rate of 2-4 ml/min.  An 

inline feedback temperature controller and heated stage were used to maintain chamber 

temperature at 35 ± 1°C (TC344B, Warner Instruments, Hamden, CT, USA).              
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IPSC Recordings 

 For evoked IPSC recordings, a concentric bipolar electrode with tungsten core 

(WPI TM53CCINS, Sarasota, FL) was lowered to the tissue surface with a micro-

manipulator and placed in a position dorsomedial to the SON.  Principal SON neurons 

were identified based on their characteristic round morphology.  Patch pipettes were 

pulled from thick walled borosilicate glass capillary tubes (WPI 1B120F-4) to a 

resistance of 4-8 MΩ using a two-stage puller (Narishige PC-10, Tokyo, Japan) and 

back-filled with internal solution (containing in mM: 130 CsCl, 1 CaCl2, 1 MgCl2, 10 

EGTA, 10 HEPES, 2 ATP, 0.3 GTP, 10 phosphocreatine, pH adjusted to 7.3 with CsOH).  

5 mM QX314 was added to the internal solution to prevent antidromic action potentials.  

In many cases, 0.4% biocytin was added to the internal solution to label the neurons 

following the protocol of Scott et al. (2005).  SON principal neurons had an average 

whole-cell capacitance of 36.7 ± 14.3pF and an average series resistance of 10.2 ± 

4.1MΩ.  In voltage clamp, series resistance was compensated at 60-80%.  Evoked and 

spontaneous IPSCs were recorded during bath application of 6,7-dinitroquinoxaline-2,3-

dione (DNQX) (40µM) and D-2-amino-5-phosphonopentanoic acid (AP5) (50µM) in 

order to block glutamatergic input.  Membrane voltage was clamped at -60 mV using a 

Multiclamp 700B amplifier. The signal was digitized with a Digidata 1440 data 

acquisition board and recorded using Clampex software (Molecular Devices, Sunnyvale, 

CA). IPSCs were evoked with 50 µsec stimulus pulses with a stimulus isolation unit 

(Isoflex, A.M.P.I. Inc., Israel) through a bipolar electrode. Stimulus magnitude (range 10-

90 V) was gradually increased until IPSC amplitudes stabilized at their maximum.  

Spontaneous IPSC data was collected by recording 30-60 second epochs while clamping 
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the membrane at -60mV.  Miniature IPSCs were also collected in the presence of 

1µΜ TTX to block the contribution of presynaptic action potentials to spontaneous 

events.  In our recordings, no significant differences were observed between spontaneous 

and miniature events in any condition and therefore the data were pooled (Oleskevich and 

Walmsley 2002), and will be referred to as sIPSCs hereafter.  After collection of control 

data, SR95531 (20µM) and strychnine (500nM) were sequentially applied to block 

GABAA and glycine receptors (GlyRs) respectively.  In several cells, SR95531 and 

strychnine were applied simultaneously during data collection.  IPSC amplitudes and 

kinetics were analyzed using Clampfit software.  Rise and decay time constants, 

expressed hereafter as tau (τrise and τdecay) values, were calculated from standard 

exponential fits from 10-90% of the peak of IPSCs.  τdecay  values were obtained using 

either single or double exponential fits.  Goodness of fit was determined by comparing 

the sum of the squared errors.  Double exponential fits were chosen if the sum of the 

squared errors was less than half that of the single exponential fit.  A weighted τdecay 

value was calculated for double exponential fits using the equation:  

weighted τ  =  τ1 (A1/A1+A2) + τ2 (A2/A1+A2) 

 as in Kuo et al. (2009).  Spontaneous IPSC frequency (Hz) was also calculated.  Drug 

and recovery condition amplitudes and kinetic measures were normalized to control and 

each treatment group was assessed for statistical significance using paired Student's t-

tests.  Data in the results are expressed as percent of control ± standard deviation.  Error 

bars in figures represent standard error of the mean.  Raw data values for evoked, 

spontaneous, and miniature IPSCs are found in Table 3.1. 
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Results 

 

Evoked inhibitory synaptic transmission in the SON is mediated by both GABAergic and 

glycinergic components 

The in vivo experiments demonstrated modulation of SON response properties 

with application of both glycine and GABAA receptor antagonists.  Both antagonists 

increased acoustically driven spike rates and diminished the precision of phase locking.  

To further characterize inhibitory transmission in the SON, I used in vitro whole cell 

voltage clamp techniques to record evoked and spontaneous IPSCs while 

pharmacologically manipulating GABAergic and/or glycinergic transmission.   

IPSCs were evoked by placing a stimulating electrode on input fibers dorsomedial 

to the border of SON while excitatory inputs were blocked with 40 µM DNQX and 50 

µM AP5.  Evoked IPSCs (eIPSC) were observed in 20/21 neurons tested.  eIPSC 

amplitude was variable with an average peak amplitude of -975 ± 957 pA (Table 3.1).  In 

order to isolate the GABAergic component of eIPSCs, 500 nM strychnine was bath 

applied.  Peak eIPSC amplitude was reduced in 12/12 cells on average to 50.6 ± 16.8% of 

the control value (Fig 8A).  Similarly, blocking GABAA receptors with SR95531 (20µM) 

reduced eIPSC amplitude to 45.2 ± 19.4% of control (n = 14).  Simultaneous application 

of both SR95531 and strychnine completely abolished eIPSCs in 9 of 13 cells.  The 

residual current for the population was 5.3 ± 6.9% of control (Table 3.1).  In addition to 

amplitude modulation, changes in the eIPSC waveform kinetics were also evident (Fig  
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3.1A).  I compared the halfwidth and τdecay values of isolated GABAergic and glycinergic 

eIPSC components.  Blocking GlyRs broadened the eIPSC and increased both the 

halfwidth (145.3 ± 59.9% of control, p < 0.05, n = 12) and τdecay (158.1 ± 72.1% of 

control, p < 0.05, n = 12; Fig 3.1Cii, D).  Blocking GABAA receptors with SR95531 had 

a complementary effect on kinetics, narrowing the eIPSC waveform by reducing 

halfwidth (65.3 ± 25.6% of control, p < 0.01, n = 14) and τdecay (66.5 ± 19.7% of control, 

p < 0.01, n = 14; Fig 3.1Ci,D).  Area under the eIPSC waveform was also reduced in both 

drug conditions (strychnine: 60.7 ± 22.1% of control, p < 0.01, n = 12; SR95531: 31.1 ± 

22.4%, p < 0.01, n = 14; Fig 3.1B).  These data suggest that both GABAergic and 

glycinergic transmission occur in the SON, that each contribute equally to the peak 

eIPSC amplitude, but that the GABAergic transmission provides the majority of the total 

eIPSC current. 

 

Glycine and GABA are co-released at some inhibitory terminals in SON 

 Kuo et al. (2009) showed evidence suggesting that the most likely source of 

glycine in NA was from terminals that co-release GABA and glycine.  Given our findings 

that both GABAergic and glycinergic synaptic transmission act on SON neurons, several 

possible input arrangements exist for these two modes of inhibition: 1) SON neurons 

could receive independent, purely GABAergic and purely glycinergic inputs, 2) these 

inputs could be provided by GABA/glycine co-release terminals as reported in NA (Kuo  

et al. 2009), or 3) there could be a mixture of single transmitter and co-release terminals.   
 
To differentiate between these possible input arrangements, I evaluated the properties  
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Figure 3.1:  Evoked IPSCs in the SON contain GABAergic and glycinergic components.  
A. Evoked IPSC (eIPSC) traces from a representative SON neuron during pharmacological 
treatments shows a significant decrease in amplitude with GlyR block (strychnine).  B. 
Population data showing the effect of treatments on eIPSC area.   C. Normalized eIPSC traces 
showing kinetic modulations during drug treatments (average of 10 traces in each condition).  
Ci. Bath application of SR95531, a GABAA receptor antagonist results in faster eIPSC 
kinetics.  Cii. Blockade of GlyRs with strychnine yielded slower eIPSC kinetics.  D. 
Population data for τ decay values used for analysis of kinetics of eIPSCs.  Dashed line 
represents normalized control value.  *Significantly different from control, p<0.05, **p<0.01.  
***Significantly different from all other conditions, p<0.01. 
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of spontaneous and miniature IPSCs.  Statistical analysis of spontaneous and miniature 

events revealed no significant differences so the data sets were pooled and will be 

referred to as sIPSCs (see Methods).  

 We held SON cells at -60mV for 30 or 60 second epochs while blocking 

excitatory input with DNQX and AP5 in 24 neurons.  sIPSCs were common with an 

average frequency of 8.42 ± 6.25Hz (Table 3.1).  Blocking GABAA receptors 

significantly reduced the sIPSC frequency (27.8 ± 23.5% of control, p < 0.01, n = 21), 

suggesting that many sIPSCs were purely GABAergic.  SR95531 application also 

reduced the average peak amplitude of the remaining sIPSCs (76.4 ± 19.1% of control, p 

< 0.001, n = 21) (Fig 3.2A,C,D).  In contrast, strychnine application had no significant 

effect on sIPSC frequency, but there was a slight trend toward fewer events (85.6 ± 

25.6% of control, p > 0.05, n = 17; Fig 3.2C).  However, peak sIPSC amplitude was 

significantly reduced (66.2 ± 32.3% of control, p < 0.01, n = 17; Fig 3.2A,D).  No sIPSCs 

were observed during simultaneous application of strychnine and SR95531 (n = 13).  One 

additional observation was that during the control condition there was typically a few 

very large (>400pA) events as seen in Figure 3.2A.  These events were absent in the drug 

conditions, but returned with recovery.  These data taken together are consistent with an 

input arrangement where each SON neuron receives a substantial portion of purely 

GABAergic synaptic terminals, but few, if any, purely glycinergic terminals.  Rather, the 

glycinergic component appears to be co-released with GABA at some terminals.  I further 

analyzed the distributions of sIPSC kinetics in each condition to confirm these findings.   
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Figure 3.2:  Spontaneous postsynaptic currents are modulated by blockade of both GABA and 
glycine receptors.  A. Representative 5-s epochs of spontaneous (s)IPSC records in each experimental 
condition.  B. Expanded 100-ms segments from the traces in A showing condition dependent decay 
kinetics.  Bi. Control condition showing heterogeneous kinetic profiles including slow (arrow) and fast 
(arrowhead) events.  Bii. Isolated GABAergic sIPSCs tended to have slower kinetics (quantified in F).  
Biii. Isolated glycinergic sIPSCs had faster kinetics.  C. Population data for normalized frequency of 
sIPSCs. Frequency was significantly reduced during application of SR95531 but not strychnine.  D. 
Population data for normalized amplitude of sIPSCs. Both SR95531 and strychnine significantly 
reduced sIPSC amplitude when bath applied.  E. Cumulative probability analysis of τ decay values 
revealed a monophasic rise in control conditions that was significantly shifted to shorter or longer 
values in SR95531 and strychnine, respectively (P < 0.01, Kolmogorov-Smirnov test).  F. 
Quantification of kinetic measures show a decrease in halfwidth and τ decay values in SR95531 and 
an increase in τ decay values in strychnine. Strychnine did not significantly change halfwidth.  
*P<0.05, **P<0.01, significantly different from control; pooled data include both sIPSCs and 
miniature IPSCs. 
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The evoked IPSC data show that isolated GABAergic and glycinergic 

conductances have very different decay kinetics.  If sIPSCs arose from purely 

GABAergic or glycinergic terminals, then I would expect a bimodal distribution of sIPSC 

kinetics.  However, τdecay values for sIPSCs recorded in the control condition typically 

had a broad continuous distribution from slow to fast events.  Figure 3.2Bi shows 

example events from the control condition in panel A illustrating this heterogeneity. The 

first event (arrow) has a slow decay, whereas the second event (arrowhead) is notably 

faster.  Application of strychnine shifted the sIPSC population towards slower events (Fig 

3.2Bii,E,F).  Conversely, SR95531 application resulted in mostly faster sIPSCs (Fig 

3.2Biii,E,F).  Analysis of the cumulative probability plot for all τdecay values from 14 cells 

in which both drugs were applied shows a monophasic rise in the control condition 

consistent with the broad and continuous distribution of values (Fig 3.2E).  τdecay  kinetics 

of sIPSCs in both strychnine and SR95531 were significantly different from the control 

condition  and different from each other (Kolmogorov-Smirnov test, p < 0.01).  Taken 

together the observations of antagonist effects on τdecay distributions in conjunction with 

their influences on sIPSC frequency and amplitude modulation shown above suggests 

that the most parsimonious model of SON input arrangements includes both purely 

GABAergic terminals and some GABA/glycine co-release terminals.  While I cannot rule 

out the possibility that SON neurons receive some purely glycinergic terminals, our data 

do not support this hypothesis. 
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Discussion 

Inhibitory inputs to the SON 

 Our in vitro data provide additional insights into the nature of GABA and 

glycinergic input to SON neurons.  In all of the cells tested, I observed a GABAergic and 

glycinergic component during evoked IPSCs.  Isolated GABAergic currents had a longer 

duration while the glycinergic component was shorter when compared to control.  In the 

SON, the GABAergic component contributed about 65% of the total inhibitory current.  

Evoked IPSCs in the control condition were similar in kinetics but larger in magnitude 

than evoked IPSCs seen in the NA (Kuo et al. 2009) where GABA and glycine were 

suggested to be co-released.  Our analysis of sIPSCs suggested a similar input 

arrangement of inhibitory transmission in the SON.  I found that blocking GABAergic 

transmission resulted in a significant decrease in the frequency of spontaneous events, 

indicating that the SON receives many inhibitory inputs that are purely GABAergic.  In 

contrast blocking GlyRs did not reduce sIPSC frequency, but did significantly reduce 

sIPSC amplitudes suggesting that the glycinergic component of sIPSCs was not 

independent of GABA release.  Kinetic analysis of sIPSCs were consistent with a co-

release model of GABA and glycine.  First, if GABA and glycine were released in 

separate vesicles, one would predict a bimodal distribution of sIPSC decay kinetics 

reflecting each of the two putative sources of input.  Instead I observed that sIPSCs in the 

control condition had a continuous distribution of τdecay values.  Second, sIPSC amplitude 

decreased significantly in both drug conditions consistent with GABA and glycine co-

release.  Finally, the control condition was the only condition where I saw very large 
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(>400pA) events (Fig 3.2A).  I hypothesize that these larger events, which tended to have 

fast kinetics (data not shown), are the result of summation of co-released transmitters.   

 

Role of Co-release in the Avian Brainstem  

 Co-release of GABA and glycine has been demonstrated at many synapses in the 

brain (Jonas et al. 1998, Tanaka and Ezure 2004, Dugué et al. 2005, Wojcik et al. 2006, 

Lu et al. 2008).  Kuo et al., (2009) reported co-immunolocalization of GABA and glycine 

in NA, NM and NL, however, physiological recording of glycinergic transmission was 

only observed in the NA.  Burger et al. (2005a) showed that many inhibitory terminals 

across NA, NM, and NL arise from collateral branches of single SON neurons.  In the 

present study, I observed GlyR staining in the SON as well as mixed GABA/glycinergic 

synaptic transmission in vitro.  In the mammalian auditory brainstem circuit one source 

of inhibitory input, the medial nucleus of the trapezoid body, is known to co-release 

GABA, glycine and glutamate from terminals innervating the lateral superior olive early 

in development (Gillespie et al. 2005).  Release from MNTB terminals shifts to primarily 

glycinergic output following hearing onset (Kandler and Friauf 1995, Kotak et al. 1998, 

Kim and Kandler 2003, Nabekura et al. 2004, Gillespie et al. 2005).  Our data suggest 

that co-release in the SON is not likely due to developmental processes since I observed 

the physiological and anatomical hallmarks of co-release in animals up to P23.  Hearing 

onset is around E11 in chickens, and the auditory system is considered mature before 

hatching (by E18 for review see: Rubel and Fritzsch 2002).  However, a comprehensive 

developmental study will be required to completely rule out further developmental 

changes that may occur throughout maturation.    
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While the source of the GABA/glycine co-release terminals remains unknown, an 

appealing hypothesis is that SON neurons are providing both GABA and glycine to their 

targets.  Co-immunostaining for GABA and glycine was observed in NM, NA, and NL 

(Kuo et al. 2009), and the SON is known to provide the dominant inhibition to these 

targets.  However, at present, it appears that the mode of inhibition in those targets is 

determined by the complement of receptors expressed by the postsynaptic cells.  A 

similar multi-target co-release arrangement has been described in a mammalian hindbrain 

circuit (Dugué et al. 2005).  This arrangement seems plausible in the avian auditory 

brainstem where the primary source of inhibition (SON) provides input to both nuclei 

that process timing information and areas involved in intensity processing (Takahashi and 

Konishi 1988).  The kinetically slow GABAergic input to NM and NL has been shown to 

improve temporal selectivity and coincidence detection (Funabiki et al. 1998, Yang et al. 

1999, Monsivais et al. 2000, Fukui et al. 2010).  The functional significance of 

GABA/glycine co-release within the SON is at present unknown.  The in vivo 

experiments performed in this study demonstrated that GABAergic and glycinergic 

inhibitory inputs modulated the response properties of SON neurons similarly.  The 

sIPSC analysis strongly suggests that SON neurons receive mixed inhibitory inputs 

composed of both co-release and purely GABAergic terminals.   The possibility for 

diverse functional roles for this complement of inhibitory circuitry in the avian auditory 

brainstem should be investigated in future studies. 
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CHAPTER IV 

Slowly emerging glycinergic transmission enhances 

inhibition in the temporal processing pathway  

of the avian auditory system 
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Abstract  
  

 Glycinergic synaptic transmission is a prominent modulator in the mammalian 

sound localization circuit, for neurons specialized to encode temporal information. 

However, hallmarks of glycinergic signaling have been absent or rarely observed in 

studies of analogous neurons in birds.  Previous physiological studies of these neurons 

indicate that GABA antagonist application completely blocks inhibition.  Further, 

spontaneous or evoked glycinergic currents have not been observed.  However, recent 

studies have shown that, glycine is indeed co-released with GABA in the auditory nuclei 

that are not generally associated with the temporal processing pathway, and that glycine 

can be immunohistochemically detected at terminals in all nuclei including those 

specialized for temporal processing; nucleus magnocellularis (NM) and nucleus laminaris 

(NL) (Kuo et al., 2009; Coleman et al., 2011). Here, I show immunohistochemical 

evidence of glycine receptor (GlyR) expression in NM and NL.  Using whole-cell 

recordings in acute slices I demonstrate that exogenous glycine application evokes 

strychnine sensitive currents in NM and NL.  Additionally, I show that synaptic 

stimulation at high but physiologically relevant frequencies evokes a slowly emerging 

glycinergic response in NM that increases in amplitude over the course of the stimulus. 

The glycinergic component represented approximately 30% of the inhibitory potential at 

the end of the 50-pulse stimulus.  Further, I show that glycine transmission is 

computationally relevant for these neurons as its elimination results in reduced inhibitory 

efficacy for suppression of discharges evoked by current injection into NM neurons. 
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Introduction 

  

 Animals use differences in the arrival time of sound at each ear, or interaural time 

disparities (ITDs), to compute the location of low frequency sound sources. In 

vertebrates, ITDs are computed by binaural coincidence detecting neurons in the 

brainstem.  Coincidence detecting neurons reside in nucleus laminaris (NL) in birds 

(Parks and Rubel, 1975; Sullivan and Konishi, 1986; Carr and Konishi, 1990; Pena et al., 

1996; Burger et al., 2011) and in the medial superior olive (MSO) in mammals (Goldberg 

and Brown, 1969; Yin and Chan, 1990).   

 Inhibitory synaptic transmission is a key feature of sound localization circuitry, 

contributing to temporal precision over a broad range of sound intensities. In mammals, 

precisely timed feed-forward glycinergic input from the medial nucleus of the trapezoid 

body (MNTB) modulates the ITD selectivity of MSO neurons (Brand et al., 2002; Pecka 

et al., 2008).  Until recently, investigation of avian systems has focused on slow, 

depolarizing feedback GABAergic inhibition from the superior olivary nucleus (SON) to 

its targets in the brainstem (Hyson et al., 1995; Yang et al., 1999; Monsivais et al., 2000; 

Monsivais and Rubel, 2001; Yamada et al., 2013), while observations of glycinergic 

transmission in these nuclei have been few and limited by several factors.  For example, 

previous studies have shown that glycine immunoreactivity is sparse in NM and NL 

(Code and Rubel, 1989).  Further, whole-cell recordings in these nuclei have indicated 

that both spontaneous and evoked inhibitory synaptic currents were completely blocked 

by application of GABAA receptor antagonists (Funabiki et al., 1998; Yang et al., 1999; 

Monsivais et al., 2000; Lu and Trussell, 2000).  Recent work has revealed glycinergic 
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transmission in other nuclei of this circuit in birds.  Inhibitory input to the nucleus 

angularis (NA) (Kuo et al., 2009) and SON (Coleman et al., 2011) is marked by co-

release of GABA and glycine at some synapses.  These studies further showed that 

GABA and glycine co-localize in the terminals that synapse onto NA and SON neurons, 

but paradoxically also on neurons in NM and NL where glycinergic transmission was not 

observed electrophysiologically (Kuo el al., 2009; Coleman et al., 2011).  Co-release of 

transmitter is long known to occur in developing synapses (Gillespie et al. 2005; 

Awatramani et al. 2005) but recently has been demonstrated in mature neurons (Kuo et 

al., 2009; Coleman et al., 2011).  Recent work in the mammalian cochlear nucleus, where 

glycine is the dominant inhibitory transmitter, has shown GABA co-release when 

synapses are stimulated at high frequencies (Nerlich and Milenkovic, personal 

communication).  

 Here I report expression of GlyRs in all principal nuclei of the mature avian ITD 

computing circuit.  Physiological tests show that these GlyRs are functional in NM and 

NL where glycinergic transmission has not been previously observed.  Further, I 

demonstrate release of synaptically evoked glycine in response to long duration, high 

frequency stimulation in NM.  Finally, I show that this glycinergic component contributes 

to the efficacy of inhibition in NM during high frequency stimulation. 

 Co-release of transmitter is long known to occur in developing synapses 

(Gillespie et al. 2005, Awatramani et al. 2005),  but recently has been shown in mature 

neurons (Kuo et al. 2009, Coleman et al. 2011).  Recent work in the mammalian cochlear 

nucleus, where glycine is the dominant inhibitory transmitter, has shown GABA co-
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release when synapses are stimulated at high frequencies (Nerlich and Milenkovic, 

personal communication).  

 Here I show expression of GlyRs in all principal nuclei of the mature avian ITD 

computing circuit and that these GlyRs are functional in NM and NL where glycinergic 

transmission has not been previously observed.  Further, I demonstrate release of 

synaptically evoked glycine in response to long duration, high frequency stimulation in 

NM.  Finally, I show that the glycinergic component contributes to the efficacy of 

inhibition in NM during high frequency stimulation. 
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Methods  

 All procedures were approved by the Lehigh University Animal Care and Use 

Committee. 

 

Immunohistochemistry 

 Immunohistochemical staining for GlyR followed protocols described in Coleman 

et al., (2011). Briefly, four P5 chickens were deeply anesthetized and transcardially 

perfused with PBS followed by 4% PFA in PBS, pH 7.4. Brains were removed and 

postfixed in 4% PFA overnight at 4°C. Brains were rinsed and blocked, then sectioned at 

30 µm (HM650V, Microm). Sections were transferred to a solution (containing: 10mM 

sodium citrate; 0.05% Tween 20; pH 6.0) for antigen retrieval and maintained at 80°C in 

a water bath for 30 min.  Sections were cooled to 27 °C, rinsed, then blocked in 10% 

normal goat serum for 1 hour. Sections were incubated overnight at 4°C in solution 

containing: 5% normal goat serum, anti-neurofilament (cat. # AB1987; 1:200, Millipore) 

and anti GlyR (cat#:146011, 1:1,000; Synaptic Systems). Sections were rinsed then 

incubated for 2h with secondary antibody conjugated to AlexaFluor 488 goat anti-mouse 

and AlexaFluor 633 goat anti-rabbit to label GlyR and Neurofilament, respectively 

(Invitrogen). Sections were mounted in Vectashield (Vector Laboratories) and confocal 

images were captured (LSM 510 Meta, Zeiss). Images were processed using Photoshop 

(Adobe Systems) to match pixel intensity distributions between color channels. No 

staining was observed when primary antibodies were absent or when GlyR antibody was 

preabsorbed with antigen peptide (Coleman et al., 2011).  
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Western blot analysis 

 Chicken lung, chicken brainstem, and gerbil brainstem tissue were homogenized 

in lysis buffer (10mM Tris-HCl pH 7.4, 0.32M sucrose, 5mM EDTA pH 8) supplemented 

with 0.1mM PMSF and complete EDTA-free protease inhibitor cocktail (Roche), mixed 

with an equal volume of 4% SDS, and sonicated.  Membrane fractions were collected by 

centrifugation at 13,000 x g (4°C) for 20min with three washes in supplemented lysis 

buffer.  Membranes were resuspended in modified RIPA buffer (25mM Tris pH 7.6, 

150mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 1% SDS) supplemented with 

1mM PMSF for 10min at room temperature and measured using the DC Protein Assay 

(Bio-Rad).  20µg of protein was separated by 10% reducing SDS-PAGE and then 

electrotransferred onto a 0.2µm PVDF membrane for Western analysis. Antibodies used: 

mouse anti-GlyR (1:500; Synaptic Systems, clone mAb4a); HRP-conjugated goat anti-

mouse IgG (1:50,000; Promega).  ECL-Plus (GE Healthcare) was used for 

chemiluminescent detection with Kodak BioMax film. 

In vitro brain slice preparation: 

 For in vitro physiology, 42 white leghorn chickens aged E17-P5 were used.  

Brainstem slices were prepared and maintained as in Coleman et al., (2011). 

In vitro whole-cell recordings: 

Borosilicate capillary glass pipettes (1B120F-4, WPI) were pulled to a resistance 

of 4-8 MΩ using a two-stage puller (PC-10, Narishige) and back-filled with internal 

solution (for voltage clamp containing in mM: 105 CsMeSO3, 35 KCl, 5 EGTA, 10 

HEPES, 1 MgCl2, 4 ATP-Mg, and 0.3 GTP-Na, pH 7.2 adjusted with KOH).  In current 
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clamp experiments, CsMeSO3 was exchanged for K-gluconate and CsCl for KCl.  5 mM 

QX314 was added to the internal solution to prevent antidromic spiking except during 

functional testing.  These internal solutions yielded depolarizing inhibitory inputs 

observed in the avian brainstem. In voltage clamp, series resistance was compensated at 

60-80% (Multiclamp 700B, Molecular Devices). The signal was digitized with a Digidata 

1440 data acquisition board and recorded using Clampex software (Molecular Devices).   

Inhibitory inputs were pharmacologically isolated in ACSF containing 6,7-

dinitroquinoxaline-2,3-dione (DNQX) (40µM) and D-2-amino-5-phosphonopentanoic 

acid (AP5) (50µM) to block AMPA and NMDA receptors.  GlyRs were blocked using 

strychnine (0.5-1µM). GABAA receptors (GABAARs) were blocked using SR95531 

(20µM).  GABABRs were blocked with CGP55845 (2µM) during high frequency 

stimulation protocols.  Pharmacological agents were supplied from Tocris except where 

indicated. 

GlyR activation via pressure application of glycine 

 Pipettes for pressure application of glycine were pulled to a resistance of ~1MΩ 

and placed within 50µm of the neuron soma. 100ms glycine (Sigma) (0.5-1mM in ACSF 

containing DNQX and AP5) puffs were applied using  ~2.5psi pressure injection (PLI 

100A, Warner Instruments).   

Synaptic activity in NM 

 Inhibitory postsynaptic potentials or currents were evoked with 50µsec stimulus 

pulses with a stimulus isolation unit (Isoflex, A.M.P.I. Inc.) through a concentric bipolar 
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electrode (TM53CCINS, WPI) placed to the ventrolateral perimeter of NM.  Stimulus 

magnitude (range 10-90V) was gradually increased until amplitudes stabilized at their 

maximum.  Stimulation protocols ranged from single events to trains of 50 pulses at 

frequencies of 200 and 333Hz.  For 50-pulse trains, the glycinergic component was 

analyzed on a pulse-by-pulse basis where the average amplitude at each pulse was 

compared to control and GABAAR block conditions.  The average residual component 

remaining during block of both GABAARs and GlyRs was subtracted from each 

condition before comparisons were made. 

Functional testing of glycinergic component 

 The functional test for glycinergic efficacy consisted of suprathreshold current 

injection trains (duration 0.5-0.6ms ranging from 950-1350pA) at 50 Hz for 50 pulses.  

During this train, synaptic inhibitory input was evoked at 200 Hz for 40 pulses (200ms) 

using a bipolar tungsten electrode.  Spike probability was calculated and compared 

between control and strychnine conditions during the 250ms period initiated at the first 

pulse of inhibitory stimulation. 
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Results  

GlyR immunohistochemistry in the auditory brainstem  

 Previous work has documented the existence of glycine immunopositive synaptic 

terminals apposed to neurons in several avian auditory nuclei, including NM and NL 

(Code & Rubel, 1989; Kuo et al., 2009; Coleman et al., 2011).  These results were 

paradoxical considering glycine transmission has not been physiologically confirmed in 

NM and NL.  However, other studies have shown postsynaptic responses from multi-

transmitter releasing terminals is determined solely by the complement of receptors 

expressed by the postsynaptic neuron (Dugue et al., 2005).  To resolve whether glycine 

signaling is indeed present in ITD processing nuclei, I investigated expression of GlyR in 

NM and NL (Fig. 1). GlyR immunoreactivity was robust in NM and NL (Fig. 1A-C) 

where subcellular staining appeared punctate and was absent from the nucleus.  GlyR 

staining confirmed reports of glycinergic synaptic transmission in NA and SON (Kuo et 

al., 2009; Coleman et al., 2011) (Fig. 1D). Antibody specificity was confirmed using 

Western analysis (Fig. 1F) and antigen preabsorption (Coleman et al., 2011).	  

Exogenous glycine application evokes strychnine sensitive currents in NM and NL 

 Our immunohistochemical evidence suggested that GlyRs are expressed in NM 

and NL, nuclei specialized to process temporal features of sound.  Since glycinergic 

transmission has never been observed in these nuclei, I tested whether glycinergic 

responses could be observed during exogenous glycine application. 100ms glycine puffs 

were applied to neurons in NM, NL and SON in the presence of glutamate and GABA 

receptor antagonists.  Application of glycine evoked inward current that was almost  
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Figure 4.1:  Glycine receptors are expressed in all four auditory brainstem nuclei.           
A. Low magnification confocal image of timing nuclei (NM, left and NL, right) neurons 
labeled for GlyR (green) and neurofilament (red).  B. GlyR staining in the NM is robust in the 
somatic region.  C. NL neurons are also immunopositive for GlyRs.  D. Low magnification 
image of NA shows many neurons with GlyR staining.  E. Image of NM neurons shows no 
GlyR staining when the primary antibody was omitted.  F. Western blot analysis of GlyR 
antibody specificity shows no band in the chicken lung tissue (negative control, Fi) and bands 
in both gerbil (positive control, Fii) and chick brainstem (Fiii) tissues.  Scale bars: A,D = 200 
µm; B,C,E = 50 µm. 
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entirely abolished during bath application of strychnine (0.5-1µM), a GlyR antagonist.  

Figure 2A shows the glycine response in control, strychnine, and washout conditions for 

an E19 NM neuron.  Similar responses were observed for all neurons tested in the three 

nuclei (Fig. 2B) and were consistent across the age range (E18-P5).  Kuo et al., (2009) 

demonstrated similar results for NA.  Taken together with the immunohistochemical 

results, these data indicate that functional GlyRs exist in all four brainstem nuclei at ages 

considered mature for the chick auditory system.   

High frequency stimulation evokes glycine release in NM  

 A number of studies have indicated that inhibitory transmission in the NM and 

NL are completely blocked by GABAAR antagonists (Funabiki et al., 1998; Yang et al., 

1999; Monsivais et al., 2000; Lu and Trussell, 2000).  Indeed, I too saw little evidence of 

glycinergic activity in spontaneous events or responses evoked by single-pulse stimuli in 

current (Fig. 3A-B) or voltage clamp (not shown).  However, few published studies of 

NM have evoked inhibitory synaptic transmission at stimulation rates approaching the 

highest acoustically driven rates observed in vivo for SON neurons.  Previous work from 

our group suggests that SON neurons can reach spike rates exceeding 200Hz during 

intense acoustic stimulation (Coleman et al., 2011).  Thus, I tested whether prolonged 

high frequency stimulation could evoke glycine release in the NM.  Our protocol 

consisted of 50-pulse stimulus trains at 200 and 333Hz during whole cell recordings in 

voltage or current clamp. Figure 3C shows averaged IPSP traces from a representative 

NM neuron stimulated at 200Hz in each pharmacological condition. The GABAAR 

antagonist SR95531 reduced but did not eliminate the evoked IPSP.  The residual IPSP 
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Figure 4.2:  Exogenous glycine application evokes strychnine sensitive currents in the 
SON, NM and NL.  A. Representative traces from an E19 NM neuron show the current 
response from a 100ms puff of glycine (1mM) onto the cell soma in control, strychnine and 
recovery conditions.  B. Population data from the 100ms glycine puff reveals a similar trend 
during GlyR block and washout in the three brainstem nuclei tested.    
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appeared to accumulate over the course of the stimulus and reached approximately 30% 

of the control IPSP by pulse 50 (200Hz: 30.7 ± 7.9%, n=4; 333Hz: 27.5 ± 7.2%, n=4; 

Fig. 3D). This component was eliminated with the addition of 0.5mM strychnine and 

recovered after washout (Fig. 3C). IPSP amplitude recovered near control levels after 

SR95531 washout.   

 Evoked IPSCs followed a similar response pattern in voltage clamp.  Again, 

application of SR95531 resulted in an incomplete suppression of the IPSC and the 

residual component was nearly abolished after the addition of strychnine.  The 

glycinergic current was greatest at pulse 50 and represented ~15% of the control current 

at both 200 and 333Hz stimulus frequencies (200Hz: 14.5 ± 1.8%, n=7; 333Hz: 14.4 ± 

3.5%, n=7).  These results suggest that glycine contributes to inhibition in NM under high 

but physiologically relevant firing rates observed in vivo for SON neurons. 

GlyR block reduces the efficacy of inhibition in NM 

 To test the functional efficacy of glycinergic input to NM, I used a protocol 

similar to Monsivais et al., (2000) (see Methods) where 50 Hz suprathreshold current 

pulse trains were injected into NM neurons to evoke spiking while inhibitory fibers were 

simultaneously stimulated during a 200 ms window (40 pulses at 200Hz) (Fig 4A,B).  

Representative traces are shown in Figure 4A for an NM neuron in each condition.  

Activation of inhibitory inputs in the control condition generally reduced spiking by at 

least 40% during the 250ms following the onset of evoked inhibition (see Methods).  

Strychnine application lead to a significant increase in firing rate during inhibitory input 

activation (control: 22.3 ± 5.9%; strychnine 53.9 ± 13.3%; n=4, p = 0.036; Fig 4B).   
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Figure 4.3:  High frequency stimulation evokes glycinergic transmission in NM.            
A. Traces show miniature IPSPs that are completely abolished during SR95531 application 
confirming purely GABAergic events.  B. Overlay of averaged IPSP traces again confirm 
purely GABAergic events evoked during single pulse stimulation.  C. Averaged traces of 
IPSPs evoked using a 200Hz, 50-pulse stimulus in each pharmacological condition.  
GABAAR block reduces the summed IPSP amplitude leaving a residual component that is 
eliminated by GlyR block.  Color code for pharmacological condition is the same for A-C.  D. 
Population data for the average magnitude of the glycinergic component analyzed pulse-by-
pulse during the high frequency train stimuli. The glycinergic component was calculated by 
dividing the IPSP amplitude at pulse n in SR95531 by the IPSP amplitude at pulse n in 
control. 
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These results suggest that glycine release evoked under physiologically relevant stimulus 

conditions contributes to the overall efficacy of the inhibition, and modulates the 

excitability of NM neurons. 
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Figure 4.4:  Blocking GlyRs decreases the ability of evoked IPSPs to suppress action 
potentials in NM.  A. Representative current clamp traces from an E19 NM neuron in each 
pharmacological condition.  Application of strychnine resulted in an increase in the firing rate 
during the inhibitory time window (asterisks in strychnine condition represent action 
potentials suppressed in the control).  B. Population data for the spike probability during the 
inhibitory time window in control and strychnine conditions shows a significant increase in 
spike probability during strychnine application (n=4, p=0.035).  Grey lines connect the spike 
probability at each condition for each cell tested. 
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Discussion 
 

GlyR immunohistochemistry and receptor function 

 In this report, I show for the first time robust expression of GlyRs and evidence of 

synaptically evoked glycine release in nuclei specialized for temporal processing in the 

avian auditory system. Physiological evidence of glycine transmission in this circuit has 

only recently been documented (Kuo et al., 2009; Coleman et al., 2011).  These studies 

demonstrated synaptically evoked GABA/glycine co-release in SON and NA. Together, 

these results indicate that anatomical pre- and postsynaptic hallmarks of glycinergic 

transmission observed in these nuclei are confirmed by electrophysiological evidence of 

glycinergic signaling in all nuclei of this circuit.  

Glycinergic transmission in the brainstem 

 Previous studies suggested that glycinergic transmission accounts for 

approximately 50% of the amplitude of single-pulse evoked IPSCs in the NA and SON 

(Kuo et al., 2009; Coleman et al., 2011).  In NM I confirmed previous results that glycine 

transmission is not evident from recordings of spontaneous release or release evoked by 

single-pulse stimuli.  Rather, our results indicate that glycine transmission was only 

induced during high frequency stimulation. The glycinergic component built over the 

course of the response to comprise up to 30% of the total IPSP by the end of the train.  

Our protocols simulated high but physiologically relevant input frequencies, comparable 

to firing rates observed for SON neurons in response to intense acoustic stimuli in vivo 

(Coleman et al., 2011).   
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Role of glycine  

 Glycinergic transmission in NA and SON results from the co-release of GABA 

and glycine from inhibitory terminals.  One function of glycine was described in vivo for 

SON where it aids in maintenance of phase-locking to acoustic stimuli (Coleman et al., 

2011). The role of glycine in NM and NL has not yet been investigated in vivo. Given the 

results of the current study, I propose that glycinergic transmission would be recruited 

during intense stimulation when GABA release may be subject to synaptic depression 

(Lu et al., 2005).  This hypothesis is plausible for several reasons.   First, glycine and 

GABA are trafficked by the same vesicular transport protein, vesicular amino acid 

transporter (VIAAT also known as VGAT) (Wojcik et al., 2006). VIAAT has been 

localized at both GABA- and glycinergic terminals (Chaudhry et al., 1998; Dumoulin et 

al., 1999).  Since terminals surrounding NM and NL neurons are immunopositive for 

both GABA and glycine, co-release is likely as has been shown in NA and SON (Kuo et 

al., 2009; Coleman et al., 2011).  The fact that glycine is only released during high 

frequency stimulation may suggest that glycine is only recruited into vesicles by VIAAT 

when GABA is depleted in the terminal.  Previous studies have demonstrated that 

transmitter transport into vesicles is concentration dependent.  The relative abundance of 

GABA or glycine may suppress transport of the complimentary transmitter into vesicles 

(Burger, 1991). It was recently shown that glycinergic transmission can be suppressed, 

and GABA transmission potentiated via GLYT2 block or increase in GABA synthesis 

(respectively) in cartwheel cells that co-release GABA and glycine (Apostolides and 

Trussell, 2013). Thus, depletion of GABA during intense and prolonged inhibitory 

stimulation in NM may lead to the recruitment of glycine into vesicles to maintain the 
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inhibitory tone.  Evidence for a similar mechanism has recently been observed in the 

mammalian cochlear nucleus where GABAergic transmission is recruited during high 

frequency stimulation of primarily glycinergic inputs to bushy cells (personal 

communication, Jana Nerlich and Ivan Milenkovic). 

Source of glycine 

 The source of glycinergic terminals in NM and NL is unknown, but there are 

several candidates.  The transmitter staining patterns of SON neuron somas suggests that 

high levels of both GABA and glycine are present in populations of these cells (Coleman 

et al., 2011).  These neurons would seem to be the most likely glycine source, but it is 

odd that spontaneous glycine release occurs in NA and SON but not NM and NL, as 

these nuclei share SON collateral inputs (Burger et al., 2005).  However, it is possible 

that different subsets of SON fibers project to subsets of target nuclei. Whether the 

GABA/glycine positive SON neurons are the population projecting to NM and NL is 

unresolved and requires further investigation.  

  Several studies have described the existence of a small population of cells 

between the NM and NL that are immunopositive for markers of GABA and glycine 

transmission (Müller, 1987; Carr et al., 1989; von Bartheld et al., 1989; Kuo et al. 2009).  

Yamada et al., (2013) showed that these neurons receive excitatory input from NM and 

provide inhibitory input to low frequency NL neurons.  It is possible that glycine release 

was evoked from these cells in the current study.  This is speculative, however, since the 

connectivity of these cells to areas other than NL is not fully characterized.   
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Summary 

 Our study demonstrates that functional GlyRs are expressed in four principal 

nuclei of the avian auditory brainstem and that glycinergic transmission is evoked in NM 

by high frequency stimulation.  Importantly, the glycine was recruited at stimulus 

frequencies within the range of firing frequencies observed for SON neurons in vivo. 

Additionally, glycinergic transmission contributes to the efficacy of inhibition for 

suppression of spikes evoked by current injections into NM neurons.   These findings 

indicate that glycinergic inhibition is more ubiquitous in the avian brainstem than 

previously understood, and that models of ITD processing in avian circuitry must 

incorporate glycinergic components of inhibition.  
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CHAPTER V 

Glycinergic transmission modulates inhibition 

in the avian brainstem 
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Abstract  
  

Co-transmission of several neurotransmitters from a single neuron is becoming 

increasingly prevalent as the physiology of many neuronal circuits is finely dissected. 

Recent studies have shown that glycine is co-released with GABA in avian auditory 

brainstem nuclei involved in the computation of interaural time disparities (ITDs), a cue 

used in sound localization processing (Kuo et al. 2009, Coleman et al. 2011). This circuit 

relies on inhibitory input to maintain the temporal precision necessary for ITD encoding.  

I utilize this circuit and perform in vitro whole-cell recordings to assess the consequences 

of glycine receptor (GlyR) activation on inhibitory transmission.  To this end, I evaluated 

the effect of an exogenous glycine pre-pulse on synaptically evoked inhibitory currents in 

the nucleus magnocellularis (NM) and the superior olivary nucleus (SON).  Activation of 

GlyRs reduced the amplitude of inhibitory postsynaptic currents evoked during a 100Hz 

train stimulus in both nuclei.  This modulatory effect was blocked during application of 

strychnine and recovered after washout.  Changes in the driving force of Cl- ions was the 

likely cause of the observed occlusion as activation of GlyRs was insufficient to cause the 

occlusion and switching the direction of Cl- ion flux resulted in an enhanced evoked 

IPSC amplitude. These results suggest that glycine transmission may provide a novel 

modulatory mechanism for inhibition in the sound localization pathway of birds. 
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Introduction  

  

 Inhibitory input plays an integral role in the maintenance of temporal precision in 

the avian sound localization circuit (Funabiki et al. 1998, Yang et al. 1999, Monsivais et 

al. 2000, Lu and Trussell 2000, Fukui et al. 2010).  Recent work revealed a novel form of 

inhibition in this circuit that results from the co-release of GABA and glycine from the 

same vesicles (Kuo et al. 2009, Coleman et al. 2011).  This mode of transmission occurs 

in some synapses at the nucleus angularis (NA) and superior olivary nucleus (SON) 

where GABA and glycine each account for approximately 50% of the total amplitude of 

evoked inhibitory postsynaptic currents (IPSCs).  Glycine transmission was also observed 

in the nucleus magnocellularis (NM) where stimulation at high but physiologically 

relevant rates evoked a slowly emerging glycinergic component of the inhibition.  This 

glycinergic component was functionally important as blocking glycine transmission 

reduced the efficacy of inhibition in the NM.  An in vivo study showed that GlyR block 

reduced the ability of SON neurons to phase-lock to pure tone stimuli near best 

frequency.  Beyond these two studies, the role of glycine and its co-release with GABA is 

not well understood in this circuit.   

 Co-release of GABA and glycine from the same vesicles is possible because they 

share a vesicular transport molecule (vesicular inhibitory amino acid transporter, VIAAT 

or VGAT) (Burger et al. 1991, McIntire et al. 1997, Sagne et al. 1997, Wojcik et al. 

2006).  The transmitters are loaded into the vesicles based on their concentration in the 

axon terminals, which is derived from the presence of synthesizing molecules and 
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membrane transporters (Eulenburg et al. 2005).  Co-release of GABA and glycine is 

interesting from a postsynaptic point of view because both receptor channels transmit the 

chloride (Cl-) ion upon ligand binding.   

 In other systems where each mode of transmission is present, GABA and glycine 

receptors have been shown to interact.  Several experiments indicate that there is a cross-

suppressive effect when both receptors are activated simultaneously.  Studies in spinal 

cord neurons of rat (Li et al. 2003) and frog (Kalinina et al. 2009) indicate an asymmetry 

of occlusion where activation of glycine receptors prior to GABAergic transmission 

yields a greater degree of suppression than the opposite condition (GABA preceding 

glycine).  Other labs have suggested that these results are an artifact of alteration in 

driving force of Cl- ions caused by changes in Cl- ion concentration during receptor 

activation and ion flux (Karlsson et al. 2011).  

   I use the avian sound localization circuit to investigate how inhibitory synaptic 

transmission is affected by GlyR activation.  I demonstrate that activation of GlyRs 

occludes synaptically evoked IPSCs in both NM and SON.  By manipulating the driving 

force of Cl- ions using voltage clamp protocols, I show that ligand binding and activation 

of GlyRs is not sufficient to induce suppression and that forcing Cl- into the neuron 

during glycine application (thereby increasing the Cl- driving force) results in an 

enhanced evoked response.  These data indicate that activation of GlyRs during 

inhibitory transmission provides an additional level of modulation and tuning at synapses 

important in sound localization processing. 
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Methods 

 All protocols and procedures were approved by the Lehigh University 

Institutional Animal Care and Use Committee. 

In vitro brain slice preparation: 

Methods for slice preparation were identical to those in the previous two chapters (see 

Chapter 3 & 4 Methods). 

In vitro whole-cell recordings 

 Patch pipettes were pulled from thick walled borosilicate glass capillary tubes 

(WPI 1B120F-4) to a resistance of 4-8 MΩ using a two-stage puller (Narishige PC-10, 

Tokyo, Japan) and back-filled with internal solution (containing in mM: 105 CsMeSO3, 

35 CsCl, 5 EGTA, 10 HEPES, 1 MgCl2, 4 ATP-Mg, and 0.3 GTP-Na, pH 7.2 adjusted 

with KOH).  5 mM QX314 was added to the internal solution to prevent antidromic 

action potentials.  In experiments where phosphatase 2B activity was blocked, 

cyclosporin A (0.5 – 1.5µM) was added to the internal solution.  In voltage clamp, series 

resistance was compensated at 60-80%.  Membrane voltage was clamped using a 

Multiclamp 700B amplifier. The signal was digitized with a Digidata 1440 data 

acquisition board and recorded using Clampex software (Molecular Devices, Sunnyvale, 

CA).   

Effect of GlyR activation on IPSCs 

          Inhibitory transmission was pharmacologically isolated by using a control bath 

solution containing ACSF with 6,7-dinitroquinoxaline-2,3-dione (DNQX) (40µM) and 
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D-2-amino-5-phosphonopentanoic acid (AP5) (50µM) to block AMPA and NMDA 

glutamatergic transmission. Pipettes for pressure application of glycine were pulled to a 

resistance of ~1MΩ and were visually guided near (~50µm) the surface of a patched cell.  

Glycine (500µΜ in ACSF containing DNQX and AP5) was applied using ~2.5psi 

pressure injection with a PLI 100A picoliter injector (Warner Instruments).  Glycine was 

applied for a 10-second duration.  

Synaptically evoked IPSCs were evoked with 50 µsec stimulus pulses with a 

stimulus isolation unit (Isoflex, A.M.P.I. Inc., Israel) through a concentric bipolar 

electrode with tungsten core (WPI TM53CCINS, Sarasota, FL).  For recordings in the 

NM, the stimulator was placed adjacent to the nuclei in a ventrolateral location and for 

the SON, a dorsomedial location was used.  Presynaptic fibers were stimulated with pulse 

trains consisting of 15 pulses at 100Hz.  Stimulus magnitude (range 10-90 V) was 

gradually increased until IPSC amplitudes stabilized at their maximum.  The start of the 

100Hz train began when the current response to the 10s glycine puff returned to baseline 

(usually within 5-8s in the long protocol).  Peak amplitude during the train was used to 

compare treatment groups.  In control, test (strychnine 1µΜ) and recovery, evoked 

responses were compared between the no glycine condition and the glycine pre-pulse 

condition using the equation: 

  1- (evoked amplitude with gly pre-pulse / evoked amplitude no gly) x 100% = % suppression 

This protocol and analysis was performed while holding the membrane voltage at 

three different potentials: -60mV, approximating Vrest (Figs 5.1 & 5.2); ECl-, ranging 

from -25mV to -35mV (average: -28.3 ± 3.3mV, n=3; derived empirically during the 
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experiment) (Fig 5.4A-E); and +20mV, to drive the flux of Cl- ions into the neuron (Fig 

5.4F-H). 

The effect of GlyR activation on the amplitude of spontaneous IPSCs (sIPSCs) 

was also examined.  A baseline amplitude of sIPSCs was acquired during a 15s interval 

prior to the application of glycine.  After a 10s glycine pulse, the current was allowed to 

return to baseline and then the amplitude of sIPSCs was measured.  sIPSC amplitude was 

obtained for each event using a search template in Clampfit.  sIPSC amplitudes were 

averaged during 5s bins and compared to the pre-pulse average. 
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Results 

GlyR transmission suppresses IPSC amplitude 

 The effect of glycine receptor activation on evoked IPSCs in the brainstem was 

evaluated by exogenous application of glycine paired with presynaptic fiber stimulation.  

The protocol consisted of a 10s pulse of glycine followed by a 15 pulse, 100Hz train of 

inhibitory presynaptic fiber stimulation via a bipolar tungsten electrode (Fig 5.1A depicts 

the protocol).  I first performed this protocol on neurons from the SON where glycinergic 

transmission occurs at terminals that co-release GABA and glycine (Coleman et al. 

2011).  I compared the amplitude of the peak synaptically evoked IPSC with (Fig 5.1Bii) 

and without (Fig 5.1Bi) the glycine pre-pulse in control, strychnine and recovery 

conditions (example traces shown in Fig 5.1B).  In the SON, a 10s glycine pre-pulse 

resulted in suppression levels of ~70% in the control and recovery conditions (control: 

79.5 ± 2.1% suppression, n=4, p=0.18; recovery: 62.2 ± 4.3% suppression, n=3, p=0.09).  

The raw data averages for the evoked IPSC amplitudes are shown for each condition in 

Figure 5.1C.  Note that in the strychnine condition the amplitude of the evoked IPSC is 

reduced due to the blockade of the glycinergic component present in the SON at this 

stimulation frequency.  In every neuron tested, bath application of strychnine reduced the 

amount of suppression observed in the control condition (8.4 ± 14.3% suppression, n=4, 

p>0.05 vs. no glycine condition, p<0.01 vs. control; Fig 5.1D).    

 In the NM, the results obtained using this protocol matched that of the neurons in 

the SON (Fig 5.2).  The glycine pre-pulse significantly suppressed evoked IPSCs in the  
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Figure 5.1:  Pre-application of glycine suppresses evoked IPSC trains in the SON.  A. 
Representative trace from an E18 SON neuron during the 10s glycine application.  B. Expanded 
view of the dashed box in A showing evoked responses.  Bi. Evoked responses in control, 
strychnine and recovery with no glycine pre-pulse.  Bii. Evoked IPSCs after the glycine pre-
pulse show amplitude suppression that is blocked by strychnine.  C. Raw data values for the 
IPSC amplitudes in each condition.  D. Ratio of evoked amplitudes between glycine pre-pulse 
and no glycine in each condition reveals a decrease in the suppression (ratio near 1) in 
strychnine. 
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NM, a result that was reduced by blockade of GlyRs with strychnine (control: 70.7 ± 

7.0% suppression, n=8, p<0.001; strychnine: 26.4 ± 8.9% suppression, n=7, p<0.05 vs. 

no glycine condition, p<0.001 vs. control; recovery: 69.8 ± 12.0% suppression, n=3, 

p=0.11; Fig 5.2A & C).  Representative traces are shown in Figure 5.2A.  Raw data 

averages for IPSC peak amplitudes are shown in Figure 5.2B.  These results suggest that 

activation of glycine receptors may occlude transmission through the GABAA receptor 

channel. 

 We measured the effect of prolonged glycine application on sIPSC amplitude by 

comparing events pre- and post- glycine application (10s pulse).  In the control condition, 

sIPSC amplitude was suppressed to 61.8 ± 5.5% of pre-pulse levels at 10 seconds after 

the pulse when the glycine currents had returned to baseline (Fig 5.3).  sIPSC amplitude 

recovered to pre-pulse amplitude after approximately 35s.  In strychnine, sIPSC 

amplitudes remained stable throughout the recording.  After washout, sIPSC amplitude 

suppression during recovery mirrored that of the control condition (64.0 ± 6.0% of pre-

pulse levels). 

Mechanism of suppression 

 In order to determine what mechanism was responsible for the observed 

suppression, I tested the hypotheses relating to findings from other systems.  I first looked 

at the phosphorylation state of the receptors.  Li et al. (2003) found that phosphatase 2B 

activity was involved in the suppression of currents through GABAARs by GlyR  
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Figure 5.2:  Evoked IPSCs are suppressed by glycine pre-pulse in NM.  A. Representative 
traces from an E18 neuron showing evoked responses without glycine (Ai) and with glycine 
pre-pulse (Aii) in control, strychnine and recovery.  B. Population data of peak amplitude 
comparing with vs. without glycine in each condition.  C. Ratio of peak amplitude between 
Gly/no Gly in each condition shows an increased ratio (less suppression) during strychnine 
application.  D. Same measurements as in C but with cyclosporin A included in the recording 
pipette to block phosphatase 2B activity.  This manipulation yielded the same results 
indicating that phosphatase 2B activity does not play a role in the observed suppression. 
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Figure 5.3:  Suppression of mini IPSC amplitudes after glycine application is eliminated 
by strychnine.  A.  Representative traces from an E20 NM neuron showing miniature events 
recorded during a glycine puff protocol.  Insets are expanded views of the minis in each dashed 
box which show a decrease in mini amplitude after the glycine pulse.  This effect was not 
observed with strychnine application but recovered after washout.  B. Histograms representing 
the normalized population data for the mIPSC amplitude analysis.  Each bin represents the 
average mIPSC amplitude during a 5 second time window.  In the control and recovery 
condition mIPSC amplitude recovered to baseline values after approximately 35 seconds. 
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activation in rat spinal cord neurons.  Here, I included cyclosporin A in the recording 

pipette to block phosphatase 2B activity.  There was no significant difference between the 

suppression observed with cyclosporin A when compared to the normal control (68.4 ± 

2.9%, n=5, p>0.05, Fig 5.2D).  Next, I aimed to determine if the suppression was a true 

biophysical interaction between the two receptors, or if the effect was a consequence of 

manipulation of driving force caused by changes in Cl- ion concentration (as observed in 

Karlsson et al 2011).  I determined whether ligand binding and receptor activation was 

sufficient to induce the suppression by stepping the voltage to the reversal potential of Cl- 

during the application of glycine (protocol, Fig 5.4A; representative traces, Fig 5.4B & C; 

average IPSC amplitudes Fig 5.4D).  I found that the suppression was greatly reduced 

when the flux of Cl- was prevented (4.3±6.9% suppression, n=3, Fig 5.4E).  Additionally, 

I employed a protocol where Cl- ion flow would be in the inward direction to test 

whether evoked responses would be enhanced.  Indeed, when the membrane voltage was 

held at +20mV during the glycine pulse, evoked IPSCs increased significantly (Fig 5.4F 

& G).   These results implicate changes in the driving force of Cl- ions as the mechanism 

of modulation for our protocols.   
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Figure 5.4:  Manipulation of Cl- ion flux alters the suppression profile of glycine prepulse 
in the NM.  A. Schematic of recording protocol where Cl- ion flux is minimized by clamping 
the membrane at the reversal potential for Cl- during the glycine pulse.  B. Current response 
from protocol in A without (Bi) and with (Bii) glycine pulse (red line).  Note the similarity 
between the traces in Bi ad Bii, suggesting minimal current due to glycine application.  C. 
Expanded view of evoked current responses from the boxed region above.  D. Average peak 
amplitude of the evoked current for the population of cells tested at Vrev Cl-.  E. Ratio of peak 
amplitude between Gly/no Gly conditions in control and when glycine pre-pulse occurred at 
Vrev Cl-.  Results were similar to glycine block (no suppression observed).  F. Protocol for 
driving Cl- into the neuron during glycine application.  The membrane was clamped at 
+20mV.  G. Current response from an NM cell during the protocol in F.  H. Expanded view of 
evoked responses from G.  Hii shows the increase in evoked response after glycine application 
while holding at +20mV.  
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Discussion 

Occlusion of GABA by GlyR activation 

 Our data show that preactivation of GlyRs suppressed the amplitude of 

synaptically evoked IPSCs in the NM and in the SON.  GABA and glycine receptors both 

are permeable to Cl- ions and interactions between the two receptors have been 

documented in areas where both receptor types are present and activated via presynaptic 

transmitter release.  Several studies detail an occlusive effect that shows the amplitude of 

simultaneous application of GABA and glycine is less than the summed amplitude of the 

transmitters applied individually.  Further, in some cases, pre-application of glycine 

occludes GABAergic currents to a greater degree than pre-application of GABA occludes 

glycinergic currents (Li et al. 2003). The proposed mechanisms that lead to the occlusion 

are diverse.  A recent publication proposes that the occlusion is only an apparent cross-

desensitization and that the reduction in current is not a reduction in channel 

conductance, but rather the result of changes in the Cl- ionic concentration inside the cell 

(Karlsson et al. 2011).  In our system, the changes in Cl- ion concentration appeared to 

underlie the observed occlusion. I saw no suppression when Cl- ion flux was prevented 

and driving Cl- ion flux into the cell resulted in increased evoked IPSC amplitudes 

presumably due to increased driving force of Cl-. However, this does not adequately 

explain asymmetric cross-inhibition seen in other studies where they attribute the 

occlusion to the phosphorylation state of the receptors (Li et al. 2003).  While I was 

unable to test the symmetry of the occlusion directly, I found that the signaling cascade 

involving phosphatase 2B was not the mechanism of the observed suppression. 
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Role of glycine in the avian brainstem 

 While a direct interaction between glycine and GABA receptors was not a 

conclusion of my study, the hypothesis that glycinergic activity in the brainstem shapes 

inhibitory transmission is still a viable one.  Many studies in the avian sound localization 

circuit demonstrate modulatory mechanisms that dynamically alter inhibitory 

transmission.  These mechanisms include activation of GABAB receptors (Lu et al. 2005, 

Tang et al. 2009), metabotropic glutamate receptors (Lu 2007, Okuda et al. 2013) and 

cooperation of both tonic and phasic inhibition.  Glycine receptor activation could have 

similar modulatory effects and the aforementioned mechanisms could also modulate 

glycine release. 

 Glycine transmission may impart changes in the kinetics of IPSCs.  Postsynaptic 

activation of GlyRs and Cl- flux would likely affect Cl- concentration around the plasma 

membrane. Local changes in Cl- ion concentration around GABA and glycine receptor 

channel pores can modulate the timing and voltage gating of currents (Moroni et al. 

2011).  In our system, the nuclei that have both GABA- and glycinergic components have 

IPSCs with faster kinetics. This may be relevant for providing phasic inhibition to targets, 

as many SON neurons were observed to phase-lock to auditory stimuli in vivo (Coleman 

et al. 2011).  

 Glycine activity will also affect neurons differently depending on the physiology 

of the target cell.  Physiological heterogeneity is a characteristic of neuron in both the NA 

and SON.  In the NA, the reversal potential for Cl- (ECl-), is neuron specific such that 

some neurons were found to have depolarized ECl-, and some hyperpolarized ECl- (Kuo et 
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al. 2009).  This means that the polarity of glycinergic transmission will be opposite in 

these groups and therefore the resulting effect will also be diverse.  The ECl- of SON 

neurons has not been thoroughly characterized as yet.  One study using gramicidin 

perforated patch recordings observed an average ECl- of -61mV from data collected in 

three neurons.  Given the heterogeneity of response properties observed in the SON (Carr 

et al. 1989, Lachica et al. 1994, Coleman et al. 2011) a more thorough examination of 

ECl- seems necessary.   

Summary 

In this report, the possible consequences of co-activation of GABA and glycine receptors 

on inhibitory transmission was explored. Pre-activation of GlyRs occludes evoked 

inhibitory transmission in the NM and SON in the avian brainstem.  This occlusion was 

blocked when GlyRs were antagonized during glycine application.  The flow of Cl- ions 

out of the neuron was required for occlusion suggesting that changes in Cl- ion 

concentration decreased the driving force for Cl- resulting in less evoked current.  The 

interplay between GABA and glycine receptors may provide an additional mechanism for 

fine-tuning inhibition in the avian sound localization circuit. 
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CHAPTER VI 

Summary and Concluding Remarks 
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 This work compares modulatory mechanisms involved in inhibitory transmission 

at several levels of sound localization circuits.  In both the mammalian and avian circuit, 

modulation of inputs is critically important for the computational tasks performed and 

inhibition is integral. 

 In the mammalian system I showed that GABAB activation provides a mechanism 

for gain control of inputs to coincidence-detecting neurons in the medial superior olive 

(MSO).  I described that both excitatory and inhibitory synaptic current amplitudes are 

suppressed during GABAB receptor activation.  This suppression leads to a decrease in 

the short-term depression of these inputs as well.  Also, the decay kinetics of inhibitory 

currents are prolonged.   

 In a functional test that simulated the excitatory bilateral input to the MSO, 

manipulation of GABABRs resulted in a bidirectional effect.  MSO neurons had increased 

sensitivity to simulated interaural time disparities (sITDs) during activation of GABABRs 

and decreased sensitivity during block, suggesting that there was some endogenous 

GABABR activity evoked during our protocols. 

 We used a computational model to observe each GABABR related effect 

individually and in combination and I found that each effect independently increased the 

sensitivity of neurons to ITDs.  Additionally several of the effects were cooperative.  The 

model also showed that GABAB dependent signaling functioned most optimally when it 

was positively correlated to sound intensity such that it would not be active with very low 

intensity inputs, but would be recruited during high intensity input. 
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 In the avian system I described the physiology of glycinergic transmission.  I 

demonstrated that glycine was a component of spontaneous and evoked inhibitory 

currents in all of the superior olivary nucleus (SON) neurons tested.  The analysis of the 

frequency and kinetics of spontaneous events during pharmacology suggests an input 

arrangement where SON neurons receive some purely GABAergic inputs and some 

inputs that co-release GABA and glycine.  Co-immunolabeling of the somas in some 

SON neurons for GABA and glycine provides evidence that the SON is the likely source 

of the co-labeled terminals seen in the avian brainstem. 

 The transmitter and receptor staining combined with the exogenous glycine 

application experiments demonstrated that glycine transmitter and functional receptors 

are found in each of the four avian brainstem nuclei.  This result was perplexing given the 

findings from previous studies, which describe inhibition at the nucleus magnocellularis 

(NM) and nucleus laminaris (NL) as solely GABAergic.  I therefore explore inhibitory 

transmission at the NM using physiologically relevant stimulation frequencies near the 

maxima of observed firing rates of the SON (≥ 200Hz, Coleman et al. 2011).  At these 

rates I documented for the first time that glycinergic transmission is evoked by strong 

stimulation in the NM.  The glycinergic response emerged over the duration of the 

stimulus, peaking at the last (50th) pulse.  I expanded on this finding by showing that the 

glycinergic component was functionally relevant as the efficiency of inhibition was 

reduced when glycine receptors were blocked. 

 In the last group of experiments I described how co-activation of the GABA and 

glycine receptor systems could modify transmission.  I determined that prolonged 

transmission through GlyRs suppressed the amplitude of evoked inhibition in the NM and 
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SON.  This observation presents yet another possible mechanism by which inhibitory 

inputs can be regulated and fine tuned to optimize circuit function. 

 

 The research in this dissertation provides a comparative look at the role of 

inhibition in sound localization.  In the mammalian model I demonstrate that gain control 

can be achieved by activation of GABAB receptors.  Gain control has been described in 

models and other systems (e.g. avians) as an integral part of maintaining ITD selectivity.  

In the avian system I expand on the recent discovery of glycine in the ITD circuit.  This 

work shows for the first time that glycine transmission is an important feature of the 

timing circuit in the avian brainstem.  Expanding on the role of glycine in this network 

necessitate substantial revision of the current models of inhibition in the avian brainstem 

and will be an exciting new avenue for research. 

 This work has provided a revised view of these circuits.  Although the strategies 

for sound localization are different for these two model systems, there are many 

similarities.  Here, I support the idea that one mode of transmission dominates the activity 

in each system, glycine in mammals, GABA in birds.  But, interestingly the 

complementary mode plays a role in maintaining the circuit, GABA via GABABR 

activation in mammals, and glycine via recruitment during intense input.  This 

complementary inhibitory activity is a remarkable consequence of the evolution 

constraints brought on by the extreme temporal precision necessary for sound localization 

processing. 
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