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Prof. Aurélie C. Thiele, Chairwoman

Prof. Robert H. Storer

Dr. Wilson Yale

Prof. Luis Zuluaga

ii



Contents

Contents iii

List of Tables v

List of Figures vii

Abstract 1

1 Literature Review and Contributions 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Arithmetic excess return . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Active Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Geometric excess return . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.4 Factor Attribution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.5 Portfolio Optimization and Risk Management . . . . . . . . . . . . . . . . 18

1.3.6 Robust Portfolio Optimization and Control . . . . . . . . . . . . . . . . . 20

2 Robust Portfolio Management with Uncertainty in Asset Allocation 22
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Robust Fund Manager Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Problem without Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Problem with Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Inner Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Outer Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



2.3.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Compare the computational results of two approaches . . . . . . . . . . . 29

2.4.2 Compare the robust model with the nominal model . . . . . . . . . . . . . 31

2.4.3 An Heuristic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Robust Portfolio Management with Uncertainty in Asset Allocation and Asset Return 44
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Robust Fund Manager Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Problem without Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Problem with Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 Without return benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.5 With return benchmark constraint . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Benchmark Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Benchmark Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Benchmark Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Solution Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Inner Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Outer Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Without return benchmark and variance constraints . . . . . . . . . . . . . 57

3.5.2 With return benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97

A Biographical Information 103

iv



List of Tables

1.1 Single Period Data [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Single Period Results [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Multi-Period Model [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Multi-Period Model Results [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Active Management Portfolio vs Benchmark . . . . . . . . . . . . . . . . . . . . . 13

1.6 Active Management Portfolio vs Benchmark (2) . . . . . . . . . . . . . . . . . . . 13

1.7 Active Management Portfolio vs Passive Management Portfolio . . . . . . . . . . 14

1.8 Active Management Portfolio vs Passive Management Portfolio (2) . . . . . . . . . 14

1.9 Passive Management Portfolio vs Benchmark . . . . . . . . . . . . . . . . . . . . 15

1.10 Passive Management Portfolio vs Benchmark (2) . . . . . . . . . . . . . . . . . . 15

2.1 Four Managers with Four Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Six Manager with Six Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Running time comparison (in seconds) . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Running time comparison (in seconds) . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Twelve Managers with Six Assets . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Heuristic Method v.s. Other Methods: Four Managers with Four Assets . . . . . . 37

2.7 Heuristic Method v.s. Other Methods: Six Managers with Six Assets . . . . . . . . 39

2.8 Heuristic Method v.s. Other Methods: Twelve Managers with Six Assets . . . . . . 41

3.1 Manager Allocation: Four Manager with Four Assets . . . . . . . . . . . . . . . . 59

3.2 Uncertainty Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Manager Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Uncertainty Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Manager Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Uncertainty Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Nominal Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Manager Allocation: Benchmark Return=2% . . . . . . . . . . . . . . . . . . . . 75

v



3.9 Manager Allocation: Benchmark Return=3% . . . . . . . . . . . . . . . . . . . . 76

3.10 Manager Allocation: Benchmark Return=3.2% . . . . . . . . . . . . . . . . . . . 77

3.11 Manager Allocation: Benchmark Return=3.4% . . . . . . . . . . . . . . . . . . . 78

3.12 Nominal Return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.13 Manager Allocation: Benchmark Return=2% . . . . . . . . . . . . . . . . . . . . 80

3.14 Manager Allocation: Benchmark Return=3% . . . . . . . . . . . . . . . . . . . . 82

3.15 Manager Allocation: Benchmark Return=3.5% . . . . . . . . . . . . . . . . . . . 84

3.16 Manager Allocation: Benchmark Return=3.7% . . . . . . . . . . . . . . . . . . . 86

3.17 Manager Allocation: Benchmark Return=0% . . . . . . . . . . . . . . . . . . . . 89

3.18 Manager Allocation: Benchmark Return=2% . . . . . . . . . . . . . . . . . . . . 91

3.19 Manager Allocation: Benchmark Return=2.5% . . . . . . . . . . . . . . . . . . . 93

3.20 Manager Allocation: Benchmark Return=2.9% . . . . . . . . . . . . . . . . . . . 95

vi



List of Figures

2.1 Nominal Manager Allocation: Six Managers with Six Assets . . . . . . . . . . . . 32

2.2 Robust Manager Allocation: Six Managers with Six Assets . . . . . . . . . . . . . 33

2.3 Nominal Model v.s. Robust Model: Six Managers with Six Assets . . . . . . . . . 33

2.4 Out of Sample Robust Portfolio Return v.s. Nominal Portfolio Return 1 . . . . . . 34

2.5 Out of Sample Robust Portfolio Return v.s. Nominal Portfolio Return 2 . . . . . . 34

2.6 Nominal Model v.s. Robust Model: Twelve Managers with Six Assets . . . . . . . 35

2.7 Nominal Manager Allocation:Twelve Managers with Six Assets . . . . . . . . . . 35

2.8 Robust Manager Allocation:Twelve Managers with Six Assets . . . . . . . . . . . 36

2.9 Efficient Frontier: Four Managers with Four Assets . . . . . . . . . . . . . . . . . 37

2.10 Efficient Frontier: Six Managers with Six Assets . . . . . . . . . . . . . . . . . . 38

2.11 Efficient Frontier: Twelve Managers with Six Assets . . . . . . . . . . . . . . . . 42

2.12 Error with Heuristic Method: Twelve Managers with Six Assets . . . . . . . . . . 42

3.1 ManagerAllocation4A4M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 PortfolioReturn4A4M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 AssetReturnUncertainty4A4M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 ManagerAllocation6A6M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 PortfolioReturn6A6M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 AssetReturnUncertainty6A6M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 ManagerAllocation6A12M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 PortfolioReturn6A12M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.9 AssetReturnUncertainty6A12M . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.10 Robust Portfolio Return with Benchmark Return . . . . . . . . . . . . . . . . . . 74

3.11 Robust Portfolio Manager Allocation with Benchmark Return = 2% . . . . . . . . 75

3.12 Robust Portfolio Manager Allocation with Benchmark Return = 3% . . . . . . . . 76

3.13 Robust Portfolio Manager Allocation with Benchmark Return = 3.2% . . . . . . . 77

3.14 Robust Portfolio Manager Allocation with Benchmark Return = 3.4% . . . . . . . 78

3.15 Robust Portfolio Return with Benchmark Return . . . . . . . . . . . . . . . . . . 79

vii



3.16 Robust Portfolio Manager Allocation with Benchmark Return = 2.0% . . . . . . . 81

3.17 Robust Portfolio Manager Allocation with Benchmark Return = 3% . . . . . . . . 83

3.18 Robust Portfolio Manager Allocation with Benchmark Return = 3.5% . . . . . . . 85

3.19 Robust Portfolio Manager Allocation with Benchmark Return = 3.7% . . . . . . . 87

3.20 Robust Portfolio Return with Benchmark Return . . . . . . . . . . . . . . . . . . 88

3.21 Robust Portfolio Manager Allocation with Benchmark Return = 0% . . . . . . . . 90

3.22 Robust Portfolio Manager Allocation with Benchmark Return = 2% . . . . . . . . 92

3.23 Robust Portfolio Manager Allocation with Benchmark Return = 2.5% . . . . . . . 94

3.24 Robust Portfolio Manager Allocation with Benchmark Return = 2.9% . . . . . . . 96

viii



Abstract

This dissertation investigates robust optimization models for performance attribution analysis in

investment management. Specifically, an investment manager seeks to evaluate the performance

of fund managers who manage funds he might invest his clients’ money in. A key difficulty for

the investment manager is to quantify the fund manager’s skill when he may not know the fund

manager’s allocation precisely. This introduces two main sources of uncertainty for the investment

manager: the stock returns and the fund allocations. This dissertation proposes and analyzes robust,

quantitative models to address this challenge. We study a robust counterpart to the mean-variance

framework when the fund managers’ precise allocations are uncertain but belong to known intervals

and must sum to one for each manager, present an algorithm to solve the problem efficiently and

analyze the investment manager’s allocation in the various funds as a function of the benchmark

return. Further, we consider the case where the stock returns are also represented as uncertain

parameters belonging to a polyhedral set, the size of which is defined by a parameter called the

budget of uncertainty, and the investment manager seeks to maximize his worst-case return. We

describe how to solve this problem efficiently and analyze how the investment manager’s degree of

diversification and his specific allocations in the funds vary with the budget of uncertainty.

1



Chapter 1

Literature Review and Contributions

1.1 Motivation

Traditional performance attribution analysis decomposes the fund return into an active management

component (reflecting the fund manager’s skill) and a passive management component (reflecting

stock performance) by taking the average of the active-management and passive-management re-

turns, respectively, over a given time period. This approach does not investigate the fund managers’

strategies, especially with respect to possible market scenarios, in great detail. In fact, investors

could lose important information on fund managers’ ability to manage their assets when facing dif-

ferent market conditions, especially in times of crisis, which makes it difficult to evaluate the risks

associated with the fund manager’s strategy under those circumstances.

From a portfolio construction perspective, investors usually construct their portfolio by consid-

ering a trade-off between maximizing the total return and minimizing the total (or downside) risk

of the portfolio. The traditional portfolio model does not take into account the uncertainty associate

with manager’s asset allocation in the portfolio construction procedure. In this research, we will

investigate the interaction effect of the active management from multiple managers, and seek to

incorporate uncertainty embedded in both asset return and manager’s asset allocation in the context

of portfolio construction model. This dissertation describes a robust optimization approach to select

fund managers by considering two majority risk fund manager bears, with contributions presented

in Section 1.2 below.

2



1.2. CONTRIBUTIONS

1.2 Contributions

The high-level contribution we make through this dissertation is to provide financial professionals

with robust, quantitative decision tools to help them make manager selection policy in presence

of uncertainty, especially taking into account uncertainty on the fund allocation and capturing that

stock returns and uncertainty on asset return itself.

We propose two models that build upon the robust optimization framework by considering

multi-source uncertainties:

i. Robust Portfolio Management with Uncertainty in Asset Allocation Attribution Analysis,

ii. Robust Portfolio Management with Uncertainty in Asset Allocation and Asset Return.

This dissertation is organized as follows. The remainder of this chapter contains a literature

review of performance attribution analysis and robust portfolio management. Chapter 2 presents the

model taking account uncertainty in manager’s asset allocation, with Section 2.1 describing the mo-

tivation of the model, Section 2.2 describing the robust manager selection framework, Section 2.3

proposing two approaches to solve the problem efficiently. Section 2.4 presenting solid numerical

results of manager selection policy under our new model and old model, and demonstrating that the

robust model provide a strong protection of the downside return, 2.5 concluding the contribution

and remarks of the framework. Chapter 3 presents the second model by taking account uncertainty

in both manager’s asset allocation and asset return, with Section 3.1 describing the motivation of

the model, Section 3.2 describing the problem setup and two frameworks, Section 3.3 presenting

the upper and lower bound of the robust framework, Section 3.4 exploring the special structure of

the problem and proposing two approaches to solve the problem efficiently. Section 3.5 present-

ing solid numerical results of manager selection policy under our new model, 3.6 concluding the

contributions.

1.3 Literature Review

Fund performance attribution analysis is a way to explain the fund manager’s performance versus

the benchmark. It is very important for investors because it can help them better understand how

3



1.3. LITERATURE REVIEW

the return is generated and why the return for a fund differs from a benchmark’s. For some of the

funds, asset allocation plays the most important role in the total return, while for some other funds,

stock selection contributes more. A better understanding of performance attribution will allow

investors to make better investment decisions and find the best fund suitable for their purposes and

risk tolerance. In addition, in presence of high volatility and high correlation between asset classes

– as is the case nowadays – the ability of taking “robust” decisions when making guesses on the

market is crucial for a successful fund manager. Comparing with traditional ways of appraising

fund managers’ performance such as his alpha, Sharpe ratio and information ratio, a dynamic fund

attribution analysis provides more information about a fund manager’s forecasting power and risk

management skills.

1.3.1 Arithmetic excess return

Arithmetic excess return can be expressed as the difference between the portfolio (arithmetic aver-

age) return and benchmark return. It captures by how much the manager’s fund beat the benchmark

as a percentage of the initial investment. The key rules for the arithmetic model are that (i) the

sum of different attribution effects must equal the arithmetic excess return, and (ii) for multi-period

frameworks, the sum of different attribution effects over time must equal the arithmetic excess return

over the whole time horizon considered.

Brinson Model

Brinson et al. [16] have proposed a method to decompose the manager’s added value into three

factors:

• Asset Allocation,

• Stock Selection,

• Intersection between the two.

The asset allocation effect measures the manager’s skill in allocating his assets among different in-

dustry sectors. It can be expressed as the difference between returns if the benchmark returns are ap-

plied to the portfolio weight and the benchmark weights, respectively, i.e.
∑

i∈I Rbi(ωfi−ωbi). The

4



1.3. LITERATURE REVIEW

security selection effect is to measure the manager’s skill in picking the high-return stocks in each

of these groups. It can be expressed as the difference between returns if the benchmark weights are

applied to the difference between the fund return and benchmark return, i.e.
∑

i∈I ωbi(Rfi − Rbi).

The intersection between the two is the product of the difference in weight and difference in returns,

i.e.
∑

i∈I(ωfi − ωbi)(Rfi − Rbi). The summation is performed based on different sectors, for in-

stance, country sector, industry sector, size or momentums.

Drawbacks of Brinson et al. [16]’s analysis are that (i) it does not incorporate the fact that over-

weighting a portfolio in a negative market that has outperformed the overall benchmark should still

be a positive effect, (ii) it fails to distinguish between the static manager and dynamic manager,

who is trying to capture the opportunity when the market is up for one sector and over-weigh his

portfolio weights on that sector.

The model in Brinson and Fachler [15] solves the first weakness by modifying the asset alloca-

tion factor to compare the return against the overall benchmark, as opposed to considering the pure

negative or positive return for a sector. The asset allocation factor in the Brinson and Fachler model

is
∑

i(ωfi−ωbi)(rbi−rb), where rb is the overall return of the benchmark, and i denotes the sector.

The fund manager could generate positive asset allocation return in two situations, overweight in

an above-average performance sector or underweight in a below-average sector. The security selec-

tion effect is the same with the original model, which is to measure manager’s skill in picking the

high-return stocks in each of these groups. It can be expressed by applying the benchmark weights

to the difference between the fund return and benchmark return, i.e.
∑

i ωbi(rfi − rbi). The authors

argue that this component might not reflect the stock selection effect correctly due to market size

effect. A minor outperformance in a large-cap market could result in a larger stock selection com-

ponent than a substantial outperformance in a small-cap market. This weakness could be overcome

by constructing a time series of the differential between the fund return and benchmark return for a

sector. The intersection between the two is also the same as in the original model, i.e., it is the cross

product of the difference in weight and difference in returns:
∑

i(ωfi − ωbi)(rfi − rbi). However,

given that the interaction term is not part of the investment decision process, Brinson and Fachler

5



1.3. LITERATURE REVIEW

further improved the model by including the interaction effect into the stock selection effect. Actual

portfolio weights, as opposed to benchmark portfolio weights, are then used to calculate the stock

selection effect. The stock selection factor is therefore
∑

i ωfi(rfi − rbi) in the revised model.

Examples of three different single-period models are illustrated in Tables 1.1 and 1.2.

6
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Table 1.1: Single Period Data [7]

Equity Portfolio Portfolio Weight Benchmark Weight Portfolio Return Benchmark Return Excess Return Allocation Notional Return Selection Notional Return

UK Equity 40.00% 40.00% 20.00% 10.00% 4.00% 4.00% 8.00%
Japanese equity 30.00% 20.00% -5.00% -4.00% -0.70% -1.20% -1.00%

US Equity 30.00% 40.00% 6.00% 8.00% -1.40% 2.40% 2.40%

Total 100.00% 100.00% 8.30% 6.40% 1.90% 5.20% 9.40%

Table 1.2: Single Period Results [7]

Arithmetric Model Geometric Model

Brinson Arithmetric Brinson & Fachler Model 1 Brinson & Fachler Model 2 Geometric

Equity Portfolio Asset Allocation Stock Selection Intersection Asset Allocation Stock Selection Intersection Asset Allocation Stock Selection Asset Allocation Security Selection
UK Equity 0.00% 4.00% 0.00% 0.00% 4.00% 0.00% 0.00% 4.00% 0.00% 4.00%

Japanese equity -0.40% -0.20% -0.10% -0.40% -0.20% -0.10% -0.40% -0.30% -0.40% -0.30%
US Equity -0.80% -0.80% 0.20% -0.80% -0.80% 0.20% -0.80% -0.60% -0.80% -0.60%

Total -1.20% 3.00% 0.10% -1.20% 3.00% 0.10% -1.20% 3.10% -1.20% 3.10%

7



1.3. LITERATURE REVIEW

Multi-period Model

Multi-period arithmetic model suffers from a linking issue of transferring single period attribution

factors to total period attribution factors. Since the sum of the excess returns for each period does not

equal the total arithmetic excess return, the arithmetic attribution factors should also not be expected

to add up to arithmetic attribution factors for the total period. Carino [19] and Menchero [50] both

suggested a smoothing algorithm by introducing a factor that could transform single-period perfor-

mance to its total-period counterpart by summing up single-period performances attribution over

time. By multiplying this factor to the asset allocation factor, security selection factor and inter-

section factor for each period, these revised attribution factors are additive for the total period. It

should be noted that the revised attribution factors are different for the length of overall period for

analysis, i.e., the revised attribution factor for a quarter is different from the factor for one year and

two years. These factors are effective, but also counter-intuitive and cumbersome. Examples are

illustrated in Tables 1.3 and 1.4.
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Table 1.3: Multi-Period Model [7]

Portfolio Weight Benchmark Weight Portfolio Return Benchmark Return Excess Return Allocation Notional Return Selection Notional Return

1st Quarter
UK Equity 40.00% 40.00% 20.00% 10.00% 10.00% 4.00% 8.00%

Japanese equity 30.00% 20.00% -5.00% -4.00% -1.00% -1.20% -1.00%
US Equity 30.00% 40.00% 6.00% 8.00% -2.00% 2.40% 2.40%

Total 100.00% 100.00% 0.00% 5.20% -5.20% 5.20% 9.40%

2nd Quarter
UK Equity 70.00% 40.00% -5.00% -7.00% 2.00% -4.90% -2.00%

Japanese equity 20.00% 30.00% 3.00% 4.00% -1.00% 0.80% 0.90%
US Equity 10.00% 30.00% -5.00% -10.00% 5.00% -1.00% -1.50%

Total 100.00% 100.00% 0.00% -5.10% 5.10% -5.10% -2.60%

3rd Quarter
UK Equity 30.00% 50.00% -20.00% -25.00% 5.00% -7.50% -10.00%

Japanese equity 50.00% 40.00% 8.00% 5.00% 3.00% 2.50% 3.20%
US Equity 20.00% 10.00% -15.00% -20.00% 5.00% -4.00% -1.50%

Total 100.00% 100.00% 0.00% -9.00% 9.00% -9.00% -8.30%

4th Quarter
UK Equity 30.00% 40.00% 10.00% 5.00% 5.00% 1.50% 4.00%

Japanese equity 50.00% 40.00% -7.00% -5.00% -2.00% -2.50% -2.80%
US Equity 20.00% 20.00% 25.00% 10.00% 15.00% 2.00% 5.00%

Total 100.00% 100.00% 0.00% 1.00% -1.00% 1.00% 6.20%9
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Table 1.4: Multi-Period Model Results [7]

Carino Revised Attribution (Brinson and Fachler 2) Menchero Revised Attribution (Brinson and Fachler 2) Geometric

Carino Factor Asset Allocation Stock Selection M t Asset Allocation Stock Selection Asset Allocation Stock Selection

1st Quarter 97.81%
UK Equity 97.49% 0.00% 3.62% 1.28% 0.00% 0.00% 0.00% 3.66%

Japanese equity -0.94% -0.27% 0.00% 0.00% 0.13% -0.27%
US Equity -0.14% -0.54% 0.00% 0.00% -1.39% -0.55%

Total -1.09% 2.80% 0.00% 0.00% -1.27% 2.83%

2nd Quarter
UK Equity 102.64% -0.73% 1.42% 0.95% 0.01% 0.00% -3.45% 1.44%

Japanese equity -0.87% -0.20% 0.00% 0.00% 0.10% -0.21%
US Equity 1.09% 0.51% -0.01% 0.00% 2.87% 0.51%

Total -0.51% 1.72% -0.01% 0.00% -0.48% 1.75%

3rd Quarter
UK Equity 104.79% 2.66% 1.60% 5.07% -0.03% 0.00% 6.24% 1.64%

Japanese equity 1.86% 1.60% 0.05% 0.00% -0.37% 1.64%
US Equity -0.80% 1.06% -0.05% 0.00% -2.66% 1.09%

Total 3.73% 4.26% -0.03% 0.00% 3.21% 4.36%

4th Quarter
UK Equity 99.50% -0.28% 1.41% 1.69% -0.01% 0.00% -0.61% 1.41%

Japanese equity -0.66% -0.94% -0.01% 0.00% -0.40% -0.94%
US Equity 0.00% 2.82% -0.05% 0.00% 0.00% 2.82%

Total -0.94% 3.29% -0.07% 0.00% -1.01% 3.30%

TOTAL 1.19% 12.07% -0.11% 0.00% 0.40% 12.79%

Four Quarter Total
UK Equity 1.65% 8.04% -0.03% 0.00% 1.95% 8.38%

Japanese equity -0.61% 0.18% 0.03% 0.00% -0.54% 0.20%
US Equity 0.15% 3.85% -0.11% 0.00% -1.26% 3.91%

Total 1.19% 12.07% -0.11% 0.00% 0.12% 12.83%
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Davies and Laker [23] and Kirievsky and Kirievsky [44] suggest applying Brinson’s model over

multiple periods. They calculate the allocation’s notional return and selection’s notional return for

each time period respectively, then calculate the allocation’s notional return and selection’s notional

return for the total period by compounding the return of each time period. The attribution fac-

tors are then the difference between the asset allocation return for compounded notional funds and

benchmark return. This method combines the arithmetic and geometric concepts.

1.3.2 Active Performance Measure

The Capital Asset Pricing Model was the first model to decompose the fund return into system-

atic risk return and unsystematic risk return. The unsystematic return could be considered as the

value-added of the manager’s performance. Treynor [67], Sharpe [63], Jensen [41] and Jensen [42]

developed risk-adjusted performance measures such as the Sharpe Ratio, Treynor Ratio and Infor-

mation Ratio to evaluate the fund manager’s performance. However, the drawbacks are that these

measures are all static measures, based on the characteristics of returns of a single time period.

Treynor and Mazuy [69] proposed a method to measure the fund managers’s ability to capture the

up market by introducing the quadratic term (Rmt−Rf )2. Arnott et al. [5] and Treynor [68] consid-

ered the covariance between portfolio weights and returns but this was only discussed in the context

of improving the fundamental indexation. Grinblatt and Titman [35] pointed out that the positive

covariance between portfolio weights and returns should bring benefit to investors, and proposed a

measure to capture this property.

Dynamic Model

The classic Brinson’s analysis is based on a single-period framework and assumes that the portfolio

holdings (weights) is static, which is not suitable for active management where weights can be

changed over multiple time periods. Dealing with multi-period models by repeating the classic

Brinson’s method for multiple time periods is subject to several weaknesses as mentioned above.

Lo [47] and Hsu and Myers [38] both proposed approaches to capture the static and dynamic

contributions of a fund manager’s performance. In their model, weights are considered to be a

11
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stochastic process (like asset returns) as opposed to fixed parameters. The dynamic component is

measured by the sum of covariances between returns and portfolio weights.

Hsu improved Brinson’s model by further decomposing the allocation effect according to the

static allocation added-value and dynamic allocation added-value. Considering the cumbersome na-

ture of computing the covariance, the dynamic allocation added-value is computed as the difference

between the total allocation added-value and static added-value. In this case, the manager’s total

added-value is composed of three factors, (i) static allocation added value, (ii) dynamic allocation

added value and (iii) security selection added value. Hsu’s method could allow investors to easily

identify whether a fund is passively managed or actively managed.

In Lo [47]’s model, the sum of covariances between returns and portfolio weights was used to

measure the dynamic effect (named Active Component in his paper), and a static weighted-average

of the individual securities’ expected return was used to measure the static effect (named Passive

Component in his paper). Positive covariance between weights and returns implied a successful

dynamic management, while a negative one implied a poorly dynamic effect for portfolio’s return.

Lo further decomposed the covariance matrix as the product of standard deviation of weights, stan-

dard deviation of returns and correlation between weights and returns. He argued that both static

weight (standard deviation of weights equals to zero) and non-correlation between weights and re-

turns (even weights various over time) could be considered as passive management. Lo [47] also

proposed a factor-based Active-Passive decomposition method for the case where the return of each

asset satisfied a linear K-factor model.

The significant difference between the two dynamic models is that the definitions of “security

selection” and “asset allocation” in Hsu and Myers [38] depend critically on the benchmark, which

might be appropriate for managers whose target is to beat certain benchmarks, but will be less

natural for certain hedge fund strategies. Lo is trying to capture time-series measures of a manager’s

forecasting power without considering a specific benchmark.

Examples of Lo’s model and Hsu’s model are illustrated in Tables 1.5-1.10.
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Table 1.5: Active Management Portfolio vs Benchmark

Portfolio 1: Active Management Portfolio Benchmark

Quarterly
Portfolio
Total Return

Weight Return Expected Ac-
tive Return

Expected Pas-
sive Return

Expected To-
tal Return

Quarterly
Portfolio
Total Return

Weight Return Expected Ac-
tive Return

Expected Pas-
sive Return

Expected To-
tal Return

UK Equity
1st Quarter 13.000% 75% 16% 0.437% 4.470% 4.907% 10.000% 50% 16% 0.000% 4.500% 4.500%

2nd Quarter 9.800% 10% 8% 9.000% 50% 8%
3rd Quarter 1.200% 64% 3% 0.500% 50% 3%

Japanese Equity
1st Quarter 13.00% 25% 4% 1.080% 2.013% 3.093% 10.000% 50% 4% 0.000% 2.000% 2.000%

2nd Quarter 9.80% 90% 10% 9.000% 50% 10%
3rd Quarter 1.20% 36% -2% 0.500% 50% -2%

Total Portfolio 1.517% 6.483% 8.000% 0.000% 6.500% 6.500%

Table 1.6: Active Management Portfolio vs Benchmark (2)

Hsu Lo

Excess Return Factors Decomposition Expected Return Analysis For Portfolio 1

Stock Selection
Factor

Asset Allocation Factor Total Return Factors Total

Stock Selection Dynamic Asset
Allocation

Static Asset Allo-
cation

Total Asset Allo-
cation

Total Excess Re-
turn

Active Compo-
nent

Active Compo-
nen

Expected Total
Return

UK Equity
1st Quarter 0.0000% 0.758% -0.01% 0.750% 0.7500% 0.437% 4.470% 4.907%

2nd Quarter
3rd Quarter

Japanese Equity
1st Quarter 0.0000% 0.758% -0.01% 0.750% 0.7500% 1.080% 2.013% 3.093%

2nd Quarter
3rd Quarter

Total Portfolio 0.000% 1.517% -0.017% 1.500% 1.500% 1.517% 6.483% 8.000%
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Table 1.7: Active Management Portfolio vs Passive Management Portfolio

Portfolio 1: Active Management Portfolio Portfolio 2 : Passive Management Portfolio

Quarterly Portfolio
Total Return

Weight Return Expected Ac-
tive Return

Expected Pas-
sive Return

Expected To-
tal Return

Quarterly Portfolio
Total Return

Weight Return Expected Ac-
tive Return

Expected Pas-
sive Return

Expected To-
tal Return

UK Equity
1st Quarter 13.000% 75% 16% 0.437% 4.470% 4.907% 13.600% 80% 16% 0.000% 7.200% 7.200%

2nd Quarter 9.800% 10% 8% 8.400% 80% 8%
3rd Quarter 1.200% 64% 3% 2.000% 80% 3%

Japanese Equity
1st Quarter 13.00% 25% 4% 1.080% 2.013% 3.093% 10.000% 20% 4% 0.000% 0.800% 0.800%

2nd Quarter 9.80% 90% 10% 9.000% 20% 10%
3rd Quarter 1.20% 36% -2% 0.500% 20% -2%

Total Portfolio 1.517% 6.483% 8.000% 0.000% 8.000% 8.000%

Table 1.8: Active Management Portfolio vs Passive Management Portfolio (2)

Hsu Lo

Excess Return Factors Decomposition Expected Return Analysis For Portfolio 1

Stock Selection
Factor

Asset Allocation Factor Total Return Factors Total

Stock Selection Dynamic Asset
Allocation

Static Asset Allo-
cation

Total Asset Allo-
cation

Total Excess Re-
turn

Active Compo-
nent

Active Compo-
nent

Expected Total
Return

UK Equity
1st Quarter 0.0000% 0.303% -0.30% 0.000% 0.0000% 0.437% 4.470% 4.907%

2nd Quarter
3rd Quarter

Japanese Equity
1st Quarter 0.0000% 0.758% -0.76% 0.000% 0.0000% 1.080% 2.013% 3.093%

2nd Quarter
3rd Quarter

Total Portfolio 0.000% 1.062% -1.062% 0.000% 0.000% 1.517% 6.483% 8.000%
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Table 1.9: Passive Management Portfolio vs Benchmark

Portfolio 2: Passive Management Portfolio Benchmark

Quarterly Portfolio
Total Return

Weight Return Expected Ac-
tive Return

Expected Pas-
sive Return

Expected To-
tal Return

Quarterly Portfolio
Total Return

Weight Return Expected Ac-
tive Return

Expected Pas-
sive Return

Expected To-
tal Return

UK Equity
1st Quarter 13.600% 80% 16% 0.000% 7.200% 7.200% 10.000% 50% 16% 0.000% 4.500% 4.500%

2nd Quarter 8.400% 80% 8% 9.000% 50% 8%
3rd Quarter 2.000% 80% 3% 0.500% 50% 3%

Japanese Equity
1st Quarter 13.00% 20% 4% 0.000% 0.800% 0.800% 10.000% 50% 4% 0.000% 2.000% 2.000%

2nd Quarter 9.80% 20% 10% 9.000% 50% 10%
3rd Quarter 1.20% 20% -2% 0.500% 50% -2%

Total Portfolio 0.000% 8.000% 8.000% 0.000% 6.500% 6.500%

Table 1.10: Passive Management Portfolio vs Benchmark (2)

Hsu Lo

Excess Return Factors Decomposition Expected Return Analysis For Portfolio 2

Stock Selection
Factor

Asset Allocation Factor Total Return Factors Total

Stock Selection Dynamic Asset
Allocation

Static Asset Allo-
cation

Total Asset Allo-
cation

Total Excess Re-
turn

Active Compo-
nent

Active Compo-
nent

Expected Total
Return

UK Equity
1st Quarter 0.0000% 0.000% 0.75% 0.750% 0.7500% 0.000% 7.200% 7.200%

2nd Quarter
3rd Quarter

Japanese Equity
1st Quarter 0.0000% 0.000% 0.75% 0.750% 0.7500% 0.000% 0.800% 0.800%

2nd Quarter
3rd Quarter

Total Portfolio 0.000% 0.000% 1.500% 1.500% 1.500% 0.000% 8.000% 8.000%

15



1.3. LITERATURE REVIEW

1.3.3 Geometric excess return

Geometric excess return is the ratio of one plus the portfolio net return divided by one plus the net

benchmark return minus one. It measures how much better the manager did than the benchmark

as a percentage of the final value of the initial amount invested in the benchmark. The key rule

for the geometric excess return model is that the product of different attribution effects must equal

the geometric excess return. Further, for multi-periods of time, the product of different attribution

effects over time must be equal to the geometric excess return over the total period of time.

Geometric excess return has several advantages compared to arithmetic excess return: (i) Geo-

metric excess returns are easy to do compounding for in multi-period models and do not encounter

the linking problem of the arithmetic model, (ii) geometric excess returns are not affected by the

currency effect, (iii) since the geometric excess is a percentage relative to benchmark, when the

market performs poorly, geometric excess return is much more impressive than when the market is

bullish.

A summary on the fund performance attribution analysis can be found in Bacon [7], Morningstar

[51] and Morningstar [52].

1.3.4 Factor Attribution Analysis

Factor attribution analysis is another way to decompose and explain the fund return. It could also

help the investors to better understand the key factors who drive the fund return and the fund’s

exposures to different types of risk. Sharpe [62] introduced the Capital Asset Pricing Model which

describes the return of a portfolio or a stock as a linear relation between the excess return and its

systematic (market) risk. The drawback of CAPM is that it only includes one risk factor, i.e., the

risk from the whole market, which may not be the best way to explain the returns, especially when

the portfolio is constructed with multiple strategies in mind. Fama and French [28] proposed a

three-factor attribution model to describe the stock return with two additional factors: the exposure

to small caps and the exposure to high book-to-market ratio. The three-factor attribution model

better explains the portfolio returns than the traditional Capital Asset Pricing Model. Carhart [18]

added a fourth factor, called the momentum factor, to extend the Fama-French three-factor model
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in order to capture momentum returns.

Funds are exposed to different types of risks based on their strategy. For equity mutual funds,

the standard style attribution analysis is similar to that in the Fama-French three-factor model or

Carhart four-factor model. Fung and Hsieh [29] and Fung and Hsieh [30] proposed an asset-based

style analysis for analyzing hedge funds. The asset-based style analysis approach is to find the

common sources of risk in the returns and link these common risks to observable prices. If the

common sources of risk cannot be linked to marketable prices, the factors are called return-based

style factors. The authors studied four different types of hedge funds: Trend-Following funds,

Merger Arbitrage Funds, Fixed-Income Hedge Funds and Equity Long-Short Hedge Funds, and

summarized seven risk factors. These seven factors are market risk, spread between small-cap

stock returns, spread between large-cap stock returns, 10-year Treasury yield, yield spread between

10 year T-bonds and Moody’s Baa bonds, trend following bond, currency and commodity factors.

Agarwal et al. [3], Agarwal and Naik [2] and Jaeger and Wagner [40] performed similar studies

on different types of hedge funds as well. Okunev and White [56] also suggested ten categories of

potential market factor pool which investors could consider using as regression factors. The factor

attribution analysis approach is highly dependent on choosing the right factors. Researchers usually

use principal component analysis or stepwise linear regression to select the factors which have the

most explanation power. The K-factor linear model is based on the assumption that the factors are

stationary. The K-factor attribution analysis usually achieves high in-sample R2, but often results

in poor out-of-sample fit.

Katsaris et al. [43] proposed an approach to incorporate the investor’s qualitative analysis into

quantitative factor model. They showed that combining the investor’s understanding of a fund’s

strategy with traditional out of sample statistic criteria could lead to a more robust linear factor

model. The market risk model is adjusted with the residue risk and tail risk to better fit the true

return distribution. The out of sample explanation power R2 is used as the weighting parameter

in the factor to correct the deviation of the expected return from the actual return. In addition,

the author proposed an approach to quantify the factors such as liquidity risk, leverage risk and

concentration in the size in the tail risk based on the investor’s qualitative analysis.
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1.3.5 Portfolio Optimization and Risk Management

Risk measures such as variance, mean absolute deviation, downside standard deviation, Value at

Risk (VaR), Conditional Value at Risk (CVaR) and tail conditional expectation (TCE) are powerful

risk management tools applied in portfolio optimization.

Markowitz [48] proposed the ground-breaking Modern Portfolio Theory, but it is not exten-

sively used in large scale portfolio construction in its original form because it suffers from several

limitations. First, it requires several strong assumptions such as: (a) asset returns are (jointly) nor-

mally distributed random variables, (b) correlations between assets are fixed and constant over time.

Second, the optimal allocation is very sensitive to the inputs. Third, it encounters computation dif-

ficulties for large scale portfolio optimization because it requires solving a large-scale quadratic

programming problem with dense covariance matrix.

Comparing to the traditional mean-variance approach which uses a complete set of expected

return as inputs, Black and Litterman [14] proposed a scheme to incorporate the investor’s view in

the equilibrium market to produce a new set of expected returns. This allows the optimal portfolio

weights to reflect the investor’s views. The degree of uncertainty regarding different views is also

considered in the model. The Black-Litterman asset allocation model has gained wide acceptance

in financial institutions.

Konno and Yamazaki [45] proposed an alternative Mean-Absolute Deviation (MAD) model

which removes the normality assumption of asset return. Mean absolute deviation is used as the

risk measure in the model instead of variance. MAD is easier to compute comparing to the original

Markowitz model because it uses the L1 risk function which removes the computational difficulties

associated with the covariance matrix in the portfolio variance model.

Value-at-Risk (VaR) is another way to measure downside risk. It was first proposed by J.P.

Morgan Chase Co. in RiskMetricsTM [59] as a measure of acceptability for a financial position

with random return. It is also part of current regulatory frameworks for banks [65]. However,

VaR is subject to several serious limitations as well. In particular, it is not a coherent measure

because of its lack of sub-additivity (Artzner et al. [6]). VaR is a nonsmooth, nonconvex, and multi-

extreme function [49] and results in intractable non-convex stochastic optimization problems both
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in the context of minimizing VaR or minimizing a convex function with VaR constraint. Extensive

research efforts have focused on portfolio optimization with VaR. Examples related to solving the

VaR optimization problem include Basak and Shapiro [8], Benati and Rizzi [12], Campbell et al.

[17], Campbell et al. [17], Gaivoronski and Pflug [32], Natarajan et al. [54], Pang and Leyffer [57],

Pirvu [58], Tasche and Tibiletti [66] and Wozabal et al. [71]. More generally, in quantile based

risk management, Rodriguez [61] showed that the quantile based portfolio optimization problem

could be solved by using Brute-Force Method, Greedy Linear and Mixed Integer Programming

techniques. Cetinkaya and Thiele [21] proposed a fast-convergent approximation method for the

portfolio management problem with a quantile criterion which is computationally tractable.

Rockafellar and Uryasev [60] proposed the Conditional Value at Risk (CVaR) risk measure and

showed that it is a coherent risk measure [6]. They also obtained a linear programming formulation

to solve the mean-CVaR problem efficiently. Acerbi [1] showed that the portfolio risk which was

given by the spectral risk measure could always be formulated as an linear programming problem

and CVaR can be viewed as a special case of spectral risk measure. However, Alexander et al.

[4] showed that the resulting linear problem was very ill-conditioned when the risk-return had a

non-linear structure, and was hard to solve when the number of scenarios became large. Lim et al.

[46] pointed out that although CVaR was very important both from a theoretical (coherent measure)

and practical perspective, it is fragile in optimization. Ceria et al. [20] showed that one way to

solve the fragility was to impose spectral risk constraints with several different risk models at the

same time. However, this multi-spectral risk constraints model increased the size of the resulting

LP significantly.

Although linear programming formulations can be solved very efficiently in CPLEX and MOSEK

even when the problem is of large scale, the efficiency of the algorithms depends significantly on

the sparsity of the problem. However, the LP derived from CVaR minimization has a large dense

block and the problem is very ill-conditioned. Another drawback is that CVaR optimization usually

results in an infinite number of portfolios with the same VaR and CVaR.

Alexander et al. [4] not only showed the ill-conditioning of the CVaR optimization problem,

but also proposed a smoothing scheme to minimize CVaR very efficiently by approximating the

piecewise linear CVaR objective function with a continuously differentiable piecewise quadratic
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approximation function. The linear programming CVaR optimization problem then turned out to

become a continuous piecewise quadratic convex programming problem. This quadratic convex

programming problem typically generated an infinite sequence of approximations converging to a

solution. At each iteration, it typically required a function and a gradient evaluation. This smoothing

method speeded up solution time by 1187% comparing to the linear programming structure. The

relative difference in objective function is less than 1.5%. Iyengar and Ma [39] developed fast

gradient descent algorithm based on the smoothing method proposed by Nesterov [55] to iteratively

compute approximate solutions for the large scale scenario-based mean-CVaR portfolio selection

problem without requiring any linear programming and can guarantee an accuracy with ε ≈ 10−3.

The fast gradient descent algorithm included two steps: (1) smoothing the objective by imposing

a strongly convex function and (2) update the weights using a convex combination of two other

variables.

1.3.6 Robust Portfolio Optimization and Control

Robust optimization deals with uncertainty by allowing parameters to vary in a certain convex un-

certainty set and optimizing the worst case over that set. The robust optimization problem is usually

set up in a min-max or max-min framework. For a comprehensive summary of this topic, the reader

is referred to Ben-Tal et al. [11], Bertsimas et al. [13] and Ben-Tal et al. [10]. An overview of the

most recent developments in robust optimization can be found in Gabrel et al. [31].

Traditional mean-variance models are vulnerable to data errors. Extensive research on protect-

ing portfolios against worst-case estimates have been presented in, for instance, Ben-Tal et al. [10]

and Goldfarb and Iyengar [34]. Portfolio optimization with uncertainty over a set of distributions

has also been intensively studied. For example, ElGhaoui et al. [27] proposed a robust portfolio

framework which assumed that only the bounds on the parameters are known. The author solved

the worst-case problem with semi-definite programming and showed dramatic improvement of the

worst-case objective of the robust portfolio. DeMiguel and Nogales [24] proposed a class of port-

folios that were less sensitive to data error than the Mean-Variance portfolio selection model. A

robust estimator was used in the model and a single nonlinear program was solved. Glasserman and

Xu [33] considered that the asset returns were driven by market factors that evolved stochastically.
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Both the relationship between returns and factors and the evolution of the factors were subject to

model error and treated robustly stochastically. The authors developed robust portfolio control rules

by applying stochastic factor in model dynamics.
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Chapter 2

Robust Portfolio Management with

Uncertainty in Asset Allocation

2.1 Motivation

Institutional investors, such as pension funds, university endowments and insurance companies,

actively manage their portfolio by investing money in outside fund managers with expectation of

generating superior returns while keeping risk in a low level. Fund managers might have quiet

different risk and return profiles with regarding to their strategy and investment process. Institu-

tional investor has low tolerance for risk in nature. A thorough understanding of the fund manager’s

sources of returns and risks inherent in the decision process and selecting superior external man-

agers is critical to the performance of the institutional investor’s portfolio.

Manager’s asset allocation could significantly change fund’s exposures and affect fund’s return

and risk as a result. Previous research focused on evaluating fund manager’s skills by decompos-

ing return into several attributions. For instance, Lo [47] and Hsu and Myers [38] propose to split

fund return into active management component (reflecting the fund manager’s skill) and a passive

management component (reflecting stock performance). Brinson et al. [16] proposed a method to

decompose the manager’s added value 1) Asset Allocation, 2) Stock Selection and 3) Intersection
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between the two. These approaches offer investor an effective way to evaluate and select single

superior fund manager.

In this Chapter, considering the low risk tolerance for institutional investors, our goal is to con-

struct a portfolio as an institutional investor by selecting multiple superior fund managers, in order

to minimize the worst case volatility while keeping the return beating certain benchmark. Asset

allocation acts as an important role in fund’s performance and may varies from time to time. Un-

certainty in return has been well studied in the context of portfolio management, but not for asset

allocation in fund management. In this Chapter, we propose a new framework which extends tradi-

tional mean-variance model and takes into account the uncertainty in fund’s asset allocation in the

decision process. We also propose an efficient algorithm to solve the model by either transforming

the inner global optimization problem to a series of Mixed Integer linear problem, or deploying the

algorithm developed by Chen and Burer [22]. The result shows that uncertainly in manager’s asset

allocation does affect portfolio’s variance and stability. Our robust model provides a consistent and

strong protection under the worst case manager’s asset allocation.

KeyContribution : In this Chaper we propose a robust framework that takes into account the

uncertainty stemming from the asset allocation, in the context of manager selection and portfolio

management. We assume that only bounds on fund manager’s asset allocation are available. We

define the worst-case risk as the largest variance attainable, with limited information on each fund

manager’s asset allocation. We propose two exact approaches and an hubristic one to solve the

problem efficiently. Furthermore, we show that our robust model provides a consistent and strong

protection than nominal model under the worst case manager’s asset allocation.

2.2 Robust Fund Manager Selection

2.2.1 Problem Setup

We aim to select several fund managers which are different in asset allocation but with same in-

vestment strategy or theme, in order to minimize the worst case portfolio risk (variance), while
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2.2. ROBUST FUND MANAGER SELECTION

guaranteeing that expected return beats certain benchmark and all the money must be invested.

Each manager’s asset allocation is under uncertainty and is bounded in certain range. We will use

the following notation:

Decision Variable

xi: allocation to fund manager i;

Parameters under Uncertainty

wij : allocation to asset j of manager i;

w+
ij : upper bound of allocation to asset j of manager i;

w−ij : lower bound of allocation to asset j of manager i;

wij : nominal allocation to asset j of manager i;

Other Parameters

n: number of candidate fund managers;

m: number of asset classes;

r̄j : expected return from asset j;

τ : portfolio return benchmark.

2.2.2 Problem without Uncertainty

We apply the classical Markowitz portfolio optimization model to fund manager selection problem.

minx
n∑

i=1

xi

m∑
j=1

wij

n∑
k=1

xk

m∑
l=1

wkl cov(rj , rl) (2.1)

s.t.
n∑

i=1

xi = 1

n∑
i=1

xi

m∑
j=1

wijrj ≥ τ

xi ≥ 0,∀i
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2.2.3 Problem with Uncertainty

For each fund manager, their allocation to different asset class might change from time to time, but

is subject to certain range. Changes of allocation directly impact their return and risk. We aim to

minimize the worst case portfolio variance by taking the consideration that asset allocation is under

uncertainty for each manager.

minx maxω
n∑

i=1

xi

m∑
j=1

wij

n∑
k=1

xk

m∑
l=1

wkl cov(rj , rl) (2.2)

s.t.
m∑
j=1

wij = 1,∀i

w−ij ≤ wij ≤ w+
ij ,∀i, j

s.t.
n∑

i=1

xi = 1

n∑
i=1

xi

m∑
j=1

wijrj ≥ τ

2.3 Solution Approach

One of the traditional approaches to solve the robust optimization problem is to reformulate the inner

problem as its dual and solve with the outer problem. However, in our case, the inner maximization

problem is a non-convex problem which has multiple local maximizers, and leads computational

difficulty to solve with its dual formulation.

We propose two algorithms to solve the inner problem, and then solve the outer problem by

adding delayed constraints until the solution converge. The first approach to solve the inner problem

is to eliminate the quadratic term in the objective function through linearization, and transform the

problem into a mixed 0-1 linear program. The second approach is to deploy Chen and Burer [22]’s

algorithm to solve the nonconvex quadratic problem globally via completely positive programming.
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2.3.1 Inner Problem

Approach 1

Theorem 2.1 Tuy [70] A convex function attains its maximum on a simplex at a vertex of this

simplex.

Theorem 2.2 Tuy [70] A vertex of a polyhedron in the hyperplane is a point x0 such that, for a

certain positive integer I, x0i = x−i or x+i for i 6= I .

Let Ji be the index of j of the inactive wij for manager i and denote wij = w−ij + 4wijuij ,

where4wij = w+
ij − w

−
ij . Then for each manager i,

• for j = Ji, wij ∈ (w−ij , w
+
ij), i.e. wij = w−ij +4wijuij , where 0 ≤ uij ≤ 1

• for j 6= Ji, wij = w−ij or w+
ij , i.e. wij = w−ij +4wijuij , where uij ∈ {0, 1}

In this way, we could enumerate Ji from 1 to m for wij with regards to each manager i and

the original inner nonconvex problem could be reformulated to mn mixed integer subproblems. For

certain subproblem,

maxω
n∑

i=1

m∑
j=1

n∑
k=1

m∑
l=1

xixkcov(rj , rl)(w
−
ij +4wijuij)(w

−
kl +4wklukl) (2.3)

s.t. uij ∈ {0, 1}, for j 6= Ji

0 ≤ uij ≤ 1, for j = Ji

Sherali and Adams [64] proposed RLT inequalities which are derived using a so-called Reformulation-

Linearisation Technique. The constraint yij = xixj , together with the bounds 0 ≤ xi ≤ 1 and

0 ≤ xj ≤ 1, implies the following four linear inequalities

yij ≥ 0, yij ≤ xi, yij ≤ xj , yij ≥ xi + xj − 1. (2.4)

By means of linearisation, the problem could be further simplified as mn linear mixed integer
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subproblems. Substituting uijukl with vijkl, problem (2.3) could be reformulated as following:

maxω
n∑

i=1

m∑
j=1

n∑
k=1

m∑
l=1

xixkcov(rj , rl)
(
w−ijw

−
kl + 2w−kl 4 wijuij +4wij 4 wklvijkl

)
(2.5)

s.t. vijkl ≤ uij ,∀i, j

vijkl ≤ ukl,∀k, l

vijkl ≥ uij + ukl − 1,∀i, j, k, l

uij ∈ {0, 1}, for j 6= Ji

0 ≤ uij ≤ 1, for j = Ji

Approach 2

Chen and Burer [22] proposed a new method for solving nonconvex quadratic programming to

global optimality via completely positive programming. Their approach is to employ a finite branch-

and bound (B&B) scheme, in which branching is based on the first-order KKT conditions and

polyhedral-semidominant relaxation are solved at each node of the (B&B) tree. The relaxations are

derived from completely positive and doubly nonnegative programs. The original quadratic program

is reformulated as a quadratic program with linear equality, nonnegativity and complimentarily

constraints. Such problem could be further reformulated as completely positive programming and

relaxed in a natural way to a doubly nonnegative program.

2.3.2 Outer Problem

Taking the optimal solution get from the inner problem as parameters for the outer problem and

adding delayed constraints, the outer problem could be treated as a traditional convex problem with

linear constraints.

For the Sth iteration, the outer problem with two new delayed constraints could be formulated

as
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min z

s.t. z ≥
n∑

i=1

xi

m∑
j=1

ws
ij

n∑
k=1

xk

m∑
l=1

ws
kl cov(rj , rl), ∀s = 1, 2, ...S (2.6)

n∑
i=1

xi

m∑
j=1

ws
ijrj ≥ τ,∀s = 1, 2, ...S

n∑
i=1

xi = 1

2.3.3 Algorithm

Step 1 Start with a feasible solution x ∈ X and set iteration number , s = 0.

Step 2 Solve the inner problem with candidate solution xs and obtain a optimal solution w,

namely ws+1.

Step 3 Solve the outer problem 2.6 for xs+1, and set s = s+ 1.

Step 4 Repeat Steps 2 and 3 until the algorithm generates the same two candidate solutions

x ∈ X in two consecutive iterations.

2.4 Numerical Results

In this section, we present three experiments to illustrate our robust solution of manager selection

problem with uncertainty in asset allocations. The first set of experiment is to compare the per-

formance of the two approaches proposed in Section 4. The second experiment is to compare our

robust approach with the nominal approach from the standpoint of the risk. In the third experi-

ment, we propose an heuristic algorithm by only taking several managers from the large candidate

manager pool into the robust manager selection model, and we compare the results of this heuristic

method with the two approaches we proposed in Section 4.
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2.4.1 Compare the computational results of two approaches

In this set of experiment, we test the efficiency of the two approaches, the MIP approach and Chen

and Burer [22] approach. We test three instances: four managers with four assets, six managers with

six assets, and twelve managers with six assets. We observe that the first approach is more efficient

than the second one, when the problem size is small. However, as the problem size goes large, the

computational advantage of the second approach becomes more obvious. As the size goes to twelve

managers with six assets, the first approach needs to solve 612 independent mixed integer problem

which leads the problem runs forever. The second approach could solve the problem in a reasonable

time for this size. Table 2.1 to table 2.5 present the experiment result for comparing interest.

Four Managers with Four Assets

Table 2.1: Four Managers with Four Assets

worst variance nominal return 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Manager 1 13.2566 0.0259 0 0 0 0 0 0 0

Manager 2 10.161 0.0227 0 0 0 0 0 0 0

Manager 3 11.2965 0.0457 0 0 0 0.17 0.4368 0.7 0.9632

Manager 4 7.645 0.0267 1 1 1 0.83 0.5632 0.3 0.0368

variance(objective) 7.645 7.645 7.645 7.93 8.6456 9.6935 11.0762

excess return 0.0117 0.0067 0.0017 0 0 0 0

Running Time (Approach 1) 8.092 7.222 7.294 9.96 16.394 13.791 15.745

Running Time (Approach 2) 13.274 12.95 15.055 25.6 27.134 26.487 44.493
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Six Manager with Six Assets

Table 2.2: Six Manager with Six Assets

worst variance nominal return 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Manager 1 7.1842 0.0461 0.4303 0.4303 0.4303 0.4303 0.4303 0.4937 0.3524 0.1778 0.0158

Manager 2 6.4727 0.0341 0.5697 0.5697 0.5697 0.5697 0.5697 0.5063 0.3593 0.2284 0.0915

Manager 3 7.5552 0.0432 0 0 0 0 0 0 0 0 0

Manager 4 9.6658 0.0506 0 0 0 0 0 0 0 0 0

Manager 5 7.8224 0.0573 0 0 0 0 0 0 0.2883 0.5937 0.8927

Manager 6 10.3974 0.0525 0 0 0 0 0 0 0 0 0

variance(objective) 6.2028 6.2028 6.2028 6.2028 6.2028 6.2145 6.4857 6.9147 7.4998

excess return 0.0242 0.0192 0.0142 0.0092 0.0042 0 0 0 0

Running

time

(Approach 1) 25768 26467 26218 26423 26487 26407 26672 15859 28566

Running

time

(Approach 2) 6848 7167 7152 7242 7258 6870 9594 13233 16236

Table 2.3 and 2.4 shows running time with respect to various range of uncertainty of manager’s asset

allocation. The first row is the running time of the original setting. The second row and the third

row expand the range by 10% and 20% of the nominal manager’s asset allocation, respectively.

Under both four managers with four assets case and six managers with six assets case, running

time increases as the range of the manager’s asset allocation gets wider. In addition, running time

increases as benchmark return increases as well.

Table 2.3: Running time comparison (in seconds)

0.01 0.015 0.02 0.025 0.03 0.035 0.04

original bound 13 13 15 26 27 26 44

10% wider 28 46 57 55 59 66 73

20% wider 45 76 75 83 82 97 104

Table 2.4: Running time comparison (in seconds)

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

original bound 6848 7167 7152 7242 7258 6870 9594 13233 16236

10% wider 8470 8566 8512 8559 8700 8471 12124 18470 21184

20% wider 10147 10519 10742 10408 10548 10523 18345 22327 25343
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Twelve Managers with Six Assets

Table 2.5: Twelve Managers with Six Assets

worst vari-

ance

nominal

re-

turn

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Manager 1 8.921 0.0526 0 0 0 0 0 0 0 0 0 0

Manager 2 9.1132 0.0415 0 0 0 0 0 0 0 0 0 0

Manager 3 11.306 0.0461 0 0 0 0 0 0 0 0 0 0

Manager 4 8.9833 0.059 0 0 0 0 0 0.2253 0.431 0.622 0.8118 0.4923

Manager 5 7.6327 0.0316 0.6421 0.6421 0.6421 0.6421 0.6212 0.4865 0.3427 0.1858 0.0274 0

Manager 6 10.2603 0.0667 0 0 0 0 0 0 0.0005 0 0 0.4042

Manager 7 10.3677 0.029 0 0 0 0 0 0 0 0 0 0

Manager 8 8.8524 0.0201 0 0 0 0 0 0 0 0 0 0

Manager 9 9.9881 0.0145 0 0 0 0 0 0 0 0 0 0

Manager 10 10.031 0.0386 0.3468 0.3469 0.3468 0.3468 0.3051 0.2664 0.2258 0.1922 0.1608 0.1035

Manager 11 7.9499 0.031 0 0 0 0 0 0 0 0 0 0

Manager 12 8.885 0.0494 0.0111 0.011 0.0111 0.0111 0.0736 0.0218 0 0 0 0

variance(objective) 6.8357 6.8357 6.8357 6.8357 6.8387 6.975 7.2184 7.6183 8.1685 8.9515

excess return 0.0192 0.0142 0.0092 0.0042 0 0 0 0 0 0

Running

time

30719 30599 29864 30553 31039 54754 55120 57464 48503 27397

2.4.2 Compare the robust model with the nominal model

In this set of experiment, we compare our robust model with the nominal model. We test the

performance of the two models under the nominal asset allocation scenario and the worst case

asset allocation scenario. We also compare the difference in manager selection policy under the

two models. The six managers with six assets case and twelve managers with six assets case are

presented for illustration purpose.

Six Managers with Six Assets

Figure 2.1 and figure 2.2 compare the optimal manager selection policy under robust model and

nominal model. Under nominal model, Manager 1 is always chosen under all benchmark require-

ment, but with a decreasing weight as benchmark return increases. Manager 5 is selected and takes
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an increasing weight in the portfolio as benchmark return exceed 0.045. However, under the robust

model, manager 1 takes much less weight in the portfolio comparing with its weight in the nominal

model. Manager 2, who is never selected in the nominal model, gains a larger weight under the

robust manager selection policy.

Figure 2.3 presents the risk under the nominal model, robust model and the case where the nom-

inal manager allocation is applied when the worst case manager’s allocation occurs. The nominal

model always gives the lowest risk with manager’s nominal asset allocation. The robust model de-

livers manager selection policy and the minimum risk with the worst case manager’s nominal asset

allocation. In the scenario that the worst case manager’s asset allocation occurs, nominal manager

selection policy consistently results in a higher risk than the risk under the robust manager selection

policy. From figure 2.3, we could see that the robust model provides a good protection with the

worst case scenario.
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Figure 2.1: Nominal Manager Allocation: Six Managers with Six Assets
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Figure 2.2: Robust Manager Allocation: Six Managers with Six Assets
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Figure 2.3: Nominal Model v.s. Robust Model: Six Managers with Six Assets

In addition, we test the out of sample return by taking the robust manager selection policy and

nominal manager selection policy for the six managers with six assets case. Figure 2.4 and figure

2.5 take the manager selection policy when the benchmark return is set by 0.15% and 0.45% using

historical data, but apply the most recent 24 months manager’s return. The portfolio expected return

of the out of sample data is lower than the benchmark return set in the model, since we are using

out of sample data, which is different from the historical one. From the figure, we can see that the

robust manager selection policy yields a lower expected return than nominal selection policy, but it
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also avoid significant downside risk.
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Figure 2.5: Out of Sample Robust Portfolio Return v.s. Nominal Portfolio Return 2

Twelve Managers with six Assets

Figure 2.6 demonstrates that the nominal model offers a lower risk under nominal allocation than

the robust model, which is to minimize the worst case risk. However the robust model performs a

stronger and consistent protection on the risk given the worst case asset allocation scenario.
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From manager selection viewpoint, the robust model and the nominal model also result in very

different selection policies. Manager 12, Manager 4 and Manager 10, who take a large weight under

robust manager selection policy, are never chosen under the nominal manager selection policy.

Meanwhile, Manager 1 and Manager 8 are never selected under robust manager selection policy.

Detailed manager allocation information are showed in figure 2.7 and figure 2.8.
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Figure 2.6: Nominal Model v.s. Robust Model: Twelve Managers with Six Assets
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Figure 2.7: Nominal Manager Allocation:Twelve Managers with Six Assets
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Figure 2.8: Robust Manager Allocation:Twelve Managers with Six Assets

2.4.3 An Heuristic Method

We define ”the worst case efficient managers” as managers whose worst case risk v.s. nominal re-

turn dominate other managers and they also lie on the boundary of the convex hull which is compose

of all other manager’s worst case risk v.s. nominal return profile. In the heuristic method, only the

worst case efficient managers will be selected in model in order to accelerate solving the problem.

In the four managers with four assets case, manager 3 and manager 4 dominate other man-

agers from worst case risk v.s. nominal return viewpoint. In the six managers with six assets case,

manager 1, manager 2 and manager 5 are on the boundary of the convex hull including all other

manager’s worst case risk v.s. nominal return profile. In the twelve managers with six assets case,

manager 4, manager 5 and manager 6 are defined as ”the worst case efficient managers” as they

do not only dominate other managers in the standpoint of worst case risk v.s. nominal return, but

also lie on the boundary of the convex hull of all other managers. Manager 1 (marked as circle)

and manager 12 (marked as cross) are not defined as ”the worst case efficient manager” and are not

selected in the heuristic method because they do not lie on the boundary of the convex hull, although

no single manager dominates these two from worst case risk v.s. nominal return aspect.
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For the cases of four managers with four assets, and six managers with six assets, table 2.6 and

table 2.7 compare the result of optimal manager selection policy and the running time which get

from the heuristic method with the result gets from the two approaches proposed in Section 4. The

heuristic method results in the same optimal result as the other two approaches, but with significantly

less time to solve the problem due to less candidate managers, especially for six managers with six

assets instance. Efficient frontier got from the heuristic method also overlaps the one with other

approaches as shown in figure 2.9 and figure 2.10.
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Figure 2.9: Efficient Frontier: Four Managers with Four Assets

Table 2.6: Heuristic Method v.s. Other Methods: Four Managers with Four Assets

worst variance nominal return 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Manager 3 11.2965 0.0457 0 0 0 0.1737 0.4368 0.7 0.9632
Manager 4 7.645 0.0267 1 1 1 0.8263 0.5632 0.3 0.0368
variance(objective) 7.645 7.645 7.645 7.9324 8.6456 9.6935 11.0762
Running Time 9.36 10.43 11.07 12.01 12.02 12.82 13.37

With Four Manager
variance(objective) 7.645 7.645 7.645 7.9324 8.6456 9.6935 11.0762
Running time (Approach 1) 8.092 7.222 7.294 9.957 16.394 13.791 15.745
Running time (Approach 2) 13.274 12.95 15.055 25.636 27.134 26.487 44.493
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Table 2.7: Heuristic Method v.s. Other Methods: Six Managers with Six Assets

worst vari-

ance

nominal

return

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Manager 1 7.1842 0.0461 0.4303 0.4303 0.4303 0.4303 0.4303 0.4937 0.3524 0.1778 0.0158

Manager 2 6.4727 0.0341 0.5697 0.5697 0.5697 0.5697 0.5697 0.5063 0.3593 0.2284 0.0915

Manager 5 7.8224 0.0573 0 0 0 0 0 0 0.2883 0.5937 0.8927

variance(objective) 6.2028 6.2028 6.2028 6.2028 6.2028 6.2145 6.4857 6.9147 7.4998

Running time 42 100 38 58 36 44 36 65 99

With Six Managers

Running time (Approach1) 25768 26467 26218 26423 26487 26407 26672 15859 28566

Running time (Approach2) 6848 7167 7152 7242 7258 6870 9594 13233 16236
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For the twelve managers with six assets case, manager 4, manager 5, and manager 6 are se-

lected as the worst case efficient managers in the heuristic algorithm. Candidate managers are

reduced from twelve to three, and running time are dropped significantly. However, the heuristic

method yields a larger worst case variance comparing to the other two approaches. The difference

is diminished as the benchmark return got large, which is as shown in figure 2.12.
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Table 2.8: Heuristic Method v.s. Other Methods: Twelve Managers with Six Assets

worst vari-
ance

nominal
return

0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065

Manager 4 8.9833 0.059 0.8692 0.8693 0.8693 0.8693 0.8698 0.6927 0.5109 0.3291 0.1473 0 0
Manager 5 7.6327 0.0316 0.1308 0.1307 0.1307 0.1307 0.1302 0.3073 0.4891 0.6709 0.8527 0.875 0.2171
Manager 6 10.2603 0.0667 0 0 0 0 0 0 0 0 0 0.125 0.7829
variance(objective) 7.5945 7.5945 7.5945 7.5945 7.5945 7.6518 7.8306 8.1309 8.5538 9.1266 9.9577
Running time 162 74 79 92 90 117 90 152 186 29 17

With Twelve Managers
variance(objective) 6.8357 6.8357 6.8357 6.8357 6.8387 6.975 7.2184 7.6183 8.1685 8.9515 9.8855
Running time (Approach2) 30719 30599 29864 30553 31039 54754 55120 57464 48503 27397 1660
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2.5 Conclusions

In this Chapter, we proposed a robust framework that takes into account the uncertainty stemming

from the asset allocation, in the context of manager selection and portfolio management. We also

proposed two exact approaches and an heuristic one to solve the problem efficiently. In addition,

our robust model provides a consistent and strong protection under the worst case manager’s asset

42



2.5. CONCLUSIONS

allocation.
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Chapter 3

Robust Portfolio Management with

Uncertainty in Asset Allocation and

Asset Return

3.1 Motivation

Active management aims to generate superior return by actively changing the weight of securities

or asset classes. It has been criticized for delivering lower return than passive management in

recent years. Passive management is only subject to uncertainty in assert return, however, active

management is subject to uncertainty from two resources: 1) asset allocation, and 2) asset return. In

this research, we study how uncertainty in both asset allocation and asset return affect the portfolio

return. In addition, we apply robust optimization approach to protect the worst case scenario.

Portfolio optimization problem is developed by Markowitz [48] decades ago to study the trade

off between portfolio’s return and variance. This framework is decent in theoretical point of view,

but lack of practical value. One of the criticism of the model is that the return of securities is

assumed to be normal distributed, which is not the case in reality. The second criticism is that the

input has to be very accurately estimated, since the output is very sensitive to the input. However,

this is very difficult for expected return estimate.
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Mordern robust optimization approach is first introduced by El-Ghaoui and Lebret [26] and

Ben-Tal and Nemirovski [9], which allow the robust version to be applied to the classical portfolio

optimization model. The robust approach uses the distribution from the estimation process to find a

robust portfolio in one single optkmizaiotn process. The resulting portfolio is more robust in terms

of less sensitive to the input estimate error, and performs better than the classic optimization model.

In Dong and Thiele [25], we studied how uncertainty stemming from manager’s asset allocation

affects manager selection policy. In this Chapter, we consider the uncertainty in asset allocation and

asset return together in our manager selection process and we developed a new robust framework to

protect the worst case return.

Key Contribution: Uncertainty in asset return has been well studied in portfolio management.

In this Chapter, we investigate two sources of uncertainty stemming from manager’s asset allocation

and asset return in the context of manager selection. Uncertainty of manager’s asset allocation is

defined through bounds. Uncertainty in asset return is controlled through bounds and uncertainty

budget level. We proposed a robust framework to protect the worst case return. Furthermore, we

investigate the property of the lower bound and upper bound of the problem. Two approaches are

investigated through the special structure of the problem to solve the problem efficiently.

3.2 Robust Fund Manager Selection

3.2.1 Problem Setup

As an institutional investor, our goal is to select several fund managers to protect against the worst

case return scenario. The candidate managers invest in the same asset class but different in asset

allocation based on their views of the market. Our portfolio are facing two source of uncertainties

varied by each manager: the uncertainty in asset allocation and uncertainty from the asset return. We

assume that only limited information of asset allocation are disclosed to the investor. The bounds

on manager’s asset allocation for each assert class are available. The uncertainty in asset return is

also depicted as bounds in our set up. But uncertainty budget for the asset return limits the variation

of return, which prevent the return of all asset class go to the worst case, which is highly unlikely.

We consider two cases in our model: 1) no constraint on the benchmark return, 2) with constraint
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3.2. ROBUST FUND MANAGER SELECTION

on the benchmark return. We first present the framework of the nominal model without uncertainty

in Section 2.2, and then present the two versions robust model in Section 2.3-2.4. We use the

following notations for our problem setup:

Decision Variables

xi: allocation in fund manager i

Parameters related to fund managers’ allocations

wij : (uncertain) allocation of manager i in asset j

w+
ij : upper bound of allocation of manager i in asset j

w−ij : lower bound of allocation of manager i to asset j

wij : nominal allocation of manager i to asset j

rj : (uncertain) return of asset j

r+j : upper bound of return of asset j

r−j : lower bound of return of asset j

rj : nominal return of asset j

r̂j : deviation of return of asset j

zj : random variable, zj = (rj − r̄j)/r̂j
Other parameters

n: number of fund managers

m: number of asset classes

cov(rj , rl) : covariance between the returns of asset j and asset l

τ : portfolio return benchmark

α: uncertainty budget of asset return
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3.2.2 Problem without Uncertainty

We use the simplest portfolio model as the start. In this model, we aim to maximize the portfolio

return.

maxx∈X
n∑

i=1

xi

m∑
j=1

w̄ij r̄j

s.t.
n∑

i=1

xi = 1

xi ≥ 0,∀i

other constraints

3.2.3 Problem with Uncertainty

We consider two sources of uncertainty from the fund manager asset allocation and asset return

together in our framework. We allow uncertainty in assert allocation varies freely because it is fully

charged by fund manager. On the other hand, we set up uncertainty budget on asset return, since it

is highly unlikely that all asset class go to the worst case. The reason the diversification is to use

one asset class to hedge the loss in another asset class when the market is under sever headwinds.

in our experiment, we do conclude the case which full uncertainty budget in used to see the pattern

of manager selection policy. The robust model is set up as following:
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maxx∈X min(r,ω)∈S
n∑

i=1

xi

m∑
j=1

wijrj

s.t.
m∑
j=1

wij = 1,∀i

w−ij ≤ wij ≤ w+
ij , ∀i, j

rj = r̄j + r̂jzj ,∀j
m∑
j=1

|zj | ≤ α

−1 ≤ zj ≤ 1,∀j

s.t.
n∑

i=1

xi = 1

xi ≥ 0,∀i

other constraints

Considering that short sale is not allowed for fund manager, i.e. w−ij ≥ 0, the problem be could

reformulated as

maxx∈X min(r,ω)∈S
n∑

i=1

xi

m∑
j=1

wijrj

s.t.
m∑
j=1

wij = 1,∀i

w−ij ≤ wij ≤ w+
ij , ∀i, j

rj = r̄j − r̂jzj ,∀j
m∑
j=1

zj ≤ α

0 ≤ zj ≤ 1, ∀j

s.t.
n∑

i=1

xi = 1

xi ≥ 0,∀i

other constraints

48



3.2. ROBUST FUND MANAGER SELECTION

We proposed two problems to test the robust framework in the context of manager selection

problem

1) without return benchmark, and

2) with return benchmark constraint

For each of the problem, we compare the result of the robust structure with the nominal model.

3.2.4 Without return benchmark

maxx∈X min(r,ω)∈S
n∑

i=1

xi

m∑
j=1

wijrj

s.t.
m∑
j=1

wij = 1,∀i

w−ij ≤ wij ≤ w+
ij , ∀i, j

rj = r̄j − r̂jzj , ∀j
m∑
j=1

zj ≤ α

0 ≤ zj ≤ 1, ∀j

s.t.
n∑

i=1

xi = 1

xi ≥ 0,∀i
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3.2.5 With return benchmark constraint

maxx∈X min(r,ω)∈S
n∑

i=1

xi

m∑
j=1

wijrj

s.t.
m∑
j=1

wij = 1,∀i

w−ij ≤ wij ≤ w+
ij , ∀i, j

rj = r̄j − r̂jzj , ∀j
m∑
j=1

zj ≤ α

0 ≤ zj ≤ 1, ∀j

s.t.
n∑

i=1

xi = 1

n∑
i=1

xi

m∑
j=1

w̄ij r̄j ≥ τ

xi ≥ 0,∀i

3.3 Benchmark Problem

In this section, we present two sets of benchmark problems. The first set is that only uncertainty in

w is considered in the problem, and the second set is that both w and r are takes as their nominal

value.
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3.3.1 Benchmark Problem 1

In this benchmark problem, we only consider uncertainty in asset allocation and use the estimate

expected return as the input in the model.

maxx∈X min(r,ω)∈S
n∑

i=1

xi

m∑
j=1

wij r̄j

s.t.
m∑
j=1

wij = 1, ∀i

w−ij ≤ wij ≤ w+
ij , ∀i, j

s.t.
n∑

i=1

xi = 1

xi ≥ 0,∀i

other constraints

In this case, the inner problem is a linear problem instead of a bilinear problem. In order to

solve this problem, we write the dual of the inner problem and cooperate with the outer problem.

The problem can be reformulate as

maxx,t,u,v
n∑

i=1

ti +

n∑
i=1

m∑
j=1

w+
ijuij −

n∑
i=1

m∑
j=1

w−ijvij

s.t. ti + uij − vij ≤ xir̄j ,∀i, j
n∑

i=1

xi = 1

xi ≥ 0,∀i = 1, 2, .., n

uij ≤ 0,∀i, j

vij ≤ 0,∀i, j

Property: The problem is independent in terms of i, for each sub-problem i, at optimality, we

know that vij = 0 or uij = 0, such that the problem could be reformulated as
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maxt,u,v ti +
m∑
j=1

(
w+
ijmin{0, xir̄j + vij − ti} − w−ijmin{0,−xir̄j − uij + ti}

)

maxt,u,v ti +
m∑
j=1

(
w+
ijmin{0, xir̄j − ti} − w−ijmin{0,−xir̄j + ti}

)

We can rank xir̄j , and the problem becomes a piecewise linear problem for each sub-problem

i? then the problem can be reformulated as

maxt,u,v ti +
k∑

j=1

(
w+
ij(xir̄j − ti)

)
−

m∑
j=k+1

(
w−ij(ti − xir̄)

)

and the slope of ti is 1−
∑k

j=1w
+
ij−
∑m

j=k+1w
−
ij . When k = 0, then the slope is 1−

∑m
j=1w

−
ij ≥

0, while when k = m+ 1, the slope is 1−
∑m

j=1w
+
ij ≤ 0. ti = r̄(k), where k is the smallest integer

where slope less than 0. This indicates that

• wij = w−ij for j ranked strictly above r̄(k) in terms of nominal return;

• wij = w+
ij for j ranked strictly below r̄(k) in terms of nominal return;

• wij = 1− w−ij − w
+
ij for j ranked strictly equal to r̄(k) in terms of nominal return.

3.3.2 Benchmark Problem 2

maxx∈X
n∑

i=1

xi

m∑
j=1

w̄ij r̄j

s.t.
n∑

i=1

xi = 1

xi ≥ 0, ∀i

other constraints
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3.4 Solution Approach

One of the traditional method to solve the robust optimization problem to derive the dual of the

inner problem and solve with the outer problem. This approach could be applied to our benchmark

problem, which has the linear inner problem. However, in other cases, the inner problem is a bilinear

problem which has multiple local minimizers, and leads computational difficulty to solve with its

dual formulation. We proposed two algorithms to solve the inner problem efficiently.

3.4.1 Inner Problem

The inner problems are the same bilinear problems for two problems described above. The bilinear

problem with linear constraints are known as NP hard problem. We first demonstrate several key

properties of the bilinear problem, then we proposed two algorithms to solve it based on our frame-

work. The first algorithm is that we first reformulate the bilinear problem to quadratic problem,

and deploy Chen and Burer [22]’s algorithm to solve the nonconvex quadratic problem globally via

completely positive programming. The second algorithm is that we separate the inner problem into

several linear problems by going through the vertexes of one feasible set. We compare all the results

and find the minimum one as the optimal solution of the inner problem.

Bilinear Programming

A function f(x, y) is called bilinear if it reduces to a linear one by fixing the vector x or y to a

particular value (Nahapetyan [53]). In general, the bilinear function can be represented as follows:

f(x, y) = aTx+ xTQy + bT y

where a, x ∈ Rn, b, y ∈ Rm, and Q is a matrix of dimension n×m.

The bilinear programming problem

min f(x, y) = aTx+ xTQy + bT y

s.t. x ∈ X, y ∈ Y
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where X and Y are nonempty polytopes in Rn and Rm, respectively.

Let V (X) and V (Y ) denote the vertex sets of X,Y respectively.

Theorem 3.1 (Horst and Tuy [36] and [37]) If X and Y are bounded then there is an optimal

solution (x∗, y∗) of problem 3.1, such that x∗ ∈ V (X) and y∗ ∈ V (Y ).

Theorem 3.2 (Horst and Tuy [36] and [37]) If (x∗, y∗) is a solution of problem 3.1, then

minx∈Xf(x, y∗) = f(x∗, y∗) = miny∈Y f(x∗, y)

Algorithm 1 : Transform the Bilinear Problem to Quadratic Problem

min(w,r)∈S wTQr

s.t. eTwi = 1,∀i = 1, 2, .., n

w− ≤ w ≤ w+

r− ≤ r ≤ r+

where Q =



x1 0 .. 0 x2 0 .. 0 .. .. .. .. xn 0 .. 0

0 x1 .. 0 0 x2 .. 0 .. .. .. .. 0 xn .. 0

0 0 .. 0 0 0 .. 0 .. .. .. .. 0 0 .. 0

0 0 .. x1 0 0 .. x2 .. .. .. .. 0 0 .. xn



T

m×mn

,

and w = (wT
1 , w

T
2 , .., w

T
n ) with wi = (wi1, wi2, .., wim)T .

Thus, w ∈ Rmn, r ∈ Rm, Q ∈ Rmn×m.
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Then this bilinear problem can be expressed as an (indefinite) quadratic problem

miny
1

2
yMyT

s.t. eT yi = 1,∀i = 1, 2, .., n

y−i ≤ yi ≤ y
+
i ,∀i = 1, 2, .., n

eT z ≤ α,

r = r̄ − r̂z

where y = (yT1 , y
T
2 , .., y

T
n , r

T , zT ) with yi = wi = (wi1, wi2, .., wim)T , r = (r1, r2, ..., rm),

and z = (z1, z2, ..., zm)

and M =


0 Q 0

QT 0 0

0 0 0


Then we could use the completely positive programming method developed by Chen and Burer

[22] to solve inner non-convex quadratic problem to global optimal.

Algorithm 2 : Mapping the vertexes of one feasible region

In our problem settings, candidate managers could be as many as we need to put into the model.

But asset classes are limited to certain amount. The three main asset classes are equities (stocks),

fixed-income (bonds) and cash equivalents (money market instruments). As more and more invest-

ment strategies are emerging, hedge fund, private equity, commodities, etc are also be classified as

an asset class in the portfolio management context. However, the number of asset classes are still

with limited and manageable manner comparing to the number of candidate managers.

There are some properties of the feasible set of asset returns: 1) the feasible set of asset returns

are separate with the feasible set of asset allocation, 2) the feasible set is under box constraint plus

one hyper plane, and 3) limited number of constraints leads to limited number of vertexes. Based
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on these three attractive properties and Theorem 4, we developed following algorithm to solve the

inner problem efficiently:

Step 1: Find all the vertexes of the feasible set in terms of asset return r;

Step 2: For each of the vertex, solve the inner problem in terms of w,

Step 3: Compare the optimal solution of each vertex, and the minimum one is the global optimal

solution for the inner problem.

3.4.2 Outer Problem

The outer problem is a quadratic programming problem with fixed w and r get from inner problem,

maxx∈X
n∑

i=1

xi

m∑
j=1

wijrj

s.t.
n∑

i=1

xi = 1

xi ≥ 0,∀i

other constraints

We could solve the problem in finite steps by adding delayed constraints for all previous itera-

tions s = 1, 2, ...S − 1, where S is the current iteration.
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maxz,x z

s.t. z ≤
n∑

i=1

xi

m∑
j=1

ws
ijr

s
j , ∀s = 1, 2, .., S

n∑
i=1

xi = 1

xi ≥ 0,∀i

other constraints

3.5 Numerical Results

In this section, we present two sets of experiments to illustrate our robust solution of manager

selection problem with uncertainty in asset allocations and asset returns. The first set of experiment

does not consider benchmark constraint in the model. The second set of experiment contains the

benchmark return return in the nominal model. For each set of the problem, we showed the change

of the manager selection policy with respect to the change of uncertainty budget on asset returns.

We also compared the robust model with the two benchmark model without uncertainty.

3.5.1 Without return benchmark and variance constraints

In this set of experiment, we do not include return benchmark in our problem. We changed the

uncertainty budget of asset returns form 0 to the largest amount of uncertainty.

The upper and lower bound of the problem

We first develop the upper and lower bound of the problem with uncertainty, which gives the port-

folio manager a rough bound of the return.

1. Upper Bound: uncertainty budget α is 0 (same with the benchmark 1 problem)
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maxx∈X minω∈W
n∑

i=1

xi

m∑
j=1

wij r̄j

s.t.
m∑
j=1

wij = 1,∀i

w−ij ≤ wij ≤ w+
ij , ∀i, j

s.t.
n∑

i=1

xi = 1

xi ≥ 0,∀i

other constraints

In this case, the problem becomes benchmark 1 problem. From the numerical result, we can

see that when the uncertainty budget is very small, the manager selection policy is closed to the

benchmark 1.

2. Lower bound: uncertainty budget α is maximum

maxx∈X minω∈W
n∑

i=1

xi

m∑
j=1

wijr
−
j

s.t.
m∑
j=1

wij = 1,∀i

w−ij ≤ wij ≤ w+
ij , ∀i, j

s.t.
n∑

i=1

xi = 1

xi ≥ 0,∀i

other constraints

Four managers with four asset class

For this experiment, we choose four candidate fund managers invest in four same asset classes. We

aim to select fund manager’s which can protect the worst case return. Table 3.1, figure 3.1 and

figure 3.2 demonstrate manager allocation and the robust return. From the result we can see that
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the allocation is mainly via manager three and manager one. The robust return keep decreasing

as uncertainty budget increases. From table 3.2 and figure 3.3, we can see that when uncertainty

budget increase, the return of asset 2 goes to its lower bound first, and followed by asset 4, asset 3

and asset 1. Benchmark 2 problem gives the highest return, since no uncertainty is involved in the

problem. The one with full uncertainty budget gives the lowest return.

Table 3.1: Manager Allocation: Four Manager with Four Assets

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Objective

0.2 0 0 0.0405 0.9595 0.0237

0.4 0 0 1 0 0.0175

0.6 0.3781 0 0.6219 0 0.0124

0.8 0.3956 0 0.6044 0 0.0077

1 0.4058 0 0.5942 0 0.0029

1.2 0.4142 0 0.5858 0 -0.0004

1.4 0.431 0 0.569 0 -0.0039

1.6 0.2174 0 0.7826 0 -0.008

1.8 0.1552 0 0.8448 0 -0.0113

2 0.169 0 0.831 0 -0.0149

2.2 0.1567 0 0.8433 0 -0.017

2.4 0.1466 0 0.8534 0 -0.0192

2.6 0.1026 0 0.8974 0 -0.022

2.8 0.2632 0 0.7368 0 -0.025

3 0.2821 0 0.7179 0 -0.0276

3.2 0.2727 0 0.7273 0 -0.0294

3.4 0.2566 0 0.7434 0 -0.0312

3.6 0.2222 0 0.7778 0 -0.033

3.8 0.0566 0 0.9434 0 -0.0345

4 0 0 1 0 -0.037

Benchmark 1 0 1 0 0 0.0305

Benchmark 2 0 1 0 0 0.0342
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Figure 3.1: ManagerAllocation4A4M

60



3.5. NUMERICAL RESULTS

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Uncertainty Budget

R
e
tu

rn
Robust Return v.s. Nominal Return

 

 

Robust Return

Benchmark Return 1

Benchmark Return 2

Figure 3.2: PortfolioReturn4A4M

61



3.5. NUMERICAL RESULTS

Table 3.2: Uncertainty Allocation

Uncertainty Budget Asset 1 Asset 2 Asset 3 Asset 4

0.2 0 0.2 0 0

0.4 0 0.4 0 0

0.6 0 0.6 0 0

0.8 0 0.8 0 0

1 0 1 0 0

1.2 0 1 0 0.2

1.4 0 1 0 0.4

1.6 0 1 0 0.6

1.8 0 1 0 0.8

2 0 1 0 1

2.2 0 1 0.2 1

2.4 0 1 0.4 1

2.6 0 1 0.6 1

2.8 0 1 0.8 1

3 0 1 1 1

3.2 0.2 1 1 1

3.4 0.4 1 1 1

3.6 0.6 1 1 1

3.8 0.8 1 1 1

4 1 1 1 1
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Six managers with six asset class

For this experiment, we consider six candidate fund managers invest in six same asset classes. We

aim to select fund manager’s which can protect the worst case return. Table 3.3, figure 3.4 and

figure 3.5 demonstrate manager allocation and the robust return. From the result we can see that the

allocation concentrates on manager six. Table 3.4 and figure 3.6 show that when uncertainty budget

increase, the return of asset 5 goes to its lower bound first, and followed by asset 3, asset 1, asset 4,

asset 6 and asset 2, which is the same order of the value of the lower bound of each asset class.
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Table 3.3: Manager Allocation

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6 Objective

0.5 0 0 0 0 0 1 -0.0048

1 0 0 0 0 0 1 -0.021

1.5 0 0 0 0 0 1 -0.0316

2 0 0 0 0 0 1 -0.0423

2.5 0 0 0 0 0 1 -0.0505

3 0 0 0 0 0 1 -0.0587

3.5 0 0 0 0 0 1 -0.0607

4 0 0 0 0 0 1 -0.0621

4.5 0 0 0 0 0 1 -0.0643

5 0 0 0 0 0 1 -0.0659

5.5 0 0 0 0 0 1 -0.0663

6 0 0 0 0 0 1 -0.0667

Benchmark 1 0 0 0 0 1 0 0.013

Benchmark 2 1 0 0 0 0 0 0.0371
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Table 3.4: Uncertainty Allocation

Uncertainty Budget z1 z2 z3 z4 z5 z6

0.5 0 0 0 0 0.5 0

1 0 0 0 0 1 0

1.5 0 0 0.5 0 1 0

2 0 0 1 0 1 0

2.5 0.5 0 1 0 1 0

3 1 0 1 0 1 0

3.5 1 0 1 0.5 1 0

4 1 0 1 1 1 0

4.5 1 0 1 1 1 0.5

5 1 0 1 1 1 1

5.5 1 0.5 1 1 1 1

6 1 1 1 1 1 1
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Figure 3.6: AssetReturnUncertainty6A6M

Twelve managers with six asset class

In this experiment, we aim to select fund managers from twelve candidate managers, and each of

them invest in six asset classes. As shown in figure 3.8 , robust return decreases as uncertainty

budget increases. When uncertainty budget is very small, all the money allocate to manager 7. As

the uncertainty increases, money are allocated through manager 7, manager 9, and manager 12. As

the uncertainty set increases above 5, all money allocate to manager 7 again.
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Table 3.5: Manager Allocation

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6

0.5 0 0 0 0 0 0

1 0 0 0 0 0 0

1.5 0 0 0 0 0 0

2 0 0 0 0 0 0

2.5 0 0 0 0 0 0

3 0 0 0 0 0 0

3.5 0.0681 0 0 0 0 0

4 0.0893 0 0 0 0 0

4.5 0 0 0 0 0 0

5 0 0 0 0 0 0

5.5 0 0 0 0 0 0

6 0 0 0 0 0 0

Benchmark 1 0 0 0 0 0 0

Benchmark 2 0 0 0 0 0 0

Uncertainty Budget Manager 7 Manager 8 Manager 9 Manager 10 Manager 11 Manager 12 Objective

0.5 1 0 0 0 0 0 -0.0194

1 0.4527 0 0 0 0 0.5473 -0.0263

1.5 0.4797 0 0 0 0 0.5203 -0.0329

2 0.0746 0 0 0 0 0.9254 -0.0388

2.5 0.9273 0 0 0 0 0.0727 -0.0419

3 0.8172 0 0.0601 0 0 0.1227 -0.0441

3.5 0.8094 0 0.0017 0 0 0.1209 -0.0475

4 0.9107 0 0 0 0 0 -0.0493

4.5 0.9409 0 0.0591 0 0 0 -0.0508

5 1 0 0 0 0 0 -0.0536

5.5 1 0 0 0 0 0 -0.0539

6 1 0 0 0 0 0 -0.0542

Benchmark 1 1 0 0 0 0 0 -0.0081

Benchmark 2 0 0 1 0 0 0 0.0296
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Figure 3.7: ManagerAllocation6A12M
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Figure 3.8: PortfolioReturn6A12M
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Table 3.6: Uncertainty Allocation

Uncertainty Budget Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6

0.5 0 0.5 0 0 0 0

1 0 1 0 0 0 0

1.5 0 1 0.5 0 0 0

2 0 1 1 0 0 0

2.5 0 1 1 0 0 0.5

3 0 1 1 0 0 1

3.5 0 1 1 0.5 0 1

4 0 1 1 1 0 1

4.5 0 1 1 1 0.5 1

5 0 1 1 1 1 1

5.5 0.5 1 1 1 1 1

6 1 1 1 1 1 1
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Figure 3.9: AssetReturnUncertainty6A12M

3.5.2 With return benchmark

For this set of experiment, we test how the benchmark return affect manager’s selection policy

together with the uncertainty in asset allocation and in asset return. From our experiment, as bench-

mark return increases, manager allocation is more depend on the benchmark return level.

Four Managers with Four Assets

For the four managers with four asset case, we choose 2%, 3%, 3.2% and 3.4% as the benchmark

return. Table 3.7 shows the nominal return of each manager. When the benchmark return level is

very low, the problem is the same with the problem without benchmark return, since it could always

be achieved. As benchmark return increases, manager 3 first takes more weights, and then was
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substitute by manager 2 and manager 4. As benchmark return becomes as high as 3.4%, all money

allocate to manager 2, since other manager has a much lower expect return, which could not meet

the benchmark requirement. 3.10 shows the robust portfolio return changes with uncertainty level

for each benchmark return level. As benchmark return level increase, the worst case return become

more significant low as the concentration effect. All risk concentrate to one manager. Table 3.8 to

figure 3.14 show the detailed manager allocation information.

Table 3.7: Nominal Return

Manager 1 Manager 2 Manager 3 Manager 4

Nominal Return 0.0238 0.0343 0.0305 0.0313
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Figure 3.10: Robust Portfolio Return with Benchmark Return
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Table 3.8: Manager Allocation: Benchmark Return=2%

Return Benchmark=2%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 objective

0.5 0.3636 0 0.6364 0 0.0149

1 0.4058 0 0.5942 0 0.0029

1.5 0.0749 0 0.9251 0 -0.006

2 0.169 0 0.831 0 -0.0149

2.5 0.1282 0 0.8718 0 -0.0215

3 0.2821 0 0.7179 0 -0.0276

3.5 0.2432 0 0.7568 0 -0.0321

4 0 0 1 0 -0.037
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Figure 3.11: Robust Portfolio Manager Allocation with Benchmark Return = 2%
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Table 3.9: Manager Allocation: Benchmark Return=3%

Return Benchmark=3%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 objective

0.5 0.0741 0 0.9259 0 0.0146

1 0.0741 0 0.9259 0 0.0001

1.5 0.0741 0 0.9259 0 -0.0101

2 0.0741 0 0.9259 0 -0.0164

2.5 0.0741 0 0.9259 0 -0.0234

3 0.0741 0 0.9259 0 -0.0286

3.5 0.0741 0 0.9259 0 -0.0324

4 0 0 1 0 -0.037
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Figure 3.12: Robust Portfolio Manager Allocation with Benchmark Return = 3%
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Table 3.10: Manager Allocation: Benchmark Return=3.2%

Return Benchmark=3.2%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 objective

0.5 0 0.25 0 0.75 0.0071

1 0 0.25 0 0.75 -0.0182

1.5 0 0.3386 0.3545 0.3069 -0.0268

2 0 0.3545 0.418 0.2275 -0.034

2.5 0 0.3677 0.4707 0.1617 -0.0383

3 0 0.3805 0.5219 0.0977 -0.0428

3.5 0 0.4 0.6 0 -0.0462

4 0 0.4 0.6 0 -0.0502
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Figure 3.13: Robust Portfolio Manager Allocation with Benchmark Return = 3.2%
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Table 3.11: Manager Allocation: Benchmark Return=3.4%

Return Benchmark=3.4%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 objective
0.5 0 0.9833 0 0.0167 -0.0086
1 0 0.9833 0 0.0167 -0.0532

1.5 0 0.985 0.0067 0.0083 -0.0602
2 0 0.985 0.0065 0.0085 -0.0671

2.5 0 0.9853 0.0078 0.0069 -0.0682
3 0 0.9867 0.0133 0 -0.0694

3.5 0 0.9867 0.0133 0 -0.0695
4 0 0.9867 0.0133 0 -0.0696
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Figure 3.14: Robust Portfolio Manager Allocation with Benchmark Return = 3.4%

Six Managers with Six Assets

For six managers with six assets case, we choose 2%, 3%, 3.5% and 3.7% as the benchmark return.

Table ?? shows the nominal return of each manager. Again, when the benchmark return level is
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2%, 3%, the problem is the same with no benchmark return problem. All the money concentrate

to manager 6. As benchmark return increases, manager 6 takes less weight and manager 3 takes

more weight in the portfolio. As benchmark return becomes as high as 3.7%, all money allocate

to manager 3, since other manager has a much lower expect return, which could not meet the

benchmark requirement. 3.10 shows the robust portfolio return changes with uncertainty level for

each benchmark return level. As benchmark return level increase, the worst case return become

more significant low as the concentration effect. All risk concentrate to one manager. Table 3.13 to

figure ?? show the detailed manager allocation information.

Table 3.12: Nominal Return

Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6

Nominal Return 0.0371 0.0118 0.0321 0.0025 0.027 0.0277
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Figure 3.15: Robust Portfolio Return with Benchmark Return
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Table 3.13: Manager Allocation: Benchmark Return=2%

Return Benchmark=2%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6 objective

0.5 0 0 0 0 0 1 -0.0048

1 0 0 0 0 0 1 -0.021

1.5 0 0 0 0 0 1 -0.0316

2 0 0 0 0 0 1 -0.0423

2.5 0 0 0 0 0 1 -0.0505

3 0 0 0 0 0 1 -0.0587

3.5 0 0 0 0 0 1 -0.0607

4 0 0 0 0 0 1 -0.0621

4.5 0 0 0 0 0 1 -0.0643

5 0 0 0 0 0 1 -0.0659

5.5 0 0 0 0 0 1 -0.0663

6 0 0 0 0 0 1 -0.0667
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Figure 3.16: Robust Portfolio Manager Allocation with Benchmark Return = 2.0%
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Table 3.14: Manager Allocation: Benchmark Return=3%

Return Benchmark=3%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6 objective

0.5 0 0 0.5281 0 0 0.4719 -0.0047

1 0.2468 0 0 0 0 0.7532 -0.021

1.5 0.2468 0 0 0 0 0.7532 -0.0316

2 0.2468 0 0 0 0 0.7532 -0.0422

2.5 0 0 0.5281 0 0 0.4719 -0.0505

3 0 0 0.5281 0 0 0.4719 -0.0587

3.5 0 0 0.5293 0 0.0073 0.4634 -0.0607

4 0 0 0.565 0 0 0.435 -0.0627

4.5 0.0537 0 0.4271 0 0 0.5192 -0.0643

5 0.0106 0 0.5054 0 0 0.4839 -0.0659

5.5 0.0106 0 0.5054 0 0 0.4839 -0.0663

6 0 0 0.5281 0 0 0.4719 -0.0667
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Figure 3.17: Robust Portfolio Manager Allocation with Benchmark Return = 3%
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Table 3.15: Manager Allocation: Benchmark Return=3.5%

Return Benchmark=3.5%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6 objective

0.5 0.5878 0 0.4122 0 0 0 -0.0092

1 0.7804 0 0 0 0 0.2196 -0.0294

1.5 0.7804 0 0 0 0 0.2196 -0.0387

2 0.7758 0 0.0098 0 0 0.2144 -0.048

2.5 0.5878 0 0.4122 0 0 0 -0.0548

3 0.5878 0 0.4122 0 0 0 -0.0613

3.5 0.611 0 0.3624 0 0 0.0265 -0.0629

4 0.6536 0 0.2815 0 0 0.0649 -0.0645

4.5 0.7375 0 0.0918 0 0.0004 0.1702 -0.0662

5 0.5878 0 0.4122 0 0 0 -0.0669

5.5 0.6145 0 0.3551 0 0 0.0304 -0.0686

6 0.5878 0 0.4122 0 0 0 -0.0703

84



3.5. NUMERICAL RESULTS

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Robust Manager Allocation: Benchmark=3.5%

Uncertainty Budget

M
a

n
a
g
e
r 

A
llo

c
a
ti
o
n

 

 

Manager 1

Manager 2

Manager 3

Manager 4

Manager 5

Manager 6

Figure 3.18: Robust Portfolio Manager Allocation with Benchmark Return = 3.5%
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Table 3.16: Manager Allocation: Benchmark Return=3.7%

Return Benchmark=3.7%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6 objective

0.5 0.9884 0 0.0116 0 0 0 -0.0198

1 0.9938 0 0 0 0 0.0062 -0.0477

1.5 0.9913 0 0.0054 0 0 0.0033 -0.054

2 0.9884 0 0.0116 0 0 0 -0.0604

2.5 0.9938 0 0 0 0 0.0062 -0.0659

3 0.9884 0 0.0116 0 0 0 -0.0711

3.5 0.9927 0 0.0025 0 0 0.0048 -0.0724

4 0.9923 0 0.0033 0 0 0.0044 -0.0738

4.5 0.9923 0 0.0033 0 0 0.0044 -0.0763

5 0.9923 0 0.0032 0 0 0.0044 -0.0774

5.5 0.9923 0 0.0033 0 0 0.0044 -0.0778

6 0.9884 0 0.0116 0 0 0 -0.0796
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Figure 3.19: Robust Portfolio Manager Allocation with Benchmark Return = 3.7%

Twelve Manager with Six Assets

For the experiment of twelve managers with six assets, we can see the same story here. As bench-

mark return level increase, managers with high expected return takes over more weights but causes

more severe worst return scenarios.

87



3.5. NUMERICAL RESULTS

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

Uncertainty Budget

R
e
tu

rn
Robust Portfolio Return for Twelve Manager with Six Assets

 

 

Robust Return without benchmark return

Benchmark Return = 0%

Benchmark Return = 3%

Benchmark Return = 7%

Benchmark Return = 10%

Benchmark Return = 15%

Figure 3.20: Robust Portfolio Return with Benchmark Return
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Table 3.17: Manager Allocation: Benchmark Return=0%

Return Benchmark=0%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6

0.5 0 0 0 0 0 0

1 0 0 0 0 0 0

1.5 0 0 0 0 0 0

2 0 0 0 0 0 0

2.5 0 0 0 0 0 0

3 0 0 0 0 0 0

3.5 0 0 0 0 0 0

4 0 0 0 0 0 0

4.5 0 0 0 0 0 0

5 0 0 0 0 0 0

5.5 0 0 0 0 0 0

6 0 0 0 0 0 0

Uncertainty Budget Manager 7 Manager 8 Manager 9 Manager 10 Manager 11 Manager 12 Objective

0.5 1 0 0 0 0 0 -0.0194

1 0.4527 0 0 0 0 0.5473 -0.0263

1.5 0.4797 0 0 0 0 0.5203 -0.0329

2 0.5746 0 0 0 0 0.4254 -0.0388

2.5 0.7076 0 0 0 0 0.2924 -0.0421

3 0.8127 0 0.0654 0 0 0.1219 -0.0442

3.5 0.8747 0 0 0 0 0.1253 -0.0475

4 0.8578 0 0 0 0 0.1417 -0.0494

4.5 0.9409 0 0.0591 0 0 0 -0.0508

5 1 0 0 0 0 0 -0.0536

5.5 1 0 0 0 0 0 -0.0539

6 1 0 0 0 0 0 -0.0542
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Figure 3.21: Robust Portfolio Manager Allocation with Benchmark Return = 0%
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Table 3.18: Manager Allocation: Benchmark Return=2%

Return Benchmark=2%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6

0.5 0 0 0 0 0 0

1 0 0 0 0 0 0

1.5 0 0 0 0 0 0

2 0 0 0 0 0 0

2.5 0 0 0 0 0 0

3 0 0 0 0 0 0

3.5 0 0 0 0 0 0

4 0 0 0 0 0 0

4.5 0 0 0 0 0 0

5 0 0 0 0 0 0

5.5 0 0 0 0 0 0

6 0 0 0 0 0 0

Uncertainty Budget Manager 7 Manager 8 Manager 9 Manager 10 Manager 11 Manager 12 Objective

0.5 1 0 0 0 0 0 -0.0194

1 0.701 0 0 0 0 0.299 -0.0283

1.5 0.701 0 0 0 0 0.299 -0.0341

2 0.701 0 0 0 0 0.299 -0.0403

2.5 0.9272 0 0 0 0 0.0728 -0.0419

3 0.8128 0 0.0653 0 0 0.1219 -0.0442

3.5 0.8748 0 0 0 0 0.1252 -0.0475

4 0.9072 0 0 0 0 0.0928 -0.0494

4.5 0.9409 0 0.0591 0 0 0 -0.0508

5 1 0 0 0 0 0 -0.0536

5.5 1 0 0 0 0 0 -0.0539

6 1 0 0 0 0 0 -0.0542
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Figure 3.22: Robust Portfolio Manager Allocation with Benchmark Return = 2%
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Table 3.19: Manager Allocation: Benchmark Return=2.5%

Return Benchmark=2.5%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6

0.5 0 0 0 0 0 0

1 0 0 0 0 0 0

1.5 0 0 0 0 0 0

2 0 0 0 0 0 0

2.5 0 0 0 0 0 0

3 0 0 0 0 0 0

3.5 0 0 0 0 0.0522 0

4 0 0 0 0 0.0537 0

4.5 0 0 0 0 0 0

5 0 0 0 0 0 0

5.5 0 0 0 0 0 0

6 0 0 0 0 0 0

Uncertainty Budget Manager 7 Manager 8 Manager 9 Manager 10 Manager 11 Manager 12 Objective

0.5 0.6295 0 0.3705 0 0 0 -0.0228

1 0.6295 0 0.3705 0 0 0 -0.0342

1.5 0.6295 0 0.3705 0 0 0 -0.0403

2 0.6295 0 0.3705 0 0 0 -0.0463

2.5 0.5441 0.0304 0.4255 0 0 0 -0.0491

3 0.4696 0.0569 0.4735 0 0 0 -0.0517

3.5 0.4775 0 0.4702 0 0 0 -0.0538

4 0.4734 0 0.4729 0 0 0 -0.0557

4.5 0.6295 0 0.3705 0 0 0 -0.0572

5 0.6295 0 0.3705 0 0 0 -0.0583

5.5 0.6295 0 0.3705 0 0 0 -0.0586

6 0.6295 0 0.3705 0 0 0 -0.0589
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Figure 3.23: Robust Portfolio Manager Allocation with Benchmark Return = 2.5%
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Table 3.20: Manager Allocation: Benchmark Return=2.9%

Return Benchmark=2.9%

Uncertainty Budget Manager 1 Manager 2 Manager 3 Manager 4 Manager 5 Manager 6

0.5 0 0 0 0 0 0

1 0 0 0 0 0 0

1.5 0 0 0 0 0 0

2 0 0 0 0 0 0

2.5 0 0 0 0 0 0

3 0 0 0 0 0 0

3.5 0 0 0 0 0.0128 0

4 0.0089 0 0 0 0 0

4.5 0 0 0 0 0 0

5 0 0 0 0 0 0

5.5 0 0 0 0 0 0

6 0 0 0 0 0 0

Uncertainty Budget Manager 7 Manager 8 Manager 9 Manager 10 Manager 11 Manager 12 Objective

0.5 0.0851 0 0.9149 0 0 0 -0.0278

1 0.0851 0 0.9149 0 0 0 -0.0395

1.5 0.0851 0 0.9149 0 0 0 -0.0468

2 0.0851 0 0.9149 0 0 0 -0.054

2.5 0.0552 0 0.9301 0 0 0.0146 -0.0559

3 0.0851 0 0.9149 0 0 0 -0.0582

3.5 0.0479 0 0.9393 0 0 0 -0.0601

4 0.0584 0 0.9327 0 0 0 -0.0619

4.5 0.0662 0 0.9245 0 0 0.0093 -0.0635

5 0.0851 0 0.9149 0 0 0 -0.0652

5.5 0.0851 0 0.9149 0 0 0 -0.0655

6 0.0851 0 0.9149 0 0 0 -0.0659
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3.6. CONCLUSION
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Figure 3.24: Robust Portfolio Manager Allocation with Benchmark Return = 2.9%

3.6 Conclusion

In this Chapter, we proposed a robust framework that takes into account two sources of uncertainty

from manager asset allocation and asset return, in the context of manager selection and portfolio

management. Upper and lower bound was also provided in our research. We investigated manager

allocation pattern in two scenarios of without the return benchmark and without the return bench-

mark. In addition, we explored the special structure of the problem, and proposed two approaches to

solve the problem efficiently. In addition, with modified algorithm, this model could also be applied

to hedge fund strategies with lower bound smaller than zero and upper bound larger than one.
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