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Abstract 

The morphology of disordered binary metallic alloys is investigated.  The 

structure of disordered binary metallic alloys is modeled as a randomly close packed 

(RCP) assembly of atoms. It was observed through a 2-D binary hard sphere 

experiment that RCP structure can be modeled as a mixture of nano-crystallites and 

glassy matter.  We define the degree of crystallinity as the fraction of atoms contained 

in nano-crystallites in an RCP medium.  Nano-crystallites by size in a crystallite size 

distribution were determined experimentally to define the morphology of the RCP 

medium.  Both the degree of crystallinity and the crystallite size distribution have been 

found to be determined by the composition of a given binary mixture.   

A 2-D Monte Carlo simulation was developed in order to replicate the RCP 

structure observed in the experiment which is then extended to cases of arbitrary 

composition.  Crystallites were assumed to be spherical with isotropic cross sections.  

The number of atoms in an individual crystallite in 2-D is simply transformed into the 

number of atoms in 3-D; we then obtain the crystallite size distribution in 3-D. This 

experiment accounts for the contribution from the repulsive core of the inter-atomic 

potential.  The attractive part of the potential is recovered by constructing spherical 

nano-crystallites of a given radius from a crystalline specimen of each given alloy. A 

structural model of a disordered alloy is thus obtained. 
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 With the basic structure of the RCP medium defined, the response to heating 

would be in the form of changes to the crystallite size distribution. This was first 

investigated in a hard sphere mechanical oven experiment. The experimental setup 

consists of a 2-D cell which is driven by two independent stepper motors. The motors 

drive a binary RCP bed of spheres on a slightly tilted plane according to a chaotic 

algorithmm.  The motors are driven at four different speed settings.  The RCP medium 

was analyzed using a sequence of digital images taken of the beds. The bursts of 

images provide a Gaussian distribution of particle speeds in x and y directions thus 

giving rise to the notion of “temperature.”  This temperature scales with the motor 

speed settings. The measured average degree of crystallinity is found to decrease as 

the effective temperature was raised suggesting that nano-crystallites dissociate under 

thermal forcing.   

 The evolution of a specimen’s structure is calculated rigorously by means of 

the law of mass action formalism. A system of thermal dissociation reaction equations 

is written out for the set of nano-crystallites according to the 3-D crystallite size 

distribution.  The equilibrium treatment is justified because the energy differences 

between metastable RCP structures fall within kT.  Thermal dissociation of one 

surface atom at a time is assumed because the energy cost in dissociation of a surface 

atom on a nano-crystallite is significantly less than that of a multi atom cluster.  The 

full set of reaction equations cover all possible dissociation steps, which may amount 

to several thousand for a disordered alloy specimen.  
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The primary determining factor in each of these dissociation equations is the 

dissociation potential or the amount of attractive energy needed to remove a surface 

atom on a nano-crystallite of a given size.  The attractive potential between atoms is 

calculated using a Lennard-Jones potential between a pair of atoms for which quantum 

chemistry calculations exist in the literature. All interactions impinged on the surface 

atom by all other atoms in a crystallite are summed.  As the nano-crystallites 

dissociate due to heating, the structure of the alloy changes, and this leads to 

modifications of alloy’s transport properties.  The model is found to predict the 

melting temperature of various disordered binary alloys as well as refractory metals in 

good agreement with known data.  The structure model for disordered binary alloys 

gives an excellent characterization of the alloy morphology.  It therefore provides 

fruitful avenues for making predictions about how thermophysical properties of 

disordered binary alloys change as the alloy temperature is raised by heating. 
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Chapter 1 

Introduction 

1.1 Motivation 

 Thermophysical properties of disordered metallic alloy specimens, such as 

thermal diffusivity, electrical resistivity, spectral emissivity and other properties, are 

modified under thermal, mechanical and chemical forcing applied to them.  The 

degree to which such modifications are materialized depends on both the temperature 

and duration of heating as referenced to each specimen’s melting point.  The 

modification has serious consequences in utilization of metallic alloys in high-

temperature and high-stress processes.  Examples are found in nuclear and fusion 

reactors, chemical reactors, pyro-metallurgical processing environments and others.  

The thermophysical properties of alloys drift away from the design values, 

compromising the performance metrics or even leading to failures.  An example of the 

problems faced in the characterization of disordered binary alloys can be seen in 

Figure 1.1.  The figure shows a summary of room temperature experimental results for 

the lattice thermal conductivity of a disordered binary alloy system composed of the 

elements copper and nickel at different compositions.  What can be seen are the 

differences between the different experimental results for the lattice thermal 

conductivity over a variety of alloy compositions at room temperature.  These 

differences can be caused by impurities in the alloys as well as effects of thermal 
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history changing the thermophysical properties of the alloy.  The figure also presents 

the most recent theoretical prediction of the lattice thermal conductivity. 

 

Figure 1.1 A comparison of lattice thermal conductivity values of a copper –

nickel alloy at room temperature (300K) between calculated values from [9] 

and experimental data from Smith and Palmer[10], Jaeger and Diesselhorst 

[11], Smith [12], and Sager [13] 
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 Two characteristic features effect alloy modification due to thermal forcing: 

enrichment of the more mobile atoms near the alloy surface, which has been 

demonstrated by direct measurement in simple alloys, [1, 2] and the morphological 

transformation as quantified in terms of nano-crystallite size distribution.  These two 

factors influence the transport of mass, momentum, and energy because the exact 

nature of the pathways for transport of flux quanta through a given surface is 

determined by them.  The latter feature is a precursor to alloy melting and the 

associated morphological transformation can be theoretically treated.  This theoretical 

treatment will lead to a better understanding of the changing factors influencing the 

thermophysical properties of the alloy. 

Our research has been pursuing the physical basis of thermophysical properties 

of simple metallic alloys.  The proposition is that the changes in thermophysical 

properties are mediated by the changes in the size distribution of nano-crystallites due 

to redistribution of nano-crystallites by size at elevated temperatures.  Transport of 

excitations through an alloy specimen entails two different material media and 

transmission of excitations across the interfaces between them.  As the population of 

the crystallites undergoes changes, the rates of excitation transport through the 

specimen are modified.  It has been shown for a number of different alloys that the 

thermal forcing results in changes of the specimen’s elemental composition as a 

function of depth from the surface, distinctly different from the bulk composition.[3, 

4, 5]   
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The theoretical understanding of the morphology of metallic binary alloys will 

contribute to the understanding of the factors influencing the changing thermophysical 

properties of the alloys.  By establishing the state of the atomic structure of a 

disordered binary alloy we can estimate the structural contributions to the thermal 

transport inside the alloy. After setting up a model of how this structure will change as 

a function of temperature, we can model how the thermal transport will be affected by 

this change and move on to mapping out the changing thermophysical properties.  The 

theoretical prediction of such changes will go a long way toward developing new 

materials and forecasting unforeseen structural failures in pre-existing materials. 

1.2 Scope of Dissertation 

The morphology of disordered metallic binary alloys is first approached 

through a structural characterization.  This characterization is based on the observation 

of a RCP medium as a mixture of nano-crystallites and glassy matter. This provides a 

basis for the structure of the alloy. This differs from the polycrystalline structure used 

in recent analysis of alloy structure. The polycrystalline structure is defined by a 

mixture of grains and grain boundaries. [6] The objectives of the proposed dissertation 

research are to formulate a RCP model of hard spheres suitable for binary metallic 

alloys in terms of the size distribution of crystallites at room temperature and then to 

formulate a physical procedure to prescribe the evolution of the size distribution of 

crystallites under thermal forcing; The crystallite size distribution is measured in 2- 

and then transformed to produce a 3-D structure model. A law of mass action 

formalism is used to treat the evolution of this structure under thermal forcing.  The 
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resulting structural morphology provides a basis for future exploration of the 

temperature dependant thermophysical properties of disordered metallic alloys. 

 In our work we take cues from previous work as well as add our own 

distinction to the model of RCP media.  To begin, we make a numerical model that 

correctly maps RCP in 2-D.  We use an algorithm to build the alloy structure based on 

a seed.  This seed is the minimum-size crystallite.  Our structure grows with a focus on 

its degree of crystallinity.  There is a parameter that controls whether the next sphere 

added to the surface contributes to a crystallite.  If the sphere does not contribute to a 

crystallite it is added at random to the surface of the structure.  Using this parameter 

we are able to control the degree of crystallinity of the structure as well as the order.  

We explore binary mixtures of spheres which closely resemble Bernal’s original 

hypothesis of hard sphere mapping of alloys [42].  This simulation generates a 

crystallite size distribution which can be transformed to 3-D and used as a basis of the 

room temperature structure of our disordered binary alloy.   

In order for our simulation to be physically realistic, we have found it 

necessary to set the probability for placing a new sphere into a crystalline site versus a 

disordered site – that is, random numbers need to be picked from the output of the 

usual pink-noise random number generator.  We have successfully made use of the 

images of a bed of spheres arranged at random.  A large number of the images from 

the experiment were analyzed to find the average degree of crystallinity, on the one 

hand.  RCP beds in 2-D were built by numerical simulation with a chosen value for the 
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probability of placing the next sphere to a crystalline site. The average degree of 

crystallinity was computed from the simulated beds of spheres.  The procedure is 

repeated with different values of the probability until the average degree of 

crystallinity has been matched between experiment and simulation.   

Once we have obtained the size distribution of crystallites within a disordered 

alloy specimen, we quantify the morphology of the alloy with a goal of understanding 

the thermophysical properties of the alloy.  There are computational or molecular 

dynamics approaches attempted previously.[7, 8]   A disordered metallic alloy as a 

RCP system of spheres consists of crystallites, glassy matter and the interfaces 

between them.  The effect of changing temperature on the size distribution of 

crystallites was examined both by theory and by experiment with a vibrating 2-D bed 

of spheres.  The bed is driven by two independent stepping motors in two mutually 

orthogonal directions on a nearly horizontal plane. A Maxwellian velocity distribution 

is realized for the spheres, providing a means to define and raise temperature.  A 

sequence of photographs is taken to track the moving spheres and the images are 

analyzed to quantify how the RCP structure changes with increasing temperature.  The 

experimental observations are used to guide the modeling of thermal dissociation of 

crystallites.   The change in the size distribution of crystallites is the basis of the 

change in the morphology of the alloy specimen under thermal forcing. 

  The changes in the size distribution of nano-crystallites are modeled by 

means of the law of mass action formalism based on a set of reaction equations 
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representing the thermal dissociation of the nano-crystallites in the alloy structure.  

The structure is represented by a transformed 3-D RCP crystallite size distribution and 

the degree of crystallinity. The thermal dissociation is assumed to happen one atom at 

a time because the energy cost of the dissociation of a surface atom on a nano-

crystallite is significantly less than that of a multi atom cluster.  The primary factor in 

each of these equations is the dissociation potential or the amount of attractive energy 

experienced by a surface atom on a nano-crystallite of a certain size. As the structure 

evolves due to heating, the nano-crystallites dissociate thereby changing the structure 

of the alloy via the crystallite size distribution.  The model shows good agreement 

with the melting temperature of various refractory binary alloys and pure metals.  The 

evolution of the structure modeled with this law of mass action approach can be 

generalized to model the thermophysical properties for more complex alloys and their 

response to heating.  The structural effect on thermal transport is discussed and a 

potential calculation technique for the thermal conductivity of the structure is 

presented. 

1.3 Outline of Dissertation 

In Chapter 2, thermal transport in binary alloys is discussed.  Experimental 

results highlighting current results and the understanding of disordered alloys are 

presented, and theoretical approaches for predicting the transport properties in these 

alloys are summarized.  The important parameters needed for predicting thermal 

conductivity are highlighted.  This involves parameters needed in the calculation of 

both the electronic thermal conductivity and lattice thermal conductivity.  The role of 
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disorder in thermal conductivity calculations and the shortcomings of the theoretical 

approaches are also discussed.  The current method for characterization of binary 

alloys through a polycrystalline approach is explored.  This method involves breaking 

the structure down into crystallite grains separated by grain boundaries.  The role of 

these grain boundaries in thermal transport in the polycrystalline model is discussed. 

In Chapter 3, the characterization of RCP media by both experiment and 

Monte Carlo simulation is discussed.  This characterization centers on identifying 

crystallites in the RCP structure.  After the crystallites are identified, the degree of 

crystallinity is calculated, and the crystallites are categorized by size to yield a 

crystallite size distribution.  The Monte Carlo simulation of RCP media is discussed in 

detail, summarizing the algorithmic technique used to build this structure.  This 

simulation starts with a seed crystallite and is expanded through a semi-random 

placement of surface particles in either crystalline points or into glassy matter points 

according to the parameter used to control the degree of crystallinity.  The packing 

fraction is maintained in the RCP medium by means of a defect detection technique.  

The experimental results for RCP media are used to refine the parameters used in the 

Monte Carlo simulation; the final results show a good match between experiment and 

simulation. 

In Chapter 4, the apparatus used in our mechanical oven experiment with 2-D 

RCP hard sphere media is explained.  The goal of the experiment is to drive a RCP 

bed of spheres at various elevated temperatures.  This is accomplished with a 2-D cell 
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of hard spheres that is driven with two orthogonal stepper motors; the motor drive is 

controlled with a pink-noise driving program in order to generate a Maxwellian 

velocity distribution for the spheres.  The spheres are contained with a fixed boundary 

on a glass baseplate.  To keep the hard spheres in close-packed contact with an RCP 

structure, the baseplate is slightly tilted, introducing a weak gravitational force in one 

direction.  For data acquisition, the glass baseplate is illuminated from below for 

imaging purposes.  The images are taken by a camera in a burst mode for multiple 

images in order to track the structure of the hard sphere bed and also to measure the 

velocities of the spheres from the sequential images in the burst. 

In Chapter 5, the analysis of the data obtained by the experimental apparatus is 

discussed.  The experiment produces bursts of images to be analyzed.  The analysis 

involves first preparing the data for a Hough transform analysis, which requires 

detecting just the edge pixels of the spheres to be analyzed.  The Hough transform 

analysis is then done to find the centers of the hard spheres in each image.  With 

information on the centers of spheres in each image, the velocities are calculated for 

each sphere using two successive images in the burst. The structure for each individual 

image is analyzed to find all crystallites.  We can then measure the degree of 

crystallinity and the crystallite size distribution for the structure.  The structural data is 

determined as a function of the effective temperature of the experiment; the results are 

discussed. 
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In Chapter 6, the model for the evolution of the crystallite size distribution in a 

binary alloy according to the law of mass action is discussed.  The initial structure of 

the binary alloy is set by the RCP structure for the given alloy composition.  The 

crystallite size distribution is transformed to three dimensions and a set of law of mass 

action equations is written out to track the thermal dissociation of each nano-crystallite 

by size due to heating.  Important factors in this calculation are discussed.  Each 

dissociation step involves a surface atom dissociating from a nano-crystallite.   Each 

law of mass action equation requires the calculation of the dissociation potential for a 

surface atom on a nano-crystallite of each size for the binary alloy in question.  

Results of this calculation are discussed, and the dissociation of nano-crystallites is 

compared with the melting temperature of the alloy that we modeled.  The evolution 

of the crystallite size distribution is shown, which will give the basis for the evolution 

of the thermophysical properties of the alloy. 

In Chapter 7, we discuss a potential calculation technique for the thermal 

conductivity of the RCP model of binary alloys.  The calculation will depend first on 

estimates of the thermal transport in both the nano-crystallite portions of the RCP 

structure as well as the glassy matter portion.  The boundary between nano-crystallites 

and glassy matter are represented by contact points for heat flow. The calculation of 

thermal conductivity will depend on the classification of these boundaries.  To 

characterize these contact points, a treatment of the glassy matter is introduced into 

our RCP structure. This prepares our framework for a prediction of the thermal 

conductivity for our RCP binary alloy model as a function of the temperature. 
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Chapter 2 

Thermal Transport in Disordered Alloys 

2.1 Experimental Measurements of Transport Properties 

 Available experimental data on the thermal conductivity of solids is widely 

divergent with high amounts of potential fluctuation. This is mostly due to difficulties 

in accurate measurement of the thermal conductivity of solids as well as problems in 

characterization of the test specimens of such solids.  In the case of disordered binary 

alloys, this causes serious gaps in experimental data with conflicting results for the 

thermodynamic property data that is available.  Potential errors in measurement can 

arise from many different sources including: poor sensitivity of measuring devices, 

sensors, or circuits, specimen contamination, unaccounted for stray heat flows, and 

incorrect form factors. Perhaps the largest problem is the instability of the alloy itself, 

as experimentalists are often unsure of the classification of their specimen. [9]  

Thermal conductivity is a measure of the ability of a substance to conduct heat.  

Thermal energy is carried in alloys primarily by electrons and lattice waves.  The total 

thermal conductivity is the sum of the electronic thermal conductivity due to transport 

of heat by electrons and the lattice thermal conductivity due to the transport of heat by 

the lattice waves.  In alloys, both contributions to the total thermal conductivity are 

significant and it is necessary to estimate both.  The dominant mechanism dictating the 

thermal conductivity in an alloy depends on the alloy temperature; because of this, 

different methods for estimating the thermal conductivity were established for 

different temperature regions.  
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2.2 Electronic Thermal Conductivity 

 At very low temperatures (<25K) the electronic thermal conductivity only has 

one major contributing factor which is the residual electronic thermal resistivity due to 

impurity scattering of electrons    , 

 
   

 

  
 

 

   
 

   

  
 (2.1) 

   is the residual electrical resistivity, T represents the temperature, and    is the 

classical theoretical Lorenz number which is a constant.  Above 25K, and up to about 

100K, the electronic thermal conductivity can be estimated for an alloy with 

Mathiessen’s rule. The electronic thermal resistivity of the alloy is found with the 

formula 
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 (2.3) 

The second contributing factor at this higher temperature is     or the intrinsic 

electronic thermal resistivity.  At temperatures above 100K, deviations from 

Mathiessen’s rule are covered by the Wiedemann-Franz-Lorenz Law.  This law covers 

deviations in the residual electrical resistivity at higher temperatures, while also 

including deviations from the Lorenz number [14].  The corrected equation becomes 
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which gives an electronic thermal conductivity of 

 
   

 

  
 

 
    

      

 
(2.5) 

    and    are the intrinsic thermal and electrical resistivities, they arise from the 

interactions between electrons and phonons.  These interactions occur near the Fermi 

surface which is derived from the periodicity and symmetry of the crystalline lattice of 

the alloy.     is a result of horizontal movement of electrons through electron wave 

space on the Fermi surface.   For the thermal resistivity    , vertical and horizontal 

movements on the Fermi surface both contribute, these contributions can be added to 

calculate the total intrinsic thermal resistivity.  The vertical movement on the Fermi 

surface is caused by the local property of the Fermi surface and is not changed 

drastically by changes in the overall structure of the alloy.  The horizontal movement 

on the Fermi surface is due to motion of electrons over long distances on the Fermi 

surfaces, this is effected by both changes in the shape of the Fermi surface as well as 

boundaries on the Fermi surface [15].  In order to calculate these values it is necessary 

to use a virtual crystal approximation for ordinary metals.  If transition metals are used 

in the alloy it is necessary to use Mott’s theory to calculate the resistivities. [16, 17]  

Calculations of these values for various binary alloys have been covered in previous 

works. [18, 19]  L is the Lorenz ratio which accounts for changes from the classical 

Lorenz number which results from electron-electron scattering and band structure 
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effects.  The deviations from the classical Lorenz number can be expressed by 

calculating the absolute thermoelectric power S, which has been done for numerous 

binary alloys [20] 

         (2.6) 

making the equation for electronic thermal conductivity 

 
   

 
    

        
    

 (2.7) 

This is an equation designed to calculate the electronic component of the thermal 

conductivity at intermediate temperatures, though the calculation faces problems in 

some instances.  In the case of transition-metal alloys, the Lorenz ratio faces 

uncertainty due to very strong electron-electron scattering contribution to the electrical 

and thermal resistivity. [21] Other than the case of transition metals, values obtained 

from the Weidemann-Franz-Lorenz law have been found to be in good agreement with 

the values of the electronic component of the thermal conductivity of various alloys 

found experimentally [9]. 

2.3 Lattice Thermal Conductivity 

The lattice component of the thermal conductivity is affected by different 

processes in different temperature ranges.  At low temperatures, around five percent of 

the Debye temperature for an alloy, the lattice thermal conductivity is dominated by 

electron-phonon interactions and phonon scattering due to disorder.  The thermal 

conductivity of a pure metal at low temperatures can be calculated by the equation  
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 (2.8) 

In this expression,    is the intrinsic electronic thermal conductivity, n is the number 

of conduction electrons per atom, and   is the Debye temperature.  The intrinsic 

electronic thermal energy has a     temperature dependence in this temperature 

region, giving the lattice thermal conductivity a    temperature dependence.  This 

formula is only valid for non–transition pure metals with low residual resistivity, using 

this expression for alloys have been shown to give values greater than those measured 

experimentally.  The reason for this discrepancy is postulated to be because of the high 

amount of phonon scattering due to disorder in an alloy [22].  At temperatures less 

than 0.5K it has been shown that the disagreement is greatly reduced.  At these low 

temperatures the phonon wavelengths are so large that the effect of disorder scattering 

is greatly reduced [23].  Currently there is not an accurate way to estimate low 

temperature lattice thermal conductivity.  A successful theory of the low temperature 

lattice thermal conductivity would have to involve better quantitative theory of phonon 

scattering due to disorder as well as a separate theory for transition metals and metals 

with high residual resistivity.  Progress in this area has been approached with work 

accounting for disorder [24], though this work still does not include the problem faced 

with transition metals. 

 At intermediate temperatures, ranging up until about 20% of the Debye 

temperature, the problem of estimating the thermal conductivity becomes more 
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difficult.  The same low temperature difficulties are still present in this intermediate 

range, also the resistive three-phonon anharmonic interaction in this region is 

significant and changes rapidly as a function of temperature. [9] There is not a method 

available to calculate the lattice thermal conductivity in this region currently. 

 At higher temperatures it is possible to neglect the effect of electron-phonon 

interaction for most alloys.  The lattice thermal conductivity can then be estimated 

using a theory developed by Klemens[25] and Callaway[26].  The estimation uses the 

formula 

 

       
  

   
 
 
  

  
  

 
  

   
 
   

   
 
 
 

  
 

   
 
  
  

  
  

 
  
 

   
 
  
 

 
(2.9) 

    
   is the high temperature lattice thermal conductivity for an idealized virtual 

crystal in which each atom has the same mass and volume taken from the averages of 

the alloy elements.  It is calculated with the formula  

 

    
   

  
 

            
    

 

  
   

  
  

 
  
 

   
 
  
 
  (2.10) 

  is planck’s constant,    is boltzmann’s constant, B is a constant determined 

experimentally, and α is the ratio of reciprocal relaxation times for the two processes 

stemming from three-phonon anharmonic interactions in the alloy.  In these equations, 

   
 

  
  represents the standard transport integral 
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  is the modified transport integral given by 
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   is the reduced frequency at which the reciprocal relaxation times for point-defect 

scattering and three-phonon anharmonic interactions are equal.  It is calculated with 

the equation 

 

   
 

  

 
     

    
 (2.13) 

v is the speed  of sound,    is the average volume per atom, and   is a quantity that 

characterizes the perturbation due to mass defects and distortions of the lattice and is 

calculated by the expression [27] 

 
     

    

 
   

    

 
  

 

    
    

 
   

    

 
  

 

 (2.14) 

M and V are the average atomic mass and volume.    is the percentage of the lighter 

element in the alloy.     and   are the mass and volume of the lighter element.  H 

subscripts correspond to the heavier elements.    is the Gruneisen parameter, which is 

a weighted average of many separate parameters accounting for phonon nonlinearities.  

The solution for the high temperature lattice thermal conductivity applies only 

to disordered solid-solution alloys.  The calculation hinges on the availability of 
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experimental results for various parameters.  The calculation also depends on the 

accuracy of the virtual crystal approximation of   .  Overall, the theoretical approach 

to calculating the total thermal conductivity of a binary alloy can be improved 

significantly.  The calculations depend on a virtual crystal approximation to handle 

disorder that has been shown to have significant deviation for some binary alloy 

nanocrystals [28]. 

2.4 Measurement Discrepancy in Nichrome 

The method of LPP plume emission spectroscopy is described in detail in a 

number of publications.  For the experimental data presented here, a single Q-

switched, amplified Nd:YAG laser pulse is delivered onto the specimen’s surface to 

drive an ablation front traveling into the bulk in pace with the thermal diffusion front. 

The resulting plasma plume is representative of the alloy, having the same 

composition as in the specimen’s surface. The plume emissions are dispersed and 

captured through a high-dispersion spectrograph by a gated, intensified CCD array 

detector. For the present round of analyses, the laser pulse of 20-ns duration is used at 

pulse energy of 0.4 J. The footprint of the LPP plume is oblong in shape at the 

specimen surface and its image is focused on the entrance slit plane of the 

spectrograph (Jarrell Ash Model 82–479).  

The LPP plume spectra are captured in the 2-D array detector during a 400-ns 

period beginning at 180 ns after the initiation of the LPP plume in a vacuum. The 

captured spectral image consists of 256 full plasma emissions spectra, each at 1024 

discrete but contiguous wavelengths, emanating from different positions of the LPP 
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plume along the long axis of the slit. Two sets of atomic emission lines from nickel 

and from chromium are calibrated in two different ways: one for the difference in 

emission line intensities between the two species; and another for the respective 

intensities as a function of masses of the two atomic species entrained within the 

plasma plume. The first calibration consists of determining the emission intensities of 

the respective emission lines emitted by LPP plumes from a fresh alloy specimen 

whose atomic composition is known. The calibration is applied to the entire chain of 

optics, ranging from the imaging optics, the entrance slit and reflective optics internal 

to the spectrograph and the electro-optics responsible for gating and intensification of 

LPP plume emissions to the CCD array as the repository of the LPP plume spectra. 

The second calibration entails measuring the average mass loss per laser pulse by 

dividing the mass change resulting in a specimen due to exposures to several hundred 

LPP shots by the number of laser pulses; a digital microbalance (Mettler Toledo 

Model UMT2) is used for this purpose. After the two rounds of calibration, both the 

elemental composition and mass loss per LPP shot are determined solely by 

spectroscopic means. 

For this purpose, two emission lines at 440.155 nm and 471.442 nm are used 

for nickel concentration determination and three at 425.435 nm, 427.48 nm and 

428.972 nm are used for chromium. Due to the particular criterion under which the 

physics of LPP ablation is established, the mass loss is governed by the local thermal 

diffusivity, subject to the heat of formation needed to release constituent atoms from 

the solid phase and the ability of the atomic species to disperse away from the surface. 
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It has been experimentally established that the thickness of the layer of the ablated 

target matter is dependent on the above physical attributes of the specimen bulk 

according to the following scaling relation:  

      
     

 
 (2.15) 

where θ is the material thickness ablated in cm;    is the thermal diffusivity 

in       ; M is the molar weight; and    is the heat of formation in      . For 

specimens placed in a vacuum, we have C = 11.07 ± 0.45; α = 0.91 ± 0.01; β = −α; 

and γ = −1. [29, 30] 

Figure 2.1 shows the measured mass loss per laser pulse and W% 

concentrations of nickel and chromium as a function of the number of the successive 

LPP runs generated at the same surface location. The succeeding ablations provide the 

elemental composition as a function of depth from the surface. The mass ablated from 

the surface per laser pulse varies due to changes in the thermophysical properties of 

the specimen during the period of heating and cooling but on average it is of the order 

of 0.4 μg per pulse. The figure shows the responses for three different specimens that 

have been thermally forced by three different mechanisms. Specimen 1 was heated by 

a digitally controlled electric oven (Fisher Muffle Furnace).  
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Figure 2.1- Measured Mass loss and W% concentration as a function of depth from the 

surface are compared for three different Nichrome specimens: i) mass loss (a) is 

shown as a function of LPP shot number, together with W% concentrations (d) of 

nickel and chromium, respectively, are shown for Specimen 1, which had been heated 

to 1086K for 120 minutes in the furnace; ii) mass loss (b) and W% concentrations (e) 

are shown for Specimen 2, which had been heated to 1111K by AC current for 120 

minutes; and iii) mass loss (c) and W% concentrations (f) are shown for Specimen 3, 

which had been heated to 1127K by DC current for 120 minutes. 

The maximum temperature was set at 1086 K. The specimen was placed on a 

short piece of 25-mm diameter alumina tubing resting on the furnace floor. During the 

ramp-up period, the temperature was raised from room temperature at the rate of 20 K 

per minute until the set temperature was reached, and the temperature was maintained 

for 120 minutes before the furnace was powered off. The furnace was allowed to cool 

to room temperature over the next two-hour period; the specimen remained within the 

furnace. A slow flow of argon was maintained in order to purge air out of the furnace 

during the entire heating run. Figure 2.1(a) shows the measured ablative mass loss for 



25 

 

each LPP plume as a function of the number of successive laser pulses delivered to the 

surface; the corresponding W% concentration of nickel and chromium are shown in 

figure 2.1(d). Specimen 2 was heated electrically by AC current running through the 

specimen at 1110 ± 20 K for 120 minutes.  

The specimen was mounted on the specimen holder within the vacuum feed-

through, which was in turn placed under vacuum. The results of mass loss 

measurements are shown in figure 2.1(b) and the measured W% concentrations of 

nickel and chromium are given in figure 2.1(e), respectively. Specimen 3 was heated 

also electrically but by DC current at 1128 ± 20 K for 120 minutes. The measured 

mass loss and W% concentrations for nickel and chromium are shown in figure 2.1(c) 

and figure 2.1(f), respectively. A comparison of the properties of the thermally forced 

specimens by the different heating methods reveals that the rate of mass loss by the 

LPP process is modified significantly at a much higher rate than the rate of 

modification of the near-surface composition profile. Heating increases the thermal 

diffusivity of the specimen by annealing – that is, a process by which small deviations 

of individual atoms from their respective equilibrium positions relative to neighboring 

atoms by virtue of increased thermal fluctuations of the individual atoms. Enrichment 

near the surface of chromium atoms, the less massive, more mobile of the two 

constituent atomic species, takes place much more slowly in the presence of heating 

alone. When the specimen is heated by an electrical current, the near-surface 

enrichment process seems to be accelerated; this suggests specific roles being played 

by the charge carriers. Judging from the shape of the W% concentration profiles of 
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nickel and chromium, the enrichment of chromium at the surface seems to proceed a 

bit faster by AC heating than by DC heating; in the case of AC heating, the surface 

enrichment exhibits the sign of saturation, indicating the diffusion of chromium back 

toward the bulk medium is in effect.  

 

Figure 2.2-Measured mass loss and W% concentrations are shown for two Nichrome 

specimens (Specimen 4 and 5) as a function of depth from the surface. Both specimens 

had been heated by AC current but to two different peak temperatures: i) mass loss (a) 

and W% concentrations (c) of nickel and chromium, respectively, for Specimen 4, 

which had been heated to 1128K for 127 minutes, and ii) mass loss (b) and W% 

concentrations (d) for Specimen 5, which had been heated to 880K for 132 minutes. 
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Figure 2.2 shows the results of measurements with specimens designed to 

gauge the temperature dependence of the near-surface chromium enrichment rate. 

Both Specimen 4 and 5 were heated by two different AC currents: Specimen 4 at 15 A 

and Specimen 5 at 22.5 A. In addition, the leading end of the specimen holder was 

kept in contact with a brass block that was cooled by circulating water at room 

temperature. The specimen temperature was measured by bringing an alumel-chromel 

thermocouple junction into contact with the specimen as a function of position along 

the length of the specimen at 2.5 mm intervals. The mass loss per laser pulse as a 

function of the number of laser pulses is shown in figure 2.2(a) for Specimen 4 that 

was heated to 880 ± 15 K for 132 minutes; W% concentrations of nickel and 

chromium, respectively, are shown in figure 2.2(c). The corresponding results are 

shown for Specimen 5 in figure 2.2(b) and figure 2.2(d) that had been heated to 1128 

± 20 K for 132 minutes. The results shown in Fig. 2.2 indicate that the mass loss 

profile develops relatively quickly by increasing the thermal diffusivity by the effect 

of the annealing process but with only a weak dependence on temperature, however. 

On the other hand, development of the near-surface enrichment of chromium proceeds 

more quickly in Specimen 5, showing stronger dependence on thermal-forcing 

temperature. 

2.5 Grain Boundaries in Binary Alloys 

More recent work in understanding the properties of binary alloys has focused 

on viewing binary alloys as polycrystalline materials.  In the context of binary alloys, 

the polycrystalline model suggests crystallite grains separated by grain boundaries.  In 
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such a material the role of the interface physics between crystallites begin to dominate 

the transport properties of the alloy. [31] Because of the high density of grain 

boundaries, recent efforts have focused on controlling the formation of grain 

boundaries in order to produce more stable binary alloys for high temperature 

processes [32].  Grain boundaries are found at the interface between two grains, in the 

case of polycrystalline materials this occurs at the interface between crystallites.  In 

silicon thin films the roles of grain boundaries in polycrystalline thin films and single 

crystal thin films has been explored in detail showing that poly-crystal silicon 

conductivities are reduced compared to those of pure crystalline films [33].   

 

Figure 2.3-Overview from [34]of thermal conductivity data for silicon films 

with varying microstructural quality and impurity concentrations. The data 

illustrates the effect of impurity phonon scanning versus grain boundary 

phonon scattering.  The data for undoped single-crystal bulk samples are taken 

from [35]. Both single crystal films have thickness of 3 µm, and for the doped 
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film, a boron concentration of          .[36] The undoped and 

doped(                 polycrystalline films have grain sizes of 200 and 

350nm, respectively [37, 38] 

The problem is that the roles of impurities in the crystallites and the role of grain 

boundaries are difficult to separate.  In evaluating grain boundaries it is important to 

evaluate the grain boundary energy γ, which can be calculated by [39] 

                     (2.16) 

   is the pure material energy which is lowered by   which is the saturation at the 

boundary of one alloy element.  This is multiplied by the sum of the enthalpy of 

segregation       and the product of the thermal energy    and     where   is the 

composition of the alloy.  Since these boundaries play such a large role in the thermal 

transport in a polycrystalline material it is important to understand the boundary 

energy.  The important parameter in the boundary energy equation is the enthalpy of 

segregation which can be calculated based on the elements contained in a binary alloy 

[32].  The formula for this calculation is  

 
           

   

 
 

           

   
  (2.17) 

   and     are bond energies for the crystal and grain boundaries that are collected 

into interaction parameters.     and    are the atomic volume of the two different 

elements of the binary alloy.  Z is the coordination number and t is the mean grain 

boundary thickness. 
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 These various methods developed for handling the thermal transport in binary 

alloys have the potential for improvement in their predictive capabilities.  The 

theoretical efforts suffer from short comings mostly created by the lack of information 

about the inner structure of the alloy, and specifically how to deal with the disorder 

present in the alloy.  Recent efforts have focused on the polycrystalline model for 

handling the structure of the alloy, in this model it is tough to tell the difference in 

contributions between the large grain boundaries and the disorder present in the grains 

themselves.  A more complete structure model for binary alloys would be beneficial in 

the quest to obtain a complete understanding of thermal transport in binary metallic 

alloys.  
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Chapter 3 

Random Close Packing 

3.1 Introduction 

Since complex metallic alloys were first introduced as a material, physicists 

have been interested in learning how the atoms in such metals arranged themselves.  

An understanding of the inner structure would also lead to further understanding of the 

properties of such metals. In this context, Bernal first imagined the atoms that made up 

an alloy as different sized hard spheres, the radii of the spheres corresponding to the 

atomic radius of the atoms of the alloy.  The alloy was imagined as a random assembly 

of these hard spheres.[40] 

Studying the packing of spheres has a long history because of its ability to 

serve as a simple but useful model for a variety of physical systems. [41]  The 

molecular nature of fluids and glasses have also seen contributions from hard sphere 

packing. [42,43]  Dense packing of hard spheres is generally seperated into three 

separate subclasses: ordered close packing, random close packing, and random loose 

packing.  Ordered close packing in three dimensions consists of periodic symmetry 

coming from a set unit cell structure, and accounts for the highest density of hard 

spheres. [44]  Random close packing has historically been studied experimentally by 

filling a container with hard spheres at random and shaking the container to achieve a 

maximum random packing. [45]  Random loose packing is the result of not shaking 

the container creating a less dense version of random close packing. [46] 
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Berryman formalized random close packing (RCP).  In order to have a 

randomly close packed structure, it was required that all spheres be arranged at 

random and that the structure filled a volume at maximum density where all spheres 

are in contact with another sphere.[47]  Berryman also reported a packing fraction of 

0.64 on average for RCP in three dimensions.   He found that random loose packing is 

in some sense less fundamental than the concept of random close packing, as the 

definition of random loose packing requires a minimum density below which the 

configurations of the structure are unstable and therefore not “packed”.  As packing 

fraction increases the phase of the matter being simulated changes, as shown in Fig. 

3.1.  The lowest branch corresponds to the liquid phase, a packing fraction of around 

0.49 corresponds to the freezing point.  Packing fractions greater than 0.49 correspond 

to a solid phase.  We are interested in the metastable branch equivalent to a mixed 

phase of disordered glassy arrangements and ordered crystallites.  This branch will 

provide a foundation for the structure of disordered alloys.  The metastable branch is 

an extension of the liquid phase and extends to the random close packed state.[48]  
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Figure 3.1 Phase diagram for the hard-sphere system[48] 

Two different algorithms have been developed to simulate random packing.  

The first algorithm starts with choosing a number and size for the spheres that would 

satisfy the desired packing fraction in a given volume.  Each sphere is given a random 

initial position, and this causes many overlaps among the spheres initially.  The 

spheres are then moved until the structure contains no overlaps.[49]  The second 

algorithm starts from a seed.  Spheres are randomly positioned but in contact with the 

surface of the seed until a given volume is filled.  The reason for development of the 

second algorithm is that the first became more and more computation-intensive the 

higher the packing fraction became.   The density is controlled by tracking the average 

coordination number.  The coordination number for a given sphere represents the 

number of neighboring spheres in contact with its surface.  The higher the average 

coordination number is, the more dense the packing will be.[50] 
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There have been several attempts at analyzing and identifying RCP structure.  

The early computer models used a pair distribution function to map the structure of the 

random packings.[51]  The pair distribution function measures the average density of 

spheres at a certain radial distance from a given sphere.  The pair distribution function 

is still frequently used in classifying RCP media, but there is a lot more information 

about the RCP structure than the pair distribution function captures.  Another analysis 

of the short range order is the Voronoi analysis.  A Voronoi cell of a given sphere 

includes all points that identify this sphere’s center as being the closest.  The size and 

shape of a Voronoi cell for a given sphere provides rich information regarding its local 

order, including the statistics of different neighboring spheres.[52] 

There is a criticism that RCP models should not be studied in great detail 

because they lack a solid definition.  Torquato argues that the packing fraction for a 

RCP medium is not concrete and varies in the neighborhood of 0.64 because of 

different physical properties the model is subject to.  To remedy this deficiency, 

Torquato proposes a state of maximum random jamming.  The change in the model 

introduces an order parameter for controlling the structure of the random arrangement, 

measuring the number of spheres in the structure that are jammed.   A sphere is 

considered jammed if it has no freedom to move while all other spheres remain 

stationary.  A maximal random jammed state is then described as the state with 

minimum order, i.e., being at a state with a packing fraction of 0.64. [53]  
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Figure 3.2a. A plot of the order parameter Ψ versus volume fraction Φ. [53] 

Figure 3.2b. A plot of the translational (T) versus orientational (Q) order 

parameters for the hard-sphere system (right). [53] 

 

Without introducing a new model, the order within an RCP model can be 

defined by means of the degree of crystallinity of the structure.  The degree of 

crystallinity is the total fraction of spheres in the structure that have arranged 

themselves as part of small crystallites in contrast to glass-like strucutures.  These 

crystallites can be distinguished as being in a tetrahedral form made by four spheres.  

This tetrahedral form is the smallest sized crystallite that can be formed in an RCP 

structure.[54]  As it turns out, the degree of crystallinity of a structure has a high 

dependence on the packing fraction. 

Larger crystallites can also form in the structure.  These polytetrahedral shapes 

can take many different forms depending on how many spheres constitute the 

crystallite.   One measure of the size of a crystallite is the number of spheres within 

the crystallite; the degree of crystallinity does not include this information.[55] 
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3.2 Characterizing Random Close Packing 

The structure we will use as the basis for the arrangement of atoms in a binary 

alloy will be based on random close packing.  Our first step in characterizing an RCP 

medium was to develop a hard sphere experiment to reproduce and characterize the 

structure.  Hard spheres of two distinct sizes were placed in a container and images of 

the spheres were taken with the random arrangement reset between photos.  An 

example of the data analyzed is shown in figure 3.3.   

 

Figure 3.3 Example of 2-D RCP experimental data used in the 

characterization of the RCP system at different concentrations. 

With some investigation, we realized that binary RCP systems could be 

characterized by splitting the spheres into two groups: nano-crystallites and glassy 

matter.  In two dimensions we define a crystallite as a minimum of three hard spheres 

that are mutually in contact. For a binary mixture this introduces four possible nano-

crystallites of the smallest size 3 
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Figure 3.4 The four possible size 3 crystallites in a binary 2-D RCP 

The pictures were first analyzed by identifying the crystals by eye and 

recording the data for each bed of spheres at each binary composition.  This ensured 

confidence in the data, but was slow compared to computational approaches.  Initial 

attempts at computer analysis for these images made the data more easily processed 

though the error in the results was concerning.  Hard sphere data were successfully 

obtained and analyzed for six different binary hard sphere compositions.   

    The experimental data were investigated and different sized crystallites were 

identified and documented.  After an entire photo was analyzed we define the degree 

of crystallinity as 

                        
                                                

                                     
 (3.1) 

The degree of crystallinity is one important characterization of the RCP 

structure.  To distinguish the subtleties of the crystallite portion of RCP media we 

indentify the crystallites by size and present them in histogram form via the crystallite 

size distribution.  As can be seen with our figure 3.4, the number of spheres in a nano-

crystallite is an ambiguous characterization and fails to capture the full composition of 

individual crystallites.  A crystallite of a certain number of circles can be made up of a 
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variety of combinations of small and large spheres. To remedy this, the nano-

crystallite size was identified by an effective radius.  The effective radius is 

determined by finding the total area of the crystallite by adding the area of each circle 

that makes up that crystallite.  In general, the effective radius can then be found using 

the equation 

 
                         

               
  (3.2) 

Initial experimental results showed a strong composition dependence on both the 

degree of crystallinity and the crystallite size distribution.  The results are shown in 

figure 3.5.  To further explore the structure and to establish the initial room 

temperature boundary condition for our disordered binary alloy we explored this 

structure further.  Taking photos and analyzing them is very time consuming and small 

sample sizes were necessary in order to get results over different composition 

conditions.  The study was successful for providing a preliminary basis of the RCP 

structure at various compositions, though further analysis was required.   
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Figure 3.5-Experimental binary 2-D RCP crystallite size distributions for six 

binary concentrations.  Degree of crystallinity γ shown for each distribution. 

3.3 Two Dimensional  Monodisperse Random Close Packing Simulation 

For further analysis and a more generalized model of the RCP structure, we 

developed a Monte Carlo simulation of a RCP medium.  To start, we began with a 

simulation focusing on a monodisperse RCP structure. This RCP structure model is 

composed of a mixture of nano-crystallites and disordered glassy matter. The Monte 

Carlo simulation was developed to replicate experimental results. Control over the 

mixture of the two phases allowed us to train the simulation to match what was 

measured.  The control parameter for this simulation matches the degree of 

crystallinity to experimental results.  To start the simulation we create a starting nano-

crystallite of three circles.  This crystallite is located in the middle of the total area and 

will be used as a seed for the structure to grow. 
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Figure 3.6-Example of minimum crystallite that 

acts as a seed for the 2-D RCP building algorithm. 

 The program begins by identifying locations for a circle that can be placed on 

the outer surface of the seed crystallite that will be in contact with one of the circles of 

the initial crystallite.  The program will replicate the random close packing of beads by 

building off of this initial crystallite in a semi-random way.  If left to build at random 

the structure would be more akin to glass because of the pure disorder. To replicate a 

structure of nano-crystallites and glassy matter our simulation needs to have order that 

we will control to produce a structure with a certain degree of crystallinity.  The set of 

contact points found by the program on the surface of the cluster form a contour.  To 

make this identification of points as computationally inexpensive as possible each 

circle center is visited and a shell with a radius that is twice that of the circles is 

superimposed.   
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Figure 3.7 Example of shells being drawn around initial seed crystallite which 

will be used to form the contour of points where the next circle can be added to 

the cluster 

The portions of these shells that are less than a diameter from any of the 

centers of the other circles in the cluster are removed from the contour, since a circle 

placed here would overlap one of the already present circles.  Any points that match 

these criteria will be kept as possible points that a new circle can be placed.  We also 

want to find points that will result in an extended crystallite. These points will have 

the centers of two of the circles exactly one diameter away and will be referred to as 

bindpoints.  Bindpoints are points that will cause a crystallite to be formed or 

extended.  This characterization will be used to control the semi-random formation of 

the RCP medium.  Points matching this specification will be kept separately which 

will give the program a parameter that can control the degree of crystallinity.  This 

will be done by systematically adding crystallites to the structure but also adding them 

at random.  Any other point on the contour is kept as a potential point where a circle 
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can be placed randomly on the outside of the seed crystal.  Non bindpoints are places 

on the contour which glassy matter can be formed in the RCP structure. 

 

Figure 3.8- Contour used for addition of next circle in 2-D RCP Building 

algorithm.  Red points signify bindpoints which keep track of specific points 

used to add crystallite points to the structure. 

With these two sets of points the program has a control parameter when 

building the RCP structure.  A random number generator is used to choose if a circle is 

placed randomly on the surface or if the circle will bind to two of the existing circles 

and expand the crystallite.  If the random number is higher than our probability 

threshold for binding, a circle is randomly placed on one of the surface contour points.  

If the number falls below the probability threshold, the circle is placed on one of the 

aforementioned bindpoints.   The probability can then be adjusted so that the 

probability for the circle to be added to a crystallite is controlled.  This probability 

controls the degree of crystallinity of the RCP structure which allows us to match the 

experimental results.   
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With the new circle added to the cluster the program redefines the contour to 

account for new points where circles can be added.  The program first checks the 

previous contour and only keeps points that are a distance greater than a diameter 

away from the newly added circle to account for overlap with the newly added circle.  

A shell is then superimposed unto the new circle center to add any new contact points 

to the contour.  This can be done repeatedly as new circles are added to the structure.  

The simple algorithm described will produce a cluster that is randomly formed; it will 

also give control over crystallite formation. The problem is that the cluster has large 

defects that do not agree with the defined randomly closed packed structure.  The 

packing fraction, or the amount of area occupied by circles in a 2-D RCP medium is 

not satisfied by this method.  Packing fraction can be tested using the formula 

 
  

   

   
 (3.3) 

Where ρ is the packing fraction, N is the number of circles in the area filled with the 

RCP structure, A is the area of one of the circles, and w and h are the width and height 

of the area filled by the cluster respectively.  With the simple algorithm proposed the 

packing fraction falls well short of the .82-.89 that is predicted for two dimensional 

random close packing [47].   
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Figure 3.9 Example of 2-D RCP structure built with basic building algorithm 

with one control parameter. 

 As can be seen in figure 3.9, large nonphysical defects are made that would not 

exist in a RCP medium. The black circles represent the bound circles while the white 

circles represent the randomly placed circles corresponding to glassy matter.  In order 

to correctly simulate a RCP medium the simulation will have to prevent the formation 

of the large voids seen in the figure. 

3.4 Defect Detection 

The large non-physical defects in the RCP structure are not acceptable as the 

packing fraction value is considerably lower than the accepted packing fraction value 
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for a RCP medium.  The defects must be addressed before the simulation can 

accurately be used to replicate a RCP structure.  In our simulation, the problem was 

solved by preventing the defects from ever forming.   A defect is formed when a circle 

is placed as glassy matter and its center is between one and two diameters away from 

another circle’s center that is already part of the structure.   

 

Figure 3.10 Example of defect formation in 2-D RCP structure algorithm. 

This defect is caused by the small space created by the new circle, if this void 

is not addressed it can potentially grow and form the non physical voids in the 

structure that cause the packing fraction discrepancy in our simulation.  To prevent 

this defect from becoming any larger, the program places a circle on the other side of 

the defect in order to prevent large voids in the structure from ever forming.  This 

defect detection will prevent non-physical voids while also keeping the packing 

fraction in the accepted values of a RCP medium. 
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Figure 3.11 Example of the role of defect detection in the 2-D RCP building 

algorithm.  A circle is places to prevent non-physical defects from forming in 

the structure 

 With this defect prevention in the program the cluster now has a packing 

fraction within the accepted range for 2-D RCP medium.  With the simulation 

producing random iterations of RCP structure that have values that agree with theory, 

the simulation can be run multiple times and the degree of crystallinity and crystallite 

size distribution can be analyzed over a large sample size.  The bindpoints provide a 

control over the software which is used to match the degree of crystallinity measured 

via experiment.    

3.5 Crystal identification 

To characterize RCP we use a combination of the degree of crystallinity and 

the crystallite size distribution.  The degree of crystallinity is an important tool in the 

classification of the structure and is established by the frequency of using bindpoints 

in the building of the RCP structure in our simulation.  Once the structure is built it is 



47 

 

necessary to measure the crystallite size distribution.  The program accomplishes this 

by visiting each circle center and finding all nearest neighbors, if the centers of three 

nearest neighbors form an equilateral triangle then they are part of a crystallite.  The 

crystallite is then analyzed to find any adjoining circles that extend that crystallite.  

Once all the circles in the crystal are found, the program stores the crystallite 

according to its size and then searches for the next crystallite.  After all the crystallites 

are found the contribution to the crystallite size distribution for that structure is 

recorded.  Below is a figure expressing the results of the crystal identification by 

displaying each crystallite size as a certain color corresponding to their size, or the 

number of circles in the nano-crystallite.   
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Figure 3.12-Monodisperse RCP structure built with defect detection.  

Crystallites are identified by size and signified by filled colored circles. 

 

3.6 Two Dimensional Binary Random Close Packing Simulation 

 We have established an algorithm for assembling monodisperse hard spheres 

in a randomly close packed structure in two dimensions.  Our interest lies in 

disordered binary alloys made of multiple atom sizes, so to simulate this, our RCP 

structure needs to be able to handle multiple circle sizes.  To accomplish this, we 

reconfigure the algorithm to deal with multiple circle sizes. The two different particle 
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sizes add a new parameter for the simulation.  With information gained from our 

experimental work we can examine how the statistics differ with different binary 

concentrations.  The program can also be analyzed with different ratios of circle size.  

With two different particle sizes, the initial seed for the cluster must be reconfigured.  

There are now four different possibilities for the initial seed in two dimensions as 

highlighted in figure 3.2. To decide whether a large circle or a small circle is chosen, 

the program uses a random number generator and a probability threshold determined 

by the goal concentration of each circle size.  This technique is similar to the one that 

is used in determining binding probability in the simulation.  With different seed 

crystallites the surface contour will be different depending on the initial seed 

crystallite.  The program keeps track of all the locations on the surface where both a 

small circle and a large circle can be placed.  This results in two surface contours 

created with two sets of bindpoints for each circle size.  The contours are created with 

the same shell approach used in the monodisperse algorithm, though since there are 

three possible contacts three different shells have to be used to create the contours.  

The three different contact types are two small circles in contact, two large circles in 

contact, and a small circle in contact with a large circle.   
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Figure 3.13-Example of the two contours needed when building a 

binary RCP structure.  

The rest of the program runs as previously described for the monodisperse 

case.  Each circle added to the structure has a size chosen randomly weighted by the 

goal composition of the binary structure.  After a new circle is added two surface 

contour plots must be updated to keep track of potential places for the next circle to be 

added at both sizes.  Defect detection is used to prevent non-physical voids in the 

structure, though the plugging of the voids is done with a circle with the size selected 

at random. This technique produces results that correspond to the binary RCP system 

in terms of packing fraction.  The crystallite identification changes slightly in a binary 

system, instead of an equilateral triangle being the basis of a crystallite in our 

monodisperse system, a crystallite can be defined in the four ways displayed in figure 

3.2.  The minimum basis for any crystallite is now three neighboring circles forming 

an equilateral or isosceles triangle.  The identification is still done by identifying these 

crystallites and categorizing them by size.  The result of the 2-D binary RCP 

simulation can be seen below. 
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Figure 3.14- Binary RCP structure with crystallites identified by size and 

signified by filled colored circles. 

The crystallite size distributions experimentally measured are replicated using 

the parameter that assigns added circles to bindpoints.  Crystallite size is expressed by 

an effective radius to remove ambiguity in the crystallite identification by number of 

circles.  A crystallite of a certain number of circles can be made up of a variety of 

combinations of small and large circles.  The effective radius is determined by finding 

the total area of the crystallite by adding the area of each circle that makes up the 

crystallite.  The radius is then found by taking that area and finding an effective radius 

that is the radius for a circle with that area as expressed in equation 3.2.   We use the 
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structural information gathered experimentally to choose the parameters used at 

different binary concentrations.  The degree of crystallinity and crystallite size 

distribution from the experimental data were matched with this Monte Carlo 

Simulation.  

 

Figure 3.15- Comparison of crystallite size distributions from (a) experimental 

2-D RCP data and (b) trained 2-D RCP building algorithm simulation.  

 With our Monte Carlo simulation trained to replicate experimental RCP data, 

we have a tool for generating the RCP structure that will be used in modeling the 

structure of a disordered binary metallic alloy.  For a disordered metallic alloy, the 

simulation can be tuned based on the atom sizes in the alloy as well as the atomic 

composition of the alloy to generate its RCP structure.  This will be an important step 

in monitoring the morphology of the disordered alloy as it provides an initial condition 

for the alloy.  
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Chapter 4  

Mechanical Oven Experimental  

4.1 Experimental Strategy 

After characterizing RCP in two dimensions, our next step towards the 

eventual goal of understanding the morphology of disordered binary alloys was to 

investigate the RCP structures’ reaction to temperature change.   Our investigation 

aimed to explore how the distribution of nano-crystallites in a RCP medium evolves at 

elevated temperatures by the mechanism of thermal forcing.  The initial RCP structure 

of a disordered alloy was found to depend sensitively on alloy composition in our 

work described in chapter 3.   The nano-crystallite size distribution has been obtained 

for a number of compositions under the stationary condition.  To simulate heating, the 

2-D cell on a horizontal plane, containing an RCP assembly of binary spheres, has 

been instrumented for time-dependent actuation by two stepping motors in two 

mutually orthogonal directions; each motor is driven independently according to a 

chaotic algorithm.   

We have demonstrated that the control programs for driving the 2-D RCP 

assembly can be fine-tuned to produce a robust Gaussian velocity distribution for the 

individual spheres.  The distribution function meets the scaling requirement between 

the distributions of the x- and y-component for like particles and between the 

distributions of the velocities of unlike particles.  The width of the velocity 

distribution, i.e., the measures of medium temperature, has been shown to be 
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responsive to the amplitude of mechanical forcing by the stepping motors.  In other 

words, the temperature of the 2-D assembly scales essentially linearly with the 

mechanical amplitude, and as a result, the temperature of the driven RCP bed of 

spheres has been raised from T*, the lowest temperature, to 2T*, 4T* and 8T* in 

linear proportion to the drive amplitude of the stepping motors. 

4.2 Experimental Apparatus 

 The apparatus used to simulate our disordered binary alloy can be seen in 

Figure 4.1.  The arrangement of spheres rest on a piece of glass surrounded and held in 

place by a steel frame.  The glass is tempered to prevent the glass becoming a charged 

surface after long periods of exposure to the moving metallic spheres.  This steel 

frame is attached to the stepper motor arrangement that is used to drive the system at 

the various temperature settings.  The boundary of the 2-D bed of spheres is provided 

by a fixed boundary that is separated from the base plate so that it remains stationary.  

The data is taken by a Fujifilm S2000 digital camera, which is kept above the 2D bed 

and is held by a base with precision position controls that can be used to finely tune 

the alignment of the camera image axes with the axes of motion for the 2-D bed.  To 

illuminate the 2-D bed of spheres, light is reflected off a thick piece of reflective white 

paper tilted at a shallow angle.  Light is provided by a lamp not shown in the 

schematic diagram; the lamp is fixed with a frosted transparent piece of paper fixed in 

front of it to produce homogenous illumination reflected off the white paper.  To 

minimize vibrations, the moving pieces of the apparatus are supported separately from 

the main lab table of the apparatus.  This includes the base plate and stepper motors.  
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The beads used in the experiment are steel ball bearings.  To facilitate our simulation 

of a binary alloy we used two sizes of ball bearing with radii of 2.488±0.099 mm and 

3.193±0.033 mm, and a mass of 0.0641g and 0.104g respectively.   

 

Figure 4.1-Schematic diagram of “mechanical oven” experimental apparatus.  Two 

orthogonal stepper motors drive the transparent base plate due to a chaotic algorithm 

used to simulating effective temperatures.  A fixed boundary kept separate from the 

moving portions of the experiment keep the hard spheres contained.  The baseplate is 

illuminated off a reflector by a diffuse light source (not shown).  Data are taken using 

a ten megapixel camera using a burst setting. 
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4.3 Driving the System 

The bed of spheres is driven by two single axis stepper motors that operate in 

orthogonal directions to each other creating a 2-D driving system.  A stepper motor is 

run by rotating a leadscrew which drives the base in the desired direction.  The 

movement of the base can be split into microsteps that break the rotation of the 

leadscrew into small partial rotations.  For the stepper motors used in this experiment 

we use a 2mm leadscrew that can split a rotation into 256 microsteps.  This gives us a 

movement resolution of 0.04 µm per microstep.  The stepper motors have a maximum 

velocity of 40mm/sec giving more than enough movement speed for our desired 

displacements.   
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Figure 4.2- Top view schematic of the mechanical oven experiment.  The 

stepper motors are controlled by two separate series controllers with the 

driving routines uploaded from a computer. 

 Figure 4.2 shows a schematic of the driving system.  Two Single Axis 

controllers are fed a pink noise chaotic driving routine from a computer.  The 

controllers then drive the stepper motors in relation to the driving routine.  The 

controllers operate using Intelligent Motion Systems (IMS) software designed 

specifically for controlling the stepper motors used.  Our driving routine is designed to 

simulate temperature in a hard sphere system.  After experimentation, it was observed 

that this could be accomplished by cyclically driving the motors in a pink noise 

chaotic fashion.  The two motors are offset so they don’t provide identical motion.  

Parameters are set at the beginning of the routine to determine the conditions of the 

stepper motors’ movements.  The first parameter is the motor resolution select variable 

which sets the amount of steps per revolution.  The maximum steps per revolution 

setting is 256 and the minimum is 2.  Other values come in binary increments from the 

minimum to maximum motion per step.  The second parameter is the motor unit 

variable, which sets the amount of microsteps per user variable.  This sets the unit of 

length for the motion, and needs to correlate with the steps per revolution for the 

program to operate correctly.     

The routine used to drive the system accesses a stored list of random numbers 

to create the oscillations.  The stepper motor cycles through the random 

displacements, the two motors are offset to prevent synchronization of the movements.  
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These displacements are determined by multiplying these stored random numbers by a 

maximum displacement.  The initial parameters can create four different operating 

temperatures for the stepper motors.  These operating temperatures correspond to 256, 

128, 64, and 32 steps per revolution settings.  The maximum displacement variable 

can be incremented to reach temperatures in between these four base temperatures, 

though for this study we looked at the discrete temperature steps associated with the 

binary settings of the stepper motors.  To run the program, the routine is downloaded 

from the computer to the controllers and then a go command starts the motion routine 

and will continue until the program is stopped manually.  These commands are fed 

through a terminal on the computer which is part of the IMS system.  Each controller 

is operated separately for independent control of the two directions. 

4.4 Measuring the Angle of Tilt 

One of the major physical parameters for our experiment is the angle of tilt of 

the baseplate.  The tilt of the baseplate determines the amount of packing in the 

system, as well as determining the amount of gravitational acceleration that will be 

incident to one of the directions of motion.  Figure 4.3 shows a schematic ray diagram 

for measuring this angle.  A laser diode emits light that is fed through a beam splitter.  

The light reflects off the base plate, and also reflects off of a water surface that is kept 

below the base plate.  The light is then reflected off the beam splitter and measured to 

see the difference of reflected angle between the two surfaces.  The beam reflected 

from the base plate is equal to two times the angle of tilt with respect to a level surface 

represented by the water. 
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Figure 4.3- Schematic ray diagram for measuring the angle of tilt.  Two light 

rays are reflected off the base plate and the top surface of water which is level 

and compared to measure the tilt in the base plate with respect to the surface of 

the water. 

 

Figure 4.4 - Equivalent ray diagram for measuring the angle of tilt. 
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The equivalent ray diagram can be seen in figure 4.4.  After measuring the 

appropriate distances the angle of tilt can be measured using the formula 

 
            

   

     
 (4.1) 

The water surface reflects a beam that is coincident with the beam reflected from the 

base plate.  If that is not the case, it is necessary to add the value  .  The distance D 

can have both vertical and horizontal components for the two degrees of freedom for 

the base plate.  After measurement, it was determined that the angle of tilt for the data 

presented in the y direction was           and in the x direction it was    

      .  The effect of the tilt in the x direction can be seen by the free boundary of the 

bed of spheres not being orthogonal with the y-direction.   
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4.5 Illuminating the Bed of Spheres 

 

Figure 4.5 - Schematic diagram of the illumination of the bed for imaging.  

The lamp provides a diffuse light source that is reflected at a shallow angle to 

provide illumination from underneath the baseplate.  Tunneling paper refers to 

paper used to prevent non reflected light from directly affecting the imaging. 

The image bursts are taken with a Fujifilm S2000 digital camera.  The camera 

is set to its Ultra High Speed burst function which captures 33 images at 13.5 frames 

per second at a resolution of 3 megapixels.  The camera is zoomed into its super macro 

setting which provides a consistent zoom setting throughout a large quantity of bursts.  
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The camera is mounted on two translational stages that give fine alignment control for 

capturing the bed of spheres in the camera’s field of view. 

The bed of beads is illuminated by a lamp that has its illumination intensity 

controlled by a variac generator. The variac generator is necessary in order to control 

the illumination of the bed of spheres with a precision that gives a desired contrast 

between the beads and the background.  The light from the lamp is funneled to a thick 

white piece of paper that serves as a reflector to give an even background for the bed 

of beads as seen in figure 4.5.  To get an even distribution of light to the reflector we 

do not use a point light source.  The lamp’s light is fed through frosted paper to diffuse 

the light and create an even light intensity across the reflector.   The light reflector is 

set at a shallow angle to provide the best even illumination of the bed.  The funneling 

of the light is used to minimize the ambient light that can affect the accuracy of the 

images.  The edges of the circles become non circular due to the direct light from the 

lamp if it is not funneled as seen in figure 4.6.   



64 

 

 

Figure 4.6- Example of ambient light causing noncircular defects in the 

images.  This is prevented by careful illumination highlighted in figure 4.5. 

The camera has a minimum shutter speed of 1 ms, so the exposure has to be 

controlled with the illuminating light.  The variac generator is set at a low intensity so 

that the camera is not over exposed.  An example of the effect of the lamp intensity 

can be seen in figure 4.7.  Digital cameras take images via light sensors that operate by 

converting light energy into electrical energy.  If the shutter speed is too high there 

will be light saturation which will cause much of the image to have a maximum 

brightness because the sensors were exposed to the illuminating light for too long.   

The shutter speed for the cameras burst setting is fixed, so it is necessary to use the 

incident light intensity to control the amount of light on the sensors for the shutter 

speed time period. 
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  The exposure of the camera is very important in insuring that the image will 

provide accurate data representing the structure of the beads.  If the image is over 

exposed, the diameter of the spheres can be incorrectly represented.  Ideally, the 

largest circular cross section of the sphere will be represented in the image.  If there is 

too much light being fed to the camera, reflections from the spheres will shrink the 

circular cross section which will create problems during the analysis of the image.  

This effect can be seen in figure 4.7.  One of the factors we are most interested in 

studying in these images is the structure of the bed of spheres during movement.  To 

analyze the structure, it is necessary to know whether the spheres are in contact; this 

means that the diameter has to be accurate so that it can be determined whether the 

edges of spheres are touching.  In figure 4.7 it is clear that the overexposed image will 

not facilitate any contact between the spheres because the cross sections of the spheres 

are being misrepresented.  In the right image, it can be clearly seen where spheres are 

in contact at the edges of the cross sections, making accurate analysis possible. 
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Figure 4.7- 2 figures taken at different illumination intensities highlighting the 

difference in circle radius seen when light saturation affects the imaging. 

4.6 Effect of the Baseplate 

 The baseplate is a piece of tempered glass held by a steel frame.  It provides 

the surface for the steel ball bearings to travel.  Glass has the added benefit of being 

clear so that the bed of spheres can be illuminated for imaging.  The motion we are 

trying to simulate is free motion interrupted by collisions, both between spheres and 

with the boundaries.  The base plate provides friction so that the particles can move 

freely in relation to each other without sliding as one unit.  With a clean glass surface 

this is possible; problems arise when dust is collected on the glass surface.  The beads 

move as a group if dust causes a reduction in friction to the point where beads can 

slide together.  Regular cleaning of the glass surface is needed to ensure consistent 

free movement of the spheres in relation to each other.    
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Chapter 5 

Measurement of Experimental Data 

5.1 Images Produced From the Mechanical Oven Experiment 

 Figure 5.1 shows an example of the image data produced by our imaging 

technique described in chapter 4.  The image is 2048x1536 pixels, though only a 

portion of the image is our fixed boundary data field.  Each pixel represents 0.16mm 

in length for our zoom setting.  Our data comes in bursts of these images, which 

contains 33 sequential images.  Our measurement strategy is to analyze the RCP 

structure of the spheres for each image and to track the movement of the spheres 

inside the fixed boundary over a pair of images.  Typically, many bursts of images are 

taken in order to produce a sufficient sample size for each movement speed.  After 

taking our data, we will need to be able to sufficiently analyze a large number of 

images.   
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Figure 5.1-Example of original image from 33 image burst taken with the 

apparatus . 

When dealing with large amounts of data, computational efficiency becomes 

paramount for analyzing data in a reasonable time.  We had to successfully develop 

techniques for preparing the images for analysis, analyzing the images to obtain data, 

and evaluating the data for analysis.  All of our techniques have to be capable of 

operating with large amounts of information in a reasonable time.  Our developed 

technique also must withstand careful inspection to ensure the accuracy of the analysis 

for the captured data. 

5.2 Pre-Processing the Imaging Data 

Before the image is analyzed, a certain amount of preprocessing is required to 

transform the image in a more computationally digestible form for analysis.  The first 
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step in the preprocessing is to crop the image field so that only the portion of the 

image inside the fixed boundary is present.  This removes all unnecessary portions of 

the image from the original.  The image is also checked to see if the boundary 

corresponds to the horizontal and vertical axis of the picture. If this is not the case, the 

picture is rotated.  The initial image is a 12MB rgb color image, for our purposes the 

image color does not provide any of the information we are interested in.  The analysis 

only needs to differentiate between circles and background. After cropping the image, 

it is converted into a binary image.  A binary image is an image where the pixel value 

can either be a one or a zero providing the information we need for the analysis in the 

simplest form possible.  An rgb image consists of three channels for each pixel, these 

channels are the red, green and blue channels.  Each channel contains a number 

between 0 and 255 which corresponds to the intensity of each color.  Brightness 

transcends the color channels though, and the contrast between the circles and 

background is present in all three channels.  To convert each of these complex pixels 

to a value of either one or zero the three channels of the rgb image are averaged to one 

value.  Once each pixel has an average intensity value, the values are subjected to a 

threshold where every value above the threshold becomes a one and every value below 

the threshold becomes a zero.  The threshold is chosen based on the values present 

after the channel merger, but can be fine tuned to adjust where the edge of each circle 

appears since that is where the channel intensity will drastically change. 

To find the circle centers our program relies on the edges of the circles, so our 

image is run through an edge detection program. All image analysis is provided by the 
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ImageJ software library. ImageJ is open source image processing and analysis for the 

java programming language.  The edge detection will convert the solid circles into 

circle edges.  For an image, edge detection looks for sharp changes in intensity.  For a 

binary image, this corresponds to changes from background zero values to foreground 

one values.  The edge detection keeps a three pixel thick edge around each circle.  The 

design of our analysis program requires calculation at each edge pixel in the image, 

this means that more edge pixels will correspond to more computation time.   The last 

process performed on the image is to thin the edges, this process is called 

skeletonizing.  Skeletonizing an image creates a topological skeleton for all shapes in 

the image.  A topological skeleton of a shape consists of all points equidistant from 

two of the shapes boundaries.  In the case of our circle edges, this will create a one 

pixel thick circle edge between the boundaries of the thick edge.  The end result of this 

preprocessing can be seen in figure 5.2, this is an example of the image that is 

analyzed to find the circle centers. 
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Figure 5.2- Example of image after preprocessing technique which results in a 

cropped image of the circle images prepared for the analysis software. 

5.3 Identifying circle centers 

    An analysis program based on a Hough transform is used to find the centers 

of the circles in the image.  Specifically we use the circular Hough transform, as 

Hough transforms can be used for fitting various functions in an image.  The edge 

point of a circle with a radius r and a center point (a,b) can be represented using the 

functions 
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           (5.1) 

           (5.2) 

Since we know the radii of our two circles in the image we can search the 

image field and use the edge points to find the centers.  For any edge point of a circle, 

the center of the circle will lie on some point of a circle of radius r centered at the edge 

point (x,y).  If a circle of radius r is drawn around all the edge points of a circle, the 

circles will meet at the center of the circle as seen in figure 5.3. 

 

Figure 5.3-Example illustrating how the Hough transform can be used to find the 

center of a circle using the circles edge points. 

The spheres used for our experiment are of two sizes.  The Hough transform 

requires the diameter of the circle to be known in order for detection.  For each circle 

edge pixel in the image, each point one radius away is incremented by one in the 

Hough transform space.  The Hough transform space is an integer array that keeps 

track of the drawn circles from the Hough transform.  Since the center is exactly one 
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radius away from all the edge pixels for a circle, the center of the circle will have a 

high integer value in the Hough space once the transform is complete.  For an ideal 

circle edge, this integer value would correspond to the number of edge pixels for the 

circle.  If the radius of the circles is not chosen correctly, the Hough transform space 

will not have peaks at the circle centers but will instead have volcano like peaks with a 

small integer value at the circle center. 

   To begin each burst of images, the image is passed to a subroutine that finds 

the best diameter for the Hough transform with precision to the tenth decimal place.  

This is run to account for possible zoom fluctuation from the camera.  The subroutine 

operates by iterating over 10 diameters, since there are two sphere sizes we have to 

find the best diameter for both of the sphere sizes.  To find the ideal diameters, the 

image is analyzed to find the circle centers that will be monitored over the diameter 

iterations.  The initial diameters are chosen based on the diameters that are most often 

the ideal diameter for the experimental zoom setting.  The subroutine then runs 

through the 10 nearest diameters to a tenth precision and monitors how the Hough 

peak sizes change as a function of diameter at the circle center value.  When the 

average Hough peak size is maximized, the ideal diameter is chosen.  For the rest of 

the burst of 33 images, this diameter is used.   

 After the diameter is chosen, circular array shells are created to be used in the 

Hough transform.  For each diameter, a 360 element array is filled with coordinates 

for the edge of a circle with the given radius.  This is a quick and efficient way to 
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perform a Hough transform to the image files.  Instead of calculating 360 points a 

distance r away from each edge point, an array element can be called and added to 

each of those points, which is much more computationally efficient.  Creating the 

Hough space is a simple procedure, the program starts by searching through the image 

looking for edge points.  When an edge point is found, the program calls all 360 

elements of the circle shell array.  At each element, the Hough space array element at 

that point is incremented by one.  The Hough space array is the same size as the 

original image, any shell point that falls outside the bounds of the image is 

disregarded.  Because there are two different diameters, a Hough space array has to be 

made for each diameter.  A result of these transforms can be seen in figure 5.4 and 5.5. 
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Figure 5.4- Hough transform intensity map for the large diameter with the 

original edge data superimposed on top. Bright spots at the center of the large 

circles correspond to circle centers. 
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Figure 5.5 Hough transform intensity map for the small diameter with the 

original edge data superimposed on top. Bright spots at the center of the large 

circles correspond to circle centers. 

After each edge point has been visited by the software, the Hough transform is 

complete and the circle centers can be found from the Hough space.  This is done by 

sweeping through the Hough space and finding the peaks.  To do this, a threshold 

variable is set for each diameter.  When a value in the Hough space array is greater 

than the threshold, it is saved as a potential center.  It is important that the threshold is 

set such that it is high enough that each peak is found but not so low that noise in the 

Hough space is falsely identified as a circle center.  There is the potential that a given 

center peak has multiple pixels above the threshold.  If this happens, and there are 

multiple points in a few pixel region above the threshold, they are all saved together 



77 

 

into clusters.  After all the peaks are organized into clusters, the clusters are averaged 

to get the preliminary circle centers.   

The original Hough transform is run with integer precision.  Our goal is to get 

center precision to the tenth decimal place.  To do this with a single Hough transform, 

a Hough space array ten times the original image size would be needed.  Dealing with 

an array of this size is too computationally expensive to be practical.  Instead of 

making a large array, we revisit each preliminary circle center pixel and break it into a 

ten by ten sub- pixel array.  For each center point, the program revisits the image edge 

points around that center pixel.  The Hough transform procedure is repeated at these 

edge points, except that now we are only interested in the center point which has been 

broken into a ten by ten Hough space array for one circle located at the center pixel.  

After running through the edge pixels, the ten by ten center point array gives a new 

higher precision Hough space for the peak of the original center Hough peak.  The 

maximum peak in this higher precision Hough space allows us to add an extra digit of 

precision to our circle centers.   

5.4 Program Structure 

  Software was written in order to take a large number of images and obtain 

data relating to the movement of the spheres.  The Hough transform technique is used 

to identify circle centers, but the analysis of the data needs to track the centers over 

multiple images.  Figure 5.7 shows a schematic diagram of the programs operational 

procedure.    The camera used to take the images is run in burst mode.  The bursts 
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contain 33 consecutive images, and often times there will be multiple bursts taken in 

order to obtain a large sample size for analysis.  Therefore to begin the program we 

iterate over the number of bursts in the sample.  Also at the beginning of the program 

text files are created for keeping the data obtained by the program.  At the start of each 

burst, the subroutine that finds the optimal diameter is run to compensate for possible 

fluctuations in the zoom of the camera.  Once the two diameters are chosen for the 

burst, the program iterates over the 33 images in each burst.  For each image, the 

centers need to be found for every circle in the image.  This is done with the 

previously discussed Hough transform technique, which is done once for the initial 

centers, and again for an extra digit of precision.   
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Figure 5.7- Schematic diagram of the programs operational procedure. 
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After the circle centers are detected with the desired precision, the goals of the 

analysis are to analyze the structure and measure the movement of the circles.  To this 

point we have kept the two circle sizes entirely separate from each other based on the 

separate Hough transforms needed to detect the centers. In order to analyze the 

structure of the bed we have to recombine both circle sizes as one coherent structure as 

it is in the original image. Before combining the circle centers, the structure is checked 

for any overlap.  After assuring that there is no overlap in the structure, the bed can be 

analyzed for structure and movement.  The combination of the right threshold values 

and diameters set for the program parameters, as well as good image quality causes 

overlap to not be present in the combined structure.  If the two circle sizes are 

sufficiently different, which they were for this study, a circle will not be detected at 

both sizes.  In order to characterize the structure of the detected circles the array of 

circle centers and sizes are passed to a crystal identification subroutine.  This 

subroutine is designed to indentify crystallites in the structure and then to categorize 

them by size.   

A crystallite is a minimum of three circles that are all in mutual contact.  The 

first step in crystal identification is to separate the circles into crystalline circles and 

non-crystalline or glassy matter circles.  To first identify the crystal circles we go 

through each circle in the bed and check any circles that are nearest neighbors.  Both 

circles are then checked to see if there is a third circle that is touching both of them 

forming a crystallite.  If this condition is satisfied, all three circles are then identified 

as crystallite circles.  If there is no such condition with any of the circles’ nearest 
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neighbors it is identified as a glassy matter circle.  Once all the circles are identified as 

such they are then categorized by size. This is done by going through the crystallite 

points and grouping all circles that are part of the same crystallite.  Circles are then 

organized based on the crystallite they are in.  It is then possible to identify the 

crystallites by size which can be summarized with a crystallite size distribution.  The 

end result of the analysis can be seen in figure 5.8. 

The final piece of information we want to gain from the circle data is the 

average velocity of the circles from image to image.  This is done by comparing the 

circles from a current image to the circles from the previous image.  After finishing 

center detection on an image, the circle data is saved in an array to be used in the next 

image in the burst.  To find the velocities, each circle’s current position is compared to 

that in the previous frame.  The velocity is then found by taking the displacement and 

dividing it by the time between frames which is a constant given by the burst mode of 

the camera.  We are interested in the velocity data in histogram form, so once a 

velocity is found the bin corresponding to that velocity is incremented.  This velocity 

data is taken for both circle sizes separately, because the distributions are affected by 

the mass of the sphere.   
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Figure 5.8-Graphical representation of the detected structure of the the image.  

Filled circles represent the crystallites detected in the image. 

5.5 Assessment 

With the centers located, we can calculate physical data contained in the image 

such as the average velocities of the spheres, the degree of crystallinity, and crystallite 

size distribution of the RCP structure.  This degree of crystallinity measurement is the 

value that we wish to explore over the range of effective temperatures.  With this 

information we hope to be able to better understand the structure of randomly close 

packed hard spheres at the effective temperature created by the experimental setup, 

and also how that structure changes under thermal forcing. 
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  The velocity is the last piece of information calculated before the loop is 

incremented to the next image in order to measure the effective temperature.  A 

sample of the velocity data for a 60 burst run can be seen in figures 5.9-5.12.  The 

velocity histogram is shown for the four different speeds of the stepper motors.  A 

different histogram is made for the two different bead sizes, and the two different 

directions are each given a separate histogram.  The histogram is shown with a 

Gaussian curve in order to relate it to a Maxwellian velocity distribution.  The 

variance   is calculated for each velocity distribution and used to compare the 

statistical distribution of velocities to a Maxwellian distribution.    This relation can be 

used to relate the variance of the distribution to an effective temperature using 

equations 5.3 and 5.4 
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Figure 5.9-Velocity distributions for a 60 burst (1980 image) data run at the T* 

Speed setting.  The driving algorithm was tuned to produce Gaussian 

distributions which are superimposed on top of the raw velocity data according 

to the calculated variance value.  The figures are as follows: (a) large sphere x-

direction (b) large sphere y-direction (c) small sphere x-direction (d) small 

sphere y-direction   
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Figure 5.10-Velocity distributions for a 60 burst (1980 image) data run at the 

2T* Speed setting.  The driving algorithm was tuned to produce Gaussian 

distributions which are superimposed on top of the raw velocity data according 

to the calculated variance value.  The figures are as follows: (a) large sphere x-

direction (b) large sphere y-direction (c) small sphere x-direction (d) small 

sphere y-direction   



86 

 

 

Figure 5.11- Velocity distributions for a 60 burst (1980 image) data run at the 

4T* Speed setting.  The driving algorithm was tuned to produce Gaussian 

distributions which are superimposed on top of the raw velocity data according 

to the calculated variance value.  The figures are as follows: (a) large sphere x-

direction (b) large sphere y-direction (c) small sphere x-direction (d) small 

sphere y-direction   
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Figure 5.12- Velocity distributions for a 60 burst (1980 image) data run at the 

8T* Speed setting.  The driving algorithm was tuned to produce Gaussian 

distributions which are superimposed on top of the raw velocity data according 

to the calculated variance value.  The figures are as follows: (a) large sphere x-

direction (b) large sphere y-direction (c) small sphere x-direction (d) small 

sphere y-direction.   
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Figure 5.13 compares the measured degree of crystallinity in the RCP bed of 

binary spheres under four different intensities of the drive in 2-D. Sixty bursts of 33 

successive images were analyzed in this example, which is a larger sample size than 

previous work [5].  The crystallites within each image have been identified. The 

degree of crystallinity is then obtained from the fraction of the total number of spheres 

that are part of the crystallites to the total number of spheres in the entire structure. 

Four histograms are shown for the degree of crystallinity, each corresponding to a 

unique driver intensity, i.e., at a temperature corresponding to the width of the 

Maxwellian velocity distribution: T*, 2T* , 4T*  or 8T* . In each case the distribution 

has a characteristic width, consistent with the nature of RCP packing of spheres in 2-

D. When the driver intensity is increased, i.e., the temperature is raised higher, the 

distribution of the degree of crystallinity shows movement toward smaller values but 

without significant changes in the width. As the temperature is doubled from T* to 

2T*, the histogram barely registers a movement. At higher temperatures at 4T* and 

8T*, however, the movement becomes significantly larger. This is interesting in that it 

seems to suggest the existence of a threshold temperature for morphology 

modification or possibly, the existence of an annealing temperature.  

Taking a difference of an image frame from the next frame shows that the 

morphology transformation is primarily carried out by single spheres that are coming 

off a set of crystallites or attaching themselves to other crystallites. This is significant 

in that there is a pecking order in the way crystallites break up: single spheres separate 

from a crystallite more frequently than larger crystalline pieces. It also shows that the 
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higher the temperature gets, the more frequently the spheres break off the crystallites. 

Of course, the single spheres cluster to form new crystallites as well. 
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Figure 5.13-The degree of crystallinity for a 60 burst (1980 image) data run of 

an equal number mixture of two different size spheres is shown at four 

different effective temperatures: (a)T* ; (b)2T* ;(c)4T*; and 8T*. 
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5.6 Uncertainty in Measurements 

 The limiting factor in the accuracy of the Hough transform analysis is the 

assumed knowledge of the circle diameters in the image.  The ball bearings used in the 

setup are machined to high precision, so any difference in size from sphere to sphere is 

assumed to be negligible.  The main challenge in accurate measurement is assuring 

that the diameter used for all of these spheres is accurate.  In regards to just sphere 

detection, an accurate diameter is not essential.  Diameters over a certain range (often 

±1 pixel) will still provide accurate detection within 1% of the total spheres in the 

image.  Any analysis of the fine structure of the spheres requires accurate 

representation of the circle diameters.  The identification of crystallites hinges on the 

ability to decide if two circles are in contact.  The accuracy of the diameter plays a 

large role in determining the error in the degree of crystallinity, which is the basis of 

our structural morphology analysis.  Figure 5.14 shows the fluctuation of the degree of 

crystallinity over various detection diameters; each point represents a burst of images 

at the 1x stepper motor speed run at varying Hough transform diameters. 
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Figure 5.14-Affect of the Hough transform diameter on the calculated degree 

of crystallinity. 

 The fluctuation of the average degree of crystallinity over the deviation in 

diameters is significant, but it covers the range seen in the degree of crystallinity 

histogram seen in figure 5.13.  Outside of this deviation window the detection starts to 

become less and less reliable.  At small diameters the crystallinity begins to drop 

drastically as the contact between spheres becomes impossible under the 

misrepresented hard sphere structure.  At larger diameters, the crystallinity raises as 

the spheres begin to overlap due to the spheres having diameters that are larger than 

their physical counterpart.  As diameter deviations become significant, the detection of 

the circles becomes unreliable so that any analysis of the structure becomes wildly 

inaccurate.  This figure also highlights the need for the precision used in the diameter 
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variable for the Hough transform analysis. Setting the diameter to the nearest integer 

would create large uncertainty in the degree of crystallinity analysis.  
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Chapter 6 

Modeling Thermal Dissociation with the Law of Mass Action 

6.1 Dissociation of Nano-Crystallites 

In order to model the thermal dissociation of nano-crystallites seen in our 

mechanical oven experiment for a real disordered binary alloy specimen, we use a law 

of mass action treatment of the dissociation of nano-crystallites.  To start we define the 

room temperature basis for the disordered binary alloy.  As discussed before we model 

a disordered metallic binary alloy as a mixture of nano-crystallites and glassy atoms.  

At room temperature, we define the structure of the disordered binary alloy as having 

a certain mixture of these two states.  The degree of crystallinity at the alloy 

composition will determine the ratio of glassy matter to nano-crystallites.  To define 

the structure of the nano-crystallite particles we use the crystallite size distribution 

found through our experimental and simulation study for the composition transformed 

to 3-D.  These parameters for the structure of the binary alloy are composition 

dependent, and we will use the lessons learned from the RCP modeling discussed in 

previous chapters to determine the room temperature structure of each disordered alloy 

we investigate.   

The crystallite size distribution sets the initial amount of crystallites of a given 

size present in the disordered binary alloy.  To model the thermal dissociation of a 

nano-crystallite in the alloy we start with a nano-crystallite of i particles.  We are 

interested in calculating the percentage of i size crystallites that will thermally 
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dissociate j times and lose j particles from its surface.  For any size crystallite we write 

the thermal dissociation equations for a mixture of crystallites as 

           

            

  

      

(6.1) 

For each thermal dissociation step, a nano-crystallite loses one atom from its 

surface and that atom then becomes part of the glassy matter (signified as A).  This 

assumption is based on the fact that the lowest energy thermal dissociation reaction is 

one atom being removed from the surface of the nano-crystallite.  A nano-crystallite 

breaking off chunks of atoms would be a much higher energy process.  With this 

system of reactions for each size i nano-crystallite we have established a dissociation 

path for each i sized nano-crystallite to become i atoms in the glassy matter.   

The equation of state for the system of crystallites and glassy matter is 

expressed in the total volume occupied by all nano-crystallites and glassy-state atoms, 

which expands according to the alloys thermal expansion coefficient ξ 

                                           
 
 (6.2) 

   

The equation of state depends on the system’s state at room temperature.  The system 

will be constrained to the number of particles at room temperature    which is 

conserved for the alloy specimen. 
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 (6.3) 

Where    is the number of glassy atoms,         is a formula representing the 

crystallite size distribution,    is the number of size s nano-crystallites in the 

specimen. The initial volume of the crystallite and glassy matter portions are, 

respectively 

 
            

    
 

 

    

   
 (6.4) 

 
      

    
 

 
 (6.5) 

Where    is the crystallite radius and    is the radius of a glassy matter cluster.  The 

morphology of the alloy structure represented by the degree of crystallinity and the 

crystallite size distribution changes the individual parameters in each of these 

equations dictating the evolution of the alloy specimen as a function of temperature. 

6.2 Law of Mass Action Treatment 

To model the dissociation of crystallites we start with the Gibbs free energy of 

the RCP system at room temperature.  The Gibbs free energy of the system of nano-

crystallites in qualified equilibrium is expressed with the formula 

                                                 (6.6) 

where    is the number of size N crystallites (   , and    is the chemical potential or 

the energy needed to add a    crystallite to the system.  A global crystal would 

provide the ground state of the system, but the RCP state sits on the metastable branch 
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of the phase diagram in terms of packing fraction. The equilibrium treatment is 

justified because the energy differences between metastable RCP structures fall within 

kT.   For a chemical reaction, the law of mass action tells us  

 
     

           

   (6.7) 

Or that the chemical potential for each reaction has to be conserved.  For a 

dissociating crystallite the law of mass action can be written as 

           

             

(6.8) 

The chemical potential of the i sized nano-crystallite has to be equal to the summation 

of its resultant after the thermal dissociation reaction.  To calculate the chemical 

potential for each part of the reaction equation we return to the Gibbs free energy and 

use the formula 

 
   

  

   
        

  

  
  (6.7) 

Where    is the Boltzmann constant, T is the temperature of the binary alloy,    is the 

total number of i sized crystallites, and     is the partition function for an i sized 

crystallite.  Combining this and the law of mass action give 
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(6.9) 

 
    

  

  
 

 

  

   
(6.10) 

 
  

  

  
 

 

  

   
(6.11) 

For each reaction equation in the series of dissociation steps for an i sized crystallite 

the formula becomes 

 
 
  

  
   

  

  
    

  

  
      (6.12) 

   

      
 

  

      
 

(6.13) 

Equation 6.13 establishes an equation relating the partition function for each part of 

the thermal dissociation reaction equation to the number or occupation of each part of 

the dissociation. This treatment of each dissociation step will guide the morphology of 

the specimen through the temperature dependent partition functions. 

6.3 The Degree of Dissociation 

 For the purpose of evaluating the temperature dependant behavior of the nano-

crystallites we must evaluate the law of mass action equation for each of the 

dissociation reactions.  To summarize the behavior of each of these reactions at a 

given temperature, we define the degree of dissociation.  To calculate the degree of 
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dissociation, or the percentage of i size particles that will dissociate j times. We use 

the formula  

 
     

                          

                      
 (6.14) 

Since the distribution of nano-crystallites by size will be determined by the crystallite 

size distribution at a given atomic composition, each crystallite size will be populated 

at a certain number N.  In order to track the evolution of the number of N sized nano-

crystallites as a function of temperature the degree of dissociation is used.  The degree 

of dissociation is the percentage of N sized crystallites that will dissociate j times.  

This expresses the remaining number of N sized crystallites after a temperature step, 

while also providing information on the size of the resulting crystallites after the 

dissociation.  In order to write the law of mass action equation in terms of the degree 

of dissociation, the number of N sized crystallites is replaced with the degree of 

dissociation corresponding to that point in the full dissociation of the crystallite. 

 

       

 

   

           (6.15) 

 

         

   

   

           (6.16) 

Substituting this into the law of mass action equation gives 

   

      
 

    
 
             

    
   
               

 (6.17) 

The right side of the equation can be simplified yielding 
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 (6.18) 

         

              
 

      

        
 (6.19) 

For the system of crystallites present in the alloy specimen each crystallite size will 

have a set of degrees of dissociation equations to map the step by step dissociation of 

the crystallite.  For example, a crystallite of size 10 will have a set of 9 coupled 

equations to calculate its degrees of dissociation 

          

              
 

    

    
 

  

         

              
 

    

    
 

         

     
 

    

  
 

 

(6.20) 

This series of coupled equations gives a method for calculating each degree of 

dissociation. It is dependent on knowing the partition function for each nano-

crystallite as well as the glassy matter atoms in the alloy.  With these partition 

functions we are still left with multiple unknowns for each of these equations.  All of 

the equations in the set are coupled besides the last equation which has only one 

degree of dissociation.  It is possible to calculate the degree of dissociation for this last 

equation directly. The other equations can then be solved sequentially with this result.  

The other unknown in these equations is the number of atoms in the glassy matter   .  

As nano-crystallites dissociate, this number will change as a function of temperature. 
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To start we initialize the variable and make the calculation to see if the number is 

accurate.  This number of glassy atoms can then be reassessed and adjusted to correct 

after calculating the series of law of mass action equations.  

6.4 Writing the Partition Function 

To calculate the coupled law of mass action equations it is necessary to write the 

partition function for each part of the thermal dissociation reaction equation.  The 

partition functions needs to consider all the energies present in a nano-crystallite of a 

certain size as well as the partition function for any atom in the glassy matter. For a 

single atom that dissociates and becomes part of the glassy matter the only energy 

remaining after the thermal dissociation is the translational energy or               

which is written as 

 

               
      

  
 

 
  

 (6.21) 

In this partition function, V is the volume of the alloy specimen, m is the mass of the 

atom in the glassy matter, T is the temperature of the specimen,    is Boltzmann’s 

constant, and h is Planck’s constant. For the other parts of the thermal dissociation 

reaction equation we need to write the partition function for an i sized nano-crystallite 

as well as the resulting i-1sized nano-crystallite.  For an i-sized nano-crystallite the 

partition function will contain multiple relevant energies. The partition function is a 

product of the partition functions of these different energies 
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                                                        (6.21) 

The larger crystallites will have both vibrational and rotational energies; these energies 

are not drastically changed by reducing the size of the nano-crystallite by 1 atom. 

These portions of the partition function will be present in both the numerator and the 

denominator when inserted into the law of mass action equation, and were ignored for 

this model.  The most important part of the partition function for the thermal 

dissociation reaction equation is the energy overcame by the surface particle that 

dissociates. The surface particle will experience an attractive potential from the large 

crystallite which will decrease as it is dissociated to the glassy matter.  We account for 

this change in attractive potential with the dissociation partition function 

 
               

    
    (6.22) 

Where    is the dissociation potential, or the potential that a surface atom on an i-

sized nano-crystallite will have to overcome in order to thermally dissociate and join 

the glassy matter. The three partition functions for the reaction equations are then 

 

       
             

  
 

 
  

  
        

    (6.23) 

 

         
           

  
 

 
  

 (6.24) 

 

     
      

  
 

 
  

 (6.25) 

When we substitute these partition functions into the degree of dissociation law of 

mass action equation the result is 
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 (6.26) 

The ratio then simplifies to 

 
        

              
 

  

 
 
     

   
 

 
  

 
      

  
 

  
  

  
        

    (6.27) 

For an i sized crystallite we will have i-1 coupled equations needed to calculate the 

degrees of dissociation.  For the sized 10 example discussed previously the result is 

 
         

              
 

  

 
 
  

 
 

 
  

 
      

  
 

  
  

  
     
    

  

         

              
 

  

 
 
 

 
 

 
  

 
      

  
 

  
  

  
    
    

         

     
 

  

 
 
     

  
 
  

  

  
    
    

(6.28) 

6.5 Important Parameters 

There are multiple unknowns in each of the law of mass action dissociation 

equations. The strategy is to directly solve the final degree of dissociation equation to 

solve for the probability of the i-sized crystallite fully dissociating.  Once this degree 

of dissociation is calculated the rest of the coupled equations in the set can be solved 

directly.  To directly solve the last equation it is essential to know the initial properties 

of the alloy.  Since we are interested in the temperature dependence of the degree of 
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dissociation, we start by setting the initial parameters of the alloy at room temperature.  

For our model it is important to know how the atoms are contained in nano-crystallites 

versus how many are contained in glassy matter.  This is covered by the degree of 

crystallinity for the composition of the alloy being modeled.  In order to calculate each 

of the degree of dissociation equations, we also need to know how the nano-

crystallites are distributed in terms of the number of atoms.  This is covered through 

the use of the crystallite size distribution which is given by the atomic composition of 

the alloy.  Through our experimental and simulated look at random close packing we 

explored a 2-D binary RCP system.  The 2-D crystallite size distribution is 

transformed to a 3-D distribution for use in this model.  

 As a sample calculation we can look at the binary alloy      , which has a 

75% Small 25% Large atomic composition according to atomic radius.  The structure 

of the alloy is modeled based on the 3-D crystallite size distribution. In order to 

determine the number of atoms contained in each crystallite size it is necessary to 

know the total number of atoms in the alloy specimen to be modeled.  With the 

different sizes of the initial nano-crystallites known, the set of law of mass action 

equations can be written to model the temperature evolution of the structure.  For each 

i-sized crystallite there will be i-1 reaction equations which will have to be written 

twice to account for the different atom types in the binary alloy.  Many important 

parameters in the calculation have to be defined to calculate the degrees of 

dissociation for the alloy 
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    (6.29) 

Each set of degree of dissociation equations for an i-sized crystallite will depend on 

first calculating the last equation in the set.  Certain parameters need to be initialized 

in order to calculate this last equation.  Using      as an example again, to calculate 

the series of law of mass action equations we need the mass of each atom type in the 

alloy(                      ,                    ) We also need to know the 

relationship between the number of particles in the alloy specimen and the volume of 

the specimen.  In order to calculate this we use the mass density of the alloy       
 

       
 

     (     parameters obtained from ref. [56]) 

 
           

 

               
 (6.30) 

                                      (6.31) 

The relevant portion of the number of particles for the degree of dissociation 

calculation is the number of particles contained in the glassy matter.  This can be 

obtained through the degree of crystallinity of the composition. 

                     (6.32) 

                       (6.33) 

                      (6.34) 

The remaining atoms will be contained in nano-crystallites.  
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                   (6.35) 

                        (6.36) 

These crystal atoms will be distributed into the different nano-crystallite sizes 

according to the crystallite size distribution of the atomic composition.  This translates 

to an initial RCP structure shown in figure 6.1. 

 

Figure 6.1-Initial room temperature crystallite size distribution for sample 

alloy       

6.6 Calculating the Dissociation Potential 

The last of the essential parameters for calculating the series of law of mass 

action equations is the dissociation potential      which is the potential energy 

experienced by an atom on the surface of an i-sized nano-crystallite.  For each alloy 

we calculate this based on structural information for the alloy as well as the Lennard-
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Jones parameters for the atoms contained in the alloy.    To begin, a nano-crystallite of 

a certain size is constructed based on the unit cell of the alloy. Our first assumption is 

to make each i-sized nano-crystallite spherical.  Using the structural information for 

the alloy we are interested in we first build a cubic lattice of a certain size, we then 

remove any particle farther than a radius r from the center of the lattice.   After the 

removal of these atoms we are left with a spherical nano-crystallite of a certain size as 

seen in figure 6.2. 

 

Figure 6.2- An example of a lattice built in accordance with the unit cell 

structure of the alloy.  All atoms at a distance greater than the crystallite radius 

from the center of the lattice are removed in order to create a spherical 

crystallite. 

After the spherical nano-crystallite is built, the surface particles are identified 

to be examined as potentially dissociated particles.  All particles that are within a 

lattice constant of the surface of the sphere are defined as surface atoms.  These 

particles will be the basis of the calculation; we want to know what potential these 

surface atoms experience in order to determine the dissociation potential for each 
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crystallite size.  To find the dissociation potential we have to take into consideration 

the Lennard-Jones potential contribution from every other atom in the nano-crystallite.  

The total Lennard-Jones potential experienced by a surface particle is calculated with 

the formula 

 

         
  

   
 

  

  
  

   
 

 

 

 

   

 (6.37) 

The metallic element Lennard-Jones potential constants    and    are obtained 

through a quantum chemistry calculation [57]. In a binary nano-crystallite these 

quantum chemistry values will only cover the like atom interactions.  To account for 

potential interactions between different atoms we use the Kong combination rules for 

Lennard-Jones potential parameters[58]. 

 
      

         
       

  
 
  (6.38) 

 

      
   

      
  

   
    

      
  

      
  

 

 
  

 

  

 (6.39) 

For the example of an alloy composed of gold and copper in      , the Lennard-

Jones potential of a copper atom interacting with a gold atom can be seen in figure 6.4. 

This calculation will give information on the surface atom potential at its initial 

position.  We are interested in the maximum potential seen as the particle is removed 

from the surface.  In order to calculate the potential as the surface atom is removed we 

move the surface atom radially outward from the center of the nano-crystallite and 

calculate the total Lennard-Jones Potential at each radial position.  
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Figure 6.3- Visualization of the dissociation potential calculation for a surface 

atom on a spherical crystallite.  The surface atom is moved radially outward in 

order to calculate the total potential the surface atoms experiences from the 

nano-crystallite as a function of distance.  The dissociation potential is then the 

minimum of this calculated total potential function. 
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Figure 6.4-The three Lennard Jones-Potential interactions affecting a surface 

atom on a spherical crystallite of a gold copper alloy.  Like atom interactions 

are calculated using the atom parameters [57], while different atoms interact 

via the Kong combination rules [58] 

After calculating the surface atom Lennard-Jones potential as a function of the 

distance from its initial position, we define the dissociation potential as the minimum 

of the potential function.  Since the surface contains many different atoms, we repeat 

this calculation for all the atoms on the surface and average over all the particles on 

the surface.  For a binary nano-crystallite there will be different dissociation potentials 

for the different atom types on the surface of the nano-crystallite.  The dissociation 

potential is calculated for both atom types, but the final dissociation potential value is 

calculated with a weighted average of the two atom types depending on the atomic 

composition of the binary alloy specimen. 
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6.7 Fitting the Dissociation Potential as a Function of Nano-Crystallite Size 

Nano-Crystallites of different sizes are built and analyzed as described in 

chapter 6.6.  An example of different nano-crystallite sizes based on the       alloy 

can be seen in figure 6.6.       has a face centered cubic lattice structure. 

 

Figure 6.2-FCC unit cell structure for the       alloy, used as the lattice 

structure to build the spherical crystallite. 

 

Figure 6.3-Different sized      spherical nano-crystallites. 

 Viewing the dissociation potential as a function of nano-crystallite size will 

give a functional parameter to use in the law of mass action degree of dissociation 

equations needed to model the thermal evolution of the alloy.  The dissociation 

potential grows as a function of nano-crystallite size to an asymptotic value for large 
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nano-crystallites.  To fit the dissociation potential as a function of nano-crystallite size 

it is necessary to look at how the dissociation potential differs from the asymptotic 

value.  When the dissociation potential values are subtracted from the large nano-

crystallite dissociation potential and plotted on a log-log scale a linear relation 

between dissociation potential and nano-crystallite size is seen.  To get the best fit 

possible for this functional dependence a constant is added to all values of dissociation 

potential until the best linear fit is obtained.  This fit then represents a functional form 

for the dissociation potential of 

                               (6.40) 

An example of the fitting process for the alloy       can be seen in figure 6.7 and 

6.8.   
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Figure 6.7-Example data for dissociation potential vs. nano-crystallite size for 

the       alloy.  Data is fit with equation 6.40 for use in the law of mass 

action treatment of thermal dissociation. 

 

Figure 6.8 –Fitting technique for example data for dissociation potential vs. 

nano-crystallite size for the       alloy.  A constant value is added to the data 



114 

 

subtracted from the asymptotic dissociation potential value in order to get the 

best linear fit when plotted on a log-log scale. 

6.8 Morphology of the alloy structure 

The initial parameters necessary to carry out the degree of dissociation law of 

mass action equation have been defined.  In order to explore the morphology of the 

alloy as a function of the specimen temperature it is necessary to iterate the 

temperature and carry out the law of mass action calculation numerous times to 

explore the temperature dependant behavior of the structure.  The value that is 

calculated through the series of equations is the degree of dissociation, or the amount 

of nano-crystallites of a certain size dissociating and changing sizes.  Each degree of 

dissociation above a value of zero suggests a thermal dissociation reaction for a certain 

nano-crystallite size.  The result of any reaction is a change in the nano-crystallite size 

distribution as well as a change in the total number of atoms in the glassy matter.  

Each nano-crystallite size will be adjusted after a series of degree of dissociation 

values are calculated.  For each i-sized nano-crystallite the number of crystallites of 

that size will be adjusted by this formula 

 

                                    

     

   

 

     

   

 
(6.41) 

    is the number of i-sized nano-crystallites before the temperature change.  The first 

term in the formula accounts for any of the nano-crystallites that dissociated which 

will in turn decrease the number of that sized crystallites.  The second term in the 

formula accounts for the nano-crystallites that have a size larger than i that go through 
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enough dissociation steps that they become i-sized nano-crystallites.  This term will 

account for an increase in the number of i-sized crystallites.  Figure 6.9 maps the result 

of calculating the series of degrees of dissociation for various temperatures of the 

      alloy.  As can be seen, the crystallite size distribution evolves as the 

temperature is raised and the populations of the different nano-crystallite sizes are 

affected by the temperature change.  As the nano-crystallites dissociate the total 

number of atoms contained in crystallites will decrease, this causes a change in the 

degree of crystallinity.  The degree of crystallinity at each temperature step is shown 

in figure 6.9 as well. 



116 

 

 

Figure 6.9-Evolution of the Crystallite Size distribution for the thermal 

dissociation of the      alloy. The temperatures of each graph are as follows: 

(a) 300K (b) 1000K (c)1100K (d)1200K (e) 1400K.  The degree of 

crystallinity of the structure γ is shown for each graph. 
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6.9 Number of Atoms in the Glassy Matter. 

As the nano-crystallites in the alloy specimen dissociate due to temperature 

change, the number of atoms in the glassy matter increases.  After each temperature 

step the number of atoms in the glassy matter increases according to the different 

degrees of dissociation through the formula 

 

                

     

   

     

   

          

     

   

 
(6.42) 

    is the number of atoms in the glassy matter prior to the temperature step, because 

we are concerned with increases in temperature there will be no decrease in the 

number of atoms in the glassy matter.  The first term in the formula accounts for all 

the atoms that were already in the glassy matter before the temperature increase.  The 

second term accounts for all of the fully dissociated nano-crystallites.  If a nano-

crystallite fully dissociates there will be a resulting atom added to the glassy matter.  

The third term accounts for all the thermal dissociation reactions that happen after 

each temperature step.  With each thermal dissociation reaction there will be an atom 

added to the glassy matter.  The figure 6.10 shows the number of atoms in the glassy 

matter as a function of temperature for the alloy     .  The vertical line in figure 

6.10 corresponds to the melting point of the alloy.  As can be seen in figure 6.10 the 

thermal dissociation in the alloy shows good agreement with the alloys melting 

temperature. 
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Figure 6.10-Evolution of the number of atoms in the glassy matter as a 

function of temperature for the      alloy.  The data shows a clear 

correlation with the alloys melting temperature. 

The degree of crystallinity of the alloy also changes with temperature.  In 

figure 6.11 it is seen that the degree of crystallinity drops from its initial value down to 

zero crystallinity at a sufficiently high temperature suggesting that all nano-crystallites 

have been thermally dissociated. 
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Figure 6.1- Evolution of the degree of crystallinity as a function of temperature 

for the       alloy.  The data shows a clear correlation with the alloys 

melting temperature. 

This technique was used to predict the melting temperature for various metallic 

elements and a group of six binary alloys. The results can be seen in the table below. 

The dissociation shows good agreement with the melting temperatures of the high 

temperature metals and alloys presented giving us confidence in the validity of our 

approach.  The limited number of binary alloy calculation is due to the lack of unit cell 

structure information for binary alloys necessary for our approach. The presented 

technique provides a first principles approach to modeling the morphology of a 

disordered binary alloy under thermal forcing.  The result’s agreement with the 
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accepted melting temperatures of the metallic elements and binary alloys suggests 

success in portions of the assumptions made in this treatment of binary alloys.   

Refractory Metallic Elements 

Element Symbol σ (A) ε (eV K) 

Lattice  

Constant 

(A) [59] 

Known 

Melting  

Point, K 

[59] 

Predicted 

Melting Point 

(@ 50% 

 Dissociation) 

K 

Rhodium Rh 2.4622 0.6699 3.8 2233  2360 

Iridium Ir 2.4839 0.8077 3.84 2716  2730 

Vanadium V 2.4391 0.6459 3.02 2163.15  2770 

Tantalum Ta 2.6819 0.9809 3.31 3269  2905 

Chromium Cr 2.3357 0.4988 2.88 2163 2245 

Tungsten W 2.5618 1.0644 3.16 3653  3840 

Niobium Nb 2.6819 0.9032 3.3 2741  3460 

Hafnium Hf 2.8917 0.750989 3.2 2423  2160 

Rhenium Re 2.518 0.945888 2.76 3453  2660 

Ruthenium Ru 2.4447 0.788343 2.7 2523  2410 

Titanium Ti 2.6841 0.568102 2.95 1948  1900 

Zirconium Zr 2.9318 0.738442 3.232 2125  2230 

 

Binary Alloys 

 

Alloy  

[56,60,61,62] 

Lattice  

Constant (A) 

Known 

Melting  

Point, K 

Predicted Melting 

Point 

(@ 50% Dissociation) 

K 

      3.74 1240.5  1320 

AuCu  3.964 (2), 3.672 1183  1410 

      3.964 1151.5 1495 

      3.964 1340  1260 

AlTi 4.00 (2), 4.075 1729 1935 

      a=5.780,c=4.674* 1473  1360 
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Chapter 7 

Thermophysical Property Calculation 

7.1 Thermal Conductivity 

 The law of mass action model described in chapter 6 produces temperature 

based morphology of the structure of a disordered binary alloy.  The morphology is 

represented by the evolution of the nano-crystallite size distribution.  Relating this 

morphology to a model of thermal transport will involve taking into account the 

contributions from the separate portions of the structure.  Thermal transport will be 

affected differently by the two different phases present in our structure. The disordered 

glassy matter will affect thermal transport in a different way than the ordered nano-

crystallites.  There is also the issue of boundaries between the two media that will 

contribute to the transfer of heat energy.  These factors will have to be accounted for 

in an estimate of the thermal conductivity of our model structure.  The different 

contributions would then change as the structure evolved with temperature and a 

temperature based evolution of the thermal conductivity could be established. 

 The thermal conductivity k of a solid is defined with respect to the solid-state 

flow of heat down a long rod with a temperature gradient 
  

  
  as 

 
     

  

  
 (7.1) 

Where    is the flux of thermal energy, or the energy transmitted across unit area per 

time unit.  The process of thermal energy transfer is random, energy does not enter one 
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end of the specimen and proceed directly in a straight path to the other end.  For our 

purposes we would like to be able to establish a simple approximation of thermal 

conductivity based on the structure model presented.  The simplest form of the lattice 

thermal conductivity comes from the kinetic theory of gases 

 
  

 

 
    (7.2) 

Where C is the heat capacity per unit volume, v is the phonon velocity, and l is the 

phonon mean free path. The phonon mean free path is determined principally by two 

processes, geometrical scattering and scattering by other phonons.  Collisions between 

different phonons come from the anharmonicity of the movements of the atoms. 

Geometrical scattering is limited by the crystal structure as well as imperfections in 

the crystals.  Important collisions between phonons are the three-phonon umklapp 

processes that cause thermal resistivity; such processes are always possible in periodic 

lattices and are the phonon processes which affect the mean free path.   

 The contributions from electron transport also have to be considered in the 

thermal conductivity.  The thermal conductivity of a Fermi gas is of the same form 

 
  

 

 
      (7.3) 

 
    

     
  

   
 (7.4) 

N is the number of free electrons and    is the Fermi temperature. In pure metals the 

electronic contribution is the dominant part of the thermal conductivity at all 

temperatures. In impure metals and disordered alloys the electron mean free path is 
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reduced by collisions with impurities, and the contributions from both the electronic 

and lattice thermal conductivities are comparable.  The nano-crystallites in the 

structure of the model alloy would have a thermal conductivity based on the basic 

theories of crystal transport as disorder in the structure is handled separately as glassy 

matter.   

 For glass, the thermal conductivity is very low, and is limited by the scale of 

the disorder of the structure.  The structure of the disorder determines the mean free 

path of the dominant phonons in the glass.  The key to predicting the differences in the 

contributions due to the ordered and disordered parts of our model structure will be to 

understand the structure of each portion of the structure.  The important piece of 

information in characterizing this structure is the mean free path which will depend on 

the atomic spacing in the two phases of matter in the model alloy.  To explore this 

spacing it would be beneficial to look at the pair distribution function for both the 

nano-crystallites and the glassy matter to determine how best to treat their mean free 

path difference.   

7.2 Treatment of Boundaries 

 The treatment of the different parts of our structure is only part of the 

contribution to the thermal transport. The boundaries between the different sized nano-

crystallites as well as the boundary between a nano-crystallite and glassy matter will 

also play a significant role in the thermal conductivity calculation. Previous work in 

binary liquids and granular physics treat the transfer of energy between two spheres in 

a way that could be beneficial in a prediction for our model [63].  The assumption is 
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that nano-crystallites are represented by spheres of a given size (which is represented 

in the crystallite size distribution). Glassy matter would also be assumed to be made 

up of small spheres.  The heat transfer can then be based on the transfer of heat energy 

from sphere to sphere. 

 

Figure 7.1-Diagram illustrating the heat transfer through a spherical contact 

point [63]. 

 We assume that heat is transferred through contact points in the material 

between the different nano-crystallite sizes and the glassy matter.  There will be many 

contact points, and each contact point will be evaluated and its contribution to the 

thermal conductivity will be included.  For each contact point a unit cell of heat 

conduction is considered as seen in figure 7.1.  The figure is a 2-D representation of 
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two hemispheres with one contact point. The heat flux q through particle i and j can be 

written as 

 
     

 

 
  

    
    

 (7.5) 

 
     

 

 
  

    

    
 (7.6) 

 Here,    and    are the thermal conductivities of the two spheres and    

represents the difference in temperature. The contact point unit cell can be considered 

as a cylinder with a diameter equal to      , and a length of 
     

 
.  The heat flux 

through the cylindrical unit cell will be 

 
     

 

 
     

   

         
 (7.7) 

In this equation     is the thermal conductivity through the cylinder, which for our 

purposes represents the thermal conductivity contribution from the boundary between 

two spheres.  Rearranging these equations to solve for     gives 

 
     

    

     
 

 

    
 

 

    
  

  

 (7.8) 

This result provides a simple treatment of the contact points with only the size of the 

spheres and the thermal conductivity of the spheres being needed for calculation.  For 

binary liquid mixtures this techniques has been used to predict the total thermal 

conductivity successfully.  The treatment of our structure would involve different 

sized nano-crystallite spheres with a certain thermal conductivity, as well as glassy 
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spheres of a different conductivity and size.  To calculate the total thermal 

conductivity, the calculation will have to account for all of the contact points present 

in the structure.  The total conductivity will then be the average of the contributions of 

all of the contact points.  The structure will have to be summarized in terms of the 

types of contact points present in the structure. This can be found with the crystallite 

size distribution and the degree of crystallinity as the number of each nano-crystallite 

size as well as the amount of glassy matter is contained in these parameters.  Once the 

structural information is known, the calculation will then only require a prediction of 

the thermal conductivity of the nano-crystallites and glassy matter as discussed in 

Chapter 7.1 

7.3 Treatment of the Glassy Matter 

 The nano-crystallites in the alloy are summarized based on effective radius by 

the crystallite size distribution.  The glassy matter on the other hand is not 

characterized in a way that can easily translate to the spherical contact points 

necessary for the calculation discussed in the previous chapter. In order to summarize 

our structure as a group of different contact points, the size and treatment of the glassy 

matter has to be established for the structure. In order to predict how the thermal 

transport will be different from the structured nano-crystallites it is important to 

classify the density of the glassy matter.  Since our structure is based on three 

dimensional random close packing, the total packing fraction of the structure is 

known.  Experimental data is also available for the mass density of each alloy 

simulated.   The density in the structure will fluctuate based on the two different 
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phases of the structure.  The nano-crystallites will have their density determined by 

their unit cell structure for the alloy.  The glassy matter then will compensate for the 

high nano-crystallite density by lowering the total density in relation to the atomic 

composition’s degree of crystallinity.  For a given alloy the relationship between the 

different mass densities will be  

                              (7.9) 

For the alloy      , the face centered cubic unit cell is composed of one gold atom 

and three copper atoms which has a cubic dimension of 3.747 Angstroms. This 

calculates to be a mass density of                    
 

      The experimental mass 

density of       is           
 

      For the composition of       the degree of 

crystallinity is        .  The mass density of the glassy matter in the alloy can then 

be calculated 

 
                                 

 

   
 (7.10) 

 
             

 

   
 (7.11) 

If we assume that the glass is just like the crystal structure with a larger lattice 

constant this relates to a lattice constant of 3.952 Angstroms, or an inflation of 5.48%.  

This information about the density of the glassy matter is important in determining the 

difference in thermal transport between the glassy matter and the nano-crystallites.  In 

order to make a prediction of the thermal conductivity with our desired contact point 

technique it is necessary to break the glassy matter into a group of effective spheres 
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that will be in contact with the different sized nano-crystallites.  In random close 

packing we know the packing fraction in three dimensions, we also know the packing 

fraction of a close packed system which is             and           

respectively.  Similarly to the treatment of the mass density, we can use this 

information to calculate the size of the glassy matter spheres in our structure that 

satisfy the packing fraction of random close packing in a way that creates the contact 

infrastructure necessary to facilitate our thermal conductivity calculation.  The packing 

fraction for the glass can be written in term of the known values for the packing 

fraction as well as the degree of crystallinity 

 
   

            

         
 (7.12) 

Using this formula the size and number of effective glassy matter spheres can be 

calculated for a given alloy with the formula 

 

   
      

 
        

 

      
 (7.13) 

This formula can be used to find the size of the glassy matter spheres to be used in the 

thermal conductivity calculation, while the mass density can be used to predict the 

difference in individual thermal conductivity contributions from the nano-crystallites 

and the glassy matter. 
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Chapter 8 

Summary and Conclusions 

8.1 Summary and Conclusions 

We have established a framework for modeling the morphology of disordered 

metallic binary alloys as a randomly closed packed structure.  The RCP structure is 

treated as a mixture of nano-crystallites and glassy matter.  The fraction of crystallite 

atoms contained in the structure defines the degree of crystallinity. The sizes of nano-

crystallites in the structure are expressed through the crystallite size distribution.  Both 

of these characterizations are dependent on composition, and provide an initial 

structure for the alloy at room temperature when transformed into 3-D.  At six 

different compositions, RCP media in two dimensions were measured experimentally 

to establish the degree of crystallinity and the crystallite size distribution.  To further 

explore 2-D RCP media, a numerical simulation code was developed to model 

arbitrary concentrations; the design was based on the information gained from the 

experimental measurement.   

A mechanical oven experiment was developed to test the response of 2-D RCP 

media to thermal forcing.  The analysis of the data gained from the mechanical oven 

experiment demonstrated dissociation of crystallites, and thus the evolution of the 

morphology of the medium, as the effective temperature of the temperature of the 

mechanical oven was raised.   

 The law of mass action was used to model this dissociation of crystallites in a 

disordered alloy specimen.  The room temperature structure of the alloy specimen was 
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provided by the 2-D RCP crystallite size distribution after transformation to 3-D. Law 

of mass action equations are required for each possible dissociation step. The degree 

of dissociation is a measure of the amount of a certain size crystallite that dissociates 

at a certain temperature.  Various alloy parameters are important in the calculation of 

each degree of dissociation equation, but the main determining parameter for the 

temperature at which dissociation happens is the dissociation potential for the nano-

crystallite of a given size.  This parameter was calculated by assuming a spherical 

crystallite and summing the potential energy seen by a surface atom on a crystallite 

due to all the other atoms.  This potential was calculated based on Lennard-Jones 

parameters for the pairs of atoms in the alloy; the Kong combination rules were used 

for dissimilar pairs of atoms. 

 The success of the model is demonstrated by the accurate prediction of the 

melting temperature for disordered high temperature refractory metals as well as the 

binary alloy samples.  The morphology of the disordered alloy structure can be 

predicted analytically at arbitrarily high temperature. This makes it possible to predict 

the thermal transport properties for disordered alloys as a function of temperature.  

The important features of our structure that pertain to a calculation of thermal 

conductiviy are the structure of the nano-crystallites and the glassy matter as well as 

the boundaries between them.   

8.2 Future Research 

Our morphology model leaves us with a lot of potential for further exploration.  

The number of calculation techniques discussed in chapter 7 requires further 



131 

 

evaluations to arrive at an eventual sample calculation needed to compare the validity 

with experimental results.  A successful prediction of thermal conductivity can lead to 

predictions of other thermophysical properties such as thermal diffusivity, electrical 

resistivity, spectral emissivity, etc.  The success of this model should also be 

thoroughly analyzed to discover what can be learned to further develop future 

theoretical alloy design approaches.  Assumptions in this model should be tested in 

order to see the effect of factors deemed unimportant in this study.  The partition 

function used is rather simple, considering many other energies in a crystallite.  

Rotational and vibrational energy states should be examined more closely, and the 

effect of a non-spherical crystallite on the dissociation potential should be examined.   

 A more in depth look at 3-D RCP media would also be beneficial.  The 

experimental results presented here only offer a small glimpse of the many possible 2-

D RCP structures. We only tested one ratio of particle sizes experimentally for the 

classification of the degree of crystallinity and crystallite size distribution of a 2-D 

RCP system.  The size-ratio dependence of the RCP structure should be further 

explored in order to capture a more complete characterization of the structure.   
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