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Abstract

Risk defined as the chance that the outcome of an uncertain event is different than expected. In

practice, the risk reveals itself in different ways in various applications such as unexpected stock

movements in the area of portfolio management and unforeseen demand in the field of new prod-

uct development. In this dissertation, we present four essays on data-driven risk management to

address the uncertainty in portfolio management and capacity expansion problems via stochastic

and robust optimization techniques.

The third chapter of the dissertation (Portfolio Management with Quantile Constraints) in-

troduces an iterative, data-driven approximation to a problem where the investor seeks to max-

imize the expected return of his/her portfolio subject to a quantile constraint, given historical

realizations of the stock returns. Our approach involves solving a series of linear programming

problems (thus) quickly solves the large scale problems. We compare its performance to that of

methods commonly used in finance literature, such as fitting a Gaussian distribution to the re-

turns. We also analyze the resulting efficient frontier and extend our approach to the case where

portfolio risk is measured by the inter-quartile range of its return. Furthermore, we extend our

modeling framework so that the solution calculates the corresponding conditional value at risk

(CVaR) value for the given quantile level.

The fourth chapter (Portfolio Management with Moment Matching Approach) focuses on

the problem where a manager, given a set of stocks to invest in, aims to minimize the probability

of his/her portfolio return falling below a threshold while keeping the expected portfolio return

no worse than a target, when the stock returns are assumed to be Log-Normally distributed.

This assumption, common in finance literature, creates computational difficulties. Because the

1



portfolio return itself is difficult to estimate precisely. We thus approximate the portfolio re-

turn distribution with a single Log-Normal random variable by the Fenton-Wilkinson method

and investigate an iterative, data-driven approximation to the problem. We propose a two-stage

solution approach, where the first stage requires solving a classic mean-variance optimization

model, and the second step involves solving an unconstrained nonlinear problem with a smooth

objective function. We test the performance of this approximation method and suggest an itera-

tive calibration method to improve its accuracy. In addition, we compare the performance of the

proposed method to that obtained by approximating the tail empirical distribution function to a

Generalized Pareto Distribution, and extend our results to the design of basket options.

The fifth chapter (New Product Launching Decisions with Robust Optimization) addresses

the uncertainty that an innovative firm faces when a set of innovative products are planned to

be launched a national market by help of a partner company for each innovative product. The

innovative company investigates the optimal period to launch each product in the presence of the

demand and partner offer response function uncertainties. The demand for the new product is

modeled with the Bass Diffusion Model and the partner companies’ offer response functions are

modeled with the logit choice model. The uncertainty on the parameters of the Bass Diffusion

Model and the logic choice model are handled by robust optimization. We provide a tractable

robust optimization framework to the problem which includes integer variables. In addition, we

provide an extension of the proposed approach where the innovative company has an option to

reduce the size of the contract signed by the innovative firm and the partner firm for each product.

In the sixth chapter (Log-Robust Portfolio Management with Factor Model), we investigate

robust optimization models that address uncertainty for asset pricing and portfolio management.

We use factor model to predict asset returns and treat randomness by a budget of uncertainty.

We obtain a tractable robust model to maximize the wealth and gain theoretical insights into the

optimal investment strategies.

2



Chapter 1

Literature Review

This literature review examines on robust optimization, risk measures and portfolio risk man-

agement, portfolio management with log-Normal sum approximation methods, and real options.

1.1 Decision Making Under Uncertainty and Robust Optimization

This section summarizes traditional approaches for decision making under uncertainty and pro-

vides definitions for robust optimization. In addition, recent studies in robust optimization with

financial engineering applications are mentioned.

1.1.1 Stochastic Programing

Incomplete information is one of the major and most common challenges faced in real life appli-

cations. Therefore, the optimization models applied in real life problems must handle the issue

of incomplete information.

Stochastic Programming (SP) is introduced as the pioneer in the field of decision making

under uncertainty. SP depends on the assumption that uncertainty could be explained by prob-

ability distributions. Dantzig [65] explains uncertain parameters as random variables obeying a

known discrete distribution, and he optimizes the expected value of the function of interest over

3



1.1. DECISION MAKING UNDER UNCERTAINTY AND ROBUST OPTIMIZATION

possible scenarios generated based on this distribution. The fact that information is disclosed in

stages in real life application is reflected in modeling techniques in SP. For instance, two-stage

problems are widely used in SP literature. Two-stage SP formulation suggests that the first-stage

decisions are made without complete information. The second-stage problem, which is called

“recourse problem” is formulated assuming the first stage decision variables are given.The reader

is referred to Birge and Louveaux [34], Kall and Wallace [109], Prékopa [173], and Ruszczyński

and Shapiro [182] for further information.

According to Dyer and Stougie [71], two-stage SP problems are NP hard when the stochastic

parameters are independently distributed. In addition, number scenarios increase exponentially

as the number of uncertain parameter increases. Furthermore, it is hard to obtain an accurate

estimation for probability distribution. Moreover, if the first or the second-stage problem con-

tains integer decision variables, the complexity significantly increases. When SP is formulated

as a multiple-stage problem, the drawbacks mentioned above are intensified. We refer the reader

to Shapiro and Nemirovski [194] for a more detailed discussion about the complexity of the SP

problems.

1.1.2 Robust Optimization

Robust optimization (RO) is a relatively modern/recent approach for decision making under

uncertainty. RO depends on the assumption that uncertainty can be modeled by bounded sets.

In other words, any realization of the uncertainty belongs to the defined uncertainty set. Sosyter

[205] is one of the pioneers of RO. The author defines an interval for each uncertain parameter

and formulates a model which optimizes the worst case objective function value. However, since

this work requires each uncertain parameter to take its worst case value, it is found to be very

conservative for practical implementations. However, this work provides a valuable base for the

later studies. Especially, in 1990s robust optimization literature was significantly extended.

Ben-Tal and Nemirovski [17], [18], [19], El-Ghaoui and Lebret [72] and El-Ghaoui et al. [73]

4



1.1. DECISION MAKING UNDER UNCERTAINTY AND ROBUST OPTIMIZATION

use ellipsoidal uncertainty sets to define any possible realization of the uncertain parameters in

the uncertainty constraints of the mathematical programing problem. They formulate robust op-

timization problems so that the worst case objective function value is maximized considering

this deterministic uncertainty set. They interpret the robust counterpart of the nominal determin-

istic problem by tractable second-order cone problems. In addition, the degree of conservatism

is adjusted by the size of the radius of the ellipsoid. In addition, Ben-Tal and Nemirovski [20]

provide robust optimization applications to conic quadratic and semidefinite programming prob-

lems with uncertain parameters. However, the complexity of the nominal problem increases

when robust optimization with ellipsoidal uncertainty set is applied to it.

Bertsimas and Sim [30, 31] and Bertsimas et al. [29] use polyhedral uncertainty sets to define

uncertainty. The uncertainty set is implied by the ranges defined for all uncertain parameters.

The range of an uncertain parameter is an interval which covers its possible realizations. The

constraint called “budget of uncertainty constraint” manages the number of parameters which

can possibly take their worst case value. In this way, the degree of conservatism can be managed

by the decision maker. In addition, the robust counterpart of the linear nominal problem is also

nominal; however, additional decision variables and constraints exist in the robust counterpart.

We refer the reader to the survey written by Bertsimas and Thiele [32] for robust optimization

literature until 2006.

The classical robust optimization approach with polyhedral uncertainty set can be described

as below. Let c be the uncertain objective coefficient vector of size n. The general model is:

max c′x

s.t. x ∈ X ,
(1.1)

where X defines the feasible region which could be formed by the investment budget con-

straint and non-negativity constraints for an investment problem. According to traditional ro-

bust optimization approach of Bertsimas and Sim [29], [31], each uncertain parameter ci, i ∈

5



1.1. DECISION MAKING UNDER UNCERTAINTY AND ROBUST OPTIMIZATION

{1, .., n} can be modeled as an uncertain parameter belonging to the interval [c̄i − ĉi, c̄i + ĉi],

where c̄i is the nominal value of the parameter, and range is defined by ĉi. Since each decision

variable is non-negative, in the worst case model, none of them will be higher than its nominal

value. In other words, in this specific setting, RO is interested in the left side of the interval.

Therefore, each uncertain parameter can be represented as ci = c̄i + ĉiyi, for all i, where yi is

the scaled deviation such that yi ∈ [−1, 0], for all i. The polyhedral uncertainty set is defined as:

P = {y|
n∑
i=1

|yi| ≤ Γ, |yi| ≤ 1, ∀i}.

Parameter Γ ∈ [0, n] is named as “uncertainty budget” and is used to control the risk conser-

vatism.

• If Γ = 0, each uncertain parameter takes its nominal value (c̄i); therefore, the robust

counterpart and the deterministic problem are equal.

• If Γ = n, each uncertain parameter takes its worst case value ([c̄i − ĉi), as in Sosyter’s

study [205].

• If 0 < Γ < n, the decision maker reflects his/her risk conservatism to the uncertainty

budget Γ in order to find the balance between the protection level that he/she desired and

the price of robustness (loss in the objective function) that he/she can pay for this level of

protection.

The robust problem becomes:

max min

n∑
i=1

(c̄i + ĉi yi)xi

s.t. y ∈ P

s.t. x ∈ X .

(1.2)

6



1.2. RISK MEASURES AND PORTFOLIO RISK MANAGEMENT

Theorem 1.1 ( Bertsimas and Sim [31]) The robust counterpart of Problem (1.1) is:

max

n∑
i=1

c̄i xi − Γz0 −
n∑
i=1

zi

s.t. x ∈ X

zi + z0 ≥ ĉi xi, ∀i,

zi, z0 ≥ 0 ∀i.

(1.3)

Proof. This is a direct application of Bertsimas and Sim [31] to Problem (1.2) with a special

case where yi ≤ 0 and the decision xi ≥ 0 for all i.

More recent researchers have extended these works in both theory and application. Bertsimas

and Brown [27] use coherent risk measures to express the decision maker’s risk preferences and

construct the uncertainty set accordingly. Goh and Sim [90] provide tractable approximations to

distributionally robust optimization by incorporating piece-wise linear decision rules.

Robust optimization has been applied in finance where decision makers face high level of un-

certainty. Goldfarb and Iyengar [91] apply robust optimization techniques to minimize the worst

case variance in the portfolio selection framework. Erdogan et. al [75] extends this work taking

transaction costs into consideration. Bertsimas and Pachamanova [28] apply robust optimization

to multi-period portfolio optimization with transaction costs. Kawas and Thiele [111] address

the uncertainty in the continuously compounded rate of return in the log-normal asset pricing

of Hull [101] and use robust optimization techniques to the portfolio management problem with

and without short sales.

1.2 Risk Measures and Portfolio Risk Management

In this section, the most commonly used risk measures are explained, and portfolio management

problems with some of these risk measures are described.

In the finance world, risk is basically defined as the chance that the return on the investment

7



1.2. RISK MEASURES AND PORTFOLIO RISK MANAGEMENT

will be different than expected. Olsen [160] stresses the importance of a general definition of

investment risk shared by managers and their clients. Olsen defines perceived investment risk by

considering four attributes: the potential for a large loss, the potential for a below target return,

the feeling of control, and the perceived level of knowledge.

According to Harlow [96], in modern portfolio optimization framework, the investment de-

cision process requires first evaluating capital market information and quantifying ex-ante mea-

sures of both risk and expected return for the appropriate set of assets, and then selecting the

combinations of assets that are most efficient in the sense of the providing the lowest level of

risk for a desired level of return. The final step is choosing a combination which is consistent

with the risk tolerance of the investor. Harlow [96] believes that the most obscure and crucial

task in this decision making process is defining the risk. As Cornuejols and Tutuncu [59] claim,

managing risk requires a good understanding of quantitative risk measures. In the next section,

we briefly introduce the common risk measures used in risk management.

1.2.1 Quantitative Risk Measures and Their Properties

Szegö [208] explains measuring risk as establishing a map ρ between the space of random vari-

ables Y and a nonnegative real number, i.e. ρ : Y → R. For instance, in a portfolio management

case, Y can be the returns of a specified set of investments. Scaler measures of risk let deci-

sion makers compare the investment alternatives. However, scalar risk measures might lead to

inconsistencies, unless they have some specific properties. Szegö [208] explains these proper-

ties by three conditions. Let ρ : Y → R be a function; in order to define ρ as a possible risk

measure (not a precise measure), the distance between two points in the space Y must satisfy the

following conditions:

• the distance between a point and itself is zero,

• inverting the two points does not change the distance,
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• for a specified set of three points and three different pairs of point combinations, the sum

of distances between two pairs is always greater than (or equal to) the distance between

the other pair.

If a function satisfies these conditions, it is accepted to be a distance. However, these

conditions do not define a precise or a proper risk measure, but only a class of possible

measures.

Artzer, Delbaen, Eber and Health [6] name every proper risk measure as a “coherent” mea-

sure if it satisfies transitional invariance, sub-additivity, positive homogeneity, and monotonicity

conditions, where

• Transitional invariance: ρ(y + αr0) = ρ(y)− α for all random variables y, real numbers

α, and risk-free rates r0,

• Sub-additivity: ρ(y1 + y2) ≤ ρ(y1) + ρ(y2) for all random variables y1 and y2,

• Positive homogeneity: ρ(βy) = βρ(y) for all random variables y, real numbers β,

• Monotonicity: y1 ≤ y2 implies ρ(y1) ≤ ρ(y2) for all random variables y1 and y2.

Szegö [208], provides economic interpretations of these conditions. Transitional invariance

implies that the value of risk measure ρ decreases by including some risk-free return αr0 to

a random return y. Moreover, sub-additivity suggests that the risk involved in a diversified

portfolio is less than or equal to the sum of the risk of each single risky component of the

portfolio. In addition, positive homogeneity means that enlarging the size of the portfolio by a

real number β results in a new risk measure which is β times the risk of the original portfolio.

Finally, monotonicity means that if one risk source always leads to higher losses than another

risk source, then this risk measure of the former one should always be greater than that of the

other one.

9
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Some of the risk measures that exist in finance literature and applied in practice are described

in the rest of the section.

Variance

Markovitz [139] introduces variance as a risk measure in the sense of dispersion of an asset’s

return from the mean of its return distribution. In the case of a portfolio, covariance is used

to account for the risk arising from the interaction between different assets’ returns. They are

formulated as:

Cov[Ri, Rj ] = E[Ri, Rj ]− E[Ri]E[Rj ]

V ar[Ri] = E[R2
i ]− E[Ri]

2

where Ri and Rj are random variables.

According to Szegö [208] the most significant contribution of Markovitz is to measure the

risk of the portfolio via joint distribution of returns of all assets. However, Markovitz’s model

depends on an appropriate investor utility function which determines the efficiency of the as-

sets and their combinations. Szegö claims that Markovitz’s model works only when the random

returns are generated from elliptic distributions, such as normal or t− distributions with finite

variances. Moreover, determining a utility function for each investor is an obscure task. Roy

[179] expresses this drawback as: “ A man who seeks advice about his actions will not be grate-

ful for the suggestion that he maximizes expected utility.”, besides, the variance also considers

the excess return, which investors seek for, as a part of risk.

Semi-Variance

Markovitz [140] introduces “semi-variance” to address the drawbacks of the variance. Markovitz

provides two alternative semi-variance calculations: below-mean semi-variance (SVm) and below-

target semi-variance (SVt). Then, the semi-variances of a given portfolio are written as follows:
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SVm =
1

n

n∑
i=1

(max{0,−Ri + E[Rp]})2

SVt =
1

n

n∑
i=1

(max{0,−Ri +Rt})2

where Ri, E[Rp], Rt, and n are respectively the return rate of asset i, the expected portfolio

return rate, the target for portfolio rate of return, and the number of assets considered in the

portfolio.

According to Markovitz [140], the variance is superior to the semi-variance with respect to

the computational cost and the convenience. For instance, an analysis based on the variance

needs only the variance and covariance information. On the other hand, for an analysis based on

SVm or SVt, the entire joint distribution is required [140]. However, the semi-variance does not

punish excess returns.

Safety-First Ratio

Roy [179] defines “disaster” as facing a net loss as a result of some investment, if the income is

less than what it would almost certainly be in some other occupation. Roy believes that such a

disaster idea exists for many investors, and these investors will seek to reduce the chance of such

a disaster. The author shows that for a given asset i minimizing the probability of the disaster is

equivalent to maximizing the asset’s safety-first ratio, SFR, which is written as:

SFRi =
E[Ri]−Rmin√

V ar[Ri]

where E[Ri] is the expected return, Rmin is the minimum acceptable return, and
√
V ar[Ri]

is the standard deviation of the return for asset i. A portfolio’s safety-first ratio is formulated as:

SFRp =
E[Rp]−Rpmin√

V ar[Rp]
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where E[Rp] is the expected portfolio return, Rpmin is the minimum acceptable portfolio return,

and
√
V ar[Rp] is the standard deviation of the portfolio return.

Nawrocki [151] mentions that Roy’s safety-first criterion inspired researchers to develop

more downside risk measures.

Sharpe Ratio

The sharpe ratio, S, is actually a risk-adjusted return measurement. Sharpe [196] defines this

reward-to-variability ratio so that the numerator shows the difference between the asset’s return

rate and the benchmark rate (reward), while the denominator is equal to the standard deviation of

the asset’s return rate (variability). Sharpe [198] considers both ex-ante or ex-post Sharpe ratios.

Ex-Ante Sharpe Ratio

Let Ri and Rb be the rate of return on asset i, and that on the benchmark security or portfolio, if

asset returns are not known in advance, the reward is:

d̃ = R̃i − R̃b.

Then, the ex-ante Sharpe ratio (S) is:

S =
d̄

σd
,

where d̄ and σd are the expected value and the predicted standard deviation of the reward,

respectively.

Ex-Post Sharpe Ratio

Let Ri,t, Rb,t, and dt be the rate of return on asset i, that on benchmark portfolio, and the reward

in period t. Then,

dt = Ri,t −Rb,t,

d̄ =
1

T

T∑
t=1

dt,
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and

σd =

√∑T
t=1(dt − d̄)2

T − 1
.

Then, ex-post historic Sharpe Ratio is calculated as:

Sh =
d̄

σd
.

Portfolio β -Market Neutrality

βi measures the linear dependence between the rate of return on asset i (Ri) and that on market

portfolio (Rm). It is formulated as:

βi =
Cov[Ri, Rm]

V ar[Rm]
,

while β of a portfolio is calculated as:

βp =

n∑
i=1

xiβi,

where xi is the portion of the portfolio invested in asset i.

Szegö [208] states that the motivation behind the introduction of β as a risk measure in 1960s

was the computational cost of the Markovitz model. In addition, portfolio β requires a smaller

data set than the Markovitz model does. However, with the computational power of current com-

puters, these problems are not valid anymore. Moreover, the idea of using β as a risk measure

led to the development of one of the most commonly used pricing models, CAPM [208].

Lower Partial Moment

Bawa [11] and Fishburn [81] introduce and improve lower partial moment (LPM) method.

Nawrocki [151] believes that LPM provides more freedom on selecting the utility function than

the variance and semi-variance since it resents a large number of Von Neumann-Morgenstern
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utility functions, whereas the variance and semi-variance use only quadratic utility functions.

Moreover, risk seeking, risk neutral, and risk aversion behaviors can be represented by LPM

approach. Given a risk tolerance value a and return target Rt, LPM is calculated as:

LPM(a,Rt) =
1

n

n∑
i=1

max[0, (Rt −Ri)a],

whereRi,Rt and n are respectively the rate of return on asset i, the target for portfolio rate of

return, and the number of assets considered in the portfolio [151]. Moreover, Bawa [11] proves

the connection between LPM and the stochastic dominance when the risk tolerance value is 0, 1

and 2. Moreover, Fishburn [81] shows the equivalence of LPM to stochastic dominance for all

risk tolerance values higher than zero. In addition, Fishburn demonstrates that the cases a < 1,

a = 1, and a > 1 respectively represent risk seeking, risk neutral, and risk averse behaviors.

Sortino Ratio

Sortino ratio [204], which is a modification of Sharpe ratio, measures the risk adjusted return.

Unlike Sharpe ratio, Sortino ratio penalizes only the downside risk. In other words, the de-

nominator of the ratio is the standard deviation of returns below the benchmark. Actually, the

downside standard deviation is not different than the lower partial moment (degree 2) of the as-

set’s rate of return distribution.

Mean Absolute Deviation

Mean absolute deviation (MAD) is also used as a risk measure, which is suitable for concave

quadratic utility functions like variance. It is formulated as:

MAD =
1

n

n∑
i=1

| −Ri + E[Rp]|,

where Ri, E[Rp] and n are the rate of return on asset i, the expected portfolio rate of return, and

the number of assets considered in the portfolio.
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Sharpe [197] considers MAD in portfolio analysis through an algorithm for a regression

problem, which relates the portfolio’s rate of return to that of a market portfolio. Konno &

Yamazaki [119] propose a portfolio optimization model using the mean absolute deviation as a

response to computational difficulties of the Markovitz model. Using the mean absolute devi-

ation as a risk measure instead of the variance transforms the quadratic Markovitz model into

a linear model. This transformation decreases the computational cost, especially in large scale

problems. The authors show that the performance of the optimal portfolio suggested by the

MAD model is quite similar to that of the Markovitz model.

In fact, efforts to handle the portfolio management problem by a linear model goes back to

1970s. Sharpe [195] approximates the quadratic variance function to edge-to-edge collection

of several piecewise linear functions and solves the portfolio optimization problem as a linear

problem.

Downside Mean Semi-Deviation

Downside mean semi-deviation was introduced by Speranze [206] and formulated as:

E[|min{0,
n∑
j=1

Rjxj − E[(
n∑
j=1

Rjxj)]}|],

where Rj , Rt and n are the rate of return on asset j, the specified rate of return level, and the

number of assets considered in the portfolio.

Gini’s Mean Difference

Yitzhaki [225] introduced a new portfolio optimization model based on Gini’s mean difference

as a risk measure. The author claims that the new model is almost as simple as the Markovitz

model. Also, it enables constructing stochastic dominance efficient portfolios, and has a simple

geometric representation.

Corrado Gini introduced the Gini Index as a measure of the inequality among values of a

frequency distribution, such as the welfare distribution of a society. Gini’s mean difference is

defined as the average of the absolute value of the difference between two independent values
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belonging to the same probability distribution.

In a general case, where no assumption is made on the asset return distribution, while Ri,j

is the value of the rate of return on asset i in observation j, and xi is the share of asset i in the

portfolio, let

yj =
n∑
i=1

Ri,jxi,

δi,j,k = Ri,j −Ri,k, and

yj − yk =
n∑
i=1

δi,j,kxi.

Then, Gini’s mean difference (GMD) for a portfolio is:

GMD =
1

J2

J∑
j=1

J∑
k=1

|yj − yk|.

Yitzhaki [226] provides the similarities and differences between the GMD and variance, then

shows that GMD is a better risk measure than the variance in terms of stochastic dominance, ex-

changeability, and stratification. Both the variance and GMD can be defined without reference

to a location parameter, are sensitive to all observation, can be represented graphically as the

difference between the first moment distribution and cumulative distribution, can be represented

as the weighted sum of adjacent observations, and can be calculated as the weighted sum of

order statistics. On the other hand, the difference function of GMD is L1, whereas; that of the

variance is L2. Moreover, GMD can be used to build necessary conditions for the second-degree

stochastic dominance, whereas the variance cannot. Also, GMD obtains two correlation coeffi-

cients, which improve the comparison when the base of the comparison affects the direction of

the results. For instance, while measuring the changes over a period, the result might change de-

pending on the direction either from past to future or vice-versa. Besides, when subpopulations

exist in the overall distribution, GMD is sensitive to this stratification [226].
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Expected Regret

Expected regret is a risk measure which is the expected value of the loss distribution beyond a

benchmark portfolio or a threshold ζ, i.e. Harlow [96] used the term “low partial moment” for

naming the expected regret.

Let f(x,y) be a loss function with a decision vector of asset allocation x and a random

vector y for asset returns, and let p(y) be the joint density function where y is drawn. Then, the

expected regret for a given threshold ζ is formulated as:

Gζ =

∫
y∈Rm

[f(x,y)− ζ]+p(y) dy.

In the case of scenario approach, the expected regret can be used as a risk measure in a linear

portfolio management problem as follows:

min
x

pT[y − ζ]+

where p is the vector keeps the probability of each scenario.

Maximum Loss-Minimax

Young [227] introduced “minimax” as a new data driven portfolio selection principle. The author

describes the optimal portfolio selection as the combination of assets that minimizes the max-

imum loss while satisfying the target for the portfolio rate of return over the historical period.

Let
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n : the number of decision variables, e.g., assets,

T : the number of observations, e.g. time periods in historical data set,

yi,t : the rate of return on one dollar invested in asset i in time period t,

ȳi : the average rate of return on asset i,

xi : the portfolio allocation on asset i,

yp,t : the return on portfolio in time period t,

ȳp : the average return on portfolio,

Mp : the minimum return on portfolio,
then, the portfolio optimization problem is formulated as:

maxMp,x Mp

s.t.
∑n

i=1 xiyi,t −Mp ≥ 0, t = 1, ..., T,∑n
i=1 xiȳi −G ≥ 0,∑n
i=1 xi −W ≥ 0,

xi ≥ 0, i = 1, ..., n,

where G and W are the target for the mean of the portfolio return and initial investment

budget.

Young [227] shows that when assets’ return rates are normally distributed, the solution of

the linear minimax problem is similar to the quadratic minimum variance problem with the same

portfolio rate of the return target. Moreover, the author proves that under some certain distribu-

tions, such as the log-Normal distribution, the minimax is a better risk measure than the variance.

However, the minimax rule is very sensitive to individual outliers in the historical data. In ad-

dition, Krokhmal, Uryasev and Zrazhevsky [121] suggest that if the returns are drawn from a

continuous function, the minimax risk measure might be infinite unless the distribution is trun-

cated.

Value at Risk (VaR)
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Linsmeier and Pearson [129] explain the need for a measure like VaR by referring to the enor-

mous volatility in exchange rates, interest rates, and commodity prices. Some major financial

firms started employing VaR in late 1980s. VaR has been widely used since JP Morgan’s attempt

to standardize the risk measurement though out the market in 1994. For instance, Basle Commit-

tee on Banking Supervision (1996) lets banks calculate their capital requirements for the market

risk according to their own VaR models, and the U.S. Securities and Exchange Commission

(1997) suggests VaR as one of the three possible disclosure methods [129].

Rockafeller and Uryasev [174] define the β-VaR of a portfolio with a given probability β as

the lowest value for α such that the loss will not exceed α with the probability of β. Let x be

the decision vector selected from a certain subset X in Rn, vector y be the random return vector

in Rm, and f(x,y) be the loss function associated with x and y. In addition, the underlying

distribution of y is assumed to have a density p(y) just for convenience. Then, the probability

of f(x,y) not exceeding the threshold level α is formulated as [174]:

ψ(x, α) =

∫
f(x,y)≤α

p(y) dy,

and

β − V aR(x) = αβ = min{α ∈ R : ψ(x, α) ≥ β}.

VaR measures the downside risk, and it is applicable to nonlinear instruments such as op-

tions. However, it does not give any information about risks exceeding VaR [174]. In other

words, it cannot tell if the losses that are worse than VaR are slightly worse or devastating. In

addition, when the losses are not normally distributed, VaR is not stable. Moreover, VaR is not a

coherent measure according to the consistency rules determined by Artzner, Delbaen, Eber and

Health [6]. Actually, it is coherent only when it is calculated based on the standard deviation of

normally distributed random numbers. Furthermore, VaR is non-sub-additive and non-convex.
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That is, as the portfolio becomes more diversified, the overall risk might seem to be increasing.

In addition, optimizing VaR requires long computation time when it is calculated according to

scenarios.

In spite of the drawbacks mentioned above, VaR is still commonly used in practice.

Conditional Value at Risk -CVaR

Even though VaR is a very popular and simple measure, because of the drawbacks mentioned

above, researchers sought an alternative method: conditional value at risk-CVaR. Embrechts,

Küppelberg and Mikosch [74] introduced k-expected shortfall. Artzner, Delbaen, Eber and

Helath [6] used the term conditional tail expectation. For continuous distributions CVaR is

also known as the tail-VaR or tail conditional expectation or coherent-tail Var and it is calculated

as the weighted average of losses exceeding VaR. However,, Rockafeller and Uryasev [174]

calculates CVaR as the weighted average of VaR and the losses greater than VaR for general

distributions, including discrete distributions.

Pflug [169] shows that CVaR is a coherent risk measure which is transition-equivariant,

positive homogeneous, convex and monotonic with respect to the stochastic dominance of order

1. Rockafeller and Uryasev [174] propose a tractable method of optimizing the CVaR over a set

of scenario and calculating VaR in a linear problem form. This work provides a convenient way

of calculating and optimizing CVaR of the portfolios including linear and nonlinear derivatives;

evaluating market, credit, and operational risks.

We focus on the quantile (VaR) management in the third chapter. In addition, we provide an

extension to our study which calculates CVaR while eliminating the quantile value falling below

a specified target and maximizing the expected portfolio return.
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1.2.2 Portfolio Management with Quantile-Based Risk Measures

Rodriguez [175] provides an overview of optimization models with quantile-based functions.

The author categorizes these techniques into three main groups, namely general, non-gradient-

based, and gradient-based optimization methods.

General Quantile-Based Optimization ([175])

Rodriguez [175] formulates random function W̃ (x) as W̃ (x) = x′b̃ where x is the investment

allocation vector, and b̃ is the random parameter vector. The author suggests optimizing a general

function, namely Q(x), which involves linear combinations of quantile functions:

Q(x) =

k∑
i=1

λiq(αi, x) +H(x)

whereQ(x) is the weighted sum of k quantiles for different values of αi and positive weights

λi, i = 1, ..k, and H(x) is an arbitrary concave function. Q(x) is a general function which can

represent different quantile-based risk measures such as VaR. If each quantile function q(αi, x)

is concave, then the function Q(x) is also concave [175]. The gradient of Q is formulated as:

∆xQ(x) =
k∑
i=1

λi∆xq(αi, x) + ∆xH(x).

The author considers two cases :

• Case 1: The optimization of Q(x) over a convex set C defined by a finite number of

equalities or inequalities, such as:

max Q(x) s.t. x ∈ C.

Then the problem can be solved by classical constrained nonlinear optimization techniques

such as penalty-based constrained optimization.

• Case 2: The optimization of a convex function G(x) over the intersection of the convex
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set C and convex set Q(x) ≥ L where L is a predefined constant, such as:

max G(x) s.t. x ∈ C, x ∈ {Q(x) ≤ L}.

These stochastic optimization problems need to be approximated. Simulation is a classical

way of approximating. The random parameters can be replaced by artificially generated random

variables or can be bootstrapped from a set of historical samples. Another simulation method is

the non-recursive method, in which a sequence of random variables are generated such that the

empirical measure

ˆrhon =
1

n

n∑
i=1

δ(ζ − ζi)

converges weakly to ρx, where δ(ζ − ζ0) represents the point mass at the point ζ0. Alterna-

tively, recursive simulation methods involve one random sequence of approximate solutions

(xk), where the next sequence of approximate solutions (xk+1) depends on xk and the random

sequence generated at step k. In addition, if the distribution function for the uncertain parameter

is known to be a certain parametric form, we can reach the quantile function. Especially elliptic

distributions provide convenience to approximate the quantile function to a closed form formu-

lation ([175]).

Non-Gradient-Based Optimization Methods ([175])

Rodriguez [175] describes how the brute force method, a mixed integer programming, and the

greedy linear programming methods solve the linear case for the quantile optimization problem

where W̃ (x) = x′b̃, and E[W̃ (x)] is to be maximized using both quantile constraints and the

constraints forcing x to belong the polyhedral P .

Brute force method

Let us say Qp is a predefined target for the quantile function which can be approximated to q̂α,n

for a given probability level α and n possible random return scenarios, where q̂α,n is the k−th

order of the statistic x′b̃ (for k = αn). That is, quantile constraint assures that given n samples
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of the optimal vector x∗, k− 1 samples will be less than a predefined value for Qp. The problem

is formulated as:

WA = maxx E[W̃ (x)]

s.t. YA ≥ Qp1,

x ∈ P,

where the complement of set A, namely A′, is a subset with k − 1 samples from the set of n

samples; 1 is a vector composed of ones, and

YA = (b′i), ∀i ∈ A.([175])

The Brute force method requires solving this sub-problem for all
(
n
k−1

)
subsets A. This

method assures global optimal solution; however, it runs in exponential time. Therefore, this

approach is applicable for small values of n and k. [175]

Mixed Integer Programming

The problem above can be modeled as a MIP problem as:

maxx E[W̃ (x)]

s.t. YUx+ c.p ≥ Qp1,

x ∈ P,

p′1 = k − 1,

pi = {0, 1} ∀i ∈ {1, .., n},

where U is the complete set of samples [175].

This method runs in exponential time and it becomes computationally very intense when n

is large [175].

Greedy Linear Programming
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According to Rodriguez [175], greedy heuristic is a very fast method to obtain approximate re-

sults. Let Bk be a sequence of sets each of which satisfies the quantile target enforced. Actually,

the quantile target is planned to be satisfied by at least k∗ = αn samples. The heuristic is an

iterative algorithm which requires solving the following linear problem iteratively.

WBk = maxx E[W̃ (x)]

s.t. Ybx ≥ Qp1,

x ∈ P,

where YBk = (b′k), ∀k ∈ A. The algorithm is as follows:

• Step1: Set the iteration index to zero, k = 0 and solve the linear problem above for Bk.

Note that B0 includes all the available samples.

• Step2: Mark the sample which has the most negative dual variable, remove this sample

from the Bk, and update the iteration index, k = k + 1.

• Step3: Continue with Step1 and Step2 as long as k ≤ k∗ − 1.

Since the greedy algorithm solves a linear problem at each iteration, it runs in polynomial

time [175].

Gradient-Based Optimization Methods

Rodriguez [175] formulates the general stochastic quantile optimization problem as:

maxQ(x) subject to x ∈ P

If a non-recursive approach is used to find an approximate solution to the problem, all the n

samples are employed to obtain the estimators for Q(x) and ∆xQ(x). In this case, the estimator

ˆ∆xQ(x) will add a constant error, which is equal to the sum of the gradient estimator bias

and zero mean random error due to the finite sampling since no new samples are introduced.
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Therefore, if the non-recursive converges to a solution x∗, then it is actually the solution of

maxQ(x) + v′x subject to x ∈ P. ([175])

Thus, a reasonable strategy to improve the approximated solution could be keeping the error

v as small as possible. In addition, validity of the gradient-based optimization method depends

on whether the quantile functions are “well behaved” or not, i.e. if they are concave or not.

([175])

The CVaR calculation and optimization approach proposed by Rockafeller and Uryasev

[174] is as fallows:

Let x be the decision vector selected from a certain subset X in Rn, vector y be the random

return vector in Rm, and f(x,y) be the loss function associated with x and y. In addition, the

underlying distribution of y is assumed to have a density p(y) just for convenience. Then, the

probability of f(x,y) not exceeding a threshold level α is formulated as:

ψ(x, α) =

∫
f(x,y)≤α

p(y) dy,

and for a specified probability level β, β − V aR and β − CV aR, which are denoted by αβ

and φβ respectively, are calculated as:

αβ(x) = min{α ∈ R : ψ(x, α) ≥ β},

φβ(x) = (1− β)−1

∫
f(x,y)≥αβ(x)

f(x,y)p(y) dy.

Rockafeller and Uryasev [174] define a function Fβ(x, α) on XxR such that

Fβ(x, α) = α+ (1− β)−1

∫
y∈Rm

[f(x,y)− α]+p(y) dy, where [t]+ = max{0, t}.
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Fβ(x, α) is convex function of x; therefore, for the minimization problem whose objective

function is Fβ(x, α) and the decision vector is x, the only local minimum corresponds to the

global minimum. Rockafeller and Uryasev [174] show that β − CV aR of the loss associated

with x ∈ X is obtained by the formula:

φβ(x) = min
α∈R

Fβ(x, α).

This problem leads to a set of consisting values of α for which the minimum is obtained,

such as:

Aβ(x) = argminα∈RFβ(x, α).

Set A is a nonempty closed bounded interval and β − V aR of the loss is

αβ(x) = left endpoint ofAβ(x).

In particular, the authors reach that

αβ(x) ∈ argminα∈RFβ(x, α) and φβ(x) = Fβ(x, αβ(x)).[174]

Moreover, the integral in the formulation of Fβ(x, α) can be approximated as:

F̃β(x, α) = α+
1

q(1− β)

q∑
k=1

[f(x,yk)− α]+.

The function F̃β(x, α) is convex and piecewise linear with respect to α. This approximation

is not differentiable; however, it can be minimized by either a line search method or by a linear

problem representation [174].

Therefore, Rockafeller and Uryasev [174] formulate the portfolio management problem
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which minimizes β − CV aR of losses for a specified probability β as:

minx,u α+
1

q(1− β)

q∑
k=1

uk

s.t. xTyk + α+ uk ≥ 0, k = 1, ..., r,

uk ≥ 0,

x ∈ X,

(1.4)

where

q : the total number of scenarios,

yk : the return vector on one dollar invested in specified set of assets in observation k,

uk : the auxiliary variable for observation k,

x : the investment decision vector,

r : bq ∗ βc, the number of loss scenarios falling above (100∗β)th percentile.

This optimization problem calculates β − V aR, which is equal to α, and optimizes β −

CV aR over a x ∈ X at the same time. Even though it does not provide the optimal β − V aR

value, the authors claim that the portfolios with low CVaR necessarily have low VaR as well.

The most important contribution of Rockafeller and Uryasev [174] is optimizing the CVaR

of a portfolio with a linear problem formulation. In addition, the authors show that, under the

assumption of normally distributed asset returns, β − CV aR and β − V aR of loss can be

expressed in terms of the mean (µ(x)) and variance (σ(x)) by:

αβ(x) = µ(x) +
√

(2)erf−1(2β − 1)σ(x),

φβ(x) = µ(x) + [
√

2πe(erf−1
(2β−1))2

(1− β)]−1

where erf−1(z) = 2√
π

∫ z
o e
−t2dt.
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The authors claim that evidently when the constraint for the portfolio expected return target

is active and the returns are normally distributed, minimizing either αβ(x) or φβ(x) is equivalent

to minimizing the variance (σ(x)) over x ∈ X.

A data-driven iterative VaR optimization algorithm introduced by Larsen, Mausser, and

Uryasev [124] (is referred as Algorithm-A1) provides an approximated solution to the quan-

tile optimization problem by iteratively solving a linear optimization problem which maximizes

the CVaR of the portfolio return that was introduced by Rockafeller and Uryasev [174].

Konno, Waki and Yuuki [118] conclude that the linear CVaR optimization model of Rock-

afeller and Uryasev [174] can control the downside risk when the distribution of returns on

instruments are not normal nor symmetric. Krokhmal, Palmquist and Uryasev [120] extend the

linear formulation of Rockafeller and Uryasev [174] to the formulation with CVaR constraints

and weighted return-CVaR performance function by considering transaction costs.

Bardou, Frikha and Pagès [8] focus on estimating VaR and CVaR using the stochastic ap-

proximation based on Rockafeller-Uryasev’s identity for the CVaR and VaR. The authors believe

that the main disadvantage of the Rocakfeller-Uryasev method of optimizing CVaR and calcu-

lating VaR is the fact that the number of quantile constraints of the linear program is equal to

the number of scenarios. They suggest using Robbins-Monro approximation method to estimate

both VaR and CVaR and apply a recursive and adaptive importance sampling to increase the

convergence rate. The authors claim that a significant contribution of this approach is that only

the quantiles of interest are predicted, not the whole inverse of the distribution function.

A. Balbàs and R. Balbàs and S. Mayoral [7] propose a general approach which minimizes

several risk measures. First, a general risk minimization problem is transferred to a minimax

problem. Then, this minimization problem is transformed to a couple of linear problems each

of which is dual of the other one between infinite-dimensional Banach spaces of continuous

functions and inner regular σ-additive measures. The authors provide necessary and sufficient

optimality conditions for problems which do not use subgradients of the risk measure. When a
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portfolio choice problem with finite number of instruments is considered, the dual linear problem

is usually a semi-infinite problem. Next, the extreme points of the dual problem of the main

portfolio choice problem are determined. Then, a simplex-like algorithm is generated to solve

it. This simplex-like algorithm leads to primal and dual optimal solutions. The authors provide

application of the approach with different risk measures such as the standard deviation, usual

dispersions, conditional value-at-risk, value-at-risk and distortion functions. Besides, the authors

claim that the convergence rate of the algorithm is really fast.[7]

Shaw [199] points the difficulty of computing VaR and CVaR based on continuous distribu-

tions and proposes a method which performs this job by evaluating the functions of the moments

for Student-t return distributions. The author’s starting point is the existence of Student-t char-

acteristics in daily log-returns of major indices. The author computes the inverse CDF of the

Student-t distribution via inverse beta function representation, then formulates VaR and CVaR as

a function of the mean, standard deviation and the inverse CDF function. The author represents

the CDF of a general positive real v in terms of regularized β-functions as follows:

Fv(x) =
1

2

(
1 + sgn(x)(1− I(

v

x2 + v
)

(
v

2
,
1

2

))
,

while regularized β-function Ix(a, b) is given by:

Ix(a, b) =
Bx(a, b)

B(a, b)
,

B(a, b) is ordinary β-function, and Bx(a, b) is

Bx(a, b) =

∫ x

0
t(a−1)(1− t)(b−1) dt.

Then, the quantile function Q(u, v) is formulated as:
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Q(u, v) = sgn
(
u− 1

2

)√√√√√v

 1

I−1

If[u≤ 1
2
,2u,2(1−u)]

(
v
2 ,

1
2

) − 1

.
VaR and CVaR for a specific probability level u are represented as:

V aR(u) = −µ− σ
√
v − 2

v
Q(u, v), and

CV aR(u) = −µ+ σ

√
v − 2

v
k(Q(u, v), u)

1

u
, where

µ is the mean, σ is the standard deviation and k(t, v) =
v
v
2 Γ( v−1

2 )(v+t2)
1
2−

v
2

2
√
πΓ( v2 )

[199].

According to Shaw [199], this method lets the analysts to examine the risk properties of the

portfolio carefully based on the risk function, the return distribution, and the event frequency.

In addition, with this new calculation approach, the portfolio optimization problem minimizing

CVaR becomes a trivial moment-based optimization problem [199].

Zhu and Fukushima [230] deal with portfolio optimization when only partial information on

the underlying loss distribution is available. The authors focus on minimizing the worst-case

CVaR under the mixture distribution uncertainty, box uncertainty, and ellipsoidal uncertainty by

robust optimization. The deterministic problem is formulated as Problem (1.4) of Rockafeller

and Uryasev [174]. In addition, the authors provide the formulation of the robust portfolio opti-

mization problem which maximizes the worst case portfolio return while satisfying the constraint

on the worst case CVaR. According to the authors, their approach provides more flexibility in

the portfolio decision analysis and leads to more robust solutions. However, they emphasize the

importance of determining the uncertainty set for a successful practical application.

Clemente and Romano [56] use CVaR to measure the portfolio credit risk considering the

non-normality of the credit loss distribution and multiple default event for credit assets. A Monte

Carlo simulation is applied to construct the loss distribution of the loan portfolio with two states:
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default and not default. Monte Carlo scenarios for time to default for each obligor are created ac-

cording to the t-copula approach. Specifically, these scenarios are generated from a multi-variate

distribution by assuming the dependence structure of the credit defaults are driven by Student’s

t-copula and exponentially distributed margins. Next, CVaR of the loan portfolio is minimized

according to Rockafeller-Uryasev’s [174] scenario based the linear programming approach.

Similarly, Deng, Ma and Yang [66] point out that the CVaR is easily affected by the tail

distribution of the risk factors; therefore, they apply the extreme value theory (EVM) to model

tails of the return more accurately. However, since the return series might not be independently

and identically distributed, first a GARCH-based model is used to fit the return series, then EVT

is applied to the innovations. In addition, the authors apply a copula approach in order to capture

the nonlinear dependencies between tails of the asset returns. Then, the authors solve the linear

CVar optimization Problem (problem 1.4) of Rockafeller and Uryasev [174] with the scenarios

generated according to the proposed Copula-GARCH-EVT model.

Wozabal [223] formulates VaR as the difference between two CVaR. The author solves the

portfolio optimization problem with a VaR constraint by the difference of convex (DCA) algo-

rithm.

1.3 Log-Normal Sum Approximation in Portfolio Optimization

In this section, some log-Normal sum approximation methods are explained. The motivation

results from the fact that empirical single stock return distributions are close to the log-Normal

distribution. In the portfolio management framework, the portfolio return is not different from

a linear combination of log-Normally distributed random variables under the assumption that

single stock returns are log-Normally distributed.
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1.3.1 Log-Normal Sum Approximation Methods

Signal shadowing in wireless communications and stock returns in finance are well modeled by

the log-Normal distribution. Economics, reliability, biology, atmospheric sciences, geology and

actuarial science are some of the other disciplines that use the log-Normal distribution. Since the

log-Normal sum distribution is not known in closed form and is difficult to compute numerically,

several approximation methods to log-Normal sum distributions have been developed.

Fenton [79] approximated the sum of log-Normal random variables with a log-Normally dis-

tributed random variable based on a moment matching approach. This approach is later called the

Fenton-Wilkinson approximation since it was built upon Wilkinson’s [222] idea of log-Normal

sum approximation. The Fenton-Wilkinson method approximates the sum of N log-Normally

distributed random variables Li with a single log-Normally distributed variable Z by matching

the first two moments of each. Pirinen [171] expresses these approximation as:

L =
N∑
i=1

Li = e
∑
i=1 Yi ∼= eZ , (1.5)

where Yi and Z are Gaussian random variables. In addition, the correlation coefficient of Yi

and Yj can be written as:

ρi,j =
E[(Yi −myi)(Yj −myj )]

σyiσyj
,

where m and σ correspond to the mean and the standard deviation of the indexed random

variables.

Matching the first and second moments (u1 and u2, respectively) of Z and L enables us to

obtain closed form expressions for the mean (mz) and the standard deviation of Z (σz) [171].

Considering equation 1.5, the first moment is calculated as:

u1 = E[L] = E[eZ ] =

N∑
i=1

emyi+
σ2
yi
2 . (1.6)
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The second moment is expressed as:

u2 = E[L2] = E[e2Z ] =
N∑
i=1

e2myi+2σ2
yi + 2

N−1∑
i=1

N∑
j=i+1

(
emyi+myj e

1
2

(σ2
yi

+σ2
yj

+2ρi,jσyiσyj )
)
.

(1.7)

Solving (1.6) and (1.7) leads to following expressions for mz and σz:

mz = 2ln u1 − 1
2 ln u2, (1.8)

σ2
z = ln u2 − 2ln u1. (1.9)

Given mz and σz formulation above, the cumulative distribution function (CDF) can be

written as:

Pr(L ≥ γ) = Pr(eZ ≥ γ) = Pr(Z ≥ ln γ) = φ
(
lnγ−mz
σz

)
, (1.10)

where φ(·) is CDF of a zero mean, unit variance Gaussian random variable [158].

According to Beaulieu [13], the Fenton-Wilkinson approximation is valid only for a limited

range of small values of σyi . However, Beaulieu, Abu-Dayya, and McLane [158] mention that

this does not imply that the Fenton-Wilkinson approximation to CDF is poor. In fact, the au-

thors conclude that according to the results of the numerical studies, the Fenton-Wilkinson may

provide a good estimate of CDF.

The Schwarts-Yeh (SY) approximation [189] is another method based on the assumption that

power sum is log-Normally distributed. However, the first and the second moments of random

variable Z are not calculated according the same assumption. The exact expression for the sum

of two log-Normal random variables is calculated. The first two moments of the sum of more

than two log-Normally distributed variables are calculated by a recursive algorithm assuming

that the sum of two log-Normal random variables is also log-Normally distributed [158]. The
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calculations for the mean and standard deviation of the sum of two log-Normal random variables

are as follows [171]:

mz = my1 +G1,

σ2
z = σ2

y1
−G2

1 − 2σ2
y1

(I2 + I0) +G2,

G1 = E[ln(1 + ew)] = A0 + I1,

G2 = E[ln2(1 + ew)] = I3 + 2I4 + σ2
wI0 +mwA0,

G3 = E[(w −mw)ln(1 + ew)] = σ2
w(I0 + I2),

I4 = σ2
w[fw(0)ln2− I5] +mwI6,

A0 = σw√
2π
e
−m2

w
2σ2
w +mwI0,

Ii =
∫ 1

0 hi(v)v−1dv,

h0 = 1√
2π
e−

(ln v+mw
σw )

2

2 ,

h1 = [fw(ln v) + fw(−ln v)](ln (1 + v)),

h2 = [fw(ln v)− fw(−ln v)](1 + v−1)
−1
,

h3 = [fw(ln v) + fw(−ln v)](ln2 (1 + v)),

h4 = −fw(−ln v)ln v ln(1 + v),

h5 = fw(−ln w)(1 + v−1)
−1
,

h6 = fw(−ln v)ln(1 + v),

fw(w) = 1√
2πσ2

w

e

(
− (w−mw)2

2σ2
w

)
.

(1.11)

Applying the original SY approximation could be cumbersome because some complex cal-

culations need to be done in order to reach the desired accuracy in digits [171]. Ho [99] provides

a modified and simpler version of the SY method. Pirinen [171] mentions that, according to

the literature, the SY method might underestimate the variance of the sum of log-Normally
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distributed random variables when the summation components are identically distributed. In ad-

dition, as more components are involved in the summation, this approximation error gets larger.

Beaulieu, Abu-Dayya, and McLane [158] observe that when the components in the log-

Normal sum are uncorrelated, the cumulative distribution function derived by Ho’s SY approx-

imation seems to be close to that obtained by Monte-Carlo simulation, which represents the

actual distribution. On the contrary, in the correlated components case, the Fenton-Wilkinson

approximation seems to be capturing the cumulative distribution function of simulated points

better than Ho’s SY approximation method.

Schleher [186] assumes that the cumulative distribution function of the sum of log-Normal

random variables is nearly log-Normal. The author uses a cumulants matching approach to

approximate the cumulative distribution function of the sum of log-Normal random variables.

The author shows that accurate approximation of the log-Normal sum CDF can be obtained for

a large range (10−1 − 0.9). The approach suggests dividing the whole range into three or fewer

sub-regions and finding the parameters of the new log-Normal distribution which are optimized

on a local basis.

Farley’s approximation is also used for approximating the cumulative distribution function

of a log-Normal sum [158]. For t independent and identically distributed Gaussian random

variables (Y1, ..., Yt) each with the mean my and standard deviation σy, Farley’s approximation

is formulated as:

Pr(L ≥ γ) ∼= 1−
(

1− φ(
(ln γ −my)

σy
)

)t
.

Beaulieu, Abu-Dayya, and McLane [158] compare the performance of the Fenton-Wilkinson’s

approximation, the Schwarts and Yeh’s method, the cumulants matching approach of Schleher,

and the Farley’s method in terms of accuracy of their CDF approximation of independent log-

Normally distributed random variables. According to the numerical experiments, the CDF ap-

proximation according to the Farley’s method is closest to the simulated data for each considered
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CDF value. The other three methods’ relative performances change according to the σ value and

CDF level.

Beaulieu and Xie [13] use a linearizing transform on the log-Normal sum distribution and ap-

ply linear minimax approximation in the transformed domain to obtain a log-Normal approxima-

tion to the log-Normal sum distribution. The authors aim to construct a log-Normal probability

paper and obtain an optimal straight line approximation to sum distributions on the log-Normal

probability paper on which the cumulative distribution function of the log-Normal distribution is

represented as a linear line. Therefore, the process of finding an optimal straight line approxima-

tion on log-Normal paper, actually, minimizes the maximum error [13]. The authors, transform

the CDF, F (x), of a log-Normal sum distribution according to:

f(x) = φ−1(F (x)) = φ−1(F (et)), (1.12)

where φ−1(x) is the inverse function of standard normal CDF and t = ln x. Then,

f(t) = φ−1(F (et)) = 1
σ t−

m
σ , (1.13)

where f(t) is a linear function of t. The authors plot t, f(t) pairs on the log-Normal paper

and determine the cumulative distribution function of the log-Normal sum, F (x), numerically

according to 1.12. The straight line approximation, f̃(t), on the log-Normal paper is represented

as f̃(t) = c0 + c1t. Then, the following problem is solved to obtain the optimal c1 and c0 values:

minc0,c1 maxt∈[a,b] |f(t)− (c0 + c1t)| (1.14)

where F (ea) = 10−6 and F (eb) = 1− 10−6. The existence of the solution is proved by Cheney

[50]. The authors mention that the CDF of the log-Normal sum on log-Normal probability paper

is concave with f ′′(t) < 0, and c0 and c1 are calculated as:
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c1 = f(b)−f(a)
b−a ,

c0 = 1
2 [f(a) + f(t0)]− c1

a+t0
2 ,

(1.15)

where t0 is the unique solution of c1
∼= f ′(t0). Therefore, the mean, m∗z and the standard devia-

tion σ∗z of the optimal log-Normal approximation are represented as:

mz = − c0
c1
,

σz = 1
c1
.

(1.16)

The authors observe that neither the Schwarts-Yeh method nor the Fenton-Wilkinson method

performs better than the minimax method, which provides a close approximation to the log-

Normal sum distribution over the whole range.

The Schwarts-Yeh method, the Fenton-Wilkinson method, the Farley’s approximation, and

the minimax approximation to the CDF of the log-Normal sum proposed by Beaulieu and Xie

[13] depend on the assumption that the sum of independent log-Normal random variables can

be approximated by a single log-Normally distributed random variable. Beaulieu and Rajwani

[12] propose a new method based on the representation of the distribution on the log-Normal

probability paper. The authors observe that the proposed method, which provides a simple closed

form for log-Normal sum distributions, is highly accurate. Let Li be a log-Normal random

variable. To show the classic approach, the authors define the Gaussian random variableXi such

that Xi = 10log10Li where Xi has decibel units (dB), and has the PDF

fXi(x) = 1√
2πσxi

exp
(
− (x−mxi )

2

2σ2
xi

)
. (1.17)

Also, Yi in equation 1.5 is defined as:

Yi = ln Li = λXi (1.18)
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where λ = ln 10
10 . The mean and the standard deviation of Yi are written as follows:

myi = λmxi , σyi = λσxi . (1.19)

From (1.17) and (1.19), the PDF of Li is given by

fLi(l) = 1
lσyi
√

2π
exp

(
−(ln l−myi )

2

2σ2
yi

)
(1.20)

and the CDF is represented as:

FLi(l) =
∫ 1

0
1

tσyi
√

2π
exp

(
−(ln t−myi )

2

2σ2
yi

)
dt (1.21)

which is equivalent to:

φ
(
lnl−λmxi
λσxi

)
(1.22)

Beaulieu and Rajwani [12] observe that the CDF of log-Normal sums generally does not

lead to a straight line CDF representation on the log-Normal paper. This implies that this CDF

of log-Normal sum is not really log-Normal. This observation denies the validity of the classic

approach described above and the others which are developed based on this assumption such

as the Schwarts-Yeh method, the Fenton-Wilkinson method, the Farley’s approximation, and

the minimax approximation to the CDF of the log-Normal sum proposed by Beaulieu and Xie

[13]. However, Beaulieu and Rajwani [12] realize that the sum distributions are not log-Normal

(straight lines on log-Normal paper); however, they are smooth and convex curves which become

increasingly convex as the number of components in the sum, N , increases. Therefore, the

authors approximate this convex curve (on the log-Normal paper), to the function represented

as:
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f(γ) = a0 − a1e
−a2γ , (1.23)

where a0, a1, and a2 are parameters to be determined. Therefore, the CDF according to

approximation is written as:

Pr(Z ≤ γ) = φ(f(γ)) = φ(a0 − a1e
−a2γ) = φ

(
f
(
ln z
λ

))
= φ(a0 − a1z

−a2
λ ), (1.24)

In this way, a closed form representation is obtained. In addition, the results of the nu-

merical experiments support that this approximation method is highly accurate when values of

a0, a1, and a2 are appropriately selected. The authors use the least squares method to deter-

mine these parameters’ values. The numerical tests run, when the parameters are determined

according to the least squares method, imply that the approximation method is highly accurate.

Almhana, Wang, and McGorman [2] state that numerical results show that (1.24) approxi-

mates log-Normal distributions with very high accuracy; however, if a2 ≥ 0, the kth moment of

(1.24) exists only if k ≤ a2. The authors include that the fitted values of parameter a2 are usually

in the interval (0,1) because of practical interests. Therefore, the approximations based on (1.24)

do not have finite mean or higher order moments. As an alternative method, the authors sug-

gest a two-component mixture log-Normal model to approximate log-Normal sum distributions.

Recall that, if x > 0, then the PDF log-Normal function is written as:

fX(x) = 1√
2πσx

exp
(
− (x−mx)2

2σ2
x

)
. (1.25)

Then, a two-component mixture log-Normal model can be written as:

fX(x) = α1fX1(x) + (1− α)fX2(x), α ∈ (0, 1), (1.26)
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where

fXi(x) = 1√
2πσxi

exp
(
− (x−mxi )

2

2σ2
xi

)
, i ∈ {1, 2}. (1.27)

Similarly, the cumulative distribution function is represented as:

FX(x) = α1FX1(x) + (1− α)FX2(x), α ∈ (0, 1), (1.28)

where FXi(x) = φ
(

(ln x−λmxi )
λσxi

)
.

The authors use (1.28) to approximate the cumulative distribution function of the log-Normal

sum and call the CDF to be approximated as G(x). Next, in order to capture the tails of G(x),

they solve the following non-linear optimization problem:

minα,θ

{
supx

(
φ−1(G(x))− φ−1(FX(x))

)2}
. (1.29)

The CDF G(x) does not have a closed for representation, so it needs to be solved numeri-

cally. Instead of matching the whole CDF region, the authors prefer to match only K quantile

points since it enhances simplicity and improves the approximation accuracy at these quantile

points. In addition, in practice, quantiles represent the probability levels that is critical. The

authors formulate the problem as:

minα∈(0,1),θ U(α, θ), (1.30)

where

U(α, θ) = max1≤k≤K

{(
φ−1(G(xk))− φ−1(FX(xk))

)2}
. (1.31)

The authors mention that, numerical experiments show that (1.30) is sensitive to γ, so they

develop and use an algorithm which is a combination of the Nelder-Mead Algorithm [153] and

one dimensional search. The algorithm is stated by the authors [2] as: “
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Algorithm 1.2

Step 1 Initialization: α0 = 0, ᾱ = 1,m = 10, ε = 0.001.

Step 2 Set αt = α0 + t(ᾱ − α0) \ m, t = 0, ...,m. For each t, find θt = argminθ{Uαt,θ}

using the Nelder-Mead algorithm, and let (αt̃, θt̃) = argmin{U(αt, θt), 0 ≤ t ≤ m}.

Let [α0, ᾱ] = [α0, α1] if t̃ = 0; [α0, ᾱ] = [αm−1, αm] if t̃ = m; otherwise, [α0, ᾱ] =

[αt̃−1, ᾱt̃+1].

Step 3 If |ᾱ− α0| ≤ ε, then stop; otherwise, go to Step 2. ”

According to the simulation results, the mixture log-Normal model proposed by Almhana, Wang,

and McGorman [2] provides a very accurate approximation to log-Normal sum distributions.

Pratesi, Santucci and Graziosi [172] focus on the moment matching approximation method

for the sum of log-Normal random variables since it provides a simple and closed form ex-

pression for the parameters of the approximated log-Normal random variable. The authors pro-

pose an approximation method which generalizes the Fenton-Wilkinson method so that the first

n, (n ≥ 2) moments are matched during the approximation process. As it was shown earlier

in (1.8) and (1.9), according to the Fenton-Wilkinson method, the mean mz and the standard

deviation σz of the approximated log-Normal random variable (Z) are represented as :

mz = 2ln u1 − 1
2 ln u2,

σ2
z = ln u2 − 2ln u1.

(1.32)

where u1 and u2 are the first and second moments. Pratesi, Santucci and Graziosi [172] provide

extensions of the Fenton-Wilkinson method with higher order moments. For instance, when the

second and the third orders are matched for the approximation, then the mean and the standard

deviation of Z are represented as:
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mz = 3
2 ln u2 − 2

3 ln u3,

σz =
√
−ln u2 + 2

3 ln u3.
(1.33)

Alternatively, if the third and fourth moments are matched, then

mz = 4
3 ln u3 − 3

4 ln u4,

σz =
√
−2

3 ln u3 + 1
2 ln u4.

(1.34)

The authors mention that according to the numerical results, the approximation method is

quite accurate.

Berggren [23] provides a closed form formulation for the error bound (∆(γ)) of the distri-

bution function for the Fenton-Wilkinson method such as:

∆(γ) =
(∑2

k=0 akγ
−k
)−1

, (1.35)

where

a0 = u2 \ (u2 − u2
1),

a1 = −2u1 \ (u2 − u2
1),

a2 = −1 \ (u2 − u2
1).

(1.36)

The error bound is a function of the parameters γ, σ, and N since, in the tail, the error bound

∆(γ) approaches to a−1
0 , (limγ→∞∆(γ) = a−1

0 ), which decreases as N increases. Therefore,

the error bound gets tighter as N increases in the tail [23].

Nie and Chen [157] focus on approximating the log-Normal sum with type-IV Pearson distri-

bution by matching mean, variance, skewness and kurtosis. Later, Nie, Chen and Ayers-Glassey

[183] propose a more accurate method which is a variant of the previous approach.

Zhao and Ding [229] apply the least squares linear and the least squares quadratic approx-

imation approaches to model the sum of log-Normal random variables as a single log-Normal
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random variable. Li, Wu, Chakravarthy and Wu [133] suggest a low complexity approximation

method (the log skew Normal approximation) to approximate the log-Normal sum distribution.

The moment matching technique was used to determine the parameters of the approximation.

1.3.2 Portfolio Management with Moment Matching Approach

The log-Normal approximation methods have also been studied with financial engineering ap-

plications. Hakala and Wystup [94] use the Fenton-Wilkinson method in valuation of Foreign

Exchange Basket Options. Basket options are European options based on a common base cur-

rency and a set of foreign currencies. The option value is determined by the difference between

the basket value and the strike price at the expiration day. Each single correlated component of

the basket is modeled as a log-Normal process. Therefore, the basket spot is not different than

the sum of log-Normally distributed random variables. The mean and the standard deviation of

the basket spot is determined by matching the first two moments. Next, well known the Black-

Scholes-Merton method is applied to price the basket option. The authors extend their approach

by introducing one more term, which is calculated by matching the third moment of the market

spot and the model spot within the Ito-Taylor expansion of the basket spot [94].

Henriksen [98] also applies the Fenton-Wilkinson method to calculate the price of a basket

option composed of two correlated components. Similar to Hakala and Wystup [94], Henriksen

[98] approximates the sum of two coupled log-Normal variables by matching the mean and

the variance with one dimensional log-Normal variable. The author mentions that the moment

matching approach provides an accurate approximation as long as the correlation between log-

returns of the two log-Normal variables is non-negative.
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1.4 Revenue Management and Customized Pricing

1.4.1 Revenue Management and Pricing

Netessine and Shumsky [156] define yield management as a set of tools used in many service

industries to describe techniques to allocate limited sources among a variety of customers such

as the airplane seat allocation to the business and leisure classes. The firm can optimize the total

revenue or yield on investment in capacity by adjusting this allocation by using the help of pric-

ing. Phillips [170] classifies pricing and revenue optimization as a tactical function. The main

target of pricing and revenue management is providing a guidance on how prices should change

in a dynamic environment by analytical techniques derived from the management science.

The history of revenue management with analytical tools goes back to 1980s. Passenger

airlines and hotel chains are the first business groups implemented revenue management. Ac-

cording to Boyd [38], revenue management techniques build up an annual revenue increase of

$500 million and $300 million for American Airlines and Delta Airlines respectively. According

to Phillips [170], development of e-commerce and availability of customer data through cus-

tomer relationship management (CRM) let revenue management techniques expand into other

industries such as automotive, retail, telecommunications, financial services, and manufactur-

ing. Geraghty and Johnson [87] describe the importance of the revenue management through the

success story of National Car Rental. National Car Rental, which faced a liquidation in 1993,

implemented a revenue management program to manage the capacity, pricing and reservation in

1993, and improved its revenues by $56 million in 1994.

Netessine and Shumsky [156] mention cases where firms employ yield management as fol-

lows:

• Storing excess resource is expensive or impossible: Tonight’s room for use cannot be

stored for tomorrow night’s customers.

• Commitments need to be made while the future demand is uncertain: Some seats must be
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set aside business customers without knowing the future demand for business class seats.

• Customers are divided into segments and each segment has different demand characteris-

tics. The demand curve of leisure customers is very sensitive to price while that of business

customers is not.

• The same unit of capacity can be used to deliver many products or services: Rooms are

the same; however, they can be used by both leisure and business travelers.

• Producers are profit-oriented and have a broad freedom of action: A hotel can withhold

rooms from current customers for future profit; however, such practices are illegal and

immoral in emergency wards.

According to Phillips [170], the problem of pricing had not been observed until the modern

market economies arose in the West in 17th and 18th centuries since the prices used to be set

by custom or by law or by imperial fiat until industrialization started. However, a debate on

the theory of value, or price, was begun by Aristotle who developed an input-based theory of

value. Aristotle claims that all things ought to be valued by land and labor. Sir William Petty

addresses the discrepancy between the market price and the natural price. Market prices are

subject to effects of several dynamics and are difficult to be theorized whereas natural prices can

be theorized by some market fundamentals. The determinants of natural price change within the

Classical School. For instance, Adam Smith claims that the natural value is determined by labor,

profit, and rent. However, Ricardo believes that the rent should be price determined instead of

price determining.

Phillips [170] claims that the most important insight of classical economists was that the

price of a good in a capital economy is determined by not only any intrinsic value but also by the

interaction between the supply and the demand. Indeed, the price of a good is determined by the

interaction between people willing to sell the good with the willingness of other people to buy

the good. Of course, the value of the good for possible buyers and the value (cost) of the good
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for the sellers are also effective. [170]

The classical economics could explain the origin of the pricing; however, they left some

questions unanswered such as the price stability without an anchor and how an economy with

unregulated prices can work. According to Phillips [170], one of the most important achieve-

ments of 20th century neoclassical economics is showing how an unregulated market work under

the assumption of the perfect market competition. In such a market, there is no pricing decisions

since the prices are determined by the iron law of market. For instance, if a supplier sells a good

at a higher price than the market price, customers abandon him/her and do not return until he/she

decreases the price level to market (equilibrium) price. Alternatively, if he sells a lower price

than an equilibrium price, then arbitragers buy at this price and sell at a higher price until the

price of the good reaches the market price.

However, the perfectly competitive market structure assumption holds if the following con-

ditions are satisfied:

• Many firms are active in the market and each firm has an insubstantial share in the market.

• Each firm produces identical products (with the same quality) through the same processes.

• Each firm possesses perfect information.

• Firms can enter the market for free if the other firms in the market obtain higher profits

than normal profits.

• Firms are price takers and they can sell as much as they can produce.

Actually it is impossible to satisfy all these conditions in real markets. In addition, the

tools that are employed for pricing are more likely to be selected from statistics and operations

research rather than economics. These tools compromise quantitative analysis of marketing

initiatives such as predicting market response, forecasting sales, product planning, pricing, pro-

motions, sales, and marketing strategy. However, due to the fact that pricing decisions have
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become more tactical and operational in nature, the gap between this managerial science the-

ory and its applications in practice has been growing. Companies need to update their pricing

decisions so rapidly in order to respond to competitive actions or changes in market dynamics.

This necessity points out the importance of revenue management and pricing. The success of

revenue management in several industries, developments in enterprise resource planning (ERP)

and consumer relationship management (CRM) software systems, and the rise of e-commerce

and improvements in analytic supply chain management software systems encourage companies

to be involved in the pricing and revenue management activities. [170]

According to Marn and Rosiello [141], pricing is the most effective and fastest way to max-

imize the profit of a company. In addition, according to Phillips [170], pricing is often the area

which could be improved the most with the least investment.

1.4.2 Traditional Pricing Approaches

Cost-Plus Pricing

The cost-plus pricing method determines the price level as summation of cost of each product

and a profit margin which ensures that the firm obtains a target rate of return. This way of deter-

mining prices seems fair and applicable. However, it doesn’t account for the market competition

and customers’ preferences. In addition, it doesn’t consider the differences among firms’ cost

structures. In addition, Phillips [170] states that cost determination for an item compromises

many subjective judgements. Therefore, it might yield to highly distorted prices. Dolan and

Simon [67] claim that the cost-plus pricing is not an acceptable method. According to Drury

[68], the cost-plus pricing method has some advantages such as being easy to implement and

encouraging price stability by enabling firms to predict the competitors’ prices. Actually, this

approach is useful in public-utility pricing. In addition, according to the survey conducted by

Drury and Tayles [69] on 187 UK organizations, 60 % of the survey participants use cost-plus

pricing.
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Market-Based Pricing

The market-based pricing method is also known as the competition-based pricing strategy. In

this pricing strategy, firms determine their price levels according to the prices of similar products

in the market. For instance, a local car producer, can adjust its price according to the price of

another car with similar properties. According to Phillips [170], the market-based pricing might

be an effective strategy for a low-cost supplier intending to enter a new market. This pricing

method is applicable to commodity markets where each firm in the market is a price taker. How-

ever, this approach keeps the firms away from considering the changing value perceptions of the

customers. [170]

Value-Based Pricing

The value-based pricing method suggests that the price level of a service or a good should be

determined based on the value that the customer assigns to it. According to Phillips [170], the

value-based pricing is used as synonym for ‘personalized’ or ‘one-on-one’ pricing in which each

customer is offered a different price based on his/her value for the product. The value of a

customer for a product is determined by customer surveys, focus groups and conjoint analysis.

However, determining the customer values appropriately is difficult. In addition, charging differ-

ent prices for the same product introduces the arbitrage risk. Moreover, the market competition

will force suppliers to set lower prices than those that they actually assume.

1.4.3 Stated Preference Models and Methods

According to Lauviere, Hensher and Swait [125] individuals’ choices are determined by some

factors, such as habit, inertia, experience, advertising, peer pressure, environmental constraints,

accumulated opinion, household, and family constraints, etc. Lancaster [123] defines consump-

tion as an activity in which goods are considered as inputs, and the output is a set of character-

istics. Furthermore, the author suggests that the consumer makes decision based on the utility

which ranks the goods according to the characteristics that they possess. Lancaster’s study stands
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for a remarkable divergence from the traditional consumer behavior theory where goods are the

main sources of the utility. Rosen [178] diverges from Lancaster on the assumption of divisibil-

ity, and develops a model for the indivisible (discrete) goods. Lauviere, Hensher and Swait [125]

suggests a “modified Lancester-Rosen” model by assuming that individuals consume commodi-

ties as services provided by the commodities. That is:

u = U(s1, s2, s3, ..., sK)

where sk is the kth consumption service amount that is obtained by consumption of the com-

modity k, where k ∈ {1, 2, ...,K}.

If the uncertainty in the service supplied by commodities is considered, then the utility func-

tion that the customer use to make decisions can be represented as:

u = U(se1, se2, se3, ..., seK)

where sek is the expected amount of kth consumption service that the consumer enjoys by

the consumption of the commodity k, where k ∈ {1, 2, ...,K}.

Actually, the analyst is not able to reach the same information level as the individuals while

they make decisions. Therefore, the utility function from the point of view of the analyst is

written as:

u = U((seo + seuo)1, (seo + seuo)2, (seo + seuo)3, ..., (seo + seuo)K)

where subscripts o and u0 represents observed and unobserved portion of the utility by the

analyst [125]. Therefore, a good consumer choice model should capture not only the observed

terms in the utility function but also the structure of the unobserved terms.

Discrete choice methods have been widely used by researchers to examine the consumer
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choices. Logit, multi-nominal logit, nested logit, probit, and mixed logit are the major discrete

choice models. In the following section, each of these models will be briefly described.

Logit Model

According to Train, [114] the logit model is the easiest and the most commonly used discrete

choice model. It was first introduced by Luce [132] in 1959.

As mentioned earlier, the utility obtained from consuming a product is composed of two

terms: observed and unobserved components. Let us call the utility that the customer n obtains

from the product j Un,j . It is decomposed into the observed utility (Vn,j) and the unobserved

utility (εn,j), that is

Un,j = Vn,j + εn,j . (1.37)

The logit model assumes that each εn,j is an independently and identically distributed ex-

treme value. The independence assumption could be interpreted as that each unobserved utility

portion εn,j is not related to the unobserved utility portions obtained from any other consumption

alternatives [114]. The probability that the customer n selects the alternative j is represented as:

Pn,j = Prob(Vn,j + εn,j ≥ Vn,k + εn,k, ∀k 6= j) (1.38)

After some calculations and algebraic manipulations, this probability is written as [114]:

Pn,j = eVn,j∑
k e

Vn,k
(1.39)

The deterministic utility portion (Vn,j) is usually represented as a linear function of the observed

variables (xn,j such that:

Vn,j = β′xn,j (1.40)

where β could be estimated trough logistic regression models.
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Train [114] mentions some other desirable properties of the logit model:

• Each choice probability (Pn,j) is necessarily between zero and one.

• The sum of each choice probability (Pn,j) is equal to one.

• The relation of the choice probability (Pn,j) to the observed utility (Vn,j) is sigmoid, or S-

Shaped. That is, the effect of change in observed utility has little impact on the probability

if the utility level is very low or very high. Change in the observed utility has the highest

effect on the probability level when it is in moderate levels, or the probability level is

around 0.5.

• The logit model captures the systematic taste variations that are directly related to the

observed characteristics of the consumer. However, it cannot explain the random taste

variations which result from unobserved characteristics.

• The logit model depends on the assumption that the unobserved utility portions are in-

dependently and identically distributed. Therefore, it cannot perform well if the factors

affecting unobserved utility portion are correlated.

Nested Logit Model

The Generalized Extreme Value (GEV) models assume that unobserved utility portions (εn,j)

are jointly distributed as a generalized extreme value. Therefore, the situations where the factors

affecting the unobserved utility portion are correlated can be handled by the GEV models. The

most popular GEV model is the nested logit model [114].

According to Train [114], a nested logit model should be used if the decision alternatives can

be partitioned into two subsets (nests), where

• Within a nest, the ratio probabilities of two alternatives is independent of the attributes or

the existence of all the other alternatives.

51



1.4. REVENUE MANAGEMENT AND CUSTOMIZED PRICING

• For any two alternatives belonging to different nests, the ratio of the of the probabilities

might depend on the attributes of the other alternatives in these two nests.

These assumptions could be interpreted as the unobserved utility portion εn,j is correlated

with εn,m if the alternatives m and j are in the same nest Bk; otherwise, they are uncorrelated.

The parameter λn,k is introduced to reflect the degree of independence in the unobserved utility

components among the alternatives in the nest Bk. A higher value of λk is interpreted as less

correlation and higher independence within the nest Bk.

Since the nested logit models assume that each unobserved εn,j is a univariate extreme value,

the cumulative distribution for εn,k is formulated as:

exp

(
−
∑K

k=1

(∑
j∈Bk e

εn,j
λn,k

)λn,k)
. (1.41)

After the necessary calculations are applied, the probability of the customer n’s selecting the

alternative j belonging to nest Bk is written as:

Pn,i =

eVn,j\λk

∑
i∈Bk

eVn,i\λk


λk−1

K∑
l=1

∑
i∈Bl

eVn,i\λl

λl
. (1.42)

Train [114] summarizes the nested logit model as a generalization of the logit model where

the correlation among the unobserved utility portions are handled in a particular pattern.

Probit Model

The nested logit model considers only the correlation among the unobserved utility terms in a

particular manner; however, it still cannot explain the cases where the unobserved factors are

correlated over time and express the random taste variation. The probit model is introduced to

satisfy these needs.

The probit model depends on the assumption that all the unobserved utility components are
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distributed according to a normal distribution [114].

The choice probability is represented as:

Pn,j = Prob(Vn,j + εn,j > Vn,k + εn,k ∀k 6= j)∫
I((Vn,k + εn,k > Vn,k + εn,k ∀k 6= j)φ(εn)dεn

where εn ∼ N(0, ω).

Since the integral in Equation (1.43) does not have a closed form expression, a probit model

does not provide a closed form expression for the choice probability.

Mixed Logit Model

According to Train, [114] the mixed logit model is developed to handle the three issues that the

standard logit model cannot, which are

• Random taste variations,

• Unrestricted substitution patterns,

• The correlation among the unobserved factors over time.

Even though the probit model could explain these issues, it is restricted by the jointly nor-

mal distribution assumption. However, the mixed logit model allows the analyst to use any

distribution for the customer taste parameters (β) while the unobserved utility components are

identically and independently distributed random variables.

A mixed logit choice probability is calculated based on the standard logit choice probability

formulation and the distribution of parameters. In fact, it is the integral of its formulation ac-

cording to the standard logit model over a density of the unobserved utility components [114].

That is, given that the standard logit probability choice formulation is as:

Pn,j(β) = eVn,j(β)∑I
i=1 e

Vn,i(β)
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and the density function for the consumer preference parameters , (β), is represented as f(β),

the mixed logit choice probability ( ˜Pn,j) is represented as [114]:

˜Pn,j(β) =

∫
eVn,j(β)∑I
i=1 e

Vn,i(β)
f(β)d(β). (1.43)

Random taste modeling, unrestricted substitution patterns, and correlation in unobserved

utility components can be expressed by the stochastic customer preferences parameters (β) with

a probability density function f(β).

1.4.4 Customized Pricing with Discrete Choice Models

Hanson and Martin [95] address the concavity of the revenue function when the probability of

purchase is determined by a multi-nominal logit function and difficulty of obtaining a closed-

form optimal solution. The authors claim that if the demand curve is sufficiently elastic in price,

the second order conditions for concavity fail. Therefore, the authors propose a path following

approach which relies on perturbing not-concave profit function to a concave one by artificially

making the choices less responsive to the product attributes and prices. Agrawal and Ferguson

[1] address the need for price optimization methods in a business-to-business setting where a

customer requests bids from a group of firms and makes his/her decision. The authors use the

logit model to determine the probability of winning a bid opportunity (bid-response function)

considering the price related and non-price related factors. The authors suggest methods to ex-

tend the logit bid-response function modeling approach to the cases where market segmentation

and market competition are also considered. Broder and Rusmevichientong [44] also use the

logit function to predict the bid-response function. The authors formulate the problem from a

monopolist’s point of view which offers price to the customers whose decisions depend on the

price while the parameters of the logit model is unknown. The authors minimize the regret,

which is the difference between the revenue obtained under perfect information on the logit

model parameters and the revenue obtained when the logit parameters are uncertain.
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Talluri and Ryzin [209] propose a dynamic programming model for a network revenue man-

agement problem where demand and capacity are modeled as continuous random variables, and

buyers’ choice behavior is represented by the multi-nominal logit model. The proposed method

requires determining and ranking efficient sets which are composed of possible fare products

to offer. Rusmevichientong, Shmoys, and Topaloglu [180] propose an assortment optimization

problem where multiple customer classes are considered, and demand of each class is modeled

by the multi-nominal logit model. Rusmevichientong and Topaloglu [181] apply robust opti-

mization to handle the uncertainty in the parameters of the multi-nominal logit model of the

demand. The authors apply their price optimization approach in both static and dynamic setting.

1.5 Real Options

1.5.1 Introduction

Real options have been the focus of significant research interest in the financial economics lit-

erature since they were first introduced by Myers [149]. Myers addresses the gap in the finance

theory with respect to the corporate debt policy and introduces the analogy between call op-

tions and corporate investment opportunities. Trigeorgis [216] combines his own contributions

to the flexibility in capital budgeting decisions with those of previous researchers such as Louis

Bachelier, Samuelson Fisherback, Myron Scholes, Robert Merton, and Steward Myers. Tri-

georgis [216] discusses a wide range of real option types with their applications in corporate

finance. Copeland and Antikarov [58] and Rogers [177] describe various methods of pricing and

implementing real options on a more practical level for corporate finance managers. Later re-

searchers have extended the application areas of real options and improved real options valuation

techniques.
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Traditional Capital Budgeting

In this section, we explain some traditional capital budgeting methods.

Discounted Cash Flow Analysis

Capital budgeting focuses on the allocation of limited resources among possible investment

projects. The main target is maximizing the firm’s market value which is a function of the

profitability of the firm’s projects. Net present value (NPV), payback period, accounting rate

of return, and internal rate of return are some of the traditional measures which use discounted

cash flow (DCF) analysis to evaluate the project’s profitability. According to Trigeorgis [216],

the net present value analysis is widely regarded as being the most accurate one among these

measurements.

According to DCF, the NPV of a project with a discount factor r and a stochastic cash flow

Ct, whose expected value is E[Ct], is calculated as:

NPV =
N∑
t=0

E[Ct]

(1 + r)t
,

where t and N stand for the discrete time and life time of the project, respectively. Let us

consider an investment project whose expected cash flow is - $1000, $200, $650 and $500 in the

first, second, third and fourth year, respectively, while the life time of the project is four years

and the discount rate is 5%. Then, the NPV of the project is calculated as:

−$209.481 =
−1000

1.05
+

200

(1.052)
+

650

(1.05)3
+

500

(1.05)4
.

The project is rejected because its NPV is negative.

The DCF methods disregard the effect of managerial control during the lifetime of the

project. They assume that managers do not revise their decisions regarding the project. In

fact, the market is dynamic and subject to multiple uncertainty sources. Therefore, as Trigeorgis

[216] points out, managers do update their decisions according to information revealed up to that
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point so that they can defer, extend, or abandon the project during its life time.

In addition, the NPV approach calculates the project value based on an “expected cash flow”

scenario by assuming that the cash flow structure of the project is static. Trigeorgis [216] asserts

that this assumption may lead to an unrealistic project valuation especially when the probability

distribution of the project return is asymmetric. Because of the skewness, absolute value of a

loss realization can be much higher than a profit realization. According to Neely and Neufville

[152], this problem can be addressed by reforming the analysis according to different cash flow

scenarios. The authors include that this approach might not be practical.

Uncertainty, which results from the sources such as effective tax rate, inflation rate, and the

project’s time life can be captured by defining a risk adjusted discount factor as in the capital

asset pricing model (CAPM). Then, the value of the project equals to the sum of the expected

value of the future net cash flows discounted by the risk adjusted rate, as Fama suggests [76].

According to CAPM, risk adjusted risk factor r′ is defined as:

r′ = rf + β(rm − rf ),

where rf is the risk free interest rate, rm is the expected market return, and the beta of the project

is formulated as

β = Cov(r′, rm)/Var(rm).

The NPV approach assumes that the beta of the project stays the same during the project’s

life time. However, in practice the beta of the project can change over the time. Moreover,

it considers neither the market competition nor the interaction between different projects. For

instance, the rival firms’ reaction to an R&D project implementation might affect not only the

R&D project’s but also the other ongoing projects’ cash flow structure.

Sensitivity Analysis

Sensitivity analysis is another traditional capital budgeting technique. As mentioned above, the

57



1.5. REAL OPTIONS

present value of a project depends on the estimated values of several factors such as the project’s

life time, the cash flow structure, the risk free rate, the market rate etc. In the words of Trigeorgis

[216]:

“Sensitivity analysis is the process of delving into these forecasts to identify the
key primary variables and determining the impact upon NPV of a given variation
in each key variable at a time, with other variables held constant; it’s sometimes
called “what if ” analysis, since it addresses questions of the form “What is the
consequence or effect on the investment decision (NPV) if there is an error or mis-
estimation of the variable x by a certain amount, assuming the other variables are
estimated correctly?”. When the sensitivity analysis determines the critical vari-
ables, more time and effort can be spent to improve the accuracy of these variables’
estimations. However, if these variables are interdependent, then sensitivity analysis
may not give realistic insights.”

Traditional simulation techniques, including Monte Carlo simulation, are applied to deter-

mine the probability distribution of the NPV of the project by repeatedly sampling randomly

from the probability distributions of the crucial variables leading to the calculation of the net

cash flows for each period according to previously embedded set of mathematical equations.

However, according to Trigeorgis [216], reflecting interdependencies between primary variables

through their probability distributions with high accuracy is a complex task. In addition, the

simulation gives the risk profile of the NPV without an exact discount factor value. Therefore,

conclusions obtained based on traditional simulation analysis are questionable.

Decision-Tree Analysis

The decision-tree analysis (DTA) has been employed to value a project in the presence of un-

certainty and the possibility of decision deferral. DTA represents a project as a sequence of

decisions and possible realizations of chance events with real probabilities in a tree structure

during the lifetime of the project. It expresses the interdependency between decisions given at

different time points and the effect of different realizations of chance events on the cash flow

structure of the project. This eases the management’s task to visualize the project’s inherent op-

tions and price them into the NPV of the project. However, according to Trigeorgis [216], as the
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number of decisions or chance event realizations increase, the number of possible paths in the

decision tree increases geometrically, which converts the decision-tree analysis to the decision-

bush analysis. In addition, DTA uses the same discount factor during the life time of the project

and neglects the dynamic nature of the riskiness of the project [216]. According to Schulmerich

[188], updating the discount factor based on available information at each time period could help

overcome this problem; however, this idea is hard to implement in practice.

As an example, let us consider an R&D project for an electronic device, which requires an

initial investment of $10,000. The project is expected to be successful with 30% probability at

the end of the first year. Production set-up costs are expected to be $20,000 in the second year.

In the third year, the firm expects to get a high, or medium, or low level demand which leads to

$40,000, $25,000, and $10,000 of total profit, respectively. The discount factor is assumed to be

5%. The case is represented as a decision tree as follows:
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D1

Do not invest
Pay-off
= $ 0

Invest $
10000 in the

R&D project.
C1

The project is
not successful,
1−p = 0.7.

Pay-off
= $0

The project
is successful,
p = 0.3

D2

Do not
produce

Pay-off
= $0

Invest $20000
to produce

C2

High level
demand,
qh = 0.4

Pay-off =
$40000

Medium
level demand,
qm = 0.3

Pay-off =
$25000

Low level
demand,
ql = 0.3

Pay-off =
$ 10000

Figure 1.1: Analyzing an R&D project via the decision tree framework

the NPV at C2 = 25, 238 =
0.4∗40, 000 + 0.3∗25, 000 + 0.3∗10, 000

1.05
,

the NPV at D2 = 4, 030 = max(0,
25, 238

1.05
− 20, 000),

the NPV at D1 = 0 = max(0,
4, 030∗0.3

1.05
− 10, 000).

So, the optimal decision is not to invest according to the decision tree analysis.

Contingent-Claim Analysis

The contingent-claim analysis (CCA) was first introduced by Trigeorgis [216]. The motiva-

tion for CCA is described in words of Trigeorgis:

“The fundamental problem with the traditional approaches to capital budgeting lies
in the valuation of investment opportunities whose claims are not symmetrical or
proportional. The asymmetry resulting from operating flexibility options and other
strategic aspects of various projects can nevertheless be properly analyzed by think-
ing of discretionary investment opportunities as options on real assets (or as real
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options) through the technique of contingent claim analysis.”

Contingent-claim analysis views real investment opportunities as a collection of options on

real assets. Trigeorgis [216] overcomes the discount rate problem of DTA by financial options

valuation approach on the basis of no-arbitrage equilibrium. CCA constructs an analogy between

financial options and operating options. For instance, the holder of an American option on an

asset owns the right but not the obligation to buy an asset at a predetermined price (exercise

price) on or before a predetermined day (exercise day). Similarly, the owner of a discretionary

investment opportunity has the right to gain the gross present value of expected cash flows by

making an investment defrayal on or before the date until the investment opportunity is predicted

to be available. The analogy between a call option on a stock and a real option on a project is

summarized in Table 1.1 as:

Table 1.1: The analogy between a call option on a stock and a real option on a project [216]
Call Option on stock Real option on project
Current Value of stock Gross PV of expected cash flows
Exercise Price Investment Cost
Time to expiration Time until opportunity vanishes
Stock value uncertainty Project Value Uncertainty
Risk free interest rate Risk free interest rate

Trigeorgis constructs a twin portfolio of traded securities by issuing bonds to replicate the

payoff of options and to calculate risk neutral probabilities from real probabilities. By this way,

a constant risk free discount rate can be used in the decision tree [216]. Since a real option’s

underlying asset is not usually tradable, a twin portfolio which imitates the risk and payoff

structure of the investment with the real option is constructed from tradable securities and issued

bonds. Then, the risk adjusted discounted rate is calculated as in the financial options pricing

approach.

Schulmerich [188] provides a detailed explanation of the CCA through an example. The

following notation will be used in the example describing the project valuation by the CCA
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approach.

V : Project’s overall value,

S : Price of the security which is perfectly correlated with the project,

n : Number of twin security in the twin portfolio,

B : Amount of bond issued to construct the twin portfolio,

P : Twin portfolio which replicates the payoff structure of the project,

k : Return of the twin security,

r : Risk-free interest rate,

ρ : Risk-neutral probability for upward movements of V and S in each period,

q : Real probability for upward movements of V and S in each period,

u : Return of V and S in the case of a upward movement in each period,

d : Return of V and S in the case of a downward movement in each period.

First, the twin portfolio has to be constructed by buying n twin securities at the price S and

issuing B amounts of bond. Let us assume

V = 100,

S = 40,

r = 5%,

q = 0.6,

u = 1.2,

d = 0.8.

Then, two possible realizations of the twin portfolio are shown as:

Following equations make the twin portfolio generate the same payoff structure with the

project:

V = nS −B,
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P = nS − B, t = 0 q = 0.6

S goes down, t = 1
Pd = nSd − (1 + r)B

S goes up, t = 1
Pu = nSu − (1 + r)B

Figure 1.2: Possible values of the twin portfolio in the next period

V u = nSu− (1 + r)B = P u,

V d = nSd− (1 + r)B = P d.

Solution of the system is as follows:

n =
P u− P d

Su− Sd
,

B =
SdP u− SuP d

(Su− Sd)(1 + r)
,

P =
ρP u+ (1− ρ)P d

1 + r

ρ =
(1 + r)− d
u− d

,

k =
qSu+ (1− q)Sd

S
− 1.

These formulations with the parameters specific to this example yield to:

ρ = 0.625,

V = 100,

B = 0,

n = 2.5.
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Once the risk-neutral probability ρ is obtained, the risk-free interest rate r can be used as

a discount rate in the CCA framework, where chance events are defined in terms of risk-neural

probabilities.

If we assume that the project has an investment cost of $90, the investment cost of the

deferred project will be $94.5 (= 1.05∗90) in the following year. The CCA framework of the

project is represented as:

64



1.5. REAL OPTIONS

V = 100, S = 40,
I = 90, P = 15.18,

t = 0

ρ = 0.625

Vd = 80, Sd = 32,
Pd = 0, t = 1

ρ = 0.625

dVd = 64,
dSd = 25.6,
t = 2

uVd = 96,
uSd = 28.8,
t = 2

Vu = 120, Su = 36,
Pu = 25.5, t = 1

ρ = 0.625

dVu = 96,
dSu = 28.8,
t = 2

uVu = 144,
uSu = 43.2,
t = 2

Figure 1.3: Analyzing an investment project with an option to defer within the CCA framework

Since the investor has an option to defer the investment, project value at the beginning of

time horizon is calculated as:

P u = max{120− 94.5, 0} = 25.5,

P d = max{80− 94.5, 0} = 0,

P =
ρP u+ (1− ρ)P d

(1 + r)
=

0.625∗25.5 + 0

1.05
= 15.178.

The value of the project with option to defer is determined to be $15.178 according to the

CCA approach.

Trigeorgis [214] applies the CCA to the valuation of lease contracts with a variety of embed-

ded operating options such as options to buy, sell, and renew. His study also examines a case

with multiple interacting real options.

The CCA can be regarded as an improved version of the DTA in terms of accounting for

strategic options; however, it is not free of limitations. Trigeorgis [216] lists the most important

weaknesses of the analogy between real options and call options as:

• Exclusiveness of ownership and competition interaction,

• Non-tradability and preemption,
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• Across-time interdependencies and option compoundness.

1.5.2 Real Options

According to Insead and Levinthal [105] the real options framework is built upon the realization

that future investment opportunities are functions of their prior investment decisions. However,

Schulmerich [188] points out that the real options approach is not applicable in every investment

situation. Amram and Kulatilaka [3] present a list of situations where the real options approach

is applicable as follows (in their words):

• When there is a contingent investment decision and no other approach can correctly value

this type of opportunity,

• When uncertainty is large enough that is sensible to wait for more information, avoiding

regret for irreversible investment,

• When the value seems to be captured in possibilities for future growth options rather than

current cash flow,

• When uncertainty is large enough to make flexibility a consideration. Only the real options

approach can correctly value the investment in flexibility,

• When there will be project updates and mid-course strategy corrections.

They also classify investments from the real options point of view. Irreversible investments,

flexibility investments, insurance investments, modular investments, platform investments, and

learning investments are some of these investment types. These investment categories are con-

sistent with Trigeorgis’s [213] real options classification:

• Option to defer provides the flexibility of delaying the initiation of an investment ac-

cording to available information. For instance, managers can postpone opening a new

production plant if a financial crisis, which shrinks the demand, occurs.
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• Time-to-build option can be regarded as a combination of several options to abandon

having consecutive exercise times. At each single decision point, the management has an

opportunity to quit the project based on market conditions or the investor’s interest. For

instance, opening a tobacco production plant decision can be reviewed several times even

after a series of outlays. If, at some point, the government applies high tax on cigarette or

forbids smoking in public areas, continuing to build a new tobacco production plant might

not be profitable, then the management quits the project.

• Option to alter operating scale lets managers adapt the scale of production according to

the changes in factors affecting the profitability of the project. For instance, managers

of the tobacco firm operating in the country, where the tax rate on cigarette has risen, can

decrease the production amount as a response to decreased demand.

• Option to abandon gives the opportunity to abandon the project permanently if the mar-

ket conditions deteriorate severely, e.g. managers quit the new tobacco production plant

project because of high tax rate.

• Option to switch enables the management to modify the output mix of facility (product

flexibility) when the price or demand changes. Alternatively, the same outputs can be

produced using different types of inputs (process flexibility). For instance, because of

increased gasoline prices, demand for big cars might reduce. Therefore, managers of a car

production plant might decide on shifting the production from high gasoline consuming

cars to low gasoline consuming ones.

• Growth options can be considered as inter-project compound options. An early invest-

ment or outlay can be regarded as prerequisite for the following investment opportunities.

If the market conditions are promising, then later projects can be implemented. For exam-

ple, let us consider an Italian pasta producer which enters the Turkish market by selling

only pasta. If the demand for pasta is high enough, then the managers might consider
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introducing canned pasta sauce for Turkish consumers.

• Multiple interaction options is a combination of upward potential-enhancing and down-

ward protection options. Generally the combined value of multiple interacting options is

different from the sum of their separate values. For instance, the Italian pasta producer

might have an option to built a production plant in Turkey in addition to an option to

switch the production scale between Italy and Turkey.

Insead and Levinthal [105] explore the boundary between real options and sequential stream

of path dependent investment decisions based on the flexibility of the market and technical

agenda. Authors claim that as the flexibility of markets and technical agenda increases, deci-

sion activities turn into path dependent “probe and learn” activities.

1.5.3 Real Options Valuation Methods

Schulmerich [188] provides a detailed review of real options valuation methods. The author

classifies these methods into analytical and numerical methods, then summarizes contributions

of pioneer researchers as below:

Analytical Models

Trigeorgis [216] states that several researchers have applied financial option pricing methods

in order to obtain analytic models for valuation of real options in recent years.

Option to defer: McDonald and Siegel [145], and Paddock, Siegel and Smith [163] focus

on option to defer. McDonald and Siegel model the gross project value (Vt)t≥0 by a diffusion

process given via SDE

dVt = αVtdt+ σVtdBt, t ≥ 0, α ∈ R+, σ ∈ R+,

where α is the instantaneous expected return on the project and σ is the instantaneous stan-

dard deviation. Paddock, Siegel and Smith value the option to defer the project, which has a

68



1.5. REAL OPTIONS

payout rate D, with the SDE

dVt = (α−D)Vtdt+ σVtdBt, t ≥ 0, α ∈ R+, σ ∈ R+

Option to abandon: McDonald and Siegel [144] model the unit output price’s diffusion

process (Pt)t≥0 as follows:

dPt = αPtdt+ σPtdBt, t ≥ 0, α ∈ R+, σ ∈ R+.

While Myers and Majd [150] apply the following process:

dPt = α(D − Pt)dt+ σPtdBt, t ≥ 0, α ∈ R+, σ ∈ R+,

where D is the instantaneous cash payout or dividend.

Option to switch: Margrabe [138] values an option to exchange one risky asset for another

with the same diffusion process for each asset’s price, V and S respectively, but with different

coefficients.

dVt = α1Vtdt+ σ1VtdBt, t ≥ 0, α1 ∈ R+, σ1 ∈ R+,

dSt = α2Stdt+ σ2StdBt, t ≥ 0, α2 ∈ R+, σ2 ∈ R+.

According to Schulmerich [188], analytical methods can value a single real option; however,

they cannot account for the interaction between several real options properly. Therefore, analyt-

ical methods are not capable of valuing complex real options. In addition, analytical methods

depend on the assumption that describing partial differential equations can be written with the

underlying stochastic process. However, this assumption is not always valid in practice.

Numerical Models

Approximation of the partial differential equations

Finite difference and numerical integration methods are considered as approximation of
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PDEs. Trigeorgis [216] provides a detailed review of partial differential approximation approach.

Parkinson [166] works on numerical integration. Brennan [41], and Brennan and Schwartz [42]

explore implicit and explicit finite difference schemes. Borone-Adesi and Whaley [37] apply

quadratic approximation.

Approximation of the underlying stochastic process

The Monte Carlo simulation of Boyle [39], in addition to several lattice approaches like bi-

nomial approximations of Cox, Ross and Rubinstein [62], Hull and White [102], and Trigeorgis

[212] are considered in this group. The Monte Carlo simulation and lattice approaches can be

used to price both American and European type options.

Trigeorgis [212] develops the log-transformed lattice approach with constant risk free inter-

est rate. This method is claimed to be a consistent, stable, and efficient binomial tree method

which can value complex investments with interacting real options. According to Trigeorgis, lat-

tice approaches are superior to Monte Carlo simulation in terms of simplicity and flexibility in

handling different stochastic processes, options payoffs, early exercise of the other intermediate

decisions (interaction), etc. In addition, they can handle real option packages and compounding

real options. However, Schulmerich [188] points out that the lattice approaches value the option

for only one underlying start value at each time and this requires running all steps several times

with various starting points, which is time consuming.

Schulmerich [188] modifies the binomial tree approach of Cox, Ross, and Rubinstein [62]

and the log-transformed binomial tree approach of Trigeorgis [212] in order to be able to value

real options under stochastic interest rates.

Real Options Valuation Methods with Different Applications

Investment decisions are subject to multiple uncertainty sources such as project life time,

interest rate, currency rate, market share, oil prices, etc. Managerial control during the lifetime

of the project is a frequently applied tool to employ the new information in favor of the share-

holders. Busby and Pitts [49] interview with several finance officers about the occurrence of
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different types of flexibility in their capital expenditure projects and summarize their results as:

Table 1.2: Frequency of occurrence of types of flexibility in capital investments [49]
Frequency (%) Postponement Abandonment Rescaling Growth Technical Change

0-20 21 49 30 14 43
21-40 16 28 23 21 29
41-60 16 9 16 12 12
61-80 16 9 16 28 10
81-100 30 5 14 26 7

Real options have been the focus of significant research interest since they fill the gap be-

tween traditional capital budgeting techniques and the presence of managerial control in prac-

tice. R&D projects, mergers and acquisitions, product development, strategic investment, supply

chain management, revenue management and pricing, and commercial lease contracts are some

of the areas that real options approach is employed as a decision making tool.

Lease Contracts and Real Options

Trigeorgis [215] evaluates lease contracts with operational options such as option to buy,

cancel, and renew, by contingent claim analysis. The author suggests a CCA-based numerical

analysis for leasing contracts with multiple interacting options. Grenadier [92] develops an

endogenous process for rent, supply and asset values by considering fundamental economic

uncertainty and the market competition. These processes determine the entire term structure

of lease rates. The model is flexible to determine the equilibrium rate for leases of different

structures such as forward leases, adjustable rate leases, leases with options to cancel or renew

and leases with payments contingent on the intensity of the asset’s usage. Buetow and Albert

[46] model the market price of a real-estate and its rental rate via both Geometric Brownian

Motion and mean reverting processes. Using no-arbitrage assumption and a variant of riskless-

hedge portfolio, authors obtain the system of stochastic differential equations, whose solution is

approximated by FDM. Finally, values of the option to renew the lease at a rent indexed to CPI

and the option to purchase the leased space at a price indexed to CPI are determined.
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Market Competition and Real Options

Recently, researchers have begun to combine market competition and real options approach.

Ferreira, Kar and Trigeorgis [80] provide a toolkit for the strategic investment decisions in a com-

petitive environment. Grenadier [93] presents a continuous time model which prices real estate

leases with competitive interactions. Schwartz and Torous [191] test implications of Grenadier’s

real estate lease pricing model. Results of the study suggest that competitive nature of the lo-

cal real estate market affects the number of new building starts. Cunningham [63] provides

robust empirical evidences claiming that existence of real options delay investments increases

land prices in King County, Washington. Bulan, Mayer, and Somerville [47] provide the first

study that differentiates impacts of market and idiosyncratic risk on real options and investment

decisions. Authors define the competition as number of potential competitors in the market and

show empirical results claiming that the competition has an insignificant effect unless it interacts

with the volatility. In addition, authors show that the effect of idiosyncratic risk on development

decreases as the competition increases, which means that real option exercise decisions become

more robust when the market is more competitive. Also, the study asserts that increase in both

idiosyncratic and market risk encourage investors to postpone real estate developments.

The real options approach with competitive interactions has been studied in other application

areas as well. Folta and Miller[82] focus on real options to strategy in buyouts and equity

purchases of partner biotechnology firms. The authors consider two different types of buyout

events: capturing the majority stake and capturing an additional stake while the firm also has

previously acquired stakes. For each case, hazard rate, which is a measure for the effect of

option exercise decision, is modeled separately. The study shows that when uncertainty level

is low, the number of equity partners increases likelihood of partial buyouts decreases. On the

other hand, in the presence of high uncertainty, a higher number of equity partners leads to an

increase in the rate of additional acquisition.
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Kim and Sanders [115] provide a low technical level framework of strategic actions consid-

ering competitors’ reaction based on real options approach. Savva and Scholtes [185] combine

the cooperative game theory and the real options theory. In the presence of uncertainty and

complete market assumption, the effect of the European type cooperative options, which are

exercised in the interest of partnership, and the non-cooperative options, which are exercised

by a single party based on its own interest, on the partnership synergies is analyzed by using

a dynamic programming model. Smit and Trigeorgis [203] integrate the real options approach

with the game theory principles to evaluate corporate investment opportunities under uncertainty.

The authors compare two strategies: competition and strategic alliance, through an example in

consumer electronics market and provide a number of insights. Thijssen [210], and Kong and

Kwork [117] focus on two players real options game with cases player-specific uncertainty, and

asymmetric sunk cost and revenue flows, respectively.

R&D Projects and Real Options

R&D projects have been the most common application area for real options. Benaroch and

Kauffman [21] analyze a case for evaluating information technology project investments by us-

ing the real options approach. Authors apply the Black-Sholes option pricing method for the

exercise time of an deployment option of POS debit services by Yankee 24. Panayi and Trige-

orgis [165] consider R&D projects with multi-stage decisions as compound options which are

combinations of sequential investment options. Each of these sequential call options is valid at

one of the three main stages: research, technical construction-development, and implementation-

commercialization. Two examples from the real life: information technology infrastructure

project of a telecommunication firm and an international expansion project of a bank are evalu-

ated by decision tree analysis with the real options approach.

The book Real R&D Options edited by Paxson [167] provides seventeen articles written by

various researchers on real R&D options from a wide perspective including real R&D options

with learning and real R&D options under incomplete information. Neely and Neufville [152]
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propose a hybrid method to evaluate product development projects. The authors assume that

there are two main sources of uncertainty: market dynamics, which could be reflected by finan-

cial options theory, and technical difficulties, which could be expressed by decision tree analy-

ses. Therefore, the hybrid method suggests inserting chance events reflecting market conditions

into decision tree which already includes chance events expressing technical difficulties and in-

vestment decision nodes. Next, the project value is calculated by discounting project values at

each node, which is determined based on option exercising decisions, by risk adjusted discount

rate. The discount rate is calculated by the financial options approach. Finally, the effects of

assumptions and parameters on the project value are checked by the sensitivity analysis.

Tsui [219] applies real options to value an innovative R&D project in the automotive indus-

try. First, uncertain demand is predicted by the Monte Carlo simulation. Then, a linear opti-

mization model is solved to obtain the optimal product portfolio for cases with and without the

innovative product at each decision node. The difference between the profit amounts promised

by each case determines the decision to exercise the option. Optimal exercise time is obtained by

the backward recursion method. Bekkum, Pennings, and Smit [15] analyze portfolios of R&D

projects by the real options approach. The authors show that if the projects are positively cor-

related, diversification is an effective tool for reducing the risk. On the other hand, strategies

such as synergies and spill overs should be considered rather than diversification under negative

correlation. In addition, they observe that if high-risk projects are considered in the portfolio,

then the overall portfolio risk is less sensitive to the correlation.

Real Options with Other Applications

Brosch [45] formulates the real options portfolio selection problem as a stochastic mixed integer

problem with dynamic budget and path dependency constraints while the objective function is

the expected value of the optimal real options exercise policy. The model accounts for manage-

rial flexibility, inter-project and intra-project options interactions. The model is solved according

to a simultaneous forward and backward looking procedure which introduces path dependency
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and backward recursion. However, due to the complexity of the problem, a closed form solution

cannot be obtained.

Chow and Regan [54] propose a model to determine the value of a network design deferral

option (NIDO). The basic approach assumes that the solution of the network design problem as

an investment, whereas NIDO is a deferral option on this investment. However, problems with

different assumptions are also considered. The optimal option exercising time is obtained by

solving a dynamic program with the network design subproblem according to the least squares-

Monte Carlo simulation algorithm. The model handles network investment under uncertainty;

however, it requires to network design subproblem to be solved at each time period. In addition,

accurate estimations of necessary parameters in the stochastic demand process might be difficult.

Graf and Kimms [135] employ an option-based procedure for the capacity control problem

for the strategic alliance of two airlines while the main decision is the number of seats allocated to

booking classes of each airline in the alliance. Miller and Bertus [147] argue the applicability of

the real options approach to license valuation in the aerospace maintenance, repair, and overhaul

industry.

Madlener and Stoverink [136] value a coal-fired power plant investment project by the real

options theory considering the market liberalization. Cheng, Lo and Lin [51] use compound

real options for cleaner energy development projects considering the lead time for power plant

investments and demand uncertainty.

Childs, Riddiough and Triantis [53] examine the effect of mixed uses and redevelopment

options on the property value. The model assumes that one of the two possible uses is active

at a moment. The instantaneous cash flow is represented as a function of the net instantaneous

cash flow per unit of improved properties and land usages. Property valuation is obtained by the

finite difference method. The authors provide mixed use and redevelopment options examples on

undeveloped and re-developable property. They observe that the contribution of the flexibility to

the property value is higher when the correlation between cash flows of asset usage types and/or

75



1.5. REAL OPTIONS

the re-development cost are lower.

Healthcare is another application area where the real options approach is becoming more

popular. The survey by Hartmann and Hassan [97] supports this idea. Özgül, Karsak and Ethem

[162] build a model to value a real world hospital information system (HIS) project with com-

pound options. The authors define HIS as a customized and upgraded enterprise resource plan-

ning (ERP) system which supports strategic service offering, resource and supply chain planning,

collaborative care support, patient management, enterprise management, and support capabili-

ties. The binomial lattice model is applied to real options pricing. The sensitivity analysis

supports that the method is robust against the uncertainty in parameters and interaction between

options. In addition, Palmer and Smith [164] use the real options approach to evaluate an ir-

reversible healthcare technology investment decision with options to defer. The authors also

address the applicability of the real option approach at the microlevel of the individual patient

treatment in which uncertainty and reversibility is observed.

New research partnership models between pharmaceutical companies and universities where

pharmaceutical companies collaborate with the universities in new product development pro-

cesses have become more popular in the pharmaceutical industry. Kinase Consortium at Uni-

versity of Dundee, Scotland, which is funded by an industry consortium on a five-yearly basis;

Centre for Drug Research and Development, Canada, which is funded by The Province of British

Columbia, some charitable foundations, and Pfizer Research; Imperial College Drug Discovery

Centre, UK; and Broad Institute, Cambridge,MA, USA, are some of the examples that Ches-

brough and Schwartz [52] mentioned. In addition, Washington University and Pfizer signed a

five-year $22.5 agreement in 2010 which brings scientist from both institutions to conduct re-

search jointly on a wide range of disease areas where the university has a significant scientific

expertise including Alzheimer’s disease, cancer, diabetes, asthma, and chronic obstructive pul-

monary disease in order to develop new drugs. Moreover, AstraZeneca and Vanderbilt University

are involved in a similar partnership with the purpose of developing new treatments for major
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brain disorders in January, 2013.

Traditional business models for R&D projects suggest developing a product from internal

technology and handling the production, marketing and selling processes using the internal

sources ([52]). The innovative research partnership models provide the university research labs

with the research funding, proximity to the real data, and expertise through a collaboration with

the pharmaceutical companies. Similarly, the pharmaceutical companies benefit from sharing

the high risk in R&D projects with the research labs and reallocating their research staff to some

other research projects.

In the traditional R&D project management models, the pharmaceutical company bears all

of the costs and risks from the first stage. However, in the innovative research partnership models

the pharmaceutical company (generally) makes some upfront payments to the university research

lab to finance the research activities, milestone payments when the drug completes a stage, or

a phase in the clinical trials stage; and royalty payments when the product is successfully com-

mercialized and being sold in the market. The university research lab conducts the research and

discusses its results with the pharmaceutical company. The pharmaceutical company has the

right to quit the partnership and stop funding the research if it thinks that the results obtained

are not promising (or because of any other reason). If the pharmaceutical company dissolves the

partnership, then the research lab can search for another partner to conduct the research together.

The fact that the new innovative research partnership models allow the pharmaceutical com-

panies to dissolve the partnership at certain points during the project life time provides them

with managerial flexibility. Vanhaverbeke et al. [220] mention that the pharmaceutical com-

panies benefit from delayed financial commitment, early exits reducing the downward losses,

and delayed exit in case it spins off a venture if they are involved in R&D projects in the open

innovation framework. In addition, Vanhaverbeke et al. [220] claim that this type of research

partnerships thus can be considered as a series of real options where the firms have the option to

terminate the partnership at each state. A real option is “the right, but not the obligation, to take
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an action in the future” ([4]).

Real Options with Parameter Uncertainty

Uncertainty involving real life systems reveals itself in various stages of the decision making

process such as valuation of input parameters and determining possible outcomes of decision

alternatives. In this section of the survey, we focus on the real options literature addressing pa-

rameter uncertainty.

Parameter Uncertainty in Revenue Management

The dynamic nature of the customer demand, row material and commodity prices, and exchange

rates and shifts in market competition in supply chain systems result in the need for the ability to

adapt to changes and the flexibility in decision making process. Burnetas and Rithcken [48] in-

vestigate the effect of contract options on the wholesale and retail prices of a product supplied by

a monopolist. The authors consider reordering contracts, which are call options providing the re-

tailer with the right to purchase additional products at a specified time for a pre-determined price,

and return contracts, which are put options providing the retailer with the right to return unsold

products for a previously determined salvage price. The manufacturer determines the terms of

the contracts and prices of the contract options in addition to the wholesale price. The authors

formulate the demand as a linear function of the wholesale price and a stochastic parameter (α)

such that the inverse demand function is formulated as:

S1 = α− δQ,

where δ > 0 and α/δ is the maximum size of the market. Uncertainty in the demand curve is

represented using a Bernoulli process for the two possible cases (high and low demand values)

with two possible realizations of the stochastic parameter α. the high and low values of the pa-

rameter α are formulated using the mean and the standard deviation of intercept of the demand

curve under the risk-neutral measure. The authors formulate problem for determining the opti-

mal wholesale price and contract options’ price as a standard Stackelberg game with complete
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information and the manufacturer being the leader. They conclude that the existence of the con-

tract options change the equilibrium prices in favor of the manufacturer. On the other hand, it

affects the retailer positively (negatively) when the volatility of the demand curve is high (low),

which is measured by the standard deviation of the intercept of the demand curve.

Nembhard, Shi and Aktan [154] point out the fact that there is a time gap between the time

when the real option is decided to be exercised and the time that the decision is implemented.

The authors investigate the effect of this time lag on the on the outcome of the switching (sup-

plier, production plant, etc.) decisions in a supply chain under exchange rate uncertainty. The

exchange rate, ei between the home country currency and that of foreign country i is assumed to

follow geometric Brownian motion as:

dei,t
ei,t

= µidt+ σidzi,

where µi is the drift of the exchange rate changes in the unit time, σi is the volatility of the

exchange rate, and dz is a standard Wiener disturbance term. The authors formulate the prob-

lem which values the switching option under exchange rate uncertainty as a stochastic dynamic

problem where at each stage the recursive value function is optimized in order to maximize the

profit by selecting an option for the given state variable (exchange rate) value and the option

selected in the previous stage. The option valuation process is handled via modeling exchange

rate movements by two alternative approaches, namely, a multi-nominal lattice approach and a

Monte-Carlo simulation. They observe that the option value decreases as time lag increases.

In addition, the proposed Monte Carlo simulation method provides closer approximations to the

true option value than the proposed lattice approach. Moreover, the proposed Monte Carlo simu-

lation handles the valuation process for the cases with large number of variables more efficiently

than the lattice approach does.

Fujita [84] re-formulates the international trade model considering the stochastic exchange

rates using the real option approach and measure the effect of foreign exchange rates on the
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exporting country. The world price is is formulated by a stochastic equation as:

dpt
pt

= αdt+ σdZ,

where α, σ, and dZ are drift, variance and an increment of a Wiener process, respectively. The

profit of a firm is calculated as the difference between the revenue cost of labor input and dis-

counted with a constant factor. In addition, utility value of a household is calculated as sum of

the wage revenue, disutility of labor, and dividend obtained from firms. Equilibrium conditions

for labor are obtained by the first order condition for the utility maximization and equilibrium

wage is formulated accordingly. Next, the critical cut-off price (the foreign exchange rate value

of a firm’s country where the firm exports if the world price is higher than this value) is calcu-

lated using the standard real options theory and assuming that each firm determines its time to

export based on the equilibrium wages that it will encounter. The author observes that a higher

uncertainty on foreign exchange rates leads to a higher growth rate and a variance of the welfare

of the exporting country.

Berling and Rosling [24] consider the systematic risk of the stochastic demand and pur-

chase price and analyze their effect on the inventory policies in a real options framework. The

stochastic Wiener process is used to model the stochastic factors such as demand and price,

and two inventory models (a single-period newsboy model and an infinite horizon model with a

fixed set-up cost) are employed. The authors aim to maximize the market value of a firm which

is calculated according to Consumption-Capital Asset Pricing Model (the reader is referred to

Breeden [40] for further information) and the firm’s inventory policies. They observe that the

systematic purchase-price risk has a notable effect on the inventory policies (re-order point and

order quantity) whereas that of the systematic risk of stochastic demand is negligible.

Bengtsson and Olgaher [22] use the real options approach to value the product-mix flexibility

considering the uncertain demand, correlation between products, and relative demand distribu-

tion within the product-mix. The authors formulate the problem which maximizes the total
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contribution margin of the production subject to production capacity and demand constraints as

an optimization problem with a piecewise linear objective function and linear constraints, where

the decision variables are production amounts of all product types in different product lines in

a multi-period time horizon. The objective function is represented as the payoff function of the

real option which gives the right to produce a pre-determined product in a pre-determined line

with a given set-up cost serving as the strike price of the option in the option valuation process.

The authors formulate the demand for each single product with a mean reverting stochastic dif-

ferential equation. The demand equations include the correlated Wiener process terms in order

to reflect the correlation between the demand values for each product type. The authors use a

Monte Carlo simulation method, where the optimal product-mix is determined by solving the

optimization problem maximizing the total contribution margin the for given simulated demand

values at each iteration. They repeat this process several times and estimate the value of the op-

tion using the pay-off values over all simulation runs. In addition, the authors address the need

for using an equilibrium model such as in-temporal capital asset pricing method (ICAPM) while

using the traditional option pricing method.

Bollen [36] criticizes the usage of stochastic differential equations with constant expected

growth rates for demand and price, and the methods underestimating the product life cycle mod-

els, especially in high-technology goods market. The author values a capacity extension option

using a regime switching stochastic process for a product type. The demand for the product at

time t, QDt , is formulated as a linear function of price, Pt, and a stochastic demand parameter θt

as:

QDt = θt − λPt.

The stochastic parameter θ is assumed to be normally distributed with parameters changing

across a growth and a decay regime. The author uses a dynamic programming approach assum-

ing that the product cycle starts with the growth regime, the decay regime follows the growth
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regime and the probability of switching over is constant. At each stage, the capacity update de-

cision is made according to the maximum project net present value criterion. The value of the

real option is calculated using the optimized pay-off values over all simulation iterations.

Parameter Uncertainty in Energy Markets

Tseng and Lin [218] consider the real option to commit or decommit a generating unit at a power

plant. The decision to exercise the real option depends on the fuel and electricity prices because

the power plant consumes a particular fuel for fuel generation necessary for the electricity pro-

duction. The authors assume that the fuel and electricity prices follow correlated geometric

mean reverting processes and propose a lattice framework to represent the price movements and

convergence property of the joint distribution. The option valuation problem is formulated as a

stochastic dynamic programming.

Thompson, Davison and Rasmussen [211] propose an algorithm to value hydroelectric and

thermal power generation plants and to determine the optimal operating strategies in deregulated

electricity markets. The electricity price is subject to uncertainty because of the competition

in the deregulated market and dynamic nature of the demand and production cost. The authors

model the price and cost via mean reverting stochastic differential equations with jumps. The

electricity price P is formulated as:

dP = µ1(P, t)dt+ σ1(P, t)dX1 +
N∑
k=1

γk(P, t, Jk)dqk,

where µ, σ, and γks can represent any function of price and/or time, and the Jks follow some

other distributions Qk(J). dX1 is the standard increment of Brownian motion; however, dqks

are Poisson processes with two possible values (0 and 1) defining the price jumps. In addition,

the authors consider other sources of uncertainty including the water inflow, power function,

cost of fuel, lead time in power generation, control response time lags, and output rates. The

authors solve the equations using current complex numerical methods and determine the optimal

operational strategies along with the expected cash flow.
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Tsai and Hung [217] address the demand uncertainty in Internet retailing and propose a

dynamic pricing method integrating the real options (RO) approach with goal programming

(GO) and the analytic hierarchy process (AHP) for the revenue management problem of Internet

auctions. The RO is used to determine upper and lower bounds of the value of each auction

commodity; the AHP is employed to calculate the increment and decrement volumes for each

commodity based on some criteria such as demand growth, market share, life cycle, competitive

power, and long term return/volatility ratio. Timely quota increment and decrement values are

calculated based on AHP weights and updated as new information is obtained. A goal program-

ming approach is used to minimize the penalties resulting from the under and over achievements

of the targeted goals while satisfying the available budget, limited capacity, and AHP process-

related constraints where quotas of the auction commodities, increment and decrement of the

initial quota, deviation variables denoting under and over achievement of the targeted goals on

the revenue are the decision variables. The authors observe that a firm can increase the prof-

itability of its Internet auction practices by following the inferences obtained from the proposed

method since it incorporates the risk information.

Parameter Uncertainty in Strategic Investment Decisions

Dangl [64] investigates the real options approach for a strategic investment problem of a firm

where the optimal timing and capacity of an irreversible investment have to be determined under

demand uncertainty. The author considers an option to invest a production plant whose maxi-

mum capacity is given (m) and the inverse demand function is formulated as :

P = θ(t)− δq), P ≥ 0,

where q is the output of the firm, P is the price, and δ is the effect of unit change in quantity to

the price. The parameter θ is the demand shift parameter and follows a multiplicative geometric

Brownian motion as:
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dθ = αθdt+ σθdz,

where dz denotes a Wiener process, α is the expected relative drift of θ per unit time, and σ2

is the relative variance per unit time. The problem of determining the timing and size of the

capacity extension decision is solved using a stochastic dynamic programming approach based

on maximum net present value criterion.

Cortazar, Schwartz, and Salinas [61] consider a firm, a copper production plant, which has

to obey an environmental regulation schedule limiting the disposal amount. The environmen-

tal impact of the production facilities can be lessened by investing in R&D projects and new

technologies, which are assumed to be irreversible investments and to increase the operational

costs; otherwise, the production amount should be kept in low levels to match the regulations.

The authors use the real options approach to determine the optimal output price level at which

the investment option on environmental technologies is exercised. The Geometric Brownian

motion is used to formulate the output (copper) and input (copper concentrate) prices. The au-

thors propose a model which lets continuous environmental investments at each point of time

where the environmental investment schedule and the plant production levels are the decision

variables. The original problem does not have an analytical solution; however, it can be solved

by numerical methods. If the input (concentrate) price is assumed to be a fraction of the output

(copper) price, then only one uncertainty source of price remains in the model and the problem

can be solved analytically. The authors conclude that the environmental regulations might cause

production plants under emission restrictions to decrease their output levels instead of investing

in environmental technologies when the output price volatility is high.

Cortazar, Gravet, and Urzua [60] point out the fact that the real options valuation is more

cumbersome than the financial options valuation by addressing the longer time to maturity and

the higher risk exposure during this longer time period, and real investments’ nature leading to

a more complex set of interactive American options. They investigate a computer-simulation
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based least squares estimation method (LSM) incorporating a three factor stochastic process

to model commodity prices to efficiently and effectively value the American type real options

on coal mine investments with initiate, temporarily chase, and completely stop the production

alternatives. The authors conclude that the simulation based real options valuation methods

are promising tools which provide a higher degree of freedom to use rigorous models than the

classical methods do without the concern of obtaining analytical solutions.

Schwartz and Smith [190] use a two-factor stochastic commodity price model that reflects

the mean-reversion in the short-run prices and the uncertainty in the equilibrium price level to

which prices converge in the long-run. The changes in the equilibrium price level is formu-

lated according to the Geometric Brownian motion with drift expressing the expectations of the

consumption of the existing supply, improvements in production technologies, new commodity

reserve discoveries, inflation, and political and regulatory effects. The Mean-reverting Ornstein-

Uhlenbeck process is used to model the short term deviations (the difference between the spot

and the equilibrium prices) which revert to zero. These deviations result from some short-term

changes in demand, supply, or price dynamics. Kalman Filtering, an iterative procedure for esti-

mating unobserved state variables based on observations whose values are affected by these state

variables, is employed. The authors use the proposed stochastic commodity pricing approach in

a real options valuation problem where the decision maker has a right to build an oil production

plant which starts producing oil after a determined time lag. The problem to determine the value

of the investment and the optimal exercise strategy is solved by a discrete-time, infinite-horizon

dynamic programming where at each period the decision maker either exercises the option to

develop the production plant or postpones the decision till next period. They observe that the

proposed method provides closer commodity price estimations and, therefore, real options valu-

ations than the benchmark models.

Parameter Uncertainty with Jump-Diffusion Process and Fuzzy Uncertainty Sets
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Martzoukos and Trigeorgis [142] propose an asset valuation approach where the underlying as-

set follows a mixed jump-diffusion process with multiple jumps each of which is assumed to

be independent of each other and to have a log-normally distributed jump-size and a Poisson-

distributed inter-arrival time as:

dS

S
= µdt+ σdZ +

N∑
i=1

(kidqi),

where S, µ, σ, dZ are the stochastic asset price, drift and instantaneous standard deviation

(without jumps’ effect), and an increment to a standard Wiener process, respectively. The third

term in the stochastic differential equation represents the total effect of the rare events each of

which has an annual frequency λi and a jump counter dqi. dqi becomes 1 with probability λ1dt or

0 with probability (1−λ1)dt. The authors provide a general valuation framework and analytical

solution for the European type real options and a Markov-chain solution approach for valuing

both the American and the European type real options incorporating the proposed asset pricing

model. The authors think that the proposed asset valuation with multiple jumps method leads to

more realistic option values than the prevailing methods for both financial and real options since

it is more capable of capturing the price dynamics.

Secomandi [193] investigates the research question: “What is the structure of the optimal

inventory-trading policy, both in terms of in-terms of inventory availability and prevailing com-

modity price, when the storage asset features both space and capacity constraints?” The author

considers the exogenous Markov process to model the commodity spot price evolution. The

decision maker has control over both operational and inventory trading decisions which corre-

sponds to capacity injection/withdrawal. According to the author, decoupling these two types

of decisions is generally tough. The author proposes an optimal trading policy at each iteration.

The operational decisions and capacity injection/withdrawal decisions depend on both the spot

price and the inventory level. In other words, the author links these two decisions considering the

inter-dependence structure and shows the value of such an interface using real data from natural
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gas industry.

Parameter Uncertainty in R&D Projects

Huchzermeier and Loch [100] consider five types of operational uncertainty, namely, the market

pay-off, budget, performance, market requirement, and schedule uncertainties. They evaluate the

impact of these operational uncertainties on the value of managerial flexibility in R&D projects

using the real options approach incorporating the stochastic dynamic programming method. The

authors observe that uncertainty may decrease the probability of real options being exercised;

therefore, decrease the value of the flexibility. In addition, the value of the flexibility increases

with the uncertainty level if the decision is made after uncertainty is cleared up and before costs

and revenue augment.

Santiago and Vakili [184] discuss whether the value of a R&D project increases or not as

uncertainty increases. The authors consider real options with three decision alternatives, namely,

continue, improve, and abandon. They formulate the performance state of the project at the end

of the stage t as:

Xt+1 =


Xt + k(ut) + wt if ut = continue or improve,

stopped if ut = abandon

where wt is the uncertainty of the development process during stage t, and ut is the deci-

sion made at the beginning of the stage t and k is a function with binary outcomes such that

k(continue) = 0 and k(improve) = 1. The development uncertainty parameter is a random

variable such that wt = i/2 with probability p/N and wt = −i/2 with probability (1−p)/N for

i = 1, ...., N , where the parameter N can be counted as the development uncertainty measure.

The authors formulate the problem of determining the optimal series managerial decisions under

project development uncertainty as a dynamic programming model. The authors conclude that

no general statements about the effect of increasing uncertainty on the R&D project value can

be made when the source of uncertainty is the project development uncertainty.
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Wang and Hwang [221] mention that the traditional financial analysis approaches underesti-

mate the R&D project value because they ignore the fact that long lead times of R&D projects

decrease the credibility of the original data collected in order to determine the optimal portfolio

of R&D projects. The authors name this type of information corruption“R&D uncertainty” and

suggest that a fuzzy integer portfolio selection model can overcome this deficiency. The authors

combine compound options pricing model introduced by Geske [89] with the fuzzy set theory

in order to calculate the R&D projects’ value under R&D uncertainty. Next, they transform the

fuzzy integer programming problem into a crisp mathematical model using a qualitative possi-

bility theory and the new model can be solved by an optimization technique.

Parameter Uncertainty and Game-Theory

Kogut [116] points out the difficulties in developing a marking position and competitive power

for a single firm and the collaborations in the joint-ventures form to overcome such difficulties

in practice due to risk sharing and reduction in overall investment costs. The ownership struc-

ture of the joint-venture might change with assignments of right to buy and sell equity in the

venture. In other words, one party might have the right to buy the ownership interest of the other

party. The value of these options depends on the value of the venture. The author formulates

the venture value as the sum of the value of its current assets and that of the embedded options.

Therefore, the valuation of the venture and determining the timing of the acquisition require the

valuation of embedded options and the asset values over time while the acquisition options itself

is considered as a real option to expand. The author use product market signal which proxy the

venture’s valuation and determines the optimal time to exercise the acquisition option when the

estimated venture value increases the base venture forecast value.

Pennings and Lint [168] use the real options approach to find the optimal timing and region

to roll-out a new product with known unit cost and stochastic profit margin and demand follow-

ing the correlated geometric Brownian motion considering the market competition. Therefore,

the cash flow value at each time unit is represented by a stochastic equation and financial options
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valuation method is used to calculate the value of the real option which gives the right to roll-

out a new product. The authors provide a case study on Philips Electronics introducing CD-1to

the market and conclude that the market and technology uncertainty impact the value of phased

roll-out strategy. Lin and Wu [128] consider an export-oriented manufacturer planning to the

transfer production location from a domestic country to a foreign country. The exchange rate is

assumed to follow a geometric Brownian motion. The problem of determining the optimal labor

and row material allocation decisions along with production shift decision (American type op-

tions) is formulated as a stochastic control problem and dynamic programming and the Lagrange

multipliers approaches are used to obtain the productive value of the exporter’s productive value.

Schwartz and Zozaya-Gorostiza [192] investigate the ways of evaluating the IT development and

acquisition projects considering the technical and input cost and cash flow uncertainties in the

real options framework. The authors propose more sophisticated and capable contingent claim

models to value the IT development and acquisition projects than the models in the existing

literature.

Murto, Näsäkkälä and Keppo [148] focus on the valuation of the investment projects (with

the purpose of adjusting production cost and capacity) in a oligopoly market for a homogeneous

commodity. The authors aim to determine the optimal timing of the granular investment project

considering the oligopolistic competition and price uncertainty. The price uncertainty arises from

the exogenous uncertainty and the new capacity investments’ impact. Market demand evolves

stochastically and the firms move sequentially. The authors first obtain a unique Markov-perfect

Nash equilibrium, then a Monte Carlo simulation is run to generate demand realizations over

time which will be used to determine the values of the firms as a result of their investment

decisions.

Kong and Kwok [117] propose a modeling framework to analyze the game between two

firms competing for the optimal entry in a project. The sunk cost and cash flows of the in-

vestment are asymmetric and stochastic for both firms. The authors’ target is determining the
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value of the real investment options and optimal entrance time. The cash flows for each firm

is assumed to be a unique multiple of a the base cash flow evolving according to a Geometric

Brownian motion process. In addition, the sunk cost of the investment for each firm is adjusted

(and become asymmetric) based on its cash flow. The authors follow a typical dynamic game

backward solution approach; that is, they first solve the problem for the follower firm, then the

leader’s problem is solved.

Clark and Easaw [55] study the problem determining the optimal access price to enter the

natural monopolistic networks under cash flow uncertainty. The price of the commodity and the

demand evolve according to a Geometric Brownian motion. The entrant firm has an option to

postpone entrance where entrance to the network corresponds to undertaking the entire invest-

ment, since the network is a natural monopoly. The value of the option to invest is calculated in

the real options framework.

Siddiqui and Takashima [201] study games of lumpy capacity expansion projects under out-

put price uncertainty with different settings including monopolistic and duopolistic markets. Se-

quential decision making for capacity expansion offers managerial right to defer the exercising

investment option until it is in their best interest to do so based on market competition and the

output price. The industry output price (Pt) is formulated as:

Pt = xtD(Kt),

whereKt,D(.) and xt are the installed capacity, demand (as a function of installed capacity), and

the exogenous shock to demand, respectively. In addition, the exogenous shock to demand is as-

sumed to evolve according to a Geometric Brownian motion. The sequential capacity expansion

decisions are determined by a dynamic programming problem in the case of the monopolistic

market. In the duopolistic market case, a dynamic sequential game approach is used to determine

the optimal timing for the capacity expansion decision. The authors provide insights about the

effect of the uncertainty on the value of flexibility for both cases.
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Lukas, Reuer, and Welling [134] study mergers and acquisition deals with involving contin-

gent earn-outs in a game-theoretic real options approach. The authors consider a buyer and a

target firm both of which are risk-neutral. The target firm’s cash flows are assumed to follow a

Geometric Brownian motion. Sunk transaction costs occur in the acquisition process; however,

the buyer firm enjoys the possible synergies and future cash flows of the target firm later. Possi-

ble synergies are modeled as a positive, monotonously increasing, and a concave function. The

problem of determining the optimal earnout and initial payment conditions and the timing of the

acquisition is solved by means of dynamic programming.

Martzoukos and Zacharias [143] develop a real options framework to study a research joint

venture where two firms have to decide on both the optimal level of coordination in R&D ac-

tivities and the optimal level of effort and money spent on information acquisition activities

considering the spillover effects. In other words, each firm holds an investment option and aims

to maximize the profit potential, though information acquisition or investing in R&D projects

to improve the potential for cost reduction and revenue increase. The authors propose a game

theoretic approach allowing firms to coordinate their R&D activities due to the spillover effect

between the firms’ R&D actions. A two-stage closed-loop stochastic game is proposed to deter-

mine the optimal set of decisions for the firms and the values of the embedded real options.

Parameter Uncertainty with Information Asymmetry

Shibata [200] considers the effect of uncertainty on real options valuation by using a model

extended version of the model that Bernardo and Chowdhry [25] employ. While the standard

real options pricing models consider only profit uncertainty, Shibata’s model accounts for three

uncertainty sources: profit, information, and estimation uncertainty. Information and estimation

uncertainty results from incomplete information. The main motivation for the paper is the fact

that the cumulative profit of the initial action at time t can be observed; however the current

realized value of underlying (state variable) is not determined certainly. The author provides the

effect of the three uncertainty sources on real options value.
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Bellalah [16] provides a valuation method for lease contracts in a real options framework

under incomplete information. The author presents the term structure of lease rates under incom-

plete information and a framework for the equilibrium lease rate. The incomplete information

modeling is inspired from Grenadier [92] where two sources of uncertainty (demand shocks and

construction costs shocks) are considered. Bellalah computes the equilibrium rents on leases

with options to renew and options to cancel. Löffler, Pfeiffer, and Schneider [131] examine the

vendor selection process with several key variables including the timing of the contracting, trans-

fer payments, and set-up, switching and abandonment decisions in an asymmetric information

setting when a new supplier enters the market. The information asymmetry arises from the fact

that new entrant has imperfect information about its costs whereas the incumbent supplier has

perfect information about its own costs. The buyer selects one of these two suppliers to form

a supply chain. The authors focus on the impact of the asymmetric information on the timing

of contracting with the new entrant firm and that of the current supplier on the buyer’s set of

actions.

Oh and Özer [159] study time in forecast information sharing and decision making under

uncertainty with multiple decision makers having asymmetric information. Specifically, the

authors focus on the problem of a supplier extracting credible forecast information from a manu-

facturer to plan its capacity investment decision. The supplier has an option to defer the capacity

investment decision and obtain more information from the manufacturer which will decrease

the degree of uncertainty that the investment decision is subject to. On the other hand, wait-

ing for further information leads to tighter deadline for the capacity expansion project which

increases the cost of the project. Specifically, the supplier decides on timing the capacity ex-

pansion, whether to corporate with the manufacturer for information sharing (at a cost), and size

of the capacity expansion. The authors represent the degree of demand uncertainty and that of

information asymmetry by parameters whose value changes by time and propose a model for

the dynamic evolutions of asymmetric forecasts. In addition, the value of the option to refer the
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capacity expansion is valued based on proposed forecasting approach.

1.6 The Diffusion of Innovations and the Bass Model

1.6.1 Diffusion of Innovations

According to Rogers [176], the diffusion of innovation is achieved by propagation of the innova-

tion through certain communication channels by time in a social system. Geroski [88] mentions

that the adaptation of new technologies by time usually follows an S-curve. The author classi-

fies the models explaining the adaptation rate into four main groups: epidemic models, probit

models, models of density dependence, and models of information cascades. Epidemic models

generally assume that the diffusion of innovation occurs by means of direct contact with the

previous adopters or by imitating them. In addition, it depends on the premise that the potential

adopters form a homogeneous population in terms of their needs and willingness to adopt. How-

ever, the probit models address that different potential adopters have heterogeneous preferences

and abilities to adopt the new technologies at different times. The models of density dependence

explain adoption of new technology and finally limits its benefits by mentioning the balance of

the impacts of legitimation and competition. Finally, the main idea behind the models relying on

information cascade is that the adopters make sequential decisions rationally based on the infor-

mation that they have. In addition, the subsequent speed of the diffusion of the new technology

depends on the initial choice of the adopter.

Mahajan, Muller, and Bass [137] mention that these communication channels are both mass

media and interpersonal communications. The diffusion of innovation was first introduced to the

marketing science in 1960s by researchers including Arndt [5]; Bass [9]; and Frank, Massy, and

Morrison [83]. Among these studies, a new product development model suggested by Bass [9]

and its revised versions used in estimating diffusion of innovation in various markets including

retail service, pharmaceutical industry, consumer durables market, and industrial technology

93



1.6. THE DIFFUSION OF INNOVATIONS AND THE BASS MODEL

([137]). We will focus on the Bass model for a new product development.

The Bass model of diffusion considers two types of potential adopters, namely innovators

and imitators. According to Tidd [104], the diffusion process occurs in the epidemic form for

imitators; however, the innovators are not subject to social emulation. Therefore, the adaptation

of the innovators in early periods is followed by that of the imitators in later periods. This leads

to a skewed S-curve for the adaptation rate for the whole population.

1.6.2 The Bass Diffusion Model

The Bass model of diffusion considers two types of potential adopters, namely innovators and

imitators and assumes that the two communication channels used to influence the potential

adopters are the mass media and word of mouth. According to Tidd [104], the diffusion process

occurs in the epidemic form for imitators; however, the innovators are not subject to social emu-

lation. In other words, the innovators are impacted only by the external influence (mass media),

whereas the imitators are impacted by the internal influence (the word-of-mouth). Therefore, the

adoption of the innovators in early periods is followed by that of the imitators in later periods.

This leads to a skewed S-curve for the adaptation rate for the whole population.

According to Lilien, Rangaswamy, and Bruyn [127], the Bass model can estimate the long

terms sales patterns of new technologies for the following two cases:

• The new product has already been introduced to the market and first few periods’ sales

amounts have been observed,

• The product has not been introduced to the market; however, an existing product’s diffu-

sion process can be used as a proxy for the product of interest.

The basic Bass model also assumes that a member of the population can adapt the product only

once and the probability of an adoption at time t can be modeled as a hazard rate. Let us denote

the density function of time to adoption as f(t) and the cumulative fraction of adopters at time t

as F (t), then the hazard function leads to the following equality:
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f(t)

(1− F (t))
= p+ qF (t),

where the parameter p stands for the external influence and the parameter q reflects the internal

influence resulting from earlier adopters. The function F (t) is assumed to be a non-decreasing

function and approaches to 1 as t gets larger. In addition, it assumes that the process starts with

no initial adopters, in other words F (0) = 0 and f(0) = 0.

If q is a zero, f(t) follows the negative exponential distribution ([137]). Lilien, Rangaswamy,

and Bruyn [127] interpret that if q ≥ p, then the innovation influence is dominated by the

imitation influence and the plot of f(t) versus time has an inverted U shape. Otherwise, the

innovation influence prevails the imitation influence and the highest amount of sales are observed

at the introduction and the rate of adoption decreases as time passes. In addition, a decrease in p

leads to a longer time period to realize the sales growth for the innovation. Furthermore, if both

of p and q are large, the adaptation rate takes off rapidly and falls off quickly after reaching its

peak point ([137]).

If the parameter m stands for the potential number of ultimate adopters, the number of

adopters at time t, S(t), and the cumulative number of adopters at time t, C(t), are represented

as:

S(t) = mf(t), and

C(t) = mF (t).

Next, we can express the relationship between f(t) and F (t) as:

S(t) =
dC(t)

dt
= p[m− C(t)] +

q

p
C(t)[m− C(t)].
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The second term represents the number of new imitators, whereas the second term rep-

resent the number of new innovators at time t. After some basic mathematical operations

f(t), F (t), S(t), and C(t) are expressed as:

f(t) =
(m+ q)2

p

e−(p+q)t(
1 + q

pe
−(p+q)t

)2 ,

S(t) = m
(m+ q)2

p

e−(p+q)t(
1 + q

pe
−(p+q)t

)2 ,

F (t) =
1− e−(p+q)t

1 + q
pe
−(p+q)t

,

C(t) = m
1− e−(p+q)t

1 + q
pe
−(p+q)t

.

In addition, the period when the sales amount peaks (T ∗), the cumulative and marginal

amounts of sales at the peak time are derived by further differentiations as follows:

T ∗ = − 1

p+ q
ln

(
p

q

)
and S(T ∗) = m

(
1

2
− p

2q

)

1.6.3 Parameter Estimations for the Bass Model

The usage of the basic Bass model requires estimating three parameters: m, p, and q. As it

is mentioned in Section 1.6, the Bass model can estimate the sales of an innovative product

under two conditions: the product has already been introduced to the market and some sales

observations are available or the product has not been launched yet; however, another product

which has some similarities with the original product is in the market and is used as a proxy.

In the first case, historical data sets are used for estimating the parameters. Time invariant

estimation procedures such as the ordinary least squares (OLS) ([228]) and maximum likelihood
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estimation procedures ([187]) are the main methods used by researchers. However, Hyman [103]

points that the estimates for these parameters depend on the number of data points used in the

estimation procedure. Moreover, Srinivasan and Mason [202] show that reliable estimations for

the parameters can be obtained when the available data set is large enough to cover the peak of

the rate of adoption curve. Therefore, time-varying estimation procedures have been proposed

lately including Bayesian estimating procedures and adaptive-filtering methods. Sultan, Farley,

and Lehmann [78] update the initial estimates of the parameters p and q after obtaining new

estimates of them by taking weighted sum of these two estimates. Bretschneider and Mahajan

[43] propose a time-varying parameter estimation method based on a feedback filter.

In the second case, where there is no data available, parameters can be estimated by expert

judgments or using historical observations of the diffusion process of an analogous product.

1.6.4 Extensions of the Basic Bass Model

Kalish and Lilien [108] address the impacts of perceived product quality and information level

in the market place (advertisement) in a period on the number of new adopters in that period.

Bass, Krishnan, and Jain [10] reformulate the relationship between f(t) and F (t) so that the new

formulation incorporates pricing and advertising decisions as:

f(t)

(1− F (t))
= (p+ qF (t))x(t),

where x(t) is a function of price (P (t)) and advertisement expenditure (A(t)) at time t and

formulated as:

x(t) = 1 + α
[P (t)− P (t− 1)]

P (t− 1)
+ βmax

(
0,

[A(t)−A(t− 1)]

A(t− 1)

)
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α : the parameter reflecting the diffusion process’s sensitivity

to the fractional chance in the product price,

P (t) : the price of the product in period t

β : the parameter reflecting the diffusion process’s sensitivity

to the fractional chance in the money spent on advertisement,

A(t) : the amount of money spent on advertisement in period t
Kamrad, Lele, and Siddique [110] propose a stochastic model of innovation diffusion and de-

termine the optimal advertisement and pricing policies using a stochastic dynamic programming

approach.

Kumar and Krishan [122] reformulate the adaptation rate formulation so that one country’s

diffusion process impacts the other. The authors consider the lag-lead, lead-lag, and lag-lag

(simultaneous) impacts of inter-country interactions on the diffusion processes. The diffusion

rate of country i is formulated as:

fi(t)

(1− Fi(t))
= (pi + qiFi(t))xi(t), i ∈ {1, 2} where

x1(t) = 1 + b21
dF2(t)

dt
and x2(t) = 1 + b12

dF1(t)

dt
.

Thus, the cumulative fractions of adopters in both countries are formulated as:

F1(t) =
1 + exp(−(p1 + q1)(t+ b21F2(t))

1 + q1
p1
exp(−(p1 + q1)(t+ b21F2(t))

,

F2(t) =
1 + exp(−(p2 + q2)(t+ b12F1(t))

1 + q2
p2
exp(−(p2 + q2)(t+ b12F1(t))

.
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Chapter 2

Positioning and Contributions

2.1 Positioning

This dissertation deals with risk management especially in portfolio management and revenue

management problems. In Chapter 3 which is named “Portfolio Management with Quantile

Constraints”, we are interested in a portfolio management problem where the risk is defined

as the negative of the quantile function for a given probability level. We propose an iterative,

data-driven approximation to the problem which maximizes the expected return and keeps risk

below a specified target. This work could be applied to revenue management problems as well,

such as airlines admission problems. In Chapter 4, which is labeled as“Portfolio Management

with Moment Matching Approach”, we use a moment matching approach, which is widely used

in communication systems technologies, to approximate portfolio return and define risk as the

probability of the portfolio return’s being less than a specified level. We provide a tractable

mathematical formulation to the problem minimizing the probability of having the portfolio re-

turn value less than a specific target while keeping the expected portfolio return value not less

than a determined value. We transform the mathematical model of problem which has a non-

linear objective function of the decision variables into a two stage problem which reaches the
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optimal solution by solving two convex nonlinear problems. In addition, we provide an al-

gorithm to improve the accuracy of the log-Normal sum approximation on the left tail of the

portfolio return distribution. In Chapter 5, which we name “New Product Launching Decisions

with Robust Optimization”, we address the uncertainty involved in the introduction of innova-

tive products to a regional market considering an innovative company which seeks the optimal

product launching schedule under periodic investment budget limitations. In addition, the inno-

vative company seeks a partner company for each product in order to establish the infrastructure

for the product. We use the new product growth model introduced by Bass [9] to formulate the

demand for each product. Moreover, each potential partner companies’ willingness to accept the

collaboration offer is modeled by the logit choice model. We handle the uncertainty involved in

the model parameters by robust optimization techniques. Furthermore, we extend our approach

to the case where the innovative company has an option to update the size of the contract signed

by a partner company for an innovative product. In Chapter 6, which is called “Log-Robust

Portfolio Management with Factor Model”, we incorporate robust portfolio optimization with

asset pricing with factor models. The portfolio risk is defined as the uncertainty resulting from

factor modeling used for asset pricing and stochastic processes used for pricing the factors. We

aim to maximize the worst case portfolio return given a budget of uncertainty.

Stock returns are known to be highly volatile and have heavy left tailed distributions as

Jansen and Vries [106] mentioned. Traditional risk measures such as variance and semi-variance

might not be so productive against occasional market crashes. Quantile is a risk-adjusted return

measure, and relatively stable. However, representing the quantile function in an optimization

problem in a tractable manner is a difficult task. As Rodriguez [175] mentioned, the Ranking

and Selection, Gradient-based procedures, and integer programing-based models are some of

the methods applied in the literature. However, these methods might require too much time

or computational effort. Therefore, we investigated a data driven approximation method which

converges to a solution close enough to the optimal in few iterations.
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The Fenton-Wilkinson [79] method, which is well known in communication systems tech-

nologies literature, provides a closed form formulation for the log-Normal sum distribution. In

other words, if it is applied to log-Normally distributed stock returns, the portfolio return is rep-

resented as a single log-Normally distributed random variable which lets us formulate tractable

optimization models. In the finance literature, this approach is applied to basket options, which

is a collection of several European style call options, by researchers such as Henriksen [98], and

Hakala and Wystup [94]. Our study covers both equities in the portfolio optimization problem

and the basket options in the option design problem.

Bass [9] models the diffusion of innovation considering two types of diffusion channels:

mass media and word-of-mouth. The new product development model proposed by Bass (the

Bass diffusion model), defines two types of potential adopters, namely innovators and imita-

tors. The innovators are assumed to be influenced by the external sources such as mass media;

whereas, the imitators are assumed to be affected by the internal sources such as the customers

who have already adopted the innovation. The Bass model forecasts the rate of adoption and

periodic sales by using estimations for three parameters, namely the coefficient of innovation,

that of imitation, and the potential number of ultimate adopters. These parameters are estimated

before the diffusion process starts; therefore, their estimations are subject to uncertainty.

According to Lauviere, Hensher and Swait [125] individuals’ choices are determined by

some factors, such as habit, inertia, experience, advertising, peer pressure, environmental con-

straints, accumulated opinion, household and family constraints, etc. Discrete choice methods

have been widely used by researchers to examine consumer choices and forecast customer de-

mand in revenue management problems. Another application area for the discrete choice models

is customized-pricing in business-to-business environments where one side of the contract does

not know the offer response function of the other side of the contract but has some observations

on its previous offers to it and the results of these offers. The parameters of these discrete choice
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models are estimated based on available data or managerial judgments. Therefore, the parame-

ters of the discrete choice model of a firm in this type of business-to-business settings are subject

to uncertainty.

As Trigeorgis [216] explains, the notion of real option arises from the managerial flexibility

that allows the managers to update their decisions at a certain time period according to the infor-

mation revealed up to that point so that they can defer, extend, or abandon a project during its

life-time. According to Amram and Kulatilaka [3], the real options approach is the most applica-

ble when the first course of decisions are given in the presence of large uncertainty and there will

be information updates, and mid-course strategy correction opportunities. This definition suits

well to the case where a company plans to launch an innovative product and determines the size

of the infrastructure-outsourcing contracts related to the product by estimating demand-related

parameters before the market meets the product. The company will obtain some observations

and information on the actual demand as time progress and will be able to update the size of the

outsourcing contracts for the product’s infrastructure.

In Chapter 5, we use the Bass diffusion model forecast the diffusion pattern of an innovative

product, and the logit choice model to estimate the potential partner companies’ response to a

partnership offer. We address the uncertainty on the parameters of both of the models with robust

optimization techniques. Furthermore, we use the real options approach to value the managerial

flexibility of updating the contract size with the partners after obtaining information on the actual

demand for the products.

Factor modeling is a common asset pricing method. Famous Fama-French three factor model

[77] is an example for equity pricing with factor models. Other equities’ returns, stock market

indexes, currency rates, commodity prices could be used as factors while pricing an equity. Even

though factor loadings (coefficients of factors) are known, future prices of factors are subject to

uncertainty. In both literature and practice, stochastic processes such as Geometric Brownian

Motion (GBM) and OrnsteinUhlenbeck Processes (OUP) [85] are used to model and forecast
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future levels of factors. GBM is mostly used for equity pricing and it is not mean reverting.

Kawas and Thiele [112] use the traditional log-Normal model (see Hull [101]) which depends on

GBM. OUP is used to model mean reverting random variables such as interest rate and currency

rate in finance. Considering the fact that both mean reverting and non-mean reverting factors

could be effective in asset pricing, we use both GBM and OUP to forecast future factor levels

and construct factor models for each single asset price via linear regression. We consider the

stochasticity resulting from each factor’s pricing formulation and the residual in the each linear

regression model for each asset as uncertainty sources. We handle this uncertainty via robust

optimization techniques. Our work could be counted as an extension to Kawas and Thiele’s

joint work [112]. Different from that work, we use factor models for asset pricing, provide more

flexibility for asset pricing by the choice of GBM or OUP, and handle more uncertainty sources

in a single portfolio management problem setting.

2.2 Contributions

Our contributions to the literature is as follows:

Portfolio Management with Quantile Constraints

• We approximate the quantile function without any assumption on the return distribution,

but based on available scenarios.

• We model the problem which maximizes the expected return not falling below a threshold

given percent of the time.

• Our method, which involves solving a series of linear problems, can be quickly solved for

large scale problems.

• Numerical studies imply that our algorithm provides more robust investment decisions

against adverse realizations of stock returns than classical Gaussian approximation models

(Normal and log-Normal approximation models).
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• Numerical studies imply that our algorithm leads to solutions which are close to optimal

solutions.

• We extend our approach to the portfolio management problem where risk is measured by

inter-quantile range of portfolio return.

• We provide another version of our approach which calculates Tail Conditional Expectation

(TCE) at the same time.

Portfolio Management with Moment Matching Approach

• We use the Fenton-Wilkinson log-Normal sum approximation method to approximate the

random portfolio return as a log-Normal sum to a single log-Normally distributed random

variable.

• We formulate the model which minimizes the probability of obtaining a portfolio return

less than a specified threshold level while keeping expected portfolio return above a spec-

ified target.

• We provide an approach which divides the overall problem into two sub-problems and

solves the risk management problem as an unconstrained nonlinear programing problem

with a smooth objective function based on the other sub-problem’s solution.

• We suggest an algorithm which improves the accuracy of the log-Normal sum approxima-

tion method.

• We extend our work to the basket options design problem.

New Product Launching Decisions with Robust Optimization

• We use the Bass diffusion model to forecast the demand for an innovative product.
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• We employ the logit choice model to formulate a potential partner firm’s willingness to

accept the partnership offer made by the innovative company while the only variable of

interest is the unit price per product/service.

• We suggest a partner selection model which determines the potential partner whose worst-

case probability to accept the partnership offer is higher than a specified level with the

minimum customized price.

• We combine the robust optimization model for the partner selection decisions with that for

the product launching decisions which maximizes the worst-case profit obtained from the

innovative products’ and determines the optimal launching time for each product.

• We handle the uncertainty involved in the parameters of the Bass diffusion model and the

logit choice model with robust optimization techniques.

• We propose an iterative approach to transform the in-tractable robust optimization formu-

lation for the product launching problem into a tractable model.

• We handle the managerial flexibility of updating the size of the contract between a part-

ner company and the innovative company by incorporating the robust product launching

problem formulation with the real options approach.

Log-Robust Portfolio Management with Factor Models

• We treat randomness on asset pricing by a budget of uncertainty.

• We maximize the worst-case portfolio return at the end of the time horizon in a one-period

setting.

• We gain insights into the worst-case scaled deviations and the structure of the optimal

strategies.

• We drive a tractable robust formulation, specifically a linear optimization model.
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Chapter 3

Portfolio Management with Quantile

Constraints

3.1 Portfolio Management with Quantile Constraints

3.1.1 Problem Setup

Suppose that the investment portfolio is re-adjusted once per period in the presence of transaction

fees γ−i and γ+
i proportional to the amount asset i sold and bought, respectively. We aim to

maximize the expected value of a random objective bilinear in the decision variables and the

random variables, while guaranteeing that the random objective achieves a target with a given

probability based on discrete scenarios. Specifically, we aim to maximize the expected portfolio

return with quantile constraints. We will use the following notation:
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n : the number of assets,

x+
i : the dollar amount transacted into asset i,

x−i : the dollar amount transacted out asset i,

x0
i : the current holding in asset i,

W : the current wealth i,

lbi : the lower bound for the holding in asset i,

ubi : the upper bound for the holding in asset i,

Ii,l : the binary indicator which takes value of 1

if asset i belongs to the sector l,

βl : the maximum amount that can be invested in sector l,

µi : the sample mean of the i-th random coefficient, i.e., the mean of the ,

return rate of a stock i,

µ̃i : the sample mean of the natural logarithm

of the i-th random coefficient,

σ̃i : the standard deviation of the natural logarithm

of the i-th random coefficient,

ρ̃i,j : the correlation coefficient between the natural logarithm

of the i-th and the j-th random coefficients,

τ : the target expected portfolio return,

T : the number of observations, e.g., time periods in historical data set,

rti : the t-th observation of random variable i, e.g., the return of stock i

on day t,

α : the specified quantile level, α ∈ (0, 1),

m : the index of the observation that corresponds to the 100αth quantile,

i.e., m = dα · T e,

107



3.1. PORTFOLIO MANAGEMENT WITH QUANTILE CONSTRAINTS

qm : the desired value for the 100αth-quantile (m-th smallest observation),

y(k) : the k-th smallest value in the set (y1, . . . , yn) for k = 1, . . . , n,

X : the feasible set for the decision variables formulated considering sector limits,

change in the amount of asset i invested, and limits on xi.
The feasible set X is defined by the following set of constraints (the budget constraint, the

constraints for the lower and upper bound on money invested in each asset, and the constraint on

amount invested in each sector):

n∑
i=1

(x+
i − x

−
i ) +

n∑
i=1

(γ+
i x

+
i + γ−i x

−
i ) ≤ 0,

x0
i + x+

i − x
−
i ≥ lbi, ∀i,

x0
i + x+

i − x
−
i ≤ ubi, ∀i,

n∑
i=1

Ii,l(x
0
i + x+

i − x
−
i ) ≤ βl, ∀l,

x+
i , x

−
i ≥ 0,∀i.

(3.1)

The portfolio management problem with a quantile constraint can be formulated as:

max
1

W

n∑
i=1

µi (x0
i + x+

i − x
−
i )

s.t.
1

W

(
n∑
i=1

r·i (x0
i + x+

i − x
−
i )

)
(m)

≥ qm,

x+
i , x

−
i ∈ X,

(3.2)

where
1

W

(
n∑
i=1

r·i (x0
i + x+

i − x
−
i )

)
(m)

refers to the m-th lowest value of the portfolio returns

1

W

n∑
i=1

µi (x0
i + x+

i − x
−
i ), t = 1, . . . , T .

If m = 1, Problem (3.2) can be linearized easily, because, in that case, portfolio return for

all realizations must be at least the threshold. However, if m > 1, Problem (3.2) is hard to solve
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because it involves ranking the objective (portfolio return) values for every candidate solution.

Our goal in Section 3.1.2 is to investigate an efficient approximation approach to solve Problem

(3.2) for the cases when m > 1.

3.1.2 Solution Approach

The specific method we analyze involves solving a linear problem iteratively where set of con-

straints used to express the quantile constraint changes at each iteration. At each iteration a set of

portfolio return scenarios for which the objective must exceed the threshold is determined. Next,

the linear problem maximizes the expected portfolio return with the constraint corresponding to

these scenarios. Specifically, m − 1 scenarios for which the objective does not need to exceed

the threshold is identified by simply ranking the portfolio return scenarios in ascending order

identifying the first m− 1 of them by the vector z ∈ RT .

When zj = 1 for a scenario j, the portfolio return calculated in that scenario j does not

need to exceed the threshold level qm since only the mth greatest portfolio return or higher

should exceed the threshold qm. The master problem to obtain the decision allocation is then

formulated as follows:

max
1

W

n∑
i=1

µi(x
0
i + x+

i − x
−
i )

s.t. (1− zt)
1

W

n∑
i=1

rt,i(x
0
i + x+

i − x
−
i ) ≥ qm(1− zt), ∀t ∈ {1, . . . , T},

x+, x− ∈ X.

(3.3)

We repeat solving the Problem (3.3) for a scenario identification vector z and, then, update

the vector z based on the latest portfolio allocation decision X iteratively until the algorithm

converges to an approximate solution of the original problem. We provide our algorithm in more

details below.
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Algorithm 3.1

Step 1 Start with a feasible solution x ∈ X to serve as a candidate solution x̄ and set the

iteration number, s = 1.

Step 2 Obtain a new active scenario selection decision z, namely zs for the candidate solution

x̄. If there are more than one scenarios leading to the same portfolio return value and they

are both candidates to be the (m−1)th scenario based on the current investment decision,

then select the one with the smallest index.

Step 3 Solve the linear problem for zs identified in Step 2. Obtain a new candidate solution, xs,

and set s = s+ 1 and x̄ = xs.

Step 4 Repeat Steps 2 and 3 until the algorithm generates the same set of active scenarios or

the same candidate solution x ∈ X in two consecutive steps, whichever happens sooner.

In addition, the feasible region of the master problem is a closed polyhedron, therefore in the

case of multiple solutions at, an interior point method algorithm terminates at the analytic center

of the optimal face (see Colombo [57]). Namely, if the master problem is solved by an interior

point algorithm, the algorithm will have a unique solution at each iteration s for a given passive

scenario set As{i : 1 ≤ i ≤ T ∩ zsi = 1}.

The algorithm will terminate if the sets As and As+1 are identical, since the constraint sets

for the Problem (3.3) will be identical for the iterations s and s + 1 which lead to the same

solution under the assumption that it is solved by interior point method.

If there is one scenario, scenario-t, belonging to setAs+1 but not the setAs, then the portfolio

return value obtained by scenario-t is less than or equal to that obtained by the scenario-t′ which

is in the set As but not in the set As+1. If these two scenarios lead to the same portfolio return

value for the given investment decision xs, the current investment decision xs will be a feasible

decision with the set of constraints r′jx ≥ qm, ∀ j ∈ As+1, therefore the objective function

value at iteration s + 1 will improve with a new investment decision or stay the same with the
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same investment decision and the algorithm will terminate. If the scenario t ∈ As+1 leads to

a lower portfolio return value than the scenario-t′ in As for the decision xs, then this implies

that the scenario-t′ in set As leads to a higher portfolio return value than the target qm, since at

iteration s the master problem is solved while zt = 0 and the solution xs satisfies the inequality

r′tx
s ≥ qm. Considering that the portfolio return obtained by the scenario-t′ is greater than

the portfolio return value obtained by the scenario-t′ which is greater than or equal to qm, we

can conclude that the quantile target is satisfied for a smaller probability level at iteration s.

Therefore, transforming the active set from As to As+1 enlarges the feasible region for the

master problem and it provides an improved objective function value. For the cases where there

are more than one scenarios belonging to the set As+1 but not to the set As, the same argument

is also valid. Therefore, the proposed algorithm improves at each iteration until convergence.

3.1.3 Numerical Results

This section tests the performance of Algorithm 3.1 in terms of solution time and return-risk

efficiency. As comparison benchmarks, we use portfolio optimization models with quantile con-

straints where the asset returns are assumed to be Normally and Log-Normally distributed as

in the previous studies such as [113], [130], and [174]. We refer to these benchmark models

as the “Normal Approximation” and the “Log-Normal Approximation” methods. In particu-

lar, we compare our solution with the optimal solution in the Normal Approximation method

which assumes that the portfolio return is a Normally distributed random variable and that in the

Log-Normal Approximation method which is built by approximating the portfolio return by a

Log-Normally distributed random variable based on a moment matching approach. In addition,

a data-driven iterative VaR optimization algorithm introduced by Larsen, Mausser, and Urya-

sev [124] (will be referred as Algorithm-A1) is used an another benchmark model. Algorithm

A1 provides an approximated solution to the quantile optimization problem by iteratively solv-

ing a linear optimization problem which maximizes the CVaR of the portfolio return that was
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introduced by Rockafeller and Uryasev [174]. We will observe that:

• The iterative algorithm that we propose converges in a small number of iterations. Total

solution time in terms of CPU seconds is close to that obtained with the benchmark meth-

ods. Indeed, in some experiments with relatively small observations, the Linear Approxi-

mation methods terminates earlier than the benchmark models, especially the Log-Normal

Approximation method.

• For a given data set, the number iterations and time to reach a solution change for the pro-

posed Linear Approximation method in a set of experiments, however those for Algorithm-

A1 stay relatively consistent within the same data set. The upper bounds of the ranges of

the observed number of iterations and time to convergence for the Linear Approximation

problem in different numerical experiments are closer to the number of iterations and time

to convergence for Algorithm-A1 than the lower bounds of the ranges.

• The proposed method generally outperforms the benchmark methods in terms of return-

risk efficiency in both in-sample and out-of-sample performance tests. That is, for a given

quantile target qm, the proposed algorithm generally leads to a portfolio allocation decision

providing higher expected portfolio return with both the training and testing data set.

• Portfolios generated by the proposed algorithm are generally more robust against unex-

pected stock return realizations in the out-of-sample data sets than the ones generated by

the benchmark methods.

• The risk-return efficiencies of Algorithm-A1 and the linear approximation are very close

to each other. Because both of them are data-driven approximation methods and the way

that the quantile function is approximated is similar in both approaches.

Setup
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The traditional approach for the portfolio management problem with quantile constraints as-

sumes that the asset returns follow a jointly Gaussian distribution. In other words, the quantile

constraint, which is hard to formulate, is in general approximated by the quantile function of a

Normal distribution. Another approach, which is known as the Fenton-Wilkinson Method [79],

calculates an approximation to the Log-Normal sum distribution based on a moment matching

method. In contrast with the Gaussian case, a linear combination of Log-Normal random vari-

ables is not Log-Normal, therefore this is an approximation even if each single stock return series

obeys a Log-Normal distribution. The Fenton-Wilkinson method approximates the Log-Normal

sum by a single Log-Normal random variable by matching the first and the second moments.

Therefore, we will refer to these models as the Normal and the Log-Normal Approximation

methods, respectively. Our proposed algorithm will be referred as the Linear Approximation

method since it involves solving a series of linear problems.

The portfolio management problem according to the Normal Approximation method for a

given α probability level is formulated as:

max 1
W µTx

s.t. µTx+ φ−1(α)
√
xTQx ≥ qmW,

xi = (x0
i + x+

i − x
−
i ) ∀i ∈ {1, ..., n},

x+, x− ∈ X,

(3.4)

where φ is the CDF of a standard Gaussian random variable.

The portfolio management problem according to the Log-Normal Approximation (Fenton-

Wilkinson) method for a given α probability level is written as follows:
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max 1
W bTx

s.t. 2 ln(bTx)− 1

2
ln(xTAx) + φ−1(α)

√
ln(bTx)− 2 ln(xTAx) ≥ ln(Wqm),

xi = (x0
i + x+

i − x
−
i ) ∀i ∈ {1, ..., n},

x+, x− ∈ X,

(3.5)

where the vector b ∈ Rn is such that

b[i] = e

(
µ̃iT+

σ̃i
2T

2

)
∀i ∈ {1, ..., n},

and matrix A ∈ Rnxn such that

A[i, j] = e((µ̃i+µ̃j)T+T
2

(σ̃i
2+σ̃j

2+2ρi,j σ̃iσ̃j)) ∀i ∈ {1, ..., n} , ∀j ∈ {1, ..., n}, and i 6= j

A[i, i]] = e2T µ̃i+2T σ̃i
2 ∀i ∈ {1, ..., n}.

The explanation of the Fenton-Wilkinson method and derivation of the Log-Normal approx-

imation problem are provided in Appendix 1.

Note that the Log-Normal Approximation method approximates the linear combination of

Log-Normally distributed stock returns by a single Log-Normally distributed random variable.

In addition, the objective function formulation according to this approach is different than that

of the Linear Approximation method. In order to have a fair comparison, we update this bench-

mark model so that the objective function is the same as that of the Linear Approximation method

(namely, the sample average of return rates), while the quantile function is approximated accord-

ing to Fenton-Wilkinson method. This hybrid benchmark model is formulated as:
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max 1
W µTx

s.t. 2 ln(bTx)− 1

2
ln(xTAx) + φ−1(α)

√
ln(bTx)− 2 ln(xTAx) ≥ ln(Wqm),

xi = (x0
i + x+

i − x
−
i ) ∀i ∈ {1, ..., n},

x+, x− ∈ X.

(3.6)

Algorithm-A1 provides an approximated solution to the quantile maximization problem by

iteratively maximizing the tail conditional expectation of the portfolio return for updated prob-

ability levels so that at the next iteration the new tail conditional expectation, which will be

maximized (by using the linear problem suggested by Rockafeller and Uryasev [174]) is a closer

lower bound to the original quantile level in interest. The linear tail conditional expectation

optimization problem and the algorithm introduced by Larsen, Mausser, and Uryasev [124] is

adjusted to our problem setting and represented below:

Algorithm 3.2

Step 1 Assign a lower bound on the expected portfolio return, the probability level parameter

for the tail conditional expectation, and a value for the algorithm constant ζ, 0 ≤ ζ ≤ 1.

Step 2 Set α0 = α and s = 0.
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Step 3 Solve the tail conditional expectation maximization problem:

max
x+,x−,x,κ

1

W

ts∑
t=1

(
n∑
i=1

r.ixi

)
t

s.t. µTx ≥ η,
n∑
i=1

rt,ixi ≥ κ ∀t ≥ ts,

n∑
i=1

rt,ixi ≤ κ ∀t < ts,

xi = (x0
i + x+

i − x
−
i ) ∀i ∈ {1, ..., n},

x ∈ X.

(3.7)

Step 4 Sort the scenarios according to their return values 1
W

∑n
i=1 rt,ix

s
i based on the solution

of the Problem (3.7) at iteration s.

Step 5 Set s = s+ 1, bs = α+ (1− α)(1− ζ)s, ts = bT (1− bs)c, and αs = 1− 1−α
bs

.

Step 6 If ts ≤ b[Tαc] repeat Step 3,4, and 5, otherwise exit.

During the numerical experiments, the constant ζ is set to 0.5. In this section, we will

compare the risk-return efficiency of the suggested algorithm with respect to these three methods

as benchmark models.

Time and Number of Iterations to Convergence

We compare the CPU seconds used by the solver calls (by the variable solve time) for each

approach using different quantile targets over different data sets with various sample sizes and

number of assets. The Mosek solver is used through AMPL modeling language on a 2.10 GHz

Pentium(R) machine. The results are provided in Table 3.1. The number of decision variables

increases by the number of stocks considered (with the same rate) in all of the approximation

methods. However, as number of scenario increases, the number of constraints of the Linear

Approximation method and Algorithm-A1 increase. Therefore, total time spent by solvers for
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these methods are more vulnerable to the data set size than those in the Normal and LogNormal

Approximation methods. In addition, generally the Linear Approximation method requires fewer

iterations and less time to terminate than Algorithm-A1 does.

Table 3.1: Total Solution Time in CPU Seconds
Data Set Linear Approx. Normal Approx. LogNormal Approx. Algorithm. A1

Min. Max. Min. Max. Min. Max. Min. Max.
Sample Asset Iteration Solution Solution Solution Solution Solution Solution Iteration Solution Solution

Size Number Range Time Time Time Time Time Time Range Time Time
100 30 [2,4] 0.0920 0.1440 0.0960 0.1480 0.1680 0.2000 4 0.1480 0.1760
1000 30 [4,9] 0.4920 1.4081 0.0960 0.1600 0.1520 0.1760 7 1.1041 1.1481
2000 30 [4,15] 1.0161 5.1283 0.0800 0.1480 0.1400 0.1640 8 2.5242 2.6962
5000 30 [3,15] 0.7000 5.0763 0.0960 0.1560 0.1400 0.1680 8 2.5242 2.6642
100 50 [2,4] 0.1480 0.2440 0.1880 0.5080 0.7120 0.7961 4 0.2680 0.2920
1000 50 [2,11] 0.9721 3.4482 0.2120 0.5400 0.8201 0.8441 7 1.9881 2.0681
2000 50 [4,11] 2.0521 7.1324 0.4640 0.5320 0.7561 0.8481 8 4.9883 5.2763
5000 50 [3,11] 5.7444 20.3210 0.4600 0.5080 0.7320 0.8521 9 15.5410 16.5650
100 100 [3,5] 0.4720 1.0481 1.4161 3.2122 9.7846 11.2530 [4,5] 0.8081 1.4161
1000 100 [2,9] 2.7602 8.0485 2.4322 3.1122 11.2050 12.7370 7 5.2363 5.3403
2000 100 [5,11] 7.7685 21.0010 2.5482 3.2962 10.9010 12.9330 8 12.4770 13.9930
5000 100 [4,8] 16.4010 38.2580 2.8202 3.4042 9.7006 12.3130 9 40.6790 43.7510
100 200 [3,15] 0.6880 5.1283 0.1000 0.1520 0.1480 0.1640 [4,5] 1.1921 1.6401
1000 200 [5,11] 54.2030 116.0000 12.0210 13.2890 101.2400 135.9100 [7,9] 63.5200 88.9060
2000 200 [6,11] 25.6100 56.3640 9.8606 14.2730 98.4500 104.8500 8 31.8100 34.5500
5000 200 [4,11] 40.6490 253.1600 2.8802 21.6890 74.2130 116.6800 9 69.8720 132.3400

Each row in Table 3.1 summarizes a set of experiments conducted with different quantile

targets (between 0.90 and 1.09) over the same training data identified by the number of assets

and sample size. For each set of experiments, the minimum and maximum values of the ob-

served solution time values for each approximation method are recorded in CPU seconds. In

addition, the minimum and maximum values of the observed number of iterations to converge

for the iterative methods are also presented.

Risk-Return Efficiency and Robustness

In this section, we analyze the performance of approximation methods based on two different

types of data sets, namely training and testing data sets. The allocation decision is determined

based on the training data set for each approach (Linear, Normal, and Log-Normal Approxima-

tion methods, and Algorithm-A1). Efficient frontiers of all approaches are calculated by using

the training data set. Linear, Normal, and Log-Normal Approximation methods are run for given

quantile targets to obtain highest expected portfolio return. Then, Algorithm-A1 is run (for each
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expected return-quantile target pair of the efficient frontier of the Linear Approximation method)

to maximize the approximated quantile function treating each of given expected return value ob-

tained by the Linear Approximation method as a target for the expected portfolio return and the

investment decisions according to Algorithm-A1 are obtained. Furthermore, we compare the

portfolio return rates based on these allocation decisions associated with the risk-return pairs

and stock return realizations over the testing data sets, which are used as out-of-sample data sets

for testing purposes. In addition, we use a performance measure (ω) which is the ratio between

the portfolio return realization of the Linear Approximation method and that of the benchmark

method with the training and testing data set. We provide 95% one-sided confidence interval

(CI) of ω for each case. Please note that, 95% CI of ω while Algorithm A1 is used as a bench-

mark model is considered only for the testing (out-of-sample) data, since the expected portfolio

return generated by the suggested algorithm and Algorithm-A1 are the same on the training data

because of the efficient frontier generation method explained above.

We follow the same approach for four different numerical experiments set in each of which

a different scenario generation method is used. Also, in each set of numerical experiments three

different cases (daily, weekly, and monthly stock return scenarios) are considered. The target is

to test the performance of the proposed data-driven algorithm over several data sets with different

structures. For instance, 30, 50, and 100 stocks listed in the New York Stock Exchange (NYSE)

are considered in all of the four sets of numerical experiments.

The goal of the proposed approach is to manage the downside risk. Therefore, we are par-

ticularly interested in the low quantile values such as the 5th one. The quantile constraints will

enforce that approximated quantile function values do not fall below the pre-specified qm level

95% of the time (hence φ−1(α) = 1.645). the linear transaction cost coefficients γ+ and γ− are

assumed to be 0.02. Also, the lower bound and upper bounds on the holding in a single asset are

selected to be 30% and 0% of the overall wealth. In addition, limit on sector holdings is assumed

to be 50%. Simulations are performed using MATLAB R2012a and R Statistical Software.
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Numerical Experiments Set 1

In this set of numerical experiments, three training data sets are composed of 100 daily, weekly,

and monthly rate of return (ROR) observations of 30, 50, and 100 stocks listed in the New York

Stock Exchange (NYSE) so that the last observation is of as of January 30, 2012. For each case,

a testing data set is a random data set of 100 scenarios generated by Monte-Carlo simulation

assuming that the stock returns follow a multivariate t-distribution. The parameters of the mul-

tivariate distribution are extracted from the historical data. In addition, for each stock a set of

additional noisy data is generated from its left tail distribution (5th percentile and lower). The

additional noisy data are included in each testing data set in order to assure that the empirical

probability distribution of the return rate has heavier left tail. In other words, we seek to compare

the dependence between random stock returns, and the fat tailed nature of stock returns by the

t−copula and additional adverse return realizations. This way, we compare the robustness of the

approximation methods against unexpected return rate movements within a similar (perturbed by

additional noisy data) interdependence structure of the stock market.

In other words, the losses (rate of return values less than 1) are more likely to occur in test-

ing data sets than in corresponding training data sets. This lets us compare the robustness of the

approximation methods against undesired realizations of the stock returns. In other words, if the

Linear Approximation approach performs better than benchmark models in terms of return-risk

efficiency, then it can be inferred that the Linear Approximation method is more robust against

undesired return movements within a similar (perturbed by additional noisy data) interdepen-

dence structure of the stock market.

The portfolio return realization according to both the testing (out-of-sample) and training

(in-sample) data sets are calculated based on the allocation decision obtained over the training

data for all of the approximation methods. Next, 95% confidence intervals for ω are calculated

in order to compare the risk-return performance of the linear approximation method with that of

the benchmark models.
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Table 3.2 provides the 95% CI of ω for all benchmark models over both the testing and

training data sets.The relative performance of the Linear Approximation method with respect to

Algorithm-A1 over the training data set is not provided, since the expected portfolio return val-

ues of these approaches over the training data sets are the same because of the efficient frontier

generation method explained earlier. Table 3.2 suggests that generally Linear Approximation

method’s investment decisions perform better than the those of of the benchmark models in both

the testing and training data sets (except Algorithm-A1) with more than 95% confidence.

Numerical Experiments Set 2

In this section, we test the performance of the Linear Approximation method in terms of risk/re-

turn efficiency while daily, weekly and monthly training data sets are generated according to

Monte Carlo simulation with Geometric Brownian Motion (GBM) and corresponding testing

data sets are historical stock return observations. That is, 100 daily, weekly, and monthly histor-

ical observations of 30, 50 and, 100 stocks (Listed in NYSE) are used to forecast stock return

realizations for the following 100 days, 100 weeks, and 100 months, respectively. These daily,

weekly and, monthly stock return forecasts are used as training data sets and the actual stock re-

turn values during the same period are used as testing data sets. Investment decisions according

to all of the quantile management approaches are determined based on these training data sets.

Portfolio return realizations of these investment decisions with the actual stock returns (testing

data) are compared.

95% one-sided confidence interval (CI) of ω for each case is constructed in order to compare

the portfolio return realizations with both the testing and training data sets. Table 3.2 summa-

rizes the results. The results suggest that the Linear Approximation method and the benchmark

models’ performances are similar when the data frequency is a day. However, the Normal Ap-

proximation benchmark method provides better portfolio return realizations in testing data for

some observations. On the other hand, the Linear Approximation method method outperforms

the benchmark methods with 95% confidence when the data frequency is a month and a week in
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both testing and training data sets.

Numerical Experiments Set 3

In this section, we generate three training data sets (daily, weekly, and monthly) using the Fama-

French three-factor model. Daily, weekly and monthly series of factors obtained from Prof.

Kenneth R. French’s website

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/). That is, 100 daily, 100 weekly, and

100 monthly historical factor values are used to construct the Fama-French three-factor model

for each of 30, 50, and 100 stocks (listed in NYSE). Next, stock return values of each stock for

the following 100 days, 100 weeks, and 100 months respectively are forecast according to the

corresponding three-factors model. The actual stock return values during the same periods are

used as testing data sets. Investment decisions according to each method are determined based

on training data sets. Portfolio return realizations over both actual stock return observations

(testing data) and training data are compared.

Portfolios generated by the Linear Approximation method usually lead to higher return val-

ues than those generated by benchmark methods with both training and testing data sets accord-

ing to Table 3.2.The risk-return efficiencies of Algorithm-A1 and the linear approximation are

very close to each other.

Numerical Experiments Set 4

In this section we generate daily, weekly and monthly training data sets by using a multi-factor

model with macro factors. We follow the forecasting approach presented in a working paper of

the International Monetary Fund prepared by Oyama [161]. First, effective macro factors are se-

lected among 10 macro factors by principal component analysis (PCA) using 100 daily, weekly

and, monthly observations of each factor. The macro factors are West Texas Intermediate (WTI)

Crude Oil Spot Price, Dow Jones Industrial Average Index (DJI), Aruoba-Diebold-Scotti (ADS)

Business Conditions Index, US Dollar to Japanese Yen Exchange Rate, EURO to US Dollar Ex-

change Rate, Chicago Board of Options Exchange (CBOE) Volatility Index (VIX), BofA Merrill
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Lynch US Corp AA Total Return Index, BofA Merrill Lynch US Corp BBB Total Return Index,

1-Year Treasury Constant Maturity Rate and 3-Month Treasury Constant Maturity Rate. In ad-

dition, we analyze the 30,50, and 100 stocks considered in the NYSE. We obtain each stock’s

exposure to macro factors by regressing its returns on the series of daily, weekly and monthly

changes in daily, weekly and monthly growth rates of macro factor over the estimation period.

During principal component analysis both the Kaiser criterion and the value of the cumula-

tive proportion of variance explained by the components are considered. That is, the components

whose corresponding eigenvalues are greater than 1 are accepted. If the cumulative proportion

of variance explained by the components is less than 80%, an additional component with the

next highest eigenvalue is accepted as well. Effective factors are selected by associating each

component with a factor by the VARIMAX rotation method in Principle Component Analysis

(PCA). According to our study, when the data frequency is a day, a week, and a month, the

number of effective macro factors are five, five, and four respectively.

Oyama [161] uses the residual of each regression model as an index representing the infor-

mation explained by the market but not by other variables and uses this index as another factor.

We follow the same approach and regress each individual stock’s returns on effective macro

factors and on this residual index in order to obtain the factor loadings for each stock.

We treat each factor as a stationary time series (according to Augmented Dickey-Fuller

(ADF) test results) and fit a suitable Autoregressive Moving Average (ARMA) model to it by

considering the autocorrelation function, the partial autocorrelation function and the maximum

likelihood function value. In addition, the quality of fit for each time series is controlled via

residual analysis.

We generate 100 daily, weekly, and monthly future scenarios for each factor based on its

corresponding time series model. Next, future return scenarios for each individual stock are

calculated according to the corresponding multi-factor model. These forecast scenarios stand for

the training data set and investment decisions are made based on this training data set. Actual

122



3.1. PORTFOLIO MANAGEMENT WITH QUANTILE CONSTRAINTS

stock return realizations over the same period form the testing data set.

According to Table 3.2, when the data frequency is a month the Normal Approximation

method provides higher expected portfolio return values than the Linear Approximation method

over testing data sets for given quantile targets.
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Table 3.2: Relative Risk-Return Efficiency of the Linear Approximation Method with respect to the Benchmark Models
− Benchmark: Normal Approx. −Benchmark: LogNormal Approx. −Benchmark: Algorithm A1

Data Data Asset Testing Set Testing Set Training Set Training Set Testing Set Testing Set Training Set Training Set Testing Data Testing Data
Set Freq. Size Mean L.Bound Mean L.Bound Mean L.Bound Mean L.Bound Mean L.Bound

Set-1 Day 30 1.00081 1.00065 1.00200 1.00133 1.00794 1.00776 1.00741 1.00723 1.00013 1.00012
Set-1 Week 30 1.00136 1.00072 1.00633 1.00616 1.01205 1.01184 1.01156 1.01135 1.00012 1.00011
Set-1 Month 30 1.01456 1.00899 1.01108 1.01083 1.02333 1.02285 1.02357 1.02261 1.00005 1.00002
Set-1 Day 50 1.00094 1.00029 1.00075 1.00021 1.00830 1.00814 1.00746 1.00730 1.00011 1.00011
Set-1 Week 50 1.00098 1.00039 1.00367 1.00361 1.00883 1.00870 1.00922 1.00830 1.00012 1.00011
Set-1 Month 50 1.02058 1.01118 1.01113 1.01098 1.01894 1.01801 1.01875 1.01782 1.00015 1.00013
Set-1 Day 100 1.00114 1.00049 1.00066 1.00008 1.00906 1.00858 1.00878 1.00830 1.00012 1.00011
Set-1 Week 100 1.00115 1.00056 1.00202 1.00173 1.01113 1.01053 1.01108 1.01048 1.00012 1.00011
Set-1 Month 100 1.01472 1.01332 1.01115 1.01096 1.01256 1.01248 1.01166 1.01157 1.00015 1.00012
Set-2 Day 30 1.00012 0.99970 1.01171 1.01075 1.00213 1.00192 1.00166 1.00145 1.00012 0.99999
Set-2 Week 30 1.00923 1.00600 1.01214 1.01018 1.00929 1.00737 1.00969 1.00697 1.00011 1.00011
Set-2 Month 30 1.01238 1.01020 1.02036 1.01960 1.01206 1.01101 1.01158 1.01053 1.00011 0.99999
Set-2 Day 50 1.00016 0.99962 1.00994 1.00909 1.00125 1.00102 1.00095 1.00072 1.00011 1.00011
Set-2 Week 50 1.00671 1.00337 1.01670 1.01535 1.00639 1.00477 1.00725 1.00391 1.00011 1.00011
Set-2 Month 50 1.01235 1.00744 1.02279 1.02271 1.01203 1.00945 1.01134 1.00876 1.00011 1.00011
Set-2 Day 100 1.00010 0.99970 1.00916 1.00795 1.00130 1.00106 1.00057 1.00033 1.00002 1.00002
Set-2 Week 100 1.00940 1.00613 1.01684 1.01632 1.00934 1.00754 1.00839 1.00659 1.00012 1.00012
Set-2 Month 100 1.01487 1.01233 1.02385 1.02317 1.01516 1.01354 1.01508 1.01332 1.00012 1.00012
Set-3 Day 30 0.99999 0.99980 1.00116 1.00040 1.00190 1.00176 1.00120 1.00105 1.00010 1.00004
Set-3 Week 30 1.01331 1.00910 1.02303 1.02294 1.01333 1.01277 1.01287 1.01231 1.00003 0.99999
Set-3 Month 30 1.00143 1.00132 1.03006 1.02983 1.01543 1.01419 1.01465 1.01341 1.00010 1.00009
Set-3 Day 50 1.00115 1.00070 1.00582 1.00511 1.00114 0.99979 1.00183 1.00048 1.00010 1.00009
Set-3 Week 50 0.99993 0.99992 1.02561 1.02518 1.02310 1.02171 1.02258 1.02119 1.00004 0.99999
Set-3 Month 50 1.00096 1.00051 1.03666 1.03568 1.02910 1.02875 1.02876 1.02841 1.00002 0.99999
Set-3 Day 100 1.00052 1.00034 1.01907 1.01873 1.00252 1.00053 1.00343 1.00145 1.00011 1.00009
Set-3 Week 100 1.01460 1.00999 1.02776 1.02722 1.02436 1.02398 1.02383 1.02346 1.00010 1.00009
Set-3 Month 100 1.00184 1.00173 1.03989 1.03920 1.02847 1.02758 1.02821 1.02731 1.00010 1.00009
Set-4 Day 30 1.00151 1.00139 1.00048 1.00045 1.00150 1.00132 1.00184 1.00166 1.00010 1.00009
Set-4 Week 30 1.00126 1.00091 1.00343 1.00324 1.00126 1.00085 1.00109 1.00068 1.00010 1.00009
Set-4 Month 30 1.00265 1.00243 1.01224 1.01207 1.00256 1.00242 1.00188 1.00174 1.00010 1.00009
Set-4 Day 50 1.00066 1.00041 1.00165 1.00156 1.00066 1.00040 1.00092 1.00066 1.00010 1.00008
Set-4 Week 50 1.03039 1.02715 1.00888 1.00871 1.03024 1.02674 1.02834 1.02485 1.00000 0.99998
Set-4 Month 50 0.99819 0.99551 1.01386 1.01379 1.02013 1.01780 1.01947 1.01714 1.00010 1.00008
Set-4 Day 100 1.01098 1.00777 1.00269 1.00257 1.01098 1.00749 1.01064 1.00715 1.00010 1.00009
Set-4 Week 100 1.00630 1.00426 1.01174 1.01168 1.00626 1.00386 1.00571 1.00331 1.00010 1.00009
Set-4 Month 100 1.02177 1.01837 1.01976 1.01971 1.02079 1.01736 1.02081 1.01738 1.00010 1.00008
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Closeness to Optimality

In this section, we measure the closeness of the solutions proposed by the Linear Approximation

method to optimality. We assume that the optimal solution is obtained by the Normal (Log-

Normal) Approximation method when the data set is composed of Normally (Log-Normally)

distributed stock return scenarios since the Normal (Log-Normal) Approximation method as-

sumes that the stock returns are Normally (Log-Normally) distributed.

Multi-variate Normally and Log-Normally distributed rate of return (ROR) scenarios are

generated according to the sample mean and standard deviation of historical data set composed

of 100 observations of 30 stocks listed in NYSE. Sixty different cases are considered, namely, the

cases where the data sets are composed of 500, 1000 and 2000 scenarios for Normally and Log-

Normally distributed RORs of 10, 20, 30,..,90, and 100 assets. Figure 3.1, Figure 3.2, and Figure

3.3 represent the empirical probability distribution of averages of Normally and Log-Normally

distributed 1000 ROR scenarios of 10, 50 and 100 stocks, respectively.

Figure 3.1: Empirical Distribution of Average ROR of 10 Stocks

We define the measure for closeness to optimality, θ, as the relative difference between the
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3.1. PORTFOLIO MANAGEMENT WITH QUANTILE CONSTRAINTS

Figure 3.2: Empirical Distribution of Average ROR of 50 Stocks

Figure 3.3: Empirical Distribution of Average ROR of 100 Stocks

objective function values of the Linear Approximation and Normal (LogNormal) Approximation

methods, where

θ =
|Obj∗ −ObjApp|

|Obj∗|
.
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Table 3.3 and Table 3.4 provide the 95th quantile value for θ obtained by comparing the pro-

posed Linear Approximation method and the benchmark approximation methods (the Normal

approximation and the log-Normal approximation) over samples of observations. For each data

set, the Linear Approximation method and the corresponding benchmark model are run several

times with different quantile targets (qm), then θ values are obtained for each single run. Next,

the 95th quantile value for θ is calculated from the sample of θ specific to the corresponding data

set. Table 3.3 and Table 3.4 suggest that solutions suggested provided by the Linear Approxima-

tion approach are close to optimality.

We use also Brute Force method as another benchmark to measure the closeness of the

Linear Approximation method to optimality. The Brute Force method consists in enumerating

all possible candidates for the solution and selecting the one which satisfies the constraints and

provides the best objective function. Therefore, it leads to the optimal solution [175].

In this study, 2 assets and 500 observations of both are considered. Both the Linear Approxi-

mation method and the Brute Force method are run for the same qm targets and the 95th quantile

value is calculated for 10 different data sets. The results are summarized in Table 3.5.
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Table 3.3: 95th Quantile for θ, Normally Distributed Data
Number of Scenarios Number of Assets 95th Quantile for θ

500 10 0.000101
500 20 0.000017
500 30 0.000302
500 40 0.000333
500 50 0.000103
500 60 0.000272
500 70 0.000178
500 80 0.000112
500 90 0.000133
500 100 0.000099

1000 10 0.000089
1000 20 0.000156
1000 30 0.000083
1000 40 0.000193
1000 50 0.000188
1000 60 0.000385
1000 70 0.000371
1000 80 0.000032
1000 90 0.000107
1000 100 0.000061
2000 10 0.000033
2000 20 0.000077
2000 30 0.000115
2000 40 0.000343
2000 50 0.000071
2000 60 0.000063
2000 70 0.000102
2000 80 0.000143
2000 90 0.000126
2000 100 0.000184
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Table 3.4: 95th Quantile for θ, Log-Normally Distributed Data
Number of Scenarios Number of Assets 95th Quantile for θ

500 10 0.000175
500 20 0.000403
500 30 0.000136
500 40 0.000426
500 50 0.000269
500 60 0.000279
500 70 0.000214
500 80 0.000220
500 90 0.000212
500 100 0.000131

1000 10 0.000049
1000 20 0.000003
1000 30 0.000148
1000 40 0.001165
1000 50 0.000088
1000 60 0.000216
1000 70 0.000282
1000 80 0.000074
1000 90 0.000528
1000 100 0.000529
2000 10 0.000116
2000 20 0.000158
2000 30 0.000050
2000 40 0.000110
2000 50 0.000180
2000 60 0.000136
2000 70 0.000140
2000 80 0.000052
2000 90 0.000056
2000 100 0.000118

Table 3.5: 95th Quantile for θ, Benchmark: Brute Force Method
Data Set Index 95% CI for θ

1 0.000383
2 0.000045
3 0.000104
4 0.000181
5 0.000025
6 0.000002
7 0.000047
8 0.000032
9 0.000063
10 0.000006
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3.2 Extension to Inter-quartile Range Management

3.2.1 Problem Setup

In this section, we describe how our approach can be applied to risk management problems

where risk (to be minimized) is defined as the inter-quantile range of a random variable, i.e., the

75th percentile minus the 25th percentile of a variable such as a portfolio return. This measure

is commonly used in financial management to quantify risk but has not been used so far in the

context of portfolio optimization due to the difficulty in optimizing quantiles. Our approach can

be extended to the difference of any quantiles of the random objective. For instance, a decision

maker interested in downside risk may prefer to minimize the difference between the median of

the objective and its 25th percentile.

In what follows, we will refer to a, respectively b, as the rank of the observation correspond-

ing to the lower, respectively higher, quantile. The problem, using similar notation in Problem

(3.2) is as follows:

min
1

W

( n∑
i=1

rt,ixi

)
(b)

−

(
n∑
i=1

rt,ixi

)
(a)


s.t.

n∑
i=1

µixi ≥ τW,

xi = x0
i + x+

i − x
−
i , ∀i,

x+
i , x

−
i ∈ X.

(3.8)

Problem (3.8) can be written as:
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min qb − qa

s.t. qa ≤ 1
W

(
n∑
i=1

rt,ixi

)
(a)

,

qb ≥ 1
W

(
n∑
i=1

rt,ixi

)
(b)

,

n∑
i=1

µixi ≥Wτ,

xi = x0
i + x+

i − x
−
i , ∀i,

x+, x− ∈ X.

We need to rank the scenarios in order to determine the worst a − 1 and b scenarios while

the investment decision is given. For specific ranks a and b, the vectors za and zb are the active-

scenario identification vectors such that we have zat = 1, if scenario t is among those that achieve

the a− 1 smallest returns and zbt = 1, if scenario t among those that achieve b smallest returns.

The vectors za and zb will have a − 1 + T − b values in common (a − 1 “ones” and T − b

“zeros”).

The problem to obtain a decision allocation for given ranking vectors zat and zbt is formulated

as follows:
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min
qm,qa,x

qb − qa

s.t. (1− zat )qa ≤
1

W

n∑
i=1

rt,ixi(1− zat ), ∀t,

zbt qb ≥
1

W

n∑
i=1

xirt,iz
b
t , ∀t,

n∑
i=1

µixi ≥Wτ,

xi = x0
i + x+

i − x
−
i , ∀i,

x+, x− ∈ X.

(3.9)

The algorithm for the interquantile range management problem is as provided below is nearly

the same as the algorithm 3.1.The only difference is that we need to identify a − 1 and b worst

case scenarios instead of m− 1 scenarios as in the algorithm 3.1.

3.2.2 Numerical Results

Numerical results related to CPU time and number of iteration to convergence, and a represen-

tative efficient frontier for the inter-quartile range management algorithm are provided in this

section. Each row in Table 3.6 represents a set of experiments where the interquartile range

management problem is solved with several expected portfolio return targets over the data set

with the same number of observations and assets. The numerical experiments are repeated with

different data sets having various number of scenarios and assets.

From Table 3.6, we see that the number of iterations and time to convergence for the inter-

quartile range management algorithm are slightly higher than those for the quantile management

algorithm presented in the previous section. As number of scenarios increases, the number of

iteration to convergence also increases, because determining the worst case scenarios leading to

the min inter-quartile range value becomes harder as more scenarios are considered.

132



3.3. EXTENSION TO PORTFOLIO MANAGEMENT WITH TCE

Figure 3.4 points out the trade-off between the inter-quartile range (the difference between

the third and the first quartile values of the return) and the target or the expected portfolio ROR

on the data set which is composed of 100 observations of 50 stocks. As the target for expected

portfolio return increases, the risk, which is defined by the difference between two pre-specified

percentile levels, also increases.

Table 3.6: Amount of Time (CPU Seconds) and Number of Iterations to Convergence
Min. Max.

Sample Asset Iteration Solution Solution
Size Number Range Time Time
100 30 [2,6] 0.0600 0.3240
1000 30 [3,7] 0.3120 0.8401
2000 30 [2,18] 0.3200 6.4924
5000 30 [2,16] 1.0121 7.6165
100 50 [3,4] 0.1720 0.2440
1000 50 [2,13] 0.3120 4.4723
2000 50 [5,16] 3.1002 10.4726
5000 50 [4,17] 7.6085 24.4694
100 100 [5,7] 1.0521 1.2841
1000 100 [5,10] 3.4723 8.8246
2000 100 [4,12] 7.6565 24.1252
5000 100 [3,6] 10.1850 26.4140
100 200 [2,5] 0.5120 1.9081
1000 200 [3,12] 31.3380 133.0380
2000 200 [2,15] 9.9006 63.2880
5000 200 [3,18] 40.0430 293.5320

3.3 Extension to Portfolio Management with TCE

The specific methodology we propose in this extension involves representing the observation of

a given rank using the difference between sum of sorted values, specifically, if y(m) is the m-th

lowest observation among y1, ..., yT , we have:
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Figure 3.4: Efficient Frontier, Daily Return Data, α = 0.05

y(m) =
m∑
j=1

y(j) −
m−1∑
k=1

y(k).

The following lemma reminds the reader that the value of a sum of sorted values can be computed

by solving a linear programming problem.

Lemma 3.3 Let y1, . . . , yT be a given series of numbers.
∑r

j=1 y(j) is the optimal objective of:

min

T∑
j=1

yjzj

s.t.
T∑
j=1

zj = w,

0 ≤ zj ≤ 1, ∀j,

(3.10)
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or equivalently of:

max w · θw +

T∑
j=1

βwj

s.t. θw + βwj ≤ yj , ∀j,

βwj ≤ 0, ∀j.

(3.11)

Proof: The first formulation is proved for instance in [33]. The second formulation follows from

applying strong duality to the first formulation, which holds since the feasible set of the primal

is non-empty and bounded. 2

This leads us to the following (not yet tractable) reformulation of Problem (3.2):

Theorem 3.4 (Formulation with many problems, m = b(1− α) ∗ T c) Let Sm−1 be the num-

ber of extreme points of the set Z = {
∑T

j=1 zj = m − 1, 0 ≤ zj ≤ 1, ∀j} and let zsm−1,

s = 1, . . . , Sm−1 be the corresponding extreme points. The optimal objective and solution of

Problem (3.2) are obtained by solving Subproblem s, s = 1, . . . , Sm−1:

max
1

W

n∑
i=1

µi xi

s.t. m · θm +

T∑
t=1

βmt −
T∑
t=1

(
n∑
i=1

rti xi

)
zst,m−1 ≥Wqm,

θm + βmt ≤
n∑
i=1

rti xi, ∀t,

βmt ≤ 0, ∀t,

xi = x0
i + x+

i − x
−
i , ∀i,

x+, x− ∈ X.

(3.12)

and keeping the optimal objective and solution of the subproblem with the highest objective

value.
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We refer the reader to Section 3.4.2 for the proof of Theorem 3.4.

Our implementation of the approach described in Theorem 3.4 is based on the observation

that we actually do not need to generate all the subproblems, since our goal is really to find

minz∈Zm−1

∑T
t=1

(
n∑
i=1

rti xi

)
zt. So we will implement a delayed problem generation ap-

proach, where we only generate subproblems corresponding to corner points zsm−1 that have

been previously found to achieve the minimum over Zm−1 of
∑T

t=1

(
n∑
i=1

rti xi

)
zt for a can-

didate solution x. Other (non-optimal) zsm−1 do not need to be considered since they would lead

to a no-smaller (than what is already available) value of the right-hand side of the first constraint

in Problem (3.12) and therefore a no-larger feasible set and a no-larger objective.

We provide our algorithm in more details below.

Algorithm 3.5 (Delayed Problem Generation)

Step 1 Start with a feasible solution x ∈ X to serve as a candidate solution x̄.

Step 2 Solve Problem (3.10) for the candidate solution x̄ and r = m−1, and obtain an optimal

corner point zsm−1 for some s = 1, . . . , Sm−1.

Step 3 Solve the subproblem s defined by Problem (3.12) for the s and zsm−1 identified in Step

2. Obtain a new candidate solution.

Step 4 Repeat Steps 2 and 3 until the algorithm generates the same corner point of Zm−1 or

the same candidate solution x in two consecutive steps, whichever happens sooner.

Note that Step 4 checks both consecutive z and consecutive x because there may be multiple

optimal solutions.

Figure 3.6 and Figure 3.5 shows how portfolio Return and TCE changes when α is 5%.
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Figure 3.5: Efficient Frontier, Daily Return Data, α = 0.05

Figure 3.6: TCE vs Risk, Daily Return Data, α = 0.05

3.4 Conclusions

In this chapter, we investigated an approximation method to solve the portfolio management

problem with quantile constraints. The algorithm that we proposed is tractable, since it requires

solving a series of linear problems iteratively. The numerical experiments we performed suggest

that our method leads to robust portfolio decisions against adverse realizations of the returns.

In addition, our method usually leads to more efficient portfolio allocation decisions than well

known Gaussian approximation methods ([113], [130], and [174]) and an iterative data-driven

approximation algorithm ([124]). We also extended our work to the inter-quantile range risk

management problem.
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Appendix

3.4.1 Log-Normal Sum Approximation with Moment Matching Approach

Denote eR
t
i the return of stock i during time period t. Then return of stock i from time 1 to time

T is e
∑T
t=1R

t
i . Therefore, the portfolio return over T period can be formulated as:

W =
n∑
i=1

xie
∑T
t=1R

t
i .

Then, the first and the second moments of the portfolio return are calculated as:

E[W ] =
T∑
i=1

xiE[e
∑T
t=1 R

t
i ]

=
n∑
i=1

e(µ̃iT+
σ̃i

2T

2
) (3.13)

E[W 2] = E

( T∑
i=1

xie
∑T
t=1 R

t
i

)2


=

n∑
i=1

x2
i e

2T µ̃i+2T σ̃i
2

+

n∑
j=1,j 6=i

xixje
((µ̃i+µ̃j)T+T

2
(σ̃i

2+σ̃j
2+2ρi,j σ̃iσ̃j))

(3.14)

We define the vector b ∈ Rn such that

b[i] = e(µ̃iT+
σ̃i

2T

2
) ∀i ∈ {1, ..., n},
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and the matrix A ∈ Rnxn such that

A[i, j] = e((µ̃i+µ̃j)T+T
2

(σ̃i
2+σ̃j

2+2ρi,j σ̃iσ̃j)) ∀i ∈ {1, ..., n} , ∀j ∈ {1, ..., n}, and i 6= j

A[i, i]] = e2T µ̃i+2T σ̃i
2 ∀i ∈ {1, ..., n}.

The Log-Normal approximation of portfolio return is represented as eY where Y ∼ N(µ∗, σ∗).

Then the following equations hold:

E[W ] = b′x = E[eY ] = eµ
∗+σ∗2

2

E[W 2] = x′Ax = e2µ∗+2σ∗2 (3.15)

The solution of this system of equations is as follows:

µ∗ = 2ln(b′x)− 1

2
ln(x′Ax)

σ∗2 = ln(x′Ax)− 2ln(b′x) (3.16)

Then, the expected return maximization problem with quantile constraint is written as:

max

(
eµ
∗+σ∗2

2

)
s.t. µ∗ + φ−1(α)σ∗ ≥ ln(qm),

x ∈ X,

which is equivalent to
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max bTx

s.t. 2 ln(bTx)− 1

2
ln(xTAx) + φ−1(α)

√
ln(bTx)− 2 ln(xTAx) ≥ ln(qm),

x ∈ X.

(3.17)

3.4.2 Proof of Theorem 3.12

Proof: Follows from using Problem (3.11) to represent
∑m

k=1 (
∑n

i=1 r·i xi)(k) with w = m and

Problem (3.10) to represent
∑m−1

k=1 (
∑n

i=1 r·i xi)(k) with w = m − 1. (The two sums of sorted

values must be treated differently since they are on different sides of the inequality.)

Looking at the part corresponding to Problem (3.11) only, we have the optimal objective of

a maximization problem that must be equal to or greater than a threshold, so it is necessary and

sufficient to find a feasible solution whose objective is equal to or greater than that threshold. (In

other words, we can remove the maximization operator.)

Looking at the part corresponding to Problem (3.10) only, we have the optimal objective of

a minimization problem that must be equal to or smaller than a threshold, but since it is a linear

problem and the feasible set is non-empty and bounded there will be an optimal solution at a

corner point of the feasible set, so it is necessary and sufficient to have one corner point (which

we enumerate, leading to Sm−1 subproblems) whose objective is equal to or greater than that

threshold.
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Chapter 4

Portfolio Management with Moment

Matching Approach

4.1 Problem Setup

We will use the following notation throughout the chapter.

T : the length of the investment horizon,

W : the portfolio return,

xi : the fraction of the portfolio allocated to asset i,

Rti : the natural logarithm of the return on asset i at time t,

µi : the location parameter of the Log-Normal distribution of the return on asset i,

σi : the scale parameter of the Log-Normal distribution of the return on asset i,

ρi,j : the correlation coefficient between the natural logarithms of

two Log-Normally distributed random variables with indexes i and j,

µ : the location parameter of the Log-Normal distribution of the portfolio return,

σ : the scale parameter of the Log-Normal distribution of the portfolio return,

w : the left tail parameter for the portfolio return distribution,
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wf : the target for the expected portfolio return,

n : the total number of stocks,

Y : the random variable representing the natural logarithm of the portfolio return.

We assume that w < wf throughout the chapter and define the matrix A ∈ Rn×n such that:

Ai,j = e(µi+µj)T+T
2

(σ2
i+σ2

j+2ρi,jσiσj) ∀i, j

and the vector b ∈ Rn such that:

bi = eµiT+
σ2
i T

2 ∀i ∈ {1, ..., n}.

Let Φ be the cumulative distribution function of a standard Gaussian random variable.

Lemma 4.1 (Probability in the Moment Matching Approximation) For a given allocation x,

the cumulative probability value of the portfolio return at w is approximated by:

P (W ≤ w) ≈ Φ

(
ln(w)− 2 ln(b′x) + 1

2 ln(x′Ax)√
ln(x′Ax)− 2 ln(b′x)

)
. (4.1)

Proof. Denote eR
t
i the return on stock i during time period t. Then the return on stock i from

time 1 to time T is e
∑T
t=1 R

t
i and the portfolio return over T periods is given by:

W =
n∑
i=1

xi e
∑T
t=1R

t
i ,

with
∑T

t=1R
t
i obeying a Normal distribution with mean Tµi and variance Tσi. Therefore the

return on stock i from time 1 to time T , as Log-Normal random variable, has mean eµiT+
σ2
i T

2
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and variance
(
eσ

2
i T − 1

)
· e2µiT+σ2

i T with the first moment:

E[W ] =

n∑
i=1

xi e
µiT+

σ2
i T

2

= b′x,

and the second moment:

E[W 2] = E

( n∑
i=1

xie
∑T
t=1R

t
i

)2


=
n∑
i=1

n∑
j=1

xixjE
[
e
∑T
t=1 R

t
ie
∑T
t=1 R

t
j

]
=

n∑
i=1

n∑
j=1

xixjE
[
e
∑T
t=1(Rti+R

t
j)
]

= x′Ax,

where we have used that
∑T

t=1(Rti+Rtj) obeys a Normal distribution with mean (µi+µj)T and

variance (σ2
i + σ2

j + 2 ρi,jσiσj)T . Note that because V ar(W ) = E(W 2) − E(W )2 is always

non-negative, we always have x′Ax ≥ (b′x)2.

The Log-Normal approximation of the portfolio return is denoted eY where Y ∼ N(µ, σ2).

Matching the first two moments of the approximation and the true distribution yields:

E[W ] = b′x = E[eY ] = eµ+σ2

2

E[W 2] = x′Ax = e2µ+2σ2
.

This leads to:

µ = 2 ln(b′x)− 1

2
ln(x′Ax)

σ =
√

ln(x′Ax)− 2 ln(b′x).
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Eq.(5.3) follows by computing the probability of Y , which obeys a Gaussian distribution, falling

below ln(w).

4.2 Portfolio Optimization Approach

Our goal here is to minimize the risk (measured by the probability of the portfolio return’s

falling below w) while keeping the expected return on the portfolio at a specified level wf or

above, using the approximate formulations obtained via the Fenton-Wilkinson method. Let X

be the feasible set for the allocation x, assumed to be a polyhedron. (In its simplest form,

X = {x|e′x = 1}, indicating that fractions invested must sum to 1. If short sales are not

allowed, there will also be non-negativity constraints on the decision variables.)

Theorem 4.2 (Solving the approximated problem) Let F be the function defined on [wf ,∞)

by the quadratic programming problem:

F (v) = min x′Ax

s.t. b′x = v

x ∈ X.

(4.2)

The optimal allocation x of the portfolio problem approximated via moment matching is the

optimal solution of Problem 4.2 with v the optimal solution of:

min
v≥wf

ln

(
w
√
F (v)

v2

)
√

ln
(
F (v)
v2

) . (4.3)
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Proof. Using Lemma 4.1, the portfolio management problem is formulated as:

min
x

ln(w)− 2 ln(b′x) + 1
2 ln(x′Ax)√

ln(x′Ax)− 2 ln(b′x)

s.t. b′x ≥ wf ,

x ∈ X.

or equivalently, by conditioning on b′x:

min
v≥wf ,x∈X,b′x=v

ln(w)− 2 ln(v) + 1
2 ln(x′Ax)√

ln(x′Ax)− 2 ln(v)
.

Let denote y∗ the smallest value of ln(x′Ax) achievable over {x ∈ X, b′x = v} for a given

v. (We drop the dependence of y∗ in v for the sake of clarity.) We check by taking the first

derivative that the slope of the function f defined over [y∗,∞) by f(y) =
α+ 1

2y√
y − β

(with α =

ln(w)− 2 ln(v) and β = 2 ln(v)) is first negative then positive with a sign change at y = 2(α+

β) = 2 ln(w). Therefore, its minimum is achieved at 2 ln(w) if 2 ln(w) ≥ y∗ and y∗ otherwise;

however, we have seen earlier that x′Ax > (b′x)2 which, with the present notations, translates

into y > 2 ln(v), and we have stated at the beginning of the chapter that we assume w < wf

throughout the study due to the meaning ofw (left-tail parameter) andwf (expected ROR target),

hence w < v (because wf ≤ v). It follows that we must have 2 ln(w) < 2 ln(v) < y. This

eliminates 2 ln(w) as the candidate minimum. As a result, the minimum of our problem is

achieved for y = y∗, or equivalently, x′Ax as small as possible over the set of feasible solutions:

{x ∈ X, b′x = v} at v given.

Remark: Because E[W ] = b′x is set, minimizing x′Ax = E[W 2] is equivalent to minimizing

the variance of the portfolio. Hence, the feasible allocations for the problem are reduced to those

on the efficient frontier, in the Markowitz (mean-variance) sense, and the manager only has to

decide which expected return to request, or equivalently, where on the efficient frontier to place

himself, which is achieved by solving Problem (4.3).
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4.3 Portfolio Management Algorithm

As shown in the numerical experiments in the next section, the Fenton-Wilkinson approximation

seems to capture well the central tendency of the portfolio return; however, the dispersion is not

caught as well as the central tendency. This is an issue for the application considered, since

we use the moment-matching approximation to estimate a left-tail probability with the goal

of protecting the decision-maker against adverse events. Therefore, we present here a method

to update the matrix A (in a way made precise below) to yield more precise estimates of the

probability of interest; a change in A is directly reflected to the function ln(x′Ax), which is the

natural logarithm of the second moment of the portfolio return when the allocation x is given,

and thus is related to the dispersion or volatility of the portfolio return.

In order to test and control the accuracy of the Log-Normal sum approximation at this point,

we define a performance measure, θ, which is the difference between the empirical value of

the cumulative probability of the Log-Normal sum and the actual value of the Log-Normal

sum approximation at w for a given portfolio allocation decision x. Let denote the cumulative

probability for the Log-Normal sum approximation as π, calculated according to the random

sample generated. Then,

θ = P (W ≤ w)− π.

Ideally, we would want θ to be zero. Our goal is to adjust A so that P (W ≤ w), computed

with the moment-matching approximation for a newA, is equal to π. SinceA appears in Eq.(5.3)

through ln(x′Ax), we define z such that:

Φ

(
ln(w∗)− 2ln(b′x) + 1

2z√
z − 2ln(b′x)

)
= π

We consider an update for A of the type:

A := eεA.
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It is easy to check that we will have z = ln(x′Ax) with the new A for ε given by:

ε = z − ln(x′Ax).

This leads to the following algorithm, for given stopping parameters ε1 > 0 and ε2 > 0:

Algorithm 4.3 (Iterative algorithm)

Step 1 Start with a feasible solution x ∈ X to serve as a candidate solution and set the iteration

number, s = 0. Apply the Fenton-Wilkinson approximation and obtain the matrix A and

the vector b.

Step 2 Apply the portfolio optimization approach to obtain the optimal investment fractions xs.

If |xs − xs−1| ≤ ε1, then STOP; else go to Step 3.

Step 3 Calculate θs,

If |θs| ≤ ε2 or |θs| > |θs−1|, then STOP; else go to Step 4.

Step 4 Repeat Step 2 and Step 3 until one of the conditions to STOP is satisfied.

4.4 Numerical Experiments

In this section, we measure the approximation accuracy of the proposed portfolio management

approach. We provide cumulative histogram plots of the actual Log-Normal sum and those of

the proposed Log-Normal sum approximation over a sample data set with three different fre-

quencies (day, week, and month) to measure the accuracy of the suggested method. In addition,

we compare the performance of the suggested Log-Normal sum approximation method to that of

the approximation to the tail empirical distribution function with the Generalized Pareto Distri-

bution. We also estimate the risk (the probability of the portfolio return’s being not higher than
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the specified target w) according to the two approximation methods and compare these estima-

tions with the empirical cumulative probability of the actual Log-Normal sum calculated over a

sample generated by Monte-Carlo simulation.

We will see that:

• Our proposed approximation and calibration algorithm improve the accuracy of the Fenton-

Wilkonson approximation, so that it generally measures the risk more accurately than the

commonly used tail empirical distribution function approximation by a Generalized Pareto

Distribution (GPD). For instance, the suggested method outperforms the benchmark ap-

proximation method in 63% of the numerical tests summarized in Table 4.1.

4.4.1 Setup

We consider historical observations over four consecutive time periods between Jan 01, 2007 and

March 08, 2013. The first (Sep 1, 2007 - Sep 30, 2008), second ( Oct 1, 2008- March 31, 2010),

third (April 1, 2010 - June 30, 2011), and the fourth (July 1, 2011- March 8, 2013) time periods

are determined to capture the timeline of 2008 financial crises by considering the beginning date

of the crises and the dates of the first three quantitative-easing decisions. We analyze separately

daily, weekly and monthly historical observations of three sets of stocks – 30, 50 and 100 stocks

listed in New York Stock Exchange (NYSE) – over the four consecutive periods.

As described in the previous section, the Fenton-Wilkinson approximation method is applied

to forecast the location µ and scale σ parameters of the approximated Log-Normal distribution

for the overall portfolio ROR. Next, we apply the proposed portfolio management approach

to obtain the optimal asset allocation. Then, given the scale and the location parameters, and

the portfolio allocation decision, we generate a sample of random portfolio return realizations

for both the Log-Normal sum and the Log-Normal sum approximation. In addition, the left

and the right tails of the portfolio return distribution are approximated by a Generalized Pareto

Distribution (GPD). The 25th percentile values of the empirical distribution of the portfolio
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return and the portfolio rate of loss are used as thresholds for approximating the left and right

tail distributions by GPD, respectively.

The Log-Normal sum realization at time t, Wt, is calculated using i.i.d. standard Gaussian

random variables rit for all t and i such that:

Wt =
n∑
i=1

eµi+σir
i
txi

while the portfolio ROR approximation for time t is calculated using a standard Gaussian random

variable r′t for all t such that:

W ′t = eµ+σr′ .

The cumulative returns are then computed as W =
∏T
t=1Wt and W ′ =

∏T
t=1W

′
t . The per-

formance measure Ω is defined to assess the quality of the cumulative probability forecast at

w:

Ω = 100 · |P (W ≤ w)− P (W ′ ≤ w)|
P (W ≤ w)

.

Here our goal is to observe the accuracy of the approximation method in estimating the

specified risk (the probability of obtaining a portfolio return less than or equal to a specified

level w). In addition, we use the approximation suggested by GPD as the benchmark. The

cumulative probability value at w based on the proposed approach with the Fenton-Wilkinson

Approximation (FWA) and the one based on the GPD approximation are denoted PFWA(W ′ ≤

w∗) and PGPD(W ′ ≤ w∗), respectively.

4.4.2 Measuring the Accuracy of the Approximated Distribution

In this section we measure the accuracy of the proposed approximation method by comparing

the cumulative histogram plots of the portfolio return (Log-Normal sum) and the proposed ap-

proximation. The set of stocks considered is 30 stocks of the NYSE during the first period, while
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the data frequency is a day, a week, or a month and w is set to 0.99.
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(a) Daily Data (b) Weekly Data (c) Monthly Data

Figure 4.1: Cumulative Histogram Plot

Figure 4.1 shows that the cumulative histogram plots of the Log-Normal sum (portfolio

return) and those of the Log-Normal sum approximation (proposed approach) nearly coincide,

which indicates the accuracy of the proposed approximation method.

4.4.3 Accuracy in Estimating the Risk

We calculate and compare Ω values for both the proposed approach (ΩFWA) and the approx-

imation with Generalized Pareto Distribution (ΩGPD), over each data set with a unique data

frequency. Each single row in Table 4.1 summarizes the numerical experiments with the same

data frequency and same number of assets over the four different periods (namely, Period 1, 2,

3, and, 4). We provide the average, min, and max value of ΩFWA and ΩGPD for each set of

experiments summarized in a row in Table 4.1. In addition, the number of the experiments (out

of 4) in which the proposed method provides higher accuracy than the GPD approximation is

presented in the last column of Table 4.1.
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Table 4.1: Analysis for the data set consisting 30, 50 and 100 stocks listed in NYSE with three
different data frequencies

Asset Freq. T w Iteration P (W ≤ w) P (W ′ ≤ w) P (W ′ ≤ w) ΩFWA ΩGPD ΩFWA ΩFWA ΩGPD ΩGPD # of
Number (Actual) (FWA) (GPD) (Avg.) (Avg.) (Min.) (Max.) (Min.) (Max.) Obs.
(Avg.)

30 Day 1 0.990 3.50 0.0808 0.0809 0.0808 0.0190 0.0934 0.0138 0.0120 0.0301 0.1902 3
30 Day 5 0.990 3.75 0.0581 0.0595 0.0579 0.0668 0.0492 0.0000 0.0208 0.0952 0.0892 1
30 Day 10 0.990 2.75 0.0729 0.0622 0.0714 0.7482 0.1286 0.0455 0.0237 1.0000 0.3028 1
50 Day 1 0.988 4.00 0.0309 0.0294 0.0313 0.0794 0.1496 0.0000 0.0122 0.2000 0.3333 3
50 Day 5 0.988 4.00 0.0310 0.0309 0.0322 0.0568 0.1462 0.0067 0.0232 0.1111 0.4553 3
50 Day 10 0.988 3.25 0.0663 0.0543 0.0675 0.4384 0.1785 0.0467 0.0069 0.9981 0.4002 2
100 Day 1 0.988 3.00 0.0612 0.0683 0.0609 0.3021 0.1259 0.0293 0.0086 0.9543 0.2618 2
100 Day 5 0.988 2.25 0.2145 0.2221 0.1951 0.2720 0.0716 0.0106 0.0153 0.6497 0.1942 1
100 Day 10 0.988 4.00 0.0389 0.0393 0.0389 0.0520 0.0631 0.0114 0.0177 0.1538 0.1244 2
30 Week 1 0.980 4.00 0.1056 0.1071 0.1029 0.0264 0.0469 0.0062 0.0180 0.0461 0.0918 3
30 Week 2 0.980 3.75 0.1055 0.1071 0.1041 0.0382 0.0583 0.0013 0.0001 0.1111 0.1784 2
30 Week 3 0.980 3.75 0.1095 0.1066 0.1053 0.0298 0.0495 0.0057 0.0305 0.0476 0.0706 4
50 Week 1 0.980 4.00 0.0736 0.0736 0.0733 0.0176 0.0560 0.0000 0.0115 0.0530 0.1197 4
50 Week 2 0.990 3.00 0.1655 0.1680 0.1612 0.0162 0.0280 0.0090 0.0134 0.0281 0.0597 4
50 Week 3 0.983 3.25 0.0736 0.0747 0.0734 0.0284 0.0361 0.0092 0.0161 0.0462 0.0556 3
100 Week 1 0.990 3.50 0.1363 0.1370 0.1337 0.0345 0.0190 0.0106 0.0067 0.0975 0.0377 2
100 Week 2 0.990 3.25 0.1412 0.1438 0.1377 0.0149 0.0219 0.0054 0.0006 0.0367 0.0396 2
100 Week 3 0.980 4.00 0.0534 0.0543 0.0546 0.0498 0.0386 0.0019 0.0039 0.0838 0.1056 2
30 Month 1 0.980 2.75 0.1016 0.0986 0.1011 0.1021 0.0170 0.0089 0.0095 0.3660 0.0340 3
30 Month 2 0.980 1.50 0.0997 0.1017 0.0989 0.0241 0.0354 0.0100 0.0184 0.0392 0.0774 3
30 Month 3 0.980 2.50 0.0904 0.0866 0.0915 0.0324 0.0278 0.0039 0.0003 0.0553 0.0674 3
50 Month 1 0.980 3.00 0.0593 0.0590 0.0591 0.0420 0.0436 0.0106 0.0160 0.1140 0.0772 3
50 Month 2 0.980 3.00 0.0662 0.0655 0.0654 0.0195 0.0280 0.0080 0.0127 0.0500 0.0499 3
50 Month 3 0.980 3.00 0.0696 0.0700 0.0685 0.0268 0.0205 0.0018 0.0081 0.0947 0.0414 3
100 Month 1 0.990 4.00 0.1278 0.1280 0.1256 0.0059 0.0185 0.0015 0.0100 0.0083 0.0381 4
100 Month 2 0.990 4.00 0.1309 0.1279 0.1293 0.0275 0.0113 0.0064 0.0027 0.0508 0.0218 1
100 Month 3 0.980 3.25 0.0679 0.0688 0.0672 0.0407 0.0457 0.0040 0.0274 0.1344 0.0692 3

ΩFWA is less than ΩGPD in 68 of 108 observations in Tables 4.1. This can be interpreted as

that the proposed approximation approach outperforms the GPD approximation 63% of the time.

In addition, the suggested approximation method outperforms the approximation with GPD the

most often when the frequency of the data set is one month and one week.

4.5 Extension to the Design of Basket Options

In this section we describe how our approach can be applied to basket option designing problems.

We will minimize the price of the basket call option where the strike price, which is a function of

weights of the stocks in the basket, is determined to assure that the probability of not exercising

the basket option is no worse than a specified probability level.

The price of a basket option is difficult to calculate exactly because of the multiple random

variables that define the underlying assets. Various approximation methods have been proposed
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in the literature for basket option pricing including conditional expectation techniques [14], an

approximation using the geometric average [86], a Log-Normal moment matching method [126],

a Taylor expansion [107], and a reciprocal Gamma approximation [146]. In our work we will

incorporate Levy’s moment-matching approach for basket option pricing, which is the work most

relevant to the present chapter, and the iterative approximation approach that is proposed in the

previous section. We will use the following notation:

T : the time to expiration,

yi : the fraction of the basket that is allocated to stock i,

Si(t) : the price of stock i at time t,

Fi(t) : the forward price of stock i at time t,

B(t) : the value of the basket at time t,

µi : the location parameter of the Log-Normal distribution of ROR on stock i,

σi : the scale parameter of the Log-Normal distribution of ROR on stock i,

ρi,j : the correlation coefficient between the natural logarithms of

two Log-Normally distributed random variables with indexes i and j,

µb : the location parameter of the Log-Normal distribution of the basket ROR,

σb : the scale parameter of the Log-Normal distribution of the basket ROR,

K : the strike price of the basket call option,

n : total number of stocks,

r : the risk-free interest rate.
The basket call-option pricing method proposed by [126] approximates the distribution of the

value of the basket by a Log-Normal distribution obtained by matching the first two moments of

this distribution and those of the original Log-Normal sum of the stock prices.

Let A and b the matrix and vector defined by:

Aij = Fi(T )Fj(T )eσiσjρi,jT ∀i, j, and bi = Fi(T ) ∀i,
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so that:

E[B(T )] = b′y and V = E[B(T )2] = y′Ay.

The basket value at time t is calculated as: B(t) =
∑n

i=1 yiSi(t) and the price at time 0 of a

European call with strike K on the basket B(T ) at maturity is given by:

C(0) = e−rTEQ[(B(T )−K)+],

where Q is the risk-neutral measure as in the famous Black-Scholes option pricing model (we

refer the reader to [35] for more information). [126] approximates the price of the basket option

by:

C(0) = e−rT [E(B(T ))Φ(d1)−KΦ(d2)] ,

with

d1 =
µb − ln(K) + σ2

b

σb
, d2 = d1 − σb,

where

µb = 2 ln(b′y)− 1

2
ln(y′Ay),

σ2
b = ln(y′Ay)− 2 ln(b′y),

Lemma 4.4 (Basket Options) The probability of not exercising the basket call option, when the

basket value is approximated as a Log-Normally distributed random variable with parameters

µb and σb, is given by:

P (B(T ) ≤ K) ≈ Φ

(
ln(K)− 2 ln(b′y) + 1

2 ln(y′Ay)√
ln(y′Ay)− 2 ln(b′y)

)
.

Proof. As for Lemma 4.1, the result follows directly from ln(B(T )) being approximated by a

Normal distribution with mean µb and standard deviation σb.
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The problem of minimizing the price of the basket call option subject to the probability of

not exercising the option being less than a specified threshold value p is formulated as:

min e−rT

[
b′yΦ

(
1
2 ln(y′Ay)− ln(K)√
ln(y′Ay)− 2 ln(b′y)

)
−KΦ

(
2 ln(b′y)− 1

2 ln(y′Ay)− ln(K)√
ln(y′Ay)− 2 ln(b′y)

)]

s.t. Φ

(
ln(K)− 2 ln(b′y) + 1

2 ln(y′Ay)√
ln(y′Ay)− 2 ln(b′y)

)
≤ p,

y ∈ Y.

The following theorem explains how to solve this problem.

Theorem 4.5 (Solving the basket options designing problem) Let F be the function defined

on [wf ,∞) by the quadratic programming problem:

F (v) = min y′Ay

s.t. b′y = v

y ∈ Y.

(4.4)

The optimal decision y of the basket options designing problem is the optimal solution of Problem

(4.4) with v the optimal solution of

minv≥wf e
−rT

(
vΦ
(
−Φ−1(p) +

√
F (v)− 2ln(v)

)
− (1− p)e2ln(v)−0.5ln(F (v))+Φ−1(p)

√
ln(F (v))−2ln(v)

)
(4.5)

Proof: The chance constraint in the basket options designing problem is tight at optimality;

because, the cumulative probability value p decreases only if the strike price K increases, while

the basket allocation decision y is given, which, at the same time, increases the price of the

basket option. Therefore, the chance constraint will be forced to be tight in order to minimize

the price of the basket option. Thus, the strike price, K, is formulated as:
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K =
b′y2

√
y′Ay

exp
(

Φ−1(p)
√
ln(y′Ay)− 2ln(b′y)

)
Injecting the strike price formulation into the basket options price function leads to the fol-

lowing formulation for the options designing problem:

min
v≥wf

e−rT
(
vΦ
(
−Φ−1(p) +

√
ln(y′Ay)− 2ln(v)

))
− (1− p) b′y2√

ln(y′Ay)
exp

(
Φ−1(p)

√
ln(y′Ay)− 2ln(b′y)

)
y ∈ Y.

(4.6)

Note that the objective function is a nondecreasing function of y′Ay (assuming α is less than

or equal to 0.5); in other words, while b′y = wf is given and y ∈ Y , the minimum price value

is obtained when y′Ay takes the minimum value satisfying b′y = v. As a result, the optimal

decision y of the basket options designing problem is the optimal solution of Problem (4.4) with

v the optimal solution of Problem (4.5).

In addition, we use the approximation accuracy measure θ (with π = p) and the accuracy

improvement approach which are introduced in the previous chapter.

Our algorithm is given as follows, for stopping parameters ε1 and ε2:

Algorithm 4.6

Step 1 Start with a feasible solution y ∈ Y to serve as a candidate solution and set the iteration

number, s = 0. Apply Fenton-Wilkinson approximation and obtain the matrix A and the

vector b.

Step 2 Apply the basket option designing approach explained above by solving Problem (4.4)

and Problem(4.5) to obtain the basket allocation fractions (ys). If |ys − ys−1| ≤ ε1, then

STOP; else go to Step 3.

Step 3 Calculate θs,

If |θs| ≤ ε2 or |θs| > |θs−1|, then STOP; else go to Step 4.
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Step 4 Repeat Step 2 and Step 3 until one of one of the conditions to STOP is satisfied.

The proposed approach lets us design a European basket call option whose strike price is set

in order to keep the probability of not exercising the option at a specified level. However, the

basket call option designed according to the suggested approach may not be traded in the market.

Even though some big market players have enough power to persuade financial institutions to

trade the basket call option that they designed, this might not be the case for other market players.

Therefore, we will refer to the previous studies in the literature for the strategies which replicate

the payoff structure of the designed call basket option by individual European call options.

A Static Super-Replicating Strategy

[207] proposed this method to obtain a super-replicating portfolio whose final payoff is never

worse than the payoff of the underlying basket call option. The author uses Jensen’s inequality

for the final payoff of the replication,

C(0) =

(
n∑
i=1

yiSi(T )−K

)+

=

(
n∑
i=1

yi

(
Si(T )− qi

yi
K

))+

≤
n∑
i=1

yi

(
Si(T )− qi

yi
K

)+

,

where
∑n

i=1 qi = 1 and yi is the basket fraction allocated to stock i.

Therefore, the payoff of the portfolio consisting of n plain vanilla call options (each of

which has a strike price equal to qi
yi
K, i ∈ {1, .., n}) is not worse than that of basket call option.

Considering the no-arbitrage argument, the cost the super-replicating portfolio must be greater

than or equal to that of the basket call option, in other words the following inequality holds:

n∑
i=1

e−rTEQ [(yiSi(T )−K)+] ≤ n∑
i=1

yie
−rTEQ

[(
Si(T )− qi

yi
K

)+
]

(4.7)

where Q is the risk-neutral measure as in the famous Black-Scholes option pricing model. There-

fore, one approach to design the replicating portfolio might be minimizing the cost of super-

replicating portfolio as follows:
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min
q

n∑
i=1

yie
−rTEQ

[(
Si(T )− qi

yi
K

)+
]

s.t. e′q = 1.

(4.8)

[207] provides the solution of Problem(4.8), i.e., the optimal sequence of weights q∗i by the

following proposition.
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Chapter 5

New Product Launching Decisions with

Robust Optimization

5.1 Introduction

In this chapter, we consider the introduction of a set of innovative products or services to a

national market. We assume that the company which has innovated the products plans to launch

them in a national market in a limited time period and is interested in determining the optimal

time to launch each product. The company is assumed to have a limited marketing budget at

each period. The products or services under consideration can be durable goods with different

purposes or drugs with different treatments so that the substitution effect among the products is

neglected.

We use the new product growth model suggested by the Bass [9] to estimate the adoption

rate of the customers for each product. The Bass diffusion model and its revised versions have

been used for forecasting the diffusion of innovation in various areas including durable goods,

pharmaceutical, and industrial technology markets. As it is mentioned in chapter 1.6 the Bass

model of diffusion considers two types of potential adopters, namely innovators and imitators.

159



5.1. INTRODUCTION

It assumes that two communication channels are used to influence the potential adopters: mass

media and word of mouth. The innovators are affected by the external influence (mass media),

whereas the imitators’ motivation to adopt the innovation comes from the internal influence of

the customers who have already adopted the innovation. According to Lilien, Rangaswamy, and

Bruyn [127], the Bass model can estimate the long term sales patterns of an innovative product

for the following two cases:

• The new product has already been introduced to the market and the first few periods’ sales

amounts have been observed,

• The new product has not been introduced to the market; however, an existing product’s

diffusion process can be used as a proxy for the product of interest.

The usage of the basic Bass model requires estimating three parameters: m, p, and q for each

product. The parameters m, p, and q stand for the potential number of ultimate adopters in the

market, the coefficient of the external influence, and that of the internal influence, respectively.

In addition, the Bass model formulates the number of new adopters of the product i in period t

(Si(t)) as:

Si(t) = mi
(mi + qi)

2

pi

e−(pi+qi)t(
1 + qi

pi
e−(pi+qi)t

)2 .

Srinivasan and Mason [202] show that reliable estimations for the parameters can be obtained

when the available data set is large enough to cover the peak of the rate of the adaption curve

for the product under consideration. Therefore, the estimations for the parameters and that for

the number of new adopters in each period made before the original diffusion process starts are

subject to uncertainty and might depend on time. On the other hand, the parameter mi (the

ultimate number of adopters of product i) is not expected to be time-dependent. However, it is

subject to estimation errors, and it can be forecast more accurately after the first few periods’

sales amounts are revealed and analyzed.
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For each product, the innovative company seeks a partner whose willingness to accept the in-

novator company’s partnership offer depends on the proposed unit payments for the service that

it will provide. The partner might help the innovative company establish the infrastructure for

the new adopters or provide some services such as shipping, installment, customer service, etc.

For instance, a bank introduces a new service such as accepting and evaluating loan applications

through text messages. A new account is opened for each new adopter when he/she uses the

system for the first time and the same account is reserved for the same user for future loan appli-

cations. The account keeps some information regarding the user such as his/her social security

number, highest education level, current job, income level, and current credit rating. Therefore,

an additional adopter requires an extension and improvement in the information technology sys-

tem (ITS) of the bank. Under the assumption that the bank outsources the ITS projects, it will

look for a partner to satisfy the need for the technology infrastructure improvement arising from

the new adopters starting using the product.

A potential partner’s probability to accept an offer is modeled as a logit model where the

payment amount per unit is the main variable in the logit model. In other words, the innova-

tor company offers the partner company a specific amount of payment per new adopter for its

collaboration starting from the period when the product is launched until the time period that

the diffusion process of the product terminates. For a given specific probability level, α, the

innovator company selects a partner whose inverse probability function corresponds to the min-

imum payment value per unit. Please note that a given amount of product or service minimum

unit payment corresponds to the minimum net present value (NPV ) of the total payments. For

given the logit model parameters aj and bj , the probability of the potential partner j agreeing to

collaborate with the innovative company when the payment per unit offered by the company is

Rj is represented as:

Pj(Yes) =
e(aj+bjR)

1 + e(aj+bjRj)

The parameters aj and bj of the logit functions are also estimated based on the available data
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or managerial judgments. Therefore, they are subject to uncertainty as well.

Our main target in this chapter is to propose a tractable mathematical framework which han-

dles the parameter uncertainty and answers the following questions of the innovative company:

• How should it schedule launching of each innovative product/service?

• Which partner should it select in each region so that the total profit expected to be obtained

from the innovative product throughout a specific time horizon is maximized?

We assume that the innovative company is a monopoly for these products due to the innovative

nature of the products. In addition, the diffusion of innovation of a product does not affect

the other products’ diffusion processes. Moreover, we assume that the current unit price of the

product is determined. Therefore, we calculate the present value of the revenue obtained from

new products’ sales by discounting the number of adopters in each period by a constant discount

factor.

5.1.1 Motivations for Robust Optimization Applications with the Bass Model

In this section, we show how some key measures of the diffusion of innovation (for the innovative

product) and the logit choice model (for a potential partner’s response to an offer) are affected

by some changes in the parameters of the corresponding models. Specifically, we show how the

adoption rate (fi(t)), cumulative adoption rate (Fi(t)), and total discounted number of adopters

(CS′i(t)) diverse by different values of the parameters pi and qi of the product i. Furthermore,

we provide a similar analysis for the logit response function of a representative potential partner

with changing values of the parameters aj and bj .

The Bass Model Parameters

As it is explained in the chapter 1.6, according to the basic Bass model, the adoption rate

(fi(t)), cumulative adoption rate (Fi(t)), number adopters (Si(t)), and the cumulative number

of adopters (CSi(t)) at period t for the innovative product i are formulated as:
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fi(t) =
(mi + qi)

2

pi

e−(pi+qi)t(
1 + qi

pi
e−(pi+qi)t

)2 ,

Fi(t) =
1− e−(pi+qi)t(

1 + qi
pi
e−(pi+qi)t

) ,
Si(t) = mi

(mi + qi)
2

pi

e−(pi+qi)t(
1 + qi

pi
e−(pi+qi)t

)2 ,

CSi(t) = mi
1− e−(pi+qi)t(

1 + qi
pi
e−(pi+qi)t

) ,

where the parameters qi, pi, and mi are assumed to be estimated for the product i under consid-

eration. Then, under the assumption that the discount factor is constant and represented by r, the

total discounted number of adopters until the period T becomes:

CS′i(t) =
T∑
t=1

1

(1 + r)t

mi
(mi + qi)

2

pi

e−(pi+qi)t(
1 + qi

pi
e−(pi+qi)t

)2

 .

Please note that if the period unit is small enough, then summation of the number of adopters

at each period is a close approximation for the cumulative number of adopters (CSi(t)).

Figure 5.1 shows that as pi or qi increases, the peak marginal adoption rate increases and

the time to reach the peak adoption rate decreases. According to Figure 5.2, an increase in the

parameter pi or the parameter qi results in a higher cumulative adoption rate at a given time

period t. In other words, time to reach a given cumulative adoption rate decreases as pi or qi

increases. If we consider the time value of adoption, the impact of increase in pi or qi on the

total number of adopted customers becomes more significant as it can be observed in Figure 5.3.

The main idea inferred from Figures 5.1, 5.2, and 5.3 is that the estimations for the total
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(a) Varying p, constant q (b) Varying q, constant p

Figure 5.1: The impact of q and p on marginal adoption rates

(a) Varying pi, constant qi (b) Varying qi, constant pi

Figure 5.2: The impact of qi and pi on cumulative adoption rates

number of adopters during a period and the number of new adopters in a period depend on the

parameters pi and qi. In addition, in the worst case the parameter mi takes its smallest possible

value independent from pi’s and qi’s values (both of pi and qi impact the new adoption rate and

only one among several possible adoption rate combinations is selected; however, mi is used to

calculate the number of new adopters at a period by being multiplied by the new adoption rate

in this period). Therefore, we address the uncertainty involved in the parameters pi and qi of
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(a) Varying pi, constant qi (b) Varying qi, constant pi

Figure 5.3: The impact of qi and pi on total discounted number of adopters whilem = 1000, r =
0.001

each product i by robust optimization techniques and assume that the parametermi (the ultimate

number potential adopters) of each product is constant in Chapter 5.2.2. However, in Chapter

5.2.4, we combine the real options approach to handle the uncertainty involved in the parameter

mi of each product with the robust optimization model in Chapter 5.2.2, which takes uncertainty

in the parameters qi and pi of each product i into consideration.

The Logit Choice Model Parameters

As it is explained in Chapter 1.4 the probability of a potential partner j accepting an offer when

the offered unit price (the only variable in the logit model) is R is formulated as:

Pj(Yes) = 1− e−(aj+bjRj)

1 + e−(aj+bjRj)

It is expected that the potential partner’s willingness to accept the offer to collaborate with

the innovative company increases as the offered payment per unit Rj increases. Figure 5.4 sum-

marizes an imaginary potential partner’s probability of accepting an offer where the offer is

defined as the periodic unit payment. In addition, Figure 5.4 shows that as the parameters bj or

aj increases, the probability of acceptance for a given offered payment per unit Rj increases.
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Therefore, we can conclude that a potential partner’s response to an offer depends on the esti-

mations for the parameters aj and bj , which are estimated by analyzing the historical data or by

managerial judgment. As a result, these parameters and the offer acceptance probability for a

potential partner are subject to uncertainty.

(a) Varying bj , constant aj (b) Varying aj , constant bj

Figure 5.4: The impact of aj and bj on the probability of acceptance

We have shown that both the total discounted number of adopters of an innovative product

and the probability of a potential partner accepting an offer depend on the estimations for the

parameters used in the corresponding models. In other words, the uncertainty involved in pa-

rameters pi and qi of the Bass model of the product i and in parameters aj and bj of the logit

model of the potential partner j impact the product launching decisions and the offered price to

a potential partner aiming to obtain a certain chance of acceptance.

For instance, let us consider a case where the innovative firm plans to launch five innovative

products in a region so that only one product is introduced at each period during consecutive

five periods. Considering that there are five products, each of which will be launched exactly at

one of the five periods, one can order the products to launch in one hundred and twenty different

ways. In other words, there are one hundred and twenty different strategies, and we name each

strategy the index of itself. Furthermore, let us use the estimated Bass model parameter values
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provided in Table 5.1 along with the assumption that the discount rate is 0.001. For this small

example, we assume that each product is identical in terms of potential partners and their choice

models in order to show the impact of the uncertainty involved in the Bass model parameters on

the optimal strategy.

Table 5.1: The nominal values of the estimations for the Bass model parameters for each product
p q m

0.046 0.45 1000
0.045 0.44 1000
0.044 0.42 1000
0.047 0.4 1000
0.043 0.43 1000
0.042 0.44 1000

Table 5.2 provides the optimal strategies for the cases where only one product’s q parameter

takes a value which is equal to the multiplication of its nominal value by the specified coef-

ficient located in the first column while the rest of the parameters take their nominal values.

Table 5.3 summarizes the outcomes of the same analysis repeated for p parameters. Tables 5.2

and 5.3 show the sensitivity of the optimal strategy to the parameters p and q of each product,

respectively.

In summary, we have observed that:

• The total discounted number of adopters, the cumulative rate of adoption, and the new

adoption rate for a product are significantly affected by changes in the values of the pa-

rameters of the Bass model.

• The optimal sequence of the products to be launch changes at least once when only one

parameter changes within the range of ∓40% of its nominal value for the small example

mentioned above.

• The probability of a potential customer accepting a given offer is sensitive to the logit

model parameters.
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Therefore, we believe that robust optimization techniques can be used to handle the uncertainty

involved in the parameters (a and b) of the logit choice model and those (p and q) of the Bass

model. The parameters of the logit choice model and the Bass model are estimated through

different processes, and they are subject to different sources of uncertainty. For instance, the

uncertainty affecting the logit choice parameters mostly results from the difficulty of decoding

the potential partners’ utility and offer response functions. On the other hand, the uncertainty

involved in p and q parameters of the Bass diffusion model is generally caused by the potential

customers’ willingness to adopt the innovative product and the communication channels, i.e.

mass media or word-of-mouth. Therefore, we define a different uncertainty budget for each

model’s parameters in the robust optimization model that we develop.

Intervals for the Parameters of the Bass and Logit Choice Models

We define the worst case as the lowest adoption rate for the Bass Model. We assume that initial

estimations of the product-specific Bass models are subject to interval uncertainty. Specifically,

we assume that each parameter qi and pi (i ∈ {1, 2, ..., N}) can take values in an interval

[qi − q̂i, qi + q̂i]] and [pi − p̂i, pi + p̂i]] at each time period upon the diffusion process starts for

the product i. As the two graphs in Figure 5.1 suggest, the diffusion process with the smallest

p parameter value results in the lowest adoption rates from the beginning of the process until

the 14th period. On the other hand, the process with the highest p parameter value leads to the

smallest adoption rates after the 14th period. Similarly, the diffusion process with the smallest

q parameter value provides the smallest adoption rates until the 21st period; however, the one

with the largest q parameter value leads to the smallest adoption rates thereafter. Therefore, the

parameters pi and qi can take their smallest or highest values at a period depending on the time

passed since the diffusion process starts in the worst case. We define the uncertainty budget

for the Bass diffusion parameters as the maximum number of parameters taking its smallest

or highest value in a period until either the diffusion process terminates. However, we do not
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impose another budget of uncertainty for the deviations within the ranges. Therefore, in the

worst case, the parameter values are expected to take the edge values of their intervals. Thus, t

periods after the diffusion process of the product i starts, the new adoption rate takes one of the

following nine values:

• f0
i (t) = f(t, q̄i, p̄i)

• f1
i (t) = f(t, q̄i − q̂i, p̄i)

• f2
i (t)= f(t, q̄i + q̂i, p̄i)

• f3
i (t)= f(t, q̄i, p̄i − p̂i)

• f4
i (t)= f(t, q̄i, p̄i + p̂i)

• f5
i (t)= f(t, q̄i − q̂i, p̄i + p̂i)

• f6
i (t)= f(t, q̄i + q̂i, p̄i + p̂i)

• f7
i (t)= f(t, q̄i − q̂i, p̄i − p̂i)

• f8
i (t)= f(t, q̄i + q̂i, p̄i − p̂i)

where f(t, q, p) stands for the rate of adoption of the product i at a period which is t periods

after the diffusion starts with the corresponding p and q parameters. Please note that if one the

last four cases happen, both pi and qi take their smallest or highest values, which means that 2

out of the overall uncertainty budget for the Bass model is taken for this case.

According to the logit choice model, the probability of acceptance is an increasing function

of the offered unit payment R, as shown in Figure 5.4. In addition, the probability of acceptance

increases as parameters a or b increases for a given R. Furthermore, from the innovator com-

pany’s point of view, the probability of a potential customer accepting an offer is lower in the

worst case. Therefore, we will be interested in the intervals [āij − âij , āij ] and [b̄ij − b̂ij , b̄ij ] for

the response function of the potential partner j for the product i. Therefore, the probability of
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the potential partner j accepting the collaboration offer when the offered periodic payment is Rj

can be one of the following four values:

• P 0
ij(Rj) = P (āij , b̄ij , Rj)

• P 1
ij(Rj) = P (āij − âij , b̄ij , Rj)

• P 2
ij(Rj) = P (āij , b̄ij − b̂ij , Rj)

• P 3
ij(Rj) = P (āij − âij , b̄ij − b̂ij , Rj)

Please note that when P 3
ij makes both ai,j and bi,j take their lowest values. Given that

the innovator company seeks for a partner whose probability to accept the collaboration offer

exceeds a specified probability level, α, with the minimum periodic payment offer Rj , and the

probability of accepting an offer is an increasing function of the offered unit payment Rj , the

innovative company actually looks for the potential customer whose worst-case inverse logit

probability function value is the minimum.

As it is mentioned earlier, the ultimate number of adopters of product i, mi, is estimated be-

fore the diffusion process of the product i starts and is subject to the risk of having an estimation

error. However, the innovative company observes the sales amounts and updates its estimates on

the parameter mi while the diffusion process continues. Therefore, we will handle the uncer-

tainty on the estimation for mi using the real options approach. The option will give the innova-

tive company the right to decrease the size of the contract (in terms of unit) a specific number of

periods (η) later to a specific fraction (κ) of it. The innovative company is assumed to have some-

scenario based estimations for the value of the updated estimation for mi with their correspond-

ing probabilities, η periods later the start of the diffusion process starts. However, the innovative

company avoids returning customers (new adopters) and applies a conservative strategy so that

the maximum of the nine possible periodic adoption rates (f+
i (t) = max{fki (t)}, k ∈ {0, .., 8})

is used as the estimated new adoption rate and mif
+
i (t) units of capacity is reserved at the part-

ner company. However, η periods after the process starts the real option can be exercised and
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the new periodic reserved capacity can be updated to m′if
+
i (t) with a new estimation for the

ultimate number of adopters , m′i.

5.2 New Product Launching Decisions with Robust Optimization

5.2.1 Problem Setup

In this section, we will provide a tractable robust optimization formulation for the problem of an

innovative company which:

• maximizes the global profit obtained from the set of innovative products considering

– the worst case discounted total number of adopters of each product,

– the minimum foreseen partnership payments per unit ensuring the worst case proba-

bility to accept the offer is no less than a specific target,

– unit present value of each product,

– product-specific sets of potential partners with different choice model parameters,

and

– product specific set-up cost and available investment budget limitation per time pe-

riod,

• decides on:

– sequence of the products to be launched,

– the product-specific potential partner whose worst case probability to accept the col-

laboration offer for the product exceeds a specified probability level, α, with the

minimum periodic payment offer R,

• by addressing the uncertainty structure mentioned in the Chapter 5.1.1 under
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– the uncertainty budget for the Bass model parameters,

– the uncertainty budget for the Logit choice model parameters, and

– the estimation errors on estimations for the ultimate market size for each product.

We will use the following notation:

General Parameters
N : the total number of products,

Ki : the maximum number of periods (considering all possible values of qi and pi) between

the time period when the diffusion process of the product i starts and

the time period when its cumulative rate of adoption reaches 1,

T : the end of the time horizon considered,

S : the latest time period until which all of the products are launched,

r : the discount rate,

µi : the current price of the innovative product i where i ∈ {1, .., N}

mi : the estimation for the number of ultimate adopters of the product i,

Ai : the set of potential partners for the product i,

α : the specified probability level for the partner selection process,

Bt : the available investment budget for the time period t,

Di : the set up cost of launching the product i,

ηi : the number of periods between the time period that the product i

is launched and the time period that the real option on the product i can be exercised,

κi : the fraction to which the original total size of the service or product

requested from the partner can be decreased if the real option on the product i

is exercised ηi periods later than the product i’s diffusion process starts,

The Bass Model and Logit Choice Model Parameters
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fki (t) : the adoption rate of the product i, t periods after the diffusion

process starts when the parameters of the Bass model belongs to case

k, k ∈ {1, .., 8} i.e., k = 0 when both parameters are at their nominal value

f+
i (t) : the maximum possible adoption rate of the product i, t periods after

the diffusion process starts,

P kij(R) : the probability of the potential partner j for the product i accepting the unit

payment offer R when the parameters of the logit choice model belongs to

case k, k ∈ {1, .., 3},

Qkij(α) : the inverse logit probability function for the potential partner j for the product i

and the probability level α when parameters of the logit choice model belongs

to case k,

m̃l
i : the updated estimation for the ultimate number of adopters

of the product i according to the scenario l when ηi periods

have passed since the product i is launched,

πli : the probability that the updated estimation for the ultimate

number of adopters for the product i is m̃l
i

Robust Optimization Parameters and Decision Variables
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ΓB : the uncertainty budget for the Bass model parameters restricting the number of

parameters whose value deviate from the nominal value,

ΓL : the uncertainty budget for the logit choice model parameters restricting the number of

parameters whose value deviate from the nominal value,

xiτ : the binary variable which becomes 1 if the product i is launched at time τ ,

where i ∈ {1, .., N}, and τ ∈ {1, .., S},

yij : the binary variable which becomes 1 if the potential partner j is selected for

the product i, where i ∈ {1, .., N}, and j ∈ Ai,

vkis: the binary variable which becomes 1 if the adoption rate of the product i is fki (s)

s years after the diffusion process starts where

s ∈ {1, ..,Ki}, k ∈ {1, .., 8}, and i ∈ {1, .., N},

wkij : the binary variable which becomes 1 if the probability of acceptance by the potential

partner j for the product i is P kij , where

k ∈ {1, .., 3}, i ∈ {1, .., N}, and j ∈ Ai.

The deterministic product launching problem where each product can be launched at most once

is formulated as:

max
x

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s
[µif

0
i (s)− f+

i (s)Φ∗i (α)]

)]

s.t.
S∑
τ=1

xiτ ≤ 1, ∀i,

N∑
i=1

xiτDi(1 + r)(τ−1) ≤ Bτ , ∀τ,

xiτ ∈ {0, 1}, ∀i, ∀τ,

(5.1)

where Φi(α) is the partner selection problem for the product i formulated as:
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Φi(α) = min
yi

∑
j∈Ai

yij min
Rj

{
Ri,j : P 0

ij(Rij) ≥ α.
}

s.t.
∑
j∈Ai

yij = 1, ∀i,

yij ∈ {0, 1}, ∀j.

(5.2)

Lemma 5.1 (Inverse Logit Probability Function) For a given probability level α the optimal

solution of the inner minimization problem in Problem (5.2) corresponds to the inverse proba-

bility formulation of the logit probability model with given logit choice parameters.

R∗ij =
1

b̄ij

(
−āij + ln

(
α

1− α

))
= Q0

ij(α). (5.3)

Proof. The logit probability function is a continuous and increasing function of the variableRij .

The inner minimization problem:

min
Rj

{
Ri,j :

(
P 0
ij(Rij) ≥ α, Rij ≥ 0.

)}
is reformulated by rearranging the constraint using the inverse probability function as:

min
Rj

{
Ri,j :

(
1

b̄ij

(
−āij + ln

(
α

1− α

)))
≤ Rij

}
and the optimal solution occurs at R∗ij = 1

b̄ij

(
−āij + ln

(
α

1−α

))
which is the inverse logit

probability function value with the nominal values of the parameters, Q0
ij(α).

Therefore, the Problem Φi(α) is reformulated as:
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Φi(α) = min
yi

∑
j∈Ai

yijQ
0
ij(α)

s.t.
∑
j∈Ai

yij = 1, ∀i,

yij ∈ {0, 1}, ∀j.

(5.4)

which is equivalent to:

Φi(α) = inf{Q0
ij(α), i ∈ Ai}, ∀i.

Therefore, the deterministic product launching problem can be solved by first determining Φi(α)

for each product i and then solving the Problem (5.1).

5.2.2 Robust Product Launching

As Chapter 5.1.1 explains, the uncertainty involved in the Bass model’s parameters leads to 9

possible adoption rates of a product at a time period under the uncertainty budget restricting the

total number of parameters depicting from their nominal value throughout the time horizon ( but

without an uncertainty budget limiting the deviation within the uncertainty intervals). Similarly,

the uncertainty involved in the logit choice parameters results in 4 possible acceptance probabil-

ity values (and 4 possible inverse probability function values for a probability level α) for each

potential partner and for each product with a given periodic payment offer under the uncertainty

budget restricting the total number of logit choice parameters taking their worst case values.

The robust product launching problem is formulated as:
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max
x

min
v

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s

[
µi

(
f0
i (s) +

8∑
k=1

vkis[f
k
i (s)− f0

i (s)]

)
− f+

i (s)Θ∗i (α,ΓL)

])]

s.t.

8∑
k=1

vkis ≤ 1,∀i, ∀s,

N∑
i=1

Ki∑
s=1

(
4∑

k=1

vkis + 2

8∑
k=5

vkis

)
≤ ΓB,

vkis ∈ {0, 1}, ∀i, ∀s, ∀k,

s.t.
S∑
τ=1

xiτ ≤ 1, ∀i,

N∑
i=1

xiτDi(1 + r)(τ−1) ≤ Bτ , ∀τ,

xiτ ∈ {0, 1}, ∀i, ∀τ.
(5.5)

where the Θ∗i (α,ΓL) stands for the minimum of the worst case inverse logit probability

function values of the potential partners of the product i for a given probability level α under

the uncertainty budget ΓL. The robust optimization problem for the potential partner selection

decision is as follows:

Θ(α,ΓL) = min
y

max
w

N∑
i=1

∑
j∈Ai

yij

(
Q0
ij +

3∑
k=1

(
wkij [Q

k
ij −Q0

ij ]
))

s.t.

3∑
k=1

wkij ≤ 1,∀i, ∀j,

N∑
i=1

∑
j∈Ai

(
2∑

k=1

wkij + 2w3
ij

)
≤ ΓL,

wkij ∈ {0, 1}, ∀i, ∀j, ∀k,

s.t.
∑
j∈Ai

yij = 1, ∀i,

yij ∈ {0, 1}, ∀i, ∀j.

(5.6)

The tractability of Problem (5.5) (Problem (5.6 )) above depends on the decision maker’s
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ability to transfer the inner minimization (maximization) problem into a maximization (mini-

mization) problem so that the outer maximization (minimization) problem incorporates the inner

maximization (minimization) problem over a tractable feasible region. Bertsimas and Sim [31]

recall the strong duality theorem to obtain a tractable formulation for the robust optimization

model when the inner problem is a linear program. However, the inner problems of Problem

(5.5) and Problem (5.6) have integer variables which makes expressing the inner minimization

problem by a maximization problem difficult. Therefore, we seek for the ways of expressing

the inner problems as linear programming models and using strong duality. Specifically, we will

investigate totally unimodularity of the constraint matrices of the inner problems.

5.2.3 Problem Solution Approach

For a given feasible x decision, the inner minimization the Problem (5.5) handling the uncer-

tainty affecting the Bass model parameters is formulated as:

min
v

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s

[
µi

(
f0
i (s) +

8∑
k=1

vkis[f
k
i (s)− f0

i (s)]

)
− f+

i (s)Θ∗i (α,ΓL)

])]

s.t.
8∑

k=1

vkis ≤ 1, ∀i, ∀s,

N∑
i=1

Ki∑
s=1

(
4∑

k=1

vkis + 2

8∑
k=5

vkis

)
≤ ΓB,

vkis ∈ {0, 1}, ∀i, ∀s, ∀k,

(5.7)

For a given feasible decision vector y, the inner maximization problem of the Problem (5.6)
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is represented as:

Θ∗i (α,ΓL) = max
w

N∑
i=1

∑
j∈Ai

yij

(
Q0
ij +

3∑
k=1

(
wkij [Q

k
ij −Q0

ij ]
))

s.t.
3∑

k=1

wkij ≤ 1,∀i, ∀j,

N∑
i=1

∑
j∈Ai

(
2∑

k=1

wkij + 2w3
ij

)
≤ ΓL,

wkij ∈ {0, 1}, ∀i, ∀j, ∀k.

(5.8)

Neither Problem (5.7) nor Problem (5.8) has a totally unimodular constraint matrix. How-

ever, they have a similar structure allowing reformulating the uncertainty budget constraint by

introducing two new integer parameters Γ′L (Γ′L ≤ b0.5ΓLc) and Γ′B (ΓB ≤ b0.5Γ′Bc) and

decomposing the original uncertainty budget constraints so that the both problems’ constraint

matrices become totally unimodular. Problem (5.7) and Problem (5.8) are reformulated as:

min
v

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s

[
µi

(
f0
i (s) +

8∑
k=1

vkis[f
k
i (s)− f0

i (s)]

)
− f+

i (s)Θ∗i (α,ΓL)

])]

s.t.

8∑
k=1

vkis ≤ 1,∀i, ∀s,

N∑
i=1

Ki∑
s=1

(
4∑

k=1

vkis + 2

8∑
k=5

vkis

)
≤ ΓB − 2Γ′B,

8∑
k=5

vkis ≤ Γ′B,

vkis ∈ {0, 1}, ∀i, ∀s, ∀k.

(5.9)

and,
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max
w

N∑
i=1

∑
j∈Ai

yij

(
Q0
ij +

3∑
k=1

(
wkij [Q

k
ij −Q0

ij ]
))

s.t.

3∑
k=1

wkij ≤ 1, ∀i,∀j,

N∑
i=1

∑
j∈Ai

2∑
k=1

wkij ≤ ΓL − 2Γ′L,

N∑
i=1

w3
ij ≤ Γ′L,

wkij ∈ {0, 1}, ∀i, ∀j, ∀k.

(5.10)

Assuming that newly introduced parameters h1 and h2 hold the following equalities h1 =∑N
i=1Ki and h2 =

∑N
i=1 A

i , constraint matrices of Problem (5.9) and Problem (5.10) have the

following structures, respectively,

P ′1 =


Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1

11Xh1 11Xh1 11Xh1 11Xh1 01Xh1 01Xh1 01Xh1 01Xh1

01Xh1 01Xh1 01Xh1 01Xh1 11Xh1 11Xh1 11Xh1 11Xh1



P ′2 =


Ih2Xh2 Ih2Xh2 Ih2Xh2

11Xh2 11Xh2 01Xh2

01Xh2 01Xh2 11Xh2


Lemma 5.2 The constraint matrices of Problem (5.9) and Problem (5.10), namely P ′1 and P ′2,

are totally unimodular.

Proof. A totally unimodular matrix stays totally unimodular after multiplying a row by -1 (see

Nemhauser and Wolsey [155]). Therefore, we multiply the (h1 + 1)th row of P ′1 and the (h2 +

1)th row of P ′2 by −1 and obtain:
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P ′′1 =


Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1 Ih1Xh1

−11Xh1 −11Xh1 −11Xh1 −11Xh1 01Xh1 01Xh1 01Xh1 01Xh1

01Xh1 01Xh1 01Xh1 01Xh1 11Xh1 11Xh1 11Xh1 11Xh1



P ′′2 =


Ih2Xh2 Ih2Xh2 Ih2Xh2

−11Xh2 −11Xh2 01Xh2

01Xh2 01Xh2 11Xh2



Lemma 5.3 (Nemhauser and Wolsey [155], p.544) Let A be a (0,−1, 1) matrix with no more

than two nonzero elements in each column. Then, A is totally unimodular if and only if the rows

of A can be partitioned into two subsets Q1 and Q2 such that if a column contains two nonzero

elements, the following statements are true:

• If both nonzero elements have the same sign, then one is in a row contained in Q1 and the

other is in a row contained in Q2.

• If the two nonzero elements have opposite sign, then both are in rows contained in the

same subset.

The matrices P ′′1 and P ′′2 satisfy these conditions.

Theorem 5.4 The robust optimization problem 5.5 is equivalent to the following mixed integer

programing problem:
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max
x,σ,γ,δ,ε,ν

N∑
i=1

S∑
τ=1

xiτ
(1 + r)τ−1

[
Ki∑
s=1

(
mi

(1 + r)s
(
µif

0
i (s)− f+

i (s)Θ∗i (α,ΓL)
))]

−

(
N∑
i=1

Ki∑
s=1

εis + σΓB + νb0.5ΓBc+
N∑
i=1

Ki∑
s=1

8∑
k=1

δkis

)

s.t. εis + σ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ...,Ki}, ∀k ∈ {1, .., 4},

εis + γ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ...,Ki}, ∀k ∈ {5, .., 8},

ν ≥ γ − 2σ,

S∑
τ=1

xiτ ≤ 1, ∀i,

N∑
i=1

xiτDi ≤
Bτ

(1 + r)τ−1
, ∀τ,

xi,τ ∈ {0, 1}, ∀i, ∀τ

ε, γ, δ, σ, ν ≥ 0,

(5.11)
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where Θ∗(α,ΓL) is represented as:

min
θ,β,χ,ζ,z,y

N∑
i=1

∑
j∈Ai

yijO
0
ij +

3∑
k=1

N∑
i=1

∑
j∈Ai

βij + χΓL + ζb0.5ΓLc+

N∑
i=1

∑
j∈Ai

3∑
k=1

zkij

s.t. βij + χ+ zkij − yij [Okij −O0
ij ] ≥ 0,∀i, ∀j ∈ Ai, ∀k ∈ {1, 2},

βij + θ + zkij − yij [O3
ij −O0

ij ] ≥ 0, ∀i, ∀j ∈ Ai,

ζ ≥ θ − 2χ,∑
j∈Ai

yij = 1, ∀i,

yij ∈ {0, 1}, ∀i, j,

θ, βij , χ, ζ, z
k
ij ≥ 0.

(5.12)

Proof. The inner minimization problem (5.9) has a totally unimodular constraint matrix and

the right hand side coefficients are integers; therefore, the solution of the linear relaxation of

the problem the same as that of the original problem with binary variables. This enables us to

invoke strong duality in the robust optimization formulation. This approach was introduced by

[70]. Then, the dual of the problem (5.9) is formulated as

max
σ,γ,δ,ε

−

(
N∑
i=1

Ki∑
s=1

εis + σ(ΓB − 2Γ′B) + γΓ′B +
N∑
i=1

Ki∑
s=1

8∑
k=1

δkis

)

s.t. εis + σ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ...,Ki}, ∀k ∈ {1, .., 4},

εis + γ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ...,Ki}, ∀k ∈ {5, .., 8},

ε, γ, δ, σ ≥ 0.

(5.13)

The overall robust NPV maximization problem requires, first, solving the minimization (with
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nonnegative objective function) problem (5.13) over Γ′B, 0 ≤ Γ′B ≤ b0.5ΓBc, then max-

imizing over x. That is, the suggested robust optimization approach is composed of, from

the innermost to the outermost, a maximization over the auxiliary dual variables ε, γ, δ, σ, a

minimization problem whose decision variable is ΓB , and a maximization over x. The in-

nermost minimization problem’s objective function is bilinear in Γ′B and γ, σ, and linear in

all other variables. The feasible set for Γ′B is closed and bounded below by 0 and above

by b0.5ΓBc. We relax the integrality constraint on Γ′B , which will lead to an integer solu-

tion. Each of the decision variables ε, γ, δ, σ in the problem (5.13) is less than or equal to

maxi maxs∈{1,...,Ki}
∑S

τ=1
xiτµimimaxk|f0

is−fkis|
(1+r)(s+τ−1) , which can be observed from the constraints,

therefore the decision variables ε, γ, δ, σ are bounded from below by 0 and from above by

maxi maxs∈{1,...,Ki}
∑S

τ=1
xiτµimimaxk|f0

is−fkis|
(1+r)(s+τ−1) . Therefore, Proposition 5.4.4 p.532 in [26] ap-

plies and we can switch the order of the minimization over Γ′B and the innermost maximization.

The coefficient in front of Γ′B is −γ + 2σ , therefore, the minimization over Γ′B will bring

min(0,−γ + 2σ)b0.5ΓBc into the overall objective function. We observed that Γ′B is an integer

and equal to either b0.5ΓBc or zero at optimality; however, it can take other integer values when

the equality σ = γ holds at optimality. Therefore, while solving the maximization problem over

x, we linearize the piece-wise linear formulation max(0, γ − 2σ) by introducing a new variable

v and reach the formulation of the Problem (5.11).

A very similar argument proves modeling approach for the Problem (5.12).

5.2.4 Product Launching with a Real Option: Option to Update the Contract Size

In this chapter, we address the error involved in the estimation for the parametermi, the ultimate

number of adopters of the product i. The parameter mi does not change during the diffusion

process in contrast with the other parameters of the Bass model: pi and qi for the product i.

It is estimated before the process starts by using some analog products which have been in the

market or based on managerial judgment. However, the innovative company can have a more
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educated estimation for the parameter mi by observing the first few periods’ sales amounts

after the product is launched. The real option considered in this chapter provides the innovative

company with the right to reduce the size of the contract with the partners by a given fraction

at a certain time period. The reader is reminded that in the absence of the real option, the

innovative company sets the size of the contract according to the highest possible new adoption

rates considering the parameters p̄i, q̄i, p̂i, and, q̂i and the estimation for mi so that for the

period which is s periods later than the process starts f+
i (s)mi unit of capacity is reserved at

the partner company. Although this strategy provides safety against the case of underestimated

mi, it might result in extra payments made to the selected partners in the case of overestimated

mi. Therefore, the option to update the contract size allow the innovative company to rearrange

the size of the contract (reserved service and committed payment) based on the current estimate

for mi. Therefore, we extend our approach to the case where the innovative company selects its

prospective partners in the presence of the option to update contract size at a certain period. This

real option can be considered a European type option to shrink the size of the contract while

keeping the payment per unit constant.

The partner firm (the writer of the option) has to honor the innovative company’s (the buyer

of the option) wish to decrease the contract size by the fraction ((1 − κi)) stated in the contract

at the specified date (the option expiration date which is η periods after the product is launched)

specified in the contract because of the definition of the option. Therefore, the innovative firm

pays an option premium (Ωi) to the partner to make it willing to commit to the requirements

brought by the real option for the product i. If the innovative company exercises the real option

for the product i, the selected partner for this product has to give up the profit that it could have

gained by conducting business for (1− κ) units of products.

We assume the partners are rational decision makers, and they use the NPV of the net

profit they obtain as the measurement to compare the two alternatives: the business contract

with the innovative company in the absence of the real option and in the presence of the real

185



5.2. NEW PRODUCT LAUNCHING DECISIONS WITH ROBUST OPTIMIZATION

option. However, the innovative company does not know the unit cost that the partner company

encounters for the product i. Therefore, we use the industry profit margin average (ψi) as an

estimation for the profit margin of each of the potential partners for the product i (We use S&P

500 Sectors and Industries Profit Margins Report by Yardeni and Abbott [224] as a reference.).

The potential partner, which is foreseen to have a business with the innovative company, is

expected to be paid by mif
+
i (s) amount of money at the sth period of their partnership where s

changes between 1 and Ki. Therefore, the NPV of the total payments foreseen to be made to

the partner j for the product i, which is introduced to the market at time period τ when the real

option is not available, is formulated as:

NPV (TotalPayment) =
1

(1 + r)τ−1

Ki∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s
.

Then, using the industry profit margin for the partner for the product i, theNPV of the profit

that the partner obtains from this business is formulated as:

NPV (TotalProfit) =
ψi

(1 + r)τ−1

Ki∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s
.

If the innovative company has purchased the real option and exercises it, the partner will be

paid by:

NPV (TotalPayment)′ =
1

(1 + r)τ−1

(
Ωi +

ηi∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s
+

Ki∑
s=ηi+1

f+
i (s)κimiΘ

∗
i (α,ΓL)

(1 + r)s

)

and the total net profit of the partner will be:

NPV (TotalProfit)′ =
1

(1 + r)τ−1

(
Ωi + ψi

ηi∑
s=1

f+
i (s)miΘ

∗
i (α,ΓL)

(1 + r)s
+ ψi

Ki∑
s=ηi+1

f+
i (s)κimiΘ

∗
i (α,ΓL)

(1 + r)s

)

The partner company needs to have at least the same profit when the innovative company ex-

ercises it in order to accept the contract with the real option. Therefore, the option premium

should be at least equal to the NPV of the profit that could have been obtained by the decreased
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portion of the contract. In other words,NPV (TotalProfit) <= NPV (TotalProfit)′ should

be satisfied so that the partner company accepts the requirements of the real option. This results

in the following option premium formulation:

Ω∗i = ψi

Ki∑
s=ηi+1

f+
i (s)(1− κi)miΘ

∗
i (α,ΓL)

(1 + r)s
.

Please note that since all of the potential partners for a given product are assumed to have

the same profit margin (market profit margin), and the NPV calculation of the profit is linear

function of the unit payments Θ∗i (α,ΓL), this way of calculating the option premium does not

contradict the logit choice models of the potential partners and the partner selection strategy of

the innovative firm in Problem (5.2).

In the presence of the real option, the innovative company exercises the real option if the

new estimation for mi is less than the amount specified in the option (κimi). It is assumed that

the innovative company has a set of scenarios for the possible future estimations for the ultimate

number of adopters (m̃l
i) and their corresponding probabilities (πli). Let us define a set N i such

that N i = {l : m̃l
i < κimi}. Then, the probability that the innovative firm exercises the option

(ρi) for the product i is calculated as:

ρi =
∑
l∈N i

πli.

The expected value of the NPV of the payments foreseen to be made by the innovative
company to the prospective partner is equal to:

1

(1 + r)τ−1

Ω
∗
i +

ηi∑
s=1

f+i (s)miΘ
∗
i (α,ΓL)

(1 + r)s
+ ρi

Ki∑
s=ηi+1

f+i (s)κimiΘ
∗
i (α,ΓL)

(1 + r)s
+ (1− ρi)

Ki∑
s=ηi+1

f+i (s)miΘ
∗
i (α,ΓL)

(1 + r)s

 .

Therefore, in the presence of the real options, Problem (5.11) becomes:
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max
x,σ,γ,δ,ε,ν

N∑
i=1

S∑
τ=1

(
xiτ

(1 + r)τ−1

[
ηi∑
s=1

(
mi

(1 + r)s
(
µif

0
i (s)− f+

i (s)Θ∗i (α,ΓL,Γ
′
L)
))])

N∑
i=1

∑
l∈N i

πli

S∑
τ=1

 xiτ
(1 + r)τ−1

 Ki∑
s=ηi+1

(
1

(1 + r)s

(
ml
iµif

0
i (s)− κimif

+
i (s)Θ∗i (α,ΓL,Γ

′
L)
))

N∑
i=1

∑
l∈N i′

πli

S∑
τ=1

 xiτ
(1 + r)τ−1

 Ki∑
s=ηi+1

(
1

(1 + r)s

(
min(ml

i,mi)µif
0
i (s)−mif

+
i (s)Θ∗i (α,ΓL,Γ

′
L)
))

−

(
N∑
i=1

Ki∑
s=1

εis + σΓB + νb0.5ΓBc+

N∑
i=1

Ki∑
s=1

8∑
k=1

δkis

)

s.t. εis + σ + δkis ≥
S∑
τ=1

xiτµi
(∑

l∈N iml
iπ
l
i +
∑

l∈N i′ πli min(mi,m
l
i)
)

[f0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {ηi + 1, ...,Ki} ∀k = {1, .., 4},

εis + σ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ..., ηi}, ∀k = {1, .., 4},

εis + γ + δkis ≥
S∑
τ=1

xiτµimi[f
0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {1, ..., ηi}, ∀k = {5, .., 8},

εis + γ + δkis ≥
S∑
τ=1

xiτµi
(∑

l∈N iml
iπ
l
i +
∑

l∈N i′ πli min(mi,m
l
i)
)

[f0
is − fkis]

(1 + r)(s+τ−1)
, ∀i, ∀s ∈ {ηi + 1, ...,Ki} ∀k = {5, .., 8},

ν ≥ γ − 2σ,

S∑
τ=1

xiτ ≤ 1, ∀i,

N∑
i=1

xiτ (Di(1 + r)(τ−1) + Ω∗i (α,ΓL,Γ
′
L)) ≤ Bτ , ∀τ,

xi,τ ∈ {0, 1}, ∀i, ∀τ,

ε, γ, δ, σ, ν ≥ 0.

(5.14)

5.2.5 Numerical Experiments

In this section, we analyze how the adoption rate selection decision of the inner robust optimiza-

tion model, Problem (5.7), is affected by the increase in the parameter ΓB value for a product. We

will see that as uncertainty budget increases, the adoption rate proposed by robust optimization

disperses from the adoption rate obtained when the parameter values are at their nominal values.

Figures 5.5, 5.6, 5.7, and 5.8 provide the adoption rates determined by robust optimization for

various uncertainty budget values.
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(a) ΓB = 1 (b) ΓB = 2

(c) ΓB = 3 (d) ΓB = 4

(e) ΓB = 5 (f) ΓB = 6

Figure 5.5: The Impact of the Uncertainty Budget Parameter on the Robust Cumulative Adoption
Rates (1 ≤ ΓB ≤ 6)
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(a) ΓB = 7 (b) ΓB = 8

(c) ΓB = 9 (d) ΓB = 10

(e) ΓB = 11 (f) ΓB = 12

Figure 5.6: The Impact of the Uncertainty Budget Parameter on the Robust Cumulative Adoption
Rates (7 ≤ ΓB ≤ 12)
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(a) ΓB = 1 (b) ΓB = 2

(c) ΓB = 3 (d) ΓB = 4

(e) ΓB = 5 (f) ΓB = 6

Figure 5.7: The Impact of the Uncertainty Budget Parameter on the Robust New Adoption Rates
(1 ≤ ΓB ≤ 6)
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(a) ΓB = 7 (b) ΓB = 8

(c) ΓB = 9 (d) ΓB = 10

(e) ΓB = 11 (f) ΓB = 12

Figure 5.8: The Impact of the Uncertainty Budget Parameter on the Robust New Adoption Rates
(7 ≤ ΓB ≤ 12)
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Table 5.2: Sensitivity of the optimal strategy to the parameter qi of the region i
Coefficient of qi only q1 changes only q2 changes only q3 changes only q4 changes only q5 changes

0.6 87 9 3 7 88
0.64 87 9 3 7 88
0.68 87 9 3 7 88
0.72 87 9 3 7 88
0.76 85 7 3 9 90
0.8 85 7 3 9 90
0.84 85 7 1 9 90
0.88 85 1 7 9 90
0.92 85 1 7 9 90
0.96 87 7 7 9 90

1 7 7 7 7 7
1.04 112 33 7 111 7
1.08 112 113 3 111 7
1.12 112 113 107 111 7
1.16 112 113 107 111 7
1.2 112 113 107 111 7
1.24 112 113 107 111 7
1.28 112 113 107 111 7
1.32 112 113 107 111 7
1.36 112 113 107 111 7
1.4 112 113 107 111 7

Table 5.3: Sensitivity of the optimal strategy to the parameter pi of the region i
Coefficient of pi only p1 changes only p2 changes only p3 changes only p4 changes only p5 changes

0.6 112 7 1 9 7
0.64 112 7 1 9 7
0.68 112 7 1 9 7
0.72 112 7 1 9 7
0.76 112 7 1 9 7
0.8 112 7 1 9 7
0.84 112 7 1 9 7
0.88 112 7 7 9 7
0.92 112 7 7 9 7
0.96 112 7 7 7 7

1 7 7 7 7 7
1.04 7 7 7 7 112
1.08 7 9 7 7 112
1.12 7 9 7 7 112
1.16 7 9 7 7 112
1.2 7 9 7 87 112
1.24 7 9 7 87 112
1.28 7 9 7 87 112
1.32 7 33 7 87 112
1.36 7 33 7 87 112
1.4 7 33 7 87 112
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Chapter 6

Log-Robust Portfolio Management

with Factor Model

6.1 Log-Robust Portfolio Management with Factor Model

6.1.1 Generalities for Asset Pricing

In this section, we present our asset pricing approach. We employ a factor-model to formulate

asset prices. We use either the Geometric Brownian Motion or the Ornstein-Uhlenbeck Process

to model each factor considered in the asset pricing model.

Asset Pricing via Multi-Factor Model Throughout the paper, we use generic term “asset”

since we believe that our asset pricing approach is applicable to several asset types including

foreign currencies and publicly traded stocks since it allows including both mean-reverting and

non-mean-reverting factors into the asset pricing model.

We analyzed historical data sets of several asset types such as monthly direct cross currency

quotes between 12/2001 and 11/2011 while the USA is the home country and the US Dollar is the

primal currency. The correlation coefficients between the natural logarithms of some exchange

rate quotes are represented in Figure 6.1 as an example.
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Figure 6.1: Correlation Coefficients Between Natural-Logarithm of the Currency Rates.

The correlation coefficients between the natural logarithms of the exchange rates are too

significant to be neglected. However, if the correlation values are directly used in the portfolio

optimization problem in which n currencies are considered to invest, n standard deviations and

n(n−1)
2 correlation coefficients have to be predicted. This argument is valid for other assets too.

Usually, a historical data set is the main source for this estimation process. However, this

process is subject to estimation errors and the precision of the estimation for the overall portfolio

risk and the accuracy of the investment decisions are negatively affected by these errors. In

addition, determining the size of the historical data sample is another matter. For instance, a

financial or political crisis in a country may affect the performance of a sector far more than that

of other sectors in a certain period. In that case, this extreme event has a significant effect on

the covariance values in this period. Therefore, an investor who has an interest in several assets

should find a historical data set which is large enough to make accurate estimations and free

from impacts of extreme events, and find a way of reflecting the consequences of these extreme

events. Therefore, estimating the correlation coefficients explicitly is cumbersome.
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Therefore, we decided to express the correlation between the asset prices by a multi-factor

model in order to keep our approach practical and accurate. The overall impact of using the same

factors with different loadings in each asset’s pricing formula reflects the correlation between the

asset prices. In addition, while estimating n assets’ prices by the m-factors model, mn factor

loadings and n error terms must be predicted. Also, at most three input parameters for the

stochastic process of each factor and a volatility parameter for the error term of the factor model

need to be forecast. That is, at most mn+ n+ 3m parameters need to be predicted according to

our approach. Given that m (number of factors) is usually smaller than n (number of assets), the

m-factors model requires fewer parameters to be estimated than forming a covariance matrix.

Throughout the chapter, the following notation will be used.
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n : the number of assets,

m : the number of factors,

T : the length of the time horizon,

Sj(0) : the initial (known) value of factor j,

Sj(T ) : the (random) value of factor j at time T ,

Ri(T ) : the (random) value of asset i at time T ,

w0 : the amount of money to invest at the beginning of the time period,

µj : the drift of the stochastic process for factor j,

σj : the volatility term of the stochastic process for factor j,

σ̃j : the volatility term of the stochastic process for the error term (εi)

in the factor model for asset i,

θj : the rate by which the variable reverts towards to µj in the stochastic process

for factor j,

ai,j : the factor loading coefficient of factor j for asset i,

Γ : the uncertainty budget for the portfolio,

εi(T ) : the error term of the factor model for asset i at time T ,

Zi : the uncertain parameter with nominal value of zero and

known support [−ci, ci] for all i,

z̃i : the scaled deviation of Zi from its mean, which is 0, such that

Zi = ci z̃i and z̃i ∈ [−1, 1],

Yj : the uncertain parameter with nominal value of zero and

known support [−dj , dj ] for all j,

ỹj : the scaled deviation of Yj from its mean, which is 0, such that

Yj = dj ỹj and ỹj ∈ [−1, 1],

xi : the amount of money invested in asset i,

x̃i : the fraction of the portfolio invested in asset i.
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According to our factor model, the price of asset i, Ri(T ), is as follows:

lnRi(T ) =
m∑
j=1

(ai,j lnSj(T )) + εi(T ) ∀i ∈ {1, 2.., n}. (6.1)

lnSj(T ) represents the value of the factor j at time T and ai,j stands for the sensitivity of

the natural logarithm of the price of the asset i (lnRi(T )) to the factor lnSj(T ) while εi(T ) is

the idiosyncratic component of lnRi(T ).

We assume that each idiosyncratic component (εi(T ) where i ∈ {1, 2, .., n}) is independent

of other idiosyncratic components and factors (lnSj(T ) where j ∈ {1, 2, ..,m}). In addition,

the correlation between factors is neglected. In other words, the only sources of correlation

among lnRi(T ) values are the factors and their loadings in the asset pricing formula.

Each idiosyncratic component εi(T ) is assumed to follow a Geometric Brownian Motion

with zero drift such that:

dεi(t)

εi(t)
= σ̃idWt,

where the parameter σ̃i, σ̃i>0, which is estimated from historical data, represents the volatility

and dWt stands for a Wiener process. After applying the Weiner integration, the equation turns

into the following form:

εi(T ) = σ̃i
√
TZi,

where Zi obeys a Gaussian distribution, i.e., Zi ∼ N(0, 1). Then, the equation (6.1) can be

written as:

lnRi(T ) =

m∑
j=1

(ai,j lnSj(T )) + σ̃i
√
TZi ∀i ∈ {1, 2.., n}. (6.2)

Each factor loading (ai,j) is estimated as a regression coefficient through a linear regression
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model where the dependent variable is lnRi, the regressors are lnS1, lnS2, ..., lnSm, and the

error term is εi.

The Ornstein-Uhlenbeck Model for Mean-Reverting Factors

Commodity prices, interest rates, and exchange rates are observed to be mean-reverting. Any

mean reverting measurement used as a factor in the asset price modeling is assumed to follow an

Ornstein-Uhlenbeck process:

dsj = θj(µj − sj)dt + σjdWt,

where sj stands for lnSj , θj>0, µj and σj>0 are the parameters estimated from historical data,

and dWt stands for a Wiener process.

After applying Itō’s-Doeblin’s formula and integrating the both sides of the equation from 0

to∞, we obtain:

sj(t) = sj(0)e−θjt + µj(1− e−θjt) +

∫ t

0
σje

θj(v−t)dWv.

After integrating the last term and rearranging, we reach:

Sj(T ) = Sj(0)e

(
e−θjT+µj

(
1−e−θjT

)
+σje

−θjT
√
e
2θjT−1

2θj
Yj

)
, (6.3)

where Yj obeys a Gaussian distribution, i.e. Yj ∼ N(0, 1).

The Geometric Brownian Motion for Non-Mean-Reverting Factors

Some factors such as stock price indexes are not mean reverting. Non-mean-reverting factors in

the asset price modeling are assumed to follow a Geometric Brownian Motion with log-normal

property and satisfy the following equation:

dSj = µjSjdt+ σjSjdWt,
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where Sj(t) is the value of the factor j at time t, µj and σj>0 are the drift and volatility param-

eters estimated from historical data, and dWt is a Wiener process.

After applying Itō’s-Doeblin’s formula and integrating both sides of the equation from 0 to∞,

we obtain:

Sj(T ) = Sj(0)e

(
µj−

σ2
j
2

)
T+σj

√
TYj

, (6.4)

where Yj obeys a Gaussian distribution, i.e. Yj ∼ N(0, 1).

The Asset Pricing Model as an Input for the Portfolio Optimization Problem

We assume that the factors’ values at time t = 0, (lnS1(0), lnS2(0), .., lnSm(0)), are known.

The riskiness of the asset i results from the random variablesZi of asset i and Y1, Y2, .., Yj , .., Ym

of factors 1, 2, .., j, ..,mwhich are used in the factor model for the asset i in equations (6.2), (6.3)

and (6.4).

Yj is a random variable whose nominal value is zero and which belongs to the interval

[−dj , dj ]. This is valid for every j, where j ∈ {1, 2, ..,m} and dj is a positive constant used for

defining an interval for possible Yj values. For each j, we define ỹj as the scaled deviation of Yj

from its mean, which is 0, such that Yj = dj ỹj and ỹj ∈ [−1, 1].

Similarly, Zi is a random variable whose nominal value is zero and which belongs to the

interval [−ci, ci]. This is valid for every i, where i ∈ {1, 2, .., n} and ci is a positive constant

used for defining an interval for possible ci values. For each i, we define z̃i as the scaled deviation

of Zi from its mean, which is 0, such that Zi = ci z̃i and z̃i ∈ [−1, 1].

For notational convenience, the model for exponential of the factor j in equations 6.3 and

6.4 can be generalized as:

Sj(T ) = Sj(0)epj+qjYj ,

where pj and qj are as follows:
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pj =


(
µj −

σ2
j

2

)
T, if the factor j follows a Geometric Brownian Motion,(

e−θjT + µj
(
1− e−θjT

))
, if the factor j follows an Ornstein-Uhlenbeck Process;

qj =


(
σj
√
T
)
, if the factor j follows a Geometric Brownian Motion,(

σje
−θjT

√
e2θjT−1

2θj
,

)
, if the factor j follows an Ornstein-Uhlenbeck Process.

Next, we can formulate the value of the asset i, Ri(T ), as follows:

Ri(T ) =

 m∏
j=1

(Sj(0)ai,j

 exp

 m∑
j=1

(ai,j(pj + qjYj)) + σ̃i
√
TZi

 ∀i.

Sj(0) andT are known. Whereas ai,j , µj , σj and θj are estimated. Considering that all of these

parameters are deterministic. For a more convenient notation, we can define a parameter ki as

follows:

ki =

 m∏
j=1

(Sj(0)ai,j

 exp

 m∑
j=1

(ai,jpj)

 ∀i.

This leads to the following formulation:

Ri(T ) = ki exp

 m∑
j=1

(ai,jqjYj) + σ̃i
√
TZi

 ∀i.

Since Yj = dj ỹj , and Zi = ciz̃i, the value of asset i could be formulated as follows:

Ri(T ) = ki exp

 m∑
j=1

(ai,jqjdj ỹj) + σ̃i
√
Tciz̃i

 ∀i.

where −1 ≤ z̃i ≤ 1 and z̃i ∼ N(0, 1) ∀i , and −1 ≤ ỹj ≤ 1 and ỹj ∼ N(0, 1) ∀j.

Then, the portfolio wealth is formulated as follows:

n∑
i=1

xiki exp

 m∑
j=1

(ai,jqjdj ỹj) + σ̃i
√
Tciz̃i

 .
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The investment portfolio is assumed to be formed by several assets such as the foreign cur-

rencies in a given domestic country, publicly traded stocks, etc. The exchange rates are expressed

according to a direct quotation. That is, a foreign exchange rate is defined as the domestic cur-

rency per unit of the foreign currency whereas the other assets are assumed to be traded in

domestic currency.

6.1.2 General Guidance to Log-Robust Portfolio Management Problem

The ultimate target is to maximize the worst-case wealth of the portfolio at time T using robust

optimization techniques. The investment decisions are restricted by an initial budget of w0, and

short sales are not allowed.

Since robust optimization does not require any underlying distribution for the uncertain pa-

rameters, in our problem, Z1, Z2, .., Zn and Y1, Y2, Y3, .., Ym are not necessarily Gaussian. They

have the same mean, which is zero, and they belong to the intervals [−c1, c1], [−c2, c2], .., [−cn, cn]

and [−d1, d1], [−d2, d2], .., [−dm, dm], respectively. Similarly, the scaled deviations z̃1, ..., z̃i, .., z̃n

and ỹ1, ỹ2, ỹ3, ..., ỹj , .., ỹm are not necessarily Gaussian either. They have the same mean, which

is zero, and belong to the same interval, which is [−1, 1].

The decision maker adjusts his/her conservatism by considering the trade off between the

protection against uncertainty and the cost of robustness, which implies less portfolio wealth.

Because, as the degree of conservatism increases, the scaled deviations take smaller negative

values (higher absolute values) and this leads to a reduction in the final welfare of the investor.

Γ is a mathematical expression of his/her conservatism such that sum of the absolute values of

all the scaled deviations cannot be higher than Γ. That is

n∑
i=1

|z̃i|+
m∑
j=1

|ỹi| ≤ Γ.

represents the “uncertainty budget constraint” of our robust portfolio optimization problem.
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Decision variables z̃1, z̃2, z̃3, ..., z̃i, .., z̃n and ỹ1, ỹ2, ỹ3, ..., ỹj , .., ỹm determine the worst-

case asset and factor levels according to the decision maker’s judgement on Γ. For instance,

if Γ = 0, then each uncertain parameter takes its nominal value, namely 0. This corresponds to

the case in which there is no uncertainty. Alternatively, if Γ = n + m, the most conservative

case occurs and each uncertain parameter takes its worst-case value, namely −1.

The decision variable xi stands for the amount of money invested in the asset i at the begin-

ning of the time horizon. We aim to obtain a tractable formulation for the robust problem, which

can be solved easily, and to obtain theoretical insights for the structure of the optimal solution.

6.1.3 Log-Robust Portfolio Optimization

The robust portfolio management problem in max-min framework is modeled as fallows:

max
x

min
z̃,ỹ

n∑
i=1

xiki exp

 m∑
j=1

(ai,jqjdj ỹj) + σ̃i
√
Tciz̃i


s.t.

n∑
i=1

|z̃i|+
m∑
j=1

|ỹi| ≤ Γ,

|z̃i| ≤ 1 ∀i,

|ỹj | ≤ 1 ∀j,

s.t.
n∑
i=1

xi = w0,

xi ≥ 0 ∀i.

(6.5)

Lemma 6.1 At optimality, −1 ≤ z̃i ≤ 0 for all i and −1 ≤ ỹj ≤ 0 for all j. Therefore, Problem

(6.5) is equivalent to:
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max
x

min
z̃,ỹ

n∑
i=1

xiki exp

− m∑
j=1

(|ai,j |qjdj ỹj)− σ̃i
√
Tciz̃i


s.t.

n∑
i=1

z̃i +
m∑
j=1

ỹi ≤ Γ,

0 ≤ z̃i ≤ 1 ∀i,

0 ≤ ỹj ≤ 1 ∀j,

s.t.
n∑
i=1

xi = w0,

xi ≥ 0 ∀i.

(6.6)

It can be realized that the objective function of Problem (6.6) is a linear function of invest-

ment decisions (xi). In addition, it is a nonlinear but convex function of scaled deviations (z̃i, ỹj).

Therefore, we solve the inner minimization problem by invoking convexity, unconstrained opti-

mization by Lagrange relaxation approach, and strong duality. Next, we insert its solution into

the outer maximization problem to obtain a single maximization problem.

Lemma 6.2 Problem (6.6), which is a robust optimization problem in max-min framework, can

be converted to the following maximization problem:
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max
Q,α, λ, β, x

n∑
i=1

Qi

(
1 + ln

(
xiki
Qi

))
− αΓ−

n∑
i=1

λi −
m∑
j=1

βj

s.t. −qjdj
n∑
i=1

|ai,j |Qi + βj + α ≥ 0 ∀j,

−Qici
√
Tσi + λi + α ∀i,

n∑
i=1

xi = w0,

α ≥ 0,

βj ≥ 0 ∀j,

λi, Qi ≥ 0 ∀i.

(6.7)

where λ, λ0β, β0andα are the lagrangian multipliers arising while solving inner minimiza-

tion problem by Lagrangian relaxation, and Qi =
λi−λ0

i+α

σi
√
Tci

.

Theorem 6.3 (Optimal Worst-Case Wealth and Investment Decisions)

(i) The optimal portfolio value for the log-robust portfolio optimization problem (6.5) equals to

w0 exp(F (Γ)), where F is the linear problem formulated as:

F (Γ) = max
γ, δ, ζ, χ

n∑
i=1

χi ln ki − ζΓ−
n∑
i=1

γi −
m∑
j=1

δj

s.t. −qjdj
∑n

i=1 |ai,j |χi + δj + ζ ≥ 0 ∀j,

−ci
√
Tχiσi + γi + ζ ≥ 0 ∀i,

n∑
i=1

χi = 1,

ζ ≥ 0,

γi, χi ≥ 0 ∀i,

δj ≥ 0 ∀j.

(6.8)

(ii) For each i, χi is the fraction of the budget (w0) invested in asset i. Therefore, the total

amount of money invested in asset i is woχi.
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6.1.4 Numerical Experiments

This section presents the impact of the uncertainty budget Γ value on the objective function

value, and the optimal portfolio diversification. In addition, we explore the structure of the

optimal solution through the model parameters and their impact on the dynamics among decision

variables. We will see that:

• As Γ increases the optimal objective function value decreases.

• As Γ increases the diversity, the number of assets invested, until some point, then drops.

• The theoretical insights regarding the optimal solution structure are justified through nu-

merical experiments.

Setup

The natural logarithm of a 10-year treasury bond yield rate, Dow Jones Index (DJI), and crude

oil spot price are used as factors throughout the numerical experiments. In addition, 25 stocks

listed in NYSE are considered as assets. 100 monthly historical observations are analyzed to

extract the factor parameters (µ, σ, θ) and linear regression coefficients used in the asset pricing

(ai,j) by MATLAB R2012a. In addition, all of the linear programming calculations are carried

out by CPLEX on a 2.10 GHz Pentium(R) machine.

Figure 6.2 implies that as uncertainty budget increases, the investment decisions become

more protective, the risky assets become less preferable and the optimal objective function value

(the worst case rate of return) decreases. In addition, Figure 6.3 shows that as the uncertainty

budget increases the investor becomes more risk-averse. Therefore, the model prefers a higher

diversity in the portfolio to be protected against uncertainty. However, if the uncertainty budget

is too high or the investor is very risk-averse, then the model invests in the safest asset only.
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Figure 6.2: Portfolio Rate of Return vs Uncertainty Budget

Figure 6.3: Diversification vs Uncertainty Budget

Exploring Structure of the Optimal Solution

Dual of Problem (6.8) is as follows:
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min
v, u, θ

θ

s.t.
m∑
j=1

|ai,j |vjdjqj + σi
√
Tciui + θ ≥ ln ki ∀i,

0 ≤ ui ≤ 1 ∀i,

0 ≤ vj ≤ 1 ∀j,
n∑
i=1

ui +
m∑
j=1

vj ≤ Γ,

(6.9)

By strong duality, the following equalities hold:

• (ui − 1) γi = 0

• (vj − 1) δj = 0

•
m∑
j=1

(
|ai,j |vjdjqj + σi

√
Tciui + θ − ln ki

)
χi = 0

•

 n∑
i=1

ui +
m∑
j=1

vj − Γ

 ζ = 0

•

(
−qjdj

n∑
i=1

|ai,j |χi + δj + ζ

)
vj = 0

•
(
−ci
√
Tχiσi + γi + ζ

)
ui = 0

Special Cases

• if (v1 = v2 =, ..,= vm = 0),

The decision maker selects the assets by ranking them according to their nominal return,

i.e. k1 < k2 < k3 < ... < kn, as in Kawas and Thiele’s study [112]. Assuming that it is

strictly sub-optimal to invest in only one stock and there exists an index h, at optimality,

the decision maker invests only in assets whose ranking is not greater than h with the

allocation:
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χi = 1

σi

(∑j
l=1

1
σl

) . (6.10)

If all vj variables are zero, then the constraints regarding the factor uncertainty could be

disregarded, then the Problem (6.8) becomes (as it is in Kawas and Thiele’s study [112]:

F (Γ) = max
γ, ζ, χ

n∑
i=1

χi ln ki − ζΓ−
n∑
i=1

γi

s.t. −ci
√
Tχiσi + γi + ζ ≥ 0 ∀i,

n∑
i=1

χi = 1,

ζ ≥ 0,

γi, χi ≥ 0 ∀i.

(6.11)

Solution of Problem 6.11 leads to the allocation

χi =
1

σi

(∑j
l=1

1
σl

)
where h is the index for raking the assets according to their nominal return, i.e. k1 < k2 <

k3 < ... < kn.

The results summarized in Table 6.1 support that the assets selected according to their

ranking with respect to their nominal returns and the portfolio allocation to each asset is

inversely proportional to its volatility σi.

209



6.1. LOG-ROBUST PORTFOLIO MANAGEMENT WITH FACTOR MODEL

Table 6.1: Optimal Asset Allocation
Asset σi ln ki xi(Γ = 0.1) xi(Γ = 0.3) xi(Γ = 0.4) xi(Γ = 0.5) xi(Γ = 0.8) xiσi(Γ = 0.1) xiσi(Γ = 0.3) xiσi(Γ = 0.4) xiσi(Γ = 0.5) xiσi(Γ = 0.8)

x4 0.0492 0.1758 0.4250 0.2203 0.1311 0.1005 0.0916 0.0209 0.0108 0.0065 0.0049 0.0045
x18 0.0364 0.1743 0.5750 0.2980 0.1773 0.1360 0.1240 0.0209 0.0108 0.0065 0.0049 0.0045
x22 0.0225 0.1581 0 0.4817 0.2867 0.2198 0.2004 0 0.0108 0.0065 0.0049 0.0045
x14 0.0159 0.1565 0 0 0.4049 0.3105 0.2830 0 0 0.00645 0.0049 0.0045
x16 0.0212 0.1532 0 0 0 0.2333 0.2127 0 0 0 0.0049 0.0045
x1 0.0511 0.1497 0 0 0 0 0.0883 0 0 0 0 0.0045
x23 0.0249 0.1440 0 0 0 0 0 0 0 0 0 0
x8 0.0549 0.1433 0 0 0 0 0 0 0 0 0 0
x20 0.0231 0.1433 0 0 0 0 0 0 0 0 0 0
x6 0.1099 0.1347 0 0 0 0 0 0 0 0 0 0
x21 0.0093 0.1337 0 0 0 0 0 0 0 0 0 0
x25 0.0161 0.1322 0 0 0 0 0 0 0 0 0 0
x19 0.0106 0.1318 0 0 0 0 0 0 0 0 0 0
x15 0.0200 0.1294 0 0 0 0 0 0 0 0 0 0
x24 0.0118 0.1277 0 0 0 0 0 0 0 0 0 0
x17 0.0225 0.1263 0 0 0 0 0 0 0 0 0 0
x12 0.0203 0.1260 0 0 0 0 0 0 0 0 0 0
x9 0.0350 0.1259 0 0 0 0 0 0 0 0 0 0
x5 0.1222 0.1257 0 0 0 0 0 0 0 0 0 0
x13 0.0014 0.1225 0 0 0 0 0 0 0 0 0 0
x7 0.0642 0.1221 0 0 0 0 0 0 0 0 0 0
x3 0.1981 0.1212 0 0 0 0 0 0 0 0 0 0
x2 0.0419 0.1207 0 0 0 0 0 0 0 0 0 0
x11 0.0037 0.0634 0 0 0 0 0 0 0 0 0 0
x10 0.0181 0.0629 0 0 0 0 0 0 0 0 0 0

• if (v1 = v2 =, ..,= vm = 1),

The decision maker selects the assets by ranking them according to their nominal return,

i.e. ln k1 −
∑m

j=1 a1,jqjdj < ... < kn −
∑m

j=1 an,jqjdj , as in Kawas and Thile’s study

[112]. Assuming that it is strictly sub-optimal to invest in only one stock and there exists

an index h, at optimality, the decision maker invests only in assets whose ranking is not

greater than h with the allocation:

χi = 1

σi

(∑j
l=1

1
σl

) . (6.12)

The results summarized in Table 6.2 support that the assets selected according to their

ranking with respect to their nominal returns and the portfolio allocation to each asset is

inversely proportional to its volatility σi.
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Table 6.2: Optimal Asset Allocation
Asset ln ki −

∑3
j=1 qjdjai,j σi xi(Γ = 7.3) xi(Γ = 7.6) xi(Γ = 8.3) xiσi(Γ = 7.3) xiσi(Γ = 7.6) xiσi(Γ = 8.3)

x1 0.1420 0.0511 0.0387 0.0359 0.0330 0.0020 0.0018 0.0017
x4 0.1407 0.0492 0.0402 0.0372 0.0343 0.0020 0.0018 0.0017
x21 0.1274 0.0929 0.0213 0.0197 0.0182 0.0020 0.0018 0.0017
x14 0.1269 0.0159 0.1241 0.1150 0.1059 0.0020 0.0018 0.0017
x25 0.1147 0.0161 0.1228 0.1137 0.1047 0.0020 0.0018 0.0017
x24 0.1058 0.0118 0.1679 0.1556 0.1432 0.0020 0.0018 0.0017
x18 0.1037 0.0364 0.0544 0.0504 0.0464 0.0020 0.0018 0.0017
x19 0.1004 0.0106 0.1858 0.1721 0.1585 0.0020 0.0018 0.0017
x15 0.1000 0.0200 0.0988 0.0915 0.0842 0.0020 0.0018 0.0017
x13 0.0987 0.0135 0.1460 0.1353 0.1245 0.0020 0.0018 0.0017
x23 0.0828 0.0249 0 0.0736 0.0678 0 0.0018 0.0017
x16 0.0819 0.0212 0 0 0.0795 0 0 0.0017
x20 0.0763 0.0231 0 0 0 0 0 0
x22 0.0670 0.0225 0 0 0 0 0 0
x11 0.0589 0.0369 0 0 0 0 0 0
x8 0.0570 0.0549 0 0 0 0 0 0
x9 0.0566 0.0350 0 0 0 0 0 0
x2 0.0564 0.0419 0 0 0 0 0 0
x17 0.0551 0.0225 0 0 0 0 0 0
x12 0.0471 0.0203 0 0 0 0 0 0
x7 0.0414 0.0642 0 0 0 0 0 0
x3 0.0315 0.0198 0 0 0 0 0 0
x10 0.0139 0.0181 0 0 0 0 0 0
x5 -0.0332 0.0122 0 0 0 0 0 0
x6 -0.0628 0.0110 0 0 0 0 0 0

6.2 Conclusions

In this chapter, we integrated the factor models with the GBM and/or the OUP to have reliable

forecasts for the future asset price levels with the flexibility of being able to modify the model

according to the factors’ nature. We handle the uncertainty in the asset pricing model by robust

optimization and obtain a tractable model, F (Γ). Any additional factor brings 1 new decision

variable and 1 new constraint; however, the problem F (Γ1,Γ2) remains linear. We obtain in-

sights on the optimal solution structure for two special cases.

6.3 Proofs

6.3.1 Proof of Lemma (6.2)

The inner minimization problem in Problem (6.6) is:
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min
z̃,ỹ

n∑
i=1

xikiexp

− m∑
j=1

(|ai,j |qjdj ỹj)− σ̃i
√
Tciz̃i


s.t.

∑n
i=1 z̃i +

∑m
j=1 ỹi ≤ Γ,

0 ≤ z̃i ≤ 1 ∀i,

0 ≤ ỹj ≤ 1 ∀j.

(6.13)

This is a convex problem of ỹ and z̃. Therefore, the optimal solution of Problem (6.13) can

be found by Lagrangian relaxation approach.

We define α; βjandβ0
j ∀j; λi andλ0

i ∀i, as Lagrangian multipliers and obtain the following

unconstrained nonlinear problem:

min(
∑n

i=1 xikie
[−
∑m
j=1(ai,jqjdj ỹj)−σ̃i

√
Tciz̃i] +α(

∑n
i=1 z̃i +

∑m
j=1 ỹj − Γ)−

∑n
i=1 λ

0
i z̃i +∑n

i=1 λi(z̃i − 1)−
∑m

j=1 β
0
j ỹj +

∑m
j=1 βj(ỹj − 1))

The solution of the system created by KKT conditions for this problem supplies the following

equations:

exp

− m∑
j=1

(ai,jqjdj ỹj)− σ̃i
√
Tciz̃i

 =
λi − λ0

i + α

xikiσi
√
Tci
∀i, (6.14)

n∑
i=1

−xikiqjai,jdjexp

− m∑
j=1

(ai,jqjdj ỹj)− σ̃i
√
Tciz̃i

+ βj − β0
j + α = 0 ∀j, (6.15)

−
n∑
i=1

(
qjdjai,j

σi
√
Tci

(λi − λ0
i + α)

)
+ βj − β0

j + α = 0 ∀j, (6.16)

Employing these equalities in the Lagrangian function leads to the following representation

of the Lagrangian function:
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min

 n∑
i=1

[(
λi − λ0

i + α

σi
√
Tci

)(
1 + ln

(
xikiσi

√
Tci

λi − λ0
i + α

))]
− αΓ−

n∑
i=1

λi −
m∑
j=1

βj

 . (6.17)

Since the Problem (6.13) is convex and Slater’s condition is satisfied, strong duality holds. Then,

by strong duality (see Bertekas 1999), we embed the inner minimization problem, Problem

(6.13), into the outer max problem. Then, we obtain an equivalent formulation for log-robust

portfolio management problem, Problem (6.6).

max
α, λ, λ0, β, β0, x

 n∑
i=1

[(
λi − λ0

i + α

σi
√
Tci

)(
1 + ln

(
xikiσi

√
Tci

λi − λ0
i + α

))]
− αΓ−

n∑
i=1

λi −
m∑
j=1

βj


s.t.

n∑
i=1

xi = w0,

α ≥ 0,

βj , β
0
j ≥ 0 ∀j,

λi, λ
0
i , xi ≥ 0 ∀i.

(6.18)

We define a new decision variable, Qi, such that Qi =
(
λi−λ0

i+α

σi
√
Tci

)
. Also, each λ0

i and β0
j

can be defined through Qi . In addition, due to the natural logarithm term, every Qi has to be

nonnegative. Then, the Problem (6.18) turns into:
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max
Q,α, λ, β, x

n∑
i=1

Qi

(
1 + ln

(
xiki
Qi

))
− αΓ−

n∑
i=1

λi −
m∑
j=1

βj

s.t. −qjdj
n∑
i=1

ai,jQi + βj + α ≥ 0 ∀j,

−Qici
√
Tσi + λi + α ∀i,

n∑
i=1

xi = w0,

α ≥ 0,

βj ≥ 0 ∀j,

λi, Qi, xi ≥ 0 ∀i.

(6.19)

6.3.2 Proof of Theorem (6.3)

We firstly solve Problem (6.19) for x, then for the remaining variables. The maximization prob-

lem over x is written as:

max
x

n∑
i=1

Qi lnxi

n∑
i=1

xi = w0,

xi ≥ 0 ∀i.

(6.20)

Since Problem (6.20) is a convex problem, it could be solved by the Lagrangian relaxation

approach which leads to:

xi =
Qiw0∑n
i=1Qi

∀i.

If we replace each xi by
Qiw0∑n
i=1Qi

in the log-robust portfolio problem, Problem (6.19), it

becomes:
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max
Q,α, λ, β, x

n∑
i=1

Qi

(
1 + ln

(
w0ki∑n
i=1Qi

))
− αΓ−

n∑
i=1

λi −
m∑
j=1

βj

s.t. −qjdj
n∑
i=1

ai,jQi + βj + α ≥ 0 ∀j,

−Qici
√
Tσi + λi + α ∀i,

α ≥ 0,

βj ≥ 0 ∀j,

λi, Qi ≥ 0 ∀i.

(6.21)

Since the right-hand side of the constraints in Problem (6.21) are zero, it can be parametrized.

We define a scale factor 1
ω such that ω =

n∑
i=1

Qi to parametrize the problem by ω and scale the

decision variables of Problem (6.21) by 1
ω so that :

γi =
λi
ω
∀i,

δj =
βj
ω
∀j,

ζ =
α

ω
and

χi =
Qi
ω

=
xi
w0
.

The Problem (6.21) is equivalent to:
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max
ω

ω max
γ, δ, ζ, χ

n∑
i=1

χi ln ki − ζΓ−
n∑
i=1

γi −
m∑
j=1

δj

s.t. − qjdj
n∑
i=1

ai,jχi + δj + ζ ≥ 0 ∀j,

−ci
√
Tχiσi + γi + ζ ≥ 0 ∀i,

n∑
i=1

χi = 1,

ζ ≥ 0,

γiχi ≥ 0 ∀i,

δj ≥ 0 ∀j.

(6.22)

Problem (6.22) can be written as:

max
ω

ω
(
F (Γ) + 1 + ln

w0

ω

)
(6.23)

where

F (Γ) = max
γ, δ, ζ, χ

n∑
i=1

χi ln ki − ζΓ−
n∑
i=1

γi −
m∑
j=1

δj

s.t. −qjdj
∑n

i=1 ai,jχi + δj + ζ ≥ 0 ∀j,

−ci
√
Tχiσi + γi + ζ ≥ 0 ∀i,

n∑
i=1

χi = 1,

ζ ≥ 0,

γi, χi ≥ 0 ∀i,

δj ≥ 0 ∀j.

(6.24)

The Problem (6.23) has a concave objective function with a single decision variable. For a

given F (Γ), the optimal solution of Problem (6.23) can be found by setting the first derivative of

objective function (with respect to ω) to zero. Therefore, optimal ω is equal to w0expF (Γ) and
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optimal objective function value of Problem (6.23) is calculated as w0expF (Γ). In other words,

optimal portfolio wealth at time T is w0expF (Γ).
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Chapter 7

Conclusions and Future Research

We present four essays on risk management with financial investment and revenue management

applications. In the Chapter 3 (Portfolio Management with Quantile Constraints), the quantile

function is used as risk measure. In Chapter 4 (Portfolio Management with Moment Matching

Approach) the risk is defined as the probability of the portfolio return falling below a threshold;

whereas, in Chapter 6 (Log-Robust Portfolio Management with Factor Model) the implied risk

is the adverse stock return realizations resulting from volatility terms in the stochastic processes

which factors used in the asset pricing model follow. In addition, in Chapter 5 (New Product

Launching Decisions with Robust Optimization), the risk reveals itself as unexpected adoption

rate of an innovative product in a market and unexpected response of a potential partner to a

partnership offer. We manage the risk using robust optimization and stochastic optimization

techniques.

In Chapter 3 (Portfolio Management with Quantile Constraints), we approximate the quantile

function of the portfolio return distribution by using available scenarios or historical data sets.

We solve the problem which maximizes the expected return while keeping the approximated

quantile function value (for a given probability level) at least equal to a threshold value. The

proposed method requires solving a series of linear problems. Therefore, it can be quickly
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solved for large scale problems. In our numerical experiments, we measure the performance of

the algorithm in terms of the closeness the optimality and time to reach a solution. In addition,

we compare its performance in terms of the risk/return efficiency with three benchmark models.

Numerical studies imply that our algorithm is a fast and tractable approximation method which

leads to close-to-optimal solutions to the problem which is cumbersome to be optimized due

to the difficulty of expressing the quantile function in an optimization problem. The proposed

approach is a data-driven approach; therefore, the data set used in the optimization model should

reflect the actual distributions of the asset returns. In addition, as the data set enlarges, the time

to reach to a solution by the algorithm increases. Therefore, investigating the optimal size of the

data set and the best sampling method to prepare the data set used as an input for this problem

can be an interesting future research direction.

In Chapter 4 (Portfolio Management with Moment Matching Approach), we approximate

the random portfolio return as a log-Normal sum to a single log-Normally distributed random

variable with the Fenton-Wilkinson log-Normal sum approximation method. We formulate a

stochastic optimization model which minimizes the probability of the portfolio return falling be-

low a target while keeping expected portfolio return above a specified target. Next, we decom-

pose the problem into two sub-problems so that the risk management problem (a sub-problem)

is solved as an unconstrained nonlinear programing problem with a smooth objective function

based on the other sub-problem’s solution which is formulated as a quadratic programming

model. In addition, we extend our work to the basket options design problem. In our study, we

consider only the first two moments of the portfolio return. The future research on the portfolio

management incorporating with the third and/or fourth moments should improve the accuracy

of the approximation and result in valuable contributions.

In Chapter 5 (New Product Launching Decisions with Robust Optimization), we use the new

product development model suggested Bass [9] and a customized pricing model based on a logit-

choice model in an optimization model which determines the optimal timing of the introduction
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of a set of innovative products to a regional market. Uncertainty on the model parameters are

handled with the robust optimization techniques. An iterative approach is proposed to obtain a

tractable robust optimization formulation. We include the real options which allow the innovative

company to reduce the size of the contract in the robust product launching problem model. In

our study, we only consider the option to reduce the contract size and assume that the unit price

per product is locked by contracts. However, another problem setting, where the real options

to update the contract price based on revealed demand are considered, is more realistic and

interesting for future research.

Chapter 6 (Log-Robust Portfolio Management), we use factor models to formulate asset

prices and treat randomness on asset pricing by a budget of uncertainty. We present a tractable

robust optimization formulation which maximizes the worst-case portfolio return. In our study,

we neglect the correlation between the factor values used in asset pricing. This project can be

extended to a case where the factors are correlated.
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