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Abstract: 

Debugging is a necessary aspect of computer science that can be difficult for 

novices and experienced programmers alike.  This skill is mainly self-taught and is 

generally gained through trial and error, perhaps with some assistance from a professor 

or other expert figure.  Novices encountering their first software defects may have few 

avenues open to them depending on the environment in which they are learning to 

program.  The evident problem here is that the potential for a student to become stuck, 

frustrated, and/or losing confidence in their ability to pursue computer science is great.  

For a student to be successful when working professionally or progressing through 

academia they need to be able to function independently; trusting their own knowledge 

on par or above that of others so that their productivity does not rely on the knowledge 

of someone else.  In order to solve this problem an Intelligent Tutoring System for 

teaching debugging skills to the novice utilizing Case Based Reasoning, Static Program 

Slicing, and the student’s preferred learning style was proposed.  Case acquisition and 

automatic Exercise Generation were also explored. The system built for this research 

program was evaluated using novice students at the College and High School levels.  

Results of this evaluation produced statistically significant results at the p<.05 and 

p<.01 levels, with generated exercises exhibiting significance at the p<.01 level.  These 

results prove that the methodology chosen is a valid approach for the problem described, 

that the system does in fact teach students how to debug programs, and that the system 

is capable of successfully generating exercises on the fly.  
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1 Chapter 1: Why a Tutoring System for Debugging? 

1.1 Introduction 

Debugging is an intrinsic and difficult part of Computer Science for the novice, 

for the expert, and for software designed to assist in the process.  The expert must apply 

their experiences with past defect encounters and their knowledge of a particular 

programming language.  When encountering a new difficulty an expert may fall back on 

general problem solving strategies or look for Internet, human, and written resources in 

order to determine the cause for a given defect and how to resolve it.  This differentiates 

itself from programming in that it requires the programmer to have a deeper 

comprehension of the machine and the language being used than the act of 

programming alone.    

 Computer systems for analyzing and correcting defective software perform static 

and/or dynamic analysis, use rules (ITS4) and patterns (FindBugs) but are limited by the 

Halting problem and their own static knowledge bases.  The NP Complete nature of the 

Halting Problem (being able to determine whether or not an application will complete) 

makes it, in turn, an NP complete problem to determine if a computer program is 

correct.  And a static knowledge base is unlikely to completely cover every defect a 

programmer may include in their code given that there are an infinite number of ways to 

write the same program.   

The novice’s problem is evident – they lack the analytical skills and domain 

information that experts and software analysis systems have.  If students had a resource 

that could assist them in acquiring the skills and domain knowledge they require to 
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debug their own programs, they would stand a better chance of succeeding in their 

current and future course work.  Given that there is little room in existing curricula for 

new material it makes sense that this information should be provided to the student by 

an external resource that is available to them on demand and in situ.   

Students are more likely to succeed if they are not left to spin their wheels 

indefinitely, yet human tutors cannot be present for every baffling bug any single 

student may encounter.  A system that can intelligently intervene and appropriately 

assist the student could help to bolster their knowledgebase and confidence, thereby 

making it less likely the student will drop a course or even switch majors because they 

find the material too difficult.  Such a system could also help the instructor understand 

how they might teach debugging skills to their students, show the instructor what 

material their students might be struggling with, enable the instructor to proactively 

determine what knowledge gaps their students might have or what assistance their 

students might need, and otherwise assist the instructor in helping their students to learn 

this difficult skill. 

1.2 Research Questions 

An ITS for debugging raises many interesting research questions within the fields 

of Intelligent Tutoring Systems and Computer Science Education.  Indeed, in the 

proposal for this study, a list of 15 questions were identified.  The following discussion 

traces which questions have been actively pursued, which ones were dropped and why, 

and what interesting questions have been added.   

With respect to Computer Science Education, the questions identified were: 
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 How should debugging be taught? 

 How could a system teach the domain? 

With respect to Intelligent Tutoring Systems, the questions identified were: 

 How should the domain be represented and reasoned about? 

 How can the expert knowledge base be kept tractable? 

 How can the system acquire domain knowledge? 

 Could the system generate exercises dynamically? 

 Should the system support other languages? How would supporting other 

languages change the system? 

 How should the system model student knowledge? 

 How could the system reason about student solutions without incurring the 

program verification problem? 

 Does peer assistance factor in to modeling the student? How? 

 How should debugging issues be remediated? 

 How could the system determine if a given remediation is successful? 

 How to communicate remediations? 

 How to discuss the domain with the student? 

 Should personae be used? 

 Should the system facilitate peer communication? 

 

After pursuing this original list of questions the following questions were dropped, the 

rationale for dropping the questions follows: 
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Should the system support other languages? How would supporting other languages 

change the system? 

Supporting other languages has been deemed out of scope, though it would certainly be 

possible to support other languages with the infrastructure that has been built.  Some 

further discussion regarding this question is taken up in the future research section. 

 

Does peer assistance factor in to modeling the student? How? And should the system 

facilitate peer communication? 

Supporting peer assistance has been deemed tangential to the core research problem and 

hence out of scope for this dissertation. Additionally, there are concerns that facilitating 

peer assistance may open new avenues for cheating, an additional complication that 

would need to be addressed separately.  

 

Should personae be used? 

At this point the researcher believes the feedback mechanism of the system without 

animated personae is sufficient for the target audience. Students and instructors are 

satisfied with a user interface broadly in the style of an integrated programming (and 

debugging) environment, in which animated personae might just be a distraction to the 

students. Therefore this question became out of scope. 

 

Two questions were added after the proposal and include: 
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 How could the system generate exercises on demand? 

 Could the system learn new solutions to known defects from the student 

interactions with the system? 

These questions were added in order to help address the static nature of the case base 

and exercise systems, in addition to increasing the Computer Science value of this 

research on the whole. 

1.3 Contributions 

This work contributes to the domains of Intelligent Tutoring Systems and Computer 

Science Education.  Although several systems and tools have been built to try to assist 

the novice with debugging their own code, most of these systems focus on a single class 

of error (syntax, runtime, logical).  ITS-Debug works to provide assistance to the novice 

over all three classes of defects.  Even fewer systems are or aimed to become Intelligent 

Tutoring Systems  None of the systems encountered in the existing research assist the 

student in the comprehensive manner ITS-Debug supports the novice, and none of the 

tutoring systems encountered in this domain concentrate on the Java programming 

language, which is the common introductory language for Computer Science majors 

today.   

ITS-Debug addresses this domain in a novel manner, utilizing Case Based 

Reasoning (CBR) to represent and reason about the domain.  Most existing ITSs utilize 

either rule-, model- or constraint-based reasoning (discussed in detail in Chapter 2).  

Few existing ITS utilize CBR and those that do, do not aim to assist students with the 

debugging domain.  ITS-Debug utilizes CBR in three of its core modules.  CBR is used 
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in the Domain Module as the methodology for diagnosing student defects and 

determining an appropriate fix for the issue.  The Pedagogical module uses the case data 

in three ways.  Both of these result in providing feedback to the student in order to assist 

them in solving their current defect.  The first way that the Pedagogical module utilizes 

the CBR system is in order to determine the appropriate feedback to return to the 

student.  Specifically, the module uses the case identified by the Domain module as the 

most similar in order to generate the feedback that is shown by the Communication 

module.  Second, the Pedagogical module uses the case data to assist the student in the 

process of analogical reasoning.  If the student has encountered the current case in the 

past and then encounters the same case in the future, the system will show the student a 

summary of the previous encounter (described in further detail in Chapter 4). Third, this 

module uses case data to provide the student with ad hoc, on demand exercises, thereby 

avoiding the predictability of a static exercise base.  Finally, the Student module also 

uses the case data from the system in order to maintain a history of the cases the student 

has encountered and the results of these encounters in order to represent the student’s 

current level of understanding of the domain.  No tutoring system encountered in the 

research has employed case based reasoning this comprehensively or robustly 

throughout all core modules of the system or all the major aspects of CBR, including 

case acquisition.  

Another way ITS-Debug contributes to the field of Intelligent Tutoring Systems 

(and alluded to above) is by exploring exercise generation.  Many ITSs are limited by 

utilizing a static database of exercises.  Once the student has completed all available 
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exercises in the system, the system is of little use unless the student wishes to continue 

practicing with the same exercises.  ITS-Debug overcomes this limitation by producing 

exercises on the fly.  Other work in generating exercises for debugging practice have 

utilized templates (Problets) and aspect oriented programming (Enbug).  No system 

encountered in the literature created exercises by utilizing a code base of correct code 

that exemplified different programming concepts and constructs, then systematically 

breaking that source code to provide an exercise to the student.  How ITS-Debug 

accomplishes this is discussed in more detail in Chapter 4. 

This work also contributes significantly to the field of Computer Science Education.  

Debugging is often not a skill that is directly taught to the student.  Although there are 

several works pursuing debugging instruction and offering guidance for best practices 

in this domain, few courses have implemented these recommendations in classrooms.  

This work explores how debugging could be taught and whether or not a system could 

be built to teach novices this skill without requiring instructors to adopt a new 

curriculum or fit new curricular material in already overloaded introductory courses. 

In summary, the contributions of this work include: 

• An ITS capable of teaching students to debug and providing students with 

targeted remediations for debugging issues across syntax, runtime, and 

logical defects; 

• A CBR system addressing the unique problem of tutoring debugging skills; 

• Insight into the applicability of CBR to program analysis; 
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• An exercise generation system capable of dynamically generating exercises 

by utilizing the afore mentioned CBR system; 

• Insight into methods for teaching debugging and proof that the chosen 

methodology is successful in accomplishing this end. 

 The most important research questions can be organized under these contributions 

in the following manner: 

• Intelligent Tutoring Systems 

o How could the system reason about student solutions without incurring the 

program verification problem? 

o How should debugging issues be remediated? 

o How could the system determine if a given remediation is successful? 

o Could the system generate exercises dynamically? 

• Intelligent Tutoring Systems and Case Based Reasoning 

o How should the domain be represented and reasoned about? 

o How can the system acquire domain knowledge? 

• Computer Science Education 

o How could debugging be taught?  Can debugging be taught to novices?  

o How could a system teach the domain? 

1.4 What is an Intelligent Tutoring System? 

1.4.1 Architecture 
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It is a well-known fact that a student learns best when they are able to receive 

one-on-one instruction in what they are studying.  Unfortunately it is impossible for 

every student to receive one-on-one tutelage all the time because there are not enough 

teachers or tutors to provide such instruction and because students often study on their 

own at odd hours.  Intelligent tutoring systems aim to provide one-on-one instruction 

that can be available to all students at all times. Artificial Intelligence is combined with 

knowledge of pedagogical methodologies to provide a system that teaches the student a 

given subject matter.  An ITS (Intelligent Tutoring System) typically represents up to 

four different kinds of knowledge: domain, student, pedagogical, and communication 

[18].  

 

 

 

 

 

 

      
Figure 1: Intelligent Tutoring System Modules and Interaction 

 

Domain knowledge is represented with an expert module representing how to 

solve problems in this field of expertise [8].  This part of the tutoring system provides 

the basis for interpreting student actions within the system.  Classically the expert 

module is implemented as an expert system capable of generating solutions to the same 
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problems the student is solving.  Because the expert module is meant to help teach and 

diagnose student actions within the tutor, it must include an ability to reason about the 

problem in aa way similar to how a human expert would [8]. When the expert module is 

not designed in this way, the tutor may recommend optimal actions in the context of 

solving each problem, yet it remains the student’s responsibility to comprehend the 

context and rationale for an appropriate action.  Usage of classical expert systems as the 

Domain Module is basically the educational equivalent of leaving the student alone with 

a list of questions and a list of answers.  Simply knowing if they god the answer right or 

wrong does not tell the student how to not make the same mistakes over and over.  If 

the student misunderstands the process by which to reach an answer in the given 

domain, providing the answers without explanation is not going to be educationally 

beneficial. 

The student model is responsible for recording the student’s knowledge state 

within the system and typically consists of two components: an overlay of domain 

expert knowledge and a bug catalog [8]. An overlay is a copy of the domain knowledge 

model; each knowledge unit within it receives a tag containing an estimate of how well 

a student has learned it.  The bug catalog consists of a set of predicted misconceptions, 

each carrying a tag indicating if the student has exhibited the misconception or not [8].  

Unfortunately there are several limitations to the bug catalog model.  First, they are 

really only applicable to domains that are both fairly simple and procedural in nature.  

Additionally significant effort is required to compile all likely bugs within the domain 

as students will typically exhibit a wide range of issues within the domain in question, 
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to be effective the catalog needs to be comprehensive [18].  Finally, compiling a bug 

catalog by hand is not productive, as it may not be known if the bug will be exhibited 

by students using the system and the system may not be able to provide appropriate 

remediation for certain bugs [18].  An alternative to this methodology is to observe the 

behavior of student users and dynamically construct the catalog using machine learning 

[18].    

The Student Module may also represent student actions, answers, the results of 

their actions, intermediate results, and verbal protocols [18]. A core assumption of the 

student model is that student behavior is an indication of what knowledge they have 

acquired and what misconceptions they may hold.  Some representations that have been 

used to model both domain and student knowledge include semantic networks, rules, 

constraints, plan recognition, and machine learning.   

The Pedagogical Module, embodying teaching knowledge appropriate for the 

domain, provides the ITS with the ability to determine when the system should 

intervene within the student’s work.  The decision to intervene may be based on the 

system’s evaluation of student knowledge, learning style, and emotions [18].  Of these 

three, tutoring systems primarily utilize what the system has come to believe the student 

knows when making intervention decisions.  The components of pedagogical 

intervention consist, at a high level, of objects, actions and navigation.  Objects refers to 

the kind of intervention and can include such methods as providing an explanation or 

example, hints, quizzing the student, providing the student with an analogy, and others.  

Actions are the actual actions the module can take and include items such as test, 
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summarize, interrupt, demonstrate, teach the procedure, and others.  Navigation refers 

to moving the student through the material and can include teaching the material step by 

step, ask questions therein taking a more Socratic approach, moving on to the next topic, 

going back to a previous topic, or staying on the current topic.     

There are three categories of teaching approaches an ITS can take.  Please note 

that these categories can and do overlap.  These approaches include basing instruction 

on human teaching (collaborative learning, apprenticeship training, tutorial dialogue, 

problem solving, error handling), using methodologies that are informed by learning 

theory (Socratic learning, cognitive learning theory, situated learning, social interaction, 

constructivist theory), and facilitating learning with technology (such as using animated 

pedagogical agents and virtual reality).   

Communication knowledge refers to the ability of the system to manage 

interaction between the system and the student [18].  Human teachers employ various 

strategies and methods when communicating with students [18].  For example, a teacher 

who notices that a student is disinterested may try to modify how they are teaching to 

garner interest.  Methods utilized by intelligent tutoring systems include the use of 

synthetic humans (AI agents engineered to be realistic), virtual reality immersive 

environments, facial animation, and social intelligence (forming a social connection 

with the student). 

1.4.2 Methods 

The two classical methodologies that successful intelligent tutoring systems 

have used are model tracing and constraint based.  Model Tracing tutors try to trace 
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student input in order to understand how the student arrived at a given answer, 

comparing and matching student steps to expert steps in order to determine when the 

student’s logic does not match with the recorded solution.  The concept of a bug library 

comes into play after a student has erred, it is used as a resource for identifying student 

errors and the corresponding reasons behind them in addition to the trace data [10].  If 

the trace the tutor captures of the student’s solution contains one or more instances of 

rules in the bug library then the library dictates the remediation efforts that the tutor is 

to apply.  Because of the reliance on tracing student input and an overlay or bug library, 

the capabilities of a model tracing tutor depend on how well the trace is captured  

(matching student steps with their corresponding expert steps) and how comprehensive 

the bug library is.  In the ideal situation the tutor would be able to trace all student 

inputs and have a completely comprehensive library of common misconceptions.  This 

ideal is not practical for non-trivial domains.  Also there could be several alternate 

strategies to solve a problem.  For each strategy supported the tutor would require 

expert rules and buggy rules for each strategy and the model tracing process would need 

to map the student’s input to a particular strategy.  If the student takes an unexpected 

path during their solution and reaches the wrong answer the tutor may not be able to 

remediate the issue. 

Constraint-based tutors can avoid some of the pitfalls of their model-tracing 

counterparts.  These tutors operate under the idea that it is enough to know that the 

student has made a mistake.  Model-tracing tutors labor under the idea that diagnostic 

information is hidden within the student’s actions, whereas constraint-based tutors 
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assume that the diagnostic information required to provide remediation is already in the 

problem state at which the student has arrived.  These tutors have a library of 

constraints that are relevant to the domain in question.   Formally a constraint is an 

ordered pair <Cr, Cs>.  Cr represents a relevance condition, which is responsible for 

specifying when the constraint is relevant.  Cs is a satisfaction condition, which should 

hold for any correct solution satisfying the relevance condition.  If the problem state 

satisfies the relevance condition then the satisfaction condition should be satisfied by 

the problem state as well.  If this is not the case the student has made an error.  

Constraint violation occurs if and only if the relevance condition for the constraint is 

true and the satisfaction condition is false [10].  Although knowing that a constraint has 

been violated or that an error has been made is pivotal to the tutoring process, knowing 

only that a given constraint has been violated can be a limiting factor on what assistance 

the system is able to provide back to the student.   

Another approach is case based reasoning.  Case-based reasoning is an AI 

paradigm wherein a system utilizes information about what has happened previously 

(cases) in order to solve a new problem [13].  This methodology is similar to the 

constraint based approach in that each instance of constraint violation could be seen as a 

case.  

1.5 Nature of the Problem and Defect Representation 

There are three general types of software defects: syntactic, runtime and logical.  

Program compilers detect syntactic defects and generate error messages.  This 

mechanism works reasonably well for experts but may cause confusion for novices. The 
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error messages may be obscure for novices, especially when they assume knowledge of 

concepts that novices have yet learned. Also, most syntax issues are reported on the line 

in which they occur, yet often they are triggered by errors on previous lines (the line of 

reported as an error may actually be fine syntactically).  In this situation, the real error 

occurs some number of lines above the reported defect and the programmer has to ferret 

out which line really causes the problem (e.g., unmatched parenthesis or brackets).  

While seemingly simple to experienced programmers, for novices this kind of defect 

becomes a larger issue when they do not have an adequate understanding of the syntax 

of the language they are using.  More novice-friendly defect reporting should afford a 

novice better understanding of what they have done wrong in terms of concepts they 

should already understand, and how to avoid the mistake in the future. 

Runtime errors are somewhat harder for a programmer to solve.  Defects in this 

category do not emerge until the application is executed and the program terminates in 

an unexpected manner.  An example of an exception the novice might encounter 

includes the InputMismatchException, which occurs when the student is using the 

Scanner class to read a specific type of data from console input and data of the wrong 

type is provided.  At this point in their education the student may have just started 

learning about types in programming languages and is unfamiliar with the concept of 

exception handling.  Thus the error message provided is not novice-friendly – the 

student receives a message like this: 

Exception in thread “main” java.util.InputMismatchException  

 At StudentsClass.main(StudentsClass) 
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The student additionally receives the line number at which the program failed and a 

stack trace.  For a novice, this type of error message is obscure and may even be a bit 

intimidating.  They know that their program stopped, that there was some sort of 

problem that uses terms about which they are clueless, and a line number where the 

issue might be located, buried in a stack trace.  Even if they identify the line number in 

question, the run-time error may well be triggered by conditions that occurred 

elsewhere in the flow of the program. If a programmer does not have an idea of where 

the cause of the error could be, an expert might employ a debugger and/or output 

statements to determine what part of their code causes the fault.  However, novices have 

to learn these techniques and how to effectively apply them to the current problem. 

Most commercial and open source debuggers are not designed to be novice friendly; 

they are designed for expert programmers who already understand the concept of a 

breakpoint, stack traces, watches, and a host of other concepts.  Also, finding the fault 

alone may not be enough to instruct the novice how to fix their code.  If the issue is not 

something obvious to the student now they need to start checking the Web, asking their 

instructor, or consult with peers to determine what they did wrong. 

Logical errors are usually the hardest to diagnose.  This class represents programs 

that compile and run, but produce incorrect results.  An example could be a function 

meant to produce factorials but instead produces products, or a stack implementation 

where the pop operation does nothing.  Often novices don’t even check for logical 

errors, let alone know how to diagnose them. However, the class of problems related to 
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determining if a program is correct is NP-complete, so there is no generalized solution 

possible for determining if input code will produce correct results. Likewise the 

problem of determining the cause of a logical error can be time consuming and 

frustrating for the novice.  Experts know they should at least confirm that the output 

and/or behavior of the program matches what they planned.  Once a discrepancy is 

found, heuristic knowledge about debugging can guide an expert to correcting the 

problem.  It could be a simple mistake involving the incorrect use of an API function or 

operator.  Or the error could really be due to the student having a fundamental 

misconception about the problem they are attempting to solve with their program, the 

programming language they are using, or the algorithm they have been instructed to 

implement. 

Defects from any of these three classes may well pose a greater difficulty for a 

novice than an expert. There are many possible reasons for bugs inadvertently included 

in a student’s code.  Despite these challenges, they all point to the same overarching 

problem: there is knowledge the student does not yet have that is holding them back and, 

one way or another, they need to gain that knowledge to fix their programming defect. 

The student also needs to generalize this knowledge as a skill in order to gain 

confidence for debugging similar problems in the future. 
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2 Chapter 2: Teaching Debugging 

Debugging and programming go hand in hand as it is unlikely that any 

programmer will code a perfect program the first time they compile and run it.  Issues 

that a novice is encountering for the first time are issues they are likely to see again and 

again, in different environments and even with different programming languages. It is 

crucial that the student programmer learn how to investigate program defects for 

success as students and potential computing professionals.  How should these skills be 

passed on to the student?  How do experts solve their debugging problems?  How do 

novices, with little or no previous programming knowledge, approach the debugging 

problem? Background research into these questions is pursued in the following sections.  

2.1 Explicitly Teaching Debugging Skills  

Some of the earliest work found related to teaching debugging was completed by 

[25].  Mathis implemented a course on debugging techniques with 15 separate modules, 

including 3 modules related to case studies, projects, and review.  Some of these 

modules included software engineering concepts, different types of bugs, and aids for 

debugging.  The course specifically used Fortran as the programming language and 

included techniques for designing algorithms in order to make them easier to debug.  

Though some of these ideas have found their way into computing courses on software 

engineering, courses that are explicitly focused on debugging or quality assurance are 

few and far between [25]. Moreover, there is a chicken and egg problem with respect to 

novices: how do instructors teach them what they need about debugging while also 

teaching them about programming and other computer science topics? 
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With regard to analyzing the novice debugger, Almazadeh et al. analyzed 

students’ compile time errors over the course of a semester long class encompassing 15 

exercises and 2 exams.  During their analysis they identified 226 distinct semantic 

errors.  Their results were distilled into 6 classes of errors over 7 computer science 

topics.  The topics included conditionals, loops, methods, arrays, classes, files, and 

strings.  The error classes included field not found, use of non-static variable inside 

static method, type mismatch, using non-initialized variable, method call with wrong 

arguments, and method name not found [4].   

A second phase of this study compared good debuggers to weak debuggers.  

Participants were asked to correct a faulty program containing compile time and logic 

errors within 2 hours.  The errors included in the code corresponded to the errors 

students participating in phase one of this research most often committed.  Their results 

showed statistically that a good programmer is not necessarily a good debugger but that 

a good debugger is usually a good programmer.  The authors explain these results as 

follows: a good programmer who is not necessarily a good debugger is able to write 

relatively simple programs that compile and run correctly more often;; therefore it 

appears that they do not need to debug as often and avoid developing a skill they do not 

quite have.  On the other hand, good debuggers also tend to be good programmers, 

because the knowledge of the system and the language that make them good debuggers 

enhances their expertise as programmers.  The authors also believed that programming 

assignments are not being evaluated with the proper criteria, thereby allowing students 

with less topic comprehension to achieve higher marks [4]. 
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Similar to Almazadeh et al.’s work, a tool called Retina [30] helps identify 

which students were having debugging difficulties through the use of passive 

observation.  The idea behind providing such a tool is the fact that many students either 

do not recognize that they need help, or do recognize that they need help but are 

reluctant to ask for assistance [30].  This tool allows instructors to see how long 

students take to complete a given assignment, how often they have to recompile, and 

what types of errors were reported by the compiler.  In addition, students are allowed to 

see a limited view of their classmate’s activities on assignments in order to gain 

perspective on where they fit within the rest of the class.   

The idea behind providing the latter kind of functionality is that a student who is 

discouraged by the amount of time they are expending on a given assignment may feel 

more confident in their own abilities when they realize that they are not the only ones 

experiencing a given issue on an assignment.  A downside to this functionality that is 

not mentioned in the paper is that if the student is truly the only one struggling with a 

given topic then this sort of information on where their peers fall within a given 

assignment could be detrimental to the student’s self confidence and therefore 

performance.  The instructor could proactively remedy this however if said instructor is 

monitoring the class via the teacher console, determines that student X needs assistance, 

and intervenes [30]. 

The results from Retina were not so much related to improving scores as they 

were to determining correlations within the data.  For instance, the authors of this paper 

noticed that when they viewed data for an entire semester, students who required less 
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time for assignments generally received higher scores than those students who required 

more time [30].  They also found that the number of compilation errors could be an 

indicator of whether or not a student was struggling.  The last important correlation they 

found correlated the number of compilation errors to time of day that the project was 

being worked on.  As anyone familiar with the habits of college students might suspect, 

the majority of errors recorded by the system occurred between 8 PM and 5 AM [30]. 

Retina helps support the idea of providing a tutoring system to help teach 

debugging by monitoring student activities, which a tutor would also be expected to do, 

only not strictly in a passive fashion but more to determine when to intervene and 

provide instructive feedback.  Additionally, this work is able to help prove the validity 

of such data and exemplifies a framework for analyzing it [30]. 

Wang and Souders discuss an undergraduate research project that aims to help 

tutor debugging skills via a web-delivered quiz system.  Their research discusses an 

undergraduate research program they ran centered on assisting students’ debugging with 

their quiz system.  Some of their more interesting results included characteristics 

required for debugging and certain defects undergraduates tend to include in their code.  

Specifically, knowledge of the domain, program, compiler messages and also meta-

cognitive skills are very important for successful debugging.  In terms of actual defects, 

the researchers found that it is more difficult for novices to find their bugs than it is for 

them to fix them.  They also found that the following are the most common defects 

coded by freshmen and sophomores: omitting operations or components, adding 

unnecessary operations or components, and incorrectly implementing operations or 
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components.  The authors also mention that they were unable to identify any dominant 

debugging strategies [41]. 

Chmiel and Loui explored how to teach debugging skills and how to measure 

the debugging competency of a student.  Their approach consisted of four aspects: 

debugging exercises, debugging logs, development logs and reflective memos, and 

collaborative assignments [9].  Exercises required students to either identify the defect 

by performing code reviews without the aid of a computer, or fix the defect with or 

without (depending on student preference) the aid of a debugging tool called Turbo 

Debugger.   

The first type of exercise bolstered student ability to understand what a given 

section of code would do while the second line gave the students extra experience with 

the problem solving required to debug their own code.  The next aspect of their 

methodology was to introduce debugging logs.  Log entries consisted of the name of 

subroutine the defect was found in, how long it took to remedy the defect, the incorrect 

behavior exhibited by the program, the incorrect code, and how the defect was fixed.  

This was modeled after another logging scheme cited in their paper with the addition of 

the solution to the defect [9].  As a side note it should be mentioned that the inclusion of 

the solution to the defect reinforces the idea of representing defects within a debugging 

tutor via case-based reasoning.  The students in this study are basically creating their 

own personal case base for later review if such a defect should arise again.  

Chmiel and Loui’s approach also involves the use of development logs and 

reflective memos.  The development log was used to document what occurred during 
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the completion of a project including design decisions, debugging experiences, their 

development plans, and the time expended on each of these aspects of the assignment.  

The reflective memo was based off of the development log and forced the student to 

reflect on the contents of the development log including what type of defects were 

encountered, how they discovered the defects logged, and when the defects were 

discovered.  Finally, students were asked to answer the question of what would they do 

differently for subsequent assignments [9].    

Students in this study were to participate in a collaborative final project in teams 

of four [9].  The idea of incorporating collaborative work is pedagogically sound as it is 

well documented that cooperation has the benefit of helping students attain grater 

productivity and higher achievement in addition to the other social and psychological 

benefits associated with working in a collaborative manner [40]. 

The results of this study showed that actively teaching debugging in this manner 

presented a statistically significant decrease in time spent debugging [9], which 

indicates that students who received the debugging instruction in the end spent less time 

struggling with debugging activities than their control group counterparts.  The class 

this study was performed in was a third programming course for Electrical and 

Computer Engineering majors, the language presented to the students was Assembly—

one of the most difficult languages to debug effectively [9]. 

Perhaps the most significant result of this work however is not the statistical 

proof that teaching debugging is relevant to producing more competent programmers, 

but instead the model that the authors developed in order to categorize a student’s 
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debugging skills.  They created a model based on the Dreyfus model of skill 

development [9], which consists of five stages: novice, advanced beginner, competent, 

proficient, and expert.  Novice debuggers in this model are absolute beginners—they 

repeat the same types of defects frequently, debug haphazardly, expend considerable 

time on the debugging process, and may give up easily or depend on others for help.  

Advanced beginners differ from novices in that defect repetition is reduced and they are 

capable of recognizing defect symptoms more readily. Competent debuggers approach 

debugging systematically, alternate techniques, are capable for working mostly 

independently, and know several different techniques.  Proficient debuggers build on 

these skills further, working on their skills in other areas in order to help improve their 

debugging ability and perhaps providing assistance to peers.  For experts, debugging is 

second nature and their ability to identify defects far surpasses counterparts in previous 

categories.   

Studying a novice compared to other novices is informative and helps to 

ascertain where students are going wrong, where students are going right, and what 

characterizes both groups.  But what differentiates expert from novice when focusing on 

the debugging process?  Gugerty and Olson performed experiments to determine these 

expert-novice differences in debugging by running two experiments that compared how 

the two groups approach the domain.  Novices in this study were students who had 

recently completed a first or second Pascal course; experts were graduate students in the 

Computer Science department.  For the first experiment each participant received 

training on the LOGO language and then were provided with 3 buggy programs on 
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floppy disk accompanied by hard copies of the programs’ output.   Each participant was 

given a 30-minute time frame for each program.  Sessions were videotaped and subjects 

were asked to think aloud for later analysis.  Three different types of bugs were given in 

the defective programs provided, including: incorrect graphic procedure parameter, 

missing graphics interface statement, and an error dealing with variable scope.  In this 

experiment experts found the defect slightly more often than novices but tested fewer 

hypothesis—that is, although there was not a great difference in the ability to locate the 

defect in this study the experts were more efficient at identifying the correct cause for a 

given program defect.  Novices were only able to immediately identify the correct cause 

of a given defect 21% of the time [15]. 

In the second experiment, similar subjects were selected.  This time the 

programs in question were written in Pascal and the subjects were given one program to 

debug.  Additional materials included a printed description of what the program was 

meant to do, what the correct output should look like, scratch paper, and a calculator.  

The results found from analyzing how the different groups attacked the problems were 

somewhat surprising.  The authors expected that the novice programmer might jump 

right in to solving the problem, editing the program without trying to understand it first; 

however, this was not the case.  The main differences between novice and expert groups 

in this study were that novices required more time to identify the correct cause for a 

defect and in general were less successful than the expert group in resolving the defects 

they were presented with. Their study also revealed that novices tended to add defects 

while trying to fix the original problem; experts participating in the study rarely did [15]. 
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3 Chapter 3: Systems for Teaching Debugging, Defect 
Detection and Supporting the Novice Debugger 

Analyzing and categorizing the student debugger helps to identify and establish 

what issues students may encounter while debugging, when they might have them, and 

suggests how to assist them when they have come to a debugging impasse.  The next 

step requires providing the student with the tools they need to succeed.  Intelligent 

Tutoring Systems and specialized IDEs for teaching programming necessarily include 

representation and specialized detection of defects in order to help remediate program 

flaws.  Also, tools for detecting software defects at the source code level also need to 

represent defects within their systems.  The rest of this section will discuss relevant 

defect detection systems, specialized IDEs, specialized debuggers, and intelligent 

tutoring systems. 

3.1 Defect Detection Systems 

Several software bug detection systems have been developed to remediate 

security issues in code at the source code level and at the compiled source level, ITS4 

and FindBugs are two such tools.  Each deals with a different language and therefore 

has different defect concentrations.  

ITS4 is a static vulnerability scanner for C and C++ that checks for 2 main types 

of issues that are recognized via a defect database. The database, at the time of [35], 

contained 131 issues representing calls to unsafe C functions with the largest class of 

issues being file accesses [35].  For each of these unsafe calls their database contains a 

description of the problem, a description of how to fix it, an assessment of the severity 
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of the issue belonging to the set {NO_RISK, LOW_RISK, MODERATE_RISK, 

RISKY, VERY_RISKY, MOST_RISKY}, instructions on what type of analysis to 

perform when the function occurs in the token stream, and if the function involved can 

or cannot retrieve input from some external source like a socket or file [35]. 

As for classifying the issues represented in the database, the first type is related to 

the usage of unsafe C libraries and involves the sanity checking of string constants used 

as parameters to these unsafe libraries in order to prevent the different types of overflow 

attacks.  The second type of defect targeted is race conditions [35].  The authors of the 

paper (and subsequently, the tool) refer to these issues as “Time-Of-Check, Time-Of-

Use” problems, or TOCTOU.  Race conditions identified in this tool are strictly related 

to file operations; other concurrency issues are not looked for.  The developers of ITS4 

classify these issues within a program through the usage of handlers for functions that 

are ‘uses’ and ‘checks’.  Each time a function that performs file operations is 

encountered the variable name in that function call that represents the filename is stored.  

Then a mapping is created that matches the variables in the stored list to their list of 

TOCTOU functions utilizing that same variable.  Because of their methodology certain 

file related race conditions may go undetected.  Also aliasing is unsupported.  Only 

string constants are recognized by this tool as valid arguments for files;; therefore if 

someone were to use perhaps argv[x] as the filename related race conditions would not 

be caught.  This particular example also poses the problem of unverified input.  After 

the mapping is created and the scanning process is complete the list of file calls using 

each filename variable and if that variable has been noted to be used in at least one 
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check and one use this is combined into a single issue to be reported to the user with a 

higher severity level [35]. 

FindBugs is another static analysis tool that processes Java code and utilizes bug 

patterns [7]. It works at the byte code level after Java compilation; the software itself is 

written in Java. FindBugs has a catalog of about 300 different bug patterns. Each pattern 

belongs to one of the following categories: correctness, bad practice, 

internationalization, malicious code vulnerability, multithreaded correctness, 

performance, dodgy code, and security.  Priorities in the range of high, medium, and 

low are assigned to each instance of a bug pattern and an associated priority is 

determined via heuristics unique to each instance.  The tool is available in many 

different formats including through the command line, as a plugin for Eclipse or 

NetBeans, or through Ant or Maven.  One interesting issue discussed in [7] was that of 

defects that were true defects but presented a low impact to the execution of the project.  

These included deliberate errors, masked errors, infeasible statement branches, or 

situations where the program is already doomed [7]. 

3.2 Whyline 

The Whyline tool [18] tries to aid experienced developers in the debugging 

progress by enabling the programmer to perform a visual dialog with their program.  

The authors claim that developers have an internal dialogue about why a given program 

behaves the way it does. The Java centric version of Whyline will be discussed here, 

though it should be noted that CMU first created a version of Whyline for use within 

their educational Alice framework, demonstrating that the Whyline tool has applications 
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for both novice and experienced programmers. 

Whyline enables developers to choose questions regarding why or why didn’t a 

program perform in a certain manner and then receive an answer generated 

programmatically.  Answers are generated via several forms of program analysis. 

The architecture of the Whyline application consists of the following five parts, 

all implemented in Java: instrumentation framework, trace data structure, user interface, 

question extractor, and question answerer.  The first of these modules, the 

instrumentation framework, contains an API for reading, representing, and writing java 

classfiles that is similar to other existing bytecode APIs.  Support for reading, 

instrumenting, and analyzing classfiles is included in order to capture an execution trace 

of the application along with the ability to modify a given program so that a trace will 

be produced on subsequent executions.   

Next, the trace data structure is responsible for encapsulating all aspects of the 

program for Whyline’s use including the source code, class files and execution history 

[18]. This structure enables static access to both static and dynamic facts about a trace 

including potential callers of a method and all executions of a given method.  

Performance is taken into account here through the serialization and caching of the 

results of these queries so that future utilization of a given trace can reuse a particular 

analysis.  

Following the trace data structure in the architecture is the user interface, which 

itself consists of five components, and enables the user to see different views of the 

trace data structure. The views are enabled by the different UI components including 
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output, search, file, call stack, and answer.  Select output within the output UI causes 

the question extractor to come into play, which populates the answer UI.  The question 

extractor queries the trace data structures and turns this data into views for the user.  

When the user selects one of the questions generated by the question generator the user 

interface generates the answer UI.  This component is responsible for querying the 

question answerer in order to provide visualizations and answer related text.   

The most crucial aspect of Whyline is probably its method of recording program 

execution.  Without this component the system would be unable to provide the question 

and answer interface that is crucial to its functionality.  The types of information 

recorded during an execution trace in Whyline include executed class files and 

associated source files [18].  When launched, Whyline first scans a user-defined 

directory for source code and makes a copy.  Then the tool begins to perform bytecode 

instrumentation via the java.lang.instrument package available after Java version 1.5, 

intercepting byte arrays when each Java class is loaded.  Instrumentation in Whyline 

involves both an analysis step and an instrumentation step.  The analysis step is utilized 

for identification of data and control instructions that Whyline should instrument, 

including method invocations, catches, branches, and exceptions, all identified via 

simple parsing.  Whyline specifically focuses on data instructions that affect either local 

variable or heap space within the application as opposed to also including all 

instructions that could affect the operand stack of the JVM.  For example, consider the 

assignment x = a + b + c.  Whyline will only instrument the value of the assignment and 

final addition, disregarding other aspects of the computation.  The reasoning behind this 
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is performance, the values of a and b should not have changed after their prior 

assignments and these would have previously been instrumented by the tool.  Another 

important aspect of this step is the determination of stack dependencies for each 

instruction within a method.  The system explores all execution paths possible for a 

method, pairing push and pop instructions affecting the operand stack.  During this 

exploration a simulated operand stack is maintained.   

Method instrumentation is the next step of Whyline’s analysis. Whyline visits 

each instruction and inserts calls to a global instrumentation method around the 

instrumented instruction.  Each of these records information as an event, of which there 

are six types: assignments, invocations and returns, exception throws/catches, object 

instantiation, thread synchronization, and specialized native I/O events.  Events are 

encoded as binary data with the following format.  First, each has a header containing a 

1-bit switch flag to determine if this event is occurring for the first time after switching 

threads.  Following this is a 32-bit serial event ID that is set only if the switch flag is set.  

Next is a 1-bit io_callstack flag which is set to true if the code in question is 

representative of input or output or is necessary for call stack maintenance.  This 

indicates to the trace loader which events it will need to process immediately.  The last 

32 bits are utilized for an instruction ID which is split into 2 sections.  The first section 

is 14 bits long and represents a class ID. The last 18 bits are used to represent the 

instruction’s index within the class file [18].  Objects are recorded differently.  Each 

new object is assigned a unique 64-bit ID which is stored in a hash table and receives an 

entry into a file containing this 64-bit ID and the type represented as a class ID, thread 
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IDs are maintained similarly during runtime. 

On each class load in the JVM Whyline intercepts the class load in order to 

perform several preprocessing steps before commencing instrumentation.  These steps 

include creating a copy of the uninstrumented code, noting which classes don’t have to 

be instrumented because the user specified to skip them, determining which classes are 

referenced by each loaded class (in aid of answering ‘why not’ questions), and caching 

the instrumented code for later use and subsequent performance gains [18].    

Whyline’s trace loading process is somewhat involved.  Code is loaded first, both 

source and class files, and static information is extracted.  Then three levels of 

associative activities are performed, associating invocations with methods and 

references with declarations.  Lastly output instructions and thrown and caught 

exceptions are considered.  All of this information is utilized by Whyline to produce a 

precise call graph.  After generating this call graph thread traces are considered.  Finally, 

the last responsibility of the loader is to generate an I/O history.  This last step is 

extremely important because Whyline’s question / answer framework depends on the 

ability to correlate output to program logic.  An important aspect of Whyline to note 

here is that it has the ability to handle graphical output in this framework as well [18]. 

 Question extraction is the next important aspect of Whyline to discuss.  Broadly, 

the system supports questions of the form “Why did…” or “Why didn’t…”.   Available 

questions are determined by a user selected time step and encompass either the data or 

caller affecting output.  After the user selects an output primitive the system proceeds to 

generate possible questions related to each entity and objects that can indirectly 
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influence a selected output.  “Why did…” questions can be of the form “why did x’s 

attribute = y.”  “Why didn’t…” questions can refer to why certain fields did not receive 

values, why weren’t certain methods executed, and why certain objects were missing 

after the time the user selected [18].  

Finally, after defining questions, comes a mechanism for answering them.  

Whyline’s answering logic varies depending on whether the question is of the  “Why 

did…” variety as opposed to “Why didn’t…”   Each “Why did…” question has a direct 

mapping to the program’s execution history.  Answers are therefore generated via 

dynamic slicing and presented to the user as a tree of relevant events sequenced 

chronologically.  A program slice consists of “…the set of all statements that might 

affect the value of a variable occurrence [1].”  Dynamic slicing refers to finding the set 

of statements that actually had this impact [1]. The difference between a static and 

dynamic slice is that a static slice is related to a given program location while a dynamic 

slice is defined according to the end of the execution history [1]. 

“Why didn’t…” questions are more difficult because they represent why 

something did not happen as opposed to concrete references to specific code.  Ko and 

Myers’ methodology for these questions involve the analysis of one or multiple possibly 

unexecuted statements following the user selected I/O event.  Instructions are analyzed 

to determine both why it did not execute and why the wrong value was used, involving 

both temporal scope and identity scope.  Temporal scope refers to the timeframe 

following the user selected time point and the end of the program.  Identity scope refers 

to objects that the user has indicated they are interested in exploring through their 
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question selection.  For answering questions regarding why certain code did not execute 

Whyline first verifies that the instruction indeed did not execute and then, an algorithm 

the authors named whynotreached is run.  This algorithm aggregates all the statements 

that have not executed and then runs a separate algorithm called explain to determine 

reasons for those statements remaining unexecuted.  The answer boils down to either a 

list of other instructions that needed to be executed first or an execution trace providing 

the explanation as to why the instruction went unexecuted [18].   

All of these mechanisms together combine allowing the programmer to turn an 

internal dialog on possible failures replete with code changes, hand coded 

instrumentation, and multiple compile and retest phases, into a single question 

regarding why something did or did not happen within their program.  Evaluation of 

Whyline supports the benefits of such a tool.  Developers were split into two groups and 

asked to determine why a graphical application failed to use the correct user specified 

color to draw a line.  The control group that was not provided the Whyline tool took in 

the range of 3 to 38 minutes to determine why the wrong color appeared on the screen.  

The Whyline enabled group took from 1 to 12 minutes to determine the issue.  If such a 

tool can produce this level of success with experienced Java developers, incorporating 

this methodology into a debugging tutor has the potential to assist in the creation of a 

new generation of computer science professionals who do not waste as much time 

spinning their wheels speculating on program failure.  Providing a framework wherein 

the developer can actually query the program for why it failed could at the least help 

teach the programmer which issues manifest in which ways, making them better 
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problem solvers in general and more efficient software producers. 

3.3 Toolkits 

Within the realm of toolkits, Dereferee contributes to educating novices to better 

debug pointer issues.  Specifically, this system provides an educational toolkit for 

producing better feedback on pointer problems within C++ code.  Usage of the tool 

requires the inclusion of a header file, linking to the Dereferee library, and modification 

of pointer declarations to be of the form checked(T*)[3].  The tool was intended for 

student use in situations where pointer errors in their code would be masked by the 

execution environment or cause an unexplained runtime exception.  Pointer usage is 

tracked via a memory allocation table that stores reference counts for each allocated 

section of memory.  Other details stored by this system are the types allocated objects, 

if each monitored block refers to a single object or an array, a stack trace detailing the 

context and location of each allocation, and the length of dynamically allocated arrays.  

The system views each pointer as a state machine with transitions between live, null, 

dead and out-of-scope.  These states are reached through the operations performed on a 

given pointer during program execution.  Unfortunately the paper does not discuss 

testing involving student usage.  Instead, the authors of the paper displayed Dereferee’s 

performance in identifying pointer defects by instrumenting a set of code containing 

both student code and the author’s code, then tabulating the results of running the 

programs with Dereferee versus running the programs without using Dereferee.  

Additionally their testing utilized an external tool called CxxTest (similar to JUnit) in 

order to uniformly collect data on their test results and provide crash recovery.  Their 
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results showed that, had the students been provided the toolkit, 95.6% of the students 

whose code was involved would have benefitted from using the toolkit [3]. 

3.4 Specialized IDEs and Libraries 

Thetis is a specialized IDE (Integrated Development Environment1) to provide the 

novice with better feedback on C program defects. The system was designed by 

students at Stanford to address novice issues encountered when using C as the 

programming language for a CS1 / CS2 progression [13].  The main concern of the 

faculty at Stanford when making this decision was that students would end up spending 

more time on debugging their assignments and less time on actually learning computer 

science, which was in the end the actual result.  The main cause of this time difference 

was determined to be a function of the programming environment instead of the 

language itself.  Thetis was developed to remedy this problem and dispel the 

shortcomings of commercial C compilers in the educational setting.  Some properties 

that commercial C compilers lack included uninformative and misleading error 

messages regarding certain syntactical errors and little to no runtime checking.  Also 

interactive debuggers for C, such as the GNU Project Debugger (GDB), usually require 

students to have an understanding of advanced concepts before they are prepared to 

learn the relevant material needed to use the debugger.  

 Thetis is able to provide better feedback to novices because it is a C interpreter 

instead of a C compiler.  A compiler generates machine code, thus separating the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Software that assists developers in writing and testing code	  
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compilation and execution phases.  An interpreter on the other hand combines both of 

these into a single phase, simulating program execution [13].  The drawback of 

interpreting C as opposed to compiling it is the introduction of interpreter related 

latency, but this is not of the utmost importance in introductory CS classes.   

 The system provides more comprehensive error messages, runtime error detection, 

debugging and visualization tools, and what the authors call a listener [13].  The 

debugging / visualization tools and listener are very similar to what is currently 

included in software suites such as Microsoft’s Visual Studio, allowing the programmer 

to easily view what is happening at runtime in their program by allowing for graphically 

placed break points, the ability to evaluate expressions while the program runs (via the 

listener), and the ability to view the call stack, function variables, arrays, and structures.  

As for runtime error detection, Thetis was configured to check for certain defects 

including division by 0, use of uninitialized variables, dereferencing invalid pointers, 

out of bounds array accesses, assignment of an out of range value to an enumerated type, 

exiting a non-void function without returning a value, accessing a bad function pointer, 

and passing invalid arguments to functions.  

 Thetis was evaluated at Stanford University within an introductory level computer 

science course.  30 students from this course were involved, the results of their usage of 

the system allowed for further refinement.  Results from this first study were very 

encouraging, causing the authors to expand and test the system with all the students 

enrolled in the course (about 300) the next time it ran.  Despite reporting positive testing 

results, they do not list explicit details of these results.  The authors do however give 
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minimal results from a smaller set of 39 students who used the system during a summer 

iteration of the same course.   These students were asked to complete a 4 question 

survey, asking the students how easy they found the system to use, if they were ever 

confused by the system, if they felt that the system helped them understand 

programming, and if the error messages reported by the system helped them find 

mistakes in their programs.  The numbers for these results were very encouraging and 

bolster the previous statements made about positive research results.  82% of the 

students felt the error messages Thetis reported helped them find their mistakes more 

easily and 71.8% of the students reported that the system helped them understand 

programming [13]. 

 Two now well known novice-oriented IDEs for the novice Java programmer are 

BlueJ and DrJava.  While the user experience is vastly different between the two 

systems, certain design concerns are taken into account by both systems.  These 

concerns include simplicity of use, ease of understanding, and facilitating education in 

Java programming.   

 BlueJ, the first chronologically of these two systems, began as thesis work by 

Kölling in the late 1990's as the Blue environment ([21]) and since evolved into BlueJ.  

This system favors an Objects-first pedagogical approach, where novices are introduced 

to the concepts of object-orientation immediately in their first CS courses.  The student 

is presented first with an interface for creating a UML diagram that allows for "uses" 

and "inherits" edges.  Before any code can be written the student must articulate their 

design in this interface.  The student is able to code their class by "opening" it.  When 
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the student creates a new class in the main interface the Blue system creates a code 

skeleton for it that is viewable by double clicking the box representing the class in the 

main window.  This brings up an editor pre-populated with certain details as defined by 

the design the student created.  Changes in the editor window that affect the design of 

the application being developed are echoed in the design view, keeping the application 

consistent automatically across views.  The student can compile their application via a 

compile button visible in the top menu.  Errors reported back to the student from Blue 

are presented in more comprehensible language than is standard for a compiler [20,21].  

BlueJ has been successfully used in many introductory courses and it is still being 

expanded today.  

 DrJava, developed near the same time as BlueJ, strives for interface simplicity 

and is the second "Dr" system developed at Rice (the first was DrScheme). An IDE 

such as Eclipse, CodeWarrior,or Visual Studio bogs the user down in many menus 

overflowing with fancy options that, to the novice, are intimidating and overwhelming.  

DrJava, on the other hand, presents a much simpler interface, and enables the student to 

achieve the write-compile-test loop of program development from a simple run-time 

command-line, and by providing a limited set of menu options that focus the student 

more clearly on those tasks. 

 Instead of the many panels and tabs, the student sees just three panels—an editor, 

a file listing, and a bottom pane.  This bottom pane has three tabs: interactions, console, 

and compiler output. The console pane allows students to provide console input and 

view console output.  The compiler output pane shows student the results of any 
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compilation attempts.  The interactions pane enables students to run individual Java 

statements interactively in a "Read-Eval-Print" loop as one might see in a scripting 

environment typically found in support of LISP, Perl, Python or Mathematica.  This 

methodology enables simpler debugging via immediate evaluation of programming 

statements.  Additionally, DrJava makes it easier for the student to locate and 

understand their error messages.  When a syntax error exists in the student's code after a 

compilation attempt, DrJava displays the error message with its associated line number 

in the interactions pane at the bottom of the screen.  When the student clicks on the 

error message, the line number affected by the error message is highlighted in bright 

yellow while the error message gets highlighted in a light green color.  This draws the 

student's eye to the error at hand and helps them to focus their attention on a given issue 

[2]. 

3.5 InSTEP 

InSTEP (Independent Student Tutoring by Example Programs) was developed in 

2001 to tutor C programming on the Web [31].  This system presents feedback in 

context of a current problem and limits the domain by using a fill in the blank approach, 

where students are presented with partial programs and then must complete the example 

by filling in the blank.  The workflow of this system progresses in the following manner.  

First, the student attempts to provide the correct snippet of code.  After providing their 

answer, they submit the form and InSTEP compiles the submission.  If any compiler 

errors are present the student receives a report containing those errors and the current 

source code.   
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If the submission compiles, InSTEP runs the code through a series of predefined 

test cases. If the submission passes these test cases, the student receives feedback letting 

them know they have successfully completed the exercise.  Otherwise, InSTEP analyzes 

the code and the output it produces for a known common set of errors.  If InSTEP is 

able to recognize the error then it provides appropriate remediations to the student. If 

not, it attempts to at least locate where the issue lies.  If InSTEP is able to localize the 

error then it provides an appropriate hint back to the student along with the output the 

faulty code was able to produce and a description of InSTEP’s analysis results [31].   

Evaluation of this system was conducted at the University of Utah within an entry 

level programming course for engineering majors.  Of 120 students in the class, 66 

opted to participate.  All students at the time of participation had received some 

experience within this class in Maple and in C.  Participants were divided into 3 groups: 

group 1 was given a standard environment for C programming on the Linux command 

line including gcc and emacs; group 2 was provided InSTEP but without the analysis 

results previously described; and group 3 received the full InSTEP system.  All students 

were presented with the same templates in appropriate formats for their test group and 

group 1 received a tool that was able to verify their solution provided the correct output 

[31]. 

The exercises presented to the students consisted of 6 standard programming 

problems involving 2 problems dealing with loops and iteration, 3 problems dealing 

with summation, and 1 problem involving computing the maximum sum of a series.  

Students were asked to take both a pretest before and a posttest after the study 
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concluded and lectures were held as normal for the 1 week duration of the study, which 

occurred at the end of the semester.  The pre and posttest instruments were evaluated for 

the level of understanding displayed as opposed to calculating the number of errors 

committed [31].   

 Other measures taken included the amount of time students spent on each exercise, 

the amount of time TAs and other course staff spent during the evaluation period 

assisting each student, homework grades, midterm grades, and exam grades.  Of all 

these measures, only one showed statistical significance—the amount of time course 

staff spent helping students.  This result indicates that InSTEP was quantitatively 

helpful to the students who received the full system, as a significant portion of the 

students were confident enough in their answers that they did not need to seek outside 

assistance [31]. 

3.6 FLINT 

Ziegler and Crews from Western Kentucky University recognized that the IDEs 

in existence for programming C++ were novice un-friendly.  Because most 

development environments are built as tools for the expert developer, the feedback from 

these systems in the presence of faulty code is a poor match for the novice. 

Ziegler and Crews built a specialized IDE focused on helping students to debug 

programs called FLINT (FLowchart INTerpreter).  This somewhat rigid system focuses 

the student on designing their procedural code before performing any implementation.  

First, the student is required to articulate their design in the form of a hierarchy of 

actions the code must perform.  Then the student is required to compose a flowchart.  
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The creation of this flowchart and any subsequent algorithm implementation is 

restricted by their initial design; changes in the system the student is trying to build 

must first occur in the design itself [44].   

Algorithms in the system are represented using flowcharts;; the authors explain 

that this decision is in part due to existing research on expert programmers indicating 

greater speed and comprehension when reading flowcharts as opposed to pseudo-code.  

When constructing the flowchart only complete programming constructs may be added, 

removed, or moved.  Flowchart items are manipulated from a “point and click” 

interface, making this a system that supports the drag and drop programming 

methodology [44]. 

When the student needs to perform debugging, FLINT facilitates the activity by 

allowing stepwise execution and breakpoints.  While performing stepwise execution the 

system highlights the current lines and affected variables in order to provide the student 

with a visual cues, highlighting how code runs sequentially and helping the student 

understand what actually occurs in the underlying machine [44]. 

3.7 Backstop 

Some researchers have recognized a need to tailor the debugging process so that 

the novice is able to debug their programs on their own and understand their results.  

One system built explicitly to help the novice Java programmer debug is Backstop, built 

by Murphy et al. [29].  They take a much narrower approach than other systems and 

methods.  Instead of concentrating on debugging or programming in the general sense, 

they elect to concentrate solely on runtime errors and helping students resolve them.  



45	  

Specifically, the authors aim to provide detailed and helpful error messages for 

uncaught runtime exceptions as opposed to the standard messages returned by the Java 

runtime system.  Their tool also produces step-by-step explanations of running code in 

order to help the student understand what the code did at specific points during 

execution.  This tool, called Backstop, is essentially a novice-centered debugger. 

Previous research cited by the authors highlights the fact that there have been several 

efforts to remediate novice issues with compiler messages (including BlueJ, ProfessorJ, 

DrJava, Gauntlet, Expresso, and HiC).  Additionally the authors mention two systems 

for specifically helping novices remediate logical defects in their code, InSTEP 

(discussed earlier) and DEBUG.  Another tool similar to Backstop and also listed in this 

paper is also a novice-centric debugger but targets C++ programs and is called CMeRun 

[29].   

Backstop is able to support the student through finding and fixing their runtime 

exceptions by catching uncaught exceptions and then helping them walk through their 

code as with a normal debugger but with language and details more suited to the novice.  

Unfortunately, their experimental design makes it unclear as to whether the tool actually 

helped the students debug runtime issues.  Their control group was specifically selected 

from their top students and all students in this group were able to solve the runtime error 

without assistance.  Additionally, most of the students in the test group (76%) were able 

to solve the runtime error with Backstop’s assistance within a 15-minute time frame. 

The main benefit of this tool is the fact that it turns the jargonized output of what 

is usually an expert-oriented process into a friendlier, more naturally worded 
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representation that highlights the sequential nature of the underlying machine.  In 

addition to helping the student with traditional debugger output, the tool is also capable 

of assisting the student in understanding runtime errors.  Some of the features of 

Backstop include: displaying runtime exception details for uncaught runtime exceptions 

in an easier to understand wording, displaying which line of code is currently executing 

(which eventually could become a program trace), and displaying the values for 

variables affected by the line currently being displayed [29].   

Although most of this functionality is available in standard debugging 

environments in one form or another, there are two interesting details that set Backstop 

apart in addition to its more user-friendly messages.  While most debuggers can help the 

programmer delineate a trace of some form, this system will actually print out line-by-

line what is running, if so directed by the user.  This functionality makes it much easier 

to follow trace data than traditional environments.  Additionally, displaying the current 

values for variables at a given time step (what many debugging environments call a 

“watch” for a variable) is handled by default and with much greater ease than 

environments like expert-oriented environments [29].   

Before the student can use Backstop on their code, a preprocessor must ensure 

that their code follows certain conventions required by the system.  Some of these 

conventions include that each line may only contain one Java statement, braces must 

appear alone on their own line, multiple assignments should not be contained within the 

same line of code, and case statements must also be presented on their own line.  The 

preprocessor has the ability to force the student’s code into most of these conventions if 
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the student did not originally follow them.  Two conventions the tool was incapable of 

enforcing at the time of writing however were the need for the student’s code not to 

have one statement spanning multiple lines and that each block of code be enclosed 

between curly braces.  Once the student’s code is in the appropriate format, Backstop 

can start running on the student’s code [29]. 

Backstop was evaluated in two scenarios, one in which the student was 

instructed to use the tool to help them fix a runtime error and one in which they were 

instructed to use the system to help them fix a logical error.  Access to features in 

Backstop were isolated in order to test different features separately.  A group of 17 

students of evenly distributed gender were selected for the study, all 17 had recently 

completed Columbia’s CS1 course.  Each student evaluated the system individually and 

was interviewed at the end of the experience by the author [29].   

The evaluation of Backstop’s effectiveness on assisting the student with runtime 

errors went as follows.  The student was presented with a program that contained an 

unchecked runtime exception, a description of the algorithm needed for the problem and 

a demonstration of what situations forced the error to appear.  Students were asked to 

interpret the error message, find the defect and fix it [29]. 

Results from the study show that the participating students viewed Backstop 

somewhat favorably.  In scenario 1, debugging a runtime error, 76% of the students 

using Backstop were able to find and fix the error within 8 minutes. All control group 

students (4 of the top students in the class) were able to solve the problem within 5 

minutes.  In scenario 2, where students were asked to debug a logic issues, results were 
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similar except the time required to fix the error was generally much shorter.  Although 

their choice of control group makes it impossible to evaluate if the system truly helped, 

the students’ perception and reception of the tool is encouraging [29]. 

3.8 Intelligent Tutoring Systems for Programming 

Several Intelligent Tutoring Systems have been built in order to teach 

programming.  Explicit discussion of how the tutors represent defects was not 

encountered in the relevant ITS papers explored during this study but each of the 

tutoring systems researched had to deal with incorrect student input in one way or 

another. Tutoring systems of specific relevance to this study are ELM-PE, ELM-ART, 

CBRMETAL, the Problets tutor and its precursor, and the Object Oriented Design Tutor 

developed by Moritz, Parvez, and Wang at Lehigh University.  The following consists 

of an overview of Intelligent Tutoring Systems in the general sense and summaries of 

Anderson et al.’s LISP tutor, ELM-PE, ELM-ART, and CBRMETAL.  

3.8.1 Anderson Lisp Tutor 

Anderson et al.’s LISP tutor was developed in the early 1980s and follows the 

ACT* theory of skill acquisition.  This theory holds that “…knowledge becomes 

proceduralized with initial usage…” and that subsequent use of that knowledge further 

strengthens it [5].  ACT* later became the ACT-R theory of human cognition which 

assumes there are two types of fundamentally separate knowledge.  These types are 

declarative and procedural.  Declarative knowledge takes the form of a fact or an 

experience.  An example, as given in [6], would be the following: when you divide both 

sides of an equation by the same value, both sides of that equation are equal.  People 
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originally gain skills initially by learning declarative facts.  Through the application of 

those facts, people gain procedural knowledge.  This theory assumes that these skills are 

very orderly and able to be represented by production rules associating problem states 

and goals with actions and state changes in the environment.  Adherence to these 

theories enabled Anderson et al. to construct a model tracing tutor for teaching LISP 

programming called the APT LISP Tutor, or simply the Lisp Tutor in other publications.  

This tutoring system was evaluated and successfully used at Carnegie Mellon 

University to assist students taking a LISP course [5].  However, like other 

programming language tutors, this system appears to contribute little to helping students 

develop debugging skills.   

3.8.2 ELM-PE 

ELM-PE (Episodic Learner Model Programming Environment) uses Case-

Based Reasoning (CBR) [36] and is a precursor to both ELM-ART and CBRMETAL.  

The tutor has three modes—listener, editor and exercise; the different modes exhibit 

different levels of assistance.  ELM-PE starts in listener mode, which provides the least 

amount of support.  Basically, listener mode is similar to utilizing a regular text editor 

with subtle hints appearing at the bottom of the screen.  Editor mode provides more 

support features including examples, visualizations of expression evaluations, 

displaying where in the code errors are detected, and a more intelligent structure editor.  

The last mode, exercise mode, provides the highest level of support.  An interesting 

feature existing in this mode is automatic cognitive diagnosis, which is where case-

based reasoning is utilized to explain how a student arrived at their current exercise 
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answer attempt.  This system builds a derivation tree representing all concepts and rules 

that the system identified as explanation for the student’s current solution [36].   

3.8.3 ELM-ART 

Also teaching LISP, ELM-ART is served over the Internet and is described as an “on-

line intelligent textbook with an integrated problem solving environment [8].”  Every 

problem in this book is capable of being supported in the same way ELM-PE originally 

did.  In order to help keep students from getting lost in the course material, ELM-ART 

adapts link annotation and sorting.  The authors use a traffic light based annotation, 

placing green circles next to items that it believes the student is ready to learn and the 

system recommends, red circles mean the student has not yet read the material, and 

yellow means that the student may be ready but the system does not recommend the 

student pursue the material yet.  When the student is solving exercises ELM-ART is 

capable of predicting how the student will solve different problems and will use this 

information to select the next problem to be served.  ELM-ART is a successor of ELM-

PE and therefore is also capable of the same diagnosis of code that was described in 

ELM-PE [8]. 

3.8.4 CBRMETAL 

ILMDA (Intelligent Learning Material Delivery Agent) with CBRMETAL 

(Case Based Reasoning and Meta Learning) incorporates this approach, utilizing 

machine learning to accomplish meta-learning in order to improve the Pedagogical 

Module of that system over time [32].  Specifically, metal-learning is “…a learning 

mechanism of a system that learns about the system itself and how to improve the 
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systems performance over time.” [34] The different pedagogical strategies utilized by 

the system are themselves cases delineating which tutoring action to perform in a given 

situation.  All of this effort goes into producing software applicable to only, at best, a 

single subject matter.  There are not many intelligent tutoring systems utilizing machine 

learning and fewer that utilize it to improve the Pedagogical Module, however there is 

one other tool that the authors mention called CBIP.   

CBIP (Case-Based Instructional Planner) is a tool that has been integrated in 

existing ITSs for enabling the Pedagogical Module to learn and thus become a self-

improving system that can learn from what it experiences.  The planning aspect of this 

system is utilized to map sequences of instructional goals and actions in order to 

provide coherence, continuity, and consistency.  Cases in this system differ from cases 

in CBRMETAL in that here a case is used to define part of a previously used plan.  

Encapsulated by the case are the context, plan or sub plan if plans are layered, and 

related results [34]. 

The authors of CBRMETAL also cite CAPIT, an ITS utilizing Bayesian 

networks and decision theory for modeling the student and selecting subsequent tutorial 

actions.  The authors of CBRMETAL claim that Mayo and Mitrovic categorize, 

generally, student models into three categories for all ITS systems: expert-centric, data-

centric, and efficiency-centric [34].  On examination of Mayo and Mitrovic, it has 

become apparent that the authors were referring solely to those ITSs that utilize 

Bayesian networks in their student models [27].  Therefore, within the purview of ITSs 

utilizing Bayesian Networks in this manner, the three categories consist of the following.  
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Expert-centric Bayesian Network student models are those in which an expert is 

responsible for directly or indirectly creating the structure and conditional probabilities 

of that model.  Efficiency-centric Bayesian Network models are partially specified or 

restricted and filled in with domain knowledge forced to fit the model.  The mentioned 

restrictions are chosen in order to help maximize efficiency, thus efficiency-centric.  

Data-centric student Bayesian Network student models were introduced in [27].  In this 

type of model the system does not try to model unobserved student states, instead 

attempting to predict student performance by observing certain variables and trying to 

model relationships between those variables.  Because ILMDA does not utilize a 

Bayesian Network for modeling students, the subsequent claim that ILMDA follows the 

data-centric model is not completely valid. 

 Modules within the CBRMETAL framework include a case learning module, 

similarity heuristics, and adaptation heuristics [34].  The case learning module is 

employed for learning new cases and is responsible for deciding newness of a potential 

case when compared to the rest of the existing case base.  

 The similarity heuristics adjuster module is utilized for performing reinforcement 

learning and similarity computations.  These calculations are utilized to determine 

relative weights for the attributes within a case.  Reinforcement learning within the 

system is based on the assumption that for the most similar case retrieved from the 

casebase, Cbest, there exists a solution description pcbest and solution scbest. If scbest was 

previously observed as successful and is adapted to a new situation pnew similar to pcbest, 

then scbest should also be successful.  If the described situation has not observed then it 
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is possible that pnew is not actually similar to previously postulated pcbest.  Whether or 

not the contributing heuristics lead to successful identification of a similarity or not 

leads to related penalties and rewards for those heuristics involved.  If pnew was 

erroneously determined to be similar to pcbest then heuristics contributing positively to 

the proposed correlation are penalized and heuristics contributing negatively to the 

proposed correlation are rewarded [34]. 

 Finally, the adaptation heuristics adjuster module is responsible for helping the 

system learn to adapt to new situations.  This is accomplished though applying 

reinforcement learning to the adaptation heuristics utilized by the system.  Different 

heuristics contribute to creating the best case solution, this module records those 

heuristics that contribute changes to the best case solution scbest.  If scbest is observed to 

be successful when applied then the related adaptation heuristics are rewarded, if it is 

unsuccessful the converse is true.  The reward or penalty is prorated based on the 

impact of each individual adaptation heuristic involved [34].   

 The authors discuss several advantages and disadvantages related to their 

approach when compared to traditional CBR approaches.  All three modules of this 

system are adjusted at once which helps avoid biased learning.  However, this also 

presents a disadvantage.  By having so many variables changing the system may never 

actually converge.  One aspect’s improving could negate improvements to other parts of 

the system.  In order to minimize this instability the authors have defined six principles, 

which are explored in turn below [34]. 

 Their first principle relates to learning new cases that are based on diversity.  The 
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objective of such a case is to expand situation coverage of a given case but not to affect 

the solution coverage of the case base.  Therefore the adaptation heuristic should have 

the responsibility of generating new solutions making it less likely for learning a new 

case to impact solution coverage significantly [34]. 

 Second, their system contains the ability to learn new cases with failed solutions, 

allowing the system to learn similarly to a human.  For instance, a person tends to learn 

more from their failures than their successes.  Given this, an intelligent system could 

also utilize failed solutions that have been adapted incrementally to eventually obtain a 

successful solution.  Their system uses what they call failure-driven adaptation 

heuristics, which adjust solution parameters opposite to the way that different-drive 

adaptation heuristics might [34]. 

 Their third principle involves tagging cases with a utility vector recording the 

successfulness of the case, how many new cases have resulted from this case’s retrieval, 

and the rate of retrieval.  Cases with a larger history of success are given more weight 

when calculating similarity heuristics.  Cases that have caused the creation of more new 

cases also are given more bearing in the determination of adaptation heuristics [34].   

 Fourth, the authors utilize parameters for dictating aggressiveness for each 

learning module – t for the similarity heuristics learning module and h adaptation 

heuristics learning module. The CBR aspect of the system can then be modified 

according to the confidence of the developer.  If the heuristics for calculating similarity 

are considered by the developer to be correct then they can set t<h.  Their fifth principle 

is that their system will learn conservatively by modifying only those heuristics that are 
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the most influential in each learning episode, rewarding or penalizing only the highest 

contributor to a given success or failure.  Finally, their last principle involves staggering 

learning activities based on the frequency of learning for cases or heuristics in order to 

help prevent the learning oscillation discussed earlier.  Within the system actually 

implemented in this paper, principles 1 and 2 were incorporated into their case learning 

module, principle 6 is utilized over the entire system with regard to learning 

management, and principles 3 through 5 were incorporated into the two heuristic 

learning modules [34]. 

 After discussing these principles, the authors discuss the actual tutor in this 

system, ILMDA.  This system serves a topic to the student as an instructional content 

set including a tutorial, related examples, and exercise problems for assessment of 

student understanding.  ILMDA uses the assessment and profile of a student to select 

appropriate examples and exercises to serve to the student and makes this decision 

through the use of case based reasoning.    The case structure is specified by ILMDA.  

An individual case is comprised of a situation, a solution, an outcome, and a 

performance metric.  Each of these in turn has sub properties.  The situation aspect of a 

case refers to the student’s static and dynamic profiles and instructional content 

characteristics.  The solution aspect comprises characteristics of the next appropriate 

example or exercise.  Outcome refers to the usage history of the case in question and 

Performance exhibits the difference between the behavior that was expected and the 

behavior that was observed [34]. 

 Within this system and structure, the static and dynamic profiles provide the 
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foundation for student modeling.  The dynamic profile is utilized to capture observed 

real-time student behaviors and is populated with how many times a student attempted 

to answer the same exercise, how many different modules have been provided to the 

student so far, an average of mouse clicks observed throughout the student’s use of the 

tutorial, the average mouse clicks when the student is viewing examples, number of 

times a student quits after a tutorial, number of successes, and the average time the 

student spent on the tutorial [34].   

 The solution parameters are utilized to specify certain characteristics of example 

and exercise problems including length, Bloom’s taxonomy, interest, scaffolding (level 

of learning support) amount, times viewed, average time spent on the exercise per use, 

level of difficulty, and average clicks per use.  ILMDA’s scaffolding consists of cues, 

references, elaborations and hints.  Outcome parameters are calculated over the usage 

history of a given case, including: how many times the case has been employed 

successfully, if the student quit the problem, and if the student provided a correct 

answer.  This data is accumulated from observations each time a given case is used.  

The performance parameter aspect of these cases within ILMDA is utilized to document 

differences between expectations and observations with regard to behavior and is 

accumulated from real time observations [34].   

 CBRMETAL utilizes meta-learning in order to adjust both similarity and 

adaptation heuristics and to help fill in the case base.  The CBR module performs this 

type of learning after a student has completed a session in ILMDA.  At the end of a 

session ILMDA sends the CBR part of the system relevant results.  The similarity and 
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adaptation heuristics adjustor modules are run offline after the completion of multiple 

sessions, allowing for more accurate statistics to be presented on the cases.  The case 

learning module runs online with the rest of the system.  ILMDA’s decisions about 

whether or not a case will be stored are made directly after a session finishes, allowing 

for immediate use of new cases [34].  

 The final architecture of this system consisted of 8 modules: GUI frontend, 

CBRMETAL Reasoning, Casebase, Student Data, Session Data, Content Set, Online 

Report Review and Analysis, and Online Authoring Upload.  This system was tested at 

the University of Nebraska in CS1 courses with 5 content sets: File I/O, Event-Driven 

Programming, Exceptions, Inheritance and Polymorphism, and Recursion.  Each 

problem in the content set received a Bloom’s taxonomy level in the range of 1 to 6 

representing the sequence {knowledge, comprehension, application, analysis, evaluation, 

synthesis} and a difficulty level between 1 and 10 inclusive.  Bloom's taxonomy defines 

a "…framework for categorizing learning goals" [http://cft.vanderbilt.edu/teaching-

guides/pedagogical/blooms-taxonomy/] that was first created in 1956 and has since 

been greatly utilized in education and revised.  The case base was pre-populated with 

cases containing estimated values for each parameter.  Also, the adaptation heuristics 

and similarity heuristics were initialized.  All similarity heuristics initially received a 

weight of 1.0, in essence forcing all situation parameters to have the same importance 

when determining similarity calculations.  Adaptation heuristic initialization was a little 

more complex because not all of these heuristics were continuous (i.e. scaffolding, 

difficulty level) [34].   
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 The system was utilized over 2 semesters within the University of Nebraska’s 

Department of Computer Science and Engineering in CSCE155, which is their version 

of CS1, and is comprised of about 150 students each year from CS, different 

Engineering disciplines, and Math.  In the Fall 2004 semester, two versions of ILMDA, 

learning and non-learning, were employed.  In the learning version ILMDA utilized the 

full architecture.  The non-learning version was ILMDA with learning turned off—the 

heuristics and case base were utilized statically over the initialized values given to the 

system by the developers.  ILMDA alternated automatically per student, sometimes 

presenting the learning version and sometimes presenting the non-learning version.  

Results were discussed in regard to teaching Recursion were promising.  On average, 

the situations posed to the learning version required less examples and exercises than 

the non-learning version and students scored about 6% better within the learning system 

than within the non-learning system.  On the other hand, student utilizing the learning 

version spent more time than their non-learning user counterparts.  The authors suggest 

this was due to better problem selection that in turn caused students to be more invested 

and engaged [34].  When the authors expanded to consider all content sets they found 

that learning ILMDA was consistent in utilizing fewer problems to bring students to the 

same level of comprehension as the non-learning system.  The Recursion aspect itself 

was found to consistently require the use of more questions, however, and the authors 

suspected that this requirement arose from ILMDA serving more difficult than easy 

questions within this topic.  For other topics learning ILMDA served easy questions 

more frequently [34].    
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 The second round of testing occurred in the Spring of 2005 within the same class.  

This time a third version of ILMDA was introduced.  This static version differed from 

its learning and non-learning counterparts in that the static system did not utilize CBR 

for the selection of a tutoring strategy.  Instead, the static system consistently used the 

same teaching strategy case, learned nothing, and would select the next easiest problem 

to serve to the student when a wrong answer is input.  Over this trial the static version 

of ILMDA outperformed non-learning ILMDA, suggesting that the initial case base was 

less effective than a single heuristic and that the non-learning ILMDA adapted poorly to 

different situations.  However, learning ILMDA was able to outperform both 

counterparts through adaptation heuristic adjustments and learning new cases [34].   

 Thus the results from CBRMEMTAL are encouraging.  It supports the idea that 

an ITS can successfully learn how to better teach a given subject area through 

observation and analysis of interactions with a student user.  It is also encouraging for 

the utilization of case-based reasoning within a debugging tutor.  CBRMETAL is more 

interesting than other CBR based ITS systems however because of the meta-learning 

component that enables it to, in essence, reason about its own teaching strategies. 

3.9 Intelligent Tutoring Systems for Debugging 

In addition to the systems discussed above, there have been three documented 

systems that aimed to become Intelligent Tutoring Systems for teaching debugging and 

a paper that discusses some of the issues and requirements an Intelligent Tutoring 

System for Debugging would face in an Object Oriented environment.  The following 

discusses the 3 most relevant of these systems: PROUST, DebugIt, and the Problets 
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tutor. 

3.9.1 PROUST 

PROUST was built in the early 1980’s by Johnson and Soloway [17]. It utilized 

intention based analysis in order to understand the programmer’s intended outcome for 

Pascal programs.  The system aims to understand the novice’s buggy programs through 

the analysis of the program’s source code and a non-algorithmic description of the 

intended outcome of the program.  The authors note that in traditional analysis methods 

there is a lack of correlation between program text and programmer intention.  To solve 

this gap the author built the PROUST system’s domain and Pedagogical Modules, 

intending to utilize this system as part of an Intelligent Tutoring System.   

 This analysis is performed through the use of programming plans, where a plan is 

defined as “…a procedure or strategy for realizing intentions in code where the key 

elements have been abstracted and represented explicitly [17].. This work builds on 

results in earlier work analyzing how expert programmers think when reading and 

writing programs.  Although the expert would create valid plans that once executed 

would result in a largely correct program, the novice will utilize plans that the expert 

would not consider and may be faulty.  This difference in behavior is due to the novice 

lacking the background to determine proper courses of action consistently.  In order to 

accommodate the novice, PROUST includes not only plans an expert would formulate 

while working on a programming problem but also the somewhat questionable plans a 

novice might create.  The system also considers the order in which identified plans are 

implemented.   
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 PROUST produces a goal decomposition that is then utilized to determine plans 

the programmer may have applied.  Goal decomposition in PROUST includes: 

hierarchy or subtasks identified, relationships and interactions for subtasks,, and a 

mapping from goals identified to plans used to implement them.  The system develops 

transformations and interpretations; interpretations constitute a search space the author 

refers to as the interpretation space.  In the event of multiple valid interpretations 

existing for the same program, PROUST uses a series of heuristics that the author does 

not go into further save to mention that when bugs are present they are ranked in 

severity and then utilized later to predict which plan is the most likely of the set of 

matching plans [17]. 

The system was analyzed over a series of 206 programs.  Within this sample 

PROUST was able to generate a complete analysis for 161 of them.  When PROUST 

completes an analysis it also calculates a confidence level.  In some situations, 

PROUST is only able to complete a partial analysis.  During evaluation this occurred 

17% of the time during trials.  The paper does not go in to detail about which situations 

make only a partial analysis possible but it is assumed that this occurs in situations 

where PROUST does not have a plan to match the goals determined during the intention 

based analysis.  In situations where PROUST is able to complete a partial analysis, 

feedback given to the student deals only with those parts of the program that PROUST 

was able to analyze.  There are certain situations where PROUST is able to complete its 

analysis but generates false positive bug reports back to the student.  In testing this only 

occurred about 5% of the time.  The creators of PROUST originally intended the system 
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to become a full ITS; however the system remained a sophisticated analysis tool for 

assisting in the debugging process without further development into a full featured ITS 

[17]. 

3.9.2 DebugIt 

A more recent system working towards becoming an ITS for debugging is called 

DebugIT.  Greg Lee and Jackie Wu developed this system at the Taiwan Normal 

University in Taipei in 1999.  The authors approach this system from an exercise-

oriented standpoint.  Students are presented with an interface that allows them to debug 

short buggy Pascal programs.  The student attempts to solve the problem using a preset 

selection of actions and then submits it, receiving feedback as they proceed.  The 

system then compares their solution to solutions held in its database; comparison is 

done in terms of correction steps taken by the student.  A total of 3 attempts are allowed 

before the system presents the student with the answer, along with an explanation.  

Assistance is available as hints on an on demand basis via a button in the user interface 

[24].   

 The system that was implemented and evaluated consisted of an exercise-based 

system focusing on loops with a library of 20 exercises.  The system was presented to 

two groups of introductory computer science students: a group of college freshman and 

a group of High School sophomores.  All participants were enrolled in Pascal courses.  

The experiment consisted of both test and control groups.  Both groups were presented 

the same set of 20 buggy Pascal programs and instructed to try to fix them within 150 

minutes.   Control group students were given a standard Pascal programming 
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environment, test group students were given access to the DebugIT system alone.  After 

the 150 minutes were up students were given 50 minutes to complete a posttest for 

comparison.  Results showed that college students using the DebugIT system achieved a 

statistically significant higher score on the posttest than their control group counterparts.  

Tests at the High School sophomore level did not yield the same results.  The authors 

attribute this to the students having had much less previous experience with Pascal.  

Additionally, students were asked to complete a qualitative questionnaire about their 

experience with the DebugIT system.  Questions included “Program debugging is easy”, 

“DebugIt is a good tool for debugging practice”, and others related to the student’s 

satisfaction with different aspects of the experiment and their views on debugging in 

general.  Results from this questionnaire were generally positive, but the High School 

students in general gave less positive feedback.  This is somewhat expected as the High 

School students had less previous programming experience than the college students 

which might have caused them to have less success than the college students and 

therefore view the testing session less positively [24]. 

3.9.3 Problets and its Precursor 

The aim of Problets is to build an ITS that could help students better analyze 

programs, which is a crucial ability for successful debugging episodes.  Specifically, 

Problets focus on pointer issues in C++ with a concentration on step-wise evaluation, 

output prediction, and finally debugging.  Specific defects that this system aims to help 

remediate include semantic and runtime difficulties.   

An additional interesting aspect of this work and other publications by Kumar is 
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the idea of automatic problem creation.  Other researchers in the field of Intelligent 

Tutoring Systems recognize that finite exercise sets are a limitation to the effectiveness 

of the system—students may run out of exercises, or end up viewing an exercise 

multiple times [22,].  Kumar’s approach uses templates in a Backus-Naur Form like 

formalism where non-terminals represent data types, identifiers and literal constants.  

Exercises are created dynamically by randomly filling the non-terminals in with 

appropriate values.  This approach has the added benefit of being syntactically 

independent—if two languages share a similar semantic structure the same template 

may translate to another language.   Domain modeling in this system uses the model 

based approach, the model consisting of state diagrams to model different aspects of the 

domain [23]. 

 A module called the Problem Sequencer selects which problem to present to the 

student.  This module analyzes the data stored in the Student model and determines 

from that data which exercise is appropriate to provide next.  The student model 

contains information about how the student has performed on previous exercises; this 

data comes from the grader module of the system [23]. 

 Feedback to the student is provided on an on-demand basis consisting of an 

explanation of how the current problem’s code runs.  The explanation is created via a 

two-stage algorithm involving simulation and reflection, and the explanation itself has 

three forms: simulative, diagnostic, and customized.  Simulative feedback consists of a 

complete explanation of the program in question, this type of feedback is presented 

during the beginning of a students use of the system or if the student has been identified 
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as a novice.  Diagnostic feedback is an abbreviation of Simulative feedback and 

contains 2 two components: an abbreviated explanation of where errors in the program 

are described and process explanation dealing with the inputs and outputs for the 

defective program.  Diagnostic feedback is provided to more advanced students and/or 

as the student uses the system more.  Customized feedback is described as feedback that 

includes only explanations related to the processes and objects that the system has 

determined the student is deficient in [23]. 

 Evaluation of the system was performed on a version that focuses on semantic 

and runtime errors.  This version supported 4 types of feedback delivery, including none, 

demand, error-flag, and immediate. “Demand” refers to feedback that is provided when 

the student requests it.  Error-flag refers to a methodology where the system informs the 

student of the correctness of their answer by changing its color – green for correct, red 

for incorrect.  Immediate feedback in this system is a mode where as soon as the system 

determines that an incorrect answer has been entered it guides the student.  This type of 

feedback utilized 3 levels of scaffolded hints: abstract, concrete, and bottom-out.  

Abstract hints are simple reminders of facts in the domain, such as the definition of a 

dangling pointer.  Concrete hints are hints that draw the student to some specific 

incorrect behavior in the program and is vaguely Socratic.  For example, if the student 

references a variable before assigning it, the system would ask them if the variable is 

being referenced before it is assigned.  Bottom-out is more to the point and simply tells 

the student a fact about their answer in English [23]. 

 The interface provided to the students consisted of a panel for the program and a 
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panel containing of answering options and feedback provided from the tutoring system 

to the user.  The system was evaluated three ways: in isolation, against a workbook, and 

against the different feedback modes it provides [23]. 

The first evaluation was tested with the pretest-practice-posttest methodology 

without a control group. The results of the evaluation compared favorably to human 

tutoring, achieving slightly higher learning effect size than a human tutor.  In the second 

evaluation, the author utilized the pretest-practice-posttest methodology where control 

group students received a workbook and test group students received the tutoring 

system.  The end difference between the two groups was not statistically significant but 

the tutor group did attain slightly higher scores.  The third evaluation compared minimal 

feedback to simulative. The minimal feedback mechanism corrects the students’ answer 

without explanation; simulative provides both answer and explanation.  The same 

methodology was used and incorrect answers were penalized.  Effect sizes calculated 

when comparing pre and posttest results slightly favored the minimal feedback system, 

with students commenting that the simulative feedback was too verbose [23]. 
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4 Chapter 4: Implementation 

The research discussing how to teach students to debug their programs and that 

analyzes the novice’s defect and debugging strategies is crucial – how can we help the 

student learn if we do not understand, fully, the problem they are facing.  The systems 

that have been developed to assist the novice and teach them this domain are also 

crucial but support the novice in narrow ways, support languages the novice is less 

likely to be using, or are aimed at teaching programming on the whole as opposed to 

focusing on debugging.  

What is needed is a system that enables the student to practice debugging broken 

code and assist the student in debugging their own code when they encounter a problem. 

This section discusses ITS-Debug, built to assist the novice programmer who is taking 

an introductory level course taught using the Java programming language.  This system 

is capable of three different modes of operation and contains all four standard modules 

of an Intelligent Tutoring System (Domain, Student, Pedagogical, Communication).  

The first mode provides handwritten exercises to the students that consist of broken 

code; the student is tasked with fixing the program presented.  This first mode is limited 

by the static nature of its exercise base; a second mode alleviates this limitation by 

determining what the student needs to learn and presenting a suitable exercise generated 

on the fly by breaking a working Java program that exemplifies a certain Java 

programming topic.  The third mode breaks from this exercise-based scaffold and 

provides the student with a workspace where they can work on an assigned program 

they are developing from scratch, receiving assistance on the defects they create within 
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their own program.  This section discusses the architecture and implementation of the 

ITS-Debug system. 

4.1  High Level System Overview: 

ITS-Debug has been split into two main systems consisting of an analyzer module 

and the ITS itself.  For workflow clarity, the Front End user interface is depicted 

separately from the ITS despite being part of the Communication module.  The basic 

workflow of the tutoring system consists of the following steps. First, the student goes 

to the system’s URL in a modern web browser (it is known to work in Firefox, Chrome, 

or IE 10+).  Then they log in to the system.  The system then determines which phase 

the student is mapped to – choices include phases 1 through 3.  Phases are discussed 

below; all phases either present a broken problem to the student and ask them to fix it or 

allow the student to write a program themselves and receive assistance on any defects 

they create in their own code.  The student is then able to edit the code, compile and run 

the code, and receive assistance on a host of syntax, runtime, and logical defects that 

might be present in the exercise or that they may inadvertently create themselves.   

Figure 2: System Design - High Level 
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Phase 1 is an exercise-based system where the exercise database consists of 

handwritten exercises meant to exemplify some coding defect that the student is asked 

to fix.  Phase 2 is also an exercise-based system but exercises are generated dynamically 

by breaking a working piece of Java code that already exists within the system and 

presenting the newly broken code to the student as an exercise.  Phase 3 breaks from the 

exercise-based model and allows the student a more open environment to work in.  In 

this phase students are able to work on a predefined lab exercise within the system 

where they receive a minimal code template.  The template defines a class with 

instructions given in a comments section and an empty main method to start the student 

out.  From there the student can start working on the lab exercise and receive assistance 

on any bugs they code into their own program. 

For experimental purposes, when the student logs in for the first time, they are 

asked to complete a series of surveys.  The first document they receive is the informed 

consent form.  After this, they receive a pre-survey and a pre-test.  Once they have 

completed these the system starts in earnest, asking the student to identify their 

modality.  The system has been built to be multi-modal, meaning that it is meant to 

support different learning styles.  Three modalities are currently supported: kinesthetic, 

verbal, and visual.  Kinesthetic learners “learn by doing,” which the system handles 

trivially, as it is all about providing the student an environment in which they can work 

on real debugging problems with some support.  Verbal learners learn better through 

textual examples, while visual learners learn best through visual or animated examples.  

When the student first signs on to the system they receive two choices for learning style. 
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Figure 3: Form – Modality Selection 
 

The student is able to select their learning style by selecting the appropriate 

radio button and clicking the “submit” button.  Students are only asked to complete this 

step once, in order avoid the student switching modality during evaluation and 

introducing more variability into the data collected by the system.  The selection of 

learning style helps drive the Pedagogical Module’s selection of remediations. The 

impact of this choice on the system’s feedback is described in more depth in the section 

regarding the Pedagogical Module specifically. 

Once this initial set up is complete, the student’s interaction with the tutoring 

system is driven in part by the Analyzer/Connector module described in the next section. 



71	  

4.1.1 Analyzer/Connector module 

The analyzer module is responsible for preprocessing and output analysis.  This 

part of the system was built as two components.  The first component is a Java program 

that ties in to the javac compiler and outputs details about the Abstract Syntax Tree 

generated during compilation.  Connection to the javac compiler and extraction of 

compilation data is facilitated through the javax.Tools.CompilationTask package and 

the Java Diagnostics Collector.  Information from this component is used in phase one 

to determine more accurate line numbers.  In the event of an unsuccessful compilation, 

this module iterates through a Diagnostic Collection generated by javac to extract the 

javac key and generated error message.  These details are then passed on to the Domain 

Module.  If a compilation attempt is successful, this module runs the student’s code 

through the Java Runtime Environment in order to determine if the code produces an 

exception or if the code produces any output.  If an exception is thrown, the analyzer 

module passes the type of exception thrown to the Domain Module for further analysis.  

Otherwise, the module compares the student’s output to the expected output for the 

exercise at hand.  If the output matches the output expected after removing any heading 

and trailing whitespace characters the student’s solution is deemed correct.  Otherwise, 

the student is informed that their output does not match with the expected output for the 

exercise and their code is run through the static analysis tool FindBugs, described 

earlier in this document.  If FindBugs finds a logical error pattern it recognizes, these 

details are passed to the Domain Module for analysis and later consumption by the 

Pedagogical Module to determine appropriate further courses of action. 
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In phase 1, abstract syntax tree (AST) data is used to determine more accurate line 

numbers for remediation.  In phases 2 and 3 AST information is utilized further to help 

with learning from student solutions and for effecting causal analysis.  The Analyzer 

module is contained within the Communication Module as part of the main workflow 

and is responsible for calling the first component.  On successful compilation, the 

second component then tries to run the program.  If the output matches what the system 

has been told is the correct output for a given exercise, then the analysis stops there.  

Otherwise, the analyzer module runs the Findbugs static analyzer to search the code for 

logical defect patterns. The Analyzer module routes this data from javac, the Java 

Runtime, and FindBugs to the tutoring system.  The three phases of the system are 

discussed in more detail in the next three sections of this chapter.   
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Figure 4: Connector / Analyzer Workflow 
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4.2 Phase 1: Handwritten Exercises 

Phase 1 consists of the core of the tutoring system and includes an exercise 

system that allows the student to practice with a database of buggy programs, each 

containing one defect that the student is tasked with fixing.  Though the database is 

static, exercise selection and feedback are dynamic, with a Domain Module for 

reasoning about the student’s programming defects,  a Student Module for representing 

what the system currently believes the student knows, a Pedagogical Module for 

teaching the student debugging concepts, and a Communication Module for student-

system interaction.  The Pedagogical Module is also responsible for exercise selection, 

which is based on the student’s history within the system. 

4.2.1 Domain Module 

The Domain Module is utilized to diagnose programming defects and to suggest a 

solution to be implemented by the user.  This research proposes that the debugging 

domain is predominantly case based; therefore this module is implemented using case 

based reasoning.  A formal definition for cases in this system follows. 
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Case c = <uid, mt, st, dl, eid, uc, ss, es> 

uid = unique numeric identifier [0..infinity] 

mt = main type, represented by integer, member of {SYNTAX, RUNTIME, LOGIC} 

st = sub type, represented by an integer [0..infinity], predefined in a subtopic table 

dl = difficulty level 

eid = error identifier for main type 

uc = usage count 

ss = solution steps, provided in a meta language construct  

es = error symptoms, presented as a key  

 

The main type field differentiates the source of the error message for a given 

case.  If a case’s main type is syntax, the error generated by the java compiler. Runtime 

errors in this system are synonymous with uncaught Runtime Exceptions and are 

therefore generated by the Java Runtime Environment.  Logical errors, the hardest type 

of error for human and computer alike to recognize, are handled with the open source 

static analysis tool, FindBugs. 

 The subtype field maps a case to the subtypes of a topic.  Topics in this system 

correspond with overarching topics of the first progression computer science for majors 

course and include: elementary programming, selections, loops, methods, single 

dimensional arrays, multidimensional arrays, objects and classes, strings, and I/O.  

Subtopics represent specializations of these topics.  For example, the selections topic 

has subtopics if, if/else, nested if, and switch/case; covering the major constructs used in 
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branching.  A table of all subtopics is provided as an appendix to this document 

(appendix SUBTOPICS). 

 Each of the main types requires specialized representation due to the fact that 

different details are provided by the different systems utilized by this system as 

subsystems.  Because of this, there are three sub tables to the main case table.  For 

compiler messages there are 3 details of importance.  The compiler generates 3 types of 

messages: errors, warnings, and miscellaneous.  Errors and warnings flag syntax level 

errors or possible pitfalls.  Miscellaneous is a catchall category for certain remaining 

errors and javac messages.  

 The error identifier field is a foreign key into a specific table built to represent 

extra details for the main type of the case. Syntax cases, runtime cases and logic cases 

require some additional data that is not common between the three types.  This extra 

data is described in further detail later. 

 Usage count represents the number of times this case has been calculated to be the 

most similar to the current defect in the front end of the tutoring system. 

 The solution steps field consists of a suggested solution for the case defined using 

a simple language of actions and constructs developed for this system.  Sentences in this 

language are of the following form : 

<action>:theAction; <item>:someJavaConstruct; 
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The language, as implemented in the system, may be defined as follows: 

 S: 
  <action>:Action; <item>:Item; 

Action: 
 add | remove | delete 

 Item: 
  LanguageConstruct | SyntaxToken 

 SyntaxToken: 
{ | } | ( | ) | ‘ | “ | [ | ] | semicolon | */ 

 LanguageConstruct:  
array access | array type | assignment | binary |  block | break | case | catch | 
class | compound | do while | enhanced for | erroneous | expression 
statement | for | identifier | if | import | instance of | literal | member select | 
method | method invocation | new array | new class | parameterized type | 
parenthesized | primitive type | return statement | switch | throw | try | 
typecast | type parameter | unary | variable | while 
  

  

This formalism allows for the automatic generation of remediations for the 

student and in phase 2 will facilitate the automatic creation of exercises and assist in the 

process of learning new solutions; this will be defined further in the subsequent section 

discussing the design of Phase 2.  

 The error symptoms field currently consists of the error message generated when 

the error is present.  In the case of a logical defect, the error symptom field holds the 

FindBugs short key, later disambiguated with the appropriate FindBugs long key. 

 The case base holds two types of compiler messages: the rules from the properties 

file and specific variants of those rules.  The rules in the properties file define unique 

string keys that are supplied for different classes of syntax errors.  In the case of 

compiler.err.expected, the original rule and message from the properties file is included 
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along with specialized rules for ‘;’ expected, ‘(‘ expected, ‘{‘ expected and so forth.  

This is because cases in the case base are further separated by their suggested solution  

 

Defective Code: 

  public static void main(String[] args)  

  { 

      int x = 4; 

      System.out.println(“x=”+x)  

  } 

   javac Key: 

        compiler.err.expected 

   Associated Message: 

        {0} expected 

   Actual javac Output: 

        ‘;’ expected 

   Case Solution Steps: 

        <action>:add;<item>:semicolon; 

 

 Figure 5: How the javac properties file is used to handle a missing semicolon 
 

For example, error messages for missing syntax tokens are created via the 

compiler.err.expected rule in the properties file.  The error message for this rule in the 

properties file is “{0} expected”.  The compiler fills {0} in with the missing token at 

runtime.   

 Runtime exceptions are represented by a text key that corresponds to the class 

names of unchecked Java runtime exceptions.  An extensive list of runtime exceptions 

was generated for the case base, totaling 755 entries at present. 
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Defective Code: 

 public static void main(String[] args)  
{ 
       int[] numbers = {1, 2, 3}; 
       System.out.println(numbers[3]);   
} 
 

    Runtime Exception: 

 Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:3 
 at forceArrayAccessEx.main(forceArrayAccessEx.java:6) 

   Redacted Runtime Exception: 

 Exception in thread {0} java.{1}.ArrayIndexOutOfBoundsException: 
 

   Case Solution Steps: 

        <action>:edit;<item>:array access; 

 

Figure 6: Example Runtime Exception 
 

 Logical defects are represented using fields defined by the designers of the 

FindBugs software.  This includes a short key, a long key, a category, a short 

description, and a long description.  The logic map table also has a “source” column to 

allow for future use of other static analysis tools.  Of this data, the main fields utilized 

by the tutoring system are the long key and the short description.  The long key is 

favored due to the fact that it is a unique identifier and the short key is not.  The short 

description is favored over the long description due to the excessive length of some of 

the long descriptions. 
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Defective Code: 

public static void main(String[] args) 
{ 
      int sum; 
      int a = 2; 
      int b = 3; 
      sum = a +b; 
      System.out.println(b); 
} 
 
 
   Findbugs Output: 

     M D DLS_DEAD_LOCAL_STORE DLS: Dead store to $L1 in   
     ForceDls.main(String[])  At ForceDls.java:[line 8] 
 
   Long Key: 

     DLS_DEAD_LOCAL_STORE 
 
   Case Solution Steps: 

        <action>:edit;<item>:variable; 

 

Figure 7: Example Logical Defect 
 

 As mentioned earlier, FindBugs is a static analysis tool that utilizes defect 

patterns.  The tool reads the compiled byte code for a program and then scans it to see if 

any known defect patterns have been implemented.  Each long key corresponds to a 

defect pattern.  Defects within FindBugs belongs to 1 of 9 categories, including dodgy 

code, experimental, bad practice, correctness, internationalization, malicious code 

vulnerability, multithreaded correctness, performance, and security.  ITS-Debug 

launches FindBugs as a command line tool; the resultant output is parsed by the 

analyzer and later consumed by the tutoring system to match the long key to a case in 

the case base. 
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4.2.2 Student Module 

The Student Module is responsible for modeling the student’s knowledge and 

knowledge gaps.  Within this particular system, the Student Module mainly keeps a 

record of the student’s exercise and case progress.  With regard to exercise progress, 

ITS-Debug logs which exercises the student has attempted, how many attempts the 

student has made on a given exercise, and whether or not the student has submitted a 

correct answer for that exercise.  Exercise progress is used by the Pedagogical Module 

for exercise selection logic and to determine the proper remediation level to return to 

the Communication module.  With regard to case progress, the Student Module logs 

each case the student has encountered while using the system.  The information 

recorded includes how many times the student has encountered the case and how many 

times the student has correctly resolved the case.  Correct case resolution is equivalent 

to solving an exercise by solving the case.  In the future, system case resolution may be 

redefined as the absence of the associated symptom in a subsequent compile operation.   

In other words if the error existed when the student compiled the program at time X and 

then no longer exists when the student re-compiles the program in the future at time Y, 

it may be possible in some situations to assume that the code at time Y successfully 

removes the previously reported error at time X. 

4.2.3 Pedagogical Module 

The Pedagogical Module uses information from the Student and Domain 

Modules to determine what the student’s current problem is, what reason there might be 

for the current problem’s occurrence, and how to help the student learn from that 
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problem.  The Domain Module supplies the problem description to the Pedagogical 

Module, this information is used by the Pedagogical Module to select an appropriate 

remediation from a library of remediation options. 
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The Pedagogical Module is also responsible for exercise selection.  Exercise 

history is retrieved from the Student Module and then analyzed in order to determine 

the proper topic, subtopic, and difficulty level of exercise for the student.  Factors used 

in this calculation include what exercises the student has been presented with, what 

exercises the student has completed, and how many attempts the student has made to 

complete the exercise.  Based on this history, an appropriate exercise is selected and 

then returned to the Communication module.   

The Pedagogical Module also is responsible for determining how to teach 

relevant material to the student.  If the student submits an incorrect answer, the 

Pedagogical Module tries to assist the student and teach them how to properly debug the 

error at hand.  A range of different remediations are supplied to the student, depending 

on the student’s chosen learning style and number of attempts on a given exercise 

during a given episode with that exercise.  A student who selects or is determined to be 

verbal will receive only text-based remediations.  Conversely, a student who selects or 

is determined to be visual will receive only visual cues and animations with examples.  

Depending on how many attempts have been made on a given exercise at a 

given time, different remediations a provided.  There are currently 4 levels of 

remediation for each learner style.   All remediations are scaffolded, with each 

subsequent remediation assuming the student knows less sabot the defect and topic at 

hand.     

4.2.3.1 Verbal Remediatons: 

Verbal remediations are scaffolded in the following manner.  The first time a 
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student requests assistance with a given exercise they receive a hint directing them to 

pay more attention to the line number given in the error message and advice on what to 

look for when they examine that line.  The second level remediation suggests a tactic.  

Currently, the system supports two debugging tactics: forward trace and backward trace.  

The tactic is chosen based on either a tactic associated with the case or, if no tactic is 

defined, a tactic is chosen based on the main type of the case corresponding to the 

current error.  If a case has no suggested tactic and is either a syntax or runtime error, 

then a backward trace is suggested.  Otherwise, a forward trace is suggested.  There was 

no existing research encountered as to dominant decomposition methods for certain 

classes of program errors but an automatic solution needed to be chosen for situations 

where no tactic has been suggested.  Reviewing syntax, runtime, and logic errors 

revealed a possible tendency towards backward tracing for syntax and runtime errors 

and forward tracing for logic errors.  However, this decision is somewhat arbitrary and 

needs to be examined in further detail in the future. 

The third level of verbal remediation is based on the main type of the case found 

in the case base.  Students receiving this level of remediation will receive a hint 

pointing them to pay attention to their syntax or their logic near the line the compiler, 

runtime system, or FindBugs indicated the problem was located.  For the fourth level of 

remediation, students receive a tutorial based on the topic they are currently dealing 

with.  For example, if the student is working on an exercise that deals with selection 

statements, they will receive a textbook like tutorial on selection statements and an 

example meant to exemplify how to properly write selection statements.  After all 
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remediations have been exhausted for a given exercise the student is shown the answer 

to the current exercise, with the differences between the two exercises highlighted. 

 

 
Figure 10: Answer to student after all remediations for an exercise are exhausted 

 

4.2.3.2 Visual Remediations: 

The visual remediations in this system were designed to be as equivalent as 

possible to their verbal counterparts.  The first level remediation for a verbal student 

highlights the line number that the student should be looking at to solve or start solving 

the current defect.  Second level visual remediation consists of a visual representation of 

the suggested decomposition.  For instance, if the current defect recommends that the 

student work backwards, the visual student will see multiple lines highlight starting 

from the line the student was originally directed to backwards to the beginning of the 

affected block of code.  For cases suggesting a forward trace, the animation works from 

the suggested line forwards to the end of the current block of code.  Third level visual 

remediations, as with verbal remediations, provide assistance based on the main type of 

the case.  To satisfy this type of assistance from a visual perspective three animations 
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were create; one for syntax issues, one for runtime issues, and one for logical issues.  

Each of these animations contains a discussion of the type (syntax, runtime, logic) as 

well as how to approach resolving the problem.  These videos are capable of switching 

between their original content, which discusses the main type of the error in a broad 

context, and a more case-specific version that replaces certain aspects of the broad 

details with specific details from the case’s solution steps. 

The Communication module in this system ties all of the other modules together.  

(The tutoring system is served as an ASP.NET web site built on the Mono platform.  

Mono is an open source implementation of the .NET framework that can run on Linux, 

Unix, and Macintosh operating systems.  The Communication Module also utilizes 

HTML5, javascript, and jQuery to accomplish its goals.) .  

 The user interface for this system was built using the design patterns already 

employed by existing IDEs, with a special preference for the DrJava and Eclipse layouts 

since students at this level of their Computer Science education often utilize those 

environments. 

4.2.3.3 Remediations Not Tied to a Modality 

Two other remediation levels are present in ITS-Debug that are not tied directly 

to a modality.  Both of these are new levels of remediation added during the Fall 2013 

semester.  The first of these levels is an analogical reasoning component.  This 

component becomes available to the student once they have successfully solved a case 

in the system.  Successfully solving the case is considered to be the successful removal 

of the error from the code.  When the student successfully solves a case, their solution is 
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saved to the database along with the case that represents the original error message.  If 

the student encounters the same case again, the system reminds the student at the 

second attempt to solve the exercise that they have seen this problem before.  It also 

asks the student if they would like to see what they did last time.  If the student clicks 

the button provided, they receive a popup that shows the case, the original buggy code, 

and the solution that they coded to the defect. This level of remediation takes advantage 

of the case based nature of the domain and the implementation, providing the student 

with an opportunity to revisit exactly what they did the last time they encountered the 

issue. 

4.2.3.4 Logical Analysis Module –Feedback When FindBugs Finds Nothing 

The other new form of remediation not tied to a modality specifically applies to 

logical defects. This new level of assistance aims to provide more relevant details for 

logical defects to the student than the reesarcher was able to obtain using the FindBugs 

system.  Specifically, two new levels of remediation are introduced in the presence of a 

logical defect: indicate to the student roughly how far from the answer they are and let 

the student see an overview of where their solution differs from the known solution.   

This module is invoked when FindBugs does not match a bug pattern to the student’s 

code, though the code still does not produce correct output.2  In this scenario, ITS-

Debug uses one of the many possible correct solutions to any given exercise it can 

generate.  This solution is passed through the Connector module to gather the parse tree 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Note	   that	   this	  module	   is	  only	   utilized	   in	   the	   generation	   of	   feedback	   for	   logical	  
defects	  –	  no	  other	  part	  of	  the	  system	  utilizes	  this	  module.	  
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information generated by the javac compiler.  ITS-Debug reads the parse tree data in the 

form of a depth-first pre-order traversal generated by javac.3  Once the tutoring system 

has reconstituted the traversal into a list of nodes it performs the same actions with the 

student’s current code.  Additionally, separate lists are kept for each Java construct (as 

defined in the meta language earlier).  Once both programs’ parse data have been read 

into memory, the individual lists for each construct are compared between the two 

programs.  Each node in the known solution is compared to each node in the student 

solution.  The comparison generates a confidence level, represented by a percentage, 

indicating how closely the nodes between the two lists match (a higher confidence level 

implies a closer match).   

The exact comparison details differ between different constructs.  Each construct, 

and consequently each type of node, has a different set of  meta data defining the 

construct.  For example, a For Loop node contains the following sub constructs: 

initializer statement, conditional statement, update statement, and a code block.  When 

the comparison runs, the subconstructs between the two nodes are each compared.  If 

the sub-constructs are not equivalent, the difference is logged and saved to assist in 

providing feedback. 

 After the comparison is complete, the nodes in the known solution are separated 

into three lists: items that appear to exist between both programs but have different 

configurations, items that are in the known solution but missing in the student’s code, 

and items that appear to exist in both programs but are placed in a different location in 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  For	  more	  details	  on	  parse	  tree	  utilization	  in	  this	  system	  see	  Appendix	  F	  
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the student’s code.  The confidence levels for each node in the solution code are used to 

classify which list the node belongs to.  If the confidence level of the node is between 

50 and 90 percent, the system assumes that the node exists between both programs and 

adds it to the “different configuration” list. If the confidence is less than 50, the node is 

considered to be missing from the student’s solution and is added to the “missing” list.  

Additionally, if the confidence level is in the range (50, 100) and has different parent or 

children nodes, it gets added to the “different location” list4.  These lists are then used to 

build scaffolded feedback messages for the student, resulting in three different levels of 

feedback.  The first of these levels behaves as before – a message is chosen at random 

from a bank of messages and provides a hint to the student that a logical defect exists in 

their code.  The second level utilizes the above analysis to provide a message indicating 

how close or far the student is from the known solution and consists of a hint from the 

following list: 

• You seem to be really close to the answer! 

• You’re pretty close to the answer. 

• Your answer seems kind of far from the answer I know.  If you  

thought you were closer, you might want to review the problem to  

make sure you're approaching it the right way   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  These	   specific	   thresholds	   were	   a	   design	   decision	   made	   during	   pre-‐evaluation	  
testing	  of	  the	  system.	  
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The selection of which hint to show is based on the percentage that the student’s 

solution differs from the known solution.  This is calculated via the previously 

discussed confidence level mechanism.  

 The second level of logical error remediation shows the student a list of what 

nodes differ and a brief overview of the difference.  These differences are computed at 

the same time as the confidence levels and differ in granularity.  The exact form of the 

feedback message in this instance takes the form of a bulleted list of items identified as 

being configured differently, missing, or transposed in the student’s code (as 

determined by the assignment to the similarly named lists described above).  For 

example, if the answer and the student both have a method called sum but the student’s 

parameter list is different than the answer’s parameter list, the feedback will include a 

message that the student’s parameter list is not as expected.  Alternatively, if the 

solution contains a method called sum that appears to be missing from the student’s 

code, the system will inform the student that one of the items that appears to be missing 

from their solution is a method named sum.   

4.3 Phase 2: Dynamic Exercise Generation 

Phase 2 changes the system in two ways.  First of all, and the main goal of Phase 

2 since the original design of this project, the system gains the ability to generate novel 

exercises on the fly.  This is facilitated by the meta-language utilized as the solution 

step for cases in the case base.  The full definition of the terminals of the meta-language, 

described briefly earlier, follows: 
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SolutionAction A ∈{Add,Remove,Edit_towardsCorrect} 
ProblemAction P ∈ {Remove, Add, Edit_awayFromCorrect} == ~A 
Construct C ∈ {ArrayAccess, ArrayType, BinaryOperation, Block, Break,  

Case, Catch, Class, CompoundAssignment, DoWhile, 
EnhancedFor, ErroneousStatement, Expression, ForLoop, 
Identifier, If, Import, InstanceOf, Literal, 
MemberSelect, MethodInvocation, Method, NewArray, 
NewClass, ParameterizedType, Parenthesized, Primitive,  
Return, Switch, Throws, Try, TypeCast, TypeParameter, 
Unary, Variable, While} 

 

 The second main alteration involved in Phase 2 is the ability to acquire cases from 

student’s solutions.  The next two sections will discuss the implementation of these two 

systems in detail. 

4.3.1 Exercise Generator 

The exercise generator tries to remedy a basic issue with phase 1 – the student 

will, eventually, run out of questions.  If the student runs out of questions, the exercise-

based functionality of the system becomes useless to that student.  If the system could 

create targeted exercises on the fly there is the potential for an almost infinite number of 

exercises within the system, making the system a more long term assistant during the 

student’s educational process.   

The basic workflow of the exercise generator is represented in the pseudo-code 

below, followed by a detailed description.   
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Figure 11: Pseudocode – Exercise Generation 
 

First, the Pedagogical Module identifies one case from the case base as the most 

relevant case for exercise generation given the student’s selected topic and the student’s 

history within the system.  This case can be any case in the system – syntax, runtime, or 

logic.  The Pedagogical Module also supplies this module with the student’s topic 

selection.  After receiving this information the Exercise Generator selects an example 

class from a bank of examples containing correct code.  Once selected, the Exercise 

Generator runs this code through a process similar to the Communication module’s 

Connector module in order to generate syntax tree data about the example program.  

This data, as when the student is sending in their solution for compilation, is written to 

disk by the Connector module and then picked up by the Exercise Generator and read 

into memory as a hash table by using an instance of the Student Module reserved for the 

GenerateExercise(underlyingCase,studentData,selectedTopic) 
  if(underlyingCase.SolutionSteps != null) 
 intermediateRep[]parseSolution(underlyingCase) 
 action  intermediateRep[0] 
 construct  intermediateRep[1] 
 action  reverse(action) 
 selectedCode  constructDet(construct) 
 startLocation  selectedCode.StartLine 
 endLocation  selectedCode.EndLine 
 original  selectedCode 
 if (action == “edit”) 
     newCodeselectedCode.manipulate(case,studentData) 

   selectedCode  replace(selectedCode, newCode) 
 else if (action == “add”) 
   selectedCode  insert(selectedCode, construct) 
 else 
   selectedCode  remove(selectedCode, construct) 
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use of the tutoring system.  The instance of the Student Module parses the selected code 

in to memory and then proceeds to parse the solution steps attached to the earlier 

selected case.  The solution is then reversed – add actions become remove actions, 

editing actions become editing actions to insert a defect, and remove actions become 

add actions.  After the solution step is reversed, the Exercise Generator locates an 

appropriate construct as defined in the solution steps field of the case.  For instance if 

the meta-language in the solution steps field indicated that a for loop should be 

modified, then the generator would look for a for loop in the example code that was 

previously compiled and parsed.  The generator also takes into account whether the case 

represents a syntax, runtime, or logical defect in the code and concentrates on 

generating an error of the correct type.  The actual error generation occurs in the Java 

Representation classes utilized in the system to model the different language constructs 

and their sub-constructs.  Each construct representation class contains an overloaded 

method manipulate which receives case details and uses them to modify the construct 

towards the defect the case describes.   This implementation was chosen because each 

construct would need to be modified in a different manner to create the different kinds 

of defects described in the case base.   For example, the class representing if statements 

is capable of generating syntax or logical defects in any given if block in the sample 

code.  If the manipulate method is instructed to generate a syntax defect, a random piece 

of key if statement syntax is removed.  If the manipulate method is instructed to 

generate a logical defect, the system will either change the conditional statement for the 

if statement block to use a different comparison operator than it originally did or, if 
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present, remove the associated else block.  The manipulate method is responsible for 

implementing the edit action for each construct towards the desired type of defect.   

Currently, only the remove and edit actions are supported in the generator.  Remove 

implies that the case would advise the student to add a construct to the code.  As the edit 

action is difficult to define within the current framework, random number generators are 

utilized in order to determine what sub construct to break (if applicable) or what syntax 

element to make malformed.  Implementation of the add action was deferred as few 

cases utilize the ‘remove’ action from the solution steps meta-language that is the 

inverse of the ‘add’ action utilized by the generator.  After the Exercise Generator has 

created the exercise, it is written back to file and saved to the database as a new 

exercise.  Then the exercise is presented to the student and the original Tutoring System 

workflow proceeds from there.   
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Figure 12: Generated Syntax Error Exercise 
 
 Figure 12 above depicts a syntax error generated by the exercise generator module.  

In this exercise, the defect occurs in the first System.out.println statement – a closing 

parenthesis has been substituted for the opening parenthesis. 

 

 

 

 

 

 

 

 

public class StatementCode  
{ 
 public static void main(String[] args) 
 { 
  System.out.println)"This is a small program "); 
  System.out.println("meant for practice with "); 
  System.out.println("simple Java statements."); 
  String ABCs = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 
  System.out.println("ABCs: " + ABCs); 
  int number = 1; 
  int number2 = 10; 
  double number3 = number / (double)number2; 
  System.out.println("Simple Math: number = "  
   + number + " number2 = " + number2 + "  
   number/number2 = " + number3); 
  String numbers = "123456789"; 
  String lettersAndNumbers = ABCs + numbers; 
  System.out.println("letters and numbers: " +  
   lettersAndNumbers); 
 } 
} 
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Figure 13: Generated Runtime Error Exercise 

 
 
 Figure 13 depicts a runtime error generated by the system, resulting from the 

manipulation of the SIngleDimensionArrayCode example class.  Specifically, the error 

generated deals with manipulating statements using array types.  The specific issue 

generated here involves the type of the array parameter args in function main, changing 

it from the expected String to an int.  The attempt to invoke main with these parameters 

causes the Java Runtime system to throw a NoSuchMethodError exception because 

there is no definition for main that accepts an int[] parameter. 

 
 
 

public class SingleDimensionArrayCode  
{  
 public static void main(int[] args) 
 {  
  int[] fibonacciNumbers = {1,1,2,3,5,8,13,21,34,55}; 
  int sum = 0;  
  for (int i = 0; i<fibonacciNumbers.length; i++) 
  {  
   sum += fibonacciNumbers[i];  
  }  
  System.out.println("Sum = " + sum);  
  double[] fibonacciNumbers_pt2 = new double[10];  
  double runningSum = 0.0;  
  for (int i = 0; i<fibonacciNumbers_pt2.length;i++) 
  {  
   fibonacciNumbers_pt2[i] = fibonacciNumbers[i]*.5;  
   runningSum += fibonacciNumbers_pt2[i];  
  }  
  System.out.println("Second sum = " + runningSum);  
 }  
} 
 
// exception generated = Exception in thread "main" 
//java.lang.NoSuchMethodError: main 
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Figure 14: Generated Logical Defect  
 
 Figure 14 exhibits a logical defect introduced by the system in to the IfCode 

example from the sample code (correct code appears in the appendix).  In this sample, 

the exercise generator has removed the if / else if / else block that was originally part of 

the sample.  Due to this removal, the code no longer produce the appropriate output and 

a logical defect has been created.  The comments in the sample (omitted here) instruct 

the student as to what output the original code was meant to produce so that the goal of 

the exercise program is clear.   

In order to implement this functionality, the classes representing individual Java 

public class IfCode { 
        public static void main(String[] args){               
                int decision = 0; 
                String result1 = ""; 
                String result2 = ""; 
 
 
                switch(decision){ 
                        case 0: 
                                result2 = "King"; 
                                break; 
                        case 1: 
                                result2 = "Queen"; 
                                break; 
                        case 2: 
                                result2 = "Jack"; 
                                break; 
                        case 3: 
                                result2 = "Ace"; 
                                break; 
                        default: 
                                result2 = "Doh!"; 
                                break; 
                } 
 
                System.out.println(result1 + " " + result2); 
        } 
 
} 
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constructs all contain a manipulate method and a specialized toString method.  The 

manipulate method is responsible for editing any construct of the given type according 

to a set of rules specific to that construct and its sub-constructs.  For instance, an if 

statement would require a different set of manipulation logic than a variable declaration.  

With an if statement we could modify the test condition, the block of code to be 

executed when the condition is true, or the block of code contained in the else 

condition.  Or we could alter the syntax to make it incorrect.  With a variable 

declaration, we are limited to manipulating the variable’s name, the type, or removing a 

space or a semicolon. 

After the manipulate method mangles the working construct, the construct is 

rebuilt by the specialized toString method and then sent back to the Exercise Generator 

for re-integration with the rest of the example code by overwriting the original version 

of the construct with the new version.  The specialized toString is responsible for taking 

the mangled construct and formatting it properly for its re-integration into the example 

code.  After exercise generation has completed the exercise is sent back to the 

Communication module and the system workflow proceeds as it did in phase 1. 

4.3.2 Case Acquisition 

The other major new functionality introduced in Phase 2 consists of case 

acquisition. This step completes the CBR cycle and turns the Domain Module into a full 

Case Based Reasoning system.  The CBR consists of 5 stages: Retrieve, Reuse, Revise, 

Review, Retain.  Phase 1 of the system implemented the Retrieve, Reuse and Revise 

steps.  Review and Retain were postponed until Phase 2 in order to complete the 
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implementation of the main and most important aspects of the system contained in 

phase 1.  Several different methodologies were reviewed to determine the best way for 

this research with its current goals to implement the last 2 stages of the CBR cycle.  A 

hard coded, static case base is a proof of concept but is limited in its usefulness for 

tutoring – there are a potentially infinite number of defects, each with an infinite 

number of solutions.  In order to keep the system relevant it should have the ability to 

acquire new cases.  New case acquisition potentially could focus on two aspects of 

cases as they exist within the system.  The first would be errors the system has never 

encountered before and does not yet know how to remediate.  The second would be 

encountering a new solution to a known defect.  This system favors the second method 

since the preexisting case base is comprehensive over the domain of errors a novice 

might encounter, making it unlikely that the novice will code a defect that is completely 

new to the system.  Specifically, the case base contains cases for every syntax issue 

javac is capable of reporting and every exception built into the Java Core Library, plus 

the ability to diagnose and remediate many logical errors.  It is thus considered more 

likely that the students in question will come up with a different solution to an existing 

case than that they will create an entirely new case. 

The case acquisition workflow follows an offline model, saving student solutions 

to be analyzed at a time when the system is not being actively used.  This model was 

favored in order to avoid introducing another potential cause of latency at runtime.    

Every time the student solves an exercise in the exercise-based areas of the system, a 

pointer to the solution is saved in a separate file and stored to disk. The case acquisition 
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component is then launched later manually at an off peak time.  Once the module is 

launched, it reads the file of pointers and prepares to process the solutions.  The 

following pseudo-code provides an overview of the algorithm used to analyze each 

solution file. 

 

Figure 15: Pseudocode – Case Acquisition 
 

First, the system determines which student files to load for analysis based on the 

previously mentioned file containing pointers to student solutions.  For each program 

referenced, the system first determines if the student’s answer is textually equivalent to 

the original answer for the exercise.  If not, diff is run to compare the student’s answer 

GetSolutions() 
 For each student solution 
  Q  enqueue(Q, solution) 
 
ProcessSolutions(Q) 
  Exercises[]  getSystemExercises(), symptom  “” 
  diffResult  null, proposedSolution  null 
  studentAST  null, studentCode  “” 
  relatedExercise  null, mostSimilarCase  null 
 
  while (Q.count > 0) 
   proposedSolution  Q.dequeue() 
 studentCOde  getStudentCode(proposedSolution) 
 relatedExercise  Exercises[proposedSolution.whichEx] 
 originalCode  relatedExercise.Answer 
 if (studentCode != originalCode) 
     diffResult  handleDiff (studentCode,originalCode) 
   questionCode  relatedExercise.Question 
   if (diffResult != null) 
    symptom  diagnose(current) 
  studentASTretrieveAST(proposedSolution) 
  ml  generateLanguage(questionCode, studentCode) 
  if (!anyWithSameSolution(cases, ml, symptom) 

   if(mostSimilar == null||mostSimilar.symptoms == null) 
   newCase(symptom, studentSolution) 
      else if (mostSimilar.Solution == null) 
   alterExistingCase(mostSimilar, studentSolution) 
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to the original answer and isolate the differences.  Then the original exercise question 

code is run through the Connector/Analyzer module to determine what defect it 

originally contained.   After this the javamap file for the student’s answer, as generated 

by the Connector/Analyzer module, is loaded in to the system and the most similar case 

to the defect in the original code is selected.  The case acquisition module then takes the 

student’s solution and determines what steps the student took to reach their solution, 

ending in the generation of the solution step meta-language utilized within the system to 

both provide assistance and create phase 2 exercises.  Once the meta-language has been 

generated, the system checks if no case relevant to the original defect contains the new 

solution or if the original solution was empty.  If the solution was empty then the 

solution steps for that case are filled in.  Otherwise, the case is cloned and the solution 

steps of the clone are replaced with the new solution from the student’s code. 

4.4 Phase 3: Debug-Time Support for Novice Programmers 

The last phase of the system takes it away from being an exercise drill system and 

brings it closer to a novice-centric IDE that focuses on providing debug time support.  

This ability was the original goal of the system – to provide assistance within the 

context of a program the student is writing at the time that they need it.  In order to 

accomplish this the system includes a small set of phase three exercises consisting of a 

minimal code template, whether or not the exercise will require standard in, any input 

options in the event that the program requires console input to run, the expected output 

for all input options, and one possible answer for the problem.  An example of one of 

these exercises follows. 



104	  

 

Figure 16: Interface for Phase 3: Debug Time Support 
 

 

Figure 17: Phase 3 Exercise Example 
 

As displayed in the example above these exercises include a comments section 

that provides details pertaining to the program the students are to develop for a selected 

exercise.  Students using the system can work on the exercises provided and receive 
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assistance from the system on any defects they code into the program themselves, as 

opposed to previous phases that served programs written by the author that were broken 

either manually or dynamically.  Assistance for student created defects works in the 

same manner as assistance for defects in phases 1 and 2.  In fact, phases 1 and 2 were 

both capable of assisting the student with defects they might have introduced into the 

exercises that were not already present.   

The model for these exercises was chosen so that the system would retain the 

ability to tell the student they had or had not successfully completed the exercise.  

Additionally, this model allows the system to perform further logical analysis in the 

event the student codes a logical defect that is not recognized by FindBugs.  This 

extended logical analysis was deemed necessary when, during early evaluation 

episodes, the coverage of the FindBugs system over novice logical defects was found to 

be insufficient.  The new analysis augments the feedback available to the Pedagogical 

Module and provides the system with the ability to compare the student’s solution to the 

known answer.  This ability allows the module to indicate to the student how close or 

far they may be from the solution and provide a list of items that are different between 

the student’s solution and the known answer. 

The approach of forcing the student to examine one error at a time is maintained 

by having the system focus on the most relevant error.  The following assumptions have 

been made in order to determine the most relevant error in the presence of multiple 

errors.  For syntax errors, the expert programmer generally starts with the first reported 

defect.  Runtime errors, meaning a runtime error/exception that causes the program to 
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stop running, usually occurs only once per run, as this error will cause the runtime 

environment to crash.  For the last class of errors, logical defects, FindBugs is run 

against the student’s code and the first reported error is retrieved 

4.5 Research Questions Revisited 

4.5.1 How should the domain be represented and reasoned about? 

There are several ways that the domain of debugging has been viewed and 

different ideas exist as to how to represent and reason about this domain.  Andreas 

Zeller wrote a comprehensive book on the subject of debugging including many 

methodologies and an account of research into automatic debugging techniques.  

Different from the other literature reviewed as part of this research, Zeller recommends 

adopting the idea that debugging is a scientific process.  In other words, human 

debuggers should employ the scientific method of defining a hypothesis, testing that 

hypothesis, and then either accepting or rejecting that hypothesis based on what occurs 

after attempting the code change suggested by the hypothesis.  According to Zeller, 

applying the scientific method will help programmers eliminate their defects more 

efficiently [43]. 

 Weiser, on the other hand, analyzed expert programmers scientifically [38].  He 

provided a group of expert programmers a faulty program and gave them a timeframe to 

finish fixing the program.  While the programmers worked on their problems, Weiser 

videotaped and logged their actions and instructed the participants to “think out loud.”  

A major outcome from Weiser’s work is the idea of program slicing.  That is, a 

programmer will actually mentally slice their code into pieces that do and pieces that do 
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not affect the current outcome when the program is run.  This approach has been 

adopted by the static analysis community and used to define several different kinds of 

formal slices and slice operations including backward slice, forward slice, chop, dice, 

and backbone [37, 43].  

 Forward slice and backward slice are static with respect to the code.  A forward 

slice follows dependencies from a slicing criterion A, such that all statements affected 

by A are included in the slice.  This type of slice is formally denoted as SF(A), and 

creates the set of elements defined as: {B | A influences B}.  Statements not included in 

a forward slice are those that cannot be influenced by slicing criterion A.  A backward 

slice is a backward trace that determines all the statements that could affect B.  It is 

formally denoted as SB(B), such that the set of elements defined by the following is 

created {A | A influences B}.  For backward slices it is not uncommon for all preceding 

statements to be included in the slice [37, 43]. 

 Three types of slice operations are defined.  Each of these requires two different 

slices.  Backbones are defined by an intersection of two slices and are useful in 

determining if there exist multiple values affected by a given defect.  A dice is the 

difference between two slices and is useful for determining how the backward slice of 

some variable affects the backward slice of some other variable.  This operation is most 

useful if the programmer knows that the program in question is mostly correct.  A chop 

is the intersection between a forward slice and a backward slice.  This operation is most 

beneficial for determining how some statement A, utilized to create an originating 

forward slice, influences another statement B, utilized to create an originating backward 
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slice.  This operation is useful for determining paths of influence within a program [43]. 

 Developing from static analysis is the idea of dynamic analysis.  Dynamic 

analysis takes into account how the machine’s state changes as the program in question 

runs.  Taking a subset of time steps corresponds to taking a dynamic slice of the 

program; the slice is called dynamic because it deals with the code in its running state as 

opposed to executable sub-programs pulled from the original program in order to 

identify a defect. [42] 

 Static checkers like FindBugs and ITS4, discussed earlier, take a different 

approach.  These tools include a library of defect patterns (FindBugs), unsafe function 

calls (ITS4), and other similarly well-defined pattern-based data that is later used in 

analyzing input programs.  If the input program implements a pattern known to the 

static checker, the checker outputs information to the programmer that they have 

included a logical defect of one form or another.   

 My system utilizes both the analytical ideas of Weiser and adopts the analogical 

approach implicit in FindBugs, ITS4 and the “Have I or some other expert seen this 

before” behavior of many expert debuggers.  Weiser’s ideas about slicing are used to 

determine what debugging tactics are and what should be taught to the student.  

FindBugs and ITS4 utilize a set series of patterns that could be viewed as cases, thereby 

reinforcing the theory that the domain is amenable to the case-based reasoning 

methodology.  Additionally the system takes further advantage of the case based nature 

of the problem by using the cases and the student’s history with the cases to remediate 

programming defects.  Specifically, the system is able to apply analogical reasoning by 
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determining a relationship between a current programming defect and a previously 

encountered programming defect.  The system is also able to help the student apply 

analogical reasoning by storing the student’s past successful encounters with each case 

and then allowing the student to review what they did during the last encounter to solve 

the issue. 

4.5.2 How can the expert knowledge base be kept tractable?  How can the system 

acquire domain knowledge? 

The system in phase 1 contains a static set of cases that do not change over time.  

These static cases were drawn according to the error definitions defined around this 

work.  Specifically, syntax errors are synonymous with compiler errors, runtime errors 

are considered synonymous with runtime exceptions, and the FindBugs static analysis 

tool defines the logical errors the system will attempt to handle.  Because these are all 

definitions that have a finite number of associated errors, all compiler error rules, 

unchecked Java runtime exceptions that are part of the JRE, and all FindBugs patterns 

were added to the case base semi-automatically by reading in a set of property and 

configuration files for javac, FindBugs, and a file listing JRE exceptions. 

 However, this methodology breaks part of the CBR cycle.   The CBR cycle has 5 

stages: Retrieve, Reuse, Revise, Review, Retain.  Phase 1 of the system (described in 

more detail later) implements Retrieve, Reuse, and Revise.  Review and Retain were 

pushed to Phase 2 in order to get the main and most important aspects of the system up 

and running.  Several different ideas were reviewed to determine the best way for this 

research with its current goals to implement the last 2 stages of the CBR cycle.  A hard 
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coded, static case base is a good start but it is not all-inclusive – there are a potentially 

infinite number of defects, each with an infinite number of solutions.  Therefore, the 

system employs a static case base for Phase 1 and then works to expand its own case 

base by analyzing student solutions in Phase 2. 

 In Phase 2, as described in the discussion of the design of that phase earlier, the 

system gains the ability to review student’s solutions to an exercise, compare the 

students’ solutions against the existing solution, and determine what new solutions to 

add to the case base.   

4.5.3 Could the system (ITS-Debug) generate exercises dynamically? 

One of the weaknesses of the phase 1 design of this system is that the exercise 

system is static.  The concept of dynamically creating exercises to meet student 

educational needs has been explored, those works most closely related to this research 

include work done by Kumar [23] and Williams-King et al. [39].   

 Within the C++ debugging tutor discussed earlier, the researchers utilized 

templates to generate exercises dynamically.  Specifically, the authors draw on the 

model the system is utilizing to perform its domain reasoning to generate exercises 

using a BNF-like grammar.  Templates are created using this grammar by the 

researchers and then filled in at runtime with the appropriate details by the tutoring 

system [23]. 

 Conversely, Williams-King et al. utilize aspect oriented programming [39] to 

create exercises on the fly.  Their system was called Enbug and it was developed to help 

Computer Science professors at the University of Calgary create problems for a course 
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on computer viruses, malicious software, and creating robust code.    Enbug is capable 

of causing controlled failures and introducing defects into defect free code through the 

utilization of concepts from aspect-oriented programming, Programming aspects are 

created with ‘pointcuts’ that specify to Enbug where in a given program to pause that 

program’s execution.  Then, advice modules dictate what to do when the pointcut has 

been reached.  An example from the paper involves forcing a malloc to fail in a C 

program.  The aspect consists of the following:  

aspect mallocfail { 
 pointcut main(): execution(* main(..)); 
 pointcut malloc(): execution(*malloc(..)); 
  
 advice before(): main() { 
  set $n = 0 
  set $N = 2 
 } 
  
 advice before(): malloc { 
  if $n > $N 
   @proceed(0) 
  else 
   set $n = $n + 1 
  end 
 } 
} 
 

The idea in this snippet is to cause malloc to fail after the nth call to the function.  

The variable $n keeps track of the number of calls into malloc.  In this particular snippet 

malloc will be forced to fail on the third call to it via the @proceed(0) command [39]. 

This disseration’s research takes an approach similar to that used by Kumar.  

Suggested solutions for cases are reversed, those instructions are then used to 

automatically damage a codebase of example code in a controlled manner.  The 

damaged code is then presented to the student as an exercise. 
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4.5.4 Should the system support other languages?  How would supporting other 

languages change the system? 

When this research was proposed, the idea of supporting multiple languages was 

explored.  Java was initially selected as the language to use first for several reasons: it is 

a well supported language of choice for introductory progression courses for majors; it 

is the language used at Lehigh University for their introductory progression; the 

structure and functionality of Java well support the learning objectives of the first 

progression computer science courses; and it is possible to integrate directly with the 

standard java compiler, javac, via the openjdk project and the Java runtime environment 

via reflection libraries built in to the JDK. 

C and C++, although more difficult than Java, were favorites for novice courses 

before Java existed.  Now there are other languages that did not exist when Java was 

released that are gaining popularity for teaching novices including Python, Ruby, Visual 

Basic (VB.NET) and C#. 

 Java was adopted as the language of choice for the scope of this dissertation for a 

few reasons, most notably because it is currently the language utilized for the AP 

Computer Science exam and the first language Lehigh University and many local High 

Schools teach their Computer Science students.  However, the design of the system 

allows for future addition of other languages and environments with modest 

modifications.  To support another language, a new Connector and Analyzer module 

would need to be written and a new set of cases needs generated, in ways analogous to 

how they were generated for Java.  Additionally, the case base and supporting database 
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tables would likely require an additional column to indicate what language the case 

comes from.  A more fundamental change would be to abstract the cases further than 

they are at present so that the case instead represents a universal defect instead of an 

environmental specific defect but these concerns are currently beyond the scope of this 

dissertation. 

4.5.5 How should the system model student knowledge? 

According to Weiser, programmers use slices when they are debugging [38].  

The person solving the problem creates a mental slice of their application according to 

the slicing definitions described earlier. He determined this by studying groups of 

novices and experts; he additionally found that the main difference between the novices 

and experts he studied was not the approach taken to solving a defect but the knowledge 

base and ability to apply programming knowledge to the debugging problem that was 

different.    

While Weiser studied both experts and novices and all of Weiser’s participants 

had previous programming knowledge of the Lisp programming language [38], Chmiel 

and Loui focused on students taking an Electrical Engineering course where they were 

learning Assembly for the first time.  Discussed in further detail earlier, a major 

contribution of this work was a qualitative rubric for differentiating different levels of 

debugging skill.   Metrics in this rubric include: repetition of defects; planning for 

programming and debugging; time spent on debugging; demonstrated knowledge of 

debugging techniques; reliance in others for assistance; and the ability to utilize 

previous knowledge to solve a new problem [9]. 
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 McCartney et al. utilized a different and more qualitative tactic [26].  His work 

recorded interview answers from 14 students in total from the United Kingdom, Sweden, 

and the United States.  The result of this study was a list of 35 different strategies that 

the authors distilled into 11 broader categories of strategies.  Those categories include: 

learning from other people; learning from tools or written materials; obtaining and 

following step-by-step instructions on how to solve a given problem; gaining 

experience; visualization; learning from examples; tracing code; dividing the problem 

into manageable sub problems; relating the problem to something in the real world; 

looking at the problem from a higher level; and transferring existing knowledge to the 

problem at hand [26]. 

 In order to model the student according to Chmiel and Loui or McCartney et al.’s 

approaches, sophisticated reasoning and computations would be required.  Also some of 

these metrics would likely require some degree of pattern recognition. The Student 

model designed for this dissertation’s research employs a limited implementation of 

Chmiel and Loui’s approach and utilizes data from Weiser’s work as part of the 

Pedagogical Module in determining what to teach to the student.  The student model for 

this work consists of which topics, subtopics, exercises and cases the student has 

encountered and what the results of those encounters were.  Additionally, the student 

model includes what the student’s learning style is in order to provide individualized 

and meaningful feedback. 
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4.5.6 How should the system reason about student solutions without incurring 

the full program verification problem? 

Many programming tutors take a model-based or a constraint-based approach, 

including the work done by Anderson et al. [5,6] and Mayo and Mitrovic [27].  Model-

based approaches generally utilize a model of the perfect solution, containing branches 

that represent possible faulty paths to incorrect solutions.  This approach allows for 

encoding a large amount of details and reasoning into the system but requires a great 

deal of time to produce.  Additionally it is nearly impossible to foresee every possible 

wrong turn a student may take or even every possible right turn.  Also such systems 

utilize a great deal of computation time to determine the precise branch the student has 

taken. 

 A production level system that employs a model-based approach appears to be 

Arnow’s CodeLab system (turingscraft.com) that comes packaged with several 

introductory textbooks.  If the demonstration exercises given on their site are indicative 

of how the system works, their approach has what appears to be a single correct answer 

for each exercise. Users receive assistance pointing out exactly where their code differs 

from the known solution, which remains hidden until the student answers correctly 

according to the feedback given.  The feedback this system provided when used as a 

demonstration copy would seem to point to a model-based approach where there is a 

limited set of known solutions saved in the backend of the system. Deviations from this 

known solution set are considered incorrect and remediated according to the model 

within the system. 
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 A different approach is constraint-based reasoning.  Systems utilizing this 

approach have a list of constraints for a given situation that are encoded such that it is 

easy to reason about them. When all constraints for a given situation are met, the 

answer is correct.  Otherwise, the answer is incorrect.  Quicker than model-based 

reasoning, this approach is favored by Mayo and Mitrovic [27] and has been used 

successfully in tutors for SQL programming, CAPIT, and other tutoring systems. 

 The approach adopted for this work could be seen as favoring constraint-based 

systems where exercises have one constraint—they produce the correct output.  Because 

there are an almost unlimited number of solutions to any given programming problem 

except for some of the very simplest cases, it was felt that this approach allowed for 

student creativity and would be able to handle situations that might not be anticipated 

by the researcher before performing formal testing.  This approach also allows for the 

system to learn from the student.  Just because the student is a novice does not mean 

that they are unable to come up with valid and novel solutions to programming 

problems.  Therefore, as described in more detail in an earlier section, the system 

collects students’ solutions in Phase 2 and analyzes them for novelty.  If a solution is 

novel, the system will save the new solution as a new case with new solution steps.   

4.5.7 How should debugging issues be remediated? 

This work believes that students would benefit from receiving timely, focused, 

and meaningful feedback on errors when they occur.  This belief stems from field 

research that was performed during the 2011-2012 academic year.  To gain a better 

understanding of novice difficulties and how to solve them, the researcher tutored 
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undergraduates and High School students taking their first programming course or their 

first Java course (in the case of the High School students who were taking AP CS).  

Additionally, the researcher helped answer student questions in their laboratory periods 

and graded assignments for the Lehigh University CSE 15 course. 

 This fieldwork shed light into issues it is easy to forget novices have when one is 

no longer a novice oneself.  Students had many questions about syntax, error messages, 

and how to produce the output requested from their instructor.  Additionally, questions 

arose about how to understand runtime exceptions.  Another interesting fact is that the 

novice does not always understand that it is not enough to just get their code to compile 

and run, that they must also verify their code produces the correct output. 

 Many students requested assistance from the researcher during this fieldwork, 

with a subset of the students coming back often for further assistance.  It became clear 

from these students that were seen multiple times that the same approach does not work 

with every student.  Certain students learned best just being talked through the problem; 

some students just needed to be pointed towards the right text or example; and other 

students did best with physical examples.  This difference in learning styles highlighted 

the need for a tutoring system not only to provide assistance but to try to provide that 

assistance in the format that would best help the students using it.  The system has 

therefore been built to handle multiple modalities, further details of which can be found 

in the discussion of the design and implementation of this work. 

 The need for incorporating multiple learning styles into the classroom and in 

Intelligent Tutoring Systems has been highly debated.  Some work cites no significant 
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difference when multiple modalities were utilized among groups of students.  Other 

work finds the opposite to be true. Significant work in Intelligent Tutoring Systems to 

provide multi-modal support was done by S. Parvez and G. Blank at Lehigh University.  

Their system was developed to teach introductory students according to the design first 

mentality of computer science instruction, where students are taught proper design 

tactics and UML before any significant coding. Parvez did her dissertation work on how 

to create a Pedagogical Module for an Intelligent Tutoring System that could support 

different learning styles, eventually deciding to employ the Felder-Silverman model 

after researching several other models of student learning [32].   

 The Felder-Silverman model, developed by Richard Felder and Linda Silverman 

at North Carolina State University, aimed at improving engineering education.  The 

model implements the belief that optimal learning can take place when information 

delivery is aligned with the manner in which the student best processes information [32].   

 The Pedagogical Module of the DesignFirst-ITS was designed to address multiple 

aspects of the Felder-Silverman model.  The module was capable of creating 7 different 

types of feedback according to the Felder-Silverman model.  These included: definitions, 

examples, questions, scaffold (or, instructing the user to use a certain tutorial), pictures, 

relationships for concepts, and applications of a concept [32]. 

 The system was evaluated with one level of feedback in two introductory level 

courses at Lehigh.  Students were asked to fill out the Index of Learning Style 

questionnaire to determine which dimension of the Felder-Silverman model represented 

them.  Then students were given instructions on how to use the system and proceeded to 
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use the ITS to create a design.  Students were all asked to create a specific design in this 

system for a movie ticket vending machine.  All students participating were able to 

complete the exercise.  Most of the students in this class were identified as visual 

learners and received visual feedback.  The remaining students received text-based 

feedback [28]. 

 The effectiveness of tailoring feedback to learning style was later evaluated with 

High School students from High Schools participating in the LVSTEM and Launch-it 

programs.  Participants were divided into 3 groups.  Group 1 received no feedback, 

group 2 received strictly textual feedback, and group 3 were given the appropriate 

feedback for their identified learning style.  The evaluation also utilized a pretest and a 

posttest [32].   

 The deviation of group 1’s pretest and posttest scores was statistically 

insignificant when using the paired t-test; which was as expected.  Group 2’s results 

were also statistically insignificant; the variance between pre and posttest scores was 

not large enough to indicate learning took place.  Analysis of group 3’s results showed a 

statistically significant deviation between pre and posttest scores and therefore implies 

that learning did take place within this group of students due to their use of the tutoring 

system.  These findings support work in tailoring tutoring system feedback to the 

learner according to learning style [32]. 

4.5.8 How could the system determine if a given remediation is successful? 

Previously, this question was only relevant in terms of dynamically determining 

which learning style best suits a student.  Dynamically determining learning style was 
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dropped as discussed with the members of the dissertation committee earlier this year 

due to the potential that this part of the system could introduce more variability and 

confound the statistical results of evaluations. 

4.5.9 How to communicate remediations? 

How to communicate remediations is non-trivial and much work in ITSs has 

sought to answer this question for different domains and situations.  An ITS may 

provide different forms of feedback for different types of learners [32], utilize personae 

to discuss the domain with the student in a more human-like manner [40], interrupt the 

student strategically for guidance, or wait for a student to request assistance. 

 While tutoring students taking a college level CS1 course, the researcher reached 

an important conclusion regarding this question.  Interrupting the student at the wrong 

point led either to confusion or the student not truly learning from their interaction with 

defective code.  It is difficult to determine an appropriate time to interrupt the thought 

processes of the novice and there is no clear indicator as to what path the student's 

thoughts are taking without asking them to explicitly describe what they are thinking.  

Interrupting the student too soon can interrupt the student from reaching important 

conclusions on his or her own.  Interrupting the student too late could cause the 

feedback to be misunderstood; if the student has moved on from issue x to issue y and a 

remediation is provided for issue x the assistance will be confusing and irrelevant. 

 The methodology therefore chosen offers remediations as part of the normal edit-

compile-test loop, when students are already looking for error messages that are 

intended to guide programmers to solving problems.  Of course, novices often don’t 
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understand compiler error messages, let alone Java Exceptions. So it is at this point that 

novices are likely to appreciate assistance.  The web-based interface provides one 

button for both compiling and running and provides remediation within the scope of this 

loop.  When the student clicks this button, their code is sent back to the server for 

evaluation.  In the event that there is an error in the student's code, the system analyzes 

the error and provides feedback that is relevant to the current situation.  The 

remediation itself is inserted into the interface in the same panel that output appears in, 

in order to keep results in the area of the screen the student should be looking at after 

trying to run their code.  It is believed that this methodology ties remediations in nicely 

with error messages and erroneous output and keeps assistance relevant and in context. 

4.5.10 How to discuss the domain with the student? 

The domains of programming and debugging are difficult for novices to 

comprehend.  Standard environments, built for expert programmers, do not take this 

into account in either their layout or the language used to describe errors.   Several 

systems including BlueJ, Backstop, and Intelligent Tutors for teaching programming 

strive to demystify one or both domains for the novice. 

ITS-Debug is meant to be a tool for the student who does not yet have a good 

grasp of debugging.  Because of this the system must speak plainly and clearly in its 

remediations and avoid jargon.  Explanations are in plain English, and the detail of 

remediations increases as the system's confidence in the student's ability to resolve the 

error decreases.  Additionally, the system attempts to discuss the domain in the manner 

that makes most sense to the effected learner. 
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5 Chapter 5: Evaluation 

Testing of this system has been performed from Fall 2012 through the end of the 

Fall 2013 semester.  Students self selected into the study from the populations of Lehigh 

University's CSE 002, Phillipsburg High School's AP and intermediate Computer 

Science Courses, Cranford High School’s AP computer Science course, and Warren 

Hills’ AP and Introductory Computer Science courses.  Students in these courses were 

generally novice students in their first or second Java course, depending on the 

individual student's background. 

 Evaluation of the system occurred both actively and passively.  Active evaluation 

was performed using two survey instruments (included as appendices) and the pretest-

practice-posttest methodology, where students were asked to complete a pretest, use the 

system for practice, and then complete a posttest.  Passive evaluation occurred 

automatically.  Certain metrics that the system must monitor in order to provide 

appropriate exercises and assistance to the student were logged over time.  These 

include: exercises encountered, attempts per exercise, topics learned, and time required 

to complete an exercise. 

 During the course of the Spring 2013 semester the system was presented to the 

students at Lehigh University three times.  For the first two of these encounters the 

system was presented in a closed, supervised session where the system was presented to 

the students as a way to practice for an impending exam.  The last session allowed 

students to use the system independently on their own time.   
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5.1 Spring 2013 – Experimental Setup 

The system was evaluated over the Spring and Fall semesters of 2013.  Students 

from Lehigh University were presented with Phase 1 of the system during the Spring 

2013 semester.  Two separate supervised sessions were held as study sessions for 

upcoming exams.  These sessions each had the students practice with two separate 

programming topics, as the students’ upcoming exams dealt with two separate 

programming topics.  For the first session, students were asked to use the system to 

practice debugging programs that incorporated Looping structures and Methods.  For 

the second session, students were asked to use the system to practice debugging 

programs that incorporated Single and Multidimensional Arrays.   

All students in these sessions were asked to use an up-to-date version of the 

Firefox web browser to access the tutoring system at its URL.  Once there, students 

were instructed to log in with usernames and passwords that were distributed on receipt 

of the informed consent form.  The system then presented the students with a multiple-

choice pretest consisting of four small broken programs and three more qualitative 

questions about debugging.  After submitting the pretest, students were asked to select 

their learning style from two choices: visual and verbal (described in more detail in 

Chapter 4).  Then, after submitting their learning style, the students received the 

tutoring system.  Students were asked at this point to select the first topic for the session 

from a drop down menu on the user interface and practice with that topic for 20 minutes.  

After 20 minutes had passed, students were asked to switch to the second topic for the 

session.   After the second 20 minute period, students were asked to click on the ‘Go To 
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PostTest’ button on the User Interface in order to proceed to the posttest and exit survey.  

The posttest followed the same format as the pretest, the exit survey asked the students 

questions about their experience with the system and is included in the appendix section 

of this document.   

 The first two supervised sessions combined consisted of 16 students.  Because of 

the somewhat low number of students who were able to attend the supervised sessions, 

the system was disseminated at the end of the semester to any student who wished to try 

the system on their own time.  These students used the system to practice exercises from 

all topics available in the system up to Multidimensional arrays.  Students who used the 

system independently all took the pretest but many failed to go on to the posttest and 

exit survey.  

5.2 Fall 2013 – Experimental Set up 

The second formal evaluation trial of this system occurred during the Fall 2013 

semester at two separate High Schools.  All participating students at the first High 

School were taking Advanced Placement Computer Science.  Almost all participating 

students at the second High School were taking an introductory level computer science 

class where they were learning Java.  The same evaluation methodology as before was 

performed with the addition of a pre-survey before the pretest in order to determine if 

any students participating in the study were not true novices. 

5.3 Results and Discussion 

The following discusses the results of the experiments performed over the  
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course of the evaluation period.  In discussion of the attempts required to complete an 

exercise, each data point on the scatter charts represents the mean number of attempts 

one student required to complete the exercises they attempted (unless otherwise stated).  

For instance, if student x completed 7 exercises with an average of 10 attempts, they are 

represented in the scatter chart with a circle at position coordinate (7,10).  In discussion 

of the time required to complete an exercise, each point on the scatter charts represents 

the mean time for an individual student to complete an exercise.  

5.3.1 Pretest vs. Posttest 

The pretest and posttest results for high school and college students were  

analyzed separately.    College students were evaluated as three groups: two monitored 

formal sessions and a final session where students were able to use the system on their 

own.  The first set of college students using the system exhibited an increase in the 

means between the pretest and the posttest but the increase was not statistically 

significant.  The second set of college student evaluation suffered from receiving a total 

of four students and some unexpected evaluation time issues with the system.  

Additionally, the third set of college student data for this dimension of all the data 

collected suffered inconsistencies due to the fact that the sessions were unsupervised.  

Because of the unsupervised nature of this aspect of the data, students participating did 

not follow instructions – namely, completion of the posttest.  For this subgroup, in 

terms of the pretest and posttest, the data is flawed in the following ways: too short a 

practice time, selection of disparate topics unrelated to the pre and posttest, and/or 
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allowing too much time to pass between the completion of the pre and post test (i.e. 

more than 6 hours).  

During the second semester of the formal evaluation the pretest and posttest 

each gained a question and focused on a single topic instead of the previous design 

which included two separate topics.  Students’ answers were tabulated over the pretest 

and posttest and the number of correct answers for each test were analyzed using the 

Paired Samples T-Test in SPSS.  The results of this analysis, included below, yielded 

statistical significance for at the p<.01 level.   

 

Table 1: Paired Samples T-Test Supporting Statistics 
 

  

Table 2: Paired Samples T-Test Results, High School only 
 

5.3.2 Attempts Data – all students 

The attempts required for completed exercises for each participating student  
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for each exercise are represented by the following scatterplot and table.   Specifically, 

attempts are defined in this work as the number of times the student has submitted their 

code back to the tutoring system for analysis.  This includes the final correct submission 

for exercises the student has successfully completed. Attempts data was analyzed using 

the Pearson correlation in SPSS.  The hypothesis for this aspect of the evaluation was 

that there would be a negative correlation between the attempts students required to 

complete an exercise given more practice with the system.  When using a two tailed 

Pearson correlation, the combined results of all participating students’ attempts data was 

found to be statistically significant at the p<.01 level. 

 

Figure 18: Scatter Plot of all students’ attempts data for completed exercises 
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Table 3: Pearson correlation for all students’ attempts data 
 

 The above scatterplot and statistical data show that the students required 

significantly fewer attempts to complete an exercise with more practice with ITS-

Debug.. 

Another analysis of attempts data was performed over all attempts data, regardless 

of whether or not the student completed the exercise.  The following table and graph 

show the results of another two-tailed Pearson Correlation over the extended data. 

Table 4 Pearson Correlation – All Attempts Data, regardless complete 
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Figure 19: Scatter Plot– All Attempts Data 

5.3.3 Attempts data – High School students vs college students 

After analyzing the data for all students combined, the data was re-analyzed  

for each level of student who used the system (i.e. high school vs. college).  This data 

was re-analyzed using the Pearson Correlation for each group; relevant tables and 

graphs appear below.  When the college students’ attempts data was analyzed alone, 

statistical significance was not found in this group.  However when the high school 

students were analyzed separately, statistical significance was again found.  It is 

believed that this difference in results can be explained by the limited number of college 

students that participated, the fact that the experiment changed between the two groups 
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to concentrate on practice with a single topic instead of two topics, and the fact that the 

high school students were closer to the true novice level than the college students.  

Additionally, most of the high school students who used the system were closer to the 

“true novice” level the system aims to support and therefore, stood to learn the most 

from using the system. 

 

Table 5: Pearson Correlation over high school data, completed exercises only 
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Figure 20 Scatter Plot over all High School data, completed exercises only 

  

Table 6: Pearson Correlation over college data, completed exercises only 
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Figure 21: Scatter Plot of college attempts data, completed exercises only 
 

5.3.4 Attempts Data By Modality 

The attempts data was furthered analyzed to compare the effectiveness of the 

two modalities offered.  As before, the data was analyzed using the Pearson Correlation 

and then visualized with a Scatter Plot.  When all students were combined, significance 

at the p<.01 level for verbal students.  Significance at the p<.05 level was observed over 

all combined students for those who chose to receive visual assistance.  High school 

students’ attempts data alone exhibited for both modalities exhibited the same level of 

significance, at the p<.05 level, indicating no significant difference between the two 
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modalities.  When college student data was isolated, no significance was found within 

either groups’ data.  

 

Table 7: Pearson Correlation: Attempts – Everyone –Verbal 

 

Figure 22: Scatter Plot: Attempts – Everyone – Verbal 
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Table 8: Pearson Correlation: Attempts – Everyone – Visual 

 

Figure 23: Scatter Plot: Attempts – Everyone - Visual 
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Table 9: Attempts - High School Verbal 

 

Figure 24: Scatter Plot– High School – Verbal 
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Table 10: Attempts – High School – Visual 

 

Figure 25: Scatter Plot– High School – Visual 
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Table 11: Pearson Correlation – Attempts – College – Verbal 

 

Figure 26: Scatter Plot– Attempts – College – Verbal 
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Table 12: Pearson Correlation – Attempts – College – Visual 

 

Figure 27: Scatter Plot– Attempts – College – Visual 
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5.3.5 Time to Complete Exercises 

The time required for each student to complete an exercise was analyzed  

using the Pearson correlation to determine if students would require less time to 

complete an exercise given more practice with the system.  The results of this analysis 

are displayed in the following scatterplot(s) and table(s).  A statistically significant 

negative correlation between the number of exercises completed and the mean amount 

of time required to complete an exercise for each student was found at the p<.01 level 

for all students combined and for high school students in isolation.  For college students 

in isolation statistical significance at the p<.05 level was exhibited.  The original data 

exhibited some students with an average time to complete of less than a second, further 

review of the data collected shows that this was in fact in line with the collected data.  

Whether or not the collected data is skewed due to an error with the logging mechanism 

is unclear at this time.  The data is included, excluding all data points exhibiting an 

average time to complete less than 2 seconds, regardless because even if the data is 

skewed it appears to be skewed in a regular fashion and may still be of some value to 

this work.   No conclusions in this work are drawn solely from the timing data. 
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Figure 28: Scatter Plot of timing data, all students  
Correlations 

 numCompleted meanTimeToComplete 

Pearson Correlation 1 -.386** 

Sig. (2-tailed)  .000 

numCompleted 

N 103 103 

Pearson Correlation -.386** 1 

Sig. (2-tailed) .000  
meanTimeToComplete 

N 103 103 
**. Correlation is significant at the 0.01 level (2-tailed). 

Table 13: Pearson Correlation of timing data, all students  
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Figure 29: Scatter Plot for timing data, High School only 
 

Correlations 

 numCompleted meanTimeToComplete 

Pearson Correlation 1 -.417** 

Sig. (2-tailed)  .000 

numCompleted 

N 80 80 

Pearson Correlation -.417** 1 

Sig. (2-tailed) .000  
meanTimeToComplete 

N 80 80 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 14: Pearson Correlation for timing data, High School only  
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Figure 30: Scatter Plot for timing data, college students only 
 

Correlations 

 numCompleted meanTimeToComplete 

Pearson Correlation 1 -.422* 

Sig. (2-tailed)  .045 

numCompleted 

N 23 23 

Pearson Correlation -.422* 1 

Sig. (2-tailed) .045  
meanTimeToComplete 

N 23 23 
 

*. Correlation is significant at the 0.05 level (2-tailed). 
 

Table 15: Pearson Correlation for timing data, college students only 
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5.3.6 Timing Data By Modality 

The students’ timing data was also analyzed according to the students’ chosen 

modality.  Results were once again correlated using the Pearson Correlation in SPSS 

and then visualized with a scatterplot.  With all students combined the data exhibits 

significance at the p<.05 level for students who selected verbal as their modality and 

significance at the p<.01 level for students who selected visual.  College students alone 

did not exhibit statistical significance for either modality.  High school students 

exhibited significance at the p<.05 level for those who selected Verbal remediations and 

p<.01 level for those who selected Visual remediations.  As in other sections regarding 

timing data, the data has been stripped of data points exhibiting a mean time to 

complete less than 2 seconds and is not used in drawing conclusions of this work.  
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Correlations 

 numCompleted meanTimeToComplete 

Pearson Correlation 1 -.339* 

Sig. (2-tailed)  .030 

numCompleted 

N 41 41 

Pearson Correlation -.339* 1 

Sig. (2-tailed) .030  
meanTimeToComplete 

N 41 41 
 

*. Correlation is significant at the 0.05 level (2-tailed). 
 

Table 16: Pearson Correlation – All Students – Verbal 

 

Figure 31: Scatter Plot– All Students – Verbal 
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Correlations 

 numCompleted meanTimeToComplete 

Pearson Correlation 1 -.450** 

Sig. (2-tailed)  .000 

numCompleted 

N 62 62 

Pearson Correlation -.450** 1 

Sig. (2-tailed) .000  
meanTimeToComplete 

N 62 62 
 

**. Correlation is significant at the 0.01 level (2-tailed). 

 
Table 17: Pearson Correlation – All Students – Visual 

 

Figure 32: Scatter Plot– All Students – Visual 
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Correlations 

 numCompleted meanTimeToComplete 

Pearson Correlation 1 -.463 

Sig. (2-tailed)  .129 

numCompleted 

N 12 12 

Pearson Correlation -.463 1 

Sig. (2-tailed) .129  
meanTimeToComplete 

N 12 12 

Table 18: Pearson Correlation – College – Verbal 
 

 

Figure 33: Scatter Plot– College – Verbal 
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Correlations 

 numCompleted 

meanTimeToCom

plete 

Pearson Correlation 1 -.515 

Sig. (2-tailed)  .105 

numCompleted 

N 11 11 

Pearson Correlation -.515 1 

Sig. (2-tailed) .105  
meanTimeToComplete 

N 11 11 

 

Table 19: Pearson Correlation – College – Visual 

 

Figure 34: Scatter Plot– College – Visual 
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Correlations 

 numCompleted 

meanTimeToCom

plete 

Pearson Correlation 1 -.372* 

Sig. (2-tailed)  .047 

numCompleted 

N 29 29 

Pearson Correlation -.372* 1 

Sig. (2-tailed) .047  
meanTimeToComplete 

N 29 29 
 

*. Correlation is significant at the 0.05 level (2-tailed). 
 

Table 20: Pearson Correlation – High School – Verbal 
 

 

Figure 35: Scatter Plot– High School – Verbal 
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Correlations 

 numCompleted 

meanTimeToCom

plete 

Pearson Correlation 1 -.446** 

Sig. (2-tailed)  .001 

numCompleted 

N 51 51 

Pearson Correlation -.446** 1 

Sig. (2-tailed) .001  
meanTimeToComplete 

N 51 51 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Table 21: Pearson Correlation – High School – Visual 

 

Figure 36: Scatter Plot– High School - Visual 
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5.3.7 Phase 1 vs Phase 2 – Pretest vs. Posttest 

The students’ pretest and posttest scores were compared on a by-phase basis.  

The results of this comparison appear below, as before this result compares only High 

School participants due to previously discussed issues with the College data in this 

regard.  The first set of 4 tables represents Phase 1 students, the results of running the 

Paired Samples t-test in SPSS indicate statistical significance at the p<.01 level for this 

group of participants.  The second set of 4 tables represents Phase 2 students, results for 

this group of participants with the same statistical measure also exhibit statistical 

significance at the p<.01 level. 

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

pretest 1.88 51 1.519 .213 Pair 1 

posttest 2.55 51 1.487 .208 

 
Paired Samples Correlations 

 N Correlation Sig. 

Pair 1 pretest & posttest 51 .622 .0000010806 

 
Paired Samples Test 

Paired Differences 

95% Confidence 

Interval of the 

Difference 

 Mean Std. Deviation Std. Error Mean Lower 

Pair 1 pretest - posttest -.667 1.306 .183 -1.034 
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Paired Samples Test 

Paired Differences 

95% Confidence Interval of the 

Difference 

 Upper t df Sig. (2-tailed) 

Pair 1 pretest - posttest -.299 -3.644 50 .001 

Table 22: Phase 1 Pretest vs. Posttest t-test 
 
 

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

pretest 1.63 51 1.661 .233 Pair 1 

posttest 2.53 51 1.678 .235 

 

 
Paired Samples Correlations 

 N Correlation Sig. 

Pair 1 pretest & posttest 51 .747 .0000000003078 

 
Paired Samples Test 

Paired Differences 

95% Confidence 

Interval of the 

Difference 

 Mean Std. Deviation Std. Error Mean Lower 

Pair 1 pretest - posttest -.902 1.188 .166 -1.236 
 

Paired Samples Test 

Paired Differences 

95% Confidence Interval of the 

Difference 

 Upper t df Sig. (2-tailed) 

Pair 1 pretest - posttest -.568 -5.424 50 .0000016923 

Table 23: Phase 2 Pretest vs. Posttest t-test 
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5.3.8 Phase 1 vs Phase 2 – Attempts 

The attempts data recorded by the system was further evaluated to determine if 

one exercise phase provided a better or worse experience than the other.   Due to the 

fact that only high school students received both phases of the system, this subset of the 

data represents only High School students.  This data was again analyzed using the 

Pearson Correlation.  For phase 1 attempts data in isolation, a statistically significant 

negative correlation was found at the p<.05 level.  For phase 2 attempts data in isolation, 

a statistically significant negative correlation was found at the p<.01 level for all High 

School students.    

 
Table 24: Pearson Correlation for attempts data for phase 1 students only 
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Figure 37: Scatter Plot for attempts data for phase 1 students only 
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Table 25: Pearson Correlation for phase 2 attempts data 

 
 

 
Figure 38: Scatter Plot for phase 2 attempts data 

 



155	  

5.3.9 Phase 1 vs Phase 2 – Timing 

The time required to complete an exercise was further evaluated to separate 

Phase 1 from Phase 2 to determine if one group was more or less benefitted from a 

given phase of the system.  This data was analyzed in the same manner as before and 

includes only high school students as in the previous section.  Timing data from both 

phases presented significance at the p<.01 level.  Again, this data has been stripped of 

data points exhibiting an average time to complete less than 2 seconds and is not used as 

supporting data for the conclusions of this work. 

 
Table 26:  Pearson Correlation: Phase 1, timing data, high school only 
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Figure 39: Scatter Plot: Phase 1, timing data, high school only 

 

 
Table 27: Pearson Correlation: Phase 2, timing data, high school only 
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Figure 40: Scatter plot: Phase 2, timing data, High School only 

5.3.10 Phase 3 

Phase 3 evaluation occurred using two AP high school classes.  The first time 

Phase 3 was introduced during the evaluation period was at the same time Phases 1 and 

2 were being evaluated by another class.  The current implementation of the system was 

unable to accommodate this many users at once and therefore very few results were 

obtained from the Phase 3 group.  The second attempt at an evaluation of Phase 3 was 

performed using a class of 10 AP high school students at another school.  The class was 

partitioned into control (four students) and test (5 students) groups.  All students in this 

session were asked to complete a small lab assignment using the system.  The lab 
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assignment consisted of a loop exercise where students had to print a certain series of 

characters to the screen multiple times (please see appendix for the exact exercise).   

The difference between the start and end times for the participating students was 

calculated and then evaluated using the Independent Samples t-test in SPSS.  End times 

for two students were missing from the data collected by the system.   It is known that 

one of the control group students gave up due to issues encountered with using the 

system, this student’s end time was set to the maximum observed end time in order to 

perform the statistical test.   It is unknown why the other student did not have an end 

time, this student’s end time was defaulted to the average of all observed completion 

times.  The results of the statistical evaluation below show a decrease in means between 

the test and control groups (with the observed mean of the test group evaluating to 

16.47332).  Despite the difference in the means, the results of the evaluation did not 

produce significant results.  Further discussion of these results appears in the next 

chapter. 

 

Table 28: Observed Means 
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Table 29: Independent Samples t-Test of Phase 3 Timing Data 

5.3.11 Pre and Post Test – Metacognitive Questions 

Students participating in the study were also asked to complete a set of 3 multiple-

choice metacognitive questions about debugging.  These questions asked the student to 

think about what debugging is and how to successfully complete the debugging task.  

These questions are included in the appendix with the rest of the pre and post test 

questions.  The results of the students’ responses appear below.   Results for the first 

question remained relatively the same between the pre and posttests, with the “Iterative 

edit / recompile / re-run” answer choice gaining 8 students and the less specific iterative 

analysis and modification choice losing 7 students.  For the second question, the largest 

change in student responses consisted of a decrease in students selecting Forward Slice 

and more students selecting Backward Slice.  The last question exhibited an increase 

between the pre and post tests of students indicating that the tutor’s assistance with error 

messages does help novice programmers identify errors in the presence of syntax, 

runtime, and logical defects.  
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What is debugging? 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a - Programming 2 1.7 1.7 1.7 

b – Iterative 
modification 

9 7.8 7.8 9.5 

c – Iterative analysis 
and modification 

72 62.1 62.1 71.6 

e – Iterative edit / 
recompile / re-run  

29 25.0 25.0 96.6 

f – Don’t know  4 3.4 3.4 100.0 

Valid 

Total 116 100.0 100.0  

 

 

 

 

 

 

 

 

 

 
Error messages usually help programmers identify errors in… 

 Frequency Percent Valid 
Percent 

Cumulativ
e Percent 

a – Syntax 27 23.3 23.3 23.3 

b – Runtime Behavior 3 2.6 2.6 25.9 

c – Program Output 1 .9 .9 26.7 

d – a and b 25 21.6 21.6 48.3 

e – a, b, and c 45 38.8 38.8 87.1 

f – b and c 3 2.6 2.6 89.7 

g – don’t know 12 10.3 10.3 100.0 

Valid 

Total 116 100.0 100.0  

Table 30: Metacognitive – Everyone – Pretest 

If you were trying to solve a problem would you… 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Trial and Error 33 28.4 28.4 28.4 

b – Search 7 6.0 6.0 34.5 

c – Ask for Help 5 4.3 4.3 38.8 

d – Backward Slice 52 44.8 44.8 83.6 

e – Forward Slice 16 13.8 13.8 97.4 

f – Don’t Know 3 2.6 2.6 100.0 

Valid 

Total 116 100.0 100.0  



161	  

 
What is debugging? 

 Frequency Percent Valid 
Percent 

Cumulativ
e Percent 

a - Programming 2 1.7 1.7 1.7 

B – Iterative 
modification 

8 6.8 6.8 8.5 

c – Iterative analysis 
and modification 

65 55.6 55.6 64.1 

d – Internet Search 1 .9 .9 65.0 

e – Iterative edit / 
recompile / re-run 

37 31.6 31.6 96.6 

f – Don’t know 4 3.4 3.4 100.0 

Valid 

Total 117 100.0 100.0  

 

 

Error messages usually help programmers identify errors in… 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Syntax 25 21.4 21.4 21.4 

b – Runtime Behavior 2 1.7 1.7 23.1 

c – Program output 4 3.4 3.4 26.5 

d – a and b 20 17.1 17.1 43.6 

e – a, b, and c 57 48.7 48.7 92.3 

f – b and c 3 2.6 2.6 94.9 

g – Don’t Know 6 5.1 5.1 100.0 

Valid 

Total 117 100.0 100.0  

Table 31: Metacognitive – Everyone - Posttest 

If you were trying to solve a problem would you… 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Trial and Error 37 31.6 31.6 31.6 

b – Search  4 3.4 3.4 35.0 

c – Ask For Help 7 6.0 6.0 41.0 

d – Backward Slice 65 55.6 55.6 96.6 

f – Don’t Know 4 3.4 3.4 100.0 

Valid 

Total 117 100.0 100.0  
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If you were trying to solve a problem would you… 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Trial and Error 3 25.0 25.0 25.0 

b – Search  2 16.7 16.7 41.7 

c – Ask For Help 1 8.3 8.3 50.0 

d – Backward Slice 5 41.7 41.7 91.7 

e – Forward Slice 1 8.3 8.3 100.0 

Valid 

Total 12 100.0 100.0  

 
Error messages usually help programmers identify errors in… 

 Frequency Percent Valid 
Percent 

Cumulativ
e Percent 

a – Syntax 5 41.7 41.7 41.7 

d – a and b 6 50.0 50.0 91.7 

e – a, b, and c 1 8.3 8.3 100.0 
Valid 

Total 12 100.0 100.0  

Table 32: Metacognitive – College – Pretest 
 
 
 
 
 
 
 
 

What is debugging? 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Programming 1 8.3 8.3 8.3 

c – Iterative analysis 
and modification 

10 83.3 83.3 91.7 

e – Iterative edit / 
recompile / re-run 

1 8.3 8.3 100.0 
Valid 

Total 12 100.0 100.0  
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If you were trying to solve a problem would you… 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Trial and Error 5 41.7 41.7 41.7 

b – Search 1 8.3 8.3 50.0 

c – Ask for Help 1 8.3 8.3 58.3 

d – Backward Slice 5 41.7 41.7 100.0 

Valid 

Total 12 100.0 100.0  

 
Error messages usually help programmers identify errors in… 

 Frequency Percent Valid 
Percent 

Cumulativ
e Percent 

a – Syntax 4 33.3 33.3 33.3 

d – a and b 4 33.3 33.3 66.7 

e – a, b, and c 4 33.3 33.3 100.0 
Valid 

Total 12 100.0 100.0  

Table 33: Metacognitive – College - Posttest 
 
 
 
 
 
 
 

What is debugging? 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Programming 1 8.3 8.3 8.3 

b – Iterative 
modification 

1 8.3 8.3 16.7 

c – Iterative analysis 
and modification 

9 75.0 75.0 91.7 

e – Iterative edit / 
recompile / re-run 

1 8.3 8.3 100.0 

Valid 

Total 12 100.0 100.0  
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What is debugging? 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Programming 1 1.0 1.0 1.0 

b – Iterative 
modification 

9 8.7 8.7 9.6 

c – Iterative analysis 
and modification 

62 59.6 59.6 69.2 

e – Iterative edit / 
recompile / re-run 

28 26.9 26.9 96.2 

f – Don’t Know 4 3.8 3.8 100.0 

Valid 

Total 104 100.0 100.0  

 

 

 

 

 

 

 

 

 

 
Error messages usually help programmers identify errors in… 

 Frequency Percent Valid 
Percent 

Cumulativ
e Percent 

a – Syntax 22 21.2 21.2 21.2 

b – Runtime Behavior 3 2.9 2.9 24.0 

c – Program output 1 1.0 1.0 25.0 

d – a and b 19 18.3 18.3 43.3 

e – a, b, and c 44 42.3 42.3 85.6 

f – b and c 3 2.9 2.9 88.5 

g – Don’t know 12 11.5 11.5 100.0 

Valid 

Total 104 100.0 100.0  

Table 34: Metacognitive – High School – pretest 

If you were trying to solve a problem would you… 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Trial and Error 30 28.8 28.8 28.8 

b – Search 5 4.8 4.8 33.7 

c – Ask for Help 4 3.8 3.8 37.5 

d – Backward Slice 47 45.2 45.2 82.7 

e – Forward Slice 15 14.4 14.4 97.1 

f – Don’t Know 3 2.9 2.9 100.0 

Valid 

Total 104 100.0 100.0  
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What is debugging? 

 Frequency Percent Valid 
Percent 

Cumulativ
e Percent 

a - Programming 1 1.0 1.0 1.0 

b – Iterative 
modification 

7 6.7 6.7 7.6 

c – Iterative analysis and 
modification 

56 53.3 53.3 61.0 

d – Internet Search 1 1.0 1.0 61.9 

e – Iterative edit / 
recompile / re-run 

36 34.3 34.3 96.2 

f – Don’t Know 4 3.8 3.8 100.0 

Valid 
 
 
 
 
 
 
 
 

Total 105 100.0 100.0  

 
 
 
 
 
 
 
 
 
 

 

 
If you were trying to solve a problem would you… 

 Frequency Percent Valid 
Percent 

Cumulativ
e Percent 

a – Trial and Error 32 30.5 30.5 30.5 

b – Search 3 2.9 2.9 33.3 

c – Ask for Help 6 5.7 5.7 39.0 

d – Backward Slice 60 57.1 57.1 96.2 

f – Don’t Know 4 3.8 3.8 100.0 

Valid 

Total 105 100.0 100.0  
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Error messages usually help programmers identify errors in… 
 Frequency Percent Valid 

Percent 
Cumulativ
e Percent 

a – Syntax 21 20.0 20.0 20.0 

b – Runtime Behavior 2 1.9 1.9 21.9 

c – Program output 4 3.8 3.8 25.7 

d – a and b 16 15.2 15.2 41.0 

e – a, b, and c 53 50.5 50.5 91.4 

f – b and c 3 2.9 2.9 94.3 

g – Don’t Know 6 5.7 5.7 100.0 

Valid 

Total 105 100.0 100.0  

Table 35: Metacognitive – High School - Posttest 
 

5.3.12 Qualitative Data 

In addition to the passive and formal evaluation measures discussed above,  the 

students were also asked to complete a short survey in order to gauge the students’ 

opinions of the system.  The exact survey instrument used is included as an appendix.  

Aggregate student responses appear in the following tables.  Tables 13 and 14 exhibit 

an overwhelming majority of students indicating that concepts they learned in the 

system would be applicable to programs they may write outside of the system and to 

their coursework in a more general sense. 
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Table 36: Y/N – Concepts applicable to programs written outside of the system 
 

 
Table 37: Y/N – Concepts applicable to coursework 

 
 

 When asked to indicate, using a Likert scale, how helpful the system was in 

teaching them to debug programs 81.1% of all students rated the system at least 3 out of 

5. 
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Table 38: Likert – System was helpful in teaching you to debug programs 

 
When asked to indicate with a Likert scale how helpful concepts taught by the 

system will be when debugging programs outside of the system, 73.2% of the students 

rated the system at least 3 out of 5. 

Table 39: Likert – How helpful will system concepts be in debugging other programs 
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On the last question students were asked to rate, again using the Likert scale, the 

helpfulness of the feedback mechanism.   70.3% of the students rated the system at least 

a 3 out of 5 on this question.  

Table 40: Likert - How helpful was feedback produced by the system 
 

5.3.13 Pre-Survey – Student’s Previous Programming Experience 

In addition to the pretest and end survey discussed earlier, students were also 

asked to complete a brief survey at their first log in to the system that would indicate 

what previous programming experience they had, if any.  128 students completed the 

survey.  Three students submitted multiple, conflicting answers, their programming 

survey data was subsequently omitted from this discussion.   
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Table 41: Have you ever taken a programming course before? 
 
 
 
 
 
 
 
 
 
 
 
 

Table 42: Have you tried to learn programming outside of a course / in another course? 
 
 Of all students who participated in the evaluation about half of the population 

indicated that they had some prior programming experience, whether formal classroom 

experience or on their own (48%, or 61 students). 

 As shown in the two tables above, the majority of students using the system did 

not have prior programming experience before the course they were taking at the time 

of the evaluation.  The students were also asked to supply what programming languages 

they had learned, if any.  Five of the students who indicated they had previously taken a 

programming course did not indicate what language they had learned.  Additionally, 

Have you ever taken a programming course before? 

 Frequency Percent 
Valid 
Percent 

Percent of 
Total 
Population 

(N = 127) 

Y – Yes 48 39 39 37.8 

N - No 75 61 61 59 

 Total 123 100 100 96.8 

Have you tried to learn programming outside of a course / in another 
course? 

 Frequency Percent 
Valid 
Percent 

Percent of 
Total 
Population 

(N = 127) 

Y – Yes 35 28.5 28.5 27.6 

N - No 88 71.5 71.5 69.3 

 Total 123 100 100   96.9 
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four of the students who indicated prior programming assistance provided answers that 

were not actual programming languages.  These included Eclipse (an Integrated 

Development Environment generally used for Java development), HTML (a markup 

language for website development) Dreamweaver (a web design/development 

Integrated Development Environment) and GML (an ambiguous reference that could 

point to a few different markup languages).  These selections are excluded from the 

table below. Additionally, there exists overlap between students and languages – some 

students indicated multiple valid programming languages.  Each language tally 

represents the number of respondents indicating prior experience with the language.  Of 

all participating students, about 32% had Java programming experience prior to the 

course where the evaluation took place. 

 

 Frequency Percent of total evaluation 
population (N = 127) 

Java 41 32.3 

Python 7 5.5 

Visual Basic .NET 2 1.6 

C# .NET 1 .8 

C++ / C 4 3.1 

Alice 9 7.1 

javascript 1 .8 

Valid 

Jeroo (pseudo Java) 1 .8 
Table 43: Languages students had previous experience with 
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5.4 Discussion of the System’s ability to generate exercises and obtain cases 

from student solutions 

5.4.1 Exercise Generation 

During evaluation, the system was required to generate exercises over the 

Elementary Programming topic. The Generator looks for cases that map to the selected 

topic from the front end.  A case is selected from this topic from the case base and sent 

to a method for generating the exercise.  This method then takes the meta language 

solution associated with the case and turns it into instructions for the exercise generator 

to create the bug instead of reasoning about what assistance to offer in the presence of 

the bug represented by the case.     

During the evaluation period, 786 exercises were generated by the system and 

served to students.  Of the generated exercises, 196 of them were distinct.  These 

exercises were all generated over the same single base class that represented practice 

with simple statements and was 28 lines long.      

5.4.2 Case Acquisition 

During the course of the evaluation, every successful solution to an exercise that a 

student coded was tagged, so that at a later time the case acquisition process could 

analyze each of these solutions.  This analysis reviews each student solution for 

uniqueness as compared to the original solution for a given exercise.  Then, if the 

student’s answer is different, the system turns the student’s edits to the exercise code 

into the meta-language used in the system for providing remediations and generating 

exercises.  If the generated solution is not already used in the cases that are similar to 
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the defect that was present in the exercise code, the system either updates an existing 

case (if that case had no solution associated with it) or generates a new case.  1195 

solutions were collected and analyzed.  Of these, 511 were marked as new and prepared 

for retention by the system.  These results are discussed further in Chapter 6.      
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6 Chapter 6: Conclusions 

This chapter discusses further what the statistical results presented in chapter 5 

mean for this research and then provides answers to the research questions posed at the 

beginning of this work.  For convenience, the answers to the research questions are 

presented in brief here: 

• Intelligent Tutoring Systems 

o How could the system reason about student solutions without incurring the 

program verification problem? 

 The system has the following abilities to address this problem: it 

knows at least one possible answer for each question it generates; it 

knows the expected output for each possible question, and it is able 

to compile and run each student solution to determine if the output 

created was correct. The statistically significant pretest-practice-

posttest results indicate that students learned while using the 

system, which in turn show that ITS-Debug successfully provides 

feedback on student programming defect issues.  

o How should debugging issues be remediated? 

 Changed to “How could debugging issues be remediated?” There 

are many possible approaches to remediation. The methodology 

chosen in this work has been proven valid by statistically 

significant pretest-practice-posttest results. 

o How could the system determine if a given remediation is successful? 
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 This functionality was excluded from formal evaluation as it was 

made redundant by the committee’s decision to exclude the 

automatic selection of student learning style during the evaluation.  

The methodology of ITS-Debug is discussed further below. 

o Could the system generate exercises dynamically? 

 In phase 2 of ITS-Debug, which adds automatically generated 

exercises, results of attempts data indicate that students required 

less attempts to complete exercises the more exercises they 

completed.  This result suggests that Phase 2 exercises enhanced 

the experience of students participating in the evaluation. 

• Intelligent Tutoring Systems and Case Based Reasoning 

o How should the domain be represented and reasoned about? 

 Case Based Reasoning was the chosen methodology, with cases 

presenting as individual syntax, runtime, and logical defects.  The 

success of ITS-Debug in evaluation trials indicates that the chosen 

methodology is valid. 

o How can the system acquire domain knowledge? 

 The system was given the ability to acquire new cases from 

student solutions, discussed in Chapter 4. The system was able to 

extract 511 cases from 1195 student solution. Tthe unique-ness of 

all these new cases is yet to be determined. This question is 

discussed further below and in Chapter 7 as future work. 
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• Computer Science Education 

o How could debugging be taught?  Can debugging be taught to novices? How 

could a system teach the domain? 

 The chosen methodology was proven successful by pretest-

practice-posttest t-test results and by analysis of students’ attempts 

data, both at the means and as individual exercise episodes (see 

Appendix G). 

6.1 Further Discussion of Obtained Results 

6.1.1 Pretest vs. Posttest Results 

The design of this aspect of the experiment improved after the college students 

used the system.  When the evaluation was being conducted with the College students it 

was required by the class instructor that the system be used to help the students prepare 

for an exam.  These exams consisted of two main concepts each.  For example, the 

students’ second exam focused on Loops and Methods.  Therefore the students were 

asked to practice with Loops for twenty minutes and then Methods for twenty minutes.  

Additionally, the pre- and posttests needed to be shortened from their original form in 

order to fit this design.  This part of the evaluation also suffered from certain system 

flaws that have since been remedied.  Furthermore, the system was later opened to the 

students for more freeform use.  Although this provided valuable data regarding 

attempts and time to complete exercises, the pre and posttest methodology did not work 

well in this environment.  Some students didn’t practice long enough, some students 

waited a long period of time before returning to complete the posttest, and some 
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students simply did not complete the posttest.  Due to these issues, the first half of the 

college student data showed an increase in means between the pretest and posttest that 

was not statistically significant and the second half of the data for the pre and posttest 

evaluation was rendered useless.   

When high school students were presented with the system these issues were 

removed from the experiment by only holding the experiment in supervised sessions 

and by having the students practice with only one topic in a session.  A dramatic 

improvement in the results received from this aspect of the experiment was observed.  

This time, a two tailed t-test result of p<.01 was observed.  Some external reasons for 

this result could include that there were much more of these students and that these 

students were much closer to being true novices.  The larger group of high school 

participants had mostly only previously programmed using Karel the Robot and were all 

taking an introductory level Computer Science course.  Other students using the system 

were either Advanced Placement students or college level students, several of which 

had some kind of previous programming experience at a more advanced level than 

Karel the Robot.  

The results from the pretest-practice-posttest methodology used in the evaluation 

of this system proves that learning of debugging skills did in fact occur between the 

time the pretest was taken and the time the posttest was taken.  The only event that 

occurred in between the pretest and posttest was practice within the system.  Therefore, 

the system did in fact teach the students debugging skills.  
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6.1.2 Attempts Results 

The results of the analysis of the attempts data are encouraging.   When all student 

data, regardless of phase or scholarly level, is analyzed as one data set a significant 

correlation at the p<.01 level is obtained, indicating that with more practice within ITS-

Debug fewer attempts are required to complete a given exercise.  This result may imply 

that the system is helping the student to learn how to debug programs.  When the data is 

split based on scholarly level, high school students exhibit a statistically significant 

negative correlation at the p<.01 level when comparing the number of exercises seen in 

the system with the number of attempts required to complete an exercise.  Conversely, 

when looking at the attempts data obtained from college students alone, no statistically 

significant correlation is found.  It is believed that this is due to two factors: the much 

smaller sample size that the college students represent and the fact that the evaluation 

changed after the college students used the system.  Specifically, college students were 

asked to practice for 20 minutes each with two different topics.  After analyzing the 

college student data this was deemed a weakness of the experimental design.  The data 

would start to trend towards the expected negative correlation then rise sharply up as the 

students changed topics.   After reviewing this data the decision was made to have 

students practice with a single topic in a single session, with the hypothesis that the 

originally hypothesized negative correlation would be evident if the students were not 

required to change topics during the session.  This hypothesis appears to have been 

proven correct with the high school students.  Proving this hypothesis over college 

students is included as an item for future work in the next chapter.   
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The significant negative correlation found between the mean number of attempts 

to complete an exercise and the number of exercises completed within the system 

proves that with more practice in the system, less attempts are required to complete an 

exercise.  Although the phase 2 participants all received variations of the same base 

program, both sets of results exhibited statistically significant negative correlations.  

Therefore, this part of the evaluation also shows that participants acquired debugging 

skills over the course of the evaluation.   

6.1.3 Timing Results 

Timing data for all students using the system was evaluated using the Pearson 

Correlation to determine if a statistically significant negative correlation between 

number of exercises completed and the mean amount of time required to complete an 

exercise existed.  As mentioned earlier in Chapter 5, this data may contain a skew due 

to an at this time unknown error in the logging mechanism given that some students 

present with a mean time to complete of less than a second.  This data is not used in this 

work to prove any of the relevant hypotheses.  The analysis has been retained however 

as, if a skew exists, it appears to exist in a regular manner and may therefore still be 

relevant to this work.   

Analysis of this data produced a significant result at the p<.01 level.  As with 

attempts data, the timing data was split by the students’ educational level (high school 

vs. college).  Similar to the attempts data, a significant negative correlation was found 

over high school students’ time to complete an exercise at the p<.01 level.  Again, 

College students alone did not yield a statistically significant result.  However this data 
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set differentiates itself from the College student attempts data when displayed as a 

scatter plot in that a trend does appear to exist but not at a statistically significant level.  

It is believed that, had more college students participated, this result would have also 

yielded a statistically significant negative correlation between exercises seen and the 

time required to complete an exercise due to the fact that the data is close to statistical 

significance at the p<.05 level.   

6.1.4 Pretest and Posttest Metacognitive Questions Results 

The results from the metacognitive questions do not appear to show a significant 

change in the way the novice students thought about the debugging process.  This is 

believed to be due to four factors.  First, the students’ limited time within the system 

would have limited this aspect of the study.  Second, the data appears to show that most 

of the students already had some understanding of what the debugging problem entails.  

Third, most of the answers that did change over the course of the study moved towards 

the more detailed and specifically correct choices provided.   The second result is in line 

with previously mentioned background research – students already understand, to a 

degree, how to approach the debugging problem.   The difference between the novice 

and the expert in the debugging process is mainly that the novice debugger is less 

efficient at debugging programs due to a lack of domain knowledge and that the novice 

has a greater tendency to introduce new defects while trying to solve the problem. 

 Finally, the fact that some of the metacognitive questions do not all have a 

discrete correct answer could have had a negative impact on the results obtained.  The 

design of the questions was intended to hedge against the second factor above – that the 
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students have some prior understanding of what the debugging problem entails.  It was 

anticipated that this prior knowledge would have led to similarly non-significant results 

if the questions gauged only whether or not they knew what debugging was and how to 

go about it.  Therefore the chosen set of metacognitive questions aimed to measure 

whether or not the student’s knowledge of debugging matured over the course of the 

study.  Modifying the metacognitive questions to better suit this purpose and 

performing the evaluation over a longer period of time in order to allow this maturation 

of debugging knowledge to occur are left for future evaluation efforts.  

6.1.5 Phase 1 vs. Phase 2 Results 

The results obtained from comparing Phase 1 to Phase 2 were pleasantly 

surprising.  The hypothesis had been that the automatically generated exercises would 

be at least as effective as the hand generated exercises.   Originally, only the attempts 

and timing data were considered for this aspect of the evaluation.  Further statistical 

analysis was performed, splitting the Pretest and Posttest results by phase and 

performing separate paired t-test analyses over both data sets.  Both sets of students’ 

scores exhibited statistical significance at the p<.01 level, with Phase 2 students 

exhibiting a higher level of significance than Phase 1.  Therefore, both aspects of the 

system were effective in teaching students debugging skills, and both were at least as 

effective as each other.  

The attempts analysis of the experiment show a significantly higher level of 

effectiveness for students who received automatically generated exercises. This result 

could in part be due to the consistent nature of the exercises generated, since a single 
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base program was used in the evaluation to generate exercises (though the system is 

able to use multiple base classes).  While Phase 1 exercises each consisted of semi-

unique individual programs, Phase 2 exercises were all manipulations of a single 

program.  Therefore, as students gained experience with the particular program being 

used by the Exercise Generator they may have found it easier to fix each subsequent 

bug produced by the system due to their growing familiarity with the base program.  

Although previously questions were raised as to possible confounding effects from the 

phase 2 students only receiving one base program for their exercises, the t-test results 

suggest that perhaps the regularity of the exercises presented to this group was in fact 

more helpful than having the students view and correct more disparate base programs. 

This evaluation design was chosen purposefully in order to avoid the possibility 

of confounding the results with base programs that were too disparate.  However this 

design decision leaves open questions as to how students would perform on more 

disparately generated exercises, over multiple base programs, for a single topic.  Given 

the evaluation performed it is unclear that students would definitely have performed in 

the same manner if multiple base classes had been utilized.  It seems likely that, since 

both phases produced statistically significant results, evaluation with multiple base 

classes would not yield significantly different results. Future evaluation over multiple 

base classes and multiple topics may be merited. 

6.1.6 Phase 3 Results 

Although the results from the evaluation of Phase 3 did not produce statistical 

significance, a decrease in the means between the control and test groups was present.  
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When the Phase 3 experiments were run, the system presented certain server and 

software oriented issues not present in pre-evaluation testing.  In addition, students 

completed the exercise more quickly than anticipated.  Therefore the evaluation session 

for Phase 3 was much shorter than for Phases 1 and 2.  It is believed that a future 

evaluation of Phase 3 of the system, with more students, a longer evaluation exercise, 

and in the absence of the issues described above, would produce statistically significant 

results.  Further augmentation and evaluation of Phase 3 is discussed in the next chapter. 

6.1.7 Qualitative Results 

An analysis of the qualitative data retrieved by the system displays an 

encouragingly positive response from the students using the system.   84.3% of the 

students who used the system agreed that concepts they learned within the system 

would be applicable to programs written outside of the system and 88.2% of students 

agreed that the concepts they learned within the system were applicable to their 

coursework.  Therefore, not only was learning observed from the data collected by the 

system but the students also perceived that what they learned from the system would 

transfer to work outside of the system. 

Three additional survey questions were presented to the students, The Likert levels 

are taken to indicate the following intervals: 1 = not at all, 2= not helpful, 3 = somewhat 

helpful, 4 = helpful, 5 = extremely helpful.  The reason for this deviation from the usual 

interpretation of Likert ranges (where 3 usually indicates neutrality) is because of the 

overlap between the second survey question (“How Helpful do you think concepts 

taught by the system will be in debugging programs you wrote outside of the system?”) 
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and the first Y/N question (“I will be able to apply concepts learned in the system to 

programs I write outside of the system”).  Due to the overlap of these questions and the 

fact that all but 19 students answered ‘Y’ to the very similar Y/N question, 3 is taken to 

indicate they found the system ‘somewhat helpful’ as opposed to taking a neutral 

position.  With this interpretation of the results, an encouraging majority indicated that 

they found the system to be helpful in debugging programs.  The results from all three 

of the continuous scale questions indicated the majority of students selected 3 or above.  

With the interpretation described earlier, this leads to the conclusion that the system was 

well accepted by the students.   

The last question of the survey was free form and asked the students to indicate if 

there was something they would change about how the system works. During the course 

of the evaluation this feedback was taken very seriously and helped drive changes to the 

system as it evolved.   The following provides a summary of student responses to this 

question:  

• Confusion on modality selection 

• Indication that the system was very helpful and that the student would have 

liked more time to practice 

• Request for more specific/targeted feedback 

• Dislike/intimidated by the original color scheme chosen for the interface 

• More exercises / More difficult exercises 

• Feedback on the pre/post tests to see what they got right/wrong 

• Descriptions of glitches/issues with the system that were encountered 
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• Request for exercises to teach more computer science concepts 

As the college students were the first formal evaluation group, it was possible to take 

some of this feedback under consideration and modify the system accordingly.  

Specifically, the user interface underwent a major overhaul before evaluation with high 

school students.  The system also received more levels of remediation and the ability to 

generate exercises on demand.  

During the testing sessions certain feedback was given directly to the researcher 

from the students and the instructors involved.  Over the course of this evaluation of the 

system several students from both the college and high school levels asked if they could 

continue using the system outside of the testing session, a few of these students did 

actually continue to use the system of their own volition.   

Additionally, participating high school teachers provided their own observations 

informally at the end of evaluation sessions.  One high school teacher asked if they 

could continue to use the system with their students.  Another commented that, while 

helping to oversee the evaluation, they could see that their students were learning while 

using the system.  This teacher also indicated that they might be interested in continuing 

to use the system with their students.   

6.2 Research Questions Recap  

The following reviews the contributions and pursued questions of this research, and 

how the implementation and results serve to answer the questions posed.   
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6.2.1 Intelligent Tutoring System  

This work successfully created an Intelligent Tutoring System capable of 

teaching novice students the domain, as exhibited by the results of the pretest – posttest 

aspect of the evaluation.  Significantly lower scores were obtained on the posttest after 

the students used the system, implying that the system did indeed teach the students the 

material taught by the system.  Since ITS-Debug taught students how to debug small 

programs, it follows that the results support the conclusion that it does in fact help teach 

students how to debug programs.  

The successful evaluation results obtained for phases 1 and 2 additionally imply 

that the methodology chosen is indeed valid for representing and reasoning about the 

domain.  As discussed earlier, Case Based Reasoning and Static Program Analysis were 

chosen for representing and reasoning over the domain.  Case Based Reasoning was 

chosen because the analogical nature of CBR provides is close to the way expert 

programmers typically reason about the domain.  I.e., expert programmers frequently 

ask themselves, have I seen this error before?  What did I do last time to resolve this 

error? What I did differently this time that I should remember next time?  In addition, 

when programmers try to analyze why their program failed to run or failed to produce 

the desired results they may make mental static slices of their program code.  In essence 

they may try to think like the computer and determine where the process may have gone 

wrong by traveling forward and backwards through their code and analyzing it in this 

manner.  
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The results obtained from students using the system indicated a high level of 

statistical significance; including the t-test results and the analysis of each students’ 

mean attempts required to complete an exercise.  This researcher therefore believes that 

the choices of CBR and program slicing are conducive to the goals of ITS-Debug, and 

thus help novice Computer Science Students learn how to debug programs.  It is 

possible that a combination of CBR with richer model-based reasoning could help the 

system be more relevant to more advanced users.   

 Another research question asked how the knowledge base for this system could be 

kept tractable, given that the domain is potentially infinite.  This question was posed 

before the design or implementation of the system was clear.  Although the domain is 

potentially infinite in the number of ways to program a specific problem and the number 

of ways to break a given program, it was found to be limitable for this research through 

several factors.  These included: the choice of target audience, the interaction with javac, 

the Java Runtime Environment, and the FindBugs static analyzer.  Each of these 

resources has a static knowledge library..  All possible compiler issues that javac can 

produce are represented with the knowledge base provided as it comes directly from the 

configuration file javac uses to generate all of its error messages.  Runtime errors are 

represented by the core Java library’s Exception classes.  Again, this is completely 

represented by the system’s knowledge base.  Additionally, many of these exceptions 

are out of scope for the target audience.  For instance, Socket exceptions are part of this 

library.  Novice students are extremely unlikely to be working with sockets.  
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Additionally, none of the target students were at a level where they were writing their 

own exception handlers – most of them had not yet even learned try/catch.   

Novice level logic errors were not, however, as well represented with the FindBugs 

library.  FindBugs missed many logic errors that novices tends to code often make, 

probably because FindBugs targets a more expert programmer.  In order to address this 

problem, two different ideas were considered: augment Findbugs with new patterns 

representing novice level logical defects, or build a different form of logical analysis 

into the system. The latter approach was chosen, developing a separate module of 

logical error assistance.  This part of ITS-Debug compared the student’s solution to the 

known solution for a given exercise.  In the presence of a logical error the student 

received assistance indicating roughly how close or far they were from the known 

solution.   If the student still had a logical error after receiving the rough estimate of 

correctness, they then received a comparison indicating at a high level what they were 

missing or had included unnecessarily in their solution.  These new levels of assistance 

are described in more detail in Chapter 4.   

This approach was specifically chosen in order to supplement the use of CBR.  

While CBR is a valid approach for the domain, as the results of evaluation show, it 

started to become clear during initial evaluation efforts that as the system progresses in 

the future it will need to incorporate other forms of reasoning.  Specifically, if the 

system were to progress to assist students dealing with more complex programming 

(class design, generics, inheritance, etc.), it may need to incorporate some model-based 

reasoning in order to help students reason more deeply about these problems. The new 
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logical analysis included in the Pedagogical Module begins to explore the incorporation 

of model-based reasoning into the tutoring system.  These new levels of analysis were 

present in the system during the high school evaluations performed this past semester. 

Additionally, questions about student modeling were posed. The current student 

module models the student in terms of what exercises the student has seen, what cases 

the student has seen, what exercises and cases the student has successfully solved, and 

what the topic coverage is of the student’s experience within the system.   The 

Pedagogical Module uses this data to help determine how to teach the student and what 

exercise to serve back to the student.  Some of the reasoning with this module was not 

utilized in the most recent evaluation due to the nature of the evaluation process chosen 

– the students needed to concentrate on one topic at a time for this version of the 

evaluation.  The system does incorporate a mechanism for completely controlling the 

student’s navigation through the topics the system is able to present.  Improvement and 

evaluation of this aspect of the system is considered future work.  However, as with the 

domain module, the methodology chosen in this research is considered valid at this time 

due to the significance of the obtained t-test results for the pretest and posttest, in 

addition to the statistically significant correlations found regarding students’ mean 

attempts required to complete an exercise. 

Another aspect of the research questions pertaining to Intelligent Tutoring Systems 

involved reasoning about student solutions without incurring the full program 

verification problem. This question was revisited a couple of times during the course of 

this research program.  The combination of CBR and having every exercise have at 
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least one known solution was used to address this concern originally.  And for syntax, 

runtime, and some logical errors this worked very well, as exhibited by the results for 

phases 1 and 2.  Later, it became apparent that FindBugs needed to be augmented to 

help the novice with Logical defects – during initial trials it was noticed that certain 

logical defects novices are prone to coding were not being picked up by the FindBugs 

system.  ITS-Debug was then modified to perform a deeper analysis comparing the 

student solution to the known solution and determining where the student’s solution 

differed.  For Phases 1 and 2 this worked very well.  The system was able to complete 

its analysis without causing a timeout and the student was able to receive extra 

assistance with logical defects.  When the students were using Phase 3 however this part 

of the system started to slow down more dramatically and in some instances fail.  Thus, 

though both of these forms of analysis avoid the NP-complete program verification 

problem, the end solution may still in certain scenarios be too computationally 

expensive for a client-server web application.  Modifications to alleviate this 

computational expense are discussed as future work. 

Another question pertaining to Intelligent Tutoring Systems was how should 

debugging issues be remediated? It was determined very early on in this research 

program that the system could benefit from including multiple learning styles in its 

ability to teach the domain.  Because the lengthy surveys usually used to determine a 

student’s learning style would not have worked well within the evaluation conditions, 

ITS-Debug takes a broad approach to employing a student’s learning style in its 

presentation of remediations.  Specifically, two types of learning styles are supported: 
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verbal learners and visual learners.  ITS-Debug asks the student to identify at the start of 

their first session what kind of learner they believe they are.  ITS-Debug then uses this 

learning modality for this student, unless the student alters his or her selection.   

As with other tutoring systems, the remediations ITS-Debug provides are 

scaffolded.  Students receive more information with subsequent assistance from the 

system.  Visual students received visual cues and animations disambiguating the 

domain while verbal students received textual feedback.   

When all students’ data was analyzed as one data set, split by modality, attempts 

data recorded by the system for students that selected Verbal as their modality required 

significantly fewer attempts to complete an exercise. Informal feedback from some 

students who saw both forms of remediation also suggested that they preferred the 

verbal presentation.  However, when students’ data regarding time to complete an 

exercise is analyzed, the opposite result is obtained – students who selected Visual as 

their modality required significantly less time to complete an exercise (p<.01) than 

those who selected Verbal (p<.05).  It is believed that this difference (if it is not skewed 

by previously discussed issues with timing data) may in part be due to the fact that 

although the Verbal assistance may have been more effective in teaching the domain 

and therefore helping the student to require less attempts to finish an exercise, the 

Visual assistance may have more obviously indicated to students what they needed to 

change.  The first two levels of Visual assistance draw the student’s eye immediately to 

the lines of code that could be affected, through the use of animated line highlighting.  

The student may be able to process the Visual information more quickly and, although 
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they are using more attempts, they may be reaching the solution in less actual time than 

their Verbal counterparts.  Future analysis may be merited to refine this comparison.  

The last relevant question regarding contributions to Intelligent Tutoring 

Systems involved determining whether or not a given remediation was successful. This 

question was originally more relevant to selecting the student’s learning style on the fly.  

When this functionality was included, the student would indicate that they would like 

the system to determine what kind of learner they were from their interactions with ITS-

Debug.  It would then observe the student and randomly provide different remediations.  

In this scenario ITS-Debug would start by oscillating randomly between the two 

available learning styles and assigning a weighting to each style.  Initially, both learning 

styles were assigned a weight of 0.  This weight would increase or decrease as the 

student used the system and responded positively or negatively to a given remediation.  

If a given remediation resulted in a correct answer to an exercise, this learning style 

received an increase in weighting.  If a given remediation resulted in an incorrect 

answer to an exercise the weighting for that learning style was reduced.  The oscillation 

would continue until one learning style received a weighting greater than 60%.  Once 

one of the learning styles reached this threshold, the student would remain in the system 

as this type of learner unless they returned to the modality selection screen and selected 

a different learning style.  Due to a unanimous decision of the dissertation committee, 

this aspect of the system has not yet been formally evaluated.  However, when this 

aspect of the system is eventually evaluated, it is anticipated that the students would 
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better receive this methodology than a lengthy survey tied to a given learning style 

model.  

6.2.1.1 Acquisition of Domain Knowledge 

 ITS-Debug records every solution the student creates for every exercise the 

system presents.  Subsequently (after the student has finished working with ITS-Debug), 

a separate module analyzes all of the solutions, comparing them to the original known 

solution for the exercise.  Each exercise represents one defect, with few exceptions.  

Each solution is compared to its related exercise.  If the student coded a new solution to 

the exercise, the original defective code for the exercise is analyzed to determine to 

which case it corresponds.  The student’s solution is then distilled into the ITS-Debug 

meta-language.  If the original case did not have a solution, the new solution is added to 

the case.  Otherwise, a new case is created using the student’s new solution. 

The system’s performance for the case acquisition task is encouraging, while also 

suggesting avenues for further improvement.  The current implementation assumes that 

each solution contains one change.  This assumption will not always hold—some 

defects may involve multiple changes, especially certain logical defects.  Additionally, 

as ITS-Debug matures its representation language may become more complicated.  

Evolution of this language may present opportunities to glean additional useful 

information from student solutions.  Finally, it is possible that a different approach 

would yield better/more exact results.  The module currently compares the student’s 

solution to the system’s original solution and determines which nodes of the student’s 

code least match the known solution.  The least match is the item identified as the 
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affected construct.  This approach was chosen when the researcher realized that 

identification of the affected construct could be viewed as the opposite of a traditional 

pattern recognition problem—the element farthest away from the known elements is 

what is desired, not the closest match to an existing model of the solution.  Although the 

current implementation of the algorithm uses this approach, there may be a better 

algorithm for solving this problem or further refinement of the solution utilized here.  

Continued improvement of the case acquisition module is an item for future work. 

6.2.1.2 Exercise Generation 

 As discussed earlier in Chapter 4, the original base system was augmented with an 

Exercise Generator in order to help remedy the fact that Phase 1 had a fixed database of 

exercises that students would eventually complete.  The Phase 2 Exercise Generator 

was built to generate exercises over many Java language constructs.  The system, as 

discussed in Chapter 5, was evaluated on Elementary Programming exercises alone (as 

necessitated by the students using the system) and performed very well.  The results 

obtained from the by phase t-test analysis discussed earlier and the analysis of attempts 

required to complete an exercise prove that the system is successfully capable of 

generating relevant Elementary Programming exercises on the fly.  Further details about 

exercises the exercise generator is capable of generating appear in Chapter 5.  

6.2.2 Computer Science Education – Teaching Debugging Skills to Novices 

The question that was posed under this category at the beginning of this work 

was how should debugging be taught to novices.  Two methods were chosen to answer 

this question.  Phases 1 and 2 exemplify the first method – show the students defective 
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code they did not write and assist them in the debugging process.  The second method 

presents students with a system capable of assisting them with defect in any program 

they might write in the system (Phase 3).   

The results of evaluating Phases 1 and 2 show that the first method is indeed a 

valid way to teach novices to debug programs.  However, to answer the question as it 

was originally posed – how should debugging be taught to novices? – a comparative 

analysis not completed yet would need to be performed, implementing various teaching 

methods researched and comparing the results of each of those methods. In this research 

the first method is supported by statistically significant results obtained from evaluation.  

The results from Phase 3 are inconclusive and would require further evaluation in future 

work. 

The background research performed for this dissertation described several 

different approaches to teaching the domain and building systems to teach the domain.  

Classes instructed students on best practices in software development and design and 

had students practice with broken programs and take handwritten logs.  Some systems 

decomposed the problem by bug type (syntax, runtime, logical) and provided targeted 

assistance for the chosen type.  Other systems were developed as Intelligent Tutoring 

System Components (PROUST) or full ITS systems.  Each of these systems targets a 

subset of the domain when what the student really needs is a more all purpose 

assistance solution.  Students are going to code all three types of errors, often multiple 

errors from each of these types within the same program.  They need a single system 

capable of handling syntax, runtime, and logical errors over a broad range of defects 
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possible within the programming language they are using.  ITS-Debug aims to be that 

one stop assistance solution for the student, and Case Based Reasoning helps the system 

to achieve this end.  Although future improvements and evaluation are warranted, the 

current implementation has proven its effectiveness during the evaluation period and 

during this period all three error types were encountered within the system during live 

evaluation.  Future work could help the system to evolve into its full potential as an 

overarching resource for the novice computer science student. 
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7 Future Work 

7.1 Intelligent Tutoring Systems 

Future directions for the Student Module were identified during the course of the 

implementation and evaluation.  This module evolved as the system was built and many 

different design choices were reviewed.  The other design that was considered involved 

using Pattern Recognition to map students back to knowledge levels as described in 

Chmiel and Loui’s work [9].  Although a very interesting research question, a simpler 

model sufficed for this particular research program.  In the future it would be interesting 

to consider how to create a Student Module using Pattern Recognition.  The researcher 

does not at this time know of an ITS that uses Pattern Recognition techniques to help 

model students. 

The Pedagogical Module also contains room for improvement.  As discussed in 

Chapter 6, the new logical analysis introduced while developing Phase 3 is sometimes 

too computationally expensive for a web application that relies heavily on server-side 

computation. Two solutions could improve the analysis process: shifting from a client-

server web based solution to a desktop application implementation or moving more of 

the computation and analysis to a client-side code library. The latter approach would 

still preserve the advantages of a web-based application. 

Additionally, a few items were noticed as possible future work for the exercise 

generation system.  ITS-Debug was evaluated solely on its ability to generate exercises 

under the topic of Elementary Programming.  It would be interesting to determine 

through further evaluation how well the Exercise Generator covers other topics and how 
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to increase the abilities of the Exercise Generator.  For instance, the Generator is 

capable of generating exercises over a subset of the topic the system is able to represent.  

It would be interesting to determine how to generate novel exercises involving defects 

in class development and design.  The fact that this domain is more open and difficult to 

reason about would make the Exercise Generator itself more interesting. 

7.2 Future Work Indicated From Evaluation Results 

The evaluation of Phases 1 and 2 showed a direct correlation between the time 

spent practicing with the system and the number of attempts and the length of time 

required to complete a given exercise for high school students.  The college group alone 

did not show a significant correlation.  As discussed earlier this is believed to be in part 

due to the original design of the experiment.  It is believed that if the college students 

had used the system under circumstances similar to those the high school students 

experienced that a significant correlation would also have been found with the college 

student population.  It is also believed that if more college students had participated this 

would also have positively affected the results.  This further evaluation is left as future 

work. 

 For Phase 2, future work includes evaluating this aspect of the system over other 

topics.  Evaluation of this phase was limited, due to environmental constraints, to 

Elementary Programming alone.  It would be interesting to determine how well the 

exercise generation system is able to handle the demands of the students over other 

topics.   
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 And, as discussed earlier, it may be beneficial to perform a future evaluation 

session with an improved implementation of Phase 3 with more students.  One of the 

eventual goals of this research has been to provide students with a system that could 

provide them with assistance on programs they are being asked to write.  In some ways, 

the system is in fact ready to provide this form of assistance.  However in the presence 

of certain student issues in the more open environment of Phase 3 the system could 

benefit from further improvements before performing this proposed future evaluation. 

 

7.3 Postponed Questions 

Three of the original questions were postponed as out of scope and three more 

were discovered while performing the research for this system.  It is the researcher’s 

intention to eventually pursue these remaining questions and whatever other questions 

are discovered as work with the system continues.  The following discusses the 

postponed research questions: 

7.3.1 How do male and female students compare when using the system?  Is there 

an increased benefit to using the system for one group as opposed to 

another? 

This question was originally posed during the depth study preceding this 

dissertation.  One of the main goals behind this system is to provide a support 

mechanism for when students become stuck on a programming exercise.  It follows that 

students without peer support or external resources may become more profoundly stuck 

than students who have someone to turn to or work with.  Given that there is still a 
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gender disparity in the study and pursuit of Computer Science, it stands to reason that 

perhaps a system like this, that provides in situ and on demand assistance, would stand 

to be of greater assistance to students in the minority.  This line of research was not 

pursued due to confidentiality concerns – given that there are still so few female 

students, discussion of results on gendered differences would have inadvertently been 

traceable to individual students.  Because of these concerns it was deemed more 

important to vet the system first, then pursue research into the impact the tool might 

have on different gender/minority groups as future work.  

7.3.2  Should the system support other languages? How would supporting other 

languages change the system? 

Currently the answer to this question appears to be a strong “yes.”  Although the 

question was postponed it became apparent that the novice students at many schools are 

starting their computer science education with Python, Ruby, and VB.NET.  In order to 

be able to assist as many students as possible going forward this is considered a very 

important question for future pursuit and may in fact end up being the next question 

pursued for this research. 

It is believed at this time that other languages could be supported by this system 

if the analogous compilers/interpreters and runtime systems allow for an external 

system to gather information about these steps in the programming process and then 

reason about them in the same manner as the current system. It is believed that there 

will be correlations between the messages produced by the systems of these other 

languages and the messages produced by the Java compilation and runtime 
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environments.  If this is true it may be possible to redesign the underlying architecture 

to take advantage of these analogies between different languages and perhaps make use 

of this information in assisting the student.  When encountering a problem using a new 

programming language being able to correlate the new issue with an issue that was 

encountered with a previous programming language can be helpful. 

7.3.3 Does peer assistance factor in to modeling the student? How? And should 

the system facilitate peer communication? 

Supporting peer assistance in the classroom is a known educational technique, 

especially in educational environments that include peer programming.  Originally, the 

researcher intended to include a message board so that students would be able to assist 

each other anonymously.  It would be interesting in the future to revisit this question 

and determine if there is a better way to facilitate per assistance and how to analyze its 

effectiveness. 

7.3.4 Support for personae? 

Personae were originally discussed as a possible mechanism for discussing the 

domain with students.  It is unclear at this time whether or not personae would be an 

improvement to this system.  Student feedback did not indicate that they would like 

more personalized, human like assistance.  They indicated that they would like more 

direct / clearer assistance. It is unclear at this time whether the pursuit of this question is 

worthwhile for this research. 
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7.3.5 Should further levels of assistance be introduced? 

During the evaluation period a few students indicated that they would like more 

direct assistance from the feedback mechanism.  There is a fine line here between 

assisting the student to find the answer themselves and giving the student the answer.  It 

is believed at this time that the system could benefit from further levels of assistance 

and a more intelligent selection of what assistance to provide to the student in what 

situation.   

7.3.6 Could the Student Module be realized via pattern recognition? 

During the design phase of the system built for this research, a different Student 

Model was planned out that would require the use of pattern recognition to map 

students back to competence levels as described in Chmiel and Loui’s work [9].  There 

is no system known to the researcher at this time that utilizes pattern recognition in this 

manner, this may be a worthwhile future research direction but requires further 

background research in order to even determine if it is in fact a unique research area. 

7.4 Conclusion 

The driving goal behind this research was to create a system that could 

successfully teach the novice student about the domain of program debugging and 

provide a significant contribution to both Intelligent Tutoring Systems research and 

Computer Science Education research.  No Intelligent Tutoring System to date has been 

built to deal with the domain in this manner, namely using Case Based Reasoning.  In 

addition, very few systems have been built to specifically assist students in learning 

how to debug programs.  All of the background research, design, implementation, 
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evaluation, and results have come together and produced an ITS like no other at this 

time – a system that has been proven to help teach debugging to novices in a general 

sense, that can produce exercises within this generalized domain on the fly, and that 

utilizes Case Based Reasoning and Static Program Slicing to achieve these ends.  

Furthermore, there are still many interesting research questions and future system 

improvements to pursue.  It is the intention of this researcher to continue this research 

into the future, eventually bringing the system to its full and final potential, and 

providing students with a legitimate source of debugging assistance that they can access 

when and where they need it without being concerned that they will be judged for not 

knowing something that they have likely never been taught.  
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9 Appendix 

Appendix A: Pre Study Survey: 
 
1. Have you ever taken a programming course before? 
   Yes  No 
 
2. Have you tried to learn programming outside of a course or within a course on  
     some other subject? 
  Yes  No  
 
3. If you answered “Yes” to questions 1 or 2, what language(s) did you learn? (select  
     all that apply) 
 Java   C++    Python   Visual Basic .NET    C#.NET    Other (please list below) 
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Appendix B: End of Study Survey: 
 
1. Please select “Yes” or “No”: I will be able to apply concepts learned in the system 

to programs I write outside of the system: 
 Yes No 
 

2. Please select “Yes” or “No”:Concepts I learned in the system are applicable to my 
coursework: 
 Yes No 
 

3. On a scale of 1 to 5 with 1 meaning “not at all” and 5 meaning “extremely”: How 
helpful did you feel the system was in teaching you how to debug programs? 
 1 2 3 4 5 
 

4. On a scale of 1 to 5 with 1 meaning “not at all” and 5 meaning “extremely”: How 
helpful do you think concepts taught by the system will be in debugging programs 
you wrote outside of the system? 
 1 2 3 4 5 
 

5. On a scale of 1 to 5 with 1 meaning “not at all” and 5 meaning “extremely”: How 
helpful was the feedback the system gave for individual debugging problems? 
 1 2 3 4 5 
 

6. Is there something you would change about the system or how the system works?  If 
so, please indicate any relevant information below. 
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Appendix C: Pre/Post Test 
Please complete this survey to the best of your ability.  This survey DOES NOT count 
towards your grade, nor are there any “right” or “wrong” answers.  This survey IS NOT 
indicative of what your instructor(s) expect you to know nor will they be informed of 
how you personally answered this survey.  This is COMPLETELY ANONYMOUS. 
 
 
Pre Survey:  
 

1. Please select “Yes” or “No”:Have you ever taken a programming course before? 
a. Yes 
b. No 

 
2. Please select “Yes” or “No”: Have you tried to learn programming outside of a 

course or within a course on some other subject.   
a. Yes 
b. No 

 
3. If you answered “Yes” to questions 1 or 2, what language(s) did you learn? 

select all that apply): 
a. Java 
b. C++ 
c. Python 
d. Visual Basic 
e. C# .NET 
f. Other (Please list below):  
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Pretest: 

1.
)  

public class PreTest1  
{   
  public static void main(String[] args)   
  {   
    int a = 3, b = 4;    
    int sum = 0;      
    // add a and b together    
    sum = a + b;      
    // output the result  
    System.out.println sum   
  }  
}  

a. change the statement  
     "int a = 3, b = 4" to  
     "int a = 3; int b = 4;"  
 b. Change the statement  
     System.out.println sum to  
     System.out.println("sum");  
 c. Change the statement  
     System.out.println sum to  
     System.out.println(sum);  
 d. Change int sum = 0 to double  
     sum = 5.4  
 e. I don't know   

2.
)  

public class PreTest2 {   
  public static void main(String[] args) 
  {    
    double firstNumber = 5.4;    
    int secondNumber = 3.5;  
    // Multiply firstNumber by secondNumber   
    // and output to the screen                  
    System.out.println(firstNumber *        
       secondNumber);   
  }  
} 
 

 a. Change double  
     firstNumber to float  
     firstNumber 
 b. Change 
System.out.println  
     to System.out.print  
 c. Change double  
     firstNumber to int  
     firstNumber  
 d. Change int 
secondNumber  
     to double secondNumber  
 e. I don't know   

3.
)  

public class PreTest3  
{   
  public static void main(String[] args) {        
    System.out.println("This will print ");       
    System.out.println["some text to the  
       screen"];      
  }  
}   

 a. Change the ( ) in the first 
output statement to [ ]  
 b. Change the [ ] in the  
     second output statement 
to  
     ( )  
 c. Change double quotes (")  
in the output statements to 
single quotes (')  
 d. Remove the .out from the 
output statements  
 e. I don't know   

4.
)  

public class PreTest4 {   
  public static void main(String[] args)   
  {    
    int a = 2;    
    int b = 5    
    int result = a * b;    

 a. Change the ints to 
doubles 
 b. Add a semicolon to the 
end of int b = 5 
 c. Change result = a * b to 
result = a/b  
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    System.out.println("a * b = "  
      + result);   
  }  
}  

result = a/b  
 d. Change the semicolons to 
colons 
 e. I don't know   

5.
)  

public class PreTest5 {   
  public static void main(String[] args)   
  {    
    int a = 6;    
    int a *= 5;    
    System.out.println("a = " + a);   
  }  
}  

 a. Change the ints to 
doubles 
 b. Change 
System.out.println 
         ("a = " + a) to  
     System.out.println(a) 
 c. change int a *= 5 to a *= 
5  
 d. Change 
System.out.println  
       to System.output 
 e. I don't know   

 
 

1. What is debugging? 
a. The act of programming itself, where a person writes a program in order 

to accomplish some task or calculation 
b. The process of making changes to a program in order to obtain a 

working application 
c. The process of analyzing and modifying a program's code to isolate and 

correct an error 
d. The process of using an Internet search engine in order to diagnose and 

fix a program 
e. The process of editing and re-compiling and re-running an application to 

remove defects 
f. I don’t know 

 
2. If you were trying to solve a problem would you  

a. Trial and error: make a change and see if that fixed the problem. If not, 
make another change. 

b. Search: Using keywords from the problem, look for a solution on the 
Web. 

c. Help: ask a peer or instructor what they would do to solve this problem. 
d. Backward slice: starting from where things went wrong, look at previous 

lines of code to find the cause.  
e. Forward slice: starting from where things went wrong, look at following 

lines of code to find the cause.  
f. I don't know. 
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3. Error messages usually help programmers identify errors in: 
a. The program's structure (syntax). 
b. The program's behavior when it runs. 
c. The program's output (i.e., the output is not correct). 
d. a and b. 
e. a, b and c. 
f. b and c. 
g. I don't know. 

 
 
 

Posttest 

1.)  

public class PostTest1 {   
 public static void main(String[] args)  
  {    
    int a = 3, b = 4;    
    int sum = 0;       
    // add a and b together    
    sum = a + b;       
    // output the result    
    System;out;println(sum)   
  }  
}  

 a. change the statement "int a = 3, b = 4"  
     to "int a = 3; int b = 4;"  
 b. Change the statement  
     System.out.println(sum) to  
     System.out.println("sum");  
 c. Change the statement  
     System;out;println(sum) to  
     System.out.println(sum);  
 d. Change int sum = 0 to double  
     sum = 5.4  
 e. I don't know   

2.)  

public class PostTest2 {   
 public static void main(String[] args) 
 { 
    int firstNumber = 5.4;    
    double secondNumber = 3.5;       
    // Multiply firstNumber by  
    // secondNumber  
    // and output to the screen    
    System.out.println(firstNumber *  
      secondNumber);   
  }  
}  

 a. Change int firstNumber to double  
     firstNumber  
 b. Change System.out.println to  
     System.out.print  
 c. Change double firstNumber to int  
     firstNumber  
 d. Change int secondNumber to double 
secondNumber  
 e. I don't know   

3.)  

public class PostTest3 {   
 public static void main(String[] args)  
 {       
    System.out.println["This will print  
     "];       
    System.out.println("some text to  
      the screen");      
 }  
}   

 a. Change the ( ) in the second output  
     statement to [ ]  
 b. Change the [ ] in the first output  
     statement to ( )  
 c. Change double quotes (") in the  
     output statements to single quotes (')  
 d. Remove the .out from the output  
     statements  
 e. I don't know   

4.)  public class PostTest4 {    a. Change the ints to doubles 
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 public static void main(String[] args) 
  { 
    int a = 2;    
    int b = 5:    
    int result = a * b;    
    System.out.println("a * b = " +  
      result);     
  }  
}  

 b. Change the colon at end of int b = 5  
     to a semicolon 
 c. Change result = a * b to result = a/b  
 d. Change the semicolons to colons 
 e. I don't know   

5.)  

public class PostTest5 {   
 public static void main(String[] args)  
 {    
    int b = 6;    
    int b += 5;       
    System.out.println("b = " + b);  
 }  
}  

 a. Change the ints to doubles 
 b. Change System.out.println("b = " + b)  
to System.out.println("a = " + a) 
 c. change int b += 5 to b += 5  
 d. Change System.out.println to  
     System.output 
 e. I don't know   

 
1. What is debugging? 

a. The act of programming itself, where a person writes a program in order 
to accomplish some task or calculation 

b. The process of making changes to a program in order to obtain a 
working application 

c. The process of analyzing and modifying a program's code to isolate and 
correct an error 

d. The process of using an Internet search engine in order to diagnose and 
fix a program 

e. The process of editing and re-compiling and re-running an application to 
remove defects 

f. I don’t know 
 

2. If you were trying to solve a problem would you  
a. Trial and error: make a change and see if that fixed the problem. If not, 

make another change. 
b. Search: Using keywords from the problem, look for a solution on the 

Web. 
c. Help: ask a peer or instructor what they would do to solve this problem. 
d. Backward slice: starting from where things went wrong, look at previous 

lines of code to find the cause.  
e. Forward slice: starting from where things went wrong, look at following 

lines of code to find the cause.  
f. I don't know. 
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3. Error messages usually help programmers identify errors in: 
a. The program's structure (syntax). 
b. The program's behavior when it runs. 
c. The program's output (i.e., the output is not correct). 
d. a and b. 
e. a, b and c. 
f. b and c. 
g. I don't know. 
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Appendix D: Topic Listing 
 
ID Topic Name Associated Subtopics 

1 Elementary Programming 1,2,3,4,5,6 
2 Selections 7,8,9,10,11 
3 Loops 12,13,14,15,16,17 
4 Methods 18,19,20,21,22,23,24 
5 Single Dimension Arrays 25,26,27,28,29,30 
6 Multi-Dimensional Arrays 31,32,33,34 
7 Objects and Classes 35,36,37,38 
8 String 39,40,41,42 
9 I/O 43,44,45 

 



218	  

Appendix E: Subtopic Listing 
 

ID Subtopic Name Description 
1 Math Issues with mathematical computations 
2 Variables Issues with individual variables 
3 Identifiers Issues with individual identifiers 
4 Assignment Issues involving the assignment operator 
5 Primitives Issues involving primitive values 
6 Operators Issues involving operators 
7 Booleans Issues involving boolean statements 
8 If Issues involving single If statements 
9 If / Else Issues involving If statements with Else statements 

10 Nested If Issues involving nested If statements 
11 Switch / Case Issues involving switch and case statements 
12 While Loop Issues involving the While Loop construct 
13 Do While Loop Issues involving the Do While Loop construct 
14 For Loop Issues involving the For Loop construct 
15 For Each Loop Issues involving the For Each loop construct 
16 Loop Sentinels Issues involving loop sentinels 
17 Nested Loops Issues involving nested loops 
18 Defining Methods Issues involving method definitions 
19 Invoking Methods Issues involving invoking methods 
20 Returning Values from Methods Issues involving returning values from methods 

21 
Handling Values Returned from 
Methods Issues involving dropped or mishandled return values 

22 Passing Arguments to Methods Issues involving passing arguments in to methods 
23 Overloading Methods Issues involving overloading methods 
24 Variable Scope Issues involving a variable's scope 

25 
Declaring and Creating Single 
Dimensional Arrays 

Issues involving declaring or creating single dimensional 
arrays 

26 
Single Dimensional Array 
Initialization 

Issues involving the initialization of a single dimensional 
array 

27 
Accessing Single Dimensional 
Array Elements Issues involving accessing single dimensional array elements 

28 
Traversing Single Dimensional 
Arrays Issues involving single dimensional array traversal 

29 
Copying Single Dimensional 
Arrays Issues involving copying single dimensional arrays 

30 
Sending Single Dimensional 
Arrays as Arguments 

Issues involving sending single dimensional arrays as 
arguments to methods 

31 
Declaring and Creating 
Multidimensional Arrays 

Issues involving creating and declaring multidimensional 
arrays 

32 
Accessing Multidimensional 
Array Elements Issues involving accessing multidimensional array elements 
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33 
Traversing Multidimensional 
Arrays Issues involving traversing multidimensional arrays 

34 
Multidimensional Arrays as 
Arguments 

Issues related to sending multidimensional arrays as 
arguments 

35 Constructors Issues involving constructors 
36 Object Variables Issues involving objects variables 
37 The '.' Operator Issues involving the '.' operator 
38 Members Issues involving class members 
39 Using Strings Issues involving String variables 
40 Using String Functions Issues involving using String functions 
41 Using Printf Issues involving the use of printf 
42 Using Format Strings Issues involving the use of Format Strings 
43 Using PrintWriter Issues involving using PrintWriter to output data 
44 Using Scanner Issues involving using the Scanner class 
45 Using Buffered Reader Issues involving the use of Buffered Reader 
46 Try Issues involving Try blocks 
47 Catch Issues involving Catch blocks 
48 Finally Issues involving Finally blocks 
49 Miscellanious Syntax Catch-all for syntax errors not covered by other subtypes 
50 Miscellanious IO Catch-all for I/O errors not covered by other subtypes 
51 Type System Abuses of the type system 
52 Infinite Loop Infinite Loop 
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Appendix F: Discussion of Parse Tree Data and Sample Tree 
 
 The following shows a sample program and its parse tree data as generated by 

javac and the connector module.  The numbering on the tree indicates the order in 

which the connector module visited each node in the parse tree generated by javac, with 

1 representing the first node visited.  The selected code for this example is the answer 

for one of the phase 3 exercises.  The answer code was selected in order to generate a 

correct parse tree.  Please note, the javac compiler automatically creates a default 

constructor called <init> , this method is included in the sample parse tree for the sake 

of completeness. 

 

Figure 41: Sample code, used to generate parse tree 

public class StatementExercise_C2 
{ 
 // program is meant to perform some math  
 // and then output the result to the screen 
 
 public static void main(String[] args) 
 { 
  int x = 3; 
  int y = 4; 
  x = 2*y+5; 
  System.out.println("2 * 4 + 5 = " + x); 
 } 
} 
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Figure 41: Parse Tree 
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Appendix G: Analyzing each students’ required attempts for each completed 
exercise 
 
 The following presents scatter charts for each subset of the data relevant to this 

study, comparing each students’ attempts for every completed exercise by dividing the 

data up into different subsets of the collected data.  Each chart contains regression lines 

depicting the general direction of the data, with some subsets having two scatter charts: 

one that contains a regression line for all participants in the subset and one that contains 

2 regression lines for all participants in each phase of the subset.  Phases are 

additionally depicted separately as their own subsets, additionally broken down into 

subsets by range of exercises completed.  Finally, each scatter chart that has one 

regression line also is accompanied by the results of the Pearson’s Correlation over the 

data set indicated to determine if a significant correlation exists between the number of 

exercises completed and the number of attempts required to complete an exercise.  As 

was shown in Chapter 5 when the data was evaluated at the means, we have similar 

results here: the more exercises students complete, the less attempts are required to 

complete an exercise.  In addition to the t-test results also discussed in Chapter 5, these 

results are taken as further proof that students using the system did indeed learn how to 

debug the problems being presented to them while using the system. 
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Subset: Everyone 
 

 
 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.217** 

Sig. (2-tailed)  .000 

exercise 

N 913 913 

Pearson Correlation -.217** 1 

Sig. (2-tailed) .000  
attempts 

N 913 913 
**. Correlation is significant at the 0.01 level (2-tailed). 
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Subset: Everyone, Regression Lines by Phase 
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Subset: All High School Students 

 

 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.259** 

Sig. (2-tailed)  .000 

exercise 

N 668 668 

Pearson Correlation -.259** 1 

Sig. (2-tailed) .000  
attempts 

N 668 668 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Subset: All College Students 
 

 
Pearson Correlation 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.114 

Sig. (2-tailed)  .076 

exercise 

N 245 245 

Pearson Correlation -.114 1 

Sig. (2-tailed) .076  
attempts 

N 245 245 
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Subset: Everyone, 1 to 5 exercises completed 
 

 
 

Pearson Correlation:  
Correlations 

 exercise attempts 

Pearson Correlation 1 -.033 

Sig. (2-tailed)  .674 

exercise 

N 164 164 

Pearson Correlation -.033 1 

Sig. (2-tailed) .674  
attempts 

N 164 164 
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Subset: Everyone, 1 to 5 exercises completed, Regression lines by phase 
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Subset: Everyone, 6 to 10 exercises completed 
 

 
 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.095 

Sig. (2-tailed)  .161 

exercise 

N 221 221 

Pearson Correlation -.095 1 

Sig. (2-tailed) .161  
attempts 

N 221 221 
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Subset: Everyone, 6 to 10 exercises completed, Regression Lines by Phase  
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Subset: Everyone, 11 to 15 exercises completed 

 

 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.146* 

Sig. (2-tailed)  .017 

exercise 

N 266 266 

Pearson Correlation -.146* 1 

Sig. (2-tailed) .017  
attempts 

N 266 266 
*. Correlation is significant at the 0.05 level (2-tailed). 
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Subset: Everyone, 11 to 15 exercises completed, Regression Lines by Phase 
 

 
 

 

 

 

 

 

 

 

 

 

 



233	  

 
Subset: Everyone, 16+ exercises completed 
 

 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.211** 

Sig. (2-tailed)  .001 

exercise 

N 261 261 

Pearson Correlation -.211** 1 

Sig. (2-tailed) .001  
attempts 

N 261 261 
**. Correlation is significant at the 0.01 level (2-tailed). 
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Subset: Everyone, 16+ exercises completed, Regression Lines by Phase 
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Subset: Phase 1, All Participants 
 

 
 

Pearson Correlation: 
Correlations 

 exercise attempts 

Pearson Correlation 1 -.194** 

Sig. (2-tailed)  .000 

exercise 

N 420 420 

Pearson Correlation -.194** 1 

Sig. (2-tailed) .000  
attempts 

N 420 420 
**. Correlation is significant at the 0.01 level (2-tailed). 
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Subset: Phase 2, All Participants 
 

 
Correlations 

 exercise attempts 

Pearson Correlation 1 -.261** 

Sig. (2-tailed)  .000 

exercise 

N 493 493 

Pearson Correlation -.261** 1 

Sig. (2-tailed) .000  
attempts 

N 493 493 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Subset: Phase 1, 1 to 5 Exercises Completed 
 

 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 .020 

Sig. (2-tailed)  .832 

exercise 

N 115 115 

Pearson Correlation .020 1 

Sig. (2-tailed) .832  
attempts 

N 115 115 
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Subset: Phase 1, 6 to 10 Exercises Completed 
 

 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.024 

Sig. (2-tailed)  .775 

exercise 

N 139 139 

Pearson Correlation -.024 1 

Sig. (2-tailed) .775  
attempts 

N 139 139 
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Subset: Phase 1, 11 to 15 Exercises Completed 
 

 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.053 

Sig. (2-tailed)  .600 

exercise 

N 101 101 

Pearson Correlation -.053 1 

Sig. (2-tailed) .600  
attempts 

N 101 101 
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Subset: Phase 1, 16+ Exercises Completed 
 

 
 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.285* 

Sig. (2-tailed)  .022 

exercise 

N 64 64 

Pearson Correlation -.285* 1 

Sig. (2-tailed) .022  
attempts 

N 64 64 
 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Subset: Phase 2, 1 to 5 Exercises Completed 
 

 
 

Pearson Correlation: 
Correlations 

 exercise attempts 

Pearson Correlation 1 -.223 

Sig. (2-tailed)  .123 

exercise 

N 49 49 

Pearson Correlation -.223 1 

Sig. (2-tailed) .123  
attempts 

N 49 49 
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Subset: Phase 2, 6 to 10 Exercises Completed 
 

 
 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.214 

Sig. (2-tailed)  .053 

exercise 

N 82 82 

Pearson Correlation -.214 1 

Sig. (2-tailed) .053  

attempts 

N 82 82 
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Subset: Phase 2, 11 to 15 Exercises Complete 
 

 
 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.315** 

Sig. (2-tailed)  .000 

exercise 

N 165 165 

Pearson Correlation -.315** 1 

Sig. (2-tailed) .000  
attempts 

N 165 165 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Subset: Phase 2, 16+ Exercises Completed 

 

 
Pearson Correlation: 

Correlations 

 exercise attempts 

Pearson Correlation 1 -.202** 

Sig. (2-tailed)  .004 

exercise 

N 197 197 

Pearson Correlation -.202** 1 

Sig. (2-tailed) .004  
attempts 

N 197 197 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
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