Lehigh University Lehigh Preserve

Field Notebooks

Earth & Environmental Sciences

1999

Pazzaglia Field Notebook: Alps; Italy

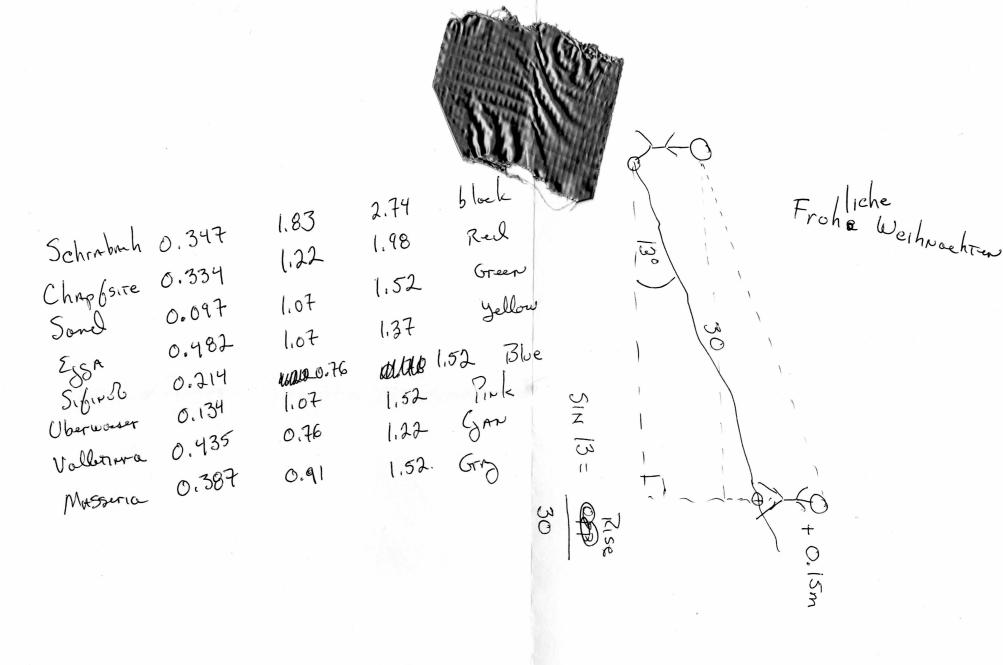
Frank J. Pazzaglia

Follow this and additional works at: http://preserve.lehigh.edu/cas-ees-field-notebooks

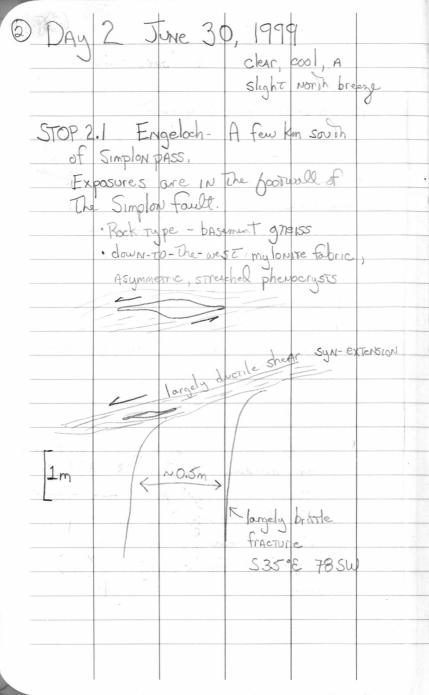
Recommended Citation

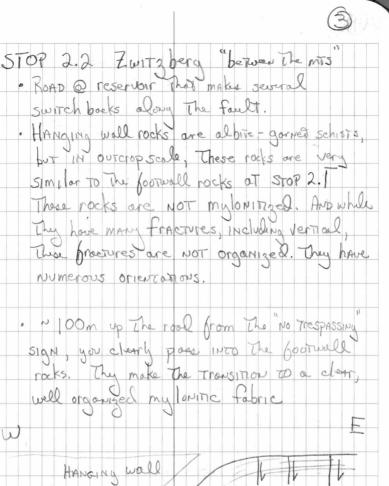
Pazzaglia, Frank J., "Pazzaglia Field Notebook: Alps; Italy" (1999). Field Notebooks. Paper 15. http://preserve.lehigh.edu/cas-ees-field-notebooks/15

This Field Notebook is brought to you for free and open access by the Earth & Environmental Sciences at Lehigh Preserve. It has been accepted for inclusion in Field Notebooks by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.


SOKKIN FJ PAZZAGIJA

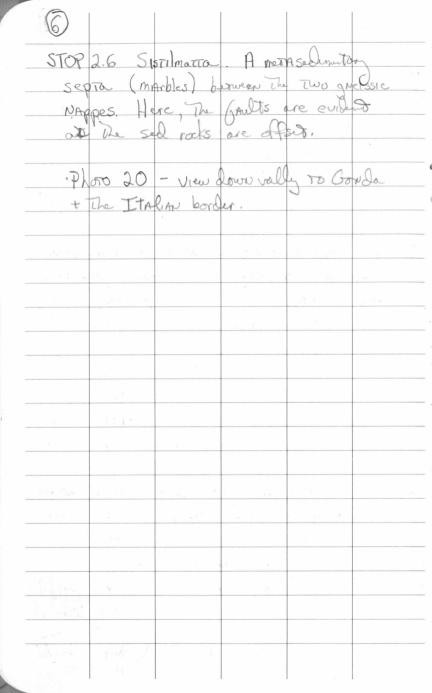
TRANSIT FIELD BOOK


No. 8152-00

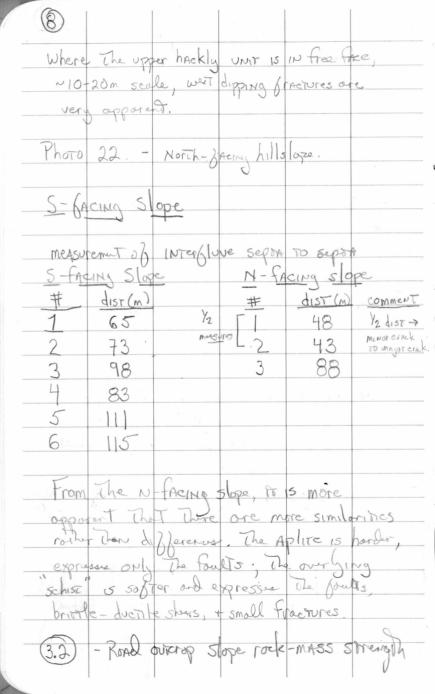

Property of Frank J. PAZZAg I A Dept. of Earth+ Environmental Address Lehigh Univ. Sci
Dept. of Earth + Environmental
Address Lehigh UNIV. Sci
31 Williams Mr.
Telephone Bethlehem, PA 18015
(610) 758-3660
email: fjp3@lehigh.edu
Reward \$\$ if found AND RETURNED (*)
AND ROTINIES (4)
HILD HEININGO (X)

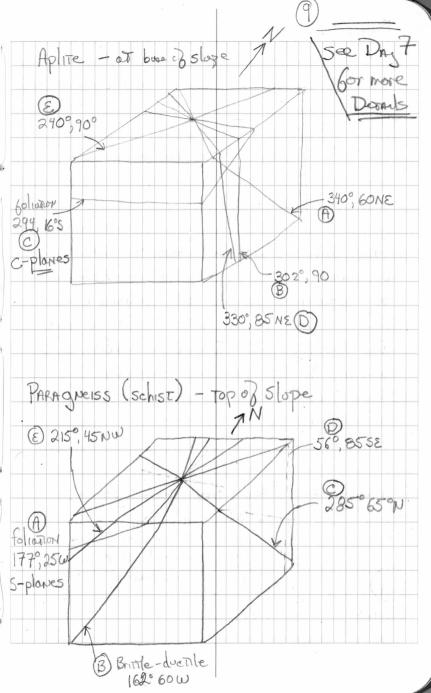
This Book is manufactured of a High Grade 50% Rag Ledger Paper having a Water Resistant Surface, and is sewed with Nylon Water-proof Thread.

DAY I	6/29	1/99	WArm,	werenst	0
DAY I BegIN			humis		7
BegIN	Alps	work	wish		
· Mous	sumi Steffa				
STOP I	AXEN A	rea -	Axen	NAPPE	,
STOP 2 Photo	turka F	A55 -	headot	Che Mh	one
Photo.	2. s 3-5	Rhon	e Glacu	er, head	e}
STAYING	120 PLACE	mplon,	TO GIRD	- by b	1182
ot Ro	The poon	a To	folks h	of The	erell
F	nd. Wo	kixi.	The Sees	- happie	7
- 4	3 Sw155	Francis	/ Night.	(#35)	



They have many tractures, including vertical, The process are not organized. They have numerous orientations. · 100m up The roal from The "No Trespassing SIGN you chearly pops INTO The Gootwall raks. They make the Transition to a closer, well organized my living fabric down to The east britte only down to The west brittle-ducile mylopite formed here + 30 km depth


Switch books along the foult.


Phonos 67- Spehorn -SE face Photo 8 - Symplon fault ZONE JUN SIMPLON TAVERN WINDOW LAGO MAJSIONE Perialpine STOP 2.3 DISCUSSION+ Lynch on Switch back overlooking The Seehorn. Photo 9, View up The Zwischburg vally INTO The hanging wall, Musorooning lack of systematic gullies. Thoro 10, hanging wall pales, with a 6018 Thoro II, popull raks, illustrama mylopiac

5 TOP 2.4 - upually at The hydropower STOCTION.	
Here we are well into the hanging wall.	
There are no well-developed vernical for In fact - numerous talus come, allowed from	
seperal hillslope rejolith monthes the S-boxe	
Slope.	0
· Phonos 12-14	
STOP 2.5 Furgge Pass - from here The rope	ogy Aphic
distriction bruin the parama wall + 600 The	sall'
15 very clear.	
* GLATTHORN - PHOTO 15	
· Photos 16-19 Views of the N-facing va	lly
Side from the road to Funga PASS. Qualitatively, The N-facing slopes are sim	lar
The state of the s	
CAMOSCElla SIMPLON A-GACING	slope
Signal.	e 0
Tons:	
"Corregated" hillslope Switch Sade RD broad, round	led

July I, 1999 faggy cool morning STOP 3.1 Today's objective is to ascend the high country above + east of Simpler Pass, North of milleone The GLATTHONN The s- facing slopes have grassed gullies, full of Talus. The upper 13 of the slope is exposed bedrock JANE records both small east-down paults (~ O.Sn) separation and larger west-cown breezes zone toults. Interplanes are narrow, pointed, leading To a prismatic slope texture The N-faeing slopes have bore TAlus gulles. The gullies are not recessed nearly as much as on The 5-focing side. Interfluves are brooder+ rouder. And There offers to be a strong distriction in rock hardness because the upper 14 of the slope 15 very crumbly. It westurs very differently

(10) DAY 4 July 2, 1999 Absolutely beAutiful Clear, SURRY, WARM, START of 36 exp roll. Slight breeze Today we are up a main valley south and West of SimploN. IT is the MAIN vally immediately North of Fungas Pass. The objective was to look at channel hydraulie geometries for strems in the hanging wall; but it is clear that this will be impossible. All charvels are unival materfalls and are shaped for more by debris-flow processe thon onything else. Thus, it will be for better to characterize The deposits, rather than the champels. We will do this for two drawage in the hanging wall and Two in The footwall, with N+S ASPIET considered. HANGING WALL localities Dristulgrabel This drawney

FAN Elev. 1600 - 2400 m Measurements to make water fall 100m Wh 14m IN both Goot wall + hanging Settings, IT IS important To demoismate that The gard have accomodowow spoor that is, they fell paleo-glacial bouls. Eye heights - Jane 1,65; FJP 1.8 Slope elev. correction at stream level 13 16 FJP 15 2 m above STran 15 +2m 26 P 15 +1m 15 +2m 28 210 m long; h varies from to 4m

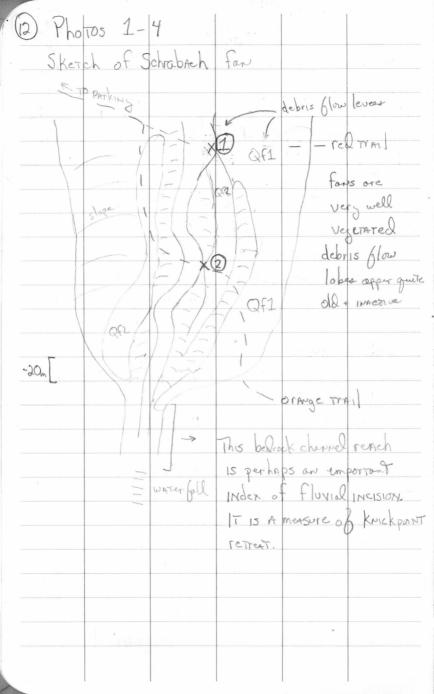
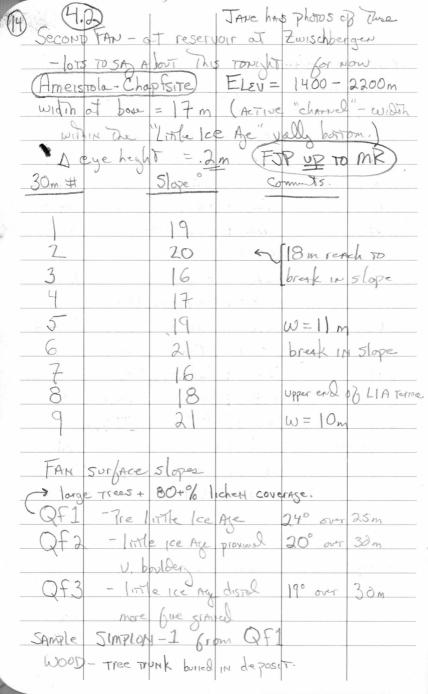
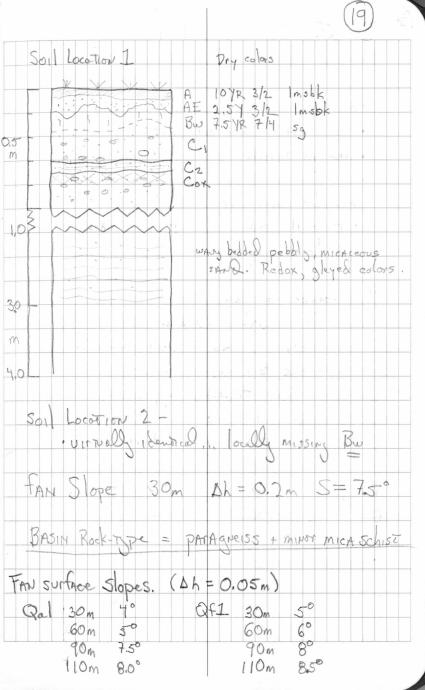



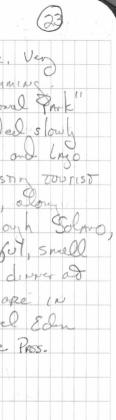
Photo 5 (moist color / consistence Qf1 soil exposure OA E Bs 511T 1fsbk > 5g 2.575/6
BIL 7.54R 5/6 20cm SILLY clay loam 2msbk, Inpf, BE2 10485/8 Rock loam Ifsbk OBC D Qf2 exposure Ab SITY clay loam 104R 3/3 NO STUCTURE gravelly lomm. 2,544/4 BASIN ROCK-Type = PARAGURISS + MINOR UltrAMATIC




OK, goveral thoughtsowe worked two drawings on the hanging wall The draways are U. Steep - essentially water falls Their alluvial fous one The only have for growing a gerenes in hillstore behavior? · We worked both a NOTER + South - FACING cranpings · IN both cases the drawage supported faces with numerous indicators of stability includes · Red soils w/ BT Loryons + E Loryons · licher covered de oris flow loves · The GADS one Leons - flow dominated and have 1 TO 4 SUPPACES ... My guest is that The highest + oldet is late glocal, with the others being mid-Holocope + little Ice age. Charles Think hat The insett from SURJACES are Climent CIN OFIGHT. The LITTLE Ice Are JANS ore Clearly INSET INTO a much longer + STADLE lote glacial (?)

10	(16)					
	(16)					
	B-AXIS	Gron S	Schrabach		from Ch	aptsite
	Metric	60 10 1	verrent O.S	60.	motric 6	D. WITHIN
				BASE	or st	The leeves
	14-	base	4,0	3,5	2	2.5
	5		3,0	4.0		4.5
	6.5		4,5	6,5		2,5
	4.5		5.0	5.0		3.0
	4.0		5.0	3.0	· · · · · · · · · · · · · · · · · · ·	9.5
	4.75		10,0	7.0		4.5
	4,25		10.5	3,0		5,0
	10.0	-	8.0	3,5		3,0
	6,5		8.0	2,5		4.0
	25		6,0	3.5	,	4.0
	35		4,5	5,5		3,5
	4.0	lower	8.0	4.0	y	4.0
	6.0	Que,	4.0	6,5	1	5.5
	4.0	alba	3.5	6.0		5,0
	5,0	6Ars	35	4.0		4.0
	6.0	1	65	6.8		7.0
	B.5		7.5	13.5		6.0
	4.0		TOP	3.5		5,0
	8.0			2,5		4,5
	6.0			4.0		3,5
	8.0			2,5	1	3,5
	8.0	and a		3,5	3	5.0
	0.P			3,0		4,5
	7.0		1		1	

		T.	
	2,0		
	4.5 3.5		(4) T
	4,0 3,0		
	4.0	N. 24.	
	3.0 TOP	3 34	
		4. 4. 4.	
	BASIN Rak-	JPE = PANA	Schist
		mich	JCA(S)
			, , , , ,
			3
(,			

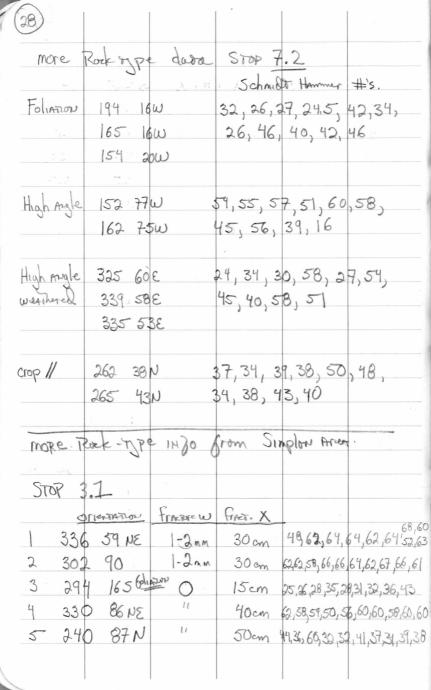

DAY 5 July 3, 1999 WARM, CHEAR GRAINSIZE DATA ON PG. 29 Today we will work two HANS IN The SAND Area. upvally from SITTIMOSTO The footwall Drainage 1 - SAND FON · fan + drawage are larger Tron fans observed on hanging wall The Abandoned, highest for surface 15 characterized by: · UNmodified bar+ swale · clast w/ 420% lichen coverage · NO soil begond a 20cm OR, Cox · longe Trees, likely several deader To conjunes all. · composed of fluvial forces exclusives. likely An Aggradoroval little ice again CUENT.

There is a very vice small slupp on the south side of the stream at Eggs. 1 1 Soil of incorporated loss IDYR BT - 0.5m Ablanon Till Travel INTO Domodossola. This is a quite large city with some accomposations. The Train STATION Provide A simple point of regerence, being located at The east side of Town. There are 5 hotels in and around centro. Domus and semplone (AA) (Near correl wolking market; via GG Galletti + VIA CAVALLOTTI) OTHERS ORE 3 ADD, INClude The Eurossola at The Transparan We stared at The Europa, ~ 3 km s = B Town on the MAIN drag (VIA TORINO) ~ 25/puson There are U vice restaurants in centra, were The wolking market.

(2)	DAY	6 J	oly L	174,	1999	V. hon cool in mi	12, calm,
_	J					valleys	s, hoo in
	LAST	VISIT TO	Zwi	shberg	en ->	description	800
===	6AN	Sorl + 1	e-look	at	SUIJACE	e character	STICS.
_	· much	better MICaco	develope	D 501	Par ed di	4-rich, m	al (deposit)
_	diam	cion. L	Kely A	debris	5- blow.	much of	the color
	There	1s A r	rice S	ioil de	velopee	here Too	,
				P D A	E 104	R 3/4	,
		000		1		,	Ifsbk;/Tipo,
	5			1	debris		
, , , , , , , , , , , , , , , , , , ,	7,5		<u> </u>		Phot	0 16	
_	Remai	uder of	day	nds o	- drive	2 TO The	
	CASTERI	Alps,	from	Vomm	Adossol	a TO TO	vole
	NK	m east	06 F	rero)	we s	ropped ?	o look
	1						

impressive site for geology + swimming.

It is accord by A local "National Park" Trail. After Finero, we proceeded slowly PAST LASO MASSIONE, LASO LUONSO and LASO di Como. Ver rice la ces discustin Tourist Towns. This we continued east, along The Peri-Alpine lineam of Through Solaro, Aprica Pass and to A delyhtful, smell A Propa restaurant. Non un agre in
A Two stars hotel called Hovel Edn (~ \$ 20 /person). At the Towne Pros.


24 Day 7 July 5th 1999 warm, homed PT. cloudy. We began with a drive from Touch PASS TO BolzAND (slow), Then proceeded TO STERRING (MICE) and UP TO the Brenner Poss region. Ly Vipiteno Just worth of Vipitero 13 The small rown of Colle Isorco (GossensaB). A road proceeds west up The R.d. Fleres voll. Vail Di Fleres AT ANICE, The road crosses the river To the NOTED IS ON pld gravel pt in The TOE of A lorge for IN The Kaimarpoen drowings. This fan, and others like it here are all V. STEEP (~ 300) and composed of carronate alost reflect The nock type underlying most of the drawages View looky NE

(25)

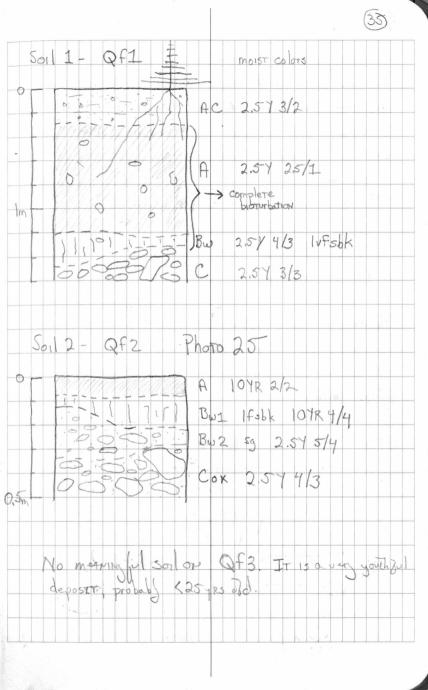
The far strategraphy snows very well strategrad + sorted deposits. - IT is a boulder, gravely sond A surface soil + buried soils are not porticular evidet. These South BACING FAUS ore at last 50m Thick. The worth-freing slopes are completely different virtually no fans, no soul, deeply entrached draways. No soll creep. Toffinoss; drowney hends to a small reservoir and alpire meday at ~ 1600 m. These present the bot hope to making direct fan comporisons to the Simplow ores. The Tobbring & dramage is very likely bast controlls, but its Tribs one not Alluvial for strate in Toffings is proof UNTERNARADE, ONE MATOT SUTTAGE 13/80% The far is carbonate -dominated, and decidedy fluvial or hypercone, proves facise. A, AE But C. ~ 40cm TOTAL depth of weathering I am very upcertain as to The local affect of CArponote rock Jps.

Only other remarkable geomorphic expression 15 That the west vally wall is steeper IN ITS TOR Then The eAST valle wall CAST down pault accomplanty hanging wall extension + collapse inos The Brepper gove STOP 7.2 Dip stope of Huhnersphiel. AT a location where The Brenner Fault begins its big roll over TO The west. 9 NI 8 15 5

The fault plane Appears to be very will preserved on the interfluxes, why? There is working capping it. Why The havering wall would be so effectively removed with no turne back-like Silica carapace. ROCK-TYPE CHARACTERISTICS Gully spacing distance (m) 47 27 48 Fracture SPRING tracture dota Fracture willh ORIENTATION Fractore weathering C-40/1011 04 154-194 16-200 west-down 152-168 75 -90 ~ 1-2 mm 325-329 53-605 262 0-1mm HON

	((10)	29)	
			1		
ms	ay	e de la constante de la consta	in one		_
1,2	8,	22	3	2,4	0,5
56	60	34	2,	40	339
,63	3, 3	54	9	4,6	5,
9,	35	5	5,3	5,	24,
35	3	٩,	3'	1	
	umusm		_	-	-

STOP 3.2 (College) | France w Frac X | Schaudt ha 177 20W 10cm 22, 36,55,45,42 162 60 w 50cm 1-2mn 61,61,48,32,58, 1.5 m 285 70N 64,66,54,58,62 300 ROSE 25cm 36, 44, 45, 30, 3 2 m 11 215 45 NW 45, 44, 48, 45, SAND FAN 050 (metric (5) N. Level, TOP 5. level TOP 4,5 73,0 3,5 +5.0 3.0 < 30m from bottom 2,5 4.0 2.5 3.0 3,5 35 6.0 4.5 3.0 35 4.0 2.0 4.0 4.0 4,5 5.5 25 4 30 m 2.0 from bose 4,5 30 2.5 5.0 1.5 4.0 3,0 4.5 4,5 5.0 2,5 base 6.0 4.0 30 4.5 3,0 3.5 3,5

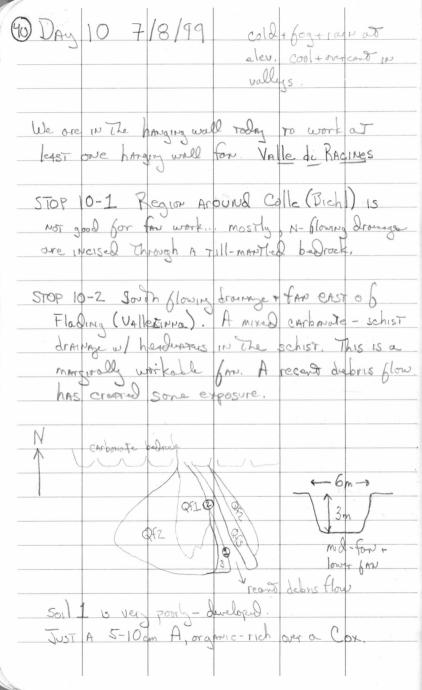

(30)					
Ecca	FAN TOP				
4,5		_ @ 130,	n from ba	se.	
4,0	3,0	0.	0		
3,5	5.5				
3,5	2,5				
5,5	4.5				
2,5	4.0				
2,5	2,0				
3,5	35				
3,0	3,5				
6,5	35				e e
2,5	2.5				
4.0	4.0				
4,5	1.5				
4.5	2.0		50		
4.5	30				
4.0	\$,5				
30	3,5	-	-		
2.5	1.5				
4.0	2.5				
2.0	3,5				
4,0	3,5	base.			
1,5					
3.0					
4,0					
					1

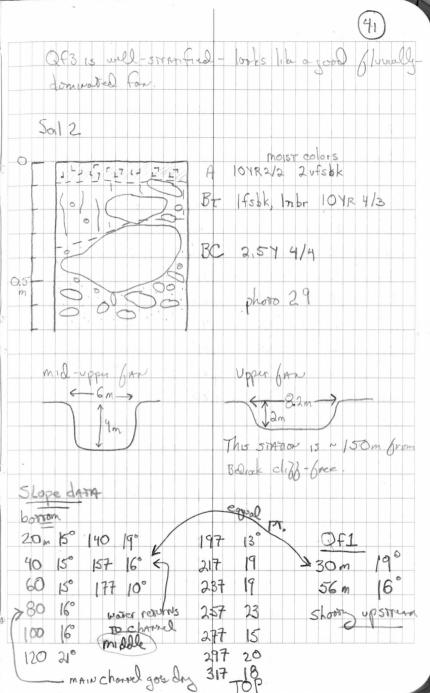
VIDITENO (STERZING) IS A greed Town. Torall bi-lingual and a vice mix of Italian & Throlian Things. This Area is called the South Tiro - Sudtral. It is vibrant, ofice, + bowond, IT is really unclear where the prosperior come from ... but IT IS AN INTOXICADO MIX OF Italian unality and Tirolian (German) workothic. The people here soothed These valleys 15 Roman + post-Roman Times. They are a MIX of French, Spanish, German + mixor Iralian peoples that speak an overest version of LATIN- heavy German dollar LADIND. Although each individual vally has ITS own dialit more closely allied w/ Rommake, a LATIN- BASED language Similar TO French, Thut 15 spoken IN ports of Switzerland. The Towns of ST. Jakob and particularly Kematran (CAMINOTO) ore bourful vacation desinations The Pfirschrol is interesting from the perspective that a long loudslide supported a lake in Roman Times. A carristrophic failure of the dam in Roman times took out is 10,000 Roman soldiers camped at Viptrato.

32) L	DAY 8	July	6,1999		
				+ sleet +	g. Aft rains
AT The	Alpine	nut at	the head.	of The Ri	old Vizze
vally.	loss(3 ti 1/22	e. HITSC	her-door	-HAUS.
Today 15	A love	hite Aro	ved The	head of	The
Fleures	uplly,	looking of	Locus mor	malines A	shor
ZONE.	I cem	goin TD	bocus mor	e on The	sent)
fracture.	s expos	DIND	- S oriental) vally 5	ro
			ore bruk		10 miles
				1 200	
Sire I	- Kuri	5 SAmpling	Aren 1.		
	10 C 1-1	- 1	t right		2.00
035 5	SELLIN !	ve sixu)	to and	un z f
330 7	9°NE -	This 15 A	pervasive for	Active -1	7.15
			l // and a		
		IN Frequence	y Towards	The vall	y wall,
		SITA	5 heering	YOUNT ?	2
310 8	5°NE	* - * / : x	7		7
305 2	8° NE	fold surface	e 1?		
331 7	6°NE				
) Veans		7.
Sample \$0	colog 2				
	F9 NIE			i was nice	1
345	33°NE				
157	89°5W				when f
a.					

SANDLE LOCALIN 4 140° 70°5W 138° 78°54 240 730 NW A hire To the head of Fuch boden valley Ind not reveal a fault but room That the valle is decided Asymmetricpen steeper on the west (and facing) wall Side The on the east valle side This hot is outstanding. Sepp and his framily one quite the hosts. Good food + good company Pfitsherjoch Haus Passo Vizze 2276m St. JAKOD 103 ITALy - 39040 Pfitsch - Valde Vieze Josef Volgger Prüska Magdelena

Day 9 July 7, 1999 breezy, 69309 Cool at elevators. We wish to work two JANS on the footwall rode in the Ro D. Vyge FIRST FAX - SHINO grober ELEV ~1400m S-FACING. (Just word of Bargone) modern levees NOSION N1m INCISION ~3m QF1 Bedrock we (rACTURES waterfall




(36) The Spirol for is similar to the Simplan formall for in that it is composed of mostly goodhful deposits. However, Qf2 is inst in Qf1, a feature not observed at Simplon. We need TO look at a second FAN IN This vally. My but guess for deposit ages here are: Off ote (?) Hologene. Qf2 little Ice Age ~ 500 yrs? QFB modery. The lack of any datable MATERIAL IN LUPOSITS CONTIASTS with the modern channel and spurks TO perhaps The lock of vegitation during for STOP 9-2 UberWASER GRADER at PLANST NOTTH JACINS drAINAGE - long JAN NOT OFIL STRONG TIVE. extensive - 12m well vegitated, bAr +500le both surfaces are very bouldary. IT is extremely difficult to, find A good soul

exposures what you do find one v. boulde exposures w/ A movie post most + a C Thick black organe soil (~Im) Nix some of that ... what we really have here Photo 26 pseudocolluvialmartled beloak A elongATE, NATIOW, -GANS Phoro 2 Collyrum level SAprolite

There is virtually no soul development in OFI, IT IS late Holorene or yourger, most likely, younger 9-3 A wolk up The OBERGRUDE drANAGE, JUST east of CAMINADO. This search for faults was largely IN VANN. The Drange is closed with colley in / alley um upde vided. DATA 601 9.1 Qf3 Slope Charrel Slope lever Slope 30m 7° 30m 13° 60m 10° 60m 90m 12° 130 downhill 120m 5° Qfl golly 150m 15° 170m 30m 22° 47.7m 22° 200m WOTKING UPSTREAM QfI surface b-ANS TOP 30m 17° 2 5 4 2 3.5 2.5 2,0 2 7 3,5 2,5 3.5 1.5 1.5 2,5 2.5 2.0 2.5 3,5 2,5 5,0 2.0 1.5 4.0 2.5 4.0 5.5 2.5 3,5 2.5 4.0 4.5 2.5 bottom 5,5 3.5 2,5 3.5 5,5 2.5 2,5 3.0 4.0 2,0 3,0

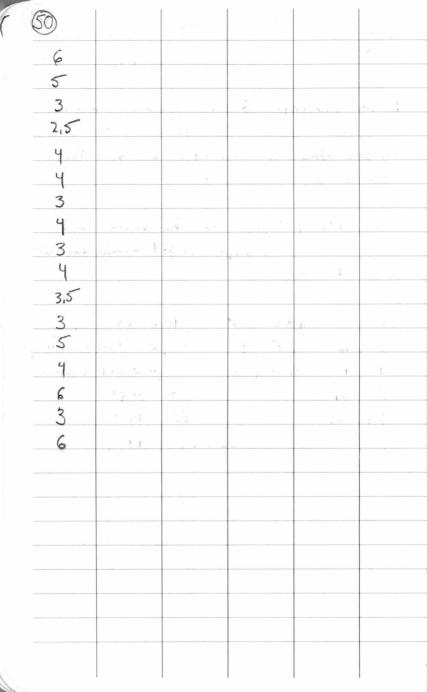
DATA for 9.2 Bedrock /collegial styce Stream changel 70 30m 30m 70 60m 80 60m 70 80 90m 100 1 90m 120m 110 Upstram 100 50m 180m 100 10° 210m 240m 270m 90 300 m 90 330 m downhill bottom - at cow bridge 3.5 3.5 2 all clast size 3.0 3.5 5 4 3.0 4.0 65 3,5 2,5 2.5 3,5 3.5 3,0 10 3.5 4,0 2,5 5 4.5

92	<u> </u>				
granissied	on -borror	n			
2.5	3	25	3	3	
1.5	45	3,5	2 -	4	
3.0	3,5	2	2,5	4	
2	2,5	3	1,5	3,5	
3	3	3.5	3	6.5	
2,5	1,5	4	2.	3,5	
2.5	2.5	3	3	1,5	
2.5	2,0	4	3,5	2 4 1 /2	
2,2	2	3.5	2,5	3	
2	2	2	2,5	2	
1	2	45	2,5	3	
1,5	Z	4,5	4	2	
2	2	3,5	2,5	3,5	
2	3	3	2,5	4.5	
2.5	2.5	2	2.5	3	
2.5	3.5	2	2,5	4.5	
2	2.5	2,5	5 middle	. 3	
2.5	1.5	2,	4.5	2	
2,5	2	2	4	2,5 TO	2
2,	2,	2	6	, , , , , , , , , , , , , , , , , , ,	
2	3	2	4	4	4
3	2	3	2	/	
2,5	1.5	4	3.5		
1,5	4,5	2.5	3		
2.5	2,5	2	3	13	
2.5	2	2.5	2.5		
	1	home	1		

STOP 10-3 FAN (5- flowing) at had of Valli Ridanna. ~ I km up vally from MASSeria (AT Mineral museum) The tan surfaces are very well expressed here. I don't know if That is an expression of a youthful fam, or simply a logged - pasture fam. This drawage is all in grassic + schistose ratings # Oue Thing for sure ... There are no equally-spound drainages and There are NO "prismatic" hills lopes at + near the divides. A love Holocone -> modern. ferce tropo Qf3 QFZ profile (ulmobrelie) Qf2 ·QF2 Totally (Vottories exposed clasis

= water fall

I've got TO scrape Together small pits To get a feel for the sort on QFI. what is clear is that IT is old + very well developed. The but soil we have viewed so far. Qf1 soil moist colors A 754R 25/3 12 573 1743 clasts are v. weathered Bt 2npf, 2msbk. 10 YR 4/4 BC 1csbk 25/5/4 2m A local parmer has confirmed That The big INCISION occurred last summer ('98). Photo 30 15 of The flow Photo 31 15 of A Rouche Mountaince Chamel cross-sections one not truly occurate


given the youth ful privile of the distinge. But ot midgan: modern a QFZ ~15m looky downstream GOTO PAGE (99) for slope+ gransige delice Drive from Vipitero into The Ahrwing or Valle Aurino TAKES + 2 hrs. There Are NUMBEROUS OPPORTUNITIES for FOOMS + Occompositions an every Town That we PASS. We have opted to sing at Lutrago (Lutrach). Actually, we ore IN LUTAGO di Sopra, ~ 1 km north ch Town. We are IN a great 2# Rousione called: Pension Erlhof IM ANGER 7 -# 40/ pight I-39030 LUTAGO proffust + girner Valle Aurina ALTO Adige Folks + Good here are dead more reserved + German. But all one still u. Freedly.

WARM, Clear breezy in The vally Fogoy+ (6) Day 11 July 9, 1999 snow at elev. - begunful in att. In the Arenthal valley Benorful will devote The day TO Trying TO substantial e high-Angle polits in the Schwarzenbachtal vally. This 5-flowing drawing is one of several That appear to be equally - spoul within The Thoran Window. We choose this drawage because The lower Schist unit is exposed Perhaps The contact of lower Schist with greess could be of Jet. The like began primarily IN a micaceous marble UNIT. There is virtually no expression of any high angle faults. The side valley tars are exploiting drappages of igned with the follows. They seem to have characteristics (1.e. old Surfaces) more in common with handing-wall TAMS. The TRAIL POSSES INTO JOHN SCHIST at about I km from The parking large (colof pavel road. Again, There is little expression of high angle faults .. About 2 km into the hike, The Trail climbs TO A house. At This POINT, A Prominant & It food strike ocross

The volley. There are some five targets visible from This vantage. Up vally, we can explore promision cracks in the cross-velly cliff bond. Down valley, The west valley wall looks like: offset beds FAULTS? STOP 11-1 cross-valley cliff sand. Several small E-down + Wast-down paules were observed. Take messured orientotrons on them and found the TO be NOT exactly DATABLE TO other E+W COUN fautes in the Brenner footwall. STOP 11-2. First (big) waterfall opstroum of the cross-volly chiff bonds AT leaso The West of the workfall JANE SAMPLED ONE OFT VEIN

from These faults. Sample # 99-10-2. STOP 10-3, Beyond The socond waterfall The high cirgue headwall has numerous high-angle fractures. We have ascended the most prominant, grassy fracture. (widest) 565°E (294) 67°SW

July 10, 1999 RAIN all day Good Day to Travel Very soggy IT has all day to travel from The AUTINO TO Breitlahuer Hot IN AUSTRIA VIA Austria gues no The The Fen-Tunnel. Creeps. IT is really sedote. Everyone WIS DORS during diviner and NO - ONE seems him Slope of MASSETIA FAN QFI - shoon downhill 22,5° 208.5 30 m 60 1950 23° 23° 90 170 268.5 25.5 90m 24° 120 180 2985 210 Of 2 shown do 190 Shoony upowin 150 START OF OF 1 Terminous 180 210 21.50 30 210 60 197.1 19.50 6P 170 Gransije doja of Masseria Fan 3 TOP 3.0 2,5 6 3 3.5 2,5 4 2,5 4 12 2,5 2,5 2,5 2,5 2 2,5 3,5 2,5 3 3.5 5 3

Day 13	July 11	,1999,	tigh overcost +
	leegels Grun		
reservoir.	LOTS of evidence of the reservant	ee for we:	st-dipping
			ally - In the cooling Agra.
cirque lip.	The dore	e ore just	TAIN -up to the Underwholming.
Gracuses o Some of th	liqued with a e more matro	nadic rocks.	s like foult
70000, 807	17 15 NOT SO		0
	N-5-571/c1		60° dippin
	1	/	

The "Auswer" to Drawing location ma Lie in Grande Trace. Thos is, drawing localization of Grander insusation. · Look for the book on Grownerter Geomerph. have developed on opper Schist cover and bean superingotal...

Day 14	Jdy 12, 1999	high overcosts, 53
A	30 1	4 4
Im Gunge	scal unly As	hort, steep vally
Nested wi	Schleeges Grund	-s oriented drawages
yesterday	. Agam, we one	looking for some
evidence o	6 GAULES.	-72
View looking	& South from MA	XHOTTE.
(-	There may be real, e AS	- Supping begaress
h	igh Angle Fractures	West-dipping NOT REAL
5	2	
	500	w-10e
	mora	ore of
	38	
BR	BR BR	BR.
	Waterfalls	
STOP 14-1		
Ridges devel	loped MOTMON TO +	olionon display
OTIENTATION,	WITH NO PARTICULAR IN CONTRAST TO Th	spacing or foot wall.
Photo 35		

Also AT This STOP we have climbed a grassy Talus slope TO IMVESTIGATE a wide crack on The west side of the vally. IT is un convincing as a fault. Like most cracks, it appears To be more of an ex foluroson CIACK, many of which wrap Around + live These vally · Actually - There is one polished fracture here which looks much like A fault. - continuous, corregated , polished. OOO, 76°E 26°S RAKE Seems To have STIKE-Slip movement. I wish To get some "baseline" on rock MASS STRONGTH of The CENTRAL GNESS. I choose The rock ourcrop on the South sile of The road, about 200 m eyest of Brentlaher Hot. SeT # Sprand Crack Washing Schnidt Hammer. Ociesation 1 0.5-1/1cm mod. 120/25sw 50,50,60,50,52,52,56 2 4/5mm ou 355/75°E 20,22,40,38,50,58 3 0.4-0.5/< Imm low 255/85°N 38,42,41,41,41,48

5,2	The state of the s	200
= expola	#Tron 2 =	is parallel to the
30 <i>p</i> 81m2	2177113	ACTURE.
1, 4,		
	4	

1				
		7/31	BGAST	11.5
			Dresel	55
		 7-(3)	Drink	3.
		7/31	Charge	20 reimburse
		7/31	roals.	22
	1			
	,			

IN Thousands of Like. RECORD of Money Spent ON ITAL TRIP 2000 (record especially That for Probe To reimburse The MAP purchase) 7/24 Dinner 47 7/18 DINNEY-PI32A 40 7/24 GAS 7/19 Lunch - Breadese 18.5 64 7/24 Tolls 7/20 Colonone 11.7 (3) 7/24 Lunch-BBAST 2002 26.9 7/20 CAMPING 46 (23) 7/24-25 CAMPIN 29 7/19 Tolls 32 7/19 Durer 62 (24) 7/25 Aurostill 8.6 7/25 Diesel 47 7/20 Lunch 25 (8) 7/25 70115 10 no recolate 7/20 Fruit 1.3 (0.4) 7/20 GAS 7/26 Coldigioco lagin 50 44.3 7/20 Desel 7/26 BARST 67.5 10.3 7/20 Gelaro 9 (3) 7/26 Talls 5,5 56 (19) 7/20 Groceries 7/26 Frasassi 33 7/20 CAR Report 50 (NO Receipt) ATROME 1284.7 7/27 DINNER for 4 134 (32) 7/21 Brand 3.1 7/21 GelATO 13.6 (4) 7/27 Dresel 55 7/21 WINE 10 (3) 7/27 Tolls 22 7/28 CAMPING 68 (18) 7/22 Grownes 44.4 (15) 12 (4) 7/29 Diesel 7/27 GelATO 50 7/23 Agrituristica 270 (90) 7/29 Lunch 18 (4) 196.4 7/29 DINNER 126 (42) PAOLO PATTE 7/30 Lunch 7/23 GAS 18 (4) 10 7/30 Paback Prolle for me, 7/23 DINNER 43 Missg, her denner 30 7/24 CAMPING 7/23 Tolls 100

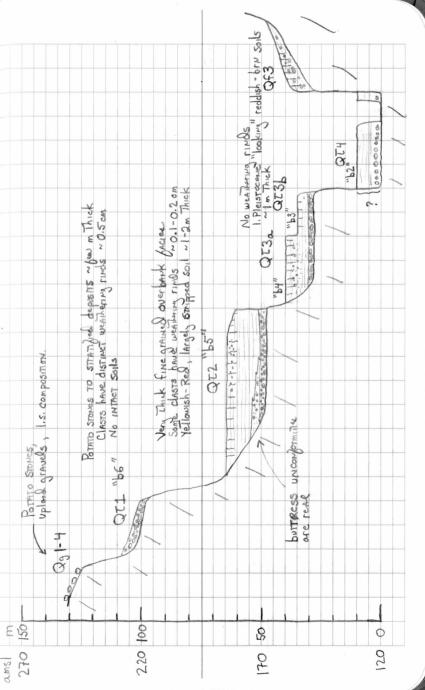
Field Work	2,000	- Apenuires	5	
FIRST ENTRY	July 2	-O Th -ω/ [Pada and	MATTHA CAR
June 17 - 19 T				
have Topoma	ps at 1:100	0,000 and so	ne of The	<u>د</u>
1000	1 8:20	A -ROMANDA		
at about N	oon on The	place I AND 19Th Took	The Highu	UAG
of Terroces	observed in	TO revisiT T	my was n	nuch
at 18450 S	TETTACES / ST	Very good ex	alluvion	1 15
P-0(2)	bens. IT 1	The underly	TO OFAHO	16.
for The higher we	color.	Presumably,	This	s a
	clearly	Presumably, AN INTACT SOIL : This STOATH IS: As The ruins.	profile	
		This STRATH IS	The some	elevation
Vien Lacus	To Terra	As The ruins.	000	
View BACING	Rulus at M	Arryabotro.		
			-	

July 2013 2000 Warm, Clear, but hazy
STAYER at a CAMPGROUND IN The SASSO MARCONIC area called "Piccola Paradiso". Non che male.
area colled Piccola Paradiso. Non che male.
Did not find any 2-star pensione and The 3-star
hotels in the Area were full and too opensive.
We begin with Travel up to Bologna to get
MAPS. The UNTO The NOTHERN ADENNINES - MAKEY
our way to The Alpi Apuave region, Then back
Towards Bologua
Bologua TTP WAS MOST SUCCESSIVE IN That we made the
Aquaintrace with MARIA Teresa de NArdo who was
most helpful in getting us sextup with 1:10,000
mags to The Repo and Bedonte basios. She works
for The Regional (EmighA-Romagna) survey. The claim
IS That The REPO has The best Terrace by far. and
That The work do not extend of The basin much
farther than MARRIA borro. The Trib of The
Reno colled Trume SettA also has A well-preserve
Terrace Sequence.
The Trip TO Bologua Took a bit longer Than I expected
we were not out of there until about 3:00. Then
I precipitATED a real delay by putting ~ 0.5 TANK

of das INTO A CAT That TUPS ON diesel. BAS Idea. Throughly, we realized what we were doing stopped, got the CAT TO The Side. Trially we determined that we could get The gas out by removing the in-hose and starting A siphon. So., up A life The CAR west. By 5:00 Birally, we had That problem fixed. We spent a few hours before dork driving The road up The Revo basin. Terroces do fall off Significantly but There are some vice exposures ROAD of well-stratified fan gravels Thut ore clearly Larnord TO former vally levels. Best observation Km "61 is that these deposits have vicely developed soils That appear late PleisTocene TO US. There has been some 30m of INCISION below a presunably ate Pleistocene Trend some 20 Ka? for on incision rate of " Imm/yr. B+B for 30,000L or evering. A 31 er da AgriTUTISTICA

T1 215T	2000	- 01	Α.
July 2157	2000	Beautiful, c	ear, cool morning
We will spend	The DAG 11	The Reno	volley, checking
out The depos	TS + 50115	To The bes	vollay, checking
ability TO re	Ach Them.		
STOP R-1 di	Tour alton	2 Sassa Marca	eie a Tho
			end is really
quire rounded	. There is A b	own, clay-rich	sol w/ good
structure, but	untually d	evera i o smar	alets. We
The road.		he colluvium	exposed along
100		,	7,1-1
			least in color
			sidered 5 of
	o (brill)	poly our des	2)
	water Table		
Collegion d	lerevel from	This believek	weadars brownish
		ous, Up To	
		oks olot (ike a beach,
Nerinc ex	1 Frommon	Flood on 5000	aces have
local mesa-	Siermyle Lon	-1000 5000 1000 1000 1000 1000 1000 1000	25.

K-2 Kupa Road SW of Sasso Marconi, The belrock here is a confise fluvial unit mapped se RUM2. Coarse conformate 55 + conformate. Polymicale. More matrix (small) rather those CLAST-SUPPORTED. Moderated well individed. Almost cor Tour, the mapped Terrore levels


2 b7-12" ore at but fluxal logs cut on

Bedrak. I Think They are "norphological" rather

Then dysositional features. Photo 4 of Reno Setta confluence R-3 MARZADOTTA OPP. The Terraces can be reached from The PANICO side. There is A small Park / Game Preseque ~ 2 km S of PANICO, ON The MAIN LAMA (edge) Reno Road, The Terrace deposits are underwholming; basic moderated to well sorted sandy gravel, both Axial stream and fan facies. The MAPPER 63 and 64 deposits are likely The same strath.

- Angular - Alluvid fan grands ~ 1.5-2m Reddish brown < 1. Plassocent - looky soil 64-~ 3-4 m VIETUOU OU WORTHING ging, bired-simore grand horizon. v. poorly developed soil ~1-2 mm wanter ports sorred rings on lade 63 looks like 65, on & 17 15 Thinner, and of The 64 level. IT remains possible That The yellow - Jilled hollows or The ridge Above b5 are burressed vally side, Frequence 6115 posser 2 and 6.6 or 67 Terraces present dans tresm of This part. PARICO "b6". This is a classic potATO STORE R-4 exposure. Very few, scarrered Is, rounded cooles Maybe This is representative of all pre- 15

R-5 Proppe gravel Pit. Km 61 Well STRATIFICA, moderately well-sorrel side Tributary fan gravels - 6 m Thick Both debris flow + blevial freise ore present, but it is not axial stream facile. Photo 10. R-6 CAMUNGONE "Km 62"
A small, limited knob of "b6" STATIBUR -3-4 m 7 Alluril For dogosits, Admitted with A far bit of rounded cobble. Three closes are, on Average much more westweed -The have weathing rinds of ~ 0,5 cm. I del NOT abserve on 1.5. CASTS.

July 22,	2000	Portly Cloud	warm cool of
		E le Do (10)	
			e is rully pice
		o is a great pl	- Vergato -
		We work for	
· Thre Are m	my londslide	e/earth/lows	coming (NO
ord orond	LIZZATO.	AT TAVAL	o, The
Thre ore A	superous (la	or bengles The	to look like
Terroese.	And There is	s something The e TO The N	of can force
			ε.
Several ph	50000 2000	2 # 20	
ME CIMONE AT	en (2165 m). There is A	+ Acous rond,
closed to vehic	les, but op	O Shoot Tray	Die Chot
Mt. Cimore.	The head w	evers of T. 1	eo, The
T. Fellicarole	head INTO	A N-S ride	e between
The Are very	COPVINCIO	1 has 010100	to the south.
Page Are Very	Seelqu.	DSUT BACK 2	low relied.
· Terraces			

The cross vally profile here for T. Leo and T. Fellicardlo are very much mimic The mouth of F. Revo where The river Traverses hard rocks. Both The UNIT 8 of The lower Revo vally and MARANOSA ARENACER of The MT. Comore area hold slopes: landslide + eATIR flows ore limit Q. IN CONTRAST, The Argillines in between Are very prone to landsliden and do NOT Preserve Terrous etc * L. della Ningr FANANO MT. Cimore * L. Pratiguano Aperto MT Spigolinox

Borrom live is That The similar cross valle The current Reno- to region, and has since been uplisted - migration welt idea. All assume similar ration.

July 23, 2000 Sunday Overcont, PASSING Shower
We will investigate The lower Seachia Vally Today, The Drop Paola of Near Modera.
Then MATTHO and I will continue up The Socchia or Enga to The NE Glank of Alpi Aquare.
SI Between The bridges at Sassuolo. Just Sourstreen
well industed, inclined strata of florial sondy gravel of local interbeds of sondy SILT. The doposit
is weathered; locally canental into Travertine -
There are few but noncable closts of gabbro
IT Appears that The one old daposits of The
Po vally, Italy of an Ancestral Sacchia source, given that The class imbrication is all to The North.
But The source of The granite (?) is uncloser. It is also not closer if These deposits are exposed
IT is also not clear if There deposits are exposed only because of the dan.

52 Veggia- Across The river Krom Sassuolo There are several suffered in This region all are manifel with gravel. They are both Terrace or well or JANS STREAM IS T ~ 120 m ~ 123 m (~3-4 m above The \$Trum). Cerrdiolo - The river more A NIN TO The wet here. The city is located on UNIT 6 b drack, Several surbrem are premied. GATTO - ASAIN, The roof Traverses UNIT 6. These maybe A SURBACE TO The worth of Town, at A TILD confluence PASSO del Cerroto - We climb up out of The Secchia. basin. Hudunters are in marble. DISTINCT Vally in Vally Profile. Lors of possibilitie for upload soiface. Solsabo. Photo 2-5 Now on Toscara side of divide. It looks different harc from The STANDROND That There is no real valle in valle profile. The picture is of Active debris flows.

Next we construed down into the Magra Volle on The Sw side of Alpe Aprove. Terrocce here are either absent or singly pool obvious. There are some sond + general operations, but They agree To be limited to The & lood plain and modern So we retrace our steps back towards The Town of Fevergono and The proceed & - 35 on The From Blank of Alpi Apuane. Alpi Apuane hon Teron-like ruggeduce + religi. - very impressive. I can see how Brandon make The convention to The Olympics. We pass who the Serchino basin and 1000 a Mick gaborose ple of The Liquion Nappe. There are primerous sur Jaco Preserved, but virtually no exposure. Thus vally is steep - not like the Tuscar side of Passo del Cerreto. We wooder 18 There are not some valles on the Toscana Side That have surface, and under 518 Strams because bornerly, They were longer N-Blowing drawage before bounded by drainge divide markon.

The Afrerwood ended tacher everfully in our efforts TO find A place TO STAY. There are few options ... And most place were eiter full or closed. Eventually, we make our way TO CASTELLWOUD AND AFTER " hR & obove The city (LA Pella). There is A road / foot That was town. We are of the Town's July festival. Only saving grace was the discours of very weathered upload agravels in a roadcut ~ loom from the Camparound on the road leady into Town. There is A possible Persione in Pieve Fosciona, N & Conselwood N 3-Km.

	· i		
July 24	2000 Morda	RAIL	of the same
73321	LOCO WISHES	J. Mary, 50	7 000
	1	1 -0	
We will begin	today of the	spland gravel:	
OT CASTER MUC			
Alpi Apuone	, remained 5	8 Serchix	vally,
and out to	Pisa. The a	e make son	4
	east Town		
valley.			
9			
SR1 (11	0 Grands 7	Caro	
SRI Upl	and others of	OF NOOVO	
Clossic	Dynpic - style"	Klug Deposit.	040
Kiduculasty	well-westered	. Closs ore co	nolitely
SAPROLITIZED.	Dominant 102	K-Type IS A M	11 COCHOUL
meta? sands	one, but color	ed. Closs or	brasin .
well-rounded	2- TO Subrounded		ă-1
000			74R4/6
~2m 500	76191	MIAN SUDICOTO	ittle STATE.
600	010		
~0.5m	ST	ratified sond w/	104R 5/6-8
	105		
~2m (0, 70		ATTIX - SUPPORTED	7.5 1R5/6
		Red, v. chyrich	\
	//	Aprology Red Bedrock.	
7		Bilrock.	
exposed in A pipe	trench		
a road edge			

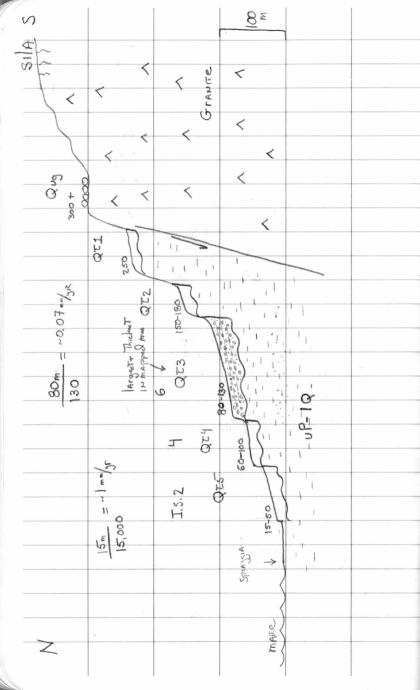
A very productive, but rany money in Alpi CATELHUOVO - GALLIGANO - GroTTA del VELTO The PANOTAMIE road TO The CAVE TAKES YOU THROUGH Vergemoli - just one of several rowns perched hundreds of mesers above the valle bottom on sorths? I have taken many pictures of These STRATUS - Some one quite convincing IN Their florthers and extent. There are numerous shall cares, alcover are Throughout The vally, at MANY de Operant levels. GroTTA del Vento is but one of Them. IT sits AT less 150m odd The vally borrow. The vally is ridiculously NATION + STEEP. IT IS essentially, a garge. Rock Tipe is Lis., martile, and smaller overts of CArbonacions clostics - shale Remainder of day was sport in The Serchio Vally. Exposures are very poor, but you get The impression that There are some Terrous, especially in the orat between Lucca and PONTE a MORIANO. A MASSIC Accident really slowed our progress. The Serchio Alternatively Traverses brond, open vallys, and steep, MANTOW gorges.

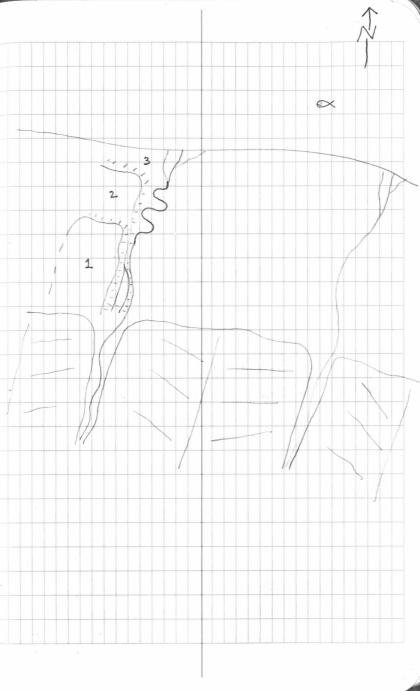
From Lucco, we rook The Highway to southerst of FIRENZE TO The INCISO exit And proceeded north ON RT No 67 TO DICOMANO. This is The upper VAL D'ATNO alon The Frame Sieve. A vice wide vally bottom with one or two low terraces is evidut, but little else. We staged at a CAMPYPOUR in the Picompro Area, on The Sieve, Near Vicchio. There is A Mee 2-STAR LOTEL IN GUST ON B PORTICO di Romagna - convert w/dining, lodgias

July 25th 2000 Tues Day overcond, worm,
Today it is up over Alpe di S. Benedito and Then 1200 The Montone basin, Then 1200 The Billinge.
Divide characteristics
Km 152 Bocconi - up to 3 high surfaces. Some orn Nice STINTAS for The higher one, grand-menthed Treads for lower 2.
Rocca - North (downstreem) of town the Ferrace ore again well-exposed. "b3 and b4" Photo 2-19 Some yellow allumin + soils.
Now The road from Rocca TO Graleam trops first into The Rabbi dromoge, The into The Bidente. December 1000 The Rabbi, There is one place where yellowish of Alluminal alluming 5175 ATTOP dipper bedrock. Possible high Terrace?
Dropping into The Bibute, A very high surface, likely underloom by Alluroum "610" cont of GaleATA. Nice exposure of yellow gravels and underlying MAROMOSO ArenaceA

BI "68" uplood gravel Private Road behind The KM 59 STORE, JUST SOUTH OF CUTELLA & ROMANIE The upland surface appears as a roller Topography with up to 30m of relied Concernally, Thre are gravels up have, but The were not apparent in a ploud dield at edge of The mapped surface. But we do find I'm reworld in collevious Qx8 at lower elevations from gullies that head TO The upland SUP PACE. B2 "b5" Terrace. STORE SITS ON TOP of Aven road out expose a sinah with stratifely, impricated gravels (dip to ite s). Strath has ~ 2m relief. Gravels ore - 2m Trick. No sort. deposit is buried by up TO 6-8 m of five-grand Qod locally convaining books of anyolor clouds and occassional reworked?) 68 gravel.

B3. ~ 1 km worth of Nespoli. Really ourstandy exposures of "by" on "b3" on apposing bank (wast side). These Terraces clearly have alburent STRATED Separated by at least 5 m. Similar strategraphy TO The Repo Terraces in That There is a land basel gravel and lots of 6the grand yellow bill. Here "64" looks like Repo "65" Photos 3-1,3-2 The main road is on "b2". IT is plowed but no POTATO STONES All Treads slope - Thy do pot alongs look like Treads. The lower vally showd some more of The Some Terrace, but They end rather abruptly by Some


Drive TO Coldigioco - we have not all here. Olive Nesci - University Urbino has work much on Terroes here. Osservatorio Geologico di Coldigiaco 62020 Frontale di Apiro, Italia

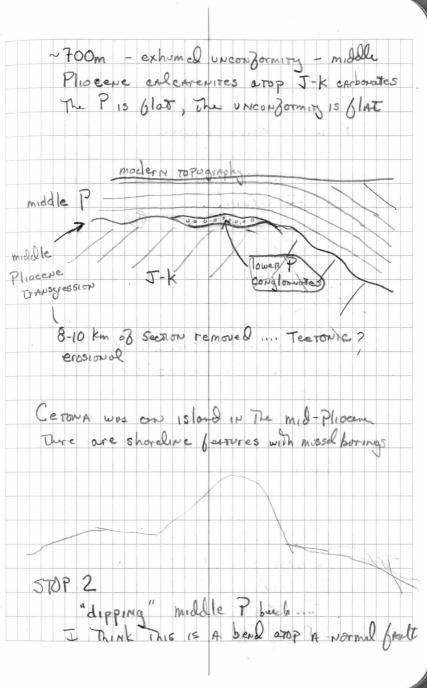

July 26, 2000 Wednes any. cheer, SURRY, breedy. Coldigioco - Frassasi - Spileto - Roma. Mauro Cramaschi Soils in northern Agerines, UNIV. of Milan. Was really spend on a marel on we had lunch with trusto and his family. Very vice people and Salvov is a good place. The road TO Roma - VIA Flaminia is obsilited packed until Trucks - it is inter slow going

July 27, 2000 Thursday Hot, humid PETINO EXIT, The last, right at warehouse. TANASTO VALLEY - Frame TANASTO and From BLANCO Ascrone, Cinque + Toggi Studi Geologica CAMENTI Who spende 1992/1 Classic extensional vallag - 1. La Fueino, source of The 1982 Salerno caronquake 6.9 M imperson from The standpound that IT was one of the Jurst e.g. TO have a document of surface reporte. Photo 3-8 The mapping here mye for 3 major geomorphie 5) SUT pros. This basin is exhancel - The drainings have been interrated. To The Sw, Valbei Diano remains billed - 17 15 not you conflict interested. General structure hard mimics The Northern Apenhines - Liquition + Section NAPPES SIT ASOP Mio-Phoone incipied foredap mars, which sits Apop unpricated Apulan place platform carbonates. Geologie Map of Southern Apennines Boundi, D'Arsens 1:250,000

Grotte di l'extosa - really cool hanging Trubs. and bedrock KNICKPINT. STEEMS have high base flow beause of KArst habitay. Knickfounds here mark The post of base level fall. Gravels are like Plane Terrestrial basin fell (1) fill) ATENA LUTACA, Vallo di Diano - ven nice outerop Jo. a falt scarp + collevial wedge. This 15 some of The most red, washed sail we have seen (in allerial andie). The Lenze pieces of the Phono 3-11 bre se rated fault 30m -s The souther Assertives are very impressive in both relief and elevation. The BASILICADE portion of the souther Apereira are the road besur Jul course the Roycox around

Napoli is A disasour. رعا Ligorian or Sieclian Mappe mbricos de plus form Apolino Plate portron of sorther ITAL. The imbricated Applian platform results in the largest orshore of field in the Ned. GASIN.

					I			
	July	285	1 20	000	Fridae	2	Sorry,	Lum, Q
A	AT K Prece	Cassari Column Chor	O , o Two ;	The k	summar	u cal	Notia.	kvow
	Phare Coon	3-1 era.	2 OW Cram	volly	Cratic 15 Zilled	Unely a with	P-Q	attangua
	STOP	- Be	Tweet # Bisig	B151g1	2040	and A	eri	
			5	Fan	gravels	aT :	380 m	on.
					PASLA			
	There So !	are	y d	ISTIMCT,	oils.	JANS OF	- 1100	nouth.
	The	QF3 Trand	depositi	15 Ve	Jedd.	sh Son	xoully	moroture.


QF2 15 Very INTERESTING - IT IS JONELAND SOLL a different pacies - looks complete pluvial. Is It A hoge, now dominated from or Oxial Stream JACOS of The Crati. We found some ourstanding , large yplaced grands on blos along The Mucone. [] = locution of likel lacustring deposits, dammed belief A BAULD OF CATAGOR DRAMIS.

warm, clear July 29, 2000 SATURDAY humid, broays Remind me someday TO record The paradiax That is Fray: Good geology, great grown, sprey Calabrese fish dinner, unbelievable problems w/ 150 judy a place TO STAY STOP 1 MANA dei Venti. Ancient, smar food upond gravels and sand very matter terrorally and compositionally. A transf for buried daring The road wat of Rossano take you up onto Silva. IN MOST place, exposures of grAnite + other crystallare rocks are very deep weathered. Lois of Saprolite. This stop is like a combination of notion soils + sucrest weather For les. ST. Onofrio Area of Sila. There are very Suspicious flats Through This real, all are aport 200 m above the stream and on The west side. The church of ST. ONOBrio 1754 5175 on parhaps The prot Terroce Photos 3-21, 3-22 From This perspective, The vally appears to be Assymmetric, steper on The east, more gentle on The

Some really outstand exposures of QZZ(?)
and The JAUIT escarpent between The coast and worth plant of Sila along The road wast of Rossaro, between Piragineric and SANTA MANA di PATITE. Photos That birish out Roll 3 were Them

WARM, SURPY, LUMIS. July 30, Sunday Today is The drive back to Rome. Along The way, we will stop of some Terroce outerops wet of Rossono, The of PAESTIM - Grak TUINS South To BATTIPAGLIA.

Feb 14, 2001 Fraly Trip STOP I CETONE Ridge, Saidharn TOSCANA extended Terrone Nur SATTERNO. Rocks of The Tuscan Nappe, over Torned E-J carbonates. Meso zorc Africa This become The Apennines OCEAN BASIN LIGURIAN

STOP 3 Crossing Cetona Ridge. A STOP To see The gravels beneath The mid Phocene marine linestone STOP4- IN The "son" of lower P change RADICOGANI BASIN ON Wolleawice plug - 1.1 MA - Photo I Photo 2 - "beveled" ranges west of SATEANO Photo 3 - MT. CETOWA STOP 5 Exhumed Pliocene (?) (Ault scarp west - & pping. It is "sealed" to The * IdeA The bulge is both migrating and changing its wavelength > getting wider. STOP 6 - back notated talus deposits Big landslid ? Or keep IN MIND That this is The location of where Barchi's east-dipping low maybe detachant

Day 2 - ITAL	, '01	Feb 1	Th 2001	
,		Coo	ol, clear, bear	morful
2.50		me	ening	
Staved T Ba	herma	for The	evering -	T
STAYED at BA Emiglia-Romany	Aperni	res TOD	Su O	(OSCM)
9	V	371 3)	
STOP 1 MT. A	1170330	Section	- Cervado	UNIT
Classic com	lete mal	of segu	wee that	
Abyssal plan	" A A	TOLIC CO.		
	. , ,			
STOP 2 Across T	- drainas	e divide	, up basen	3
72 valle h	thre or	e Q c	Sourarno R	- Tu
Firenzuola The volley be volley.	3,1077,	11010 07		
In The Mudella,	unly Li	JUTIAN+	Cervado Ux	iis
White prom contacts	roveped +	locally	preserve	
S	4.5	Me colu	N	
	Cerva	MA cooling	Agree.	
S 4 1 12 .	/			
Carvardo Carvardo				
	~ 5k	m of ero	800 W ~3N	12

Ligur

STOP3 Sasso di CASTO Quarry -ON The saddle along The old Firenze -Bologra Rd, w of Fierengualt, Phoso 6 GADDOS, pillow: lAVAS, pelagic carbonates, all our TUTNED. cooperation Aller passet A The vally west of Firenzuala is Incom-FAUTE bounded BASIN. STOP 4 - Looking at K-P flysch of Ligurian SAVENA Vally - LOIAND - good Torget for STOP 5 SAVENA VALLY N. of The LOIANO INTERSECTION - great exposores of Eocene epilipunan rocks + br s mean + Terroces. Well-smanfied

above The stream. They are well westered more so Then "equivalent" Terraces along The Reno. Photo 10 STOP 6 MARZADOTTO. MAURO Spoke well to Trying to find The stryamon soil. GUATOR SAZANON > GHIARDO RIVER -> CREMASCHI M STIRONE RIVER MILAND UNIV.

DAy 3 Friday 02/16/01 clear, beautiful STOP I Sercely Valley LOPIA MOUTARY S. BARGA Aponte Pho-Phestocene graben. Phocenes Sequence begins or a member prese alluvial fill. Then There is an unean Jorning. A Pri THOIN, The branded stream pacies 0 The Seven INSET Pleistocine Terrocus Provenance & dominated by Maccino in L basal Phocene, few meramorphics, braidel (Acies is more dominated by meanmorphies, Plaistocene terrous are agree all MACCINO (APENDES) The INTERPRETATION IS That Thre are NO Plouse Baults... all mandery stram No allowed four Phocene doposits have lighter w/ Liquidandare warmer climbe - middle Phocene My CASTEL MUOVED GrAVELS are QII.

STOP 2 BARGA - BARGA TERRACAS OFI-OFS

INSET JAN SUTTAGE Some MANIBOL WILL

GUAVEL OF I ~ 200 ~ 300-400 KA METTATO Breccia - Aprane Provenouse + some machino closts. The ore black gravels on The Aprome Tyroncular Photo 17 - Casalmono-BArga Divide The gravels of Barroline. Phonos ~12-17 Alpi Apume STOP 3 Alpi Apume core - on ROAD That stradles The range west of Castelword The drawages here are essentially vertical no regulation day seared landstide. JAURAND EMILE PHITS, GEOGR, GEOL BY approxion in The Apennines - Late Glacial moranes ore at 300m, Threes wo Bull Lake Morones Fin April April are not presend everyt for maybe Merrato Breccia

Trevesor - studied glaciation in Apume. MAPS TO get - Alpi Apuone by G. Squaggoric Golgic Map & N. Agenvives V. Bortolitti STOP 4 crost of Alpi Apuane. Very impressive relief, very impressive slopes. Alpine in scale. Slope have no regalith, no evidence for lands liding, No evidence for debris flows. NE side - vertical walled canyons carved INTO A "plateau-like" persure, base level controlled by The Serrchio Sw side - A retream escargant, unde vallys, glaciated, Ushinged vallys ESCARPMENT Transition from BR TO Alluvial COASTAL Plain

2002 Italian contacts, Papers, Notes
Map of Bologna foothills - Pini Geodynamics of Apennines - Ingrid Kroon (dist) Alps crosion rates - Mattias Hinderer Topo Maps of Bologna Foothills Carta Escursionistica Emilia Romana 1:25,000 Itinerari Geologico-Ambientali nella Colline Bolognesi 1:50,000. Burrati + De Martini Papers are in review now
· Missy's Wells-Fargo bank Account

2002 Nov 2-10, RETREAT MEETING I IL CLOCCO, GARTAGNANA, TOSCANA 3 field days following the meeting Day 1, Nov. 7, 2002 cool, gray, breezy Foothills of Bologua, Revo River. Meeting with Alessandro Amorosi and Paolo Severe probably INACTIVE as A Thrust TURONIAN 2 km ~700 ka, basin-wide Piggy-back basin Unconformity. Accommodation space is produced by subsidence in center of To basin. · Po deposits are gravels during glacials,

· Deposition	in The	Po Plain	u 15 rea	lley
strongly 1	nfluence	2 by b	ase leve	()
Strongly 1 Holocene	silts b	ury A P	ed 5011	developed
IN LGM	deposits	~3km	Grom P	resent
m.F.				***
	3	km -s	1	¥ 22 4 2 2
	1555	Holoco	we deposit	rs.
	Lom grave	is		
	s A	W f Tar	, , , , , , ,	
· Terrace	N Lower	~15 K	m 0% Re	eno valla
are STIAT				
incredible	. ~ -	3 m 0 %	Gravel a	11-3
m of fin	e-graine	Q TOPS	(loess?)	. All
of Amorosi	's dates	ore fro	m the 6	mes +
They are	all min	imA-Th	are reall	y are
The ore of of material	Colluvi	um + AU	(1 a)	AN
mareriox	DOLING	Lreads	, Clocaxa	5
· I bigure	That h	or The 1	407ocere	There
15 A: Pla	SIST - Holo	cene Tra	NSITION TO	TTACE
	6 5 			
V ₀ r	3500 yr	THINE	500	CAMILIAN?
7.0	1000 0	TEATACE	/	U
	33.24			

Tucisian rates are	like	30 m IN	8000 YR	s,
3 m/800 yrs, ~ 3				
possible That climo	Te+	complex	response	
both influence sed	ment	supply +	. strath	
cum.		11 7	1 1	
0				
STOP 1. VIA PONTE	cahio	, NOBS	ASSO MARC	ONG
at the church t	elemen	stary sc	hool	
Portecchio MAS	RCONi	- goo	od Holocex	e,
some 1. Pleist,	+ 500	Q IS 6	(?) Term	Kes,
156?		1 3	96	
		91		
	6m 10	BANS .		
	~		8800 ka Ha	Oc-en
	3-1		and the second section of the second	7
CT09 2 P1 0 T		1 1 1		
STOP 2. Behind T	Te Die	sel debr	ocie gas	uan.
STATION + IN Gra	100	11, you	ofos ine	188 188
Pero (enter T	VLODO	NATO	Drick	6.
Terroes.		IDIOC SPET	L 1: 1. L-4:20	
				_

MAIN Rd (RT.) by Traffic circle worth of Sasso MARCON BologNA Belvedera Rond 490TC 57073 -15 6 Treeds Pre stage 6 MONASTERY + TRATTONIA To charp, good TRATIORIA · Missy will be digging Ars in These Terraces

TripT	o mT.	108/02 CIMONE.	Januar .	1 September	cold
V	allen be	of the courses	FLE INA	uted c	Ineial
on me	The SE	TO The b	Tong up	Cimone	Joec.
1		ines		£ >	1
		1	see 1940		
IS IN	er 18 Th place- nated w/ loctharo	fault,	» shallow w/ Abu	water o	leposit Sancs

we T	ook 2	sample.	5 -		
SAM	prien	MINO 2	s - slasts	on Su	mue
SAV	ple C	IMINO 3	belrol	२ ००१८	OPP
-	S MAG	cieno	3.7	15	
NAD27	CONT.US	s. 0636	331, 4893	349,18	388 ±3.
-, ge 136,	1504	t pari	2	- Phir	n
	1 192	N. 1	9 23 4 4	1325	
S	Ample C	IMINO I	15 A C	hurcle	5
	DACIGNI	o coll	acted fo	F AF	1-U-T
	He AN	alysis.	15 A C		
		9			
NAD27	T32 Cont	us 063	36148,489	4647,	1976 =5
					ľ.
		1			
		4.~		ì	- 4
	0.	in American		1	
	Ø. 4	i - (5)	- 20°	1	
	P	in in its and	1343 1343 1343		
	P S.P.	4- (
		1- CS			
		4			
,		4			
		4 - (.c.)			
		4			

Nov. 09, 2002 Today was A River sediment sampling do We also met up with Vinceuro Picotti at SAN Salvatore, A small Town on The ZENO RIVER (CAST of PLANORO). There are u. good relation ships between Th STUCTURE + STEATY here That help put The observations of DM I INTO Perspects (1 This Autholive
15 Seem Trom

SAND S	Amples -	Reno	drawas	e	
UTM	cordinate	s . Zove	32 NF	D27 Con	TUS
	River				
	Venola				
180 2 C	POTTTETANNA	0658778	4887706	405	8.2
(中语)	(3)	L. L. J.W.	Elect 2	T = 12	
14	11 45 37 6	t	106 - N	Str.	
	4	31	in in C	- 2	
3	T. LIMENT	A 0659687	4887971	398	4.6
1	di Samb.			1	
4	T. LIMENTRA	0663800	4885098	491	5.0
	Inferiore				
5	Silla	0657949	4893695	315	5.7
6	Reno	0677878	4916092	114	5.1
	Edward 2				
	134 20	1.74		21	
7 10 00	T. Serra	0679212	4915545	110	5.4
_	T. SAMBA				5.4
9	T. SeTTA	0674157	4899041	299	6.1
	Time	ea a in	1 = 1		
100	T. SeTTA	0673947	4898991	292	7.8
. St	· · · · · · · · · · · · · · · · · · ·	E ES ATR	de soft .	1, 1	
				~	*
	1				

EPE	comments
8	
9	AT The small bridge = Plandi Venola, east of RR Tracks RT. ONTO Rd TO SANMARCELLO, 100m-100T TO parking AREA,
1	down to small house, down steps to RIVER
	* Note * A gramon south boulder was found in
	The stream have
5	POTTETANNA - INTO TOWN (1egt of 00 man Rd)
	To bridge Next TO small bactory
6	N. of big reservoir, at bridge on small
	ROAD TO STAGNO.
6	AT PACK, Adjacent to Road to Logano, Silla
6	Reno fishing (?) Access, south of SASSO
	MARCONI, BONTH of "The diesel SMATION",
/	north of MArizabotto, South of A-1 entrance
6	River access @ Piccolo PARADISIO ENTRANCE.
7	A The Rio Veggio City Park, east 512 & HW
T	Lagado (?), east into Town, sample at bridge w/splash dam benefit.
10	Lagado (?) West of of Hw morth of
	big bridge North of Town, down to
	River, sample under RR. bridge

88 8E

START, 2003 field 5450	NIN ITALY.
START, 2003 field suson Day 1, Saturday, May	24, 2003 :0. bello.
	ay. Short delay with The
	be at IL Cerro Again.
1939,30	ar saile remi
-00404 -000	Today Logi
- ready to go with sur	oding . Today reach
- Sunday- profile AN A	tred hear trans de veroca
- Morday - meet with V	huceuzo @ Archivo Carrografico
and profile week PALAR	30 dec Kossc
	USE receiver on
Instructions	barrery changer
verity equipment vs	5 PACKING IST / Two separate
	Night; charge is good for
1,5-2 days; one of The	big batteries is missing a nut
· small batteries are for	r The rovers, charge Three
each might too	
· be careful with cables,	The complectors have small
delicate PINS. Po No	
· record problems in log !	
Base STATION U15701	- Flash card # marche
	of leveling mont to putchus
· place IT IN The level	
· CONNECT Yellow cable	TO
· use controller (lots of	0 pollous / 10 sep 0)
neceiver.	
22.75	

· check voltage with multimeter redoured
· CONDECT black cable To battery. Keep battery
IN CASE - GISh all lives Through
· Controller ports
O Controller-receiver
- 5) 9 DIN SECIAL DOTT TO COMPUTER
bottery GPS ANTENNA
2 hrs - 3 for power input (can also go on roa)
NOTE collar convertor; full on code to
relese.
· Green is on-off, may not have to use
Blue button is configure - we will do This
Ouce, Then just make sure light is on
SATEllite light blinks when at least
one satellite is in range.
· OTHER black cord TO CONTroller.
Files (Europ)
Job managnut
New (FI)
(Enter Marge >
PC card
0k
No projection/no dann
Grid
NO
ΦK

Esc
Survey (Enter)
5SECPPKIN (ENTER)
STATT BASE Receiver (ENTER)
enter options include name
For Rover
· BATTERIES INTO receiver
· ANTENNA ONTO backpack
· receiver + yellow cable - connect to ANTENDA
wrap wire Around post
· black cable woo 1.
· hold controller, on - Survey, 53e PPKIN
· 8-15 MINUTES TO CHARGE From FlorAT TO
SATELLITE FIX
· PDOP = 2.1 = good, will stop allering
doto @ 10, save whom you are doing
1) + when 17 gets to 5
· Save 17 you are About TO lose signal -
2 10 more 21 4 moor 10 105 2 1 drop -
obstructions, < 5 prellites
· STATT SURVEY LENTER >
· NAME IT KRATERS
· Measure Youngs
· Auteuna deu Kenter>
Point Name Centers (why Point)

STOP + GO survey

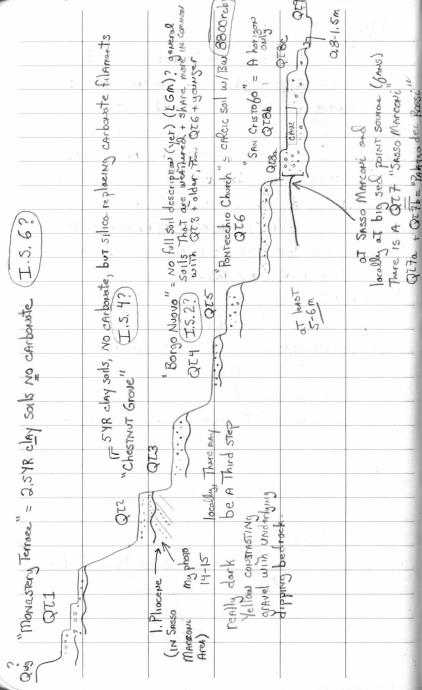
	F1, m	easure 1	201ND		
ESC	15 to 1.5	arav :	10.00	19505	i geta
	Endsur)ey			
	No	power	down r	eceum.	^
		1			
		3,		1	×
	1 2	4 .	,		
			,	3.12	
		NES.			
	ž	3. 3515	· · · · · · · · · · · · · · · · · · ·		
			0		,
	1	·) = : ()			
			1		
		1 3841 /	- 10 M		
			1 - 1 - 10		
		35 37	1 . ()		
			~	*	
		Kir	(
*					
		. 9			
,					

				11	/	
Day 2.	Sunday	May 2	5, 2003	3 20)- bello	
		1 1 1 1 1	2 3 2 (1) 22 (2)	100		
General	Procedure	e of le	Nomer	clasure		+
			5 -	INC	lude recharge	en
· BATTERY	Charging	breno	us even	- CO	out 2 hrs.	
· BASE	STATION	,	1 ,			
• 1	erminals To	D PULL	2 pelor	e plugg	120 IN 601	+
1	receiver		0			
	cheek The	5 Termin	ous + c	orpecto	us are	
	secure	. ()				
	ANTENNA	+ CAO!	es.			0.9
	Green lig	المحرا	34) + 10	99109	bu nore 3 no	nere
	be on	18	0 .	o incom	on with	5703
	make s	307 + Jul	X 13 11	•		
	slow /le	507120	SATO	Te lich	t, your rea	0
	72 00	3 36) On teac		, 300, .	Ü
	70 90					
Rover						
	emory card	IN CO	riora Olex			
. 6	ATTERIES IN	pouch	until re	tely TO	90: 4-5 hr	s
	es chorce					
	ONTOller O					
	jellow ca	ble to	SATELL	ure		
	measuring					
	0		100			

O JOB - a New Job per day RE 25 MAY > PC-CARD No projection, no datum Grid and NO Geord FSC DATA FILE IN FOULTY mode C 25MAY1 channel POINT (WAYPOINT) C25 MAY 1 - BEG edit C25 MAY 1-1 a UTO INCREMENT -3 STOP -> GO, C25 MAY 1-STOP1 do NOT preserve C25MAY1- FEATURE 1 & whosever IT LONING GO - STOP C25 MAY 1- GOI present roving C25 MAY1-4 C25 MAY1-5 C25 MAY1-END

IT is possible that instead of point features, I may want to actually preserve roving ... in this case, when you get To the periore enter it or A GO. when you've got the persone completed, enter IT AS A STOP ESC. ENDSURVEY Begin JOB for MAY 25th Plan de Verola Spilling JOB = RE25MAY · First Two data files are good · File 3 lost signal once. · Chappel 13 Ausone - bar /bediock distributions la ile made Clearuster wo deep pools. STOP 1-525 Upstram edge of MARSADOTTO CAlamehe. Possible AcTive GAULT lines up with major Tributary That enters at upstream edge of CAlAnche. 148° smike. · Nice Knickzone w/~ 1-2 m) relief looks like a fold, no obvious offset or rock type change although bedded sed opsited turns into A shear gove

mudsione at creet of bold. - IS I had To guess - fault bend fold verging elevosed come - like structures on plat? beddy plane? suffre 0676443 E, 4910935N UTM 32


Day 3 Monday, May 26, 2003 : 655
Survey RE26 MAY
Castel dei Rossi Dam + suspension bridge 32T 0680950, 4920670
- late to the survey we had to find a base STATION bound one at a barm
VIA PILA; INDUSTRIAL ZONE of PONTECCHIA.
IT IS (base station) marked by a wagpoint
The section surveyed be a let of bedrak
The BR IS A SANDSTONE, with local conglomerates
This gives way drawstram to a mudstone where The channel is barely flowing. - Allowal, but only A Thin manife xice
mudstone charmed strain + strain Terroca. ~ 2-3 m above charmed. This low
STRATH HAS NO SOIL IN IT.
Thre is a strain terroce with Imo B yellow soil weathery profile in the PDR dam
The channel on Jon side. On NEAT SIDE

PDR side, There are several Terrocce That Step down vices to The river.

DAY 4, Tuesday, MAY 27, 2003 5
BASE STATION OF SAN CRISTOFO JAMINUSE STATT - SAPABA DAM 32T 0681813, 4922339
The dam. Books here are dipping streets to east
There is a road That Trends N-5 along the west side of the river - gravel pits to The Bleft. Road stretche from Sapada Quorry / Dam ~ 2 km worth. The road is on a
DAM ~ 2 Km north. The rOAD IS ON A - Above what is exposed in channel Terrace Tread - Very Continuous - Terrace Is exact same scale on QT5 in Claramater
IT SITS ON A STRATH WITH VERY IT & relies (60.5 m) CONSISTENTY 0.8-1.3 m above The channel. There is no soil in This
Terrace.
· We have sampled 900 m of channel. of The END POINT, There is a land of un occessable channel.
· STOP 2 CASAlecchico DAM at Lidodi
CASA lecchio. FS 2 ot DAMTOP FS 3 ot Terroce of The PArk/Lido
(total)

· STOP 3 Palazzo dec Rossi - Flot + meddy ~ 500 m. Then an allurial showed with local bedrack Roving segment; 2 FASTSTADIC UPSH

Day 5, Wednesday, May 28, 2003
Mossy has arrived. We are spending the morning looking at her work.
STOP 1 - Terrace sequence from old Sasso Marconi bridge TO Sasso Marconi
STOP 2 VIA MEZSANO UP The hill TO PINK COMMUNE - PALASSA MESSANA * Great Chestrut grove. 0679139, 4920633 Photos 14+15
STOP 3 - Montechiaro, via Montechiaro - Intersection w/ via Pontecchio - Acaro TO Monestary Terrace. Is 6 or greater
Some summary of Terrace observations, based on Missy's work. . we can get at least 3 cross-valled Terrose profiles That can more or lease be used to project elevation data . I at Casalecchio, another of Sasso Marconic, and a Third of
get A 4th at Plan di Verela-Pioppe

STOP 4 - Monastery Terrace - QCI
Three FAST STATICS, The seeped one is IN
front of church probably ~ 2m from
highest point on terrose (in church courty and).
Which might also be Quy This elevation
15 Absolutely concordent with The
SUB-SUMMIT SURJACE Projecting South from
The SAN LUCA ridge. MANY POTATO
STONES at This location.
Photo 19-24
₩ Great Place TO START a field Trip
P
Ebi filmino
Lighten
Normal fauti of Piecoti
of Mecota

	f- :)	-
STOP	5 VIA	Belveder	e - ens) - QZ2	+ Q73
F.	54-B 55-	ELV1	QT2	STAN e	+005=Q
7 / E F	55-	QT3	/ · · · · · · · ·	IN ROAD	bTWN
STAT	C	ว	△	TE C	
2101	6 Via	Kosa	QL0	1-0100	
. 5 6	11.0	molale	CO V N = IN	VI. S I	00:
	O'A	74 Vmic	H FS	7	onexc
	A	c vivic	Π	,	
STOP	7 EF	RG GAS.S	MATION E	437 d	and
	7 Er private	Love Th	AN LOON	now col	mugare
	QT8a	ERG -	-FS8		
	definite	scarph	re dist	ngu ishin	9
	Q78a	+ QT8	b; QT	36 is 2	m lower
 STOP	8 F	RG cm		~7.0. 50	em. 00
0101	alluvia	& FAN)	HOP C	megae 18	317 000
		ERG F	59	,	
			•		
		-			
			,		
					,

DAY 6 Thursday, May 29, 2003 - Callo Missy + Chuck one doing a channel survey
Today in The Vicinity of The Sasso Marconi
bridge.
The "Public Park" at Vizzano has Turned into
A squarters settlement! No easy river occur. GPS reading here SASMARBRDG

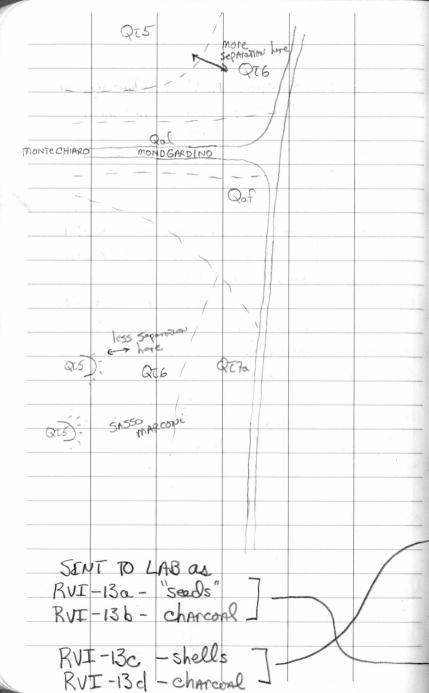
DAY 7 Frday May 30 2003 2003 Morning spent in Bologna at The Yunersita MATTAN MATTER and some for STATICS ON Terraces IN SASSO MARCONI Afternoon spent in The reach from CASALECCHIO TO SAPABA DAM.
"Blue Bridge" (BLUEBRDG) 15 A NOTABLE landmark in The Casalecchio Park We are < 1km from where we INISTED THE SAPADA SURVEY. Charmel here is Alluvial - Almos completely looking in bedrock ... it is presty flat. One more survey on The QIS Ferroce IN The Casalecetico Park.... A long 7 Kinemana swetch ... to see if it is TIVED. - END of This survey 15 CASA END T30MAY-FSIL QT86 @ CASA END -30 MAYT3 QE86 KINEMATIC

3-0235 -- 50 SHEETS -- 5 SQUARES 3-0236 - 100 SHEETS - 5 SQUARES 3-0237 - 200 SHEETS - 5 SQUARES 3-0137 - 200 SHEETS - FILLER UTM (32T) (m) (+rib) TRIMBLE PT QT, MUT 0679079, 4924409, 160 30TF51-0679794,4924585,143 Q#3 b 30TF52 Pto 30TF53 QH5 0680346, 492440, 102 30TF54 0679093, 4923386, 285 QH 1 30TFSS 0679625, 4923305, 179 at 3a 30 TFS 6 0680005, 4923273, 155 0680487, 4922837, 109 0680317, 4922925, 114 Q+36 30TF57 QH 6 30 TFS 8 1 9 QH 5 0680845,4923035,71, Q+80 11 10 0681832, 4925907, 62 30CFS 1 Chamel 0681895, 4925404, 60 30CF52 30 (MAY Z-END) 0681835, 4924910, 54 Charnel 0681867, 4924987, 56 Q+86 30 TFSII 0681643, 4926450 49 Q+86 30 MAY3-BE1

Day 8, Saturday, May 31st 2003
The state of the s
Mariha will consider with soils take + tomorrow.
MATTER ON I will do The channel from
MATZABOTTO down TO " LAMA de Reno
and a second and a second a
FAULT! I The MARGA BOTTO TERROLE NIO°E
down to the west
· DATA file I is The ZAULT reach almost all
bedrock, many small knick zones.
bedrock many small knick zones. DATA file 2 (C31Many 2) is mostly alluvial- mixed with Budrock al stretched to The
mused with Bedrock and streethed to The
Margaborio suspension bridge (MARJASBRDG)
· DATA Tile 3 15 all alluvial at 175 and
it is basically A delta dumping into a
reservoir? I'm govern A briglish downstrum
IT is basically A delta dumping into a reservoir? I'm guran A briglia downsitum. AT The end of Survey 3, There is A good exposure, back IN The Trees. maybe A QTS
exposure, back IN The Trees maybe A QTS
or QT6? Thoto 1-28 of a strail of
This level.
Topo R \ O D
3 10 PZ. Dright & TANACO STORE Bridge
TOP2. Briglia @ PANACO STONE Bridge > F5-1 DAM TOP; F5-2 DAM BASE
STOP 3. RR Bridge. DAMTOR + DAMBOTTOM
Begin survey - some problems with connecting

.

5


numbers of smellines. We will my to get a fix following a short kinematic. Then we will try two gast statics further down The chanvel. · Little br Knick points ... mostly A br chowel Through This reach one more promised Knickpoint is "Abyre" with The vally Swale where The wormlows are sold at The roadside STOT. DAY 9, Sunday, June 1, 2003 10 hor office day, landry a dinner @ Vincenzo's the time is a finished and the second

			1/2
Day 10, Moude	ty June 2 ?	2003	-
Maybe lost don To Sasso Mi			Reno
START, LAMA di side of bridge - LDR DAM			
Oh Oh Proble will Not STANT-UT Chuck Kurnick o	p. We have jud UNAVCO s.	placed a cak	l to need
IN The MEANTIME:			
UTM 32		0 (10)	92
	RDAM 067652 NDAM 0676199 RBRD61 06760	9 4914026	93m 121m 109m
Spension Bridge @ MA	RZASBRDG 06760	37 49 2488	107m
Cerro CE	ALAN-FLT 06764 RRO 067322	8 4912288	118m 402m
TO BASE STATION C	SMAD DDDC 0679		412 m

Sasso Marconi ...
Bridge (NOT Highway entrace
bridge)

PLAN DI VENOLA DAM POVENDLA 0674515 4910619 160 PMAZZANO 0679131 4920633 168 MASSANO (QC3)Palazzo del Rossi Dam PORDAM 0680948 4920669 73 SANCHISTOGO BASE 068 348 492 1682 15 SCBASE SAPABROG 0681849 4921780 40 SAPABA Bridge Belvedere (QT2) Belv1 0679966 4926618 164 0681881 4925713 66 BlueBridge BLUEBROG (CASAlecchio Park) Casalecchio Dam CASALDAM 068/43/ 4926867 27 QII MONASTARY QTI MO WAST 0679333 4926351 224 QT4 VIA Michelmyelo QT4 VMich 0680370 4926148 79 QT5 VIA ROSA QT5 VR 0680418 4925862 78 QT6 ERG 0680709 4924646 80 QT6 ERG GAS STATION South of Casalecchio QTBA FRG 0680991 4924674 62 Q786 OPPOSITE ERG ON Private Lance QT86 CASA ecchip QT8CASAEND 0681872 4921972 55 Park SAPABA DAM SAPABADAM 0681815 4922340 60 PHERMON Spent looking at Terroces.
Flat Tire! at South Palaggo dec Rossi road -construction site ... QZ7b exposure we pulled gravel from here OE76-51.

· AT The BR crossing, North Palaggo dei Rossi road. View looking south + southwat Photos 31-32-33

Day 11, Tuesday, Jone 03, 2003 53: STOP 1. CONSTRUCTION SITE @ CASA LECCTIO - VIA Bottechino off of Via Michelangelo-GPS location of QI4 V. Mich. Photos 1-34,35, 36 IN Nearly all respects, This exposure illustrates how much colluvium has washed Across The Terroce Treads. - AT least 2 To 3 meres of collusium. I believe This exposure shows 2-3 m of collumin ATOP QUES; QUY 15 UP Above ... storden collevium down. Collevium 15 mostly A peoply sandy sit, pedgenically altered to continu clay. There are lease of sandy gravel... AT least 2 buried soils UNITE Brownsh-yellow sandy collevium 5 UNITY Brownish-yellow of Union 4 54- SMAIS+ Some charant UNIT3 burged A horizon 3,53-NOT much ... MIX UNIT 2 Yellowish born collivium 2 52 - mostly sums >UNIT 1 buried A horizon 1 51-charcoal

Unit 1 15 Truely A buried soil ... it Truely is red under The dark buried A. This s probably The Top of QIS UNIT 5 IS ALMOST CEPTACHY ANTOPOSCIAC contains prese of brick TO SASSO MARCONI, INCludy both Sides of The NATION SUSPENSION Oridie of talazzo dei Kossi · définire? paul @ Palazzo dei Rossi · down dropping of QIFb strata assoss CONSTRUCTION SITE & PAlago dei Rossi South · Tilting of Terrace Trads. · remapping of QE5, QT4, QE6, QT7 15 very consistent with fault offset. KIN WAS TON ES. C. 2. Showell with Jacobst - 16

DAY 12, Wednesday, June 04, 2003 IN Bologna Today To pick up, drop of 5TUBS ... got The DTM, TARKED TO Uncerso, we've planted The Sood of AN ACTIVE Zoult. We will use The afternoon to do some just smine points on Terrace. ANTEND height = 1.86 m; set at 1.94 m roll height · 04 Jun F5-1 QT8 to Palmyo dei Rossi · 04 Jun FS-2 QT76 Palaggo dec Rossi · 04 JUN F5-3 QI4 back VIA MONTECHCARO QI4T - 04 Jun F5-4 QE4 south " " Q745 QUET · OY JUN FS-5 QED Tread This point, Auterup beachT = · OTTUNE FS-6 QTS STRATH " QTE · O4 June FS-7 QTG Tread Private dead and east of SS64 Reg ANT. Les KO5km 5 27 VIA MONTECHIATO QT6T · O4 June FS-8 QT6 STIATH Public cuit and to DIKE Trail, behind black gate, just sol N. PAlazzo dei Rossi road - Tough coll - out in A field, we set up @ a color change in The field /scorp. Qt65 There is A spring in This Park like DISS · O4 June FS-9 QZ3 strah (main body of deposit) WE put IT ON VIA MONTECHIANO, OF MEJOR brak in slope ... at The Spring BR outcrop. QI35 - rod height at max. ~ 160m elev

- green gate off of Via Montechiano. No hope of A STATE. Photos 2-2 tor2-9 from up here. Rod at normal heybo. higher Auternox = 2.42 m CHEMOS, TO SENT TO WELL SET SETS

Day 13, Thursday, June 5, 2003
Deja vu all over again
we will "FAST-STATIC The missing over reach.
STATT at LAMA di Reno dam Water is up ~ 15 cm. dam release upsiteum.
Auteurn height = 90cm
GPS WAYPOINT = LDRDAM
START
· OSJUNFSI LAMA di Reno dAM TOP
· OSTJUN FS 2 LAMA de Reno dam bottom.
· OS JUN F53 BTWW LAMA di Revo dan + Highway curbank
· OS JUN FS4 JUST OPSTREAM OF RR Dridge # 2
This is The pool elevation of TR bridge dam.
OS JUN FS5 RRBridge 2 dam bostom.
odd a point at FS4 elev to make
The STEP. RRBRD62
· 05 Jun FS6 @ big be escarphing, east bank,
channel is in br here There is a little knick pi
This point is AT The Top of The Knickpi
The map shows a fault here and The
escarpnent Top is A strain with gravel -QC6?
QT7?
· O5 JUN FS 7 KNICKPOINT base
· OSTUN FS8 WOW! great exposure QT7 probably
La Kanckpi TOP

More importantly ... A major Knickgove. This pt 15 at The Top. There is a QTB-like (or QT9) small projecting to The top of The Knickpoint. Photos 2-11 TO 2-14 Almost a certain fault curring This Terroce Terrace is probably QI6 ... NOT 7. (3m Thick) The whole ourcrop is a fault zone. Sense of motion really tooks like Thrust faults verging north. * There is a Traverine deposit + spring smoth IN The middle of The ZAult. · The A - horizon is buried boks like QTG almost certainly charcoal in There if we could get to IT. · O5 JUNFS 9 KMICKPT BASE - KMICKPT IS A by alluvial bar. Top of which grocks TO QT8-9 STRATA, BR exposed down stream of The KMICKET. 1 . 05 JUN FS10 Add 10 cm TO AMERICA CAMPOT GET a BIX ... bad SATElleTES · OS JUN FSII - Try AGAIN OTHER SIDE of STRM GOT IT!

E I = 10 lc 0 0 - =
FAULTS - 3 Kinds - O OBlique, up to w w/goinge
N 20° €
② N20° €, 45° rakes, up 10 west
3 F-w, 0° rakes
· OS JUN FS 12 PAST BR IN Channel, KNICKET END
in direction of Fortand Acces point
· OS JUN FS 13 FONT ACC FONTANA Acces - Allevial.
· 05 JUN FS14 Riggles alose downs it sam of FONT ACC
Kind of A mixed BR- Allunal step-pool icach.
OS JUN FSI5 NexT Set of rightes Downsireum
from here IT opens up TO A brond Allevial reach.
: 05 JUN FS16 mixed br - Allowal rosch w/linde steps
· OS JUN FS17 Almost at The SeaTA
. 05 JUN FS18 CONFLUENCE W/ SETTA SETTA CONF
· O5 Jun FS 19 beginning of pool behind SASSO
MARCONI Brda dAM. END SULVEYA
DThere is AN easy Good + road Access point at
Add 1 more point - WAYFOINT BOT
Al ORBROG with The pool elev from
The Missy - Chuck survey of last Wednesday.
The Missy - Chock Solvey or has or sharing.

Day 14 Frida	y June 6, 2003	B
Field Trip day	with Darrel + VA	cenzo.
STIKES	N 40° W The	SO called "SeTATTERD"
and exp	planes A lot re	Across VIA Mortechias garden The mini- thinh level of The place of The
QT6 @	San Michile -	The place of the 3 Through The spring.
<u> </u>		7
ASAW, IT	our - will do	Agree IT is There- THA Trans. FAUL dip STUCTURAL ANAlySIS.
will need	70 60 GPS 70	Locument TITIL.
£ .		
7		

Day 15, SATURDAY, June 7, 2003 =0: 311 · Firsh up Terroce elevations for regions north of Sasso Marconi > I've had to jury-rig The base Avienna - I forgot The base ... IT IS AT 7 cm elev TO base of Aniroma -> All rover elevations are 90cm unless indicated offerense 2 · O7 Jun F5 1 Casalecchio Park QT5 Treal edge.
5 · O7 Jun F5 2 Casalecchio Park QT4 Treal edge
7 · O7 Jun F5 3 Palazzo dei Rossi QT8b fix point from O4 JUN F51 TO QTBa QUBL STILL has a bar-suale morphology 2-07 Jun FS 4 QT76 @ Villa Angeli O7 JUN FS5 QT76 @ The Villa Angeli - Palango dec Rosse Intersection · 07 Jun FS 6 QT76 @ PDR bridge, west 518e · 07 JUN FS7 QI76 ON VIA Chiu, This is end of QT76 response on down moun Side of Gault. 4.07 JUN FS8 QIBL VIZZANO · O7 JUN FS9 QI76 VIZZANO · 07 JUN FS10 QT76 VIZZANO UPSTRAM. before The VIZZANO FAULT - NOTE NEW FAULT I'VE DUT ON The map STOCKES more or less N 70°W -0) sets QT7 hre (I Think) next point is on supposed down dropped side

· 07 Jul FSII QZ7b Vizzano on upitroun side of Vizzano Faulo. · 07Jun FS12 QT6 at Vizzano crossroads, upiliroun side of fault · 07 Juni F513 Qt7 b Vizzano downstream, down-Thrown Side of fauto · 07JUNFS 14 QT6 VI33AND DOWNSTRAM, dOWN Thrown side of fault.

Definites a second fault, on the Some Trend,
at about the strike of the bridge-IT explane The SCATPS IN QTG +QT76 ·O7JONFSIS QI7b, west side of river, Via Chiv CONSTRUCTION SITE. UP THROWN PORT of AND. · 07 JUNFS 16 QI7b, west side of over at Terminous C) VIA GAMbieri ... at Tread level direct over exposed bedrak, overlooky QTB+ 578 gravel growing, now a lake. · O7 JUNFS 17 QT6? SAN LOTENZO - ATOP DIG SCAPP. * This still maybe Qt to an The upithround side of you arother fault ->. 07 Jun FS 18 Chestruit Terroce. -010 of Private is · 07 Jun FS 19 QT6? of (w) SASSO MARCON BIDG. · 07 Jun FS 20 QT3 LA PAULAGINA, SASSO MARON & NOT Able, or UNNECUSARY TO do

220 in press 236 237

POTTA SIATA GOZZIA

INDEX OF **CURVE AND REDUCTION TABLES**

Table I—SLOPE STAKE

Table II-STADIA CORRECTION AND HORIZONTAL DISTANCES

Table III—TRIGONOMETRIC FORMULAE

Table IV-NATURAL TRIGONOMETRICAL FUNCTIONS **CURVE FORMULAE**

Table V-TANGENTS AND EXTERNALS TO A 1° CURVE **USEFUL RELATIONS**

Table VI-INCHES TO DECIMALS OF A FOOT

Table VII-MINUTES IN DECIMALS OF A DEGREE

Table VIII—MIDDLE ORDINATES OF RAILS

Table IX-SHORT RADIUS CURVES

Table X-RODS IN FEET, 10THS AND 100THS OF FEET

Table XI-LINKS IN FEET, 10THS AND 100THS OF FEET

TABLE I. SLOPE STAKE

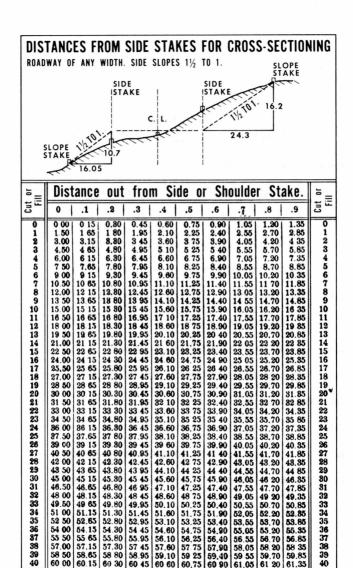
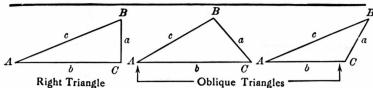



TABLE II. STADIA CORRECTION AND HORIZONTAL DISTANCES

		Horizontal Correction	Difference in Elevation	Vertical Angle	Horizontal Correction	Difference in Elevation
2°-00′		0.1	3.5	18°-30′	10.1	30.1
3°-00′		0.3	5.3	19°-00′	10.6	30.8
4°-00'		0.5	7.0	19°-30'	11.2	31.5
5°-00'	E 4	0.8	8.7	20°-00'	11.7	32.1
6°-00′	1	1.1	10.4	20°-30′	12.3	32.8
7°-00′		1.5	12.1	21°-00′	12.8	33.5
8°-00'	7	1.9	13.8	21°-30'	13.4	34.1
9°-00′		2.5	15.5	22°-00'	14.0	34.7
10°-00′		3.0	17.10	22°-30'	14.7	35.4
10°-30′		3.3	17.9	23°-00′	15.3	36.0
11°-00′		3.6	18.7	23°-30′	15.9	36.6
11°-30′		4.0	19.5	24°-00'	16.5	37.2
12°-00′		4.3	20.3	24°-30′	17.2	37.7
12°-30′		4.7	21.1	25°-00'	17.9	38.3
13° – 00′		5.1	21.9	25°-30′	18.6	39.0
13°-30′		5.5	22.7	26°-00′	19.2	39.4
14°-00′	7	5.9	23.4	26°-30'	19.9	39.9
14°-30′		6.3	24.2	27°-00′	20.6	40.5
15°-00′	-	6.7	25.0	27°-30'	21.3	41.0
15°-30′		7.2	25.8	28°-00′	22.0	42.0
16°-00′	with 5	7.6	26.5	28°-30′	22.8	41.9
16°-30′		8.1	27.2	29°-00′	23.5	42.4
17°-00′		8.5	28.0	29°-30′	24.3	42.9
17°-30′		9.0	28.7	30°-00'	25.0	43.3
18°-00′		9.5	29.4			

Chains to Feet	Feet to Chains
1 66	100 1.515
2 132	200 3.030
3 198	300 4.545
4 264	400 6.060
5 330	500 7.575
6 396	600 9.090
7 462	700 10.606
8 528	800 12.121
9 594	900 13.636
10 660	1,000 15.151

Solution of Right Triangles

For Angle A.
$$\sin = \frac{a}{c}$$
, $\cos = \frac{b}{c}$, $\tan = \frac{a}{b}$, $\cot = \frac{b}{a}$, $\sec = \frac{c}{b}$, $\csc = \frac{c}{a}$

Given A, B, c $\tan A = \frac{a}{b} = \cot B$, $c = \sqrt{a^2 + b^2} = a\sqrt{1 + \frac{b^2}{a^2}}$

a, c A, B, b $\sin A = \frac{a}{c} = \cos B$, $b = \sqrt{(c+a)(c-a)} = c\sqrt{1 - \frac{a^2}{c^2}}$

A, a B, b, c $B = 90^{\circ}$ —A, $b = a \cot A$, $c = \frac{a}{\sin A}$.

A, b B, a, c $B = 90^{\circ}$ —A, $a = b \tan A$, $c = \frac{b}{\cos A}$.

A, c B, a, b $B = 90^{\circ}$ —A, a = c sin A, b = c cos A,

Solution of Oblique Triangles

Given A, B, a
$$\begin{vmatrix} Required \\ b, c, C \end{vmatrix}$$
 $b = \frac{a \sin B}{\sin A}$, $C = 180^{\circ} - (A + B)$, $c = \frac{a \sin C}{\sin A}$

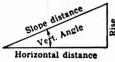
A, a, b B , c, C $\sin B = \frac{b \sin A}{a}$, $C = 180^{\circ} - (A + B)$, $c = \frac{a \sin C}{\sin A}$

a, b, C A , B, c $A = \frac{a \sin C}{a + b}$

a, b, c A , B, C $A = \frac{a \sin C}{2}$, $a = \frac{a \sin C}{a + b}$

b $a = \frac{a + b + c}{2}$, $a = \frac{a \cos C}{a c}$, $a = \frac{a \cos C}{a c}$, $a = \frac{a \cos C}{a c}$

A, B, C $a = \frac{a + b + c}{2}$, $a = \frac{a \cos C}{a c}$, $a = \frac{a \cos C}{a c}$


A, B, C $a = \frac{a + b + c}{2}$, $a = \frac{a \cos C}{a c}$, $a = \frac{a \cos C}{a c}$

A, B, C, a $a = \frac{a \cos C}{2 \sin A}$

area $a = \frac{a \cos C}{2 \sin A}$

area $a = \frac{a \cos C}{2 \sin A}$

REDUCTION TO HORIZONTAL

Horizontal distance = Slope distance multiplied by the cosine of the vertical angle. Thus: slope distance = 319.4 ft. Vert. angle = 5° 10°. From Table. IV. cos 5° 10° = 9959. Horizontal distance = 319.4 × 9959 = 318.09 ft. Horizontal distance also = Slope distance minus slope

Horizontal distance also – Slope distance minus stope distance times (1-cosine of vertical angle). With the same figures as in the preceding example, the following result is obtained. Cosine 5° 10′ = .9959. 1 - .9959 = .0041. 319.4 - 1.31 = 318.09 ft.

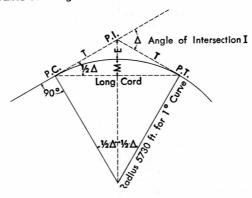
When the rise is known, the horizontal distance is approximately:—the slope distance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft.. slope distance=302.6 ft. Horizontal distance=302.6 $-\frac{14 \times 14}{21 \times 100}$ =302.6 -0.32 - 302.28 ft.

TABLE IV. NATURAL TRIGONOMETRICAL FUNCTIONS

Angle	Sin	Tan.	Sec.	Cosec.	Cotg.	Cosin.		Angle	Sin.	Tan.	Sec.	Cosec.	Cotg.	Cosin.	
۰,								۰,	1		7				
0	0	0	1.	∞	∞	1.	90	8	.1392	.1405	1.0098	7.185	7.115	.99027	82
10	.0029	.0029	1000	343.8	343.8	1.	50	10	.1421	.1435	1.0102	7.040	6.968	.98986	50
20	.0058	.0058	-1	171.9	171.9	.99998	40	20	.1449	.1465	1.0107	6.900	6.827	.98944	40
30	.0087	.0087		114.6	114.6	.99996	30	30	.1478	.1495	1.0111	6.766	6.691	.98902	30
40	.0116	.0116	1.0001	85.94	85.94	.99993	20				1.0115	6.636		.98858	20
50	.0145	.0145	1.0001	68 76	68.75	.99989	10	50	.1536	.1554	1.0120	6.512	6.435	.98814	10
1	.0175	.0175	1.0002	57.30	57.29	.99985	89	9	.1564	.1584	1.0125		6.314	.98769	81
10	.0204	.0204	1.0002	49.11	49.10	.99979	50			.1614	1.0129	6.277	6.197	.98723	50
20	.0233	.0233	1.0003	42.98	42.96	.99973	40		.1622	.1644	1.0134		6.084	.98676	40
30	.0262		1.0003	38.20	38.19	.99966	30	30	.1650		1.0139	6.059	5.976	.98629 .98580	30
40	.0291	.0291	1.0004	34.38	34 37	.99958	20 10				1.0144		5.871	.98531	10
50	.0320	.0320	1.0005	31.26	31.24	.99949		30	.1708	.1/33	1.0149	3.633	3.709		
2	.0349	.0349	1.0006	28.65	28.64	.99939		10	.1736	.1763	1.0154	5.759	5.671	.98481	80
10	.0378	.0378	1.0007	26 45	26.43	.99929	50		.1765	.1793	1.0160	5.665	5.576	.98430	50
20	.0407	.0407	1.0008	24.56		.99917	40		.1794	.1823			5.485	.98378	40
30	.0436	.0437	1.0010	22.93	22.90	.99905	36			.1853	1.0170		5.396	.98325	30
40	.0465	.0466	1.0011	21.49	21.47	.99892	20	40	.1851	.1883	1.0176		5.309	.98272	20
50	.0494	.0495	1.0012	20.23	20.21	.99878	10	50	.1880	.1914	1.0181	5.320	5.226	.98218	10
3	.0523	.0524	1.0014	19.11	19.08	.99863	87	11	.1908	.1944	1.0187	5.241	5.145	.98163	79
10	.0552	.0553	1.0015	18.10	18.07	.99847	50	10	.1937	.1974	1.0193	5.164		.98107	50
20	.0581	.0582	1.0017	17.20	17.17	.99831	40	20	.1965	.2004	1.0199	5.089	4.989	.98050	40
30	.0610	.0612	1.0019	16 38	16.35	.99813	30	30	.1994	.2035	1.0205	5.016	4.915	.97992	30
40	.0640	.0641	1.0020	15.64	15.60	.99795	20	40	.2022	.2065	1.0211	4.945	4.843	.97934	20
50	.0669	.0670	1.0022	14.96	14.92	.99776	10	50	.2051	.2095	1.0217	4.877	4.773	.97875	10
4	.0698	.0699	1.0024	14.34	14.30	.99756	86	12	.2079	.2126	1.0223	4.810	4.705	.97815	78
10	.0727	.0729	1.0027	13.76	13.73	.99736	50	10	.2108	.2156	1.0230	10000	4.638	.97754	50
20	.0756	.0758	1.0029	13.23		.99714	40	20	.2136	.2186	1.0236	4.682	4.574	.97692	40
30	.0785	.0787	1.0031	12.75	12.71	.99692	30	30	.2164	.2217	1.0243	4.620	4.511	.97630	30
40	.0814	.0816	1.0033	12.29	12.25	.99668	20	40	.2193	.2247	1.0249	4.560	4.449	.97566	20
50	.0843	.0846	1.0036	11.87	11.83	.99644	10	50	.2221	.2278	1.0256	4.502	4.390	.97502	10
5	.0872	.0875	1.0038	11.47	11 42	.99619	85	13	.2250	.2309	1.0263	4.445	4 331	.97437	77
10	.0901	.0904	1.0041	11.10		.99594	50	10		.2339	1.0270		4.275	.97371	50
20	.0929	.0934	1.0043		10.71	.99567	40	20	.2306		1.0277	4.336		.97304	40
30	.0958	.0963	1.0046		10.39	.99540	30	30	.2334		1.0284		4.165	.97237	30
40	.0987	.0992	1.0049	10.13		.99511	20	40	.2363		1.0291		4.113	.97169	20
50	.1016	.1022	1.0052	9.839	9.788	.99482	10	50	.2391	.2462	1.0299	4.182	4.061	.97100	10
6	.1045	.1051	1.0055	9.567	9.514	.99452	84	14	.2419	.2493	1.0306	4.133	4.011	.97030	76
10		.1080	1.0058	9.309	9.255	.99421	50	10	.2447	.2524	1.0314	4.086	3.962	.96959	50
20		.1110	1.0061	9.065	9.010	.99390	40	20	.2476	.2555	1.0321	4.039	3.914	.96887	40
30		.1139	1.0065	8.834	8.777	.99357	30	30	.2504	.2586	1.0329	3.994		.96815	30
40	.1161	.1169	1.0068	8.614	8.556	.99324	20	40	.2532	.2617	1.0337	3.949		.96742	20
50	.1190	.1198	1 0072	8.405	8.345	.99290	10	50	.2560	.2648	1.0345	3.906	3.776	.96667	10
7	.1219	.1228	1.0075	8.206	8.144	.99255	83	15	.2588	.2679	1.0353	3.864	3.732	.96593	75
10	.1248	.1257	1.0079	8.016	7.953	.99219	50	10	.2616	.2711	1.0361	3.822	3.689	.96517	50
20	.1276	.1287	1.0082		7.770	.99182	40	20	.2644	.2742	1.0369		3.647	.96440	40
30		.1317	1.0086		7.596	.99144	30	30	.2672	.2773	1.0377	3.742		.96363	30
40	.1334	.1346	1.0090	7.496	7.429	.99106	20	40	.2700	.2805	1.0386	3.703		.96285	20
50	.1363	.1376	1.0094	7.337	7.269	.99067	10	50	.2728	.2836	1.0394	3.665	3.526	.96206	10
							82								74
							۰,								۰,
	Cosin	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle	utigosk	Cosin.	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle

TABLE IV CONTD. NATURAL TRIGONOMETRICAL FUNCTIONS

Angle	Sin.	Tan.	Sec.	Cosec.	Cotg.	Cosin.		Angle	Sin.	Tan.	Sec.	Cosec.	Cotg.	Cosin.	1
۰,								. ,							
16	.2756	.2867	1.0403	3.628	3.487	.96126	74	24	.4067	.4452	1.0946	2.459	2.246	.91355	66
10	.2784	.2899	1.0412	3.592	3.450	.96046	50	10	.4094	.4487	1.0961	2.443	2.229	.91236	50
20	.2812	.2931	1.0423	3.556	3.412	.95964	40	20	.4120	.4522	1.0975		2.211	.91116	40
30	.2840		1.0429	3.521	3.376	.95882	30	30	.4147	.4557	1.0989	74474 A V V V V V V V V	2.194	.90996	30
40	.2868		1.0438	3.487		.95799	20	40	.4173	.4592	1.1004		2.177	.90875 .90753	20 10
50	.2896	.3026	1.0448	3.453	3.305	.95715	10	50	.4200	.4628	1.1019	2.381	2.161	.90/53	10
17	.2924	.3057	1.0457	3.420	3.271	.95630	73	25	.4226	.4663	1.1034	2.366	2.145	.90631	65
10	.2952	.3089	1.0466		3.237	.95545	50	10	.4253	.4699	1.1049	2.351	2.128	.90507	50
20	.2979	.3121	1.0476	3.357	3.204	.95459	40	20	.4279	.4734	1.1064	2.337	2.112	.90383	40
30	.3007	.3153	1.0485		3.172	.95372	30	30	.4305	.4770	1.1079	2.323		.90259	30
40	.3035		1.0495		3.140	.95284	20	40	.4331	.4806	1.1095	2.309	2.081	.90133	20
50	.3062	.3217	1.0505	3.265	3.108	.95195	10	50	.4358	.4841	1.1110	2.295	2.066	.90007	10
18	.3090	.3249	1.0515	3.236	3.078	.95106	72	26	.4384	.4877	1.1126	2.281	2.050	.89879	64
10	.3118	.3281	1.0525		3.048	.95015	50	10	.4410	.4913	1.1142	2.268	2.035	.89752	50
20	.3145	.3314	1.0535	3.179		.94924	40	20	.4436	.4950	1.1158		2.020	.89623	40
30	.3173	.3346	1.0545	3.152		.94832	30	30	.4462	4986	1.1174	2.241	2.006	.89493	30
40	.3201	.3378	1.0555	3.124	2.960	.94740	20	40	.4488	.5022	1.1190	2.228	1.991	.89363	20
50	.3228	.3411	1.0566	3.098	2.932	.94646	10	50	.4514	.5052	1.1207	2.215	1.977	.89232	10
١ ا	2051						١								
19 10	.3256	.3443	1.0576	3.072	2.904	.94552	71 50	27	4540	.5095	1.1223	2.203	1.949	.89101 .88968	63 50
20	.3311	.3476	1.0598		2.850	.94457	40	20	4592	.5169	1.1257		1.935	.88835	40
30	.3338	.3541	1.0608	2.996		.94264	30	30	4617	.5206	1.1274		1.921	.88701	30
40	.3365	.3574	1.0619	2.971	2.798	.94167	20	40	4643	.5243	1.1291	2.154	1.907	.88566	20
50	.3393	.3607	1.0631	2.947	2.773	.94068	10	50	4669	.5280	1.1308	2.142	1.894	.88431	10
20	.3420	.3640	1.0642	2.924	2.747	.93969	70	28	.4695	.5317	1.1326	2.130	1.881	.88295	62
10	.3448	.3673	1.0653		2.723	.93869	50	10	.4720	.5354	1.1343	2.119	1.868	.88158	50
20	.3475	.3706	1.0665	2.878	2.699	.93769	40	20	.4746	.5392	1.1361	2.107	1.855	.88020	40
30	.3502	.3739	1.0676	2.856	2.675	.93667	30	30	.4772	.5430	1.1379	2.096	1.842	.87882	30
40	.3529	.3772	1.0688	2.833		.93565	20	40	.4797	.5467	1.1397	2.085	1.829	.87743	20
50	.3557	.3805	1.0700	2.811	2.628	.93462	10	50	.4823	.5505	1.1415	2.073	1.816	.87603	10
21	.3584	.3839	1.0711	2.790	2.605	.93358	69	29	.4848	.5543	1.1434	2.063	1.804	.87462	61
10	.3611	.3872	1.0723	2.769	2.583	93253	50	10	4874	.5581	1.1452	2.052		.87321	50
20	.3638	.3906	1.0736		2.560	.93148	40	20	4899	.5619	1.1471	2.041	1.780	.87178	40
30	.3665	.3939	1.0748	2.729	2.539	.93042	30	30	4924	.5658	1.1490	2.031	1.767	.87036	30
40	.3692	.3973	1.0760		2.517	.92935	20	40	4950	.5696	1.1509	2.020	1.756	.86892	20
50	.3719	.4006	1.0773	2.689	2.496	.92827	10	50	4975	.5735	1.1528	2.010	1.744	.86748	10
22	.3746	.4040	1.0785	2.670	2.475	.92718	68	30	5000	.5774	1.1547	2.000	1.732	.86603	60
10	.3773		1.0798	2.650		.92609	50	10	5025	.5812	1.1566		1.720	.86457	50
20	.3800		1.0811	2.632	2.434	.92499	40	20	5050	.5851	1.1586	1.980	1.709	.86310	40
30	.3827	.4142	1.0824		2.414	.92388	30	30	5075	.5890	1.1606		1.698	.86163	30
40	.3854	.4176	1.0837		2.394	.92276	20	40	5100	.5930	1.1626	1.961	1.686	.86015	20
50	.3881	.4210	1.0850	2.577	2.375	.92164	10	50	5125	.5969	1.1646	1.951	1.675	.85866	10
23	.3907	.4245	1.0864	2.559	2.356	.92050	67	31	5150	.6009	1.1666	1.924	1.664	.85717	59
10	.3934	.4279	1.0877		2.337	.91936	50	10	5175	.6048	1.1687		1.653	.85567	50
20	.3961		1.0891		2.318	.91822	40	20	5200		1.1707		1.643	.85416	40
30	.3987	.4348	1.0904		2.300	.91706	30	30	5225	.6128	1.1728		1.632	.85264	30
40	.4014	.4383	1.0918	2.491	2.282	.91590	10	40 50	5250 5275	.6168	1.1749		1.621	.85112	20
50	.4041	.4417	1.0932	2.475	2.264	.714/2		30	32/3	.6208	1.1770	1.896	1.611	.84959	10
							66 。,								58
-													-		
	Cosin.	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle		Cosin.	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle


TABLE IV CONTD. NATURAL TRIGONOMETRICAL FUNCTIONS

Angle	Sin.	Tan.	Sec.	Cosec.	Cotg.	Cosin.	P.	Angle	Sin.	Tan	Sec.	Cosec.	Cotg.	Cosin.	
۰,			V-5				. ,	0 /	a fo	ENTE	T 30:	nish n			۰,
32	.5299	.6249	1.1792	1.887	1.600	.84805	58	39	.6293	.8098	1.2868	1.589	1 235	.77715	51
10	.5324	.6289	1.1813	1.878			50	10	.6316	.8146		1.583	1.228	.77531	50
20	.5348	.6330	1.1835	1.870	1.580	.84495	40	20	.6338	.8195	1.2929	1.578	1.220	.77347	40
30	.5373	.6371	1.1857	1.861	1.570	.84339	30	30	.6361	.8243	1.2959	1.572	1.213	.77162	30
40	.5398		1.1879	1.853	1.560	.84182		40		.8292	1.2991	1.567	1.206	.76977	20
50	.5422	.6453	1.1901	1.844	1.550	.84025	10	50	.6406	.8342	1.3022	1.561	1.199	.76791	10
33	.5446	.6494	1.1924		1.540			40	.6428	.8391	1.3054	1.556	1.192	.76604	50
10	.5471	.6536	1.1946		1.530		50	10	.6450	.8441	1.3086	1.550	1.185	.76417	50
20	.5495		1.1969				40	20	.6472	.8491		1.545	1.178	.76229	40
30	.5519	.6619	1.1992	200	1.511	.83389	30	30	.6494	.8541	1.3151	1.540	1.171	.76041	30
40	.5544	.6661	1.2015	1.804		.83228	20	40	.6517	.8591	1.3184	1.535	1.164	.75851	20
50	.5568	.6703	1.2039	1.796	1.492	.83066	10	50	.6539	.8642	1.3217	1.529	1.157	.75661	10
34	.5592	.6745	1.2062	1.788	1.483	.82904	56	41	.6561	.8693		1.524	1.150	.75471	49
10	.5616	.6787	1.2086	1.781	1.473	.82741	50	10	.6583	.8744		1.519	1.144	.75280	50
20	.5640	.6830	1.2110	1.773	1.464	.82577	40	20	.6604	.8796	100000000	1.514	1.137	.75088	40
30	.5664	.6873	1.2134	1.766	1.455	.82413	30	30	.6626	.8847		1.509	100 000 000	.74896	30
40	.5688	.6916	1.2158	1.758	1.446	.82248	20	40	.6648	.8899	1.3386	1.504	1.124	.74703	20
50	.5712	.6959	1.2183	1.751	1.437	.82082	10	50	.6670	.8952	1.3421	1.499	1.117	.74509	10
35	.5736	.7002	1.2208	1.743	1.428	.81915	55	42	.6691	.9004	1.3456	1.494	1.111	.74314	48
10	.5760	.7046	1.2233	1.736	1.419	.81748	50	10	.6713	.9057	1.3492	1.490	1.104	.74120	50
20	.5783	.7089	1.2258	1.729	1.411	.81580	40	20	.6734	.9110	1.3527	1.485	1.098	.73924	40
30	.5807	.7133	1.2283	1.722	1.402	.81412	30	30	.6756	.9163	1.3563	1.480	1.091	.73728	30
40	.5831	.7177	1.2309	1.715	1.393	.81242	20	40	.6777	.9217	1.3600	1.476	1.085	.73531	20
50	.5854	.7221	1.2335	1.708	1.385	.81072	10	50	.6799	.9271	1.3636	1.471	1.079	.73333	10
36	.5878	.7265	1.2361	1.701	1.376	.80902	54	43	.6820	.9325	1.3673	1.466	1.072	.73135	47
10	.5901	.7310	1.2387	1.695	1.368	.80730	50	10	.6841	.9380	1.3711	1.462	1.066	.72937	50
20	.5925	.7355	1.2413	1.688	1.360	.80558	40	20	.6862	.9435	1.3748	1.457	1.060	.72737	40
30	.5948	.7400	1.2440	1.681	1.351	.80386	30	30	.6884		1.3786	1.453	1.054	.72537	30
40	.5972	.7445	1.2466	1.000	1.343	.80212	20	40	.6905	.9545	1.3824	1.448	0.00	.72337	20
50	.5995	.7490	1.2494	1.668	1.335	.80038	10	50	.6926	.9601	1.3863	1.444	1.042	.72136	10
37	.6018	.7536	1.2521	1.662	1.327	.79864	53	44	.6947	.9657	1.3902	1.440	1.036	.71934	46
10	.6041	.7581	1.2549		1.319	.79688	50	10	.6967		1.3941	1.435	1.030	.71732	50
20	.6065	.7627	1.2577		1.311	.79512	40	20	.6988	.9770	1.3980	1.431	1.024	.71529	40
30	.6088	.7673	1.2605		1.303	.79335	30	30	.7009	.9827	1.4020	1.427	1.018	.71325	30
40	.6111	.7720	1.2633		1.295	.79158	20	40		.9884	1.4061	1.422	1.012	.71121	20
50	.6134	.7766	1.2661	1.630	1.288	.78980	10	50	.7050	.9942	1.4101'	1.418	1.006	.70916	10
38	.6157	800 BOARD 1	1.2690	A 100	1.280	.78801	52		.7071	1.	1.414	1.414	1.	.70711	45
10	.6180	.7860	1.2719		1.272	.78622	50				tale and	0.00			
30	.6202 .6225	.7907	1.2748	1.612	1.265	.78442	40				5 (4		. N.		1
40	.6248	.7954 .8002	1.2778		1.257	.78261	30	- 41		S 1 30	men:	in n	19,00	4.5	
50	.6271		1.2808 1.2838	1.601	1.250	.78079	20								
30	.02/1	.0000	1.2038	1.595	1.242	.77897	10			842	TLO.	23			
\neg	Cosin.	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle		Cosin.	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle

CURVE FORMULAE

CURVE TABLE

Table of Tangent and External to a 1° Curve

To find Tangent and External for curve of any other degree, divide by degree of curve and add correction found in column of corrections.

Degree of curve with a given I may be found by dividing tangent, (or external), opposite I by given tangent, (or external).

The distance from a point on the tangent to the curve is very nearly the square of the tangent length divided by twice the radius.

CURVE FORMULAS

Radius:

$$R = \frac{50}{\sin \frac{1}{2} D}$$

Length of Curve: $L = 100 \frac{\Delta}{D}$

also L = $.0174533 \times \triangle \times R$

Degree of Curve: $D = 100 \frac{\Delta}{L}$

Tangent:

 $T = R \tan \frac{1}{2} \Delta$

Long Cord:

 $LC = 2R \sin \frac{1}{2} \Delta$

Middle Ordinate: $M = R (1 - \cos \frac{1}{2} \Delta)$

External:

 $E = T \tan \frac{1}{4} \Delta$

TABLE V. TANGENTS AND EXTERNALS TO A 1° CURVE

	I	T	E	I=10°	I	ī	E	I=20°	I	Ţ	E	I=30°
2 3 4	0, 0, 0,	50.00 58.34 66.67 75.01 83.34 91.68	.218 .297 .388 .491 .606 .733	+ 5° C. T .03 E	11° 10′ 20′ 30′ 40′ 50′	551.70 560.11 568.53 576.95 585.36 593.79	26.500 27.313 28.137 28.974 29.824 30.686	+ 5° C. T .06 E	21° 10′ 20′ 30′ 40′ 50′	1061.9 1070.6 1079.2 1087 8 1096.4 1105.1	97.577 99.155 100.75 102.35 103.97 105.60	+ 5° C. T .10 E
2 3 4	0,00,00	100.01 108.35 116.68 125.02 133.36 141.70	.873 1.024 1.188 1.364 1.552 1.752	.001	12° 10′ 20′ 30′ 40′ 50′	602.21 610.64 619.07 627.50 635.93 644.37	31.561 32.447 33.347 34.259 35.183 36.120	.006	22° 10′ 20′ 30′ 40′ 50′	1113.7 1122.4 1131.0 1139.7 1148.4 1157.0	110.57 112.25	.013
2 3 4	0,00,00,00,00,00,00,00,00,00,00,00,00,0	150.04 158.38 166.72 175.06 183.40 191.74	1.964 2.188 2.425 2.674 2.934 3.207	10° C. T .06 E .003	13° 10′ 20′ 30′ 40′ 50′	652.81 661.25 669.70 678.15 686.60 695.06	37.070 38.031 39.006 39.993 40.992 42.004	10° C. T .13 E .011	23° 10′ 20′ 30′ 40′ 50′	1165.7 1174.4 1183.1 1191.8 1200.5 1209.2	122.63 124.41	10° C. T .19 E .025
2 3 4	0,00,00,00	200.08 208.43 216.77 225.12 233.47 241.81	3.492 3.790 4.099 4.421 4.755 5.100	15° C.	14° 10′ 20′ 30′ 40′ 50′	703.51 711.97 720.44 728.90 737.37 745.85	43.029 44.066 45.116 46.178 47.253 48.341	15° C.	24° 10′ 20′ 30′ 40′ 50′	1217.9 1226.6 1235.3 1244.0 1252.8 1261.5	131.65 133.50 135.35	15° C.
2 3 4	00000	250.16 258.51 266.86 275.21 283.57 291.92	5.459 5.829 6.211 6.606 7.013 7.432	T .09 E .004	15° 10′ 20′ 30′ 40′ 50′	754.32 762.80 771.29 779.77 788.26 796.75	49.441 50.554 51.679 52.818 53.969 55.132	T .19 E .017	25° 10′ 20′ 30′ 40′ 50′	1270.2 1279.0 1287.7 1296.5 1305.3 1314.0	139.11 141.01 142.93 144.85 146.79 148.75	T .29 E .038
2 3 4	0'0'0'0'0'0'	300.28 308.64 316.99 325.35 333.71 342.08	7.863 - 8.307 8.762 9.230 9.710 10.202	20° C. T	16° 10′ 20′ 30′ 40′ 50′	805.25 813.75 822.25 830.76 839.27 847.78	56.309 - 57.498 58.699 59.914 61.141 62.381	20° C.	26° 10′ 20′ 30′ 40′ 50′	1322.8 1331.6 1340.4 1349.2 1358.0 1366.8	150.71 152.69 154.69 156.70 158.72 160.76	20° C.
2 3 4	0,00,00	350.44 358.81 367.17 375.54 383.91 392.28	10.707 11.224 11.753 12.294 12.847 13.413	.13 E .006	17° 10′ 20′ 30′ 40′ 50′	856.30 864.82 873.35 881.88 890.41 898.95	63.634 64.900 66.178 67.470 68.774 70.091	.26 E .022	27° 10′ 20′ 30′ 40′ 50′		164.86 166.95 169.04 171.15	.39 E .051
2 3 4	0,	417.41 425.79 434.17	14.582	25° C. T .16 E	18° 10′ 20′ 30′ 40′ 50′	907.49 916.03 924.58 933.13 941.69 950.25	71.421 72.764 74.119 75.488 76.869 78.264	25° C. T .32 E	28° 10′ 20′ 30′ 40′ 50′	1437.4		25° C. T .49 E
2 3 4	000000000000000000000000000000000000000	450.93 459.32 467.71 476.10 484.49 492.88	17.717 18.381 19.058 19.746 20.447 21.161	.007	19° 10′ 20′ 30′ 40′ 50′	958.81 967.38 975.96 984.53 993.12 1001.7	79.671 81.092 82.525 83.972 85.431 86.904	.028	29° 10′ 20′ 30′ 40′ 50′	1508.5 1517.4	188.51 190.74 192.99 195.25 197.53 199.82	.065
2 3 4	00000	501.28 509.68 518.08 526.48 534.89 543.29	21.887 22.624 23.375 24.138 24.913 25.700	30° C. T .19 E .008	20° 10′ 20′ 30′ 40′ 50′	1010.3 1018.9 1027.5 1036.1 1044.7 1053.3	88.389 89.888 91.399 92.924 94.462 96.013	30° C. T .39 E .034	30° 10′ 20′ 30′ 40′ 50′	1535.3 1544.2 1553.1 1562.1 1571.0 1580.0	209.12 211.48	30° C. T .59 E .078

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

I	T	E	I=40°	I	ī	E	I=50°	I	ī	E	I=60°
10° 20° 30° 40° 50°	1589.0 1598.0 1606.9 1615.9 1624.9 1633.9	216.3 218.7 221.1 223.5 226.0 228.4	+ 5° C. T .13 E	10° 20° 30° 40° 50°	2142.2 2151.7 2161.2 2170.8 2180.3 2189.9	387.4 390.7 394.1 397.4 400.8 404.2	+ 5° C. T .17 E	51° 10′ 20′ 30′ 40′ 50′	2732.9 2743.1 2753.4 2763.7 2773.9 2784.2	618.4 622.8 627.2 631.7 636.2 640.7	+ 5° C. T .21
10° 20° 30° 40° 50°	1643.0 1652.0 1661.0 1670.0 1679.1 1688.1	230.9 233.4 235.9 238.4 241.0 243.5	.023	10' 20' 30' 40' 50'	2199.4 2209.0 2218.6 2228.1 2237.7 2247.3	407.6 411.1 414.5 418.0 421.4 425.0	.037	10' 20' 30' 40' 50'	2794.5 2804.9 2815.2 2825.6 2835.9 2846.3	645.2 649.7 654.3 658.8 663.4 668.0	.056
10' 20' 30' 40' 50'	1697.2 1706.3 1715.3 1724.4 1733.5 1742.6	246.1 248.7 251.3 253.9 256.5 259.1	10° C. T .26 E .046	10' 20' 30' 40' 50'	2257.0 2266.6 2276.2 2285.9 2295.6 2305.2	428.5 432.0 435.6 439.2 442.8 446.4	10° C. T .34 E .075	53° 10′ 20′ 30′ 40′ 50′	2856.7 2867.1 2877.5 2888.0 2898.4 2908.9	672.7 677.3 682.0 686.7 691.4 696.1	10° C. T .42 E .112
10' 20' 30' 40' 50'	1751.7 1760.8 1770.0 1779.1 1788.2 1797.4	261.8 264.5 267.2 269.9 272.6 275.3	15° C.	10° 20° 30° 40° 50°	2314.9 2324.6 2334.3 2344.1 2353.8 2363.5	450.0 453.6 457.3 461.0 464.6 468.4	15° C.	10' 20' 30' 40' 50'	2919.4 2929.9 2940.4 2951.0 2961.5 2972.1	700.9 705.7 710.5 715.3 720.1 725.0	15° C.
35° 10′ 20′ 30′ 40′ 50′	1806.6 1815.7 1824.9 1834.1 1843.3 1852.5	278.1 280.8 283.6 286.4 289.2 292.0	T .40 E .070	45° 10′ 20′ 30′ 40′ 50′	2373.3 2383.1 2392.8 2402.6 2412.4 2422.3	472.1 475.8 479.6 483.4 487.2 491.0	T .51 E .116	55° 10′ 20′ 30′ 40′ 50′	2982.7 2993.3 3003.9 3014.5 3025.2 3035.8	729.9 734.8 739.7 744.6 749.6 754.6	T .63 E .168
10' 20' 30' 40' 50'	1861.7 1870.9 1880.1 1889.4 1898.6 1907.9	294.9 297.7 300.6 303.5 306.4 309.3	20° C. T	10° 20° 30° 40° 50°	2432.1 2441.9 2451.8 2461.7 2471.5 2481.4	494.8 498.7 502.5 506.4 510.3 514.3	20° C.	56° 10′ 20′ 30′ 40′ 50′	3046.5 3057.2 3067.9 3078.7 3089.4 3100.2	759.6 764.6 769.7 774.7 779.8 784.9	20° C T .84
10' 20' 30' 40' 50'	1917.1 1926.4 1935.7 1945.0 1954.3 1963.6	312.2 315.2 318.1 321.1 324.1 327.1	.53 E .093	10' 20' 30' 40' 50'	2491.3 2501.2 2511.2 2521.1 2531.1 2541.0	518.2 522.2 526.1 530.1 534.2- 538.2	.68 E .151	10' 20' 30' 40' 50'	3110.9 3121.7 3132.6 3143.4 3154.2 3165.1	790.1 795.2 800.4 805.6 810.9 816.1	.225
10' 20' 30' 40' 50'	1972.9 1982.2 1991.5 2000.9 2010.2 2019.6	330.2 333.2 336.3 339.3 342.4 345.5	25° C. T .67 E	48° 10′ 20′ 30′ 40′ 50′	2551.0 2561.0 2571.0 2581.0 2591.0 2601.1	542.2 546.3 550.4 554.5 558.6 562.8	25° C. T .85 E	58° 10′ 20′ 30′ 40′ 50′	3176.0 3186.9 3197.8 3208.8 3219.7 3230.7	821.4 826.7 832.0 837.3 842.7 848.1	25° C T 1.05
10' 20' 30' 40' 50'	2029.0 2038.4 2047.8 2057.2 2066.6 2076.0	348.6 351.8 354.9 358.1 361.3 364.5	. 117	49° 10′ 20′ 30′ 40′ 50′	2611.2 2621.2 2631.3 2641.4 2651.5 2661.6	566.9 571.1 575.3- 579.5 583.8 588.0	.189	10' 20' 30' 40' 50'	3241.7 3252.7 3263.7 3274.8 3285.8 3296.9	853.5 858.9 864.3 869.8 875.3 880.8	.283
10' 20' 30' 40' 50'	2085.4 2094.9 2104.3 2113.8 2123.3 2132.7	367.7 371.0 374.2 377.5 380.8 384.1	30° C. T .80 E .141	50° 10′ 20′ 30′ 40′ 50′	2671.8 2681.9 2692.1 2702.3 2712.5 2722.7	592.3 596.6 600.9 605.3 609.6 614.0	30° C. T 1.02 E .227	60° 10′ 20′ 30′ 40′ 50′	3308.0 3319.1 3330.3 3341.4 3352.6 3363.8	886.4 892.0 897.5 903.2 908.8 914.5	30° C T 1.27 E .340

 $T = R \tan \frac{1}{2} I$

E = R exsec ½ I

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

I	T	E	I=70°	I	ī	E	I=80°	I	Ţ	E	I=90°
10° 20° 30° 40° 50°	3375.0 3386.3 3397.5 3408.8 3420.1 3431.4	920.2 925.9 931.6 937.3 943.1 948.9	+ 5° C. T .25 E	71° 10′ 20′ 30′ 40′ 50′	4086.9 4099.5 4112.1 4124.8 4137.4 4150.1	1308.2 1315.6 1322.9 1330.3 1337.7 1345.1	+ 5° C. T .30 E	81° 10 20' 30' 40' 50'			+ 5° C. T .36
10' 20' 30' 40' 50'	3442.7 3454.1 3465.4 3476.8 3488.3 3499.7	954.8 960.6 966.5 972.4 978.3 984.3	.080	72° 10′ 20′ 30′ 40′ 50′	4162.8 4175.6 4188.5 4201.2 4214.0 4226.8	1352.6 1360.1 1367.6 1375.2 1382.8 1390.4	.110	82° 10′ 20′ 30′ 40′ 50′	4980.7 4995.4 5010.0 5024.8 5039.5 5054.3	1862.2 1871.8 1881.5 1891.2 1900.9 1910.7	.149
63° 10′ 20′ 30′ 40′ 50′	3511.1 3522.6 3534.1 3545.6 3557.2 3568.7	990.2 996.2 1002.3 1008.3 1014.4 1020.5	10° C. T .51 E .159	73° 10′ 20′ 30′ 40′ 50′	4239.7 4252.6 4265.6	1398.0 1405.7 1413.5 1421.2 1429.0 1436.8	10° C. T .61 E .220	83° 10′ 20′ 30′ 40′ 50′	5069.2 5084.0 5099.0 5113.9 5128.9	1920.5 1930.4 1940.3 1950.3	10° C. T .72 E .299
10' 20' 30' 40' 50'	3580.3 3591.9 3603.5 3615.1 3626.8 3638.5	1026.6 1032.8 1039.0 1045.2 1051.4 1057.7	15° C.	10' 20' 30' 40' 50'	4356.9 4370.1	1444.6 1452.5 1460.4 1468.4 1476.4 1484.4	15° C.	10' 20' 30' 40' 50'	5159.0 5174.1 5189.3 5204.4 5219.7 5234.9	2010.8 2021.1	15° C.
10' 20' 30' 40' 50'	3650.2 3661.9 3673.7 3685.4 3697.2 3709.0	1063.9 1070.2 1076.6 1082.9 1089.3 1095.7	T .76 E .240	75° 10′ 20′ 30′ 40′ 50′	4396.5 4409.8 4423.1 4436.4 4449.7 4463.1	1492.4 1500.5 1508.6 1516.7 1524.9 1533.1	T .91 E .332	85° 10′ 20′ 30′ 40′ 50′	5250.3 5265.6 5281.0 5296.4 5311.9 5327.4	2073.0 2083.5	T 1.09 E .450
10' 20' 30' 40' 50'	3720.9 3732.7 3744.6 3756.5 3768.5 3780.4	1102.2 1108.6 1115.1 1121.7 1128.2 1134.8	20° C. T	76° 10′ 20′ 30′ 40′ 50′	4476.5 4489.9 4503.4 4516.9 4530.4 4544.0	1541.4 1549.7 1558.0 1566.3 1574.7 1583.1	20° C. T	10' 20' 30' 40' 50'	5343.0 5358.6 5374.2 5389.9 5405.6 5421.4	2104.7 2115.3 2126.0 2136.7 2147.5 2158.4	20° C T
10' 20' 30' 40' 50'	3792.4 3804.4 3816.4 3828.4 3840.5 3852.6	1141.4 1148.0 1154.7 1161.3 1168.1 1174.8	1.02 E .321	10° 20° 30° 40° 50°	4557.6 4571.2 4584.8 4598.5 4612.2 4626.0	1591.6 1600.1 1608.6 1617.1 1625.7 1634.4	1.22 E .445	87° 10′ 20′ 30′ 40′ 50′	5437.2 5453.1 5469.0 5484.9 5500.9 5517.0	2169.2 2180.2 2191.1 2202.2 2213.2 2224.3	1.45 E .603
10' 20' 30' 40' 50'	3864.7 3876.8 3889.0 3901.2 3913.4 3925.6	1181.6 1188.4 1195.2 1202.0 1208.9 1215.8	25° C. T 1.28 E	78° 10′ 20′ 30′ 40′ 50′	4639.8 4653.6 4667.4 4681.3 4695.2 4709.2	1643.0 1651.7 1660.5 1669.2 1678.1 1686.9	25° C. T 1.53 E	88° 10′ 20′ 30′ 40′ 50′	5533.1 5549.2 5565.4 5581.6 5597.8 5614.2	2235.5 2246.7 2258.0 2269.3 2280.6 2292.0	25° C T 1.83
69° 10′ 20′ 30′ 40′ 50′	3937.9 3950.2 3962.5 3974.8 3987.2 3999.5	1222.7 1229.7 1236.7 1243.7 1250.8 1257.9	.403	79° 10′ 20′ 30′ 40′ 50′	4723.2 4737.2 4751.2 4765.3 4779.4 4793.6	1695.8 1704.7 1713.7 1722.7 1731.7 1740.8	.558	10' 20' 30' 40' 50'		2303.5 2315.0 2326.6 2338.2 2349.8 2361.5	.756
70° 10′ 20′ 30′ 40′ 50′	4011.9 4024.4 4036.8 4049.3 4061.8 4074.4	1265.0 1272.1 1279.3 1286.5 1293.6 1300.9	30° C. T 1.54 E .485	80° 10′ 20′ 30′ 40′ 50′	4807.7 4822.0 4836.2 4850.5 4864.8 4879.2	1749.9 1759.0 1768.2 1777.4 1786.7 1796.0	30° C. T 1.84 E .671	90° 10′ 20′ 30′ 40′ 50′	5729.7 5746.3 5763.1 5779.9 5796.7 5813.6	2373.3 2385.1 2397.0 2408.9 2420.9 2432.9	30° C. T 2.20 E .910

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

I	ī	E	I=100°	I	ī	E	L=110°	I	Ţ	E	I=120°
91° 10′ 20′ 30′ 40′ 50′	5830.5 5847.5 5864.6 5881.7 5898.8 5916.0	2444.9 2457.1 2469.3 2481.5 2493.8 2506.1	+ 5° C. T .43 E	101° 10′ 20′ 30′ 40′ 50′	6950.6 6971.3 6992.0 7012.7 7033.6 7054.5	3278.1 3294.1 3310.1 3326.1 3342.3 3358.5	+ 5° C. T .51 E	111° 10′ 20′ 30′ 40′ 50′	8336.7 8362.7 8388.9 8415.1 8441.5 8468.0	4386.1 4407.6 4429.2 4450.9 4472.7 4494.6	+ 5° C. T .62 E
92° 10′ 20′ 30′ 40′ 50′	5933.2 5950.5 5967.9 5985.3 6002.7 6020.2	2518.5 2531.0 2543.5 2556.0 2568.6 2581.3	.200	102° 10′ 20′ 30′ 40′ 50′	7075.5 7096.6 7117.8 7139.0 7160.3 7181.7	3374.9 3391.2 3407.7 3424.3 3440.9 3457.6	.268	112° 10′ 20′ 30′ 40′ 50′	8494.6 8521.3 8548.1 8575.0 8602.1 8629.3	4516.6 4538.8 4561.1 4583.4 4606.0 4628.6	.360
93° 10′ 20′ 30′ 40′ 50′	6037.8 6055.4 6073.1 6090.8 6108.6 6126.4	2594.0 2606.8 2619.7 2632.6 2645.5 2658.5	10° C. T .86 E .401	103° 10′ 20′ 30′ 40′ 50′	7203.2 7224.7 7246.3 7268.0 7289.8 7311.7	3474.4 3491.3 3508.2 3525.2 3542.4 3559.6	10° C. T .103 E .536	113° 10′ 20′ 30′ 40′ 50′	8656.6 8684.0 8711.5 8739.2 8767.0 8794.9	4651.3 4674.2 4697.2 4720.3 4743.6 4766.9	10° C. T 1.25 E .721
94° 10′ 20′ 30′ 40′ 50′	6144.3 6162.2 6180.2 6198.3 6216.4 6234.6	2671.6 2684.7 2697.9 2711.2 2724.5 2737.9	15° C.	104° 10′ 20′ 30′ 40′ 50′	7333.6 7355.6 7377.8 7399.9 7422.2 7444.6	3576.8 3594.2 3611.7 3629.2 3646.8 3664.5	15° C.	114° 10′ 20′ 30′ 40′ 50′	8822.9 8851.0 8879.3 8907.7 8936.3 8965.0	4790.4 4814.1 4837.8 4861.7 4885.7 4909.9	15° C.
95° 10′ 20′ 30′ 40′ 50′	6252.8 6271.1 6289.4 6307.9 6326.3 6344.8	2751.3 2764.8 2778.3 2792.0 2805.6 2819.4	T 1.30 E .604	105° 10′ 20′ 30′ 40′ 50′	7467.0 7489.6 7512.2 7534.9 7557.7 7580.5	3682.3 3700.2 3718.2 3736.2 3754.4 3772.6	T 1.56 E .806	10° 20° 30° 40° 50°	8993.8 9022.7 9051.7 9080.9 9110.3 9139.8	4934.1 4958.6 4983.1 5007.8 5032.6 5057.6	T 1.93 E 1.09
96° 10′ 20′ 30′ 40′ 50′	6363.4 6382.1 6400.8 6419.5 6438.4 6457.3	2833.2 2847.0 2861.0 2875.0 2889.0 2903.1	20° C. T	106° 10′ 20′ 30′ 40′ 50′	7603.5 7626.6 7649.7 7672.9 7696.3 7719.7	3791.0 3809.4 3827.9 3846.5 3865.2 3884.0	20° C. T	116° 10′ 20′ 30′ 40′ 50′	9169.4 9199.1 9229.0 9259.0 9289.2 9319.5	5082.7 5107.9 5133.3 5158.8 5184.5 5210.3	20° C.
97° 10′ 20′ 30′ 40′ 50′	6476.2 6495.2 6514.3 6533.4 6552.6 6571.9	2917.3 2931.6 2945.9 2960.3 2974.7 2989.2	1.74 E .809	107° 10′ 20′ 30′ 40′ 50′	7743.2 7766.8 7790.5 7814.3 7838.1 7862.1	3902.9 3921.9 3940.9 3960.1 3979.4 3998.7	2.08 E 1.08	117° 10′ 20′ 30′ 40′ 50′	9349.9 9380.5 9411.3 9442.2 9473.2 9504.4	5236.2 5262.3 5288.6 5315.0 5341.5 5368.2	2.52 E 1.46
98° 10′ 20′ 30′ 40′ 50′	6591.2 6610.6 6630.1 6649.6 6669.2 6688.8	3003.8 3018.4 3033.1 3047.9 3062.8 3077.7	25° C. T 2.18 E	108° 10′ 20′ 30′ 40′ 50′	7886.2 7910.4 7934.6 7959.0 7983.5 8008.0	4018.2 4037.8 4057.4 4077.2 4097.1 4117.0	25° C. T 2.61 E	118° 10′ 20′ 30′ 40′ 50′	9535.7 9567.2 9598.9 9630.7 9662.6 9694.7	5395.1 5422.1 5449.2 5476.5 5504.0 5531.7	25° C. T 3.16 E
99° 10′ 20′ 30′ 40′ 50′	6708.6 6728.4 6748.2 6768.1 6788.1 6808.2	3092.7 3107.7 3122.9 3138.1 3153.3 3168.7	1.02	109° 10′ 20′ 30′ 40′ 50′	8032.7 8057.4 8082.3 8107.3 8132.3 8157.5	4137.1 4157.3 4177.5 4197.9 4218.4 4239.0	1.36	119° 10′ 20′ 30′ 40′ 50′	9727.0 9759.4 9792.0 9824.8 9857.7 9890.8	5559.4 5587.4 5615.5_ 5643.8 5672.3 5700.9	1.83
100° 10′ 20′ 30′ 40′ 50′	6828.3 6848.5 6868.8 6889.2 6909.6 6930.1	3230.8 3246.5	30° C. T 2.62 E 1.22	110° 10′ 20′ 30′ 40′ 50′	8182.8 8208.2 8233.7 8259.3 8285.0 8310.8	4259.7 4280.5 4301.4 4322.4 4343.6 4364.8	30° C. T 3.14 E 1.63	120° 10′ 20′ 30′ 40′ 50′	9924.0 9957.5 9991.0 10025.0 10059.0 10093.0	5729.7 5758.6 5787.7 5817.0 5846.5 5876.1	30° C. T 3.81 E 2.20

T = R tan ½ I

USEFUL RELATIONS

Lineal feet $\times .00019 = miles$ Lineal yards $\times .0006 = miles$

Square inches $\times .007$ = square feet Square feet $\times .111$ = square yards

Square yards $\times .0002067 = acres$

Acres ×4840 = square yards

Cubic inches $\times .00058$ = cubic feet Cubic feet $\times .03704$ = cubic yards

Links $\times .22$ = yardsLinks $\times .66$ = feetFeet $\times 1.5$ = links

 $360^{\circ} = 21600' = 1296000''$

Radius = arc of 57.2957790°

Arc of 1° (radius = 1) = .017453292

Arc of 1' (radius = 1) = .000290888

Arc of 1" (radius = 1) = .000004848

Curvature of Earth's surface = about 0.7 feet in 1 mile Curvature in feet = 0.667 (Dist. in miles)² Difference between arc and chord length, 0.05 feet in 11½ miles

Probable error of a single observation = $0.6754 \sqrt{\frac{2 \text{ v}^3}{n-1}}$ Error in chaining of 0.01 feet in 100 feet: Due to—

- 1. Length of tape error of 0.01 feet
- 2. Alignment. One end 1.4 feet out of line
- 3. Sag of tape at center of 0.61 feet.
- 4. Temperature difference of 15°
- 5. Difference of pull of 15 lbs.

SQUARE MEASURE

144 sq. inches = 1 sq. ft.

9 sq. ft. = 1 sq. yard

 $30\frac{1}{4}$ sq. yds. = 1 sq. rd.

40 sq. rds. = 1 rood.

4 roods = 1 acre

640 acres = 1 sq. mile.

SURVEYORS' MEASURE

7.92 inches = 1 link.

25 links = 1 red. 4 rds. = 1 chain.

10 sq. chains or 160 sq. rods = 1 acre.

640 acres = 1 sq. mile.

36 sq. miles (6 miles sq.) = 1 township.

TABLE VI. INCHES TO DECIMALS OF A FOOT

Ia.	0	1	2	3	4	5	6	7	8	9	10	11	In.
0	Foot	.0833	.1667	.2500	.3333	.4167	.5000	.5833	.6667	.7500	.8333	.9167	0
1-32		.0859	.1693	.2526	.3359	.4193	.5026	.5859	.6693	.7526	.8359	.9193	1-32
1-16		.0885	.1719	.2552	.3385	.4219	.5052	.5885	.6719	.7552	.8385	.9219	1-16
3_32				.2578	.3411	.4245	.5078	.5911	.6745	.7578	.8411	.9245	3-32
1-8				.2604	.3438	.4271	.5104	.5938	.6771	7690	9464	.9271	1-8 5-32
5-32 3-16		.0964 $.0990$.1797	.2030	3404	.4297 .4323	.0150	5000	.0191	7656	9400	0393	3-16
3-16 7-32			.1849	2682	3516	.4349	5182	6016	6849	7682	.8516	9349	7-32
						.4375						10.7	
1-4		.1042 .1068		.2708	2560	.4401	5934	6069	6001	7734	9568	0401	9-32
9-32 5-16			.1927	9760	3504	.4427	5260	6094	6927	7760	8594	9427	5-16
11-32	0286	1120	.1953	2786	3620	4453	.5286	6120	6953	7786	8620	9453	
3-8	.0313	.1146	1979	.2813	.3646	.4479	.5313	.6146	.6979	.7813	.8646	.9479	3-8
13-32	.0339	.1172	.2005	.2839	.3672	.4505	.5339	.6172	.7005	.7839	.8672	.9505	13-32
7-16	.0365	.1198	.2031	.2865	.3698	.4531	.5365	.6198	.7031	.7865	.8698	.9531	7-16
15 - 32	.0391	.1224	.2057	.2891	.3724	.4557	.5391	.6224	.7057	.7891	.8724	.9557	15-32
1-2	.0417	.1250	.2083	.2917	.3750	.4583	.5417	.6250	.7083	.7917	.8750	.9583	1-2
17-32	.0443	.1276	.2109	.2943	.3776	.4609	.5443	.6276	.7109	.7943	.8776	.9609	17-32
9-16	.0469	.1302	.2135	.2969	.3802	.4635	.5469	.6302	.7135	.7969	.8802	.9635	9-16
19-32		.1328	.2161	.2995	.3828	.4661	.5495	.6328	.7161	.7995	.8828	.9661	19-32
5-8		.1354	.2188	.3021	.3854	.4688	.5521	.6354	.7188	.8021	.8854	.9688	5-8
21-32	.0547	.1380	.2214	.3047	.3880	.4714	.5547	.6380	.7214	.8047	.8880	.9714	21-32
11-16		.1406	.2240	.3073	.3906	.4766	0033	6420	7240	.8073	.8900	9740	23-32
23-32													
3-4	.0625	.1458	.2292	.3125	.3958	.4792	.5625	.6458	.7292	.8125	.8958	.9792	
25-32			.2318	.3151	.3984	.4818	.5651	.6484	.7318	.8151	.8984	.9818	25-32
13-16		.1510	.2344	.3177	.4010	.4844	.5677	.6510	.7344	.8177	.9010	.9844	13-16
27-32		.1536 .1563	.2370	. 3203	.4036	.4870	5700	.0036	7206	8990	.9030	.9070	27-32 7-8
7–8 29–32		.1589	9499	3055	4080	4090	5755	6580	7499	8955	9080	9929	29-32
15-16		.1615	9448	3281	4115	4948	5781	6615	7448	8281	.9115	9948	15-16
31-32		.1641	.2474	.3307	.4141	.4974	.5807	.6641	.7474	.8307	.9141	.9974	31-32
	0	1	2	3	4	5	6	7	8	9	10	11	T

TABLE VII. MINUTES IN DECIMALS OF A DEGREE

0′ 30″	.00833	10′ 30″	.17500	20′ 30″	.34167	30′ 30″	.50833	40′ 30″	.67500	50′ 30″	.84167
1 00	.01667	11 00	.18333	21 00	.35000	31 00	.51667	41 00	.68333	51 00	.85000
30	.02500	30	.19167	30	.35833	30	.52500	30	.69167	30	.85833
2 00	.03333	12 00	.20000		.36667	32 00	.53333	42 00	.70000	52 00	.86667
30	.04167	30	.20833	30	.37500	30	.54167	30	.70833	30	.87500
	.05000		.21667	23 00	.38333	33 00	.55000	43 00	.71667	53 00	.88333
		13 00	.22500	30	.39167	30	.55833	30	.72500	30	.89167
30	.05833	30				34 00	.56667	44 00	.73333	54 00	.90000
4 00	.06667	14 00	.23333		.40000		100000000000000000000000000000000000000				
30	.07500	30	.24167	30	.40833	30	.57500	30	.74167	30	.90833
5 00	.08333	15 00	.25000	25 00	.41667	35 00	.58333	45 00	.75000	55 00	.91667
30	.09167	30	.25833	30	.42500	30	.59167	30	.75833	30	.92500
6 00	.10000	16 00	.26667	26 00	.43333	36 00	.60000	46 00	.76667	56 00	.93333
30	.10833	30	.27500	30	.44167	30	.60833	30	.77500	30	.94167
7 00	.11667	17 00	.28333	27 00	.45000	37 00	.61667	47 00	.78333	57 00	.95000
30	.12500	30	.29167	30	.45833	30	.62500	30	.79167	30	.95833
8 00	.13333	18 00	.30000		.46667	38 00	.63333	48 00	.80000	58 00	.96667
30	.14167	30	.30833	30	.47500	30	.64167	30	.80833	30	.97500
			.31667	29 00	.48333	39 00	.65000	49 00	.81667		.98333
9 00	.15000	19 00									
30	.15833	30	.32500	30	.49167	30	.65833	30	.82500	30	.99167
10 00	.16667	20 00	.33333	30 00	.500000	40 00	.66667	50 00	.83333	60 00	1.00000

TABLE VIII. MIDDLE ORDINATES OF RAILS

Length of Rail (feet)

$\overline{\mathbf{c}}$	R	30	28	26	24	22	20	C	R	30	28	26	24	22	20
0 /	Feet	Inch	Inch	Inch	Inch	Inch	Inch	0	Feet	Inch	Inch	Inch	Inch	Inch	Inch
0-20	17189	.08	.07	.06	.05	.04	.03	8	716.8	1.88	1.64	1.42	1.20	1.01	.84
0 - 40	8594	.16	.14	.12	.10	.08	.07	9	637.3	2.12	1.84	1.60	1.35	1.14	.94
1-0	5730	.24	.20	.18	.15	.13	.10	10	573.7	2.36	2.05	1.78	1.50	1.27	1.04
1-20	4297	.31	.27	.23	.20	.17	.13	11	521.7	2.59	2.26	1.95	1.65	1.39	1.15
1-40	3438	.39	.34	.29	.25	. 21	.17	12	478.3	3.83	2.47	2.15	1.81	1.54	1.26
2-0	2865	.47	.41	.35	.30	.25	.20	13	441.7	3.05	2.66	2.30	1.96	1.66	1.36
2-20	2456	.55	.48	.41	.35	.29	.23	14	410.3	3.30	2.87	2.48	2.10	1.78	1.46
2-40	2149	.63	.55	.47	.40	.33	.27	15	383.1	3.54	3.08	2.68	2.26	1.91	1.57
3-0	1910	.71	.62	.53	.45	.38	.31	16	359.3	3.76	3.28	2.83	2.40	2.04	1.67
3-20	1719	.78	.68	.59	.50	.42	.35	17	338.3	4.00	3.48	3.02	2.57	2.16	1.78
3-40	1563	.86	.75	.65	.55	.46	.38	18	319.6	4.21	3.67	3.18	2.70	2.28	1.87
4-0	1433	.94	.82	.71	.60	.50	.42	19	302.9	4.45	3.89	3.36	2.86	2.41	1.98
4-20	1323	1.02	.89	.77	.65	.55	.45	20	287.9	4.70	4.09	3.55	3.00	2.54	2.09
4-40	1228	1.10	.96	.83	.70	.59	.48	22	262.0	5.16	4.44	3.84	3.30	2.80	2.29
5	1146	1.18	1.03	.89	.75	.63	.52	24	240.5	5.64	4.92	4.20	3.59	3.04	2.50
6	955.3	1.41	1.23	1.06	.90	.76	.62	26	222.3	6.07	5.29	4.58	3.88	3.29	2.70
7	819.0	1.65	1.44	1.24	1.05	.89	.73			L			9	10.00	La

TABLE IX. SHORT RADIUS CURVES

7	Radius Feet	Chord Feet	Central Angle	Deflection Angle	Deflection for 1 Foot	LEBAT
	35	10	16-26	8-13	49.3	
	45	10	12-46	6-23	38.3	
	50	15	17-16	8-38	34.5	
	60	15	14-22	7-11	28.8	
	75	15	11-30	5-45	23.0	
	100	20	11-30	5-45	17.3	
	120	20	9-34	4-47	14.3	
	150	20	7-39	3-49	11.5	
	190	25	7-32	3-46	9.15	
	200	25	7-10	3-35	8.6	
	225	25	6-25	3-12	7.7	
	240	25	5-58	2-59	7.2	
	250	25	5-44	2-52	6.9	
	275	25	5-12	2-36	6.2	
	288	50	9-58	4-59	6.0	
	300	50	9-32	4-46	5.7	
	350	50	8-12	4-06	4.9	
	376	50	7-40	3-50	4.6	
	400	50	7-10	3-35	4.3	
	410	50	7-00	3-30	4.2	

To find length of curve divide angle from P. C. to P. T. by central angle of chord, and multiply by length of chord.

TABLE X. RODS IN FEET, 10THS AND 100THS OF FEET

Rods	Feet	Rods	Feet	Rods	Feet	Rods	Feet	Rods	Feet
1	16.50	21	346.50	41	676.50	61	1006.50	81	1336.50
2	33.00	22	363.00	42	693.00	62	1023.00	82	1353.00
3	49.50	23	379.50	43	709.50	63	1039.50	83	1369.50
4	66.00	24	396.00	44	726.00	64	1056.00	84	1386.00
5	82.50	25	412.50	45	742.50	65	1072.50	85	1402.50
6	99.00	26	429.00	46	759.00	66	1089.00	86	1419.00
7	115.50	27	445.50	47	775.50	67	1105.50	87	1435.50
8	132.00	28	462.00	48	792.00	68	1122.00	88	1452.00
9	148.50	29	478.50	49	808.50	69	1138.50	89	1468.50
10	165.00	30	495.00	50	825.00	70	1155.00	90	1485.00
11	181.50	31	511.50	51	841.50	71	1171.50	91	1501.50
12	198.00	32	528.00	52	858.00	72	1188.00	92	1518.00
13	214.50	33	544.50	53	874.50	73	1204.50	93	1534.50
14	231.00	34	561.00	54	891.00	74	1221.00	94	1551.00
15	247.50	35	577.50	55	907.50	75	1237.50	95	1567.50
16	264.00	36	594.00	56	924.00	76	1254.00	96	1584.00
17	280.50	37	610.50	57	940.50	77	1270.50	97	1600.50
18	297.00	38	627.00	58	957.00	78	1287.00	98	1617.00
19	313.50	39	643.50	59	973.50	79	1303.50	99	1633.50
20	330.00	40	660.00	60	990.00	80	1320.00	100	1650.00

TABLE XI. LINKS IN FEET, 10THS AND 100THS OF FEET

Links	Feet	Links	Feet	Links	Feet	Links	Feet	Links	Feet	Links	F'eet
1	0.66	18	11.88	35	23.10	52	34.32	69	45.54	86	56.76
2	1.32	19	12.54	36	23.76	53	34.98	70	46.20	87	57.42
3	1.98	20	13.20	37	24.42	54	35.64	71	46.86	88	58.08
4	2.64	21	13.86	38	25.08	55	36.30	72	47.52	89	58.74
5	3.30	22	14.52	39	25.74	56	36.96	73	48.18	90	59.40
6	3.96	23	15.18	40	26.40	57	37.62	74	48.84	91	60.06
7	4.62	24	15.84	41	27.06	58	38.28	75	49.50	92	60.72
8	5.28	25	16.50	42	27.72	59	38.94	76	50.16	93	61.38
9	5.94	26	17.16	43	28.38	60	39.60	77	50.82	94	62.04
10	6.60	27	17.82	44	29.04	61	40.26	78	51.48	95	62.70
11	7.26	28	18.48	45	29.70	62	40.92	79	52.14	96	63.36
12	7.92	29	19.14	46	30.36	63	41.58	80	52.80	97	64.02
13	8.58	30	19.80	47	31.02	64	42.24	81	53.46	98	64.68
14	9.24	31	20.46	48	31.68	65	42.90	82	54.12	99	65.34
15	9.90	32	21.12	49	32.34	66	43.56	83	54.78	100	66.00
16	10.56	33	21.78	50	33.00	67	44.22	84	55.44	101	66.66
17	11.22	34	22.44	51	33.66	68	44.88	85	56.10	102	67.32

Sokkia Surveying Systems, Instruments, Equipment and Supplies

- •Total Stations
- •Electronic Field Book
- •Mapping Software
- •EDM Systems
- Theodolites
- Levels
- •Transits
- •Tripods
- Rods
- •Hand Levels
- Tapes
- Planimeters
- Accessories

8152-00 603055 JUL1698

\$ 6.50 ABQ

The paper in this book is a fine quality thick 50% rag ledger specially treated during the making to give "High Wet Strength." It retains is strength and writing surfaces when dried after having been subjected to extreme weather conditions.

SOKKINT FIELD BOOKS

Rain-resistant fine quality ledger paper, bound in highvisibility durable vellow imitation leather. Printed in waterproof ink.

Transit Field Book. Size 41/2 x 71/4 Stock No. 8152-00 inches.

Economy Field Book. Spiral bound, Stock No. 8152-05 Paperback, Size 41/2 x 71/4 inches.

Stock No. 8152-10 Economy Field Book. Same as above except saddle stitched (stapled).

blue horizontal lines; red vertical lines. Left page 4 horizontal and 8 vertical blue lines; red Right page vertical center line.

Mining Transit Book. Size 41/2 x 71/4 Stock No. 8152-20 inches.

blue horizontal lines; red vertical center line. Left page 8 x 8 blue lines; red vertical lines. Right page

Engineers Field Book. Size 41/2 x 71/4 Stock No. 8152-30 inches.

Left page blue horizontal lines; red vertical lines.

10 x 10 blue lines; red vertical center line. Inch Right page lines heavy.

Stock No. 8152-50 Level Book Size 4 x 61/2 inches. Level Book Size 41/2 x 71/4 inches. Stock No. 8152-55 Both pages blue horizontal lines; red vertical lines. 6 vertical columns.

Stock No. 8152-60 Field Book. Size 41/2 x 71/4 inches. blue horizontal lines; red vertical lines. Left page Right page 4 x 4 blue lines; red vertical center line.

Cross Section Book, Size 61/2 x 81/2 Stock No. 8152-75 inches.

Both pages 10 x 10 blue lines; inch lines slightly heavier.

Duplicating Transit Book. Size 41/2 x Stock No. 8152-80 7¹/₄ inches.

Left page blue horizontal lines; red vertical lines. 4 horizontal and 8 vertical blue lines; red Right page vertical center line. Pages numbered and perforated. Carbon paper.

CURVE FORMULAE

Tracking # 7929 0033.

D = Degree of Curve

1° =1-Degree of Curve

2° = 2-Degree of Curve

P.C. = Point of Curve

P.T. = Point of Tangent

P.I. = Point of Intersection

I = Intersection of Angle, Angle between Two Tangents

L = Length of Curve, from P.C. to P.T.

T = Tangent Distance

E = External Distance

R = Radius

L.C. = Length of Chord

M = Length of Middle Ordinate

c = Length of Sub-Chord

d = Angle of Sub-Chord

$$R = \frac{L.C.}{2 \sin \frac{1}{2} I} T = R \tan \frac{1}{2} I = \frac{L.C.}{2 \cos \frac{1}{2} I}$$

$$\frac{\text{L.C.}}{2} = R \sin \frac{I}{2}$$
, D 1° = R = 5730, D 2° = $\frac{5730}{2}$, D = $\frac{5730}{R}$

$$M = R (1 - \cos \frac{1}{2} I), = R - R \cos \frac{1}{2}$$

$$\frac{E+R}{R} = \sec \frac{I}{2}, \frac{R-M}{R} = \cos \frac{I}{2}$$

$$c = 2 R \sin \frac{1}{2} d, d = \frac{c}{2 R}$$

L.C. =
$$2 R \sin \frac{1}{2} I$$
, E = R (sec $\frac{1}{2} I - 1$), = R sec $\frac{1}{2} - R$

Minutes in Decimals of a Degree

1'	-0167	11'	-1833	21'	-3500	31'	-5167	41'	-6833	51'	-8500
2	-0333	12	-2000	22	-3667	32	-5333	42	.7000	52	-8667
3	-0500	13	-2167	23	-3833	33	-5500	43	-7167	53	-8833
4	-0667	14	-2333	24	·4000	34	.5667	44	.7333	54	-9000
5	-0833	15	-2500	25	-4167	35	-5833	45	-7500	55	-9167
6	-1000	16	-2667	26	.4333	36	-6000	46	.7667	56	.9333
7	-1167	17	-2833	27	.4500	37	-6167	47	.7833	57	-9500
8	-1333	18	.3000	28	.4667	38	-6333	48	-8000	58	-9667
9	-1500	19	-3167	29	-4833	39	-6500	49	-8167	59	-9833
10	-1667	20	-3333	30	.5000	40	-6667	50	-8333	60	1.0000

Inches in Decimals of a Foot

16 ·0052	3 32 ·0078	1 8 ⋅0104	3 16 ⋅0156	·0208	-5 16 -0260	$\frac{\frac{3}{8}}{\cdot 0313}$	·0417	± 5/8 ⋅0521	·0625	7 8 ·0729
1	2	3	· 3333	5	6	7	8	9	10	11
·0833	·1667	·2500		·4167	·5000	·5833	·6667	·7500	·8333	·9167

SOKKIA™