### Lehigh University Lehigh Preserve

Field Notebooks

Earth & Environmental Sciences

1995

# Pazzaglia Field Notebook: 8/95 - 7/98; OLY '97; Alb Basin; Alamogordo; Field Camp; OLY 4 and NM

Frank J. Pazzaglia

Follow this and additional works at: http://preserve.lehigh.edu/cas-ees-field-notebooks

#### Recommended Citation

Pazzaglia, Frank J., "Pazzaglia Field Notebook: 8/95 - 7/98; OLY '97; Alb Basin; Alamogordo; Field Camp; OLY 4 and NM" (1995). Field Notebooks. Paper 13.

http://preserve.lehigh.edu/cas-ees-field-notebooks/13

This Field Notebook is brought to you for free and open access by the Earth & Environmental Sciences at Lehigh Preserve. It has been accepted for inclusion in Field Notebooks by an authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

## SOKKIN" F.J. PAZZRAIA

TRANSIT FIELD BOOK 8/95 7/98 OLY 97 ALL LASIN

Alb Basin Alamogordo Fiel & Camp

OLY 4 and NM Property of Frank J. Pazzacha

Dept. 2) Earth-Planethy Sci

Address

Albuquerque, NM B7131-1116

Telephone (505) 277-5384 (w)

(505) 294-4225 (H)

email: Fjp@umm.edu

Reward 17 Jound & Herry Council

Telephone (505) 274-5384 (w)

This Book is manufactured of a High Grade 50% Rag Ledger Paper having a Water Resistant Surface, and is sewed with Nylon Water-proof Thread.

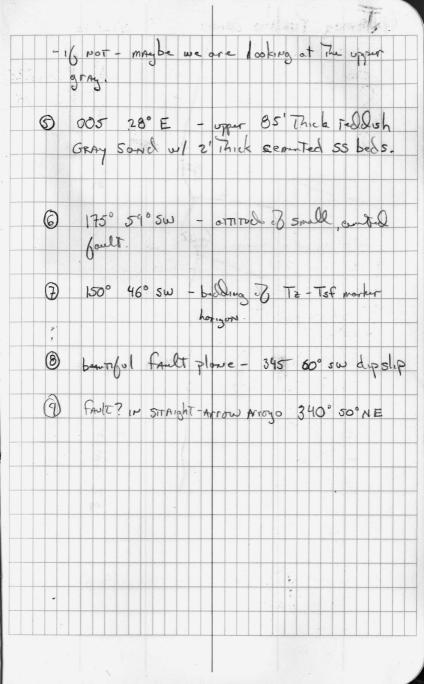
#### INDEX

| 1 York Quarry 195 Poller + STRANG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PETER WILKINSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURFACE WATER QUALITY BUREAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NMED WHELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D. D. BOX 26110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SANTA FE, NM 87503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Willie LANE WEPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DOWNR STORCK-CARSON DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 208 CRUZ ALTA RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TADS NIN 87571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| And the second s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

appliations. 1 1 20 m 2.5/

Oct 3º0, Tuesday, 1995 Field morning A. King RANCH Pipeline exposure RT. 14 - SANDIA PARK QUAD Price Construction - Bernallilo 200 5007 146 The Gruan Jim BARNETT - M.D AMERICA AT The exposed cross-over point of The TWO pipelines There is The Suggestion of Quoternory (Holocene?) offset - on strike w/ Arroyo gravel about That I now think might be Normal South FACING PIT exposure for old Trench wall?

North wall - right of pipe junction govge yellow westherd Sprole of "charcoal" or wood 95-1-103


10/17/95 Tuesday warm, clear, broay. IN field, SANGIA PARK Quad W/ KArl, Charles, - Reasonably good evidence for a LAMANDE Reverse fault, reservated as a normal foult Through The Lu Madera area.

| 10/24/95     | Tuesday    | · cool,     | clerz        | nd and     |
|--------------|------------|-------------|--------------|------------|
|              | dalakar in | 7. 40. 11 1 | Ang. He se   |            |
| SANDIA PAZK  |            |             |              |            |
| - AREA NOTE  | of Fros    | T Arroya    | + SAN Red    | 00         |
| -AREA NOTE ? | : 1 m U to |             | Par Dia . «  |            |
| 95-1-1024 BR | exposure,  | Frost 20.   | 240 55       | oww fa-Pim |
|              | Home       |             | 265.20       | NW Re      |
| 95-2-1024 Pg | -140 38    | 5w          |              |            |
| Abov         | e 6900' -  | Qfo!        |              |            |
| bind-6       | w/ 7005/2- | - STRAFIGO  | Lis. arrivel | -SUD       |
|              |            | mge III C   |              |            |
|              |            |             |              |            |
| 95-3-1024 Pa | 240 69     | ορω         |              |            |
|              |            |             |              |            |
| I do         |            |             |              |            |
|              | 194. ) . C |             |              |            |
|              |            |             |              |            |
|              |            |             |              |            |
|              |            |             |              |            |
|              |            |             |              |            |

| 10/25/95                                |           | worm, elight 13             |
|-----------------------------------------|-----------|-----------------------------|
| SANDER PM                               | -k Field  | w/ Tom Burone.              |
|                                         |           |                             |
|                                         |           | rch ow RT 14 070 5495E      |
|                                         |           | mo - " 2-3m J Oock          |
|                                         |           | our K bedrock.              |
| Trace & T                               | yerns one |                             |
| downstream                              | km - 045  | + 90°                       |
|                                         |           | 40 460 52                   |
| Mashau Ba                               |           | de data to the total        |
| 95-1-1025                               | VAllegras | ESTATES South of Frost Pond |
| - Shal                                  | portions  | of Rm make Thick            |
| resid                                   | head soil | 5 - In Thick Be Lorgon      |
| ~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Thick.    | STAGE TIT+ CA CO3-          |
|                                         |           | 9.65 1.5 1.45               |
| Pm                                      | 050 (0°.5 | 2                           |
|                                         |           |                             |
|                                         |           |                             |
| 15-2-1025 FS-                           | 135° 25°  | Sw 5m Petro Spring.         |
| Spring                                  | IN SAN Y  | aro Creek                   |
| lage                                    | are No    | 100 100 3 JUS 5000          |
|                                         |           | - IN The SAN Padro          |
| Arroy                                   | 9         |                             |
|                                         |           |                             |

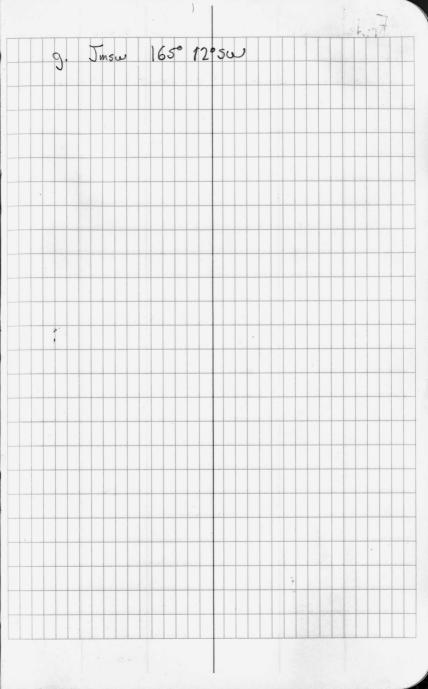
monthed we OF12 - PE class forms. 95-3-1025 SAN PEDro Estimes - Nice City along West side of SAN Pedro creek - PE+Pm closts - subongular 3-5 m Thick max. 95-4-1025 at end & "coulse fond" NOTTERN Opt is all Pm class. Qt is book Pm + PE class. Auphores will discorn some insto stratus of lows elas, in Arrogos. Base & Opf + Qo is very place.
- looks like a buried pedint

Jemez rueblo LAND 3/12/96 WATER SURVEY - ZIA SS EAST & Pueblo - Jemy Pueblo Qued TIGN, RZE 1 fault - 300° 29° NE ~320° down to the SW (2) FAULT ~ 3. In Johst. West of The CANADA foult, we are lower IN The ZIA SECTION - TWO very Frommand opaline - carbonate beds cap The Mesa. They are obser by The NW Trending Beds west of The CAMADA dip of 70 The 5+5W; "10-30° EAST of CANADA GAULT - beds dip 70 North and east - UNKNOWN STRANGRAPHIC separation, 3 350° 19° NE Walking east - Next Amphilheater - Abrupt Transition TO A MASSIVE STOY S.S. - 15 This The lower gray maker? 16 so There is A huge! fault



|       |            | do Car         |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|------------|----------------|---------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |            |                | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 100 41786   | € E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |            |                |                                       |             | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |                |                                       | 5           | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |            |                |                                       | Section     | and the same of th |
|       |            | 13 28K         |                                       | 9           | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |                |                                       | 26          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                | - (                                   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11940 |            | l kirm.        |                                       | Et ibli     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            | 100000         | 1                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                |                                       | UM & 760    | Library P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | 347 - 5 E  | Server and the |                                       |             | (A) (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |            |                | -                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                |                                       |             | 2 70.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | GS 03 6    | P. C. Salanda  | 775                                   |             | 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |            |                |                                       | 19 . 71     | 1 /25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |            | 3 1 Gdg        |                                       | \sqrt{\chi} | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |            |                |                                       | Secron      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                |                                       |             | 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | CANALIZET. |                | 1                                     | 2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            | F 9. 1.        |                                       | -1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                | ,                                     |             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |                |                                       |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |                |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                | 38.50                                 |             | 11 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |            |                |                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                | .1.                                   | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| SATURA    | y M     | Ay 4    | B 199   | 6      |            |   |
|-----------|---------|---------|---------|--------|------------|---|
|           | ( '     | 1       |         |        | m, suppy,  |   |
| Field Mip | for C   | Aswell  | Silver  |        | ght breeze |   |
| Celebran  | 011     | -110    | T Val   |        |            |   |
| w/mL,     | Lee,    | field G | P       |        |            |   |
| Arroyo    |         | Draw    | Age -   | PASAri | TO FAULT   |   |
| 001010    | collect | red for | or Trav | erthe  | 5 Amples   |   |
|           | 60r U   | -series | ANAle   | 3515   |            |   |
| Bedded    |         |         |         |        |            | 2 |
| Travertue |         | AP6     | AP4     |        |            |   |
| Alluvium  |         |         | T.      |        | - AP3      |   |
| Traxerine | ← AP2   | NAI     | 25      | 7      | \          |   |
| · ·       | 0.0.0   | 0./ 1   | TOAT,   |        |            |   |
| MASSIVE 1 | 9,      | )       | Mulvull |        |            |   |
|           | 024     |         |         |        |            |   |
|           | AP1     |         |         |        |            |   |
|           |         |         | -       |        |            |   |
|           |         |         |         |        |            |   |
|           |         |         |         |        |            |   |
|           |         |         |         |        |            |   |
|           |         |         |         |        |            |   |
|           |         |         |         |        |            | 1 |
|           |         |         |         |        |            |   |
|           |         |         |         |        |            |   |
|           |         |         |         |        |            |   |


SATURDAY, MAY 18th 1996 PARTLy cloudy, warm, breezy. · Red River w/ m.L. · Tony Warrelle Park, south side of rown. We will begin A hike from here up The Ski Wi TAIS TO The Placer Creek drainage - looking for whood gravels of Upman. Upland gravels do opterop - or flow onlyof The Top of The Sti Ligits. Nice rounded graves - A mix of vein gra, grante, volcatures, + rore grass + k ss. ?. Sizes range from 5 cm TO Im Found at elevations from ~ 9600 TO 10800'. Nothing compelling on 10 why Thou are not should deposits. See INSERT (A) · DODGAT PASS ISC - CONGLOTHER OTIC PACIES of Lipman - This deposit, in the road cut is very different than The upland gravels Above Red Rover. · Ang. gt3 parglemente · grussy "MATVIL · V. well-developed + Thick (>2m) rel weathering grobers.

a USGS GAGING STATE ON - South Side of

| (50)              | ngs 96/11           | D. P. P. P.  | 1486     |                  | r Car                                   |
|-------------------|---------------------|--------------|----------|------------------|-----------------------------------------|
|                   | erbnok.             |              | Louisti  | dy Jako A        | 70                                      |
| Access            | KALLINE.            | Righer-      | D588 4 3 | 3 mercyco        |                                         |
| . C1              | mmmron +            | Philmont     | - 5ev    | val Terra        | ce                                      |
| leu               | els - up            | 70 4 mi      | for goon | orphio           |                                         |
|                   | els- up<br>orfoces. | See 1        | :100,000 | make of          | Scott.                                  |
| R                 | ther the            | r alluvia    | I mante  | e on te          | lents.                                  |
| . 50              |                     | Pl           | -        | D                | * · · · · · · · · · · · · · · · · · · · |
| - 57              | CANADIA             | 1 River      | North    | 500 to and       | o-c .                                   |
| T Lasie           | SVI NOCIA           |              | 9        |                  | em .                                    |
| · c               | hicosA L            | ake STA      | JE PARK  | /                |                                         |
|                   |                     | rite A bus   |          |                  | - bats,                                 |
| Bullion Francisco | backger             | s, cows,     | stow on  | r, vo be         | elima                                   |
| 1113-5            | burn.               | you MA       | me it.   |                  | 18 60-1                                 |
| 20-16-16          |                     | Thick (>     |          | CARL STATISTICS  | ver                                     |
|                   | W/ STA              | ge I-VI      | CArboro  | te.              |                                         |
|                   | Salt Salt I         | TA TEST      | 5-2      | 801 (7           |                                         |
|                   |                     |              | re :     | 2-16-2-18-3-19-3 |                                         |
|                   |                     |              | 1        |                  |                                         |
|                   |                     | Angel I      |          | min it it        |                                         |
|                   | al min              | Service of a | 1875 H   | 1000             |                                         |
|                   | SASSINE             | ettel mi     | S. mile  | 1.80-2-0-30-6    |                                         |
| Lorent Harris     | J Azerba            | Later        | e south  | Sty Sh           |                                         |
| 312               | 21 Argodale         | Albirat.     | 2000     | 1200 J           |                                         |
|                   | while               | 13 P. C.     |          |                  |                                         |

|   | Soudney  | MAG 1913 | 1996     | overcost, | warm |
|---|----------|----------|----------|-----------|------|
|   |          |          |          | bosens    |      |
|   |          |          | p        |           |      |
|   |          |          |          |           |      |
|   |          |          |          |           |      |
|   |          |          |          | 1         |      |
|   |          |          |          |           |      |
|   |          |          |          |           |      |
|   |          |          |          | F-1 -     |      |
|   |          |          |          |           |      |
|   | 1        |          |          |           |      |
|   |          |          | . J.T. y |           |      |
| , |          |          |          |           |      |
|   |          |          |          |           |      |
|   |          |          |          |           |      |
|   |          |          |          |           |      |
|   |          |          |          |           |      |
|   |          |          |          |           |      |
| - |          |          |          | · -       |      |
|   |          |          |          |           |      |
|   |          |          |          |           |      |
|   | e . Heal |          |          |           |      |

| Friday, July 19th          | hot, muggy, bugs suck                   |
|----------------------------|-----------------------------------------|
| Thank, or the              | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| ONTO SPRING QUAD. 1        | MAP TRANSECT GOT MLFT                   |
| BLM wilderness PrivATE lo  | Il (~see 12) of SE portion              |
| of good.                   |                                         |
|                            |                                         |
| STRATIGRAPHY:              |                                         |
| Km                         |                                         |
| Kdp puare                  |                                         |
| Kden claymon<br>Kde cubero |                                         |
| Kdoc OAK CANON             |                                         |
| Jmj                        |                                         |
| Jmbb                       |                                         |
| Jmsw                       |                                         |
| J <sub>s</sub>             |                                         |
| Jt<br>T                    |                                         |
| Je                         |                                         |
| a. 55 % The Jmbb 17        | 4° 17°51.5                              |
| b. Archeic (late) site on  |                                         |
| c. 55 7 Jmbb 200° 10       |                                         |
| d. possibly back INTO      | The Jmsw - buff SS w/                   |
| In X-sets. 205° 6°         |                                         |
| C. Jasw 210° 13° W         |                                         |
| f. Jupp 170° 1500          | - 2055, ble N-S fault expand            |
|                            | 50 m VD CHST                            |



Feb. 25, 1997 cool breey, USGS Loma Machete good Feld Trip STOP 1 - Just porth of Northern Blud. Tecero Alto gravels - STRATA & ANCESTRAL Rio Grande - 70-75m Above grade covered by 12 m if preduct Acres Northern "Red nort "Graces "Tecero Alto"
Road ends Pederal occurs in both Tecero Alto And in Predmont faces STOP 2 - (Auto Through SANTA Fe (upper)
-contains Prince - maybe Tocoma Dane
or San Ansonio MT. Age. STOP 3 - Lomp Colorado de Abago - Goult in apper Sonte Fe - at construction

SITE for New School - major & w rond brun Loma Columbo de Abayo and Arrono moreon. STOP 4 - FIRST RT 27 0 NOT DAVE BLUD wat of Unser. STAT Heights Cault - Bis Wiron House - - D Purp house -UHSET Bungasoils

STOP 5- North-central portion of The CARPERD & LARRO? Or GIEST INST Terroce/ pedinut. MARIPOSA RANCH - owned by Albuquerque Academy - MARTIN 13 CARETALER.

| 4/9                          | 197                  | Оунта                            | Springs<br>cool,       | breezy, c                     | lear    |
|------------------------------|----------------------|----------------------------------|------------------------|-------------------------------|---------|
| - AT<br>STAT<br>WILL<br>FAUL | MARGUEZ IN THE TO SU | WASh -S<br>K TUDAY<br>DISTANTIAT | ond was                | god.<br>Ikin dou<br>Argun woo | nsesson |
|                              | T with:              |                                  |                        |                               |         |
|                              | 140°/15° 5           |                                  |                        |                               |         |
| <u> </u>                     | fast 195°            | , 60° m 0                        | bers kal               | 55 3-5m                       | •       |
| j.                           | Side of B            | strate of                        | Arrogo -<br>set - loss | of interse                    | DT.     |
|                              | breeciatio           | n and sl                         | ATTERIO J              | 22.                           |         |
|                              |                      |                                  |                        |                               |         |
|                              |                      |                                  |                        |                               |         |
|                              |                      |                                  |                        |                               |         |
|                              |                      |                                  |                        |                               | . 1-    |

| June 9, 1997                                                                         | WARM, SUNNY | Sw breeze.   |
|--------------------------------------------------------------------------------------|-------------|--------------|
| SACRAMENTO MOUNTAIN FRONT W/ DAN'S M.S. WORK                                         | DAN KON     | 2            |
| Dan has done a fine job pulling                                                      | his map     | rogedhy      |
| • 2 Pleisto cence surface Pl<br>• 3 Holocope surface HI, H2<br>• 1 modern surface Hm | ,           |              |
| Pleistocene surjour well                                                             | ,           |              |
| · Medium-sized basins/fans dassits well  only compelling eviden                      |             |              |
| Ex: Mule Canyon                                                                      |             |              |
|                                                                                      |             |              |
| BR 91.                                                                               |             |              |
| INSC HI                                                                              |             | H2<br>Burred |
|                                                                                      |             |              |

· Insit relations @ The mit one down for as yours deposits bury older ones Debris Flow Canyon + one canyon 5. 3 Alamo Cm. view laky v collución

June 16 1997 cool, partly cloudy w/md-day T-storms Temes Pueblo good massing w/ Christopa.
The plan/goods for The Girst few days is TO cover The west side if The good, south from Cerrito Negro 17 TO VA Recito Crek · We weed TO find substantiate A fault that will bring lower Zin SAND TO The west up against a well-behaved section of upper ZIA SAND IN The CAST. · Cermio Negro 5927 - Debris-Glow like SNOVT deposit consosed of subrounded by less of Qbt; some classes are up to 3-4 meters in diameter. The diposit is class-supported but contains a matter composed of well rounded welled abo and Obt somee with more Rio Gualdine rock Types. Deposit is N 3-5 m Thick. 1-616 fairly convincing enduce of ~1m, down to · confirmation of N20°E fant N+ W of Cerrato Negro
IN Arrayo. This might be The main fault Pour TO The SE

The londscape east of the dump has virtually no enseure of Tz. Threis a pornosire, userall unbollen matule of edium sand 1-3 m Thick.
Sond allumin in the wide, Shallow Arroya boxons

| Jun       | e 17 <sup>13</sup> | ,1997      | · cles       | tr, calm, cool morning |
|-----------|--------------------|------------|--------------|------------------------|
|           | Libertaly          | nd com     |              | m middry,              |
| To        | we                 | 11SIT Thre | e oreas      | Kan James              |
|           | · mesas            | Just Sou   | Rid Jene     | -ZIA live at           |
|           |                    |            | el Rona      |                        |
|           | · wladm            | IL ZOAD A  | rioso - Pr   | 2 Te Jose lo!          |
| · 1-617   | There 1            | s A ZAVIT  | AC1055 The   | CAST Sile of The       |
| 7.22      | Section 35         | mesA. Th   | - GAVIT do   | es not 43 mer          |
| I - Cerie |                    |            |              | zp agaist Tzp.         |
| LL despe  | Approxima          | my 100     | -200 m       | TO The exist           |
|           | With T=            | eu. (Tz    | e) occi      | us The contract        |
| Taurin.   | * check            | That. I    | will map     | Tzc immediately        |
|           |                    |            |              | Appropriately          |
|           | 100' (30           | p Roll     | 1 - vT- 4 wo | le exst o Dest         |
|           | Across 1           | his pault  | Zone.        | 7                      |
| 2-617     |                    |            |              | w main west            |
|           | Jones t            | more @ T   | he garbage   | dup.                   |
|           | 13 on              | ZIA Fin    | s exposed    | Several                |
|           |                    | 12<br>122  |              |                        |

overbule/paleose? preres e posul en dell . 3-617 Burneful verred finerires (joures) ~ 70-80cm aport 320° corressor. Soul Tze for a I can rell .... Soul Tze

June 18th, 1997 warm, clear, colm hot midding. Day 3 of Jam Reblo Qual mapping, STOPS - WINDAULI ROND PASS - Basiball field Arrogo - Arroyas easi of the Pueblo · 1-618 North baseball field Arrogo - little to No exposure ), To but There is a worderful allevial stranging exposed ... good place TV get A CHY dote - much charcoal lorganic righ horgons. · 2-618 Horseshoe spring on major Arrigo east of To Tueblo. Countrel ledge of QTY grants 1-2m Mick, Elw ~ 5680' DON STIKE WITH The GOTT, BUT NO exposure of A BAUT plane.

June 23 1997 Clear, cool, slight breeze Total's objective will be The major Arrogo
Thousand TO RIO VARROTTO IN The
NW 14 of The grown.
"We will TO TO Jund swerol Airphoro." FAULTS + Incamits. · 1-623 Triboary TO RIO VAllegio - Jols Qe 1-2m; Q74 3-6m Qp -1-2m has disarct, will duly a fine graved medial facks. · 2-623 Charcol (Harth?) SITE IN five granul Oal

3-623 Charcoal, (Herryth) site in Ool over Tee; HT This location, we have posses unto Tec; Appropriated 200-300 in down Arrors I will for an east dippy foult with a well-developed red classons of malt That orne of the Tes to the was, 4-623 Broad Glat of Section 13, 1225 TIGH - colian. Beneful sand sheet w/ well-developed sent. -0.5 m Red Bt., STAGE II BK. Overlying ~ 8m of five scarcel, loolly said formally,

June 24 1997 cler, calm; worm Borrego Mesa das Briva corrol on km, contrue love for faults on south side of Borrego mesa and with Do Pico Burre. 1-624 GAllesteo Fm - Radback - ss reonglomate 2-624 Qs on ridge - very young. Arch site -TEP- White- SAND westers into district 6 Dland raps
TSF - BUZZ, SAND, course of publice, bods of 15. + 51/1KA,
red, muddy interbals. 3-624 Ash! Pomice. Not STATIFIED w/ Top OT TZ, RATHER IT IS ON SUFFICE, INTERPORTED ON SURJECE UNITS INClude Qs. My guess 15 12mb 17 15 Obi. Another possible surrip of it lies or the ridge just east of The correl · Qp boulders rest" on a bed of 51/0/sond ~ 05 m

Dire" De Porreso Mesa is fine simular of poor IT is not ressicular ser manual compared to the Baselt. Pla-ri Bug are like really band Today pour log cornes June 25, 1997 mostly clear, cool, briezey. EAST WINDS @ ~ 10-15 KINS. BACK & The cornel of Pico and Horrego mes A Three Things To do To wrap This mapping up · Check out strangeraphic relationship of och w/ surficial dyssits, The Asond op mean gast of gorral To drawin map boundaries · Drue road South + enst to Corrol chek out Qp mas South of Fleo Burre · PETERN TO Poeblo - look for a possible GAUTI IN ATTOO Chamis A (Section 6) Near where road cross Arrogo. · 1-625 Corrol Ash logaling. There is a five localing of Pomice + Ash - Appears To be A bed, but That is unclear, A packing much is necessary

7 SUBSTANTABLE smil Ash or the 0,73

June 26, 1997 cool, east brage @ - 10 kms PATIL doid - AfT T-STORMS ZIA Tueblo And Today - Borrego Conyon Rosal (1) cheek out Q faut from mangulo men NORTH TO ZA / Jeny boundary (2) Try to find Aiphoto faults / [incomeds IN IS exposures at extreme expression boundary of good @ Borryo RD (3) Recon Orue Barreyo Canon Pd 1170 Lomas Creston good I have walk The fault from Arrozo Chamisa all The way North TO All MURAO MESA, IT to rather well exposed south of "All muero" most, but become obserced in and sround The distruct down to the west exchange of "All muerto" mis A. Best explanation is A araban geometry as show or the map All moer's most "CAMATO" MORA.

Generally spending, as is the case further worth or Jeng Lond, Tac is exposed to the exist of the fault zone while Tzp 15 To The west. 1-626 - Excellet location on "CATATO" men TO show The stratified Qp gravels w/ A Soil profile. - Sample 1-626 Possible Ash w Qs/Qal JUST MISSED A 3- post rattle sanks by ~ 16000!! · #53 on TONY'S map 15 A randor INACCIOLE ASA localin in Arma Chamisa. Definite in The Tzc. Not in Allum The Ash is fine grown, blue gra in alor. IT is IN A by fluxed channel and mixed at hear minerals + sand. revorted. The appears to be me brothe + horn blende mixed in ... could ins se Sample 2-626

· 3-626 Impressive from, Now sirila, down to The west. JOXIAPOSA TECTO WILL AGAINST Top 10 est - like souther continuoton 5,005-2 bre in Arrogo Carlela."

| Tal 27 1992                    |                                                       |
|--------------------------------|-------------------------------------------------------|
| June 27, 1997                  | mostly suppy, cool morn.                              |
|                                | varm midday w/ 1-storms                               |
| In Sky Village NE T            | Day and                                               |
|                                |                                                       |
| · START Arroyo Ogiro           | drainger                                              |
| · This is wide, easily Account | rable court. Rond                                     |
|                                | onble begond The windmill +                           |
| corrol. Best TO PARK           | There and walk The Arrogo                             |
|                                | envinced that The comment                             |
|                                | les in The exposures                                  |
| Immediately Sw of              | the major fork in                                     |
| 70 The SW ~ 5-10               | ore striking NW, dip                                  |
| 10 120 000                     |                                                       |
| 1-627. at The TOP of           | This ridge @ 5820 There                               |
| Are up TO 3 m v) con           | trse gravel                                           |
|                                | SPANITE, SMOISS, BASALT, TUDO,                        |
| ^                              | "TOB", Andesite, podernol chert,                      |
|                                | wood, kaz,                                            |
|                                | 1.5. + chart moke me Think                            |
| Rio J.                         | em                                                    |
| (b) rework                     | D from Archard Ric Puerco<br>IN LA COJA TO The SOUTH. |
| र्थ ३०% । १                    | IN LA COJA TO THE SOUTH.                              |
|                                |                                                       |
|                                |                                                       |

Sample an Ash 40' below This stop. - changed to shorty-opaline moreral. Hunty altered.

Some Ash Appears to be Tricker and exposed to The east, ALROSS exer fork of Arras Opito.

host, cher, bring y. July 1, 1997 Reoper Jen Puello + St Village quals Sample 1-71 @ TOP of Tap @ collected Ash - District horyon Thick . Well exposed To the engl , seross Arrayo Ojuto. Payless - Industrial was - Ciross - Short Rd reross ormics - Frontage Rd - Blue Roof

| Control Control Control            | 14  |        | (6 | 1)  | 3 |
|------------------------------------|-----|--------|----|-----|---|
|                                    |     |        | 1  |     |   |
| J-D EUTSTONISA - FORS              |     |        |    |     |   |
|                                    |     |        |    |     |   |
| DALO RUTTER - Clegrussar Resources |     |        |    |     |   |
|                                    |     |        |    |     |   |
|                                    | 553 |        |    |     |   |
|                                    |     |        |    |     |   |
|                                    |     |        |    |     |   |
|                                    | -   | , will |    | -   | - |
| 47                                 |     |        | -  |     |   |
|                                    |     |        |    |     | - |
|                                    |     |        | -  |     | - |
| July Lehrkind                      |     |        |    |     |   |
| Bob Meier                          |     |        |    | 1   |   |
|                                    |     |        |    |     |   |
| OLY'97 Numbers/Contracts           |     |        |    |     |   |
|                                    |     | Y      |    |     |   |
| Gleve Thacking                     |     |        |    |     |   |
| 3                                  |     |        |    |     |   |
| Enc McDould                        |     |        |    | 1.8 |   |
| Darryl Count                       |     |        |    |     |   |
| Rick Cahill                        |     |        |    |     |   |
| Shelly Holl                        |     |        | ٠. | T   |   |
| Julie Dieu                         |     |        |    | 1   | Ī |
| KALALOCH R.S.                      |     |        |    |     |   |
|                                    |     |        |    |     |   |
| 156954 Hulo]                       |     |        |    |     |   |
| Forks, WA 98331                    |     |        |    |     |   |

62 July 11, 1997 Party Surry Breagy. Begin Olympic Geldwork 1997 · Twown - six or drive to Seattle. Went well. Frally arrived at Kalaloch at about 6:30 Pm. Met up with KAR and his brother @ Cogumpe Bottom. Tomorrow we had out in The CANDE TO check our some work / sross KArl has already looked at. It has rouved hard in The earlier part of the week. But NOW a ridge of high pressure promisses to bring a few Lings of Sun + Driver OLY A7 Northern Communities The water is up! Higher Ton I have Seen. T. AND IT is midd- The result of man landslides. Enc Mal Rull (60) 673-7803(w)

[Moral Comm. (60) 389-9770 (60) 229

[Rull (140) 329-613] 379-981 2 Shill folk (360) 452-4501 ext 215 July Deu (206) 538-4581; 533-100 Kalabal R.S. (360) 900-2283 15695H Hulel Fortes WA 98331

July 12, 1997 Overcast, cool, colm Progress despite The poor weather. We will put in at upper Clearwater Campgrown and map down to Cappernine Bostrom, Borrow Pits. The base of Oty her 10m Above The charmel Rock of per 15 hacky sitistone, poorly bedded. · Qt4 Appers To be unformy of 10m above The chornel IN The MANOR Creek orea. Exclest pick for the DE4 STAR at
The confluence of Williams Creek, south
bank. QT4 STAR IS right @ The 320'
level. · Crooks Creek Area is problematic; There
may be mappable intermediate Terroces bown
QT4 and QT5.

July 13, 1997 Warm, bright, surry, calm What a great morning, restending, we mapped in deval from uper Clearwater TO Crooks Crack. This morning we will ropilly (and SAJELy I hope Traverse That section and begin at The exalled exposures of Crooks Creek. · Repeap The Willimmed Creek site-TIGHT OF THE MONTH of The Creek + 1000 Hus wood location - 2 phores · River mile 20, south Bark. Excellent QT6 exposure - STRATH OUT @ about cyrrest challed level, Collected 2 excellet charts of word - one clearly interpedded at base of gravils.

lost STOP This IS A QUE DATING exTYA Tribupara LANDS 1, Qe ~2 m AFre ~2m boow ROTE STUMP Several phonos collyrium (BROWN FAN (black \$ & SAMPLE FJP-2 LACUSTINE & Snaple 900d, FJP-

· A QTS (or older STrothe) is preserved opposite De Sunhapish Confluence -17 15 3m above roday's my level. - The choset has a QUS working proble V. Nice A-horizon BRN-SYM (INC-SIMPLE) 1/2010 · We collected Charcoal from upwesthered, stratiful SAND of QI4? IT The Crooks Cras exposure. Is this sinto conf?? Looks ofor like aproprized wood....

July 14, 1997 Overcast, Dang, Cool morn. WARM, SUNNY, Bright mid-Day. Today we start it The Croks Creek area -VATIOUS SUF JOLES + Treads ... The it is old, down over to About The Charmon Bridge, QTS TURRE (QTSa) Q The channel STRATA downstrum of Corporane bottom. Wood! @ The small Tribother stream. NO.5 m above he sorrash in a people SAND DEPOSIT, ... Several > horas. This doposit has A Das-like westering profile. I Am more confident Thouseur reasoning Berwein Coppernie Borron and The Clearwater bridge, QZ2 STATA has 20-24m above Is channel; QT4 hes 7-10 m Above De channel QTo les ~ 5 m Above The champel QTSb lies 3-5m; 4m Ava QT6 hes below chower TO ~ In above

1500004ms 250 2400 O. 167 mm 077 273 150,000(1) 60,000 4200 27 ~ 60,00d?) 20,000 O. Sam/yr 10,000 0, 25 nm/ye. Q75a 3 3 (2) 000 (2) 9520 D 9528 - Plest Hadome O. Smarye Frasu (?) S 000 5 25,000 (Neoghtral) 0,5 To below 11 0 Charre

July 15, 1997, cool, dang, overcat morring, calm. Continue with river mapping roday. We will Start@ In Clearwoler bridge - work down TO CLEATURATE DEACH pull ort. · timally QES b Type localing - of The Chappooler bridge. Charcoal! IN The Q 556 Gill, about half-way up TO The Tread (from The strath), Locality is downstram of the conflowerate rib, " 3m Above The STrath in A clay-rich souly bed. Total All here is ADOUT 5m Thick; STIM IS @ 0 2-25m above The stream. AT Skookunchuck Rapids, QE6 SITS of a begunzal strath NOSm obone The stream and Qts les 1,5 TO 3m above Te channel. 5 strong Mink Creek. Here QTG lies on a STARD N 0.5 m above the waterfire. Collabel organics from A sandy interval 620 cm deve The basal gravel pacies. Thead of Q 6 here

15 high. up to 6m Above Du unsuline · Parsons Rapids. DEY STEAD @ ~ 40-50' · Prescher RApids: QT46? HAS A QT4 worth prople, but A south & 3 m about the work line and 4 m To gravel above that just don't hatch up... Is IT QT 5a? By flow Q 120-130' , v st downstream D. Pracher

| July 16, 1997                     | L Bright,                   | Sopry Jes               | high clouds        |
|-----------------------------------|-----------------------------|-------------------------|--------------------|
| where we end                      |                             | khorn Cre               | - Og MID           |
|                                   | STANDING.                   | 11141                   | loess sal          |
|                                   |                             | 0.00                    | QE47<br>QEZ<br>QEZ |
| 10                                | 000                         | 000000                  | TOPSET             |
| 20                                | 500000                      | 9990                    | Delrace            |
| B-Q                               |                             | probable.               | QTZ<br>Time        |
| Photos & Doming<br>Collected more | J'Cleanwater wood from Tops | Lake Bed"<br>Set Delone | STOP<br>TING       |
|                                   |                             |                         | (                  |
|                                   |                             |                         |                    |

Beginning of QT6(2) in Clearwater vally borrom. Bread localing for wood with The growl and of contact bour grave and ourbank. oh m God! IN the HINK!!! one lown from the take out point.

Before hot -los of sust exposures or dates on QT6, QT7 on make we are gon to work on the make we lost some field capies to

Calm, Auch overcast, Damp July 17, 1997 Surveying day. We will STATT IN APPLY BASIL, Gran Sollies ) Grane Combo 3161. AT STRANTERFACE OFFICED, EAST of Chambon Bridge where grands overhe red fill. This sorath is 30 m About the stream. IT has a QTS or less weather Profile. -> " 3-6 mm/gr Profile. I Upper Clearuster @ opper Clearuson Hos on line with with STATION O, O, O; INSTRUMENT + MITTOT height ore INSTRUMT = O NEZ TATY = Im entral 170 -75.03 9.6 -1.84 -67.52 8:5A -1.6 -62. 8,22 -158 -58.8 7.62 -2.29 -56.68 t.36 -2.72Charrel edy

6 -2.86 Charles of 7.36-1 -55.15 53.23 7.09 -772 +52.2 7. 23 - 2.69 10 -49.59 6.83 2.83 11 -48.45 6.54 -2.69 -279 -47.64 6.46 12 146.75 6.34 13 -2.73-46.18 6.27 -2.81 14 6.03 -2.63 -45.07 15 -43.49 -2.51 16 5.82 -4154 7 2.99 -2.11 18 -40.11 1.43 -1.93 and edge 19 -38.42 -1.78 -2.72 -36.59 -1.95 -3.09 20 -1.76 -3.21 -35.06 21 -31 95 -3.15 -1194 22 -2.74 23 -29,59 1-2.01 24 -25.94 -2.57 -2.17 -9.09 -23.56 -1.94 -28.75 -11.55 -2.18 26 -23.85 - 15.39 -1.92 1-25,08 -18.43 -2.31 28 +7374 -19.89 -1.93 29 -23.49 -2.17

|         |           |         |               | L V      |           |
|---------|-----------|---------|---------------|----------|-----------|
| 31      | -21.67    | -28.49  | -2.25         | 35       |           |
| 32      | -20,92    | -33.12  | -2.31         | 1721/    | F         |
| 33      | -20.27    | -37.57  | -2.09         | Tacara.  |           |
| 34      | -19.22    | -41,30  | -1,86         | 5.12.    |           |
| 35      | -22.47    | -44.51  | -2.13         | 10-10-   |           |
| 36      | - 23.38   | -47.25  | -2.93         | Sect     |           |
| 37      | -23.66    | -49.4   | -3.69         | LICITI - |           |
| 38      | -31.65    | -63.43  | -1.46         | BANK ed  | e-Q T67   |
|         |           | 18335   |               | 131.4    |           |
| SLOPE : | 6 Chaur   | el -r   | Bile sec      | DION     |           |
|         | and in a  |         |               | W.r-     |           |
| 111     | -126.7    | -110.92 | -4.560        | Downstre | ann       |
| 2       | -109.95   | -85,105 | -3,976        | Mide-    |           |
| 3       | -72.662   | -44.238 | -3.796        | 4        |           |
| 4       | -33.194   | -15.147 | -2.803        | Upstream | 0333      |
| 5       | -22.452   | +34.760 | -2.236        | 10.78-   |           |
|         | - 1- /-   |         |               |          |           |
| Veloc   | 174 07 (  | Channel | اعتبون        | 75-78-   |           |
|         |           |         | 300 30        | ) sec    | lan ni li |
| 20      | V6569     | 50      | = 51,5        | 37 26 77 |           |
| 21      | 115       | 117     | = 116         | 37.75    |           |
| 22      | 100       | 99      | = 99.5        | 128.82   |           |
|         |           | Beise   | 18781-1       | 130 30   |           |
|         | 4 8 8 5 3 | 821-    | 18-11-1       | PE 20-   | 10 73 13  |
|         | 1 + + 4   | Phis:   | 14,52         | 411.683  |           |
|         |           | y .     |               |          |           |
|         |           |         | A Tables on A |          |           |

| 2   | 0.75 IN 7 | 2.0      | 0.6      | 3.5        | 10.6 |
|-----|-----------|----------|----------|------------|------|
| 5.6 | 5.8       | 2.8      | 1.2      | 0.6        |      |
| 2.6 | 4.0       | 1.0      | 1.2      | 0.8        |      |
| 1.0 | 3.6       | 1.6      | 0.6      | 0.25       |      |
| 6.6 | 1.0       | 4.0      | 0.5      | 0.21       |      |
| 7.2 | 1.2       | 0.8      | 0.9      | 0.7        | 4-1  |
| 1.8 | 1.7       | 2.0      | 1.4      | 1.0        | 4400 |
| 3.6 | 3.6       | 0.9      | 1.4      | 1.6        | G    |
| 3.2 | 1.0       | 1,6      | 1.75     | 0.3        | 8    |
| 3,2 | 4.8       | 4.2      | 1.0      | 2.2        | 18   |
| 6.4 | 2.8       | 2.8      | 1,3      | 2.8        | 13   |
| 1.0 | 2.2       | 0.6      | 0.9      | 1.2        |      |
| 0.6 | 7.2       | 0.2      | 0.5      | 0.75       |      |
| 1.2 | 1.8       | 2.0      | 0.7      | 0.4        | 8 -  |
| 1.8 | 2.8       | 1.0      | 2.1      | 6.4        | 19 1 |
| 4.2 | 2.2       | 0.9      | 0.9      | 0.3        |      |
| 3.6 | 3.2       | 0.9      | 6.4      | 9 11 1,4   |      |
| 0.6 | 1.0       | 3.2      | 0.3      | 2.1        | 51 1 |
| 3.0 | 8.0       | 0.6      | 0.75     | 1,5        |      |
| 3.4 | 1,15      | 1,2      | 0.8      | 8.811.1    |      |
|     |           |          |          |            |      |
| 7-  |           |          | INCOT    | eā .       |      |
| mo  | ve The d  | ecimal ; | loce one | 2 digit 17 | 5    |
| 117 | 1 0       | - Active | I measi  | mutz       | RIV  |
| 5   |           | IN Tent  |          | at.        | 1    |

|     |        | A bes   |          | الدغما   |               |             |
|-----|--------|---------|----------|----------|---------------|-------------|
| -   | 1/     | 1 0     | 1        | XILXA)   | 1             |             |
| 9.0 |        | ATSK Cr |          | 0481.14  |               |             |
|     | Instru | by here | 51 @ Son | oth live | of sight      | 3.73        |
| -   | 0,0    | ,0;     | NSTrumb  | height   | 00            |             |
|     | 211 17 | 20.     | TATEST   | hanto (  | 20.5m         | Cont.       |
|     | ALT:   | North L | 0330     | 0        | 94 51         | 3,8         |
|     |        | N       | BE       | Z        | 122           |             |
|     |        | 33.38   | -17.84   | 1.57     | LeGT          | omt QT6     |
|     | 2      | 32.67   | -17.43   | 1.53     | la é isa      | 3.8         |
|     | 3      | 29.89   | -15,88   | 1.69     | 10.11         | 3.23        |
|     | 4      | 27, 726 | -14.79   | 1.53     | Trend-        | QT74        |
|     | 5      | 26.67   | -14.34   | 1.36     | 6.3           | i) T        |
|     | 6      | 25,33   | -13.76   | 0.91     | 10.0          | ol u        |
|     | 7      | 23,69   | -12.69   | 0.41     | 33            | 30          |
|     | 8      | 22.07   | -11.59   | -0.002   | 818           | Silving     |
|     | 9      | 21.097  | -11.26   | -0.19    | left be       | ak chank    |
|     | 10     | 20.13   | -10.87   | -0.45    |               | SAL         |
|     | 11     | 19.23   | -10.5    | -0.503   |               | 5           |
| V   | 12     | 19.07   | -8.41    | -0.42    | 2.1           | 50. 23      |
|     | 13     | 17.63   | -8.45    | 597      | id :          | 2,8111, 1-3 |
| 1   | 14     | 16.84   | -8.39    | -0.315   |               | H.E. L.     |
|     | 15     | 5.25    | -8.57    | -0.72    |               |             |
| V   | 16     | 13.18   | -7.17    | -0.75    | Listeria      | 7 11        |
|     | 17     | 11.23   | -6.15    | -0.73    | 4-47 2 Aug 19 | 14.         |
|     | 18     | 9.06    | -4.96    | -0.49    | 161 40        |             |
|     | 19     | 7.672   | -4.16    | -0.197   | BAF           | 2           |
|     |        |         |          |          |               |             |
|     |        |         |          | 1        |               |             |

20 -1.27 -0.621 -0.4 1.32 3.12 2.61 -0.29 Qt7-66 4.34 0.685 0.94 6.79 2.37 5LOPE Massurement - BASE STATION MOVE all Paramores de same - same south line of sight N -1.108 95.9 149.86 53.84 76.00 -0.447 2 24.59 -0.256 35, 26 4 1857 +0.227 5.12 -30.9 -40.52 +0.414 Velocity # Chicks IN 30 See 20 52 418 = 50 16 117. 115 116 = 75 = 76 77 17

| Grai     | V513e ( | IN Tentos | The feet |         |                                       |
|----------|---------|-----------|----------|---------|---------------------------------------|
|          | 3       | Sh.0~     | 00       | 5.0     | 0.04-17.                              |
| 0.34     | .66     | .09       | ./0      | 8.12    | 10                                    |
| ·/6      | . 26    | .08       | .58      | - Ce Ce |                                       |
| - 58     | 0.04    | .07       | .09      | 124     |                                       |
| 0.08     | 016     | .10       | .50      | -16     |                                       |
| .10      | ,94     | .04       | 001      | .42     |                                       |
| 0.00     | .22     | .28       | .412     | 1.50    | 312                                   |
| -14      | .12     | .06       | .50      | .08     |                                       |
| .08      | .06     | .0Ce      | ./8      | .90     |                                       |
| ,26      | .18     | -14       | -10      | ,66     |                                       |
| .30      | -24 80  | ,04       | -18      | .10     | 1                                     |
| 106      | ,18     | ,06       | .08      | . 26    |                                       |
| .20      | .14     | -34       | .20      | 180     |                                       |
| 124      | -06     | .14       | .46      | .04     |                                       |
| .68      | .58     | -12       | .22      | -38     |                                       |
| .10      | .12     | -,36      | .14      | -24     |                                       |
| .42      | _04     | -34       | . 50     | .20     | · · · · · · · · · · · · · · · · · · · |
| ,10      | .12     | ,38       | - 85     | -22     |                                       |
| -09      | 010     | - Ce4     | . OCe    | 010     |                                       |
| .28      | # 4/8   | .32       | -20      | 00      | Vole                                  |
| .10      | .00     | .18       | .45      | ,30     |                                       |
| Ny I Id. | 100     | 3 2 28    | 4234     |         | 0.0                                   |
| upper    | hmit !! | 5171 = 2  | - 2      |         | 0 1 1 1                               |
|          | 1 13 75 | HARTE.    | Linke    |         | 06 131                                |
|          | 1 1400  | Alab rit  | 4        |         |                                       |
|          |         |           |          | 1       |                                       |
|          |         |           | Harden   |         |                                       |

July 21, 1997 Overcast, damp, high IN Clearwater basin w/ Mark of Sean · For Three days we've had make to discuss, · Doswall ps - real problems, but likely

CAN be modelled. Seen may won 5

To meet the problem or a diffusion

Problem... Slace profile. (2) William probably 1500 war by manday,

varier is mixed bedrock / allevie un alleval us COVOACT (6) We want to Desorgush from complye response

July 22, 1997 SURMY, WARM, breeze, besur Jull! · With Eris , shown of sorts only sorts ... · Moses Prarie soils @ 100 and 200 e. Lise Ithugan are collused/revorted... · Besch Trial 6 sol is loess, much silt. · Quinolt Pit @ songluene of Charmoter -Queets has Two Trads on The SAME STRATH.

QTY Trad

collusial

son

QT4 6111 lote -7 11111111? Wisconsimu Sorl, Cilleut loess-rich as Terroce at Beach tral 6. · Terraces along all court Tond rowards or Leading NE TO TIL court Bridge Probable reflect Trands of QT3, QT4, QLSa, b, 010 QT6 · Encheals That Thre is A big do Evic feels that the Cleanuster Q24) SON E

Cool, bright son, Slight July 23, 1997 · WIT Enc, SITH SON PITS. · QT2 - Peterson Creek Surface - DNR PIT-Great Sor - DACK pit where we Campad 14 1992. - Red dep. Enc feels that This is 100 km+ roths Tig STD Class3. N NO.2 miles.

New Thirmy road To Copper mire Barion DNRPT · AT ENTRACE TO Coppernise Bostom - at The Triangle intergention ~ 0.2 miles from The Finley's Molaple Use torest Syn.
This is Qt3. Acrolly, There are 3 Qt3

Treas QE3a, b, and c That stop down INTO The Sunhapish drawage. The v 4m of elubor on the transer 18ers Otsa, of FING'S has A DIT IN myst be due out. Ess to find. 213 Trusos ore essely reached The Sunhapish 2 Unit 4 roped ... reght word IT 15 block D & A Trench + mor · QI4 - very mody exosol Treal - Chooks Creek Paleernamed. Just beyond To paleachannel - who Erenon of The (+0.1ml) conferend, is an excellent organical for a went

| CI         |          | 7                                       |               |             |          |
|------------|----------|-----------------------------------------|---------------|-------------|----------|
| Clea       | rwadzy P | CNIC Der                                | ich X-s       | ection      |          |
|            | 0        | - / /                                   | S             |             |          |
| - Arget    | 15 0.    | Da hyber                                | 1 hours       | Lusrum      |          |
| That       | hAS be   | w entere                                | V . 11        |             |          |
|            | 21°C, 7  | 2-: 2100                                | 12            | 1 1 1 1     | <u> </u> |
| 1.5        | 21 6, 1  | = 7.1000                                | na            |             |          |
| Roller     | cene dir | . Danie                                 | 9             |             | 3        |
| N) S BROND | bank.    | anon w                                  | Dorin, U      | se ore or   | The .    |
| To E Beach | Dark.    |                                         |               | 100.1.31    |          |
| Slope      | J. 7     |                                         |               |             |          |
|            |          | 7                                       | (4            | 5           | O .      |
|            | 715.95   | 1 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | AL V          | pstream     |          |
|            | -30.06   |                                         | 7.5 St. 35 C  | Ray Lord A  |          |
|            | 32.41    | 7.05                                    |               | 2 15 -      |          |
| -51,015    | 133,47   | -0.289                                  |               | 1 Dec 2 / 1 |          |
|            |          |                                         | , = -         |             |          |
|            |          |                                         |               |             | 1        |
| X-Sect     | 202      | ,                                       |               |             |          |
|            |          |                                         |               | STAPT IN    | 34       |
| 25.14      | 8.39     | 2.34                                    |               |             |          |
| 19.47      | 6.63     | 1.97                                    | 1 1 1 1 1 1 1 | TOP 03 6,   | w/2) jul |
| 15.68      | 5.00     | 0.74                                    |               |             |          |
| 7.43       | -2.54    | 0.31                                    | - 12          |             |          |
| 2.86       |          | -2.96 -                                 | 7             | water's e   | Pag      |
| -0,26      | -12.33   | -0,59                                   |               |             | · ·      |
| ent.       |          | y 7                                     | 3             |             |          |
|            |          |                                         |               |             |          |

|            |               | Car    |                 |
|------------|---------------|--------|-----------------|
| -2.99      | -15-84        | -0.416 | VI              |
| -6.9       | - 20 73       | -0.664 |                 |
| -9.91      | -24.5         | -0.86  | THE WEST        |
| -13.53     | -28.3         | -1.379 | V 2             |
| - 17.6     | -32,04        | -1.32  |                 |
| - 22.35    | -38.15        | -1.3   | V3              |
| -24 35     | - 412.05      |        | 14              |
| -25.87     | -48.82        |        | 40 95           |
| -27.31     |               | 289    | woter educe     |
| -27.03     |               | 2.28   | bankful         |
| -33.76     | -51.07        |        | Top bank        |
|            |               |        |                 |
| Vélocity # |               |        |                 |
| 9 #        | clicks / mini |        |                 |
| VI         | 27            | 5 5    |                 |
| V2         |               |        |                 |
| V3         | 34            |        |                 |
| 14         | 21            |        |                 |
| 1 1 1 5 8  |               |        |                 |
|            |               |        | 8 1 1 1 1 1 1 1 |
|            |               |        |                 |
|            |               |        |                 |
|            |               | -   -  |                 |
|            |               |        |                 |
|            |               |        |                 |
|            |               |        |                 |

| Clast   | Sue (  | (in cm) |      |      |        |
|---------|--------|---------|------|------|--------|
| , 60 M  | 7.2    | 1.0     | 7,1  | 3.5  |        |
|         | 1.5    | 3.5     | 5.5  | 2.4  |        |
| 3.4     | 3.1    | 0.9     | 3.0  | 5.0  |        |
|         | 12.1   | 1.5     | 4.5  | 7.5  | 81 -   |
|         | 2.5    | 7.2     | 13.6 | 2.9  |        |
| 1.7     | 1-8    |         | 1.7  |      |        |
|         | 3.4    | 6.8     | 60   | 5.4  | Q -    |
|         | 2.9    |         | 2.4  | 4.2  | 2      |
| 4.8     | 3:6    | ,       | 5.0  | 2.6  | 0 - 1  |
| 50      | 4.7    | 1.5     | 8.9  | 3.0  | 70     |
| 1-6     | 2.5    | 1-9     | 2.0  | 4.2  |        |
| 3.0     | 1.9    | 1.2     | 1.9  | 12.0 |        |
|         | 2.6    | 2,7     | 3.2  | 3.5  |        |
| 5.0     | 2.4    | 2.8     | 1.6  | 6.5  |        |
| 1.6     | 1.8    | 2,3     | 2.7  | 2.5  | W.     |
| 7.0     | 12.5   | 2.7     | 1,3  | 1.3  | eva II |
| 1.9     | 2.5    | 2.4     | 6.0  | 2.0  | SVI I  |
| 144     | 1.4    | 1-1     | 1,8  | 41   | PV N   |
| 3.6     | 2.4    | 2.5     | 5.5  | 3.7  |        |
| 11.5    | 1.3    | 3.4     | 3.0  | 4,0  |        |
| 2.1     | 6.5    | 2.2     | 1,2  | 2.1  |        |
| 2-1     | 6,0    | 2.      |      | 241  |        |
| PT FILE | II III | [76 i ] |      |      |        |
|         |        | 1000    |      | -    |        |
| -       |        |         |      |      |        |
| <u></u> |        |         |      |      |        |
|         |        |         |      |      |        |
|         |        |         |      |      |        |

July 24, 1997 High Tog, DAMP WORKING. Bronful supry of the ack AT South Berch. With Eng · Off to The Snahapish and South Fork Heh RIVERS. WE will my TO UNDERSTAND The LATE US. EARLY WISCONSHAW SOILS TOWN With Rick Cahill. To Try TO ment · 97-1-724 Wwyield Crek grave ins-Wingreld Creek good, Clemaster Road. QT4-like Soil, but mapped as lote Wisconswor -Hoh Oxbow ownersh ~ 30 kg (1) really Hon Oxbow I) but "19 ka 1/ Ash Oxbow I as magred · 97-2-724 S. Fork Hon Campsite gravel pit. Out M. Qual Tun Creeks I v 14 ka? Much less well developed soil ... looks like Qt5, less well developed Then The Winfield Creek Pits (97-1-724): Hoh Oxbow II? son!

97-3-724 Virai Folls Pit, Rond H1065
BO South Fork Joh Rond. There are
Two exposures have - one will pit. and The other along The S. Fork estate 10AD ~ 0.5 pile TO The 9457. Whom 1.e. Two Creeks, lorest Wisconsiron (Vashon) · My impressions

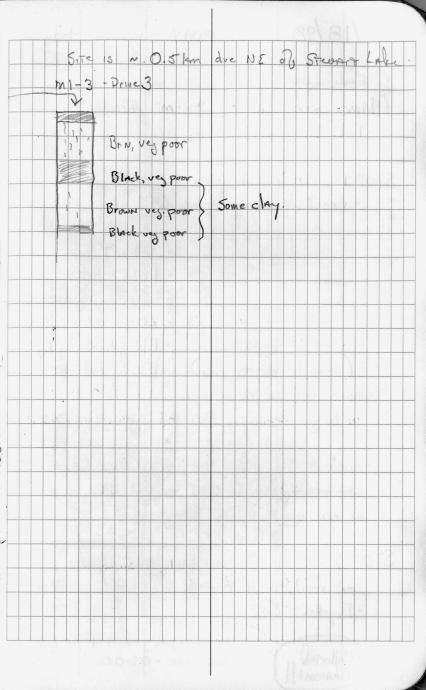
July 25, 1997 wer dump fass y more, · Mer with Rick Cahill He has Okasa The · 97-1-725 Q T5/QT4 RISIT in Quals drawage. Probably a OTS sol. The PITS TALE ADMINITED THE MET.
But TO PUT A PIT ON QTY CHARGET opposite Ques N.P. extrane rope.

OLYMPICS Sept 201 COD, SUNNY W/Eric Soil Pit Exposures We have 3 pirs open, (QI3, QZ4, QI5a) QIZ+QZSb are exisTING exposures QT56 - @ The Clearunter bridge exposure Soil description is @ The location of our carbon sample for QT56. · We described 2 soils, and recomped a Third Thin BE yellow color Thick (" Im) BZ Reddish-Brown color brown Ro Q73(a) These are real grown findle differences.

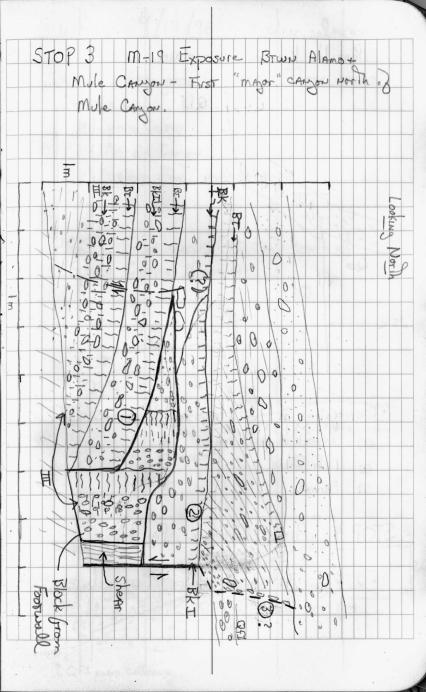
The Two most probable chuse for the chronofunctions > Time, did the soil see an

The QZ3a Terroce Soul likely received and by such.

Sept. 21st begutter clear, warn · QT3 soil 15 very enignatic - A Phick loss has gover with a Qt4-looking early Wisc son ? where is The buried soil!!! what is son on 355 Q 73a Q13c Q15 · There may be the roots of A Truncated + buried western proble at ~ 10 con down just shall be grands · Collected churchs of charcoal from ~ Lotten CWT3a - charcoal


Sept 22MD Beautiful clear DAMP Working on QTZ TOLAY We observe 3 siTes ~ Imogrelies Pererson PIT poorly-drawd sives well-drained sites 2 loesse. A dear A QT3-like (early Wisconsinon) Red+ yellow loess over buried Sorl, Clays, weathered gravel; locally Silty Clays. Gleyed Appears TO have A STONE line colors NEAR HARVIOL rister L. Wisc. collevium 2 collusiums buried soils over a RED buried E. Wisc. collevia 0055 LILINDIAN DOSS

indications Juna burned Sangamon pro colluviums Pervasue early Wisc. loess (QE3 son) brun well + poorh Sires


SATURDAY Sept. 27, 1997 Clear, Breezy Pecas herdenters. Windson Creek Trail, ARE STEWART. w/ Jake Armour, Tom Loveland We are going to experiment upon The Livingsion square- rod prom corer to get cores of The entrophed lakes around AKE STEWARD We have identified three localines for delta, 1 Pinedale

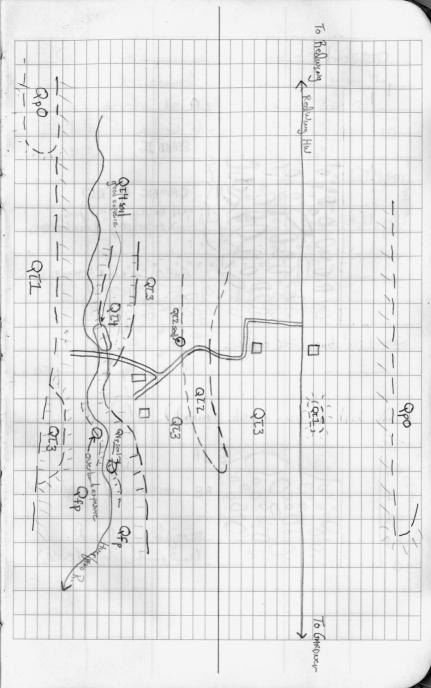
Care I at The DelTA was A huge! 50 we took 2 cores - STI-I and ST2 poor were aport 10m into The lake on the lower delta plan. We were right at the sedento logic oreak bour a savida delta distal facies and a mildy soft production The second core is longer on more complete general color/sal of Core 2 SAND Brn/Red Ver. 0.5 m of water Black Brn/red Soul Veg Black

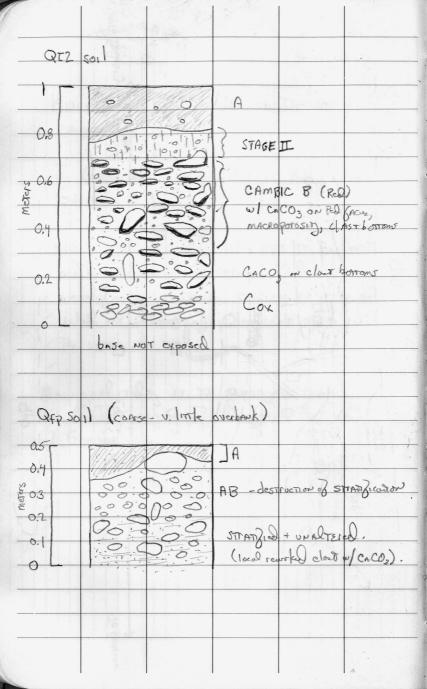
|       | Rich in veg. Throughout |           | 2                      | or veg-rich |
|-------|-------------------------|-----------|------------------------|-------------|
| 75cm  | -                       | eman meh  | M1-1, m1 m1-2  Drive 7 | BIA Brown   |
| - 1 - | Brnwl                   | Dark, vea | ore                    |             |
| cra Ü | To                      |           | M1-1<br>Drive 1        | 4/11/4      |
| ° St  | palla<br>Dilla          | 0         | Sire                   |             |
|       | 10                      |           | 10 cm                  |             |



4/18/98 SATURDAY WARM, Pr. cloudy slight breeze Alamogoroo, Sacramento mi Front.
. Field Cheek with DAN STOP 1 - Mule CANYON . excellent Scarp Across QF1 · PAVEMENT · Hitle relief · Deginning To dissect · 20cm colina silt A · Bk, followed by By. · more Gypsum in soils to The worth and IN larger drawings that mp gyps ifferous writs. · much of The bedrock incision in Mule Cangon was accomplished in QII Time a QTE occirs as an inset in The campon walls. STOP 2 - Mule CANNON, FAN, wash exposure on worth she of chappel. · Excellent Of2 debris flow TOP 1-3 m STATIFIED, peobly middle 1-2m · Collected !! COARSE base ~ 0.2-0.5m




Possible Kinematics To explain QF1 0101110111011 · Generation of (3) Debris flow (2) Floral (1) Arrow CANYON FAN Had · 2, maple 3 florial-debis flow cyclis


4/19/98 Sunday Clear, colm, wARM Day 2 - Alamogordo w/ Day. Three stops Planned · Space Center · Marble Camon · Alamo Faw Fault exposure. STOPS First wash (~ 0.5km) south of Space Center Museum QFI Terracerise FAULT Looking N CQF1 scarp collusion

STOP 6 Of over Of 1 IN NEW MARCE WASh TO The South, Here OFI is fine graved dominated by 51/0 + reddened PARDSOLS - 41 KA date from Charcon horizon ~ 4m below Qf2. Argues for Accomplation rates of 1 mm/R Ideas to explore for a paper · Characteristic eq · FAULT/eg clustering · Qf1 - Qf2 smangraphy wit scarps · rupture PATEURS · compare /contrast of other sq. models · model for embarnet evolutions · Role of pre-existing smucrores
· re-occupation of same fault plane 2 les Capillasin · QFI dop. model - role of climite charge. · degree of four-based entrenchant - Approbate TO base level us. hydrology. · CArbonate M.F. comperisons.

mounty Marble Camon STOP 7. - lock of fruct location 5 First wash North of Alamo Camon STOP 8 moulh E Note scale change 0018,0000000 QF1 2+m Toffo do Covered 0 2 meters

SATURDAY, MAY 30th, 1998 WARM clear, high clouds, oreezy. Huerforo PARK, CO. with UNM field J. Gersmann property, bown Redwing and GARDNER. · Very NICE VIEWS of Was MIS TO The east, with Neogene- Quarernony fault scarp (?) WEST- BACING.; "Eocope" erosion sur Jose, and Wall M. TUZZ of Oligocone age IN The snow, on Top .... MAIN goal Today 15 TO INVESTIGATE TERRACE
IN IMPLIATE region of Huerfano Valley, went of GARDNER.





Ofp over park exposure opposite The modern channel has in place mais below The Q 73 STAN , but no place, Q 73 sman is 5:11 below The modern champel, as at The DED sol Good Son .. QZ4501 SITE A Bki grey (cambic-slight) red) 0.8 BKZ STAGE II+ (Notoles) 0,6 BT -red BK CACO3 ON CLAST DOTTOMS 0.2

| Tue    | son,        | June 30     | 1998         | HOT, HUI    | niQ,   |
|--------|-------------|-------------|--------------|-------------|--------|
|        | 7,          |             |              | HOT, HUI    | Forms  |
|        |             | 1           |              | 101.        |        |
| ^      | 1 1         |             | 1 -          |             | 1      |
| Hrroy  | Hondo       | recon w/    | Dave 1       | 1. + SALA   | ·      |
|        |             |             | 8 7, 7       |             |        |
| Dave   | s M.S.      | Thesis      |              |             |        |
|        |             |             |              |             |        |
| 5-00   | 1 (         | 111         | - 11 -       | Q Qbic      | ) 800  |
| 2109   | 1 - IN F    | ticaso Hong | O Collecte   | & April     | ) see  |
| DA     | vid's notes | 1 1 1 1 1   |              |             |        |
|        |             |             |              |             | 1.7    |
| STOP 2 | - at        | middle I    | DACITE CON   | Smotion     |        |
|        |             |             |              |             |        |
| (#1    | mediaper    | opsile      | n of mis     | o Hondi     |        |
| -      | Allonal-    | BR 1        | Allonal      | Alluvial    | -      |
| **     | STEP FOR    | es 1        | MArrow vally | · Allowed   | 5      |
|        |             |             | buttom.      | 1           |        |
|        |             | , , , ,     | 1-1          |             | 1      |
|        | 11          |             | DACITE       |             |        |
|        |             | N           |              |             |        |
| *      |             | <           | <b>&gt;</b>  | .0          | 0      |
|        |             | Competi     | mon ? pu     | on BR + All | vval   |
|        |             | react       | ies?         |             |        |
|        |             |             |              |             |        |
| ST-2 2 | Valda       | (1,5,0,7)   | ()           | . 50000     |        |
|        | VAIGES      | n .         | 10           | mm), eve    | . 10   |
| Clost  | com - no    | dern Strea  | m bud (      | mm), eve    | y 10cm |
|        |             |             |              |             |        |
| 44.6   | 61.5        | 44.0        | 57.6         | 126,5       | 45.5   |
| 26.    | 19,1        | 130,8       | 28.7         | 40.3        | 10.0   |
| 29.1   | 141         | 71          | 59.2         | 92.9        | 56.3   |
|        |             | / /         | 14.          | 12.1        | 0,3    |
|        |             |             |              |             |        |

|      | 70.3  | 83.7  | 14,3 28.7  | I  |
|------|-------|-------|------------|----|
| 4    | 91.8  | 5.4   | 55,6 145.8 |    |
|      | 42.7  | 14.2  | 150.0 35.7 |    |
|      | 99.1  | 66.7  | 412.6 60.5 |    |
|      | 67.4  | 67,5  | 46.3 62.9  |    |
|      | 36,5  | 95:1  | 116.3 72.0 | 13 |
|      | 21,1  | 89.4  | 56.4 .60.0 |    |
|      | 41.8  | 35,2  | 20.6 45.4  |    |
|      | 53.1  | 72.4  | 98.4 72.2  |    |
|      | 40.8  | 45,5  | 83.8 63.3  | 1  |
| 1.8  | 102,4 | 39.0  | 132.0 58.4 |    |
|      | 121.6 | 28.3  | 51.5 48.7  |    |
| 1    | 4811  | 21.5  | 122.3 47.9 | 15 |
|      | 20.1  | 47,4  | 101.1 16.4 |    |
|      | 5.1   | 21.9  | 110.7 44.5 |    |
|      | 65.6  | (5.7  | 100.6 28,3 |    |
|      | 92.3  | 28.7  | 23.1 21,7  |    |
| 2000 | 92.6  | 210.0 | 1015 21.3  |    |
|      | 93.2  | 36.4  | 112.6 29.8 |    |
|      | 13,9  | 11.5  | 110.0 33.1 |    |
|      |       |       | 50.8 52.4  |    |
|      |       |       | 98.6 42.5  |    |
|      |       |       | 191,8:47.6 |    |
|      |       |       | 76,2 336   |    |
|      |       |       | 7/13 26.8  |    |

Wednesday July 1, 1998 Hot, Clear MORMUS Huge T-STORM W/hall ON Red River ~ 1 km upstream of Rio Grande Confluence - with Dave + SATA DAVE'S STOP RRIA - Chargel is very much we will -· mussure reach slopes · court # of 21m closts per 10m channel signits Qualitatively, There are surerous sour pathole features book in and above The channel. # of Baldys We wit Reach W= wider, N= Nourrower (m) down reach > m 0-10 20 w 10-20 28 31 20-30 N N 30-40 26 V. lorge boulders >3m 40-50 16 W 50-60 distinct Pool ] w/gravel 60-70 W 70-80 NC 80-90 N 12

| 90-100 12         | MC          |           |          | 188       |
|-------------------|-------------|-----------|----------|-----------|
| 100-110 14        | N           | T Basas   | 113      |           |
| 110-120 9         | N           |           |          |           |
| 120-130 17        | M           |           |          |           |
| 130-140 13        | ω           |           |          |           |
| Upstream ~ 0.5    | lam, Dave   | 's STOP R | R1B      |           |
| Nice STEP-DOOL    | - Ropl      | reaches   | - 11 5   | urver and |
| clost court again |             |           |          |           |
|                   |             |           |          | 5.128     |
| Downstream #      | of Boulders | Wewro     | 171.8    |           |
| "Pool reach       | > 1 m       | Jown Lord |          |           |
| 0-10              | 16          |           |          |           |
| 10-20             | Mari        | $\omega$  | 46       | 170       |
| 20-30             | 10          | N         | v. longe | bouldo    |
| 30-40             | 8           | WW        | 0        | Jule 1    |
| 40-50             | 22          | II W      |          | 026       |
| 50-60             | 1911        | hw        |          | ZZam      |
| 60-70             | 30          | w         | ari      | Jyl 3     |
| 70-80             | 29          | Ne        |          | 1443      |
| 80-100            | 124         | N         |          | had       |
| 100-100           | 15          | N         | Lorg     | Vam       |
| 10-120            | 13          | W         |          |           |
| 120-130           | 18          | N         |          |           |
| 130-140           | 9           | N         |          |           |

| Ri                 | RIC EI      | Aquaje   | shelter    | @ Gourt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|-------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | of ELAgu    | age Trac | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 <del>- 114</del> | U           | -        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |             | (5       | eap Trib   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                  |             | 7        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 500                |             |          | Fool       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RR                 | V2/         |          | FAN        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sena               | D           |          |            | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |             |          | 4          | RRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RR1                | C           |          |            | 1/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reach              | # of Barlan |          | Lhuse in   | The prober has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (m)                | > lm        | downresh | Bell (     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0-10               | 32          | -1-1     | Har .      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10-20              | 18          | IW       | 11111      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20-30              | 26          | N        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30-40              | 24          | W        | 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40-50              | 31          | N        | 127        | ricos of in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 50-60              | 29          | N        | 201        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60-70              | 18          | N        | 1075       | BR IN channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 70-8               | 0 15        | N        | 13         | + cover?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 80-90              | )  3        | NC       | MU         | A STATE OF THE STA |
| 90-101             |             | W        | (major est | Water was 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |             | d Mills  |            | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.00               |             | 4 38     |            | 8 (46) 8 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |             | 1.       |            | 013 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |             | 1        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| RRID<br>Reach | # of | Boulde | rs   | We   | WR  |       |         |        |       |
|---------------|------|--------|------|------|-----|-------|---------|--------|-------|
| (m)           |      | Im     |      | down |     |       |         |        |       |
| 0-10          |      | 17     | 12   |      |     | 0     | 2 CONST | neno   | N,)   |
|               |      |        |      |      |     | PIUST | - UPST  | in To  | BAN   |
| 10-20         |      | 15     | 1ai  | w    | 7   |       |         |        |       |
| 20-30         |      | 11     |      | W    |     | beco  | man v   | . allu | real  |
| 38-40         |      | 13     |      | W    |     |       | 01      |        |       |
| 40-50         | 17   | 8      |      | W    |     |       | 3 3 8   | 18     | 82    |
| 50-60         |      | 10     |      | NC   | -   |       | LE D    | 1 8    | 36    |
| 60-70         |      | 11     | N. P | N    | 8   |       | 933     |        | 3 3 4 |
| 70-80         | 32   | 10     | 10   | N    |     |       | 8 6     |        |       |
| 30-90         | 134  | 12     |      | J.W  | -   | los   | of al   | luxu   | m     |
| 90-100        |      | 11     |      | W    | 1   |       | 1011    |        |       |
| 100-110       |      | 12     |      | N    | 1   | MOST  | 10 Th   | lar    | e .   |
| 110-120       |      | 11     |      | W    | )   | close | ore .   | or The | DON   |
| 120-130       |      | 7      | 3/0  | N    | ab  |       | 101     |        | (2)   |
| 130-140       |      | 15     | 7    | N    | 212 |       | 184     |        | 11    |
|               |      |        |      | 1 1  | 18  | 11.8  | 14      |        | 2 3,  |
|               | 411  | 19.6   | 3/1  | 100  | 1/  |       |         |        | 18    |
|               |      |        |      |      | 0   |       | 11/     |        |       |
|               |      |        |      |      |     |       |         |        |       |
|               |      |        | 3 1  |      | Š.  | 4     |         |        |       |
|               |      |        |      | 31.  |     | 13    | 1/2/2   |        | 83    |

| July   | 2, 199                | 8 The    | rsda    | warm, cla | ar          |
|--------|-----------------------|----------|---------|-----------|-------------|
|        |                       |          | )       |           | T STOTIM    |
|        |                       | 13w U    | nilve   | 0         |             |
| 00     | L. GALL               | gos Prof | ern -mC | DURTA     | (m)         |
| your a | AWTENC                | 200      | 9       |           | lighter 2 - |
|        |                       |          |         | 17,10     | 10          |
| This   | 15 The                | 51TE 88  | FJP's 1 | 988 QT    | 6+977       |
| 212    | · V · · · · · · · · · | 1. 1     | 1       |           | 3-05 - J    |
| 1      |                       | 1 0      | 61      |           | 11.3        |
| 58,8   | 92,8                  | 35.8     | 149.1   | 122,6     | 30,7        |
| 85,3   | 67.1                  | 36.      | 9.2     | 127.5     | 60,2        |
| 72,0   | 63.7                  | 38.9     | 97.111  | 91,10     | 27,0        |
| 77.5   | 73.4                  | 43.7     | 26.8    | 38.6      | 42,1        |
| 40,2   | 73.4                  | 24.9     | 51.0    | 49.2      | 34,3        |
| 63.8   | 103.2                 | 24.8     | 49.1    | 79.1      | 32.4        |
| 51.8   | 79,0                  | 23.8     | 54.2    | 42.5      | 49.9        |
| 46.3   | 50,9                  | 152.2    | 27.3    | 93.6      | 100.3       |
| 62.6   | 70.8                  | 106.4    | 97.3    | 155       | 23.7        |
| 67,4   | 138.1                 | 126.6    | 29.1    | 111,0     | 43.6        |
| 63,3   | 62.8                  | 64.4     | 33.4    | 75.6      | 25.7        |
| 81.2   | 41.9                  | 160.0    | 110.0   | 43.0      | 48.0        |
| 104.7  | 115.8                 | 63.9     | 52.5    | 54,4      | 36.6        |
| 49.8   | 427                   | 88.9     | 94.3    | 35,6      | 32.8        |
| 95.5   | 105.0                 | 24,7     | 173.0   | 30.5      | 30.4        |
| 83.0   | 100.5                 | 60.9     | 35.4    | 486       | 14.3        |
| 56.2   | 78.9                  | 90.1     | 47.2    | 37.1      | 24.2        |
| 30.8   | 19.2                  | 96.8     | 127.1   | 55.5      |             |
|        | 1                     |          |         |           |             |

| LAWTENCE GAllegos                                          |   |  |
|------------------------------------------------------------|---|--|
| Lawrence Galleges Highway 522 P.O. Box 76 Questa, NM 87556 |   |  |
| Questa, NM 87556                                           | 2 |  |
| Adoriore                                                   |   |  |
|                                                            |   |  |
|                                                            |   |  |
|                                                            |   |  |
|                                                            |   |  |
|                                                            |   |  |
|                                                            |   |  |
|                                                            |   |  |
|                                                            |   |  |
|                                                            |   |  |
|                                                            |   |  |

Field CAMP Juggesolows · how meeting wo other instructions Mrs - Ducuss Terms · DEM MAPS of all Three map areas · STRAT COLS of all Three more oregs by POSTERS New JE - Is course. bester map bases for all maps - especial poster-sized maps · neetys at and of project w big poorer of completed map ... + x-section · must walk straits through the subor of Brance · Use BACA TO TEACH VOCANIE STRATIGRAPH - ASh flow Tobbs Nightly pireside chots - compile maps on by board nightly - discuss by provide Quat proxit @ BARA - 2hR. Importance of Compression Geology brun Alb + Huer Zamo Parte · CAronnoe classification some for Greaton · MAYA'S Choice Miente - macksione - packsione > a min Sione · Huerano section weeks to be besture DESTER SECTION TO MASURE · Glacial project at ther paro · Discussions @ Huerfaro revalen promode Terr "Eocene erosion surface

|                |             |            | 1           |            |       |
|----------------|-------------|------------|-------------|------------|-------|
|                |             | 2.5        | Ticano di   | . D-A11    |       |
|                | VISIT Mol   | 4 mine     | on way to   | Herford    |       |
| 100            | get Carlon  | voe per    | They from   | Max        |       |
|                | all map ur  | nts New    | 2 Thickn    | ess        |       |
|                | TOO MANY "  |            |             |            |       |
|                | NO CAMP C   |            |             |            |       |
| 1              | Do 405 g    | rale po    | STAY ST     | Amps" - 1  | 315   |
|                | campbre in  | needing of | > Liseuss   | -const     | . O & |
|                | Group (100) |            |             |            |       |
|                | choose 2    | Critical   | 3880 + 4    | low War    | 15    |
| Million .      | 1           | and the    | down or     | handi ba   |       |
|                |             |            |             | , Con      |       |
| N.             | Been letter | 1- 1       | alo Did     | 1. 5       |       |
|                | Clay Kil    | mer        | LTD.        | Liberard . | •     |
|                | Tim Kelle   | F G        | eshydrolog. | 1          | 9     |
|                | Tim Doc     |            |             |            | -     |
|                | Bruce Tho   |            |             | 0          |       |
| J. Section Co. | GAY PE      |            |             |            |       |
| Les to A.      | DIN YM      | r HANT     | GRAIN       | 16 617     | 1.    |
|                | Nel Pl      | mmer       | 0.117       |            |       |
|                |             |            | E. 16.3     |            |       |
|                |             |            |             |            |       |
|                | Distall     | la co      |             |            | ×     |
|                |             |            |             |            |       |
|                | 4           |            |             |            |       |

## INDEX OF CURVE AND REDUCTION TABLES

| Table | I-SLOPE | STAKE |
|-------|---------|-------|
|-------|---------|-------|

Table II—STADIA CORRECTION AND HORIZONTAL DISTANCES

Table III—TRIGONOMETRIC FORMULAE

Table IV—NATURAL TRIGONOMETRICAL FUNCTIONS

**CURVE FORMULAE** 

Table V-TANGENTS AND EXTERNALS TO A 1° CURVE

USEFUL RELATIONS

Table VI-INCHES TO DECIMALS OF A FOOT

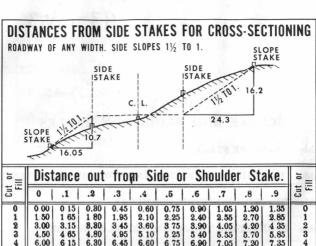

Table VII-MINUTES IN DECIMALS OF A DEGREE

Table VIII-MIDDLE ORDINATES OF RAILS

Table IX-SHORT RADIUS CURVES

Table X-RODS IN FEET, 10THS AND 100THS OF FEET

Table XI-LINKS IN FEET, 10THS AND 100THS OF FEET



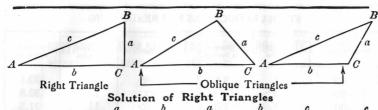

| _ ≔ l |       |       |       | 110   |       |       |       |       |       |       | - = |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| Cut   | 0     | .1    | .2    | .3    | .4    | .5    | .6    | .7    | .8    | .9    | Cut |
| 0     | 0 00  | 0 15  | 0.80  | 0.45  | 0.60  | 0.75  | 0.90  | 1.05  | 1.20  | 1.35  | 0   |
| 1     | 1.50  | 1 65  | 1 80  | 1.95  | 2.10  | 2.25  | 2.40  | 2.55  | 2.70  | 2.85  | 1   |
| 2     | 3.00  | 3.15  | 8.80  | 3 45  | 3.60  | 3 75  | 3,90  | 4.05  | 4.20  | 4 35  | 2   |
| 3     | 4.50  | 4 65  | 4.80  | 4.95  | 5.10  | 5 25  | 5 40  | 5.55  | 5.70  | 5.85  | 3 4 |
| 4     | 6.00  | 6 15  | 6.30  | 6.45  | 6.60  | 6.75  | 6.90  | 7.05  | 7.20  | 7.35  | 4   |
| 5     | 7 50  | 7.65  | 7.80  | 7.95  | 8.10  | 8.25  | 8.40  | 8.55  | 8.70  | 8.85  | 5   |
| 6     | 9 00  | 9 15  | 9.30  | 9.45  | 9.60  | 9.75  | 9.90  | 10.05 | 10.20 | 10.35 | 5   |
| 7     | 10.50 | 10 65 | 10.80 | 10.95 | 11.10 | 11.25 | 11.40 | 11.55 | 11 70 | 11.85 | 7   |
| 8     | 12.00 | 12 15 | 12.80 | 12.45 | 12.60 | 12.75 | 12.90 | 13.05 | 13.20 | 13.35 | 8   |
| 9     | 13 50 | 13.65 | 18 80 | 13 95 | 14.10 | 14.25 | 14.40 | 14 55 | 14.70 | 14.85 | 9   |
| 10    | 15.00 | 15 15 | 15 80 | 15 45 | 15,60 | 15.75 | 15.90 | 16.05 | 16.20 | 16 35 | 10  |
| 11    | 16 50 | 16 65 | 16 80 | 16.95 | 17 10 | 17.25 | 17.40 | 17.55 | 17.70 | 17.85 | 11  |
| 12    | 18 00 | 18.15 | 18.30 | 18 45 | 18.60 | 18 75 | 18.90 | 19.05 | 19.20 | 19 85 | 12  |
| 13    | 19 50 | 19 65 | 19.80 | 19.95 | 20.10 | 20.25 | 20 40 | 20.55 | 20.70 | 20.85 | 13  |
| 14    | 21.00 | 21 15 | 21.30 | 21.45 | 21 60 | 21.75 | 21.90 | 22 05 | 22 20 | 22 85 | 14  |
| 15    | 22 50 | 22 65 | 22 80 | 22 95 | 23.10 | 23,25 | 23,40 | 23.55 | 23.70 | 23.85 | 15  |
| 16    | 24.00 | 24 15 | 24 30 | 24 45 | 24.60 | 24.75 | 24 90 | 25 05 | 25.20 | 25.85 | 16  |
| 17    | 25,50 | 25 65 | 25.80 | 25 95 | 26.10 | 26 25 | 26 40 | 26.55 | 26.70 | 26.85 | 17  |
| 18    | 27.00 | 27 15 | 27.30 | 27 45 | 27.60 | 27.75 | 27.90 | 28.05 | 28 20 | 28.35 | 18  |
| 19    | 28 50 | 28 65 | 28 80 | 28.95 | 29.10 | 29.25 | 29.40 | 29.55 | 29.70 | 29.85 | 19  |
| 20    | 30 00 | 30 15 | 30.30 | 30.45 | 30.60 | 30.75 | 30.90 | 31.05 | 31.20 | 31.85 | 20  |
| 21    | 31 50 | 31 65 | 31.80 | 31.95 | 32 10 | 32 25 | 32.40 | 32,55 | 32 70 | 82 85 | 21  |
| 22    | 33 00 | 33 15 | 33 30 | 33 45 | 33.60 | 33 75 | 33.90 | 34.05 | 34.20 | 34.35 | 22  |
| 23    | 34 50 | 34 65 | 34.80 | 34.95 | 35.10 | 85 25 | 35 40 | 35.55 | 35.70 | 35 85 | 23  |
| 24    | 86.00 | 86 15 | 36.30 | 36 45 | 36.60 | 36,75 | 36.90 | 37.05 | 37.20 | 37.35 | 24  |
| 25    | 87.50 | 37.65 | 37 80 | 37.95 | 38.10 | 38.25 | 38.40 | 38.55 | 38.70 | 38.85 | 25  |
| 26    | 39 00 | 39 15 | 39.80 | 39 45 | 39 60 | 39.75 | 39.90 | 40.05 | 40.20 | 40.35 | 26  |
| 27    | 40 50 | 40 65 | 40 80 | 40.95 | 41.10 | 41,25 | 41 40 | 41.55 | 41.70 | 41.85 | 27  |
| 28    | 42 00 | 42 15 | 42.30 | 42.45 | 42.60 | 42 75 | 42.90 | 43.05 | 43.20 | 48.35 | 28  |
| 29    | 43 50 | 43 65 | 43.80 | 43 95 | 44.10 | 44 25 | 44 40 | 44.55 | 44.70 | 44 85 | 29  |
| 30    | 45 00 | 45 15 | 45.30 | 45 45 | 45.60 | 45.75 | 45.90 | 46.05 | 46 20 | 46.35 | 80  |
| 31    | 46.50 | 46.65 | 46.80 | 46 95 | 47.10 | 47,25 | 47.40 | 47.55 | 47.70 | 47.85 | 31  |
| 32    | 48 00 | 48.15 | 48.30 | 48 45 | 48.60 | 48 75 | 48.90 | 49.05 | 49 20 | 49.35 | 32  |
| 33    | 49.50 | 49 65 | 49.80 | 49.95 | 50.10 | 50.25 | 50.40 | 50.55 | 50.70 | 50.85 | 33  |
| 34    | 51 00 | 51.15 | 51.30 | 51.45 | 51.60 | 51.75 | 51.90 | 52,05 | 52.20 | 52.85 | 34  |
| 35    | 52 50 | 52.65 | 52.80 | 52.95 | 53.10 | 53.25 | 53.40 | 53.55 | 53.70 | 53.85 | 35  |
| 36    | 54 00 | 54.15 | 54.30 | 54 45 | 54.60 | 54.75 | 54.90 | 55.05 | 55.20 | 55.35 | 36  |
| 37    | 55 50 | 55 65 | 55.80 | 55.95 | 56.10 | 56.25 | 56.40 | 56.55 | 56.70 | 56.85 | 37  |
| 38    | 57.00 | 57.15 | 57.30 | 57 45 | 57.60 | 57.75 | 57.90 | 58.05 | 58.20 | 58 35 | 38  |
| 39    | 58 50 | 58.65 | 58 80 | 58.95 | 59.10 | 59 25 | 59.40 | 59 55 | 59.70 | 59.85 | 39  |
| 40    | 60 00 | 60.15 | 60 30 | 60 45 | 60 60 | 60,75 | 60 90 | 61.05 | 61 20 | 61.35 | 40  |

TABLE II. STADIA CORRECTION AND HORIZONTAL DISTANCES

| Vertical Angle | Horizontal<br>Correction | Difference<br>in Elevation | Vertical Angle | Horizontal<br>Correction | Difference<br>in Elevation |
|----------------|--------------------------|----------------------------|----------------|--------------------------|----------------------------|
| 2°-00′         | 0.1                      | 3.5                        | 18°-30′        | 10.1                     | 30.1                       |
| 3°-00′         | 0.3                      | 5.3                        | 19°-00′        | 10.6                     | 30.8                       |
| 4°-00′         | 0.5                      | 7.0                        | 19°-30'        | 11.2                     | 31.5                       |
| 5°-00′         | 0.8                      | 8.7                        | 20°-00'        | 11.7                     | 32.1                       |
| 6°-00′         | 1.1                      | 10.4                       | 20°-30′        | 12.3                     | 32.8                       |
| 7°-00′         | 1.5                      | 12.1                       | 21°-00′        | 12.8                     | 33.5                       |
| 8°-00′         | 1.9                      | 13.8                       | 21°-30′        | 13.4                     | 34.1                       |
| 9°-00′         | 2.5                      | 15.5                       | 22°-00′        | 14.0                     | 34.7                       |
| 10°-00′        | 3.0                      | 17.10                      | 22°-30′        | 14.7                     | 35.4                       |
| 10°-30′        | 3.3                      | 17.9                       | 23°-00′        | 15.3                     | 36.0                       |
| 11°-00′        | 3.6                      | 18.7                       | 23°-30′        | 15.9                     | 36.6                       |
| 11°-30′        | 4.0                      | 19.5                       | 24°-00′        | 16.5                     | 37.2                       |
| 12°-00′        | 4.3                      | 20.3                       | 24°-30′        | 17.2                     | 37.7                       |
| 12°-30′        | 4.7                      | 21.1                       | 25°-00′        | 17.9                     | 38.3                       |
| 13°-00′        | 5.1                      | 21.9                       | 25°-30′        | 18.6                     | 39.0                       |
| 13°-30′        | 5.5                      | 22.7                       | 26°-00′        | 19.2                     | 39.4                       |
| 14°-00′        | 5.9                      | 23.4                       | 26°-30′        | 19.9                     | 39.9                       |
| 14°-30′        | 6.3                      | 24.2                       | 27°-00′        | 20.6                     | 40.5                       |
| 15°-00′        | 6.7                      | 25.0                       | 27°-30′        | 21.3                     | 41.0                       |
| 15°-30′        | 7.2                      | 25.8                       | 28°-00′        | 22.0                     | 42.0                       |
| 16°-00′        | 7.6                      | 26.5                       | 28°-30′        | 22.8                     | 41.9                       |
| 16°-30′        | 8.1                      | 27.2                       | 29°-00'        | 23.5                     | 42.4                       |
| 17°-00′        | 8.5                      | 28.0                       | 29°-30′        | 24.3                     | 42.9                       |
| 17°-30′        | 9.0                      | 28.7                       | 30°-00′        | 25.0                     | 43.3                       |

| Chair | is to | Feet |
|-------|-------|------|
| 1     |       | 66   |
| 2     |       | 132  |
| 3     |       | 198  |
| 4     |       | 264  |
| 5     |       | 330  |
| 6     |       | 396  |
| 7     | 1110  | 462  |
| 8     |       | 528  |
| 9     |       | 594  |
| 10    |       | 660  |

| Feet  | to | Chains |
|-------|----|--------|
| 100   |    | 1.515  |
| 200   |    | 3.030  |
| 300   |    | 4.545  |
| 400   |    | 6.060  |
| 500   |    | 7.575  |
| 600   |    | 9.090  |
| 700   |    | 10.606 |
| 800   |    | 12.121 |
| 900   |    | 13.636 |
| 1,000 |    | 15.151 |



For Angle A. 
$$\sin = \frac{a}{c}$$
,  $\cos = \frac{b}{c}$ ,  $\tan = \frac{a}{b}$ ,  $\cot = \frac{b}{a}$ ,  $\sec = \frac{c}{b}$ ,  $\csc = \frac{c}{a}$ 

Given Angle A.  $\sin = \frac{a}{c}$ ,  $\cos = \frac{b}{c}$ ,  $\tan = \frac{a}{b}$ ,  $\cot = \frac{b}{a}$ ,  $\sec = \frac{c}{b}$ ,  $\csc = \frac{c}{a}$ 

a.  $a = \frac{a}{b} = \cot B$ ,  $c = \sqrt{a^2 + b^2} = a\sqrt{1 + \frac{b^2}{a^2}}$ 

a.  $a = \frac{a}{c} = \cos B$ ,  $b = \sqrt{(c+a)(c-a)} = c\sqrt{1 - \frac{a^2}{c^2}}$ 

A.  $a = \frac{a}{c} = \cot A$ ,  $c = \frac{a}{\sin A}$ 

A.  $a = \frac{a}{c} = \cot A$ ,  $c = \frac{a}{\sin A}$ 

A.  $a = \frac{a}{c} = \cot A$ ,  $c = \frac{a}{\cos A}$ 

B.  $a = \frac{a}{c} = \cot A$ ,  $a = c \sin A$ ,  $a = c \cos A$ 

Solution of Oblique Triangles

Given A, B, a 
$$\begin{vmatrix} Required b, c, C \end{vmatrix}$$
  $b = \frac{a \sin B}{\sin A}$ ,  $C = 180^{\circ} - (A + B)$ ,  $c = \frac{a \sin C}{\sin A}$ 

A, a, b  $B$ , c, C  $\sin B = \frac{b \sin A}{a}$ ,  $C = 180^{\circ} - (A + B)$ ,  $c = \frac{a \sin C}{\sin A}$ 

a, b, C  $A$ , B, c  $A + B = 180^{\circ} - C$ ,  $\tan \frac{1}{2}(A - B) = \frac{(a - b) \tan \frac{1}{2}(A + B)}{a + b}$ .

c  $= \frac{a \sin C}{\sin A}$ 

a, b, c  $A$ , B, C  $= \frac{a + b + c}{2}$ ,  $\sin \frac{1}{2}A = \sqrt{\frac{(s - b)(s - c)}{b c}}$ ,  $\sin \frac{1}{2}B = \sqrt{\frac{(s - a)(s - c)}{a c}}$ ,  $C = 180^{\circ} - (A + B)$ 

a, b, c  $= \frac{a + b + c}{2}$ , area  $= \sqrt{s(s - a)(s - b)(s - c)}$ 

A, B, C, a  $= \frac{a + b + c}{2}$ , area  $= \frac{a + b + c}{2}$  area  $= \frac{a + b + c}{2}$ 

## REDUCTION TO HORIZONTAL



Horizontal distance = Slope distance multiplied by the cosine of the vertical angle. Thus: slope distance = 319.4 ft. Vert. angle = 5° 10′. From Table. IV. cos 5° 10′= 9959. Horizontal distance = 319.4 × .9959 = 318.09 ft. Horizontal distance also = Slope distance minus slope distance times (1 -cosine of vertical angle). With the same figures as in the preceding example, the following result is obtained. Cosine 5° 10′ = 9959. 1 - .9959 = .0041. 319.4 × .0041 = 1.31. 319.4 - 1.31 = 318.09 ft.

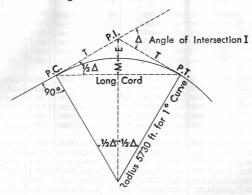
When the rise is known, the horizontal distance is approximately:—the slope distance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft. slope distance=302.6 ft. Horizontal distance=302.6  $-\frac{14 \times 14}{2 \times 100}$ =302.6 -0.32=302.28 ft.  $2 \times 302.6$ 

#### TABLE IV. NATURAL TRIGONOMETRICAL FUNCTIONS

| Angle | Sin   | Tan.       | Sec.   | Cosec. | Cotg.          | Cosin. |       | Angle    | Sin.   | Tan.  | Sec.   | Cosec. | Cotg. | Cosin.           | ma  |
|-------|-------|------------|--------|--------|----------------|--------|-------|----------|--------|-------|--------|--------|-------|------------------|-----|
| ۰,    |       |            |        | 1      |                |        |       | 0 /      |        |       |        |        |       |                  |     |
| 0     | 0     | 0          | 1.     | 00     | 00             | 1.     | 90    | 8        | .1392  | .1405 | 1.0098 | 7.185  | 7.115 | .99027           | 82  |
| 10    | .0029 | .0029      |        | 343.8  | 343.8          | 1.     | 50    |          | .1421  | .1435 | 1.0102 | 7.040  | 6.968 | .98986           | 50  |
| 20    | .0058 | .0058      |        | 171.9  | 171.9          | .99998 | 40    |          | .1449  | .1465 | 1.0107 | 6.900  | 6.827 | .98944           | 40  |
| 30    | .0087 | .0087      |        | 114.6  | 114.6          | .99996 | 30    |          |        | .1495 | 1.0111 | 6.766  | 6.691 | .98902           | 30  |
| 40    | .0116 | .0116      | 1.0001 | 85.94  | 85.94          | .99993 | 20    |          | .1507  | .1524 | 1.0115 | 6.636  | 6.561 | .98858           | 20  |
| 50    | .0145 | .0145      | 1.0001 | 68.76  | 68.75          | .99989 | 10    |          | .1536  | .1554 | 1.0120 | 6.512  | 6.435 | .98814           | 10  |
| 1     | .0175 | .0175      | 1.0002 | 57.30  | 57.29          | .99985 | 89    | 9        | .1564  | .1584 | 1.0125 | 6.394  | 6.314 | .98769           | 81  |
| 10    | .0204 | .0204      | 1.0002 | 49.11  | 49.10          | .99979 | 50    | 10       | .1593  | .1614 | 1.0129 | 6.277  | 6.197 | .98723           | 50  |
| 20    | .0233 | .0233      | 1.0003 | 42.98  | 42.96          | .99973 | 40    | 20       | .1622  | .1644 | 1.0134 | 6.166  | 6.084 | .98676           | 40  |
| 30    | .0262 | .0262      | 1.0003 |        |                | .99966 | 30    | 30       | .1650  |       | 1.0139 | 6.059  | 5.976 | .98629           | 30  |
| 40    | .0291 | .0291      | 1.0004 | 34.38  | 34 37          | .99958 | 20    | 40       | .1679  | .1703 | 1.0144 | 5.955  | 5.871 | .98580           | 20  |
| 50    | .0320 | .0320      | 1.0005 | 31.26  | 31.24          | .99949 | 10    | 50       |        | .1733 | 1.0149 | 5.855  | 5.769 | .98531           | 10  |
| 2     | .0349 | .0349      | 1.0006 | 28.65  | 28.64          | .99939 | 88    | 10       | .1736  | .1763 | 1.0154 | 5.759  | 5.671 | .98481           | 80  |
| 10    | .0378 | .0378      | 1.0007 | 26 45  | 26.43          | .99929 | 50    | 10       | .1765  | .1793 | 1.0160 | 5.665  | 5.576 | .98430           | 50  |
| 20    | .0407 | .0407      | 1.0008 | 24.56  | 24.54          | .99917 | 40    | 20       | .1794  | .1823 | 1.0165 | 5.575  | 5.485 | .98378           | 40  |
| 30    | .0436 |            | 1.0010 | 22.93  | 22.90          | .99905 | 30    | 30       | .1822  | .1853 | 1.0170 | 5.488  | 5.396 | .98325           | 30  |
| 40    | .0465 | .0466      | 1.0011 | 21.49  | 21.47          | .99892 | 20    | 40       | .1851  | .1883 | 1.0176 | 5.403  | 5.309 | .98272           | 20  |
| 50    | .0494 | .0495      | 1.0012 | 20.23  | 20.21          | .99878 | 10    | 50       | .1880  | .1914 | 1.0181 | 5.320  | 5.226 | .98218           | 10  |
| 3     | .0523 | .0524      | 1.0014 | 19.11  | 19.08          | .99863 | 87    | 11       | .1908  | .1944 | 1.0187 | 5.241  | 5.145 | .98163           | 79  |
| 10    | .0552 | .0553      | 1.0015 | 18.10  | 18.07          | .99847 | 50    | 10       | .1937  | .1974 | 1.0193 |        | 5.066 | .98107           | 50  |
| 20    | .0581 | .0582      | 1.0017 | 17.20  | 17.17          | .99831 | 40    | 20       | .1965  | .2004 | 1.0199 | 5.089  | 4.989 | .98050           | 40  |
| 30    | .0610 | .0612      | 1.0019 | 16 38  | 16.35          | .99813 | 30    | 30       | .1994  | .2035 | 1.0205 | 5.016  | 4.915 | .97992           | 30  |
| 40    | .0640 | .0641      | 1.0020 | 15.64  | 15.60          | .99795 | 20    | 40       | .2022  | .2065 | 1.0211 | 4.945  | 4.843 | .97934           | 20  |
| 50    | .0669 | .0670      | 1.0022 | 14.96  | 14.92          | .99776 | 10    | 50       | .2051  | .2095 | 1.0217 | 4.877  | 4.773 | .97875           | 10  |
| 4     | .0698 | .0699      | 1.0024 | 14.34  | 14.30          | .99756 | 86    | 12       | .2079  | .2126 | 1.0223 | 4.810  | 4.705 | .97815           | 78  |
| -10   | .0727 | .0729      | 1.0027 | 13.76  | 13.73          | .99736 | 50    | 10       | .2108  | .2156 | 1.0230 | 4.745  | 4.638 | .97754           | 50  |
| 20    | .0756 | .0758      | 1.0029 | 13.23  | 1              | .99714 | 40    | 20       |        | .2186 | 1.0236 |        | 4.574 | .97692           | 40  |
| 30    | .0785 | .0787      | 1.0031 | 12.75  | 12.71          | .99692 | 30    | 30       | .2164  | .2217 | 1.0243 | 4.620  |       | .97630           | 30  |
| 40    | .0814 | .0816      | 1.0033 | 12.29  | 12.25          | .99668 | 20    | 40       | .2193  | .2247 | 1.0249 | 4.560  | 4.449 | .97566           | 20  |
| 50    | .0843 | .0846      | 1.0036 | 11.87  | 11.83          | .99644 | 10    | 50       | .2221  | .2278 | 1.0256 | 4.502  | 4.390 | .97502           | 10  |
| 5     | .0872 | .0875      | 1.0038 | 11.47  | 11.43          | .99619 | 85    | 13       | .2250  | .2309 | 1.0263 | 4.445  | 4.331 | .97437           | 77  |
| 10    | .0901 | .0904      | 1.0041 | 11.10  | 0.4000         | .99594 | 50    | 10       | .2278  | .2339 | 1.0270 |        | 4.275 | .97371           | 50  |
|       | .0929 | .0934      | 1.0043 | 10.76  | 10.71          | .99567 | 40    | 20       |        | .2370 | 1.0277 |        | 4.219 | .97304           | 40  |
|       | .0958 | .0963      | 1.0046 | 10.43  | 10.39          | .99540 | 30    | 30       |        | .2401 | 1.0284 |        | 4.165 | .97237           | 30  |
| 50    | .0987 | .0992      | 1.0049 | 10.13  | 10.08<br>9.788 | .99511 | 20    | 40<br>50 | .2363  | .2432 | 1.0291 | 4.232  | 4.113 | .97169<br>.97100 | 10  |
| 6     | .1045 | - Contract | 1.0055 | 9.567  | 9.514          | .99452 | 84    | 14       | .2419  | .2493 | 1.0306 | 4.133  | 4.011 | .97030           | 76  |
| -     | .1074 |            | 1.0058 | 9.309  |                | .99421 | 50    | 10       | .2447  | .2524 | 1.0314 |        | 3.962 | .96959           | 50  |
|       | .1103 |            | 1.0061 |        |                | .99390 | 40    | 20       |        | .2555 |        |        | 3.914 |                  | 40  |
|       | .1132 |            | 1.0065 | 8.834  | 8.777          | .99357 | 30    | 30       | .2504  | .2586 | 1.0329 |        | 3.867 | .96815           | 30  |
|       |       | .1169      | 1.0068 | 8.614  | 8.556          | .99324 | 20    | 40       | .2532  | .2617 | 1.0337 | 3.949  | 3.821 | .96742           | 20  |
|       | .1190 |            | 1.0072 |        | 8.345          | .99290 | 10    | 50       | .2560  | .2648 | 1.0345 |        | 3.776 | .96667           | 10  |
| 7     | .1219 | .1228      | 1.0075 | 8.206  | 8.144          | .99255 | 83    | 15       | .2588  | .2679 | 1.0353 | 3.864  | 3.732 | .96593           | 75  |
|       | .1248 |            | 1.0079 |        | 7.953          | .99219 | 50    | 10       | .2616  | .2711 | 1.0361 |        | 3.689 | .96517           | 50  |
|       |       | .1287      | 1.0082 |        |                | .99182 | 40    | 20       | .2644  | .2742 | 1.0369 |        | 3.647 | .96440           | 40  |
|       |       | .1317      | 1.0086 | 7.661  | 7.596          | .99144 | 30    | 30       | .2672  | .2773 | 1.0377 |        | 3.606 | .96363           | 30  |
|       |       | .1346      | 1.0090 | 7.496  | 7.429          | .99106 | 20    | 40       | .2700  | .2805 | 1.0386 | 3.703  | 3.566 | .96285           | 20  |
| 50    | .1363 |            | 1.0094 |        | 7.269          | .99067 | 10    | 50       | .2728  | .2836 | 1.0394 |        | 3.526 | .96206           | 10  |
| 50    |       |            |        | 7.557  |                |        | 82    | 0.00     |        | -200  |        |        |       |                  | 74  |
|       |       |            |        |        |                |        | 0 /   |          |        |       |        |        |       |                  | 0 / |
| -     | Cosin | Cotq.      | Cosec. | Sec.   | Tan.           | Sin.   | Angle |          | Cosin. | Cotg. | Cosec. | Sec.   | Tan.  | Sin.             | Ang |

#### TABLE IV CONTD. NATURAL TRIGONOMETRICAL FUNCTIONS

| Angle    | Sin.                | Tan.  | Sec.                                    | Cosec.           | Cotg. | Cosin.           | 0.00/A | Angle | Sin.  | Tan.             | Sec.   | Cosec. | Cotg. | Cosin.           |     |
|----------|---------------------|-------|-----------------------------------------|------------------|-------|------------------|--------|-------|-------|------------------|--------|--------|-------|------------------|-----|
| 0 /      |                     |       |                                         |                  |       |                  |        | ۰,    |       |                  |        |        |       |                  | V 2 |
| 16       | .2756               | .2867 | 1.0403                                  | 3.628            | 3.487 | .96126           | 74     | 24    | .4067 | .4452            | 1.0946 | 2.459  | 2.246 | .91355           | 66  |
| 10       | .2784               |       | 1.0403                                  | 3.592            |       | .96046           | 50     | 10    | .4094 | .4487            | 1.0961 | 2.443  | 2.229 | .91236           | 50  |
| 20       | THE PERSON NAMED IN | .2931 |                                         | 3.556            |       | .95964           | 40     | 20    |       |                  | 1.0975 |        | 2.211 | .91116           | 40  |
| 30       | .2840               |       | 1.0429                                  | 3.521            |       | .95882           | 30     | 30    | .4147 |                  | 1.0989 |        | 2.194 | .90996           | 30  |
| 40       | .2868               | .2994 |                                         | 3.487            |       | .95799           | 20     | 40    | .4173 |                  | 1.1004 | 2.396  |       | .90875           | 20  |
| 50       | .2896               |       | 1.0448                                  | 3.453            |       | .95715           | 10     | 50    | .4200 | .4628            | 1.1019 | 2.381  | 2.161 | .90753           | 10  |
| 17       | .2924               | .3057 | 1.0457                                  | 3.420            | 3.271 | .95630           | 73     | 25    | .4226 | .4663            | 1.1034 | 2.366  | 2.145 | .90631           | 65  |
| 10       | .2952               | .3089 | 1.0466                                  | 3.388            |       | 95545            | 50     | 10    | .4253 | .4699            | 1.1049 | 2.351  | 2.128 | .90507           | 50  |
| 20       | .2979               | .3121 | 1.0466                                  | 1000             | 3.204 | .95459           | 40     | 20    | .4279 | .4734            | 1.1064 | 2.337  | 2.112 | .90383           | 40  |
| 30       |                     |       | 1.0476                                  |                  | 3.172 | .95372           | 30     | 30    | .4305 | .4770            | 1.1079 |        | 2.097 | .90259           | 30  |
| 40       | .3035               | .3185 | 1.0465                                  | 3.295            |       | .95284           | 20     | 40    | .4331 | .4806            | 1.1095 | 2.309  | 2.081 | .90133           | 20  |
| 50       |                     | .3217 | 1.0505                                  | 3.265            |       | .95195           | 10     | 50    | .4358 | .4841            | 1.1110 | 2.295  | 2.066 | .90007           | 10  |
| 18       | .3090               | .3249 | 1.0515                                  | 3.236            | 3.078 | .95106           | 72     | 26    | 4384  | .4877            | 1.1126 | 2.281  | 2.050 | .89879           | 64  |
| 10       | .3118               | .3281 | 1.0525                                  | 3.207            |       | .95015           | 50     | 10    | .4410 | .4913            | 1.1142 | 2.268  | 2.035 | .89752           | 50  |
| 20       | .3116               | .3314 | 1.0525                                  |                  | 3.048 | .94924           | 40     | 20    | .4436 | .4950            | 1.1158 | 2.254  | 2.020 | .89623           | 40  |
| 30       |                     |       |                                         | 3.179            |       | .94924           | 30     | 30    | .4462 |                  | 1.1174 |        | 2.020 | .89493           | 30  |
|          | .3201               | .3378 | 1.0555                                  | 3.132            |       | .94740           | 20     | 40    | .4488 | 7 10 10 10 10 10 | 1.1190 | 2.228  | 1.991 | .89363           | 20  |
| 40<br>50 | .3228               | .3411 | 1.0566                                  | 3.098            |       | .94646           | 10     | 50    | .4514 | .5052            | 1.1207 | 2.215  | 1.977 | .89232           | 10  |
| 19       | .3256               | .3443 | 1.0576                                  | 3.072            | 2 904 | .94552           | 71     | 27    | 4540  | .5095            | 1.1223 | 2.203  | 1.963 | .89101           | 63  |
| 20 20 0  |                     |       | Annual Control of                       | 100000           |       |                  |        |       | 1.00  |                  |        | 2.190  | 1.949 | .88968           | 50  |
| 10       | .3283               | .3476 | 1.0587                                  | 3.046            |       | .94457           | 50     | 10    | .4566 | .5132            | 1.1240 |        |       | .88835           | 40  |
| 20       | .3311               |       | 1.0598                                  | 3.020            |       | .94361           | 40     | 20    | 4592  | .5169            | 1.1257 | 2.178  | 1.935 | 88701            | 30  |
| 30       | .3338               | .3541 | 1.0608                                  | 2.996            |       | .94264           | 30     | 30    | 4617  | .5206            | 1.1274 | 2.166  |       |                  | 20  |
| 40<br>50 | .3365               | .3574 | 1.0619                                  | 2.971            | 2.798 | .94167<br>.94068 | 10     | 50    | 4643  | .5243            | 1.1291 | 2.154  | 1.907 | .88566<br>.88431 | 10  |
| 20       | .3420               | 2440  | 1.0642                                  | 2.924            | 2 747 | .93969           | 70     | 28    | .4695 | .5317            | 1.1326 | 2.130  | 1.881 | .88295           | 62  |
| 10       |                     | .3640 | 1.0653                                  | 2.924            |       | .93969           | 50     | 10    | .4720 | .5354            | 1.1343 | 2.119  | 1.868 | .88158           | 50  |
|          | .3448               | .3673 | 100000000000000000000000000000000000000 |                  |       | .93769           | 1 5    | 20    | .4746 | .5392            | 1.1343 |        | 1.855 | .88020           | 40  |
| 20<br>30 | .3475               | .3706 | 1.0665                                  | 2.878            |       | .93667           | 30     | 30    | 4772  | .5430            | 1.1379 |        | 1.842 | .87882           | 30  |
| 40       | .3529               |       | 1.0688                                  | 2.833            |       | .93565           | 20     | 40    | .4797 | .5467            | 1.1397 |        | 1.829 | .87743           | 20  |
| 50       | .3557               |       | 1.0700                                  |                  | 2.628 | .93462           | 10     | 50    | .4823 | .5505            | 1.1415 |        | 1.816 | .87603           | 10  |
| 21       | .3584               | .3839 | 1.0711                                  | 2.790            | 2.605 | .93358           | 69     | 29    | .4848 | .5543            | 1.1434 | 2.063  | 1.804 | .87462           | 61  |
| 10       | .3611               |       | 1.0723                                  |                  | 2.583 | .93253           | 50     | 10    | 4874  | .5581            | 1.1452 |        | 1.792 | .87321           | 50  |
| 20       | .3638               |       | 1.0736                                  |                  | 2.560 | .93148           | 40     | 20    | 4899  | .5619            | 1.1471 | 2.041  | 1.780 | .87178           | 40  |
| 30       | .3665               |       | 1.0748                                  |                  | 2.539 | .93042           | 30     | 30    | 4924  | .5658            | 1.1490 |        | 1.767 | .87036           | 30  |
| 40       | .3692               |       | 1.0760                                  | 2.709            | 2.517 | .92935           | 20     | 40    | 4950  | .5696            | 1.1509 | 2.020  | 1.756 | .86892           | 20  |
| 50       | .3719               |       | 1.0773                                  |                  | 2.496 | .92827           | 10     | 50    | 4975  | .5735            | 1.1528 | 2.010  | 1.744 | .86748           | 10  |
| 22       | .3746               | .4040 | 1.0785                                  | 2.670            | 2.475 | .92718           | 68     | 30    | 5000  | .5774            | 1.1547 | 2.000  | 1.732 | .86603           | 60  |
| 10       | .3773               |       | 1.0798                                  | 2.650            |       | .92609           | 50     | 10    | 5025  | .5812            | 1.1566 |        | 1.720 | .86457           | 50  |
| 20       | .3800               |       | 1.0811                                  | 2.632            |       | .92499           | 40     | 20    | 5050  | .5851            | 1.1586 | 1.980  |       | .86310           | 40  |
| 30       | .3827               |       | 1.0824                                  |                  | 2.414 | .92388           | 30     | 30    | 5075  | .5890            | 1.1606 |        | 1.698 | .86163           | 30  |
| 40       | .3854               |       | 1.0837                                  |                  | 2.394 | .92276           | 20     | 40    | 5100  | .5930            | 1.1626 | 1.961  | 1.686 | .86015           | 20  |
| 50       | .3881               |       | 1.0850                                  |                  | 2.375 | .92164           | 10     | 50    | 5125  | .5969            | 1.1646 | 1.951  | 1.675 | .85866           | 10  |
| 23       | .3907               | .4245 | 1.0864                                  | 2.559            | 2.356 | .92050           | 67     | 31    | 5150  | .6009            | 1.1666 | 1.924  | 1.664 | .85717           | 59  |
| 10       | .3934               |       | 1.0877                                  |                  | 2.337 | 91936            | 50     | 10    | 5175  | .6048            | 1.1687 |        | 1.653 | .85567           | 50  |
| 20       | .3961               |       |                                         | THE RESIDENCE OF | 2.318 | 91822            | 40     | 20    | 5200  |                  | 1.1707 | 1.923  |       | .85416           | 40  |
| 30       | .3987               |       |                                         |                  | 2.300 | 91706            | 30     | 30    | 5225  | .6128            | 1.1728 |        | 1.632 | .85264           | 30  |
| 40       | .4014               |       | 1.0918                                  |                  | 2.282 | 91590            | 20     | 40    | 5250  | .6168            | 1.1749 |        | 1.621 | .85112           | 20  |
| 50       | .4041               |       | 1.0932                                  |                  | 2.264 | 91472            | 10     | 50    | 5275  |                  | 1.1770 |        | 1.611 | .84959           | 10  |
|          |                     |       |                                         | ,                |       |                  | 66     |       | -2, 5 | 3200             |        |        |       | .54,57           | 58  |
| 1        | 1. 12v ·            |       | by La                                   | Auras I          | En ho |                  | 0 /    |       |       | 14               |        |        |       | Gest .           | ۰,  |
| -        |                     |       | -                                       |                  | 1     |                  | -      | -     | -     | -                | -      | -      | -     | -                | -   |


#### TABLE IV CONTD. NATURAL TRIGONOMETRICAL FUNCTIONS

| Angle | Sin.   | Tan.                   | Sec.   | Cosec.         | Cotg. | Cosin.           | P.           | Angle    | Sin.           | Tan   | Sec.                  | Cosec. | Cotg.     | Cosin.           | 1000  |
|-------|--------|------------------------|--------|----------------|-------|------------------|--------------|----------|----------------|-------|-----------------------|--------|-----------|------------------|-------|
| 0 /   | a .    |                        |        | 1 1            |       | - 44             | 0 /          | 0,       | de l           |       | W. N.                 |        |           |                  |       |
| 32    | .5299  | .6249                  | 1.1792 | 1.887          | 1 600 | .84805           | 58           | 39       | .6293          | .8098 | 1.2868                | 1.589  | 1.235     | 77715            |       |
| 10    | .5324  | .6289                  | 1.1813 | 1.878          | 1.590 |                  | 1            | 10       | .6316          |       |                       | 1.583  | 1.233     | .77715           | 51    |
| 20    | .5348  | .6330                  | 1.1835 | 1.870          | 1.580 | .84495           |              | 20       | .6338          | .8195 | 1.2929                | 1.578  | 1.220     | .77347           | 40    |
| 30    | .5373  | .6371                  | 1.1857 | 1.861          | 1.570 | .84339           |              | 30       | .6361          | .8243 | 1.2959                | 1.572  | 1.213     | .77162           | 30    |
| 40    | .5398  | .6412                  | 1.1879 | 1.853          | 1.560 | .84182           |              | 40       | .6383          | .8292 | 1.2991                | 1.567  | 1.206     | .76977           | 20    |
| 50    | .5422  | .6453                  | 1.1901 | 1.844          | 1.550 | .84025           | 10           | 50       | .6406          | .8342 | 1.3022                | 1.561  | 1.199     | .76791           | 10    |
| 33    | .5446  | .6494                  | 1.1924 | 1.836          | 1.540 | .83867           | 57           | 40       | .6428          | .8391 | 1.3054                | 1.556  | 1.192     | .76604           | 50    |
| 10    | .5471  | .6536                  | 1.1946 | 1.828          | 1.530 | .83708           | 50           | 10       | .6450          | .8441 | 1.3086                | 1.550  | 1.185     | .76417           | 50    |
| 20    | .5495  | .6577                  | 1.1969 |                | 1.520 | .83549           | 40           | 20       | .6472          | .8491 | 1.3118                | 1.545  | 1.178     | .76229           | 40    |
| 30    | .5519  | .6619                  | 1.1992 | 1.812          | 1.511 | .83389           | 30           | 30       | .6494          | .8541 | 1.3151                | 1.540  | 1.171     | .76041           | 30    |
| 40    | .5544  | .6661                  | 1.2015 | 1.804          | 1.501 | .83228           | 20           | 40       | .6517          | .8591 | 1.3184                | 1.535  | 1.164     | .75851           | 20    |
| 50    | .5568  | .6703                  | 1.2039 | 1.796          | 1.492 | .83066           | 10           | 50       | .6539          | .8642 | 1.3217                | 1.529  | 1.157     | .75661           | 10    |
| 34    | .5592  | .6745                  | 1.2062 | 1.788          | 1.483 | .82904           | 56           | 41       | .6561          | .8693 | 1.3251                | 1.524  | 1.150     | .75471           | 49    |
|       | .5616  | .6787                  | 1.2086 | 1.781          | 1.473 | .82741           | 50           | 10       | .6583          | .8744 | 1.3284                | 1.519  | 1.144     | .75280           | 50    |
| 20    | .5640  | .6830                  | 1.2110 | 1.773          | 1.464 | .82577           | 40           | 20       | .6604          | .8796 | 1.3318                | 1.514  | 1.137     | .75088           | 40    |
| 30    | .5664  | .6873                  | 1.2134 | 1.766          | 1.455 | .82413           | 30           | 30       | .6626          | .8847 | 1.3352                | 1.509  | 1.130     | .74896           | 30    |
|       | .5688  | .6916                  | 1.2158 | 1.758          | 1.446 | .82248           | 20           | 40       | .6648          | .8899 | 1.3386                | 1.504  | 1.124     | .74703           | 20    |
| 50    | .5712  | .6959                  | 1.2183 | 1.751          | 1.437 | .82082           | 10           | 50       | .6670          | .8952 | 1.3421                | 1.499  | 1.117     | .74509           | 10    |
| 35    | .5736  | .7002                  | 1.2208 | 1.743          | 1.428 | .81915           | 1            | 42       | .6691          | .9004 | and the second second | 1.494  | 1.111     | .74314           | 48    |
|       | .5760  | and the same           | 1.2233 | 1.736          | 1.419 | .81748           | 50           | 10       | .6713          | .9057 | 1.3492                | 1.490  | 1.104     | .74120           | 50    |
|       |        |                        | 1.2258 | 1.729          | 1.411 | .81580           | 40           | 20       | .6734          | .9110 | 1.3527                | 1.485  | 1.098     | .73924           | 40    |
| 30    | .5807  |                        | 1.2283 | 1.722          | 1.402 | .81412           | 30           | 30       | .6756          | .9163 | 1.3563                | 1.480  | 1.091     | .73728           | 30    |
| 50    | .5834  | .71 <i>77</i><br>.7221 | 1.2309 | 1.715<br>1.708 | 1.393 | .81242<br>.81072 | 20<br>10     | 40<br>50 | .6777<br>.6799 | .9217 | 1.3600                | 1.476  | 1.085     | .73531<br>.73333 | 10    |
| 36    | 5070   | 7045                   | 1 00/1 | 1 701          | 1 07/ | 00000            |              | 43       | 4000           | 0225  | 1 2472                |        | 1 070     | 70105            |       |
|       | .5878  |                        | 1.2361 | 1.701          | 1.376 | .80902           | <b>54</b> 50 |          | .6820          | .9325 | 1.3673                | 1.466  | 1.072     | .73135           | 47    |
|       | .5925  |                        | 1.2387 | 1.695          | 1.360 | .80730<br>.80558 | 40           | 10       | .6841          | .9435 | 1.3711                | 1.457  | 1.066     | .72937           | 50    |
|       | .5948  |                        | 1.2413 | 1.681          | 1.351 | .80338           | 30           | 30       | .6884          | .9433 | 1.3786                | 1.457  | 1.054     | .72537           | 30    |
| 40    | .5972  |                        | 1.2440 | 1.675          | 1.343 | .80212           | 20           | 40       | .6905          | .9545 | 1.3824                | 1.448  | 1.034     | .72337           | 20    |
|       | .5995  |                        | 1.2494 | 1.668          | 1.335 | .80038           | 10           | 50       | .6926          | .9601 | 1.3863                | 1.444  | 1.042     | .72136           | 10    |
| 37    | .6018  | .7536                  | 1.2521 | 1.662          | 1.327 | .79864           | 53           | 44       | .6947          | .9657 | 1.3902                | 1.440  | 1.036     | .71934           | 46    |
|       | .6041  | .7581                  |        |                | 1.319 | .79688           | 50           | 10       | .6967          | .9713 | 1.3941                | 1.435  | 1.030     | 71732            | 50    |
|       | .6065  | .7627                  | 1.2577 | 1.649          | 1.311 | .79512           | 40           | 20       | .6988          | .9770 | 1.3980                | 1.431  | 1.024     | .71529           | 40    |
|       |        | 99 7 30 1              |        | - 1000 miles   | 1.303 | .79335           | 30           | 30       | .7009          | .9827 | 1.4020                | 1.427  | 1.018     | .71325           | 30    |
|       | .6111  |                        |        |                | 1.295 | .79158           | 20           | 40       |                | .9884 | 1,4061                | 1.422  | 1.012     | .71121           | 20    |
| 50    | .6134  | .7766                  | 1.2661 |                | 1.288 | .78980           | 10           | 50       | .7050          | .9942 | 1.4101                | 1.418  | 1.006     | .70916           | 10    |
|       | 6157   |                        | 1.2690 | 1.624          | 1.280 | .78801           | 52           |          | .7071          | 1.    | 1.414                 | 1.414  | 1.        | .70711           | 45    |
|       |        |                        | 1.2719 |                | 1.272 | .78622           | 50           | 1        |                | 192   | 1 49                  |        |           | 100              | 100   |
|       | 6202   |                        | 1.2748 |                | 1.265 | .78442           | 40           | 1000     |                |       | 1 344                 | 11-11  | 7 1 1 100 |                  | 1     |
|       | .6225  |                        | 1.2778 | 1.606          | 1.257 | .78261           | 30           | 100      |                | Trem  | ers O                 | 3000   | ing nar   | File             | 100   |
|       | 6248   |                        | 1.2808 | 1.601          | 1.250 | .78079           | 20           | 1000     |                |       |                       | 1      | 177       |                  |       |
| 50 .  | 6271   | .8050                  | 1.2838 | 1.595          | 1.242 | .77897           | 10           | 17       |                | 0.31  | 0 - 12                |        |           |                  |       |
| +     | Cosin. | Cotg.                  | Cosec. | Sec.           | Tan.  | Sin.             | Angle        |          | Cosin.         | Cotq. | Cosec.                | Sec.   | Tan.      | Sin.             | Angle |

#### CURVE FORMULAE

### **CURVE TABLE**

Table of Tangent and External to a 1° Curve



To find Tangent and External for curve of any other degree, divide by degree of curve and add correction found in column of corrections.

Degree of curve with a given I may be found by dividing tangent, (or external), opposite I by given tangent, (or external).

The distance from a point on the tangent to the curve is very nearly the square of the tangent length divided by twice the radius.

#### **CURVE FORMULAS**

Radius:  $R = \frac{50}{\sin \frac{1}{2} D}$ 

Length of Curve:  $L = 100 \frac{\Delta}{D}$ 

also L = .0174533 imes  $\triangle$  imes R

Degree of Curve:  $D = 100 \frac{\Delta}{L}$ 

Tangent:  $T = R \tan \frac{1}{2} \Delta$ 

Long Cord:  $LC = 2R \sin \frac{1}{2} \Delta$ 

Middle Ordinate:  $M = R (1 - \cos \frac{1}{2} \Delta)$ 

External:  $E = T \tan \frac{1}{4} \Delta$ 

TABLE V. TANGENTS AND EXTERNALS TO A 1° CURVE

| I                               | ī                                                                  | E                                                           | I=10°                           | I                                      | T                                                                  | E                                                                  | I=20°                           | I                                      | ı                                                                  | E                                                                  | I=30°                           |
|---------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------|
| 1° 10 20 30 40 50               | 66.67<br>75.01<br>83.34                                            | .297<br>.388<br>.491<br>.606                                | +<br>5° C.<br>T<br>.03<br>E     | 11°<br>10′<br>20′<br>30′<br>40′<br>50′ | 551.70<br>560.11<br>568.53<br>576.95<br>585.36<br>593.79           | 27.313<br>28.137<br>28.974                                         | +<br>5° C.<br>T<br>.06<br>E     | 21°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1061.9<br>1070.6<br>1079.2<br>1087 8<br>1096.4<br>1105.1           | 97.577<br>99.155<br>100.75<br>102.35<br>103.97<br>105.60           | +<br>5° C<br>T<br>.10           |
| 10<br>20<br>30<br>40<br>50      | 125.02<br>133.36                                                   | .873<br>1.024<br>1.188<br>1.364<br>1.552<br>1.752           | .001                            | 12°<br>10′<br>20′<br>30′<br>40′<br>50′ | 602.21<br>610.64<br>619.07<br>627.50<br>635.93<br>644.37           | 31.561<br>32.447<br>33.347<br>34.259<br>35.183<br>36.120           | .006                            | 10°<br>20°<br>30°<br>40°<br>50°        | 1113.7<br>1122.4<br>1131.0<br>1139.7<br>1148.4<br>1157.0           | 107.24<br>108.90<br>110.57<br>112.25<br>113.95<br>115.66           | .013                            |
| 10°<br>20°<br>30°<br>40°<br>50° | 150.04<br>158.38<br>166.72<br>175.06<br>183.40<br>191.74           | 1.964<br>2.188<br>2.425<br>2.674<br>2.934<br>3.207          | 10° C.<br>T<br>.06<br>E         | 13°<br>10′<br>20′<br>30′<br>40′<br>50′ | 652.81<br>661.25<br>669.70<br>678.15<br>686.60<br>695.06           | 37.070<br>38.031<br>39.006<br>39.993<br>40.992<br>42.004           | 10° C.<br>T<br>.13<br>E<br>.011 | 23°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1165.7<br>1174.4<br>1183.1<br>1191.8<br>1200.5<br>1209.2           | 117.38<br>119.12<br>120.87<br>122.63<br>124.41<br>126.20           | 10° C<br>T<br>.19<br>E<br>.025  |
| 10°<br>20°<br>30°<br>40°<br>50° |                                                                    | 3.492<br>3.790<br>4.099<br>4.421<br>4.755                   |                                 | 14°<br>10′<br>20′<br>30′<br>40′        | 703.51<br>711.97<br>720.44<br>728.90<br>737.37                     | 43.029<br>44.066<br>45.116<br>46.178<br>47.253                     | .220<br>-/65<br>-/05<br>-/05    | 24°<br>10′<br>20′<br>30′<br>40′        | 1217.9<br>1226.6<br>1235.3<br>1244.0<br>1252.8                     | 128.00<br>129.82<br>131.65<br>133.50<br>135.35                     | 100                             |
| 10'<br>20'<br>30'<br>40'<br>50' | 241.81<br>250.16<br>258.51<br>266.86<br>275.21<br>283.57<br>291.92 | 5.100<br>5.459<br>5.829<br>6.211<br>6.606<br>7.013<br>7.432 | 15° C.<br>T<br>.09<br>E<br>.004 | 15°<br>10′<br>20′<br>30′<br>40′<br>50′ | 745.85<br>754.32<br>762.80<br>771.29<br>779.77<br>788.26<br>796.75 | 48.341<br>49.441<br>50.554<br>51.679<br>52.818<br>53.969<br>55.132 | 15° C.<br>T<br>.19<br>E<br>.017 | 25°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1261.5<br>1270.2<br>1279.0<br>1287.7<br>1296.5<br>1305.3<br>1314.0 | 137.23<br>139.11<br>141.01<br>142.93<br>144.85<br>146.79<br>148.75 | 15° C.<br>T<br>.29<br>E<br>.038 |
| 10'<br>20'<br>30'<br>40'<br>50' | 300.28<br>308.64<br>316.99<br>325.35<br>333.71<br>342.08           | 7.863<br>8.307<br>8.762<br>9.230<br>9.710<br>10.202         | 20° C.                          | 16°<br>10′<br>20′<br>30′<br>40′<br>50′ | 805.25<br>813.75<br>822.25<br>830.76<br>839.27<br>847.78           | 56.309 -<br>57.498<br>58.699<br>59.914<br>61.141<br>62.381         | 20° C.<br>T                     | 26°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1322.8<br>1331.6<br>1340.4<br>1349.2<br>1358.0<br>1366.8           | 150.71<br>152.69<br>154.69<br>156.70<br>158.72<br>160.76           | 20° C                           |
| 10'<br>20'<br>30'<br>40'<br>50' | 350.44<br>358.81<br>367.17<br>375.54<br>383.91<br>392.28           | 10.707<br>11.224<br>11.753<br>12.294<br>12.847<br>13.413    | .13<br>E<br>.006                | 17°<br>10′<br>20′<br>30′<br>40′<br>50′ | 856.30<br>864.82<br>873.35<br>881.88<br>890.41<br>898.95           | 63.634<br>64.900<br>66.178<br>67.470<br>68.774<br>70.091           | .26<br>E<br>.022                | 27°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1375.6<br>1384.4<br>1393.2<br>1402.0<br>1410.9<br>1419.7           | 162.81<br>164.86<br>166.95<br>169.04<br>171.15<br>173.27           | .39<br>E<br>.051                |
| 10'<br>20'<br>30'<br>40'<br>50' | 400.66<br>409.03<br>417.41<br>425.79<br>434.17<br>442.55           | 13.991<br>14.582<br>15.184<br>15.799<br>16.426<br>17.065    | 25° C.<br>T<br>.16<br>E         | 18°<br>10′<br>20′<br>30′<br>40′<br>50′ | 907.49<br>916.03<br>924.58<br>933.13<br>941.69<br>950.25           | 71.421<br>72.764<br>74.119<br>75.488<br>76.869<br>78.264           | 25° C.<br>T<br>.32<br>E         | 28°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1428.6<br>1437.4<br>1446.3<br>1455.1<br>1464.0<br>1472.9           | 175.41<br>177.55<br>179.72<br>181.89<br>184.08<br>186.29           | 25° C<br>T<br>.49<br>E          |
| 10°<br>20°<br>30°<br>40°<br>50° | 450.93<br>459.32<br>467.71<br>476.10<br>484.49<br>492.88           | 17.717<br>18.381<br>19.058<br>19.746<br>20.447<br>21.161    | .007                            | 19°<br>10′<br>20′<br>30′<br>40′<br>50′ | 958.81<br>967.38<br>975.96<br>984.53<br>993.12<br>1001.7           | 79.671<br>81.092<br>82.525<br>83.972<br>85.431<br>86.904           | .028                            | 29°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1481.8<br>1490.7<br>1499.6<br>1508.5<br>1517.4<br>1526.3           | 188.51<br>190.74<br>192.99<br>195.25<br>197.53<br>199.82           | .065                            |
| 10°<br>20′<br>30′<br>40′<br>50′ | 501.28<br>509.68<br>518.08<br>526.48<br>534.89<br>543.29           | 21.887<br>22.624<br>23.375<br>24.138<br>24.913<br>25.700    | 30° C.<br>T<br>.19<br>E<br>.008 | 20°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1010.3<br>1018.9<br>1027.5<br>1036.1<br>1044.7<br>1053.3           | 88.389<br>89.888<br>91.399<br>92.924<br>94.462<br>96.013           | 30° C.<br>T<br>.39<br>E<br>.034 | 30°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1535.3<br>1544.2<br>1553.1<br>1562.1<br>1571.0<br>1580.0           | 202.12<br>204.44<br>206.77<br>209.12<br>211.48<br>213.86           | 30° C<br>T<br>.59<br>E<br>.078  |

#### TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

| I                                      | T                                                        | E                                                  | I=40°                           | I                                      | ī                                                        | E                                                   | I=50°                            | I                                      | ī                                                        | E                                                  | I=60°                           |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------------------------|
| 10°<br>20°<br>30°<br>40°<br>50°        | 1589.0<br>1598.0<br>1606.9<br>1615.9<br>1624.9<br>1633.9 | 216.3<br>218.7<br>221.1<br>223.5<br>226.0<br>228.4 | +<br>5° C.<br>T<br>.13          | 10°<br>20°<br>30°<br>40°<br>50°        | 2142.2<br>2151.7<br>2161.2<br>2170.8<br>2180.3<br>2189.9 | 387.4<br>390.7<br>394.1<br>397.4<br>400.8<br>404.2  | +<br>5° C.<br>T<br>.17<br>E      | 51°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2732.9<br>2743.1<br>2753.4<br>2763.7<br>2773.9<br>2784.2 | 618.4<br>622.8<br>627.2<br>631.7<br>636.2<br>640.7 | +<br>5° C.<br>T<br>.21          |
| 10'<br>20'<br>30'<br>40'<br>50'        | 1643.0<br>1652.0<br>1661.0<br>1670.0<br>1679.1<br>1688.1 | 230.9<br>233.4<br>235.9<br>238.4<br>241.0<br>243.5 | .023                            | 10°<br>20°<br>30°<br>40°<br>50°        | 2199.4<br>2209.0<br>2218.6<br>2228.1<br>2237.7<br>2247.3 | 407.6<br>411.1<br>414.5<br>418.0<br>421.4<br>425.0  | .037                             | 10'<br>20'<br>30'<br>40'<br>50'        | 2794.5<br>2804.9<br>2815.2<br>2825.6<br>2835.9<br>2846.3 | 645.2<br>649.7<br>654.3<br>658.8<br>663.4<br>668.0 | .056                            |
| 10°<br>20°<br>30°<br>40°<br>50°        | 1697.2<br>1706.3<br>1715.3<br>1724.4<br>1733.5<br>1742.6 | 246.1<br>248.7<br>251.3<br>253.9<br>256.5<br>259.1 | 10° C.<br>T<br>.26<br>E<br>.046 | 43°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2257.0<br>2266.6<br>2276.2<br>2285.9<br>2295.6<br>2305.2 | 428.5<br>432.0<br>435.6<br>439.2<br>442.8<br>446.4  | 10° C.<br>T<br>.34<br>E<br>.075  | 53°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2856.7<br>2867.1<br>2877.5<br>2888.0<br>2898.4<br>2908.9 | 672.7<br>677.3<br>682.0<br>686.7<br>691.4<br>696.1 | 10° C<br>T<br>.42<br>E<br>.112  |
| <b>34°</b> 10′                         | 1751.7<br>1760.8                                         | 261.8<br>264.5                                     | 100                             | <b>44°</b> , 10′                       | 2314.9<br>2324.6                                         | 450.0<br>453.6                                      |                                  | <b>54°</b>                             | 2919.4<br>2929.9                                         | 700.9<br>705.7                                     |                                 |
| 20'<br>30'<br>40'<br>50'               | 1770.0<br>1779.1<br>1788.2<br>1797.4                     | 267.2<br>269.9<br>272.6<br>275.3                   | 15° C.                          | 20'<br>30'<br>40'<br>50'               | 2334.3<br>2344.1<br>2353.8<br>2363.5                     | 457.3<br>461.0<br>464.6<br>468.4                    | 15° C.                           | 20′<br>30′<br>40′<br>50′               | 2940.4<br>2951.0<br>2961.5<br>2972.1                     | 710.5<br>715.3<br>720.1<br>725.0                   | 15° C                           |
| 35°<br>10′<br>20′<br>30′<br>40′<br>50′ | 1806.6<br>1815.7<br>1824.9<br>1834.1<br>1843.3<br>1852.5 | 278.1<br>280.8<br>283.6<br>286.4<br>289.2<br>292.0 | T .40 E .070                    | 45°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2373.3<br>2383.1<br>2392.8<br>2402.6<br>2412.4<br>2422.3 | 472.1<br>475.8<br>479.6<br>483.4<br>487.2<br>491.0  | .51<br>E<br>.116                 | 55°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2982.7<br>2993.3<br>3003.9<br>3014.5<br>3025.2<br>3035.8 | 729.9<br>734.8<br>739.7<br>744.6<br>749.6<br>754.6 | .63<br>E<br>.168                |
| 10'<br>20'<br>30'<br>40'<br>50'        | 1861.7<br>1870.9<br>1880.1<br>1889.4<br>1898.6<br>1907.9 | 294.9<br>297.7<br>300.6<br>303.5<br>306.4<br>309.3 | 20° C.<br>T                     | 46°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2432.1<br>2441.9<br>2451.8<br>2461.7<br>2471.5<br>2481.4 | 494.8<br>498.7<br>502.5<br>506.4<br>510.3<br>514.3  | 20° C.<br>T                      | 56°<br>10′<br>20′<br>30′<br>40′<br>50′ | 3046.5<br>3057.2<br>3067.9<br>3078.7<br>3089.4<br>3100.2 | 759.6<br>764.6<br>769.7<br>774.7<br>779.8<br>784.9 | 20° (<br>T                      |
| 10°<br>20°<br>30°<br>40°<br>50°        | 1917.1<br>1926.4<br>1935.7<br>1945.0<br>1954.3<br>1963.6 | 312.2<br>315.2<br>318.1<br>321.1<br>324.1<br>327.1 | .53<br>E<br>.093                | 47°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2491.3<br>2501.2<br>2511.2<br>2521.1<br>2531.1<br>2541.0 | 518.2<br>522.2<br>526.1<br>530.1<br>534.2-<br>538.2 | .68<br>E<br>.151                 | 57°<br>10′<br>20′<br>30′<br>40′<br>50′ | 3110.9<br>3121.7<br>3132.6<br>3143.4<br>3154.2<br>3165.1 | 790.1<br>795.2<br>800.4<br>805.6<br>810.9<br>816.1 | .225                            |
| 10°<br>20°<br>30°<br>40°<br>50°        | 1972.9<br>1982.2<br>1991.5<br>2000.9<br>2010.2<br>2019.6 | 330.2<br>333.2<br>336.3<br>339.3<br>342.4<br>345.5 | 25° C.<br>T<br>.67<br>E         | 48°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2551.0<br>2561.0<br>2571.0<br>2581.0<br>2591.0<br>2601.1 | 542.2<br>546.3<br>550.4<br>554.5<br>558.6<br>562.8  | 25° C.<br>T<br>.85<br>E          | 58°<br>10′<br>20′<br>30′<br>40′<br>50′ | 3176.0<br>3186.9<br>3197.8<br>3208.8<br>3219.7<br>3230.7 | 821.4<br>826.7<br>832.0<br>837.3<br>842.7<br>848.1 | 25° (<br>T<br>1.0°              |
| 10'<br>20'<br>30'<br>40'<br>50'        | 2029.0<br>2038.4<br>2047.8<br>2057.2<br>2066.6<br>2076.0 | 348.6<br>351.8<br>354.9<br>358.1<br>361.3<br>364.5 | . 117                           | 49°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2611.2<br>2621.2<br>2631.3<br>2641.4<br>2651.5<br>2661.6 | 566.9<br>571.1<br>575.3-<br>579.5<br>583.8<br>588.0 | .189                             | 59°<br>10′<br>20′<br>30′<br>40′<br>50′ | 3241.7<br>3252.7<br>3263.7<br>3274.8<br>3285.8<br>3296.9 | 853.5<br>858.9<br>864.3<br>869.8<br>875.3<br>880.8 | .283                            |
| 10°<br>20'<br>30'<br>40'<br>50'        | 2085.4<br>2094.9<br>2104.3<br>2113.8<br>2123.3<br>2132.7 | 367.7<br>371.0<br>374.2<br>377.5<br>380.8<br>384.1 | 30° C.<br>T<br>.80<br>E<br>.141 | 50°<br>10′<br>20′<br>30′<br>40′<br>50′ | 2671.8<br>2681.9<br>2692.1<br>2702.3<br>2712.5<br>2722.7 | 592.3<br>596.6<br>600.9<br>605.3<br>609.6<br>614.0  | 30° C.<br>T<br>1.02<br>E<br>.227 | 60°<br>10′<br>20′<br>30′<br>40′<br>50′ | 3308.0<br>3319.1<br>3330.3<br>3341.4<br>3352.6<br>3363.8 | 886.4<br>892.0<br>897.5<br>903.2<br>908.8<br>914.5 | 30° C<br>T<br>1.27<br>E<br>.340 |

#### TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

| I                                           | T                                                        | E                                                        | I=70°                            | I                                      | 1                                                        | E                                                        | I=80°                            | I                                      | T                                                        | E                                                        | I=90°                           |
|---------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------|
| 10°<br>20°<br>30°<br>40°<br>50°             | 3375.0<br>3386.3<br>3397.5<br>3408.8<br>3420.1<br>3431.4 | 920.2<br>925.9<br>931.6<br>937.3<br>943.1<br>948.9       | +<br>5° C.<br>T<br>.25           | 71°<br>10′<br>20′<br>30′<br>40′<br>50′ | 4086.9<br>4099.5<br>4112.1<br>4124.8<br>4137.4<br>4150.1 | 1308.2<br>1315.6<br>1322.9<br>1330.3<br>1337.7<br>1345.1 | +<br>5° C.<br>T<br>.30<br>E      | 81°<br>10<br>20′<br>30′<br>40′<br>50′  | 4893.6<br>4908.0<br>4922.5<br>4937.0<br>4951.5<br>4966.1 | 1805.3<br>1814.7<br>1824.1<br>1833.6<br>1843.1<br>1852.6 | +<br>5° C.<br>T<br>.36          |
| 10'<br>20'<br>30'<br>40'<br>50'             | 3442.7<br>3454.1<br>3465.4<br>3476.8<br>3488.3<br>3499.7 | 954.8<br>960.6<br>966.5<br>972.4<br>978.3<br>984.3       | .080                             | 72°<br>10′<br>20′<br>30′<br>40′<br>50′ | 4162.8<br>4175.6<br>4188.5<br>4201.2<br>4214.0<br>4226.8 | 1352.6<br>1360.1<br>1367.6<br>1375.2<br>1382.8<br>1390.4 | .110                             | 10°<br>20°<br>30°<br>40°<br>50°        | 4980.7<br>4995.4<br>5010.0<br>5024.8<br>5039.5<br>5054.3 | 1862.2<br>1871.8<br>1881.5<br>1891.2<br>1900.9<br>1910.7 | .149                            |
| 10 <sup>4</sup><br>20'<br>30'<br>40'<br>50' | 3511.1<br>3522.6<br>3534.1<br>3545.6<br>3557.2<br>3568.7 | 990.2<br>996.2<br>1002.3<br>1008.3<br>1014.4<br>1020.5   | 10° C.<br>T<br>.51<br>E<br>.159  | 73°<br>10′<br>20′<br>30′<br>40′<br>50′ | 4239.7<br>4252.6<br>4265.6<br>4278.5<br>4291.5<br>4304.6 | 1398.0<br>1405.7<br>1413.5<br>1421.2<br>1429.0<br>1436.8 | 10° C.<br>T .61<br>E .220        | 83°<br>10′<br>20′<br>30′<br>40′<br>50′ | 5069.2<br>5084.0<br>5099.0<br>5113.9<br>5128.9<br>5143.9 | 1920.5<br>1930.4<br>1940.3<br>1950.3<br>1960.2<br>1970.3 | 10° C<br>T<br>.72<br>E<br>.299  |
| 10'<br>20'<br>30'<br>40'<br>50'             | 3580.3<br>3591.9<br>3603.5<br>3615.1<br>3626.8<br>3638.5 | 1026.6<br>1032.8<br>1039.0<br>1045.2<br>1051.4<br>1057.7 | 15° C.                           | 74°<br>10′<br>20′<br>30′<br>40′<br>50′ | 4317.6<br>4330.7<br>4343.8<br>4356.9<br>4370.1<br>4383.3 | 1444.6<br>1452.5<br>1460.4<br>1468.4<br>1476.4<br>1484.4 | 15° C.                           | 10'<br>20'<br>30'<br>40'<br>50'        | 5159.0<br>5174.1<br>5189.3<br>5204.4<br>5219.7<br>5234.9 | 1980.4<br>1990.5<br>2000.6<br>2010.8<br>2021.1<br>2031.4 | 15° C                           |
| 10°<br>20°<br>30°<br>40°<br>50°             | 3650.2<br>3661.9<br>3673.7<br>3685.4<br>3697.2<br>3709.0 | 1063.9<br>1070.2<br>1076.6<br>1082.9<br>1089.3<br>1095.7 | T<br>.76<br>E<br>.240            | 75°<br>10′<br>20′<br>30′<br>40′<br>50′ | 4396.5<br>4409.8<br>4423.1<br>4436.4<br>4449.7<br>4463.1 | 1492.4<br>1500.5<br>1508.6<br>1516.7<br>1524.9<br>1533.1 | .91<br>E<br>.332                 | 85°<br>10′<br>20′<br>30′<br>40′<br>50′ | 5250.3<br>5265.6<br>5281.0<br>5296.4<br>5311.9<br>5327.4 | 2041.7<br>2052.1<br>2062.5<br>2073.0<br>2083.5<br>2094.1 | T<br>1.09<br>E<br>.450          |
| 10°<br>20°<br>30°<br>40°<br>50°             | 3720.9<br>3732.7<br>3744.6<br>3756.5<br>3768.5<br>3780.4 | 1102.2<br>1108.6<br>1115.1<br>1121.7<br>1128.2<br>1134.8 | 20° C.<br>T                      | 76°<br>10′<br>20′<br>30′<br>40′<br>50′ | 4476.5<br>4489.9<br>4503.4<br>4516.9<br>4530.4<br>4544.0 | 1541.4<br>1549.7<br>1558.0<br>1566.3<br>1574.7<br>1583.1 | 20° C.<br>T                      | 86°<br>10′<br>20′<br>30′<br>40′<br>50′ | 5343.0<br>5358.6<br>5374.2<br>5389.9<br>5405.6<br>5421.4 | 2104.7<br>2115.3<br>2126.0<br>2136.7<br>2147.5<br>2158.4 | 20° (                           |
| 10°<br>20°<br>30°<br>40°<br>50°             | 3792.4<br>3804.4<br>3816.4<br>3828.4<br>3840.5<br>3852.6 | 1141.4<br>1148.0<br>1154.7<br>1161.3<br>1168.1<br>1174.8 | 1.02<br>E<br>.321                | 77° 10′ 20′ 30′ 40′ 50′                | 4557.6<br>4571.2<br>4584.8<br>4598.5<br>4612.2<br>4626.0 | 1591.6<br>1600.1<br>1608.6<br>1617.1<br>1625.7<br>1634.4 | 1.22<br>E<br>.445                | 87°<br>10′<br>20′<br>30′<br>40′<br>50′ | 5437.2<br>5453.1<br>5469.0<br>5484.9<br>5500.9<br>5517.0 | 2169.2<br>2180.2<br>2191.1<br>2202.2<br>2213.2<br>2224.3 | 1.45<br>E<br>.603               |
| 10'<br>20'<br>30'<br>40'<br>50'             | 3864.7<br>3876.8<br>3889.0<br>3901.2<br>3913.4<br>3925.6 | 1181.6<br>1188.4<br>1195.2<br>1202.0<br>1208.9<br>1215.8 | 25° C.<br>T<br>1.28<br>E         | 78° 10′ 20′ 30′ 40′ 50′                | 4639.8<br>4653.6<br>4667.4<br>4681.3<br>4695.2<br>4709.2 | 1643.0<br>1651.7<br>1660.5<br>1669.2<br>1678.1<br>1686.9 | 25° C.<br>T<br>1.53<br>E         | 88°<br>10′<br>20′<br>30′<br>40′<br>50′ | 5533.1<br>5549.2<br>5565.4<br>5581.6<br>5597.8<br>5614.2 | 2235.5<br>2246.7<br>2258.0<br>2269.3<br>2280.6<br>2292.0 | 25° (<br>T<br>1.83              |
| 10°<br>20°<br>30°<br>40°<br>50°             | 3937.9<br>3950.2<br>3962.5<br>3974.8<br>3987.2<br>3999.5 | 1222.7<br>1229.7<br>1236.7<br>1243.7<br>1250.8<br>1257.9 | .403                             | 79°<br>10′<br>20′<br>30′<br>40′<br>50′ | 4723.2<br>4737.2<br>4751.2<br>4765.3<br>4779.4<br>4793.6 | 1695.8<br>1704.7<br>1713.7<br>1722.7<br>1731.7<br>1740.8 | .558                             | 89°<br>10′<br>20′<br>30′<br>40′<br>50′ | 5630.5<br>5646.9<br>5663.4<br>5679.9<br>5696.4<br>5713.0 | 2303.5<br>2315.0<br>2326.6<br>2338.2<br>2349.8<br>2361.5 | .756                            |
| 70°<br>10′<br>20′<br>30′<br>40′<br>50′      | 4011.9<br>4024.4<br>4036.8<br>4049.3<br>4061.8<br>4074.4 | 1265.0<br>1272.1<br>1279.3<br>1286.5                     | 30° C.<br>T<br>1.54<br>E<br>.485 | 80°<br>10′<br>20′<br>30′<br>40′<br>50′ | 4807.7<br>4822.0<br>4836.2<br>4850.5<br>4864.8<br>4879.2 | 1749.9<br>1759.0<br>1768.2<br>1777.4<br>1786.7<br>1796.0 | 30° C.<br>T<br>1.84<br>E<br>.671 | 90°<br>10′<br>20′<br>30′<br>40′<br>50′ | 5729.7<br>5746.3<br>5763.1<br>5779.9<br>5796.7<br>5813.6 | 2373.3<br>2385.1<br>2397.0<br>2408.9<br>2420.9<br>2432.9 | 30° C<br>T<br>2.20<br>E<br>.910 |

 $T = R \tan \frac{1}{2}I$ 

E = R exsec ½ I

#### TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

| I                                      | T                                                        | E                                                        | I=100°                          | I                                       | T                                                        | E                                                        | <u>I</u> =110°                   | I                                       | T                                                           | E                                                        | I=120°                          |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------|-----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------|
| 10°<br>20°<br>30°<br>40°<br>50°        | 5830.5<br>5847.5<br>5864.6<br>5881.7<br>5898.8<br>5916.0 | 2444.9<br>2457.1<br>2469.3<br>2481.5<br>2493.8<br>2506.1 | +<br>5° C.<br>T<br>.43<br>E     | 101°<br>10′<br>20′<br>30′<br>40′<br>50′ | 6950.6<br>6971.3<br>6992.0<br>7012.7<br>7033.6<br>7054.5 | 3278.1<br>3294.1<br>3310.1<br>3326.1<br>3342.3<br>3358.5 | +<br>5° C.<br>T<br>.51<br>E      | 111°<br>10′<br>20′<br>30′<br>40′<br>50′ | 8336.7<br>8362.7<br>8388.9<br>8415.1<br>8441.5<br>8468.0    | 4386.1<br>4407.6<br>4429.2<br>4450.9<br>4472.7<br>4494.6 | +<br>5° C.<br>T<br>.62<br>E     |
| 10°<br>20°<br>30°<br>40°<br>50°        | 5933.2<br>5950.5<br>5967.9<br>5985.3<br>6002.7<br>6020.2 | 2518.5<br>2531.0<br>2543.5<br>2556.0<br>2568.6<br>2581.3 | .200                            | 102°<br>10′<br>20′<br>30′<br>40′<br>50′ | 7075.5<br>7096.6<br>7117.8<br>7139.0<br>7160.3<br>7181.7 | 3374.9<br>3391.2<br>3407.7<br>3424.3<br>3440.9<br>3457.6 | .268                             | 112°<br>10′<br>20′<br>30′<br>40′<br>50′ | 8494.6<br>8521.3<br>8548.1<br>8575.0<br>8602.1<br>8629.3    | 4516.6<br>4538.8<br>4561.1<br>4583.4<br>4606.0<br>4628.6 | .360                            |
| 10'<br>20'<br>30'<br>40'<br>50'        | 6037.8<br>6055.4<br>6073.1<br>6090.8<br>6108.6<br>6126.4 | 2594.0<br>2606.8<br>2619.7<br>2632.6<br>2645.5<br>2658.5 | 10° C.<br>T<br>.86<br>E<br>.401 | 103°<br>10′<br>20′<br>30′<br>40′<br>50′ | 7203.2<br>7224.7<br>7246.3<br>7268.0<br>7289.8<br>7311.7 | 3474.4<br>3491.3<br>3508.2<br>3525.2<br>3542.4<br>3559.6 | 10° C.<br>T<br>.103<br>E<br>.536 | 113°<br>10′<br>20′<br>30′<br>40′<br>50′ | 8656.6<br>8684.0<br>8711.5<br>8739.2<br>8767.0<br>8794.9    | 4651.3<br>4674.2<br>4697.2<br>4720.3<br>4743.6<br>4766.9 | 10° C<br>T<br>1.25<br>E<br>.721 |
| 94°<br>10′<br>20′<br>30′<br>40′<br>50′ | 6144.3<br>6162.2<br>6180.2<br>6198.3<br>6216.4<br>6234.6 | 2671.6<br>2684.7<br>2697.9<br>2711.2<br>2724.5<br>2737.9 | 15° C.                          | 104°<br>10′<br>20′<br>30′<br>40′<br>50′ | 7333.6<br>7355.6<br>7377.8<br>7399.9<br>7422.2<br>7444.6 | 3576.8<br>3594.2<br>3611.7<br>3629.2<br>3646.8<br>3664.5 | 15° C.                           | 114°<br>10′<br>20′<br>30′<br>40′<br>50′ | 8822.9<br>8851.0<br>8879.3<br>8907.7<br>8936.3<br>8965.0    | 4790.4<br>4814.1<br>4837.8<br>4861.7<br>4885.7<br>4909.9 | 15° C                           |
| 10′<br>20′<br>30′<br>40′<br>50′        | 6252.8<br>6271.1<br>6289.4<br>6307.9<br>6326.3<br>6344.8 | 2751.3<br>2764.8<br>2778.3<br>2792.0<br>2805.6<br>2819.4 | T<br>1.30<br>E<br>.604          | 105°<br>10′<br>20′<br>30′<br>40′<br>50′ | 7467.0<br>7489.6<br>7512.2<br>7534.9<br>7557.7<br>7580.5 | 3682.3<br>3700.2<br>3718.2<br>3736.2<br>3754.4<br>3772.6 | T<br>1.56<br>E<br>.806           | 115°<br>10′<br>20′<br>30′<br>40′<br>50′ | 8993.8<br>9022.7<br>9051.7<br>9080.9<br>9110.3<br>9139.8    | 4934.1<br>4958.6<br>4983.1<br>5007.8<br>5032.6<br>5057.6 | T<br>1.93<br>E<br>1.09          |
| 10°<br>20°<br>30°<br>40°<br>50°        | 6363.4<br>6382.1<br>6400.8<br>6419.5<br>6438.4<br>6457.3 | 2833.2<br>2847.0<br>2861.0<br>2875.0<br>2889.0<br>2903.1 | 20° C.<br>T                     | 106°<br>10′<br>20′<br>30′<br>40′<br>50′ | 7603.5<br>7626.6<br>7649.7<br>7672.9<br>7696.3<br>7719.7 | 3791.0<br>3809.4<br>3827.9<br>3846.5<br>3865.2<br>3884.0 | 20° C.<br>T                      | 116°<br>10′<br>20′<br>30′<br>40′<br>50′ | 9169.4<br>9199.1<br>9229.0<br>9259.0<br>9289.2<br>9319.5    | 5082.7<br>5107.9<br>5133.3<br>5158.8<br>5184.5<br>5210.3 | 20° T                           |
| 10°<br>20°<br>30°<br>40°<br>50°        | 6476.2<br>6495.2<br>6514.3<br>6533.4<br>6552.6<br>6571.9 | 2917.3<br>2931.6<br>2945.9<br>2960.3<br>2974.7<br>2989.2 | .809                            | 107°<br>10′<br>20′<br>30′<br>40′<br>50′ | 7743.2<br>7766.8<br>7790.5<br>7814.3<br>7838.1<br>7862.1 | 3902.9<br>3921.9<br>3940.9<br>3960.1<br>3979.4<br>3998.7 | 2.08<br>E<br>1.08                | 117°<br>10′<br>20′<br>30′<br>40′<br>50′ | 9349.9<br>9380.5<br>9411.3<br>9442.2<br>9473.2<br>9504.4    | 5236.2<br>5262.3<br>5288.6<br>5315.0<br>5341.5<br>5368.2 | 2.5<br>E<br>1.4                 |
| 10'<br>20'<br>30'<br>40'<br>50'        | 6591.2<br>6610.6<br>6630.1<br>6649.6<br>6669.2<br>6688.8 | 3003.8<br>3018.4<br>3033.1<br>3047.9<br>3062.8<br>3077.7 | 2 18                            | 108°<br>10′<br>20′<br>30′<br>40′<br>50′ | 7886.2<br>7910.4<br>7934.6<br>7959.0<br>7983.5<br>8008.0 | 4018.2<br>4037.8<br>4057.4<br>4077.2<br>4097.1<br>4117.0 | 25° C.<br>T<br>2.61<br>E         | 118°<br>10′<br>20′<br>30′<br>40′<br>50′ | 9535.7<br>9567.2<br>9598.9<br>9630.7<br>9662.6<br>9694.7    | 5395.1<br>5422.1<br>5449.2<br>5476.5<br>5504.0<br>5531.7 | 25° (<br>T<br>3.10              |
| 10'<br>20'<br>30'<br>40'<br>50'        | 6708.6<br>6728.4<br>6748.2<br>6768.1<br>6788.1<br>6808.2 | 3092.7<br>3107.7<br>3122.9<br>3138.1<br>3153.3<br>3168.7 |                                 | 109°<br>10′<br>20′<br>30′<br>40′<br>50′ | 8032.7<br>8057.4<br>8082.3<br>8107.3<br>8132.3<br>8157.5 | 4137.1<br>4157.3<br>4177.5<br>4197.9<br>4218.4<br>4239.0 | 1.36                             | 119°<br>10′<br>20′<br>30′<br>40′<br>50′ | 9727.0<br>9759.4<br>9792.0<br>9824.8<br>9857.7<br>9890.8    | 5559.4<br>5587.4<br>5615.5<br>5643.8<br>5672.3<br>5700.9 | 1.8                             |
| 00°<br>10′<br>20′<br>30′<br>40′<br>50′ | 6828.3<br>6848.5<br>6868.8<br>6889.2<br>6909.6<br>6930.1 | 3184.1<br>3199.6<br>3215.1<br>3230.8<br>3246.5<br>3262.3 | 7<br>2.62<br>F                  | 110°<br>10′<br>20′<br>30′<br>40′<br>50′ | 8182.8<br>8208.2<br>8233.7<br>8259.3<br>8285.0<br>8310.8 | 4259.7<br>4280.5<br>4301.4<br>4322.4<br>4343.6<br>4364.8 | 30° C.<br>T<br>3.14<br>E<br>1.63 | 120°<br>10′<br>20′<br>30′<br>40′<br>50′ | 9924.0<br>9957.5<br>9991.0<br>10025.0<br>10059.0<br>10093.0 |                                                          | 30° (<br>T<br>3.8<br>E<br>2.2   |

T = R tan ½I

#### USEFUL RELATIONS

Lineal feet  $\times .00019 = miles$ Lineal vards  $\times .0006 = miles$ 

Square inches  $\times .007$  = square feet

Square feet  $\times$ .111 = square yards

Square yards  $\times .0002067 = acres$ 

Acres  $\times 4840$  = square yards Cubic inches  $\times .00058$  = cubic feet Cubic feet  $\times .03704$  = cubic yards

 $360^{\circ} = 21600' = 1296000''$ 

Radius = arc of 57.2957790°

Arc of  $1^{\circ}$  (radius = 1) = .017453292

Arc of 1' (radius = 1) = .000290888

Arc of 1" (radius = 1) = .000004848

Curvature of Earth's surface = about 0.7 feet in 1 mile Curvature in feet = 0.667 (Dist. in miles)<sup>2</sup> Difference between arc and chord length, 0.05 feet in 11½

miles

Probable error of a single observation =  $0.6754 \sqrt{\frac{\text{$\mu}$v}^2}$ 

Error in chaining of 0.01 feet in 100 feet:

Due to-

- 1. Length of tape error of 0.01 feet
- 2. Alignment. One end 1.4 feet out of line
- 3. Sag of tape at center of 0.61 feet.
- 4. Temperature difference of 15°
- 5. Difference of pull of 15 lbs.

#### SQUARE MEASURE

144 sq. inches = 1 sq. ft.

9 sq. ft. = 1 sq. yard

 $30\frac{1}{4}$  sq. yds. = 1 sq. rd.

40 sq. rds. = 1 rood.

4 roods = 1 acre

640 acres = 1 sq. mile.

#### SURVEYORS' MEASURE

7.92 inches = 1 link.

25 links = 1 red.

4 rds. = 1 chain.

10 sq. chains or 160 sq. rods = 1 acre.

640 acres = 1 sq. mile.

36 sq. miles (6 miles sq.) = 1 township.

TABLE VI. INCHES TO DECIMALS OF A FOOT

| In.     | 0     | 1              | 2     | 3      | 4               | 5                                       | 6     | 7     | 8      | 9              | 10         | 11    | In.          |
|---------|-------|----------------|-------|--------|-----------------|-----------------------------------------|-------|-------|--------|----------------|------------|-------|--------------|
| 0       | Foot  | .0833          | .1667 | .2500  | ,3333           | .4167                                   | .5000 | .5833 | .6667  | .7500          | .8333      | .9167 | 0            |
| 1-32    | .0026 | .0859          | .1693 | 2526   | .3359           | .4193                                   | .5026 | .5859 | .6693  | .7526          | .8359      | .9193 | 1-32         |
| 1-16    | .0052 | .0885          | .1719 | .2552  | .3385           | .4219                                   | .5052 | .5885 | .6719  | .7552          | .8385      | .9219 | 1-16         |
| 3-32    | .0078 | .0911          | .1745 | .2578  | .3411           | .4245                                   | .5078 | .5911 | .6745  | .7578          | .8411      | .9245 | 3-32         |
| 1-8     | .0104 | .0938          | .1771 | .2604  | .3438           | .4271                                   | .5104 | .5938 | .6771  | .7604          | .8438      | .9271 | 1-8          |
| 5-32    | .0130 | .0964          | .1797 | .2630  | .3464           | .4297                                   | .5150 | .5964 | .0191  | .7630          | 0400       | .9297 | 5-32<br>3-16 |
| 3-16    | .0100 | .0990          | .1823 | .2656  | .3490           | .4349                                   | .0100 | .0990 | 6040   | 7000           | 9516       | 0940  | 7-32         |
| 7-32    | .0182 | .1016          |       |        |                 |                                         |       |       |        |                |            |       |              |
| 1-4     | .0208 | .1042          | .1875 | .2708  | .3542           | .4375                                   | .5208 | .6042 | .5875  | .7708          | .8542      | .9375 | 1-4          |
| 9-32    | .0234 | .1068          | 1901  | 2734   | 3568            | .4401                                   | .5234 | .6068 | .6901  | 7734           | .8568      | .9401 | 9-32         |
| 5-16    | .0260 | .1094          | .1927 | .2760  | .3594           | .4427                                   | .5260 | .6094 | .6927  | .7760          | .8594      | .9427 | 5-16         |
| 11-32   | .0286 | .1120          | .1953 | .2786  | .3620           | .4453                                   | .5286 | .6120 | .6953  | .7786          | .8620      | .9453 | 11-3%        |
| 3-8     | .0313 | .1146          | .1979 | .2813  | .3646           | .4479                                   | .5313 | .6146 | .6979  | .7813          | .8646      | .9479 | 3-8          |
| 13_32   | .0339 | .1172          | .2005 | .2839  | .3672           | .4505                                   | .5339 | .6172 | 7005   | .7839          | .8012      | .9000 | 13-3         |
| 7-16    | .0300 | .1198          | .2031 | .2865  | .3698           | .4531                                   | .0300 | .0198 | .7051  | 6001           | 0794       | 0557  | 1E 96        |
| 15-32   | .0391 | .1224          | .2057 | .2891  | No and the same | Co. St. St. St.                         |       |       |        | Mary Mary Land |            | 100   | 16 30 3 A 2  |
| 1-2     | .0417 | .1250          | .2083 | .2917  | .3750           | .4583                                   | .5417 | .6250 | .7083  | .7917          | .8750      | .9583 | 1-2          |
| 17-32   | .0443 | .1276          | .2109 | .2943  | .3776           | .4609                                   | .5443 | .6276 | .7109  | .7943          | .8776      | .9609 | 17-32        |
| 9-16    | .0469 | .1302          | .2135 | .2969  | .3802           | .4635                                   | .5469 | .6302 | .7135  | .7969          | .8802      | .9635 | 9-16         |
| 19 - 32 | .0495 | .1328          | .2161 | .2995  | .3828           | .4661                                   | .5495 | .6328 | .7161  | .7995          | .8828      | .9661 | 19-32        |
| 5-8     | .0521 | .1354          | .2188 | .3021  | .3854           | .4688                                   | .5521 | .6354 | .7188  | .8021          | .8854      | .9688 | 5-8          |
| 21-32   |       | .1380          |       |        |                 |                                         |       |       |        |                |            |       |              |
| 11-16   |       | .1406          |       |        | .3900           | .4766                                   | .0010 | .0400 | 7000   | 0000           | 0000       | 0766  | 02 26        |
| 23-32   | 1     | .1432          |       | .3099  |                 | 100000000000000000000000000000000000000 |       |       |        |                | 100 10 2.7 |       | 1000         |
| 3-4     | .0625 | .1458          | .2292 | .3125  | .3958           | .4792                                   | .5625 | .6458 | .7292  | .8125          | .8958      | .9792 | 3-4          |
| 25-32   | .0651 | .1484          | .2318 | .3151  | .3984           | .4818                                   | .5651 | .6484 | .7318  | .8151          | .8984      | .9818 | 25-32        |
| 13-16   | .0677 | .1510          | .2344 | .3177  | .4010           | .4844                                   | .5677 | .6510 | .7344  | .8177          | .9010      | .9844 | 13-16        |
| 27-32   | .0703 | .1536          | .2370 | .3203  | .4036           | .4870                                   | .5703 | .6536 | .7370  | .8203          | .9036      | .9870 | 27-32        |
| 7-8     | .0729 | .1563          | .2396 | .3229  | .4063           | .4896                                   | .5729 | .6563 | .7396  | .8229          | .9003      | .9890 | 7-0          |
| 29-32   | .0755 | .1589          | .2422 | . 3255 | .4089           | .4922                                   | .5755 | .0589 | 7440   | .0200          | 0115       | 0049  | 15 16        |
| 15-16   | .0/81 | .1615<br>.1641 | 2448  | .3281  | 4115            | 4948                                    | 5807  | 6641  | 7474   | 8307           | 9141       | 9974  | 31_39        |
| 31-32   | .0807 | .1041          | .2414 | .3307  | .4141           | .4914                                   | .5007 | .0041 | . 1414 | .0001          | .0141      | .0014 | OT-ON        |
|         | 0     | 1              | 2     | 3      | 4               | 5                                       | 6     | 7     | 8      | 9              | 10         | 11    | T.           |

#### TABLE VII. MINUTES IN DECIMALS OF A DEGREE

| _  | -   |        | 1       |        | 1       |         |         |        |         |        | 1       |         |
|----|-----|--------|---------|--------|---------|---------|---------|--------|---------|--------|---------|---------|
| 0  | 30" | .00833 | 10' 30" | .17500 | 20' 30" | .34167  | 30′ 30″ | .50833 | 40′ 30″ | .67500 | 50′ 30″ | .84167  |
| 1  | 00  | .01667 | 11 00   | .18333 | 21 00   | .35000  | 31 00   | .51667 | 41 00   | .68333 | 51 00   | .85000  |
|    | 30  | .02500 | 30      | .19167 | 30      | .35833  | 30      | .52500 | 30      | .69167 | 30      | .85833  |
| 2  | 00  | .03333 | 12 00   | .20000 | 22 00   | .36667  | 32 00   | .53333 | 42 00   | .70000 | 52 00   | .86667  |
|    | 30  | .04167 | 30      | .20833 | 30      | .37500  | 30      | .54167 | 30      | .70833 | 30      | .87500  |
| 3  | 00  | .05000 | 13 00   | .21667 | 23 00   | .38333  | 33 00   | .55000 | 43 00   | .71667 | 53 00   | .88333  |
|    | 30  | .05833 | 30      | .22500 | 30      | .39167  | 30      | .55833 | 30      | .72500 | 30      | .89167  |
| 4  | 00  | .06667 | 14 00   | .23333 | 24 00   | .40000  | 34 00   | .56667 | 44 00   | .73333 | 54 00   | .90000  |
|    | 30  | .07500 | 30      | .24167 | 30      | .40833  | 30      | .57500 | 30      | .74167 | 30      | .90833  |
| 5  | 00  | .08333 | 15 00   | .25000 | 25 00   | .41667  | 35 00   | .58333 | 45 00   | .75000 | 55 00   | .91667  |
|    | 30  | .09167 | 30      | .25833 | 30      | .42500  | 30      | .59167 | 30      | .75833 | 30      | .92500  |
| 6  | 00  | .10000 | 16 00   | .26667 | 26 00   | .43333  | 36 00   | .60000 | 46 00   | .76667 | 56 00   | .93333  |
|    | 30  | .10833 | 30      | .27500 | 30      | .44167  | 30      | .60833 | 30      | .77500 | 30      | .94167  |
| 7  | 00  | .11667 | 17 00   | .28333 | 27 00   | .45000  | 37 00   | .61667 | 47 00   | .78333 | 57 00   | .95000  |
|    | 30  | .12500 | 30      | .29167 | 30      | .45833  | 30      | .62500 | 30      | .79167 | 30      | .95833  |
| 8  | 00  | .13333 | 18 00   | .30000 | 28 00   | .46667  | 38 00   | .63333 | 48 00   | .80000 | 58 00   | .96667  |
|    | 30  | .14167 | 30      | .30833 | 30      | .47500  | 30      | .64167 | 30      | .80833 | 30      | .97500  |
| 9  | 00  | .15000 | 19 00   | .31667 | 29 00   | .48333  | 39 00   | .65000 | 49 00   |        | 59 00   | .98333  |
|    | 30  | .15833 | 30      | .32500 | 30      | .49167  | 30      | .65833 | 30      | .82500 | 30      | .99167  |
| 10 | 00  | .16667 | 20 00   | .33333 | 30 00   | .500000 | 40 00   | .66667 | 50 00   | .83333 | 60 00   | 1.00000 |

#### TABLE VIII. MIDDLE ORDINATES OF RAILS

Length of Rail (feet)

| С,           | R<br>Feet | 30<br>Inch | 28<br>Inch | 26<br>Inch | 24<br>Inch | 22<br>Inch | 20<br>Inch | C    | R<br>Feet | 30<br>Inch | 28<br>Inch | 26<br>Inch | 24<br>Inch | 22<br>Inch | 20<br>Inch |
|--------------|-----------|------------|------------|------------|------------|------------|------------|------|-----------|------------|------------|------------|------------|------------|------------|
| <b>0–2</b> 0 | 17189     | .08        | .07        | .06        | .05        | .04        | .03        | 8    | 716.8     | 1.88       | 1.64       | 1.42       | 1.20       | 1.01       | .84        |
| 0-40         | 8594      | .16        | .14        | .12        | .10        | .08        | .07        | 9    | 637.3     | 2.12       | 1.84       | 1.60       | 1.35       | 1.14       | .94        |
| 1-0          | 5730      | .24        | .20        | .18        | .15        | .13        | .10        | 10   | 573.7     | 2.36       | 2.05       | 1.78       | 1.50       | 1.27       | 1.04       |
| 1-20         | 4297      | .31        | .27        | .23        | .20        | .17        | .13        | 11   | 521.7     | 2.59       | 2.26       | 1.95       | 1.65       | 1.39       | 1.15       |
| 1-40         | 3438      | .39        | .34        | .29        | .25        | . 21       | .17        | 12   | 478.3     | 3.83       | 2.47       | 2.15       | 1.81       | 1.54       | 1.26       |
| 2-0          | 2865      | .47        | .41        | .35        | .30        | .25        | .20        | 13   | 441.7     | 3.05       | 2.66       | 2.30       | 1.96       | 1.66       | 1.36       |
| 2-20         | 2456      | .55        | .48        | .41        | .35        | .29        | .23        | 14   | 410.3     | 3.30       | 2.87       | 2.48       | 2.10       | 1.78       | 1.46       |
| 2-40         | 2149      | .63        | .55        | .47        | .40        | .33        | .27        | 15   | 383.1     | 3.54       | 3.08       | 2.68       | 2.26       | 1.91       | 1.57       |
| 3-0          | 1910      | .71        | .62        | .53        | .45        | .38        | .31        | 16   | 359.3     | 3.76       | 3.28       | 2.83       | 2.40       | 2.04       | 1.67       |
| 3-20         | 1719      | .78        | .68        | .59        | .50        | .42        | .35        | 17   | 338.3     | 4.00       | 3.48       | 3.02       | 2.57       | 2.16       | 1.78       |
| 3-40         | 1563      | .86        | .75        | .65        | .55        | .46        | .38        | 18   | 319.6     | 4.21       | 3.67       | 3.18       | 2.70       | 2.28       | 1.87       |
| 4-0          | 1433      | .94        | .82        | .71        | .60        | .50        | .42        | 19   | 302.9     | 4.45       | 3.89       | 3.36       | 2.86       | 2.41       | 1.98       |
| 4-20         | 1323      | 1.02       | .89        | .77        | .65        | .55        | .45        | 20   | 287.9     | 4.70       | 4.09       | 3.55       | 3.00       | 2.54       | 2.09       |
| 4-40         | 1228      | 1.10       | .96        | .83        | .70        | .59        | .48        | 22   | 262.0     | 5.16       | 4.44       | 3.84       | 3.30       | 2.80       | 2.2        |
| 5            | 1146      | 1.18       | 1.03       | .89        | .75        | .63        | .52        | 24   | 240.5     | 5.64       | 4.92       | 4.20       | 3.59       | 3.04       | 2.50       |
| 6            | 955.3     | 1.41       | 1.23       | 1.06       | .90        | .76        | .62        | 26   | 222.3     | 6.07       | 5.29       | 4.58       | 3.88       | 3.29       | 2.7        |
| 7            | 819.0     | 1.65       | 1.44       | 1.24       | 1.05       |            | .73        | 1000 |           | na         | 0.2        | 0.0        | li ne      | 100        |            |

TABLE IX. SHORT RADIUS CURVES

| Radius<br>Feet | Chord<br>Feet | Central<br>Angle | Deflection<br>Angle | Deflection<br>for 1 Foot |
|----------------|---------------|------------------|---------------------|--------------------------|
| 35             | 10            | 16-26            | 8-13                | 49.3                     |
| 45             | 10            | 12-46            | 6-23                | 38.3                     |
| 50             | 15            | 17-16            | 8-38                | 34.5                     |
| 60             | 15            | 14-22            | 7-11                | 28.8                     |
| 75             | 15            | 11-30            | 5-45                | 23.0                     |
| 100            | 20            | 11-30            | 5-45                | 17.3                     |
| 120            | 20            | 9-34             | 4-47                | 14.3                     |
| 150            | 20            | 7-39             | 3-49                | 11.5                     |
| 190            | 25            | 7-32             | 3-46                | 9.15                     |
| 200            | 25            | 7-10             | 3-35                | 8.6                      |
| 225            | 25            | 6-25             | 3-12                | 7.7                      |
| 240            | 25            | 5-58             | 2-59                | 7.2                      |
| 250            | 25            | 5-44             | 2-52                | 6.9                      |
| 275            | 25            | 5-12             | 2-36                | 6.2                      |
| 288            | 50            | 9-58             | 4-59                | 6.0                      |
| 300            | 50            | 9-32             | 4-46                | 5.7                      |
| 350            | 50            | 8-12             | 4-06                | 4.9                      |
| 376            | 50            | 7-40             | 3-50                | 4.6                      |
| 400            | 50            | 7-10             | 3-35                | 4.3                      |
| 410            | 50            | 7-00             | 3-30                | 4.2                      |

To find length of curve divide angle from P. C. to P. T. by central angle of chord, and multiply by length of chord.

#### TABLE X. RODS IN FEET, 10THS AND 100THS OF FEET

| Rods | Feet   | Rods | Feet   | Rods | Feet   | Rods | Feet    | Rods | Feet    |
|------|--------|------|--------|------|--------|------|---------|------|---------|
| 1    | 16.50  | 21   | 346.50 | 41   | 676.50 | 61   | 1006.50 | 81   | 1336.50 |
| 2    | 33.00  | 22   | 363.00 | 42   | 693.00 | 62   | 1023.00 | 82   | 1353.00 |
| 3    | 49.50  | 23   | 379.50 | 43   | 709.50 | 63   | 1039.50 | 83   | 1369.50 |
| 4    | 66.00  | 24   | 396.00 | 44   | 726.00 | 64   | 1056.00 | 84   | 1386.00 |
| 5    | 82.50  | 25   | 412.50 | 45   | 742.50 | 65   | 1072.50 | 85   | 1402.50 |
| 6    | 99.00  | 26   | 429.00 | 46   | 759.00 | 66   | 1089.00 | 86   | 1419.00 |
| 7    | 115.50 | 27   | 445.50 | 47   | 775.50 | 67   | 1105.50 | 87   | 1435.50 |
| 8    | 132.00 | 28   | 462.00 | 48   | 792.00 | 68   | 1122.00 | 88   | 1452.00 |
| 9    | 148.50 | 29   | 478.50 | 49   | 808.50 | 69   | 1138.50 | 89   | 1468.50 |
| 10   | 165.00 | 30   | 495.00 | 50   | 825.00 | 70   | 1155.00 | 90   | 1485.00 |
| 11   | 181.50 | 31   | 511.50 | 51   | 841.50 | 71   | 1171.50 | 91   | 1501.50 |
| 12   | 198.00 | 32   | 528.00 | 52   | 858.00 | 72   | 1188.00 | 92   | 1518.00 |
| 13   | 214.50 | 33   | 544.50 | 53   | 874.50 | 73   | 1204.50 | 93   | 1534.50 |
| 14   | 231.00 | 34   | 561.00 | 54   | 891.00 | 74   | 1221.00 | 94   | 1551.00 |
| 15   | 247.50 | 35   | 577.50 | 55   | 907.50 | 75   | 1237.50 | 95   | 1567.50 |
| 16   | 264.00 | 36   | 594.00 | 56   | 924.00 | 76   | 1254.00 | 96   | 1584.00 |
| 17   | 280.50 | 37   | 610.50 | 57   | 940.50 | 77   | 1270.50 | 97   | 1600.50 |
| 18   | 297.00 | 38   | 627.00 | 58   | 957.00 | 78   | 1287.00 | 98   | 1617.00 |
| 19   | 313.50 | 39   | 643.50 | 59   | 973.50 | 79   | 1303.50 | 99   | 1633.50 |
| 20   | 330.00 | 40   | 660.00 | 60   | 990.00 | 80   | 1320.00 | 100  | 1650.00 |

#### TABLE XI. LINKS IN FEET, 10THS AND 100THS OF FEET

|    | Links | Feet  |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|    | 1     | 0.66  | 18    | 11.88 | 35    | 23.10 | 52    | 34.32 | 69    | 45.54 | 86    | 56.76 |
| 12 | 2     | 1.32  | 19    | 12.54 | 36    | 23.76 | 53    | 34.98 | 70    | 46.20 | 87    | 57.42 |
| 0′ | 3     | 1.98  | 20    | 13.20 | 37    | 24.42 | 54    | 35.64 | 71    | 46.86 | 88    | 58.08 |
| 1  | 4     | 2.64  | 21    | 13.86 | 38    | 25.08 | 55    | 36.30 | 72    | 47.52 | 89    | 58.74 |
|    | 5     | 3.30  | 22    | 14.52 | 39    | 25.74 | 56    | 36.96 | 73    | 48.18 | 90    | 59.40 |
| 2  | 6     | 3.96  | 23    | 15.18 | 40    | 26.40 | 57    | 37.62 | 74    | 48.84 | 91    | 60.06 |
| 3  | 7     | 4.62  | 24    | 15.84 | 41    | 27.06 | 58    | 38.28 | 75    | 49.50 | 92    | 60.72 |
|    | 8     | 5.28  | 25    | 16.50 | 42    | 27.72 | 59    | 38.94 | 76    | 50.16 | 93    | 61.38 |
| 4  | 9     | 5.94  | 26    | 17.16 | 43    | 28.38 | 60    | 39.60 | 77    | 50.82 | 94    | 62.04 |
|    | 10    | 6.60  | 27    | 17.82 | 44    | 29.04 | 61    | 40.26 | 78    | 51.48 | 95    | 62.70 |
| 5  | 11    | 7.26  | 28    | 18.48 | 45    | 29.70 | 62    | 40.92 | 79    | 52.14 | 96    | 63.36 |
| 6  | 12    | 7.92  | 29    | 19.14 | 46    | 30.36 | 63    | 41.58 | 80    | 52.80 | 97    | 64.02 |
|    | 13    | 8.58  | 30    | 19.80 | 47    | 31.02 | 64    | 42.24 | 81    | 53.46 | 98    | 64.68 |
| 7  | 14    | 9.24  | 31    | 20.46 | 48    | 31.68 | 65    | 42.90 | 82    | 54.12 | 99    | 65.34 |
|    | 15    | 9.90  | 32    | 21.12 | 49    | 32.34 | 66    | 43.56 | 83    | 54.78 | 100   | 66.00 |
| 8  | 16    | 10.56 | 33    | 21.78 | 50    | 33.00 | 67    | 44.22 | 84    | 55.44 | 101   | 66.66 |
| 9  | 17    | 11.22 | 34    | 22.44 | 51    | 33.66 | 68    | 44.88 | 85    | 56.10 | 102   | 67.32 |

# Sokkia Surveying Systems, Instruments, Equipment and Supplies

- •Total Stations
- •Electronic Field Book
- •Mapping Software
- •EDM Systems
- Theodolites
- · Levels
- Transits
- Tripods
- · Rods
- •Hand Levels
- Tapes
- •Planimeters
- Accessories

The paper in this book is a fine quality thick 50% rag ledger specially treated during the making to give "High Wet Strength." It retains is strength and writing surfaces when dried after having been subjected to extreme weather conditions.

# **SOKKIN**

## **FIELD BOOKS**

Rain-resistant fine quality ledger paper, bound in highvisibility durable yellow imitation leather. Printed in waterproof ink.

Stock No. 8152-00 Transit Field Book. Size 4<sup>1</sup>/<sub>2</sub> x 7<sup>1</sup>/<sub>4</sub> inches.

Stock No. 8152-05 Economy Field Book. Spiral bound, Paperback. Size 41/2 x 71/4 inches.

Stock No. 8152-10 Economy Field Book. Same as above except saddle stitched (stapled).

Left page blue horizontal lines; red vertical lines.

4 horizontal and 8 vertical blue lines; red vertical center line.

Stock No. 8152-20 Mining Transit Book. Size 4<sup>1</sup>/<sub>2</sub> x 7<sup>1</sup>/<sub>4</sub> inches.

Left page blue horizontal lines; red vertical center line. Right page 8 x 8 blue lines; red vertical lines.

Stock No. 8152-30 Engineers Field Book. Size  $4^{1/2} \times 7^{1/4}$  inches.

Left page blue horizontal lines; red vertical lines. Right page 10 x 10 blue lines; red vertical center line. Inch

lines heavy.

Stock No. 8152-50 Level Book Size 4 x 6<sup>1</sup>/<sub>2</sub> inches.

Stock No. 8152-55 Level Book Size 4 x 7<sup>1</sup>/<sub>4</sub> inches.

Both pages blue horizontal lines; red vertical lines. 6 vertical columns.

Stock No. 8152-60 Field Book. Size  $4^{1}/2 \times 7^{1}/4$  inches. Left page blue horizontal lines; red vertical lines. Right page  $4 \times 4$  blue lines; red vertical center line.

Stock No. 8152-75 Cross Section Book. Size 6<sup>1</sup>/<sub>2</sub> x 8<sup>1</sup>/<sub>2</sub> inches.

Both pages 10 x 10 blue lines; inch lines slightly heavier.

Stock No. 8152-80 Duplicating Transit Book. Size 41/2 x 71/4 inches.

Left page blue horizontal lines; red vertical lines.

4 horizontal and 8 vertical blue lines; red vertical center line. Pages numbered and perforated. Carbon paper.

#### CURVE FORMULAE

D = Degree of Curve

10 =1-Degree of Curve

20 = 2-Degree of Curve

P.C. = Point of Curve

P.T. = Point of Tangent

P.I. = Point of Intersection

= Intersection of Angle, Angle between Two Tangents

L = Length of Curve. from P.C. to P.T.

T =Tangent Distance

F =External Distance

R = Radius

L.C. = Length of Chord

= Length of Middle Ordinate

C = Length of Sub-Chord

d = Angle of Sub-Chord

$$R = \frac{L.C.}{2 \sin \frac{1}{2} I} T = R \tan \frac{1}{2} I = \frac{L.C.}{2 \cos \frac{1}{2} I}$$

$$\frac{L.C.}{2} = R \sin \frac{I}{2}, D \, 1^{\circ} = R = 5730, D \, 2^{\circ} = \frac{5730}{2}, D = \frac{5730}{R}$$

$$M = R \, (1 - \cos \frac{1}{2} I), = R - R \cos \frac{I}{2}$$

$$\frac{E + R}{R} = \sec \frac{I}{R}, \frac{R - M}{R} = \cos \frac{I}{R}$$

$$\frac{E+R}{R} = \sec \frac{I}{2}, \frac{R-M}{R} = \cos \frac{I}{2}$$

$$c = 2 R \sin \frac{1}{2} d, d = \frac{c}{2 R}$$

L.C. =  $2 R \sin \frac{1}{2} I$ , E = R (sec  $\frac{1}{2} I - 1$ ), = R sec  $\frac{1}{2} - R$ 

#### Minutes in Decimals of a Degree

|    |       |     |       |     | 200   |     | 200 200 200 100 | 1871.00 |       |     |        |
|----|-------|-----|-------|-----|-------|-----|-----------------|---------|-------|-----|--------|
| 1' | .0167 | 11' | -1833 | 21' | ·3500 | 31' | -5167           | 41'     | -6833 | 51' | -8500  |
| 2  | .0333 | 12  | -2000 | 22  | -3667 | 32  | -5333           | 42      | .7000 | 52  | -8667  |
| 3  | .0500 | 13  | -2167 | 23  | -3833 | 33  | -5500           | 43      | .7167 | 53  | -8833  |
| 4  | .0667 | 14  | -2333 | 24  | .4000 | 34  | .5667           | 44      | .7333 | 54  | -9000  |
| 5  | .0833 | 15  | -2500 | 25  | -4167 | 35  | -5833           | 45      | .7500 | 55  | -9167  |
| 6  | .1000 | 16  | -2667 | 26  | .4333 | 36  | -6000           | 46      | .7667 | 56  | .933   |
| 7  | -1167 | 17  | -2833 | 27  | .4500 | 37  | -6167           | 47      | .7833 | 57  | .9500  |
| 8  | -1333 | 18  | .3000 | 28  | -4667 | 38  | -6333           | 48      | -8000 | 58  | .9667  |
| 9  | .1500 | 19  | -3167 | 29  | -4833 | 39  | -6500           | 49      | -8167 | 59  | .983   |
| 10 | -1667 | 20  | -3333 | 30  | .5000 | 40  | -6667           | 50      | -8333 | 60  | 1.0000 |

#### Inches in Decimals of a Foot

| 1<br>16<br>·0052 | $\begin{array}{c} \frac{3}{32} \\ \cdot 0078 \end{array}$ | 1<br>8<br>·0104 | 3<br>16<br>⋅0156 | ·0208      | -5<br>16<br>-0260 | $\frac{3}{8}$ $\cdot 0313$ | $\frac{1}{2}$ $\cdot 0417$ | 5<br>8<br>⋅0521 | $\frac{3}{4}$ $\cdot 0625$ | $\begin{array}{c} \frac{7}{8} \\ \cdot 0729 \end{array}$ |
|------------------|-----------------------------------------------------------|-----------------|------------------|------------|-------------------|----------------------------|----------------------------|-----------------|----------------------------|----------------------------------------------------------|
| 1<br>·0833       | 2<br>·1667                                                | 3<br>·2500      | 4<br>·3333       | 5<br>·4167 | 6<br>·5000        | 7<br>·5833                 | <b>8</b> · 6667            | 9<br>·7500      | 10 .8333                   | 11<br>·9167                                              |

# SOKKI∧™

MADE IN U.S.A.