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ABSTRACT

This dissertation describes an analysis scheme to predict
the overload response of simple-span, right or skewed, beam-slab type
highway bridge superstructures with a reinforced concrete deck slab
and reinforced or prestressed concrete beams. As a subset of the
overall investigation, analytic models for both the individual beam
and slab components of the bridge sﬁperstructure are presented. The
analysis scheme employs the finite element displacement method. The
bridge superstructure is discretized into beam and slab finite ele-
ments. These finite elements are allowed to deform in both bending

and in-plane displacement modes.

To allow for the initiation and propagation of material non-
linearity during overloading, the beam and slab finite elements are
divided in;o a series of layers through their depth. Nonlinear stress-
strain laws are employed on a layer by layer basis. Each layer is
assumed to be in the plane state-of-stress. Beam concrete, prestress—
ing steel, and beam and slab mild steel reinforcement are assumed to
be stressed.uniaxially. A biaxial stress field is used for the slab
concrete. In addition to the inelastic stress—strain behavior, non-
linearities including cracking and crushing of the concrete and yield-

ing of the steel are also considered. In order to solve for the

~1A=




nonlinear overload response of the bridge superstructure a piece-wise
linear incremental-iterative tangent stiffness approximation is em—
ployed. The iteration procedure used within each load step gives a
solution which satisfies convergence criteria. The total force-
displacement response is obtained by adding the values corresponding

to each load increment.

The method is verified through comparisons with laboratory
and field overload tests of seven‘reinforced concrete slabs, five
full-scale bridge superstructures, and numerous beams. The phase con-
cerned with the overload analysis of reinforced and prestressed con-
crete bridge beams has beeﬁ previously verified and reported in the

literature.

This report is based on the doctoral research of the first

author.
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Overloading of the superstructure may cause cracking and
crushing of the concrete and yielding of the steel. These material
nonlinearities, including the inelastié stress—-strain behavior for both
steel and concrete, are permitted in the analysis. Tﬁus, structural
damage caused by the overload vehicle can be assessed. In order to
facilitate the inclusion of the material nonlinearities, the beam and
slab finite elements are dividéd into a series of layers as shown in
Fig. 2. The extent of damage, including cracking and crushing of the
concrete and yielding of the steel, is monitored on a layer by layer

basis throughout the superstructure.

Inclusion of material nonlinearities necessitates adoption of
a particular solution scheme other than that used for linearly elastic
problems. -Thus a tangent‘stiffness approach has been chosen where the
solution is dbﬁaineﬂ by solving for the response in a series of piece-
wise~linear steps. Iterations may take place within each step so as to

ensure convergence of the solution.

The accuracy of the method is illustrated by several com-
parisons between experimental and analytical results. Satisfactory
agreement is obtained for all test cases. Thus the analytic model and

solution technique are verified.

Superstructures built with a skew have also been successfully
analyzed (see Chapter 4). Comparisons of experimental and analytical
load-deflection histories indicate that a marked iﬁprovement in the
results can be obtained by including the skew angle. However, correla—-

tive studies on the overload behavior of isolated skewed slabe were
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not carried out. The effegt of particular boundary conditions, element
geometries, and.loadings for the slab model in the ineléstic raﬁge was
not evaluated. Thus, the accuracy of the model, as applied to skewed
slabs, in determining local effects such as crack patterns could not be

ascertained.

1.1 Problem Statement

The overloading of beam-slab type highway bridges is becoming

a very common occurrence due to the increasing use of large capacity
vehicles. An overload vehicle is defined as one which exceeds in some
way the design vehicle weight for which the superstructure was propor-
tioned. Overloading of bridge superstructures can result: (1) from
the transport of heavy industrial loads, construction equipment, and
National Defense Equipment, (2) from the legal across—the-board in-
crease in vehicular weight limits, and (3) from additional permit
overloads.

ﬂIf.tﬁe highway bridge superstrutture does not have sufficient
reser?é'éapécity'to~carf§'phe overload vehicle, then the excessivé load
may cause detrimental effects to the superstructure. The applied
overload may produce a response in the elastic region or in the inelas~
tic, i.e. nonlinear, region. The nonlinear region lies between the
elastic region and'the ultimate capacity. An elastic analysis and/or
ultimate strength analysis will not allow for the assessment of
damage to the superstructure for a load level between the elasfic

and ultimate loads. Therefore, a nonlinear analysis, which allows



for the assessment of damage in the inelastic region, is required

in the overload analysis scheme,

Currently there does not exist, with the exception of the
method presented herein, an analytic scheme to realistically predict
the structural behavior and associated structural damage, if any, that
would occur to the bridge superstructure when subjected to an overload

vehicle.

1.2 Purpose and Scope of the Research

The purpose of the overall research program is to develop an
analytic model and solution technique to predict the full-range over-
loadgresﬁon3é‘df;bgamesléf type Highway bridge superstructures(Ref.24).
Due to thé cbmﬁléxiﬁy'df:the pf@blem, the overall research is divided
into three phases:

1. The development of an inelastic analysis technique for pre-

strésséd and reinforced concrete beams (Refs. 27,28,31,32).

2. The development of an inelastic analysis technique for rein-

forced concrete slabs (Ref. 43).

3. Interfacing the separate beam and slab analysis techniques,
which were developed and verified in phases 1 and 2, so as to
formulate a consistent analysis technique for prestressed and
reinforced concrete highway bridge superstructures

(Refs. 45,46,47).




Phase 1 of the overall research had been previously developed and veri-
fied. This phase islpresented in Refs. 26-30 and 32. Therefore, since
this phase was not part of the particular research being reported, only

major concepts concerning Phase 1 will be given.

This report deals primarily with Phases 2 and 3 and has

included the following subtopics:
For the slabs:
1. Analytic queling of reinforced concrete slabs (s.ee
Qhapter 3)
2. Anaiytic modeling of the complete stress~strain behavior

for the biaxially stressed concrete including cracking

and crushing (see Chapter 2).

3. Analytic modeling of the stress-strain behavior for the
uniaxially stressed steel including yielding (see
Chapter 2).
’f_.-4; fVerificatiqn of the slab analysis technique by comparing

analytic restilts to experimental tests (see Chapter 4).

For the bridge:

1. Analytic mgdeling of right and skewed highway bridge

superstructures (see Chapter 3).

2. Verification of fhe analytic model and solution technique
by comapring analytic results to experimental tests (see

Chapter 4).




1.3 Previous Studies

The end product of this research is to determine the overload
response of beam-slab superstructures. Therefore, only those studies

applicable to this problem will be reviewed. -

Very few techniques applicable to the overload analysis of
beam-slab type highway bridge superstructures have been reported in the
literature. Analytic techniques that have been developed for possible
application to the overload problem are the finite element method, the

finite difference technique, and the lumped parameter technique.

The finite difference technique has been applied to the in-

elastic analysis of plates by relatively few researchers (e.g. Ref. 6).

'This has been &ﬁeutputhe complexities in establishing either the appro-
priaté;ﬁénlinéar;différéﬁtia1 équatiOn.or'the aseignment of proper
stiffnéss propergiésviﬁ a'pieéewi§e¥iinear incremental solution.
Furthermore, the manual algebraic operations required in the coding of
these operations for computer based solutions have always been dis-
couraging. This approach is further complicated in bridge overload
problems by the necessity to solve coupled in-plane and out—of-plane
differential equations which is discussed in Section 1.4. This aspect
alone necessitates the adoption of a solution technique other than

finite differences.

Some of the complexities involved in the finite difference
technique have been eliminated through the use of the lumped parameter

technique. Lopez and Ang (Ref. 38) applied this method to mild steel



plates. However, its applicability to reinforced concrete slabs and
especially to a bridge overload analysis presents a major problem,

Its accuracy, generality, and ease of usage have not been demon-

strated as yet.

The finite element method enjoys a history of application to
complex problems involving material nonlinearities, various boundary
conditions, and loadings. This method has been used extensively in
both the analysis of steel,reinforced concrete, and prestressed con-
crete beams (e.g. Refs. 14,27,29,30,31,32,42,56,58,59) and reinforced

concrete slabs (e.g. Refs. 5,14,16,22,23,35).

Wegmuller and Kostem (Ref. 59) have developed an analysis
technique and computer program to predict the elastic-plastic behavior
of plates and eccentrically stiffened plate systems. The technique
employed the finite element method which used the rectangular plate
bending element with twelve degrees of freedom developed by Adini and
Clough and independently by Melosh (Ref. 1). In-plane displacement
fields reported by Clough (Ref. 9) were also employed in the analysis
technique. The beam and slab elements were divided into a series of
layers through the depth so that the spread of yielding through the
eccentrically stiffened plate system could be simulated. In this anal-

ysis a material obeying von Mises yield condition was assumed.

Kulicki and Kostem (Refs. 26,32) developed a technique based
on the finite element method for the inelastic analysis of plates com-
posite with eccentrically placed reinforced or prestressed concrete

beams. In this analysis the von Mises yield criterion was employed for

-7-




the plate as was previously done by Wegmuller and Kostem (Ref. 59).
However, réinforced and prestressed concrete beams were realistically:
modeled. Cracking and crushing of the concrete and yielding of the
steel in the beams were considered. Separate stress-strain curves for

the individual concrete layers and steel layers were also employed.

The above applications have demonstrated that the finite ele-
ment method is an efficient tool that can be applied to the inelastic
analysis of eccentrically stiffened slab systems. Complexities in the
stress—strain behavior of the material or materials can be incorporated

directly into the analysis scheme.

© . 1.4 The Analytic Model.

 ~,Thejﬁh;raétéfi§£icézof theiénalytic_ﬂbdel;'i.é. the‘anaiytic

representation of thé;real.struéture, muét be chosen to adequately des-
cribe the physical model. In the current context it is desired to des-
cribe the response of prestressed and reinforced concrete highway bridge ‘
supérstructures subjected to a vehicular overload. In order to ade- ‘
quately reflect the inelastic behavior of eccentrically stiffened beam-
slab highway bridge superstructures, the following must be considered:

1. The out—of-plane response

2. The in-plane response

3.. The interaction between the in-plane and out—of-plane

responses.



When the superstructure is subjected to wheel loads, both
longitudinal and transverse bending develops in the deck élab while
longitudinal bending is predominant in the beams. Thus; the out-of-
plane response is primarily described by the fiexuré behavior of the
superstructure. Also, beams and slabs with dimensions similar to
those encountered in bridge design primarily deform in a flexure mode

when subjected to out-of-plane loading.

The deck slab and beams are considered to act compositely.

For illustration purposes, the deck slab can be thought of as the com-
pression flange of a composite beam where the eccentricity of the beams
may induce in-plane stresses which are of the same order of magnitude
or even greater than the bending stresses. The bending and inplane
responses are interdependent for the class of problems considered in
this report. This interdependency, which is commonly referred to as
coupling, is manifested in the following response characteristic:
applicatidn of an out-of-plane (or in-plane) force causes both out—of-
plane and in-plane deformations in both the deck slab and the beams.
This interdependency arises from an unsymmetric distribution of stiff-~
ness properties about a reference axis (Ref. 44). This unsymmetric
distribution of stiffness properties is (1) due to the geometry of the
superstructure, e.g. the eccentric placement of thé beams, and (2) due
to the nonlinearities inherent in the stress—strain behavior of the
materials. Terms describing the in-plane and out-of-plane responses

and the associated coupling are explicitly presented in Chapter 3.



Material nonlinearities affect the in-plane, bending, and
coupling terms and have a significant effect on the behavior of the
superstructure. The realistic representation of material behavior is
a key factor in the analysis scheme. Material response modes appro—
priate to the analysis of beam-slab type highway bridge superstructures

include:
For the beam:

1. Concrete, mild steel reinforcing, and prestressing steel

subjected to uniaxial stress states

For the slab:

1. Concrete subjected to biaxial stress states
2, Mild steel reinforcing subjected to uniaxial stress

" states

Since inelastic response due to overloading is expected, the nonline-
arities inherent in the stress—strain behavior of thevspecific mate-
rials mentioned above must be considered. These nonlinearities
include cracking and crushing of the concrete under both uniaxial and

biaxial stress fields and yielding of the steel.

The basic stress—~strain relationéhips for concrete (Refs. 4,
13,19,20,27,28,30,33,36,37,40,48,50) and for both mild steel reinforc-
ing bars and prestressing strands (Refs. 27,28,30,49) have been pre-
viously defined both experimentally and analytically. These basic

stress-strain relationships must be utilized in the stiffness

-10~




forﬁulation for the various finite elements employed in the analysis
scheme. Thé nonlinearities inherent in the stress-strain relations
have profound affect on the stiffness properties of the elements and,
consequently, on the analytical response of the bridge superstructure.
To accouﬁt for the variation of material properties through the depth
of the slab and the beams, whose aggregation is used to model the
superstructure, the finite elements are divided into a series of layers
through their depth. Each layer is assumed to be in a state of plane
stress (see Fig. 2). By defining the stress-strain relation on a layer
by layer basis, the penetration of cracking, crushing, and yielding can
be monitored throughout the structure. Excellent agreement has been
noted in previous investigations that utilized the layer approach

(Refs. 3,15,16,27,32,35,57,59,61) .

Structural phenomena that have significant effect on the be-
havior of bridge superstructures have been reviewed in the previous
paragraphs. A consistent set of assumptions is made which simplify the
requirements that may be placed on the analytic model but still pemmit
the simulation of the basic structural response of the bridge super-
structure.

The beams under consideration are assumed:

1. To be prismatic

2, To be simply supported

3. To be made of reinforced or prestressed concrete

4. To have only strong axis bending (minor axis bending and

torsional stiffnesses are neglected)

-11-



5. To have perfect bond between steel and concrete

6. To fail in a flexural mode.

The slabs under consideration are assumed:

1. To lie in one plane, i.e. be planar

2, To have a constant thickness

3. To have arbitrary rhomboidal boundaries

4. To have tension and compression reinforcement placed at
arbitrary angles and depths within the slab

5. To be subjected to vertical concentrated and patch loads,
concentrated innﬁlane loads, and moments

6. -To}héﬁe perfect bond between the steel and concrete

7. To fail in a flexural mode

The beam~slab superstructures under consideration are assumed:

1.> To be simply supported

2. To be subjected to static loading

3. To be under small strain and small deformation fields

4, To have full or no composite action between the beams
and the deck slab

5. To fail in a flexural mode

Thus, the development of the analytic model has been based on the pre-
mise that the inelastic response and the progressive collapse of the
slab, beams, and therefore, the bridge superstructure is primarily due
to the flexural response and its associated in—-plane and coupling
behavior.

-12-




The geometry and loading for the class of problems being con-
sidered in this investigation permit exclusion of several important

structural effects. These include:

1. Local buckling and lateral torsional buckling:
The geometry of the deck slab and reinforced or prestressed
concrete bridge beams excludes the possibility of local or

lateral-torsional buckling.

2. Tagxsional sﬁiffness of the beams:
Torsional stiffness of the beams has a minor effect on the
behavior of right angle beam-slab bridges and therefore, it
can be neglected (Refs. 26,32,58). Torsion beﬁomes more
.important in the case of skewed superstructures. A limited
‘ﬁumber of analyses carried out on the effect of torsion in
right angle superstructures seem to indicate that results

will be on the conservative side if torsion is neglected

(Ref. 26).

3. Shear punch failure of the slab:
Loads are transmitted to the bridge superstructure through
the tires of the vehicle. As the vehicular loads are in-
~creased, more wheels are used which will distribute the load
over a greater area. Also, the tires will flatten out as the
load is increased and will cause an additional distribution
of load. Since a substantial area is involved, shear punch

failure is not likely to occur (Ref. 23).

-13-



4. Dynamic effects and impact:
Static loading was assumed since the speed of an overload
vehicle would be slow so as not to produce dynamic effects

and impact during its passage over the bridge superstructures.

Highway bridge superstructures may be constructed with super-
elevation, diaphragms, and permanent metal deck forms. These items
have not been included in the analysis for the following reasons:

(1) by neglecting the diaphragms and metal deck forms a conservative
result will be obtained, and (2) the magnitude of the superelevation
is usually so small that it can be neglected with little error in the

result.

This report is based on the doctoral research of the first

author ‘(R‘e'-f. . .‘6.7‘) .
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2. MATERIAL BEHAVIOR

This chapter presents the stress-strain relationships
employed in the reported analysis scheme. The material stress-strain
relations are defined for the steel reinforcing bars, prestress strands,

and the concrete. These relations are later used in the definition of

S ) the stiffness properties of the bridge components.

The behavior of concrete is very much dependent on the par-
ticular stress state, i.e. tension or compression, and whether the
stress field is uniaxial, biaxial, or triaxial. A beam may be ideal-
ized as a one dimensional structural element in which bending in the
longitudinal direction produces a uniaxial state of stress (Ref. 27).

A slab on fhe other hand could Be:considered as a two diﬁensional
structural element in which bending in both the longitudinal and the
transverse directions produce a biaxial state of stress. Thus the beam
concrete is assumed to be subjected to uniaxial states of stress while
the slab concrete is assumed to be subjected to biaxial states of

stress (Ref. 43).

The inelastic biaxial and uniaxial behavior of concrete is
analytically described by empirical formulae. These empirical for-

mulae are based on experimental observations and are characterized by:

i 1. The utilization of a linear or nonlinear stress-strain curve

(see Sections 2.1.1 and 2.1.2)
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2. The utilization of a biaxial failure envelope which defines
the onset of concrete failure at the peak stress (see

Section 2.1.3)

3. The assignment of a particular strain value (peak strain)

which occurs at the peak stress (see Section 2.1.4)

4. The assignment of a particular slope (peak slope) which occurs

at the peak stress (see Section 2.1.5)

5. The assignment, after concrete failure, of a downward slope to
the stress—strain curve for the purpose of redistributing the

stress (see Section 2.1.8).

The analytic stress—-strain equations are differentiated so as
to obtain an expression for the slope, i.e. tangent modulus, of the
stress-strain curve. The tangent modulus is used to formulate the
elasticity matrix, [D], which relates the stress increment to the
strain increment: i

{6} = [p] {€} (2.1)
The elasticity matrix is utilized in formulating the stiffness proper-

ties of the beam and slab finite elements (see Chapter 3).

The stress-strain relations discussed in this chapter will
sometimes involve both total stresses and strains and incremental
stresses and strains. Incremental quantities are distinguished by a

dot over the appropriate symbol, e.g. Eq. 2.1.

-16—



2.1 Biaxial Stress—~Strain Relationships

A limited number of experimenfal investigations of concrete
behavior in the biaxial stress state have been carried out (Refs. 33,
36,37,40). These studies have covered the entire biaxial principal
stress space consisting of the compression-compression region, the
tension~-tension region, and the compression-tension (or, conversely

tension-compression) region. These regions are shown in Fig. 3.

Analytical expressions for the biaxial principal stress-
strain reiations for the compression~compression region have been
adopted from Liu (Refs. 36,37). Similar formulation is developed,
based on the reported experiments, to cover the nbnlinear compression-
tension and tension—tension,regidus, The idealized biaxial stress-
strain'cufﬁes have ‘two b#siéifﬁrms;: the nonlinear form and the linear
form. The nonlinear equation is used for biaxial stress states where
compression is dominant while the linear expression is used for biaxial
stress states where tension is dominant. Figure 4 shows the approxi-
mate regions in the biaxial stress space where the nonlinear and linear

equations are applicable. Ep in the figure designates the peak slope.

2.1.1 Nonlinear Stress-Strain Equation for Concrete

The nonlinear stress—strain curve for concrete was assumed to

have the following form (Refs. 36,37);

A+ Be E
o = £ 5 (2.2)
(1 - va) (1 + Ce + De?)
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Where :

A,B,C,D =

the principal stress in the direction of interest
the strain in direction of interest

Poisson's ratio (taken to be 0.2 but other choices

are also permissible)

the ratio of the principal stress in the orthogonal
direction to the principal stress in the direction

of interest, e.g. al =g fo
2 1

Initial tangent modulus in uniaxial loading. Ec

can be obtained by performing a standard compres-

‘sion cylinder test or through an accepted formula

such as the ACI equation (Ref. 65), the Jensen
equation (Ref. 21), the Hognestad equation

(Ref. 30), or the Saenz equation (Ref. 50).

Curve parameters to be determined

A positive stress from Eq. 2.2 denotes compression, and like-

wise a positive strain denotes contraction. The parameters A,B,C,D are

determined by considering the basic shape of the nonlinear stress-—

strain curve:

the stress—strain curve must pass through the zero

stress—zero strain point at a slope °f,Ec and must also pass through

the peak stress-peak strain point at a slope of EP. Enforcing these

curve characteristics leads to the following;

-18-




Ce—-¢ 2 ,.P cp (2.3)

D=l;___P_._C_2
£ 1-va) o
P ( )P
where: Op is the peak stress

ep is the strain at the peak stress

Ep is the slope of the stress-strain curve at the peak stress

. .The instantaneous slope of the stress-strain curve may be

obtained by differentiating "Eq.. 2.2 resulting in

2
o Ec (1 - De)
< - - R
(1 - vo) (1 + Ce + D)

Where: A=20

The instantaneous slope of the stress-strain curve, given in Eq. 2.4,
can be used to relate the incremental stress in a principal direction
to the incremental strain in that same direction. Thus the instantane-
ous slopes of the stress—-strain curves for the two principal directions

can be expressed as:
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do E (1L -D€?
1 1

E, =—+= < (2.5a)
- 2 .
1b dt-:1 (1 val) (L+Ce +D 82)
11 11
do E, (1-D ¢
E. = = 22 (2.5b)
_ 2
2b  de (1 vaz) (L+Ce +Ded)
€ 2 2 2 2
Where: Elb and E2b are the tangent moduli in the two principal direc-
tions 1 and 2 respectively
o =0 /O
1 2/ 1
a =0 /o
2 1 2
D and C are the D and C curve parameters evaluated for
1 1. .
the "1" principal direction using Eq. 2.3
'.ﬁfare*the D and C curve parameters evlauated for
200 '

the "," principal direction using Eq. 2.3

Thus the incremental stress—incremental strain relation can be defined

as:
dl = E1b 81
(2.6a)
02 = E2b 82
or in matrix form:
01 b 0 81
= (2.6b)
o 0 B
2 2b E2
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The curve parameters C and D, which are presented in Eq. 2.3,

can be determined if the following quantities are known: Ec, V, O, GP,

ep, and E . The first three quantities, Young's Modulus, Poisson's

ratio and the stress ratio have been previously defined in this section.

The latter three quantities, i.e. the peak stress, the peak strain, and
the peak slope, will be defined in Sections 2.1.3, 2.1.4, and 2.1.5,

respectively.

2.1.2 Linear Stress—Strain Equation for Concrete

The linear stress-strain equation for concrete has ﬁhe gen-
eral form shown below: )
0=A+3Bc¢ (2.7)
The éufvefﬁaraﬁ§£érs,:A aﬁd B; méj}bé’defined by forcing the curve to
pass through the zero stress—éero strain point, i.e. the origin, and
also through the peak stress—-strain point. The curve parameters are

thus defined as
A=20
(2.8)

(0]
B =2

€

p

The following stress-strain equation is determined by substituting

Eq. 2.8 into Eq. 2.7
’ g
o= EB'e (2.9)
P

A tangent modulus, which is constant, is obtained by differentiating

the stress-strain equation:
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e EP- (2.10)
P

The incremental stress - incremental strain relationship follows from

Eq. 2.10 as:
O1 VElb 0 E:1
. = . (2.11a)
o]
, 0 E2b €2
Where: do o
E = —1 -— _Ll_
1b de €
1 P1
‘ (2.11b)
do o
= —2 = _R_2

n_n

g o i
- (€p1) and b2 (epz) denote the peak stress (s;raln) for the "1" and

"2" principal directions, respectively. The linear stress-strain curve

can be determined if the peak stress and peak strain values are known.

In the particular case of the tension-tension region the ini-
tial slope of Ec/(l - Vo), obtained from Hooke's Law, is maintained.
Thus, if the peak stress is known, the peak strain in this region can

be defined as € =0 (1 - va)/E .
P P c

2.1.3 Biaxial Failure Envelope = Definition of Op

Non-dimensionsal experimental peak stress envelopes for con-
crete strengths of 2700 psi and 4450 psi are shown in Fig. 5 (Ref. 33).
The close agreement between the two curves indicate that the basic

shape of the failure envelope is essentially invariant and only the

-



size of the envelope will change with concrete strength. The true
envelope can be.approximated by a series of straight lines as shown in
Fig. 5. The maximum increase in biaxial compressive strength, as com—
pared to uniaxial strength for the idealized failure envelope is 20%.
This corresponds to a value of 1.2 on the non-dimensional plot in
Fig. 5.

The characteristic points used to define the idealized peak
stress envelope are shown in Fig. 6 and are enumerated in the table

below:

Point o o
—P1 b2
A £! 0.0
(o
o | Fed | ; T
B  REL % Rfc
C Rf' Rf!
C C
? 1]
D Rfc/o‘b RE!
E 0.0 £!
F GZF/ocF ozF
G —ft 0.0
H --ft —ft
I 0.0 —ft
J 913 % 9
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The terms used in the table above and on Fig. 6 are defined as:
fé = uniaxial compressive strength from 6" x 12" cylinder

test (28 days)

ft = direct tensile strength
01 = principal stress in direction 1
0 = principal stress in direction 2
2 o
a =0 /o
2 1
obl = peak stress in direction 1
Oﬁz = peak stress in direction ,
Gij =tstreés;in‘direetion‘i at point j
0, = stress ratio 0, /0.,
] 2] 13
R = increase in strength due to the biaxial compressive

stress state

The following values were used in all test examples included in this
report. These values were selected to provide an acceptable approxima-

tion to experimentally observed biaxial stress states (Refs. 33,36).

R = 1.2
1
a, ="—=Vv=20.,2
B aD
1
o, =—=~ 19,2
F aJ
= - 1
OzF = OlJ 0.85 fc
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Equations defining the straight line segments ued in Fig. 6 are
expressed in terms of the characteristic points and the stress ratio, O.

These equations are explicity presented in Ref. 43.

2.1.4 Peak Strain Envelope ~ Definition of Ep

The non-dimensional peak strain envelope, shown in Fig. 7, is
idealized as a series of straight lines passing through, or very near
to, the experimental peak strain points indicated in the figure
(Refs. 33,36). Peak‘strain is defined as the strain occurring at peak
stress. The characteristic points used to define the peak strain enve-

ope are shown in Fig. 8 and are enumerated in the table below:

Point "- e = €
S pa p1
A' f! £
Cc C
B! Rf' €
c C
c' O\) 0
D' 0 ~-ve
c
] — —
E ft ec
o, .
F 0 \)et
G!' o €
ct ct
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R, f;, Vv, and ft'are defined in the previous section. The following

additional terms used in the table above are defined as:

peak compressive stress at an 0 = 1/V as obtained

a, =
from the peak stress envelope

Oct’ect = a peak stress-strain value defining point G'

€, = peak strain for uniaxial compression

€, = peak strain for uniaxial temsion

The following values were used for all test examples in this report.
They were selected to provide an acteptable_approximationfto experimen—

tally observed peak strains. in biaxial stress states,

R =1.2
v = 0.2
o =0.8f'
ct c
€ = 1150 microstrain
ct
Ec = 2500 microstrain
€ = tensile strength divided by Young's modulus

Equations defining the straight line segments used in Fig. 8 are
expressed in terms of the characteristic points and the stress ratio,

0. These equations are explicity presented in Ref. 43,
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2.1.5 Peak Slope - Definition of Ep

The peak slope is defined as the tangent of the non-linear
stress—strain curve evaluated at the peak stress. According to experi-
mental observations the peak slope for the compression-compression
stress region has a value of zero (Refs. 33,36,40). In the tension-
compression region the peak slope may range frpm a value of zero for
stress states near uniaxial compression to a value equal to the OP/EP
for the stress states near uniaxial tension. In this study the ratio
of peak slope to initial slope has been assumed to vary linearly with
respect to the stress ratio, o. The peak slope‘ratio has a value of
zero for stress states near uniaxial compression and ranges to a value

of 1.0 for stress states. near uniaxial tension.

Two peak slope réfiosg neéeésary to define the aforementioned
linear variation, were scaled from the experimental stress-strain
curves, which are designated as A and C in Fig. 11 and are listed below

along with the values of 0 associated with those curves.

Point & Iiii?ailgiipe
I -0.204 1.000
I -0.052 0.125
I -4.900 1.000
I1' -19.200 0.125

Points I and II, located in the compression-tension region, were

obtained by measuring the peak slope ratio for curves C and A,
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respectively. Points I' and II', located in the tension-compression
region, were obtained by computing the reciprocals of the values asso-

ciated with points I and II.

Points I, II, I', and II' and a plot of the ratio of peak
slope to initial slope as a function of the stress ratio, 0., shown in
Fig. 9. The peak slope function is representgd as a series of straight
line segments. These straight line segments and corresponding biaxial
stress plane regions are indicated by the letters A through E in Fig. 9.
The corresponding biaxial stress plane regions designate wheré that
particular straight line segment is applicable. The letters C+ and E+
indicate that the curve extends to a stress ratio of plus infinity
while the letterst— and E- indicate that the curve extends to negative
infinity at the indicated points on the failure envelope. The straight
line segments delineated by the points E-, I,'II, A and C+ reflect the
peak slopé ratios for thé:cbmpression—tension regioﬁ through the
compression~compression régionu'-The'straight liﬁe segmenfé associated
with the points C-, II', I', D and E+ describe the peak sloﬁe relation-
ship for the tension-compression region through the tension-tension

region.

2.1.6 Biaxial Constitutive Relationshipé for Concrete

The incremental stress-strain relationship for concrete in
terms of principal stresses is represented by Eq. 2.12 in which the
subscripts 1 and 2 identify the principal stress directions and the

dots indicate incremental quantities:
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g . €
1 1
{6+ =B < E (2.12)
LT12J LY12

Needless to say, the shear stress increment, %12, will be zero but its
presence is required in the principal stress vector so as to include
the shearing stiffness term in the [D] matrix. This is necessary so
that transformation of the [D] matrix from principal axes to global
X—-y axes results in the proper elasticity relationships. The [D]
matrix is the constitutive relationship for the ﬁrincipal stress space.

The [D] matrix for anisotropic materials can be expressed as (Ref. 36).

—

, ok ]
1 ]
Elb \)2 Elb 0
1-vv 1-vv
1 2 12
v E! E'
- - 1 2‘b 2b.
ol = | T35 T-v Y 0 (2.13)
1 2 1 2
] ]
0 0 Elb E2b
1 1 1
- Elb + Ezb + 2\)1 Ezb_J

E;b and E;b are the tangent moduli in the first and second principal
stress directions, respectively, and vl and vz are the Poisson's ratios

in the indicated directions. In the equation above it is assumed that

LI 1
\)I/Elb vZ/Ezb.
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The analytic stress—strain curves of Section 2.1.1 and 2.1.2
relate the stress in a particular principal direction to the strain in
that same direction and only that direction. Thus, as indicated by

Eq. 2.6a and 2.1la, relationships of the following form are defined:

Oi = Elb €
. ) . (2-14)
g = €

2 Ezb

Where E1 and E2 are the effective tangent moduli for the'principal

b b
stress space obtained by differentiating the analytic stress-strain
curves of Sections‘Z.l.l and 2.1.2. The terms in the [5] matrix of

Eq.‘2.13‘mgét now be related to the known moduli, E, ad E .
The unknown terms in the étress—strain relations may be
expressed as functions of the known E1b and E2b values by diagonalizing
the stress-strain relations of Eq. 2.13. Diagonalized relations may be
obtained by eliminating 61vand 62‘fr6m the first and second algebraic
equations of matrix equation, Eq. 2.13. This is done by substituting

3

for 0 and 0 the relations given by
1 2

g =0 o
2 11
(2.15)
G =0 o
1 2 2
The above substitution leads to
. . l \) a
€ =0 E,——'é—,l ‘ (2.16a)
1 ! 1b 2b
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e =0 [=—--12 (2.16b)

o
1
€ = 1-va .
. E;b ( . 1) (2.17a)
fz_
ez = E;b (1 - vzuz) (2.17b)

Rearranging Eq. 2.17 leads to the diagonalized stress—strain relations

given by
; E' _
. Ib e
01 ‘I—:faig_ 81 (2.18a)
E'
. zb .
02 1= vo 82 (2.18b)

Comparison of Eq. 2.18 with Eq. 2.14 shows that the tangent moduli re-
lating principal stresses to strains in the corresponding directions
are given by

E! '
- b
Elb =1 vlal (2.19a)

Ezb '
Eb~T-va (2.19b)
z 2 2
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Rearranging Eq. 2.19 leads to Eq. 2.20 which defines the moduli E;b and

' ; .
E2b needed in Eq. 2.13:

' —
E1b E1b (1 vlul) (2.20a)

' —
E2b E2b (1 vzaz) (2.20b)

E1b and E2b are defined in Eq; 2.5 for the nonlinear case and
in Eq. 2.11b for the linear case. E1b and E2b are computed using the cur-
rent total stress state. The a's are also based on the current total
stress state so aé to be consistent with the definition of E1b and Ezb'

The curve parameters C and D in the aforementioned expressions are

given by Eq. 2.3.

vl and v2 in Eq. 2.13 must still be obtained. The relation

v /E'. = v /E' leads to the following equations:
2 2b 1 1b

Vy =V (2.21a)
R N (Rt (2.21b)
Ab AN L
Eg Vg B

where subscripts (A,B) correspond to directions‘(l,é) or (2,1) which-

ever is applicable. AppLicability was determined by selécting the com-
bination that resulted in positive values for both vl and vz. This ine
vestigation has used the value of 0.2 for VA' The range of values for

Vg resulting from the application of Eq. 2.21 for various combinations

of cylinder strength, stress ratios and stress levels, was
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approximately 0.16 to 0.24, or about 807 to 120% of the value assumed

for VA.

All terms of Eq. 2.13 can thus be defined using Eqs. 2.5,
.2.11b, 2.20, and 2.21. The resulting [5] matrix is the constitutive
relationship for the particular layer expressed in principal stress
directions. Before computiné the contribution of this layer to the
element stiffness matrix, the [ﬁ] matrix must be transformed into an
elasticity matrix [D], relating stress and strain in the x-y coordinate

system of the element:

. 3 .
g r€ )

X X

5 > = .\ 2.22
Uy T [D] ﬁ €y . ( )
Txy ) _, My

This transformation is carried out in the following manner (Refs. 16,

55,64):
(D] = [T] [D] [T]* (2.23)

where the transformation matrix, [T] is defined by

_ —
cos?0 sin?6 -2cosf sinb
[T] = sin?6 cos?0 2cosf sinb (2.24)
| cosb sinb -cosb sinf cos26 - sin?0
- . —




The angle 6 is defined as the angle between the 1 and the.x direction.
This angle is positive when measured in a clockwise direction from the

positive x axis.

Figures 10, 11, and 12 compare the idealized and experimental
biaxial stress-strain curves (Ref. 33). Curves A, B, and C in each
figure corresponds to the specific stress ratios listed on the figures.
Iwo curves are plotted for each stress ratio. One corresponds to
01/0o versus € and the other to 01/6o versus € . 01 and ozlare the
principal étresses as shown in the inset. of each figure while 00 is the
uniaxial compressive strength. 81 and 82 are the strains in the first

and second principal stress directions, respectively.

2.1.7 Concrete Failure Modes

Concrete exhibits different types of failure modes which are
dependent upon the applied stress ratio as shown in Fig. 13A.
Figures 13A and 13B each show one-half of a symmetric region. The four

physically distinct failure modes can be described as follows (Ref. 44):

TYPE I. In the tension-tension region and up to a tensile stress/
compressive stress ratio of -1/30 failure bccﬁrs by fhé forma~-
tion of one crack perpendicular to the largest tensile stress
and perpendicular to the free plane, i.e. unloaded plane, of
the specimen. TFor a stress ratio 6f‘equa1 tension in both

‘directions there is mo preferred crack direction (Ref. 33).
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TYPE II. For stress ratios between -1/30 and -1/100 numerous cracks
are formed instead of juét a single crack as was the case
for the previous region. These cracks are also perpendicu-

lar to the tensile stress and the free plane of the specimen.

IYPE III. From a stress ratio of -1/100 in the compression-tension
region to a stress ratio of 3/10 in the compression-
compression region, cracks are not only formed perpendicular
to the applied tensile stress and free surface of the speci-
men but also cleavage planes occur parallel the free surface

of the specimen.

TYPE IV. For stress ratios between 3/10 and 1/1 in the compression-
compression region only cleavage cracks parallel to the free

plane of the specimen occur.

Kupfer, Hildsorf, and Rusch (Ref. 33) report two general types of fail~
ure modes. They are a Type IV crushing failure for stress ratios
occurring between 1/1 and -1/15 (-1/30 according to Ref. 40) and a

Type I cracking failure for stress ratios from -1/15 to -1/-1.

The idealized failure modes used in this report are depicted
in Fig. 13B. A cracking failure mode is assumed to occur from the
tension-tension region to a stress ratio of -1/15. The direction of
the crack(s) is assumed to be perpendicular to the largest tensile
stress and to the free surface of the specimen. From the compression-

compression region to the stress ratio of -1/15, a crushing failure
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mode is assumed to occur. The direction of crushing is assumed to be
perpendicular to the largest compressive stress and perpendicular to

the free surface of the specimen.

The method presented in this stﬁdy can define cracked regions
and not individual cracks which may occur in the superstructure.
Within the context of the scope and purpose of this investigation, it
is not necessary to obtain the exact or even an approximate number of
the individual cleavage and tension cracks. However, it is required
that regioﬁs of cracking or crushing be defined. Also, the effect of
cracking or crushing\on the stiffness of the element and its subsequent

effect on the rest of the superstructure must be approximated.

2.1.8 Cracked or Crushed Concrete

Cracking or crushing of the_concrete is deemed to occur when
the principal stress has exceeded»tﬁexidealized peak stress as defined
in Fig. 6. The direction of cracking or crushing is assumed to be per-
pendicular to the direction of the corresponding principal tensile or
compressive stress, whichever is appropriate. The concrete layer is
assumed to have stiffness only in the uncracked or uncrushed direction.
For example, the constitutive‘stress-strain relation for a concrete
layer which has experienced a failure caused by the stress in

direction 2 would be
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(2.25)

A
Qn
v
it
o
o
o
_A
m
Y

T

.

The first principal direction is still effective in contributing stiff-
ness to the element. The elasticity matrix, [D], would then be rotated
from the principal stress coordinate axis to the x-y coordinate system

for use in the element stiffness formulation.

The shear retention factor, which provides for shearing
stiffness of the cracked or crushed concrete, has been used to model
aggregate interlock behavior along the crack face (Refs. 15,16,34,35,
51). .Itﬂhas_been_repqrted that.analytic results for the flexural anal-
ysis of élabs afé‘insénéitive'td'the particular value of the shear
retention factor chosen (Refs. 15,16,35). In the present study it was
assumed that aggregate interlock failure occurs immediately after
cracking or crushing, and consequently the third term én the diagonal

of Eq. 2.25 has been set to zero.

After cracking or crushing of the concrete layer, the layer
will be incapable of sustaining the stress that caused the failure.
This stress must be reduced to zero within the layer while still main-
taining equilibrium between the external forces and internal stresses.
Thus, unloading of the layer stress to zero necessitates the adjustment
of the internal stress field of the slab. This adjustment or redistri-

bution is accomplished through the use of fictitious forces which are
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statically equivalent to the amount of stress to be redistributed
within the slab. A solution of the stiffness equations corresponding

to these forces will produce the necessary redistribution of stresses.

Experimental evidence indicates that after attainment of peak
strength, either tension or compression, the concrete stress—straiﬁ
curve has a downward, i.e. unloading, leg (Refs. 4,13,19,20,33,36,52).
It is assumed that this downward portion is a straight line (Ref. 27).
Thus unloading proceeds at some finite rate determined by the slope of
the downwafd portion of the stress—sﬁrain curve. This unloading branch
can also be used to model the tension stiffening effect due to the
gradual transfer of load from the cracked concrete to the steel rein-

forcing bars (Ref. 35).

2.1.9 Additional Considerations

This section'descriﬁeévfor the sake of completeness two addi-
tional coﬁsiderations that‘are relevant to the material presented
herein. These considerations have not beeﬁ included in the present
analysis scheme due to the lack of verification by experimental evi-
dence. One of the considerations, an isotropic stress-strain law, can
possibly simplify the presented method. Whereas the other one, a con-
 strained plastic-flow rule, could refine and complicate the presented
scheme.

A. An isotropic stress—strain law

An alternative stress-strain formulation for biaxially

stressed concrete can be derived by enforcing an isotropic constitutive
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elasticity relationship rather than an anisotropic relationship (see

Eq. 2.13). The.isotropic model was not used in the analysis scheme

being reported. The isotropic model has the advantage that v and Vv
1 2

are defined by the computed tangent moduli, E , and E and the stress

1b 2b’

ratio, 0. Thus it eliminates the assumption of a value for either vl

or v2 and then making a subsequent check on the assumption, as was done

in Section 2.1.6.

‘The assumption of an isotropic material will lead to the fol-

lowing basic relations:

E;b = E;b » (2.26a)

E - E _.
2b 1b
V. =vo= - - (2.26b)
1 3 2. | EZb Qz Elb (Xl_

In addition to the above equations, the isotropic model requires the

relation for peak strain,

e = - (1 - v (2.27)

P

ntri }UQ

to be satisfied for all portions of the stress space where the linear
form of the concrete stress-strain curve is applicable. It must be
noted that within constraints of present knowledge and accuracy of
experimental measurements, the isotropic and anisotropic models, as
presented in this report, are equally valid mathematical approximations
to the observed concrete stress—strain behavior in the biaxial stress

space. However, agreement of the isotropic model to experimental
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stress—-strain curves is not as good as that for the anisotropic model.
This lack of agreement, though small, is due to the additional con-

straint placed on the peak strain by Eq. 2.27. This is in contrast to
the anisotropic model which allows one the freedom of obtaining a best
fit approximation to the experimental peak strain points for a portion

of this region.

B. Constrained plastic flow

When concrete crushes, plastic flow may take place. This
flow may be constrained to follow a certain path depending upon the
state of stress existing within the crushed concrete. A constrained
plastic flow must satisfy a:épecified flow rule and yield surface cri-
teria. Analytic modeié eﬁpioying éuch formulation have been developed
and have been used in slab analysis procedures (Refs. 15,35). Previous
analytic studies have indicated that for regions of limited plastic
flow, as would be the practical case in a reinforced concrete slab,
there is a negligible difference between results based on the con-
strained and unconstrained formulations (Ref. 35). Therefore, since
there is a negligible difference between the results, the present study
employs the computationally more efficient unconstrained plastic flow

concept.

2.2 Uniaxial Stress—Strain Relationships

The steel reinforcing bars and the beam concrete are consid-

ered to be in a uniaxial state of stress. The uniaxial stress-strain
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curve is assumed to follow the Ramberg-Osgood formulation (Refs. 27,

32,49) given by:

g
e=%j—-+ (l;m) Ef (g—s-) (2.28)
Where: 0 = stress
€ = strain
Eiv= initial modulus of elasticity
OS = gecant yield strength equal to the ordinate of the inter-

section of the stress-strain curve and a line of slope

@ - (&)
m = a dimensionless constant defining a line of slope
(m) - (Ei) on the stress-strain curve

Il

‘n. a dimensionless constant

The tangent modulus can be found by differentiating the stress-strain

equation as follows:

L - —1 . (2.29)
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Where: 511 = do /de_ as defined in Eq. 2.29.

Subscript ";" refers to the principal stress direction.

2.2.1 Beam Concrete

The complete stress-strain curve for uniaxial compressed con-
crete is approximated by the combination of three mathematically dis-

tinct curves (Refs. 27,32):

1. A nonlinear Ramberg-Osgood curve passing through the point of
maximum compressive strength, fé, and a strain of €

2. A horizontal straight iihé:passing through‘points (fé, €) to
and (fé, Em) |

3. A straight downwa?d leg passing through (fé, Em) to a zero

stress level.

This downward slope Edc is not employed in the stiffness matrix formu-
lation but is used to determine the fictitious forces resulting from

the unloading of concrete layer stresses (see Section 2.1.8).

In steps 2 and 3 above, Em and Edc are determined from the

table below (Refs. 27,32):

£ (ksi) 'ém Ed, (ksi)
5.60 (or greater) 0.0022 3000.
4,75 0.0022 1800.
3.90 | 0.0023 1250.
3.00 (or less) 0.0024 700.
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Optimum empirical Ramberg-Osgood curve parameters were
obtained by comparing numerous experimental and corresponding analyti-
cal stress-strain curves. These parameters were found to be (Ref. 27,
28,32):

o = fé, 6" x 12" cylinder strength

Ei = Ec, initial Young's modulus for concrete (see
Section 2.1.1)

€ = 0.0020 in./in. for normal weight concrete

n =9

m = £!/(c E,)

The concrete tensile stress-strain curve is assumed to be
linear with slope Ec up to the tensile strength of the concrete. Then
a linear downward leg at a slope of Edt‘is continued to the zero stress
level. The optimum Ramberg-Osgood curve parameters were found to be

(Refs., 27,28,32):

Os = ft’ tensile strength
E, =E
i c
n =9
m = 1,0 which forces the curve to be linear

I

Ed 800 ksi
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2.2.2 Beam and Slab Steel

Stress-strain relations for both mild steel reinforcing and
prestressing strands are approximated with Ramberg-Osgood curves

(Eq. 2.28). Curve parameters for the mild steel are listed as follows:

g

s fy’ yield strength of the steel

Ei = Es’ Young's modulus for steel which may be taken to
equal to 29000 ksi

100.0

B
It

0.70

B
]

Mathematical distinction between yielded and non-yielded steel need not
be made since the Ramberg—Osgood formulation provides a continuous
stress—strain curve. Proper'Selection of the curve parameters can pro-
duce an almost perfectly plastic plateau in the case for mild steel.
This plateau will have some finite slope but its value will be so small
that for all practical purposes its effect én the structural behavior

can be considered negligible.

Ramberg—-0Osgood parameters for the prestressing strands can be
determined by a trial and error pfocess of fitting various analytic
stress—-strain curves to the corresponding experimental curves. Very
close agreement between the experimental and analytic curves is pos-
sible as éhown in Fig. 35. In Fig. 35 the following values were used

to generate the curve:
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o = 250. ksi,
s

E, = 27000 ksi,

n = 0.67, and

m = 25.0

Special consideration must be made when the slab reinforce-
- ment is placed at an angle with respect to the longitudinal x-axis of
"

the bridge. In this case, the principal stress direction, '"1'', does

not coincide with the x-direction. Since the stress-strain relation

must be expressed in the x-y coordinate system, a transformation is
needed. The [D] matrix is transformed from thé principal stress direc-—
tion, which corresponds to the direction of the reinforcing bars, to
the x-y axes. This transformation is shown in Eq. 2.28 where [T] is

as prévioﬁély defined by Eq. 2.24. The angle © is the angle betﬁeen
the x-axis and the longitudinal direction of the reinforcing bars mea~

sured in a clockwise direction.

As can be seen in Eq. 2.30, the shearing stiffness of the re-
inforcing bars in the slab is not considered. Experimental studies on
dowel action of reinforcing bars has been carried out and is available
in the literature (Ref. 39). These experiments were concerned with
investigating dowel action caused by the shearing deformation of the
reinforcing bars in the plane of the slab. The dowel action discussed
here should not be confused with the type of dowel action considered
when discussing shear perpendicular to the plane of the slab. It was
concluded from these studies that after a flexural type of failure in a

reinforced concretre slab, the reinforcing bais do not distort across
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the cracks. This implies that the reinforcing bars do not carry exces-
sive shearing forces. Thus for the analysis procedure reported herein,
it was assumed that the steel reinforcing bars have a shearing stiff-
ness of zero. Furthermore,‘it should be noted that this assumption is
consistent with the assumption regarding the stress fields of the rein-

forcing bars, i.e. uniaxial stressing.
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3. FINITE ELEMENT ANALYSIS

3.1 Introduction

The analysis ﬁrocedure being reported is based on the finite
element method. A complete treatment of the finite element method can
be found in numerous books on the subject (e.g. Refs. 55, 64). There-
fore, only the major concepts and necessary steps related to this

research will be presented.

Assumptions and their implications concerning the finite ele-
ment model are first discussed. A brief review of the finite element
method is_bresented. Basic equations which help to introduce the nota-
tion psed;in later sections are given in this review section. The fi-
nite éieméntrmefﬁddlas_applied to reinforced concrete slabs, reinforced
and prestressed concrete beams (Refs. 19, 27 - 32), and reinforced and
prestressed concrete highway bridges (Refs. 45,46,47) is discuséed.

Finally the solution procedure is outlined.

3.2 Assumptions
Several assumptions are employed in the development of the

analytic model. The assumptions and associated implications will be

discussed in the following paragraphs;

1. Geometry Restrictions:
Bridge superstructures which are rectangular in plan, i.e.

right bridges, and rhomboidal in plan, i.e. skewed bridges,
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are considered. The formulation presented in Sections 3.3
through 3.7 is applicable to right bridges. Section 3.8
extends the formulation so that skewed superstructures can

be analyzed.

2. Assumptions Regarding Strain Distribution:

Kirchoff's assumption fhat plane sections normal to the mid-
dle surface of the flate,before deformation remain plane and
normal after deformation is employed. Correspondingly, the
Bernoulli beam theory, which applies the plane section as-
sumption to beam bending‘analysis is used. . Application of
Kirchoff's and‘Bernéqlli’é éssumptions are a usual practice
in bending solutions for thin plates and beams. A thin plate
is defined as a plate whose length and width dimensions ére
considerably greater than its thickness. It is also assumed
that the slab and beams do not change thickness due to the
applied forces. Thus the strains and stresses normal to the
plane of the slab and beams are neglected. Application of
Kirchoff's and Bernoulli's assumptions and the elimination of

the normal strain offered the following simplifications:

A. The reduction of a three-dimensional continuum problem
requiring six stress componenis to define the state of
stress at a point to a two-dimensional plate bending pro-
blem involving only three stress components (Ox, Oy, Txy)

and a one-dimensional beam bending problem involving only

one stress component (Gx).
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B. The strains at any depth in the plate or beam can be com-
pﬁted from the displacements of the referenée plane.

The assumed strain distribution does not permit the inclusion

of the bond failure phenomena where slippage between the re-

inforcing bars and the surrounding concrete takes place. A

possible way of including bond-slip is briefly outlined in

Ref. 43.

3. Small Deformations:
The inplane and bending displacements ave assumed to be small
in comparison to the dimension of the slab. This implies
that the geometry of the finite elements will not substan-
tially change after.deformation. Thus the geometry of the

element need not be updated as the analysis proceeds.

4. Small Strains:
The reinforced concrete slabs and highway bridge superstruc-
tures are assumed to be subjected to small strains. Thus the
usual linear strain-displacement relations can be used as

opposed to the more involved nonlinear equations necessary

for the large strain formulation.

5. Layering:
The inclusion of material nonlinearities will cause the stiff-
ness properties of the beam and slab finite elements to vary
';A with depth. These material nonlinearities, including crack-

ing and crushing of the concrete and yielding of the steel,
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are inherent in the stress-strain relations. The existence
of both steel and concrete in the same finite element also
causes a variation of stiffness through the depth of the ele-
ment. To facilitate the computation of the element stiff-
ness, the finite element will be divided into a series of
layers through the depth (Figs. 2,14,15). The total stiff-
ness of the element will then be obtained by a summation of
the stiffness properties of these individual layers. The
stresses within a particular layer will be assumed to be con-
stant within the layer for the purpose of computing the
stiffness of each layer. Thus the stress field through the

depthAof7thefslabﬂand beam will vary in a step-like manner.

Increasing’the nunber of layers will improve the representa-

tion of the stress field and consequently the accuracy.

3.3 Review of the Finite Element Method

The finite element method requires that the continuum be
divided into an assemblage of subunits called finite elements. The
elements are considered to be interconnected at discrete points called
node points. In this context the continuum is a highway bridge super-
structure (Fig. 1). The stiffness properties of the elements can be
found using the principles of the finité element method. The result is
a set of equilibrium equations relating node point forces to node point

displacements:
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{F°} = [x®] (&%} ~(3.1)

il

Where:  {F®} = a vector of applied nodal forces on the element

°1

[k the element stiffness matrix

{6%}

a vector of nodal displacements for the element

Assembly of the elements to form the entire structural system results

in a set of nodal equilibrium equations:

{r} = [K] {8} (3.2)
Where:  {F} = a vector of the forces applied to the structure at the
nodes

the assenbled stiffness matrix

[

K]
{8}

a vector of node point displacements

The unknown node point displacements,7{6}, are obtained by solving this

set of simultaneous equations.

It can be shown that the element stiffness matrix can be

evaluated using either Eq. 3.3a or Eq. 3.3b (Refs. 55,64):

e —IT T -1
k%1 = [c] J/~ [Q1" [D] [Q] dv [C] (3.3a)
v
(k] =.}(.[B]T [D] [B] dv (3.3b)
v

where v is the volume of the element.

This presentation will be restricted to an explanation of the

matrices in Eq. 3.3 rather than their derivation. A two-dimensional
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approach employing the coordinates (x,y) will be used. The overall
scheme is equally valid for a one-dimensional system, i.e. beam, where i

only a single coordinate position is needed.

The stress-~strain relationships for a layer can be expressed

by an elasticity matrix, [D], as shown in Eq. 3.4:
{o} = [D] {e} (3.4)

The displacements within an element are assumed to be ade-
quately described by a polynomial function of position within the ele-
ment and initially unknown constants. Tﬁis combination of functions
and constants will be called a displacement function. Thus it is pos-

sible to define the displacements at any point within the element as:

{A(X:Y)} = [P<X’Y)].{u} (3-5)

displacements at any position within the element

in which: {A(x,y)}

defined by the coordinates (x,y)

[P(x,y)] = particular functions of x and y, or their deriva-

tives, used to describe the displacement fields

{a}

constant coefficients of the displacement functions

The individual {0} are evaluated using the boundary conditions given by

the displacements at the node points of the element:

{8%} = [c] {o} (3.6)

[Cc] is populated by substituting the coordinates of each node point,

(xh,yn), into Eq. 3.5 where:
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{6°) = {A(x ,y )}
(3.7)
[C] = [PCx_,y )]
Solving Eq. 3.6 for the constant coefficients lead to
{o} = [c]7V (&%} (3.8)

The differential operators necessary to define the strains
(see Eq. 3.4) in terms of the displacement fields (see Eq. 3.5) will be

called [T']. Thus
{e}

[r] {ax,y)} (3.9a)
Substitution of Eq. 3.5 into Eq. 3.9a gives:

{s} [T] [P(x,y)1 {a} = [Qj'{u} ' (3.9b)

[Q] is a connection matrix relating {e} to {0} within the element.

Substitution of Eq. 3.8 yields
-1 . :
{e} = [Q] [c]” {&%} = [B] {6%} (3.9¢)
Matrix [B] relates the strains within the element to the nodal point

displacements.

A summary of the necessary steps in the finite element method

to formulate the elemental stiffness matrix is as follows;

1. Choose displacement functions and formulate the displacement

field (Eq. 3.5).
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2. Express the node point displacements in terms of the constant
coefficients by substituting the known nodal point locations

into step 1 (Eq. 3.6).
3. Solve for {a} (Eq. 3.8).
4. Substitute {0} into step 1 (Eq. 3.5).

5. Identify the strain-displacement relations and perform the re-

quired differentiation of the displacement function (Eq. 3.9).
6. Find the stress-strain relationship [D] (Eq. 3.4).

7. Substitute the necessary matrices into Eq. 3.3 and perform the
indicated integration. The result will be the element stiff-

ness matrix.

3.4 The Layered Slab Model

The necessary steps inftﬁe formﬁlation‘of the stiffness
matrix by the finite elehent method were discussed, abstractly, in
Section 3.3. These steps will be discussed in detail with respect to
the nonlinear analysis of reinforced concrete slabs in the following
sections. Explicit expressions for the matrices used in the layered

slab model can be found in Appendix A.

3.4.1 Plate Bending and Inplane Displacement Functions

The purpose of this section is to present the displacement

functions and describe the displacement field, {A(x,y)}.
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Displacement functions are chosen so that the deformation of
the finite element can be adequately described. These displacement
functions are polynomial expressions in terms of the (x,y) in-plané co-
ordinate locations and unknown constants. As stated in Chapter 1 both

the inplane and bending displacements must be considered.

The bending deformation of a plate can be'fully described by
the vertical displacement of the middle plane of the plate via assump-.
tions presented in Section 3.2. The bending deformation will consist
of the vertical displacement, W, the rotation about the x—axis, ex, and
the rotation about the y-axis, Gy. The rotations may be obtained by
differentiating the vertiqal=displacement. Thus the displacement field

which describes the bending deformations can be expressed in vector

form as
rww ~ W 9
- oW
1 ex - - - ay L (3010)
‘ W
Ley_, 3X_‘

The ACM-Adini, Clough; Melosh (Ref. 1) plate bending finite
element will be used in this study. A review of the finite element
displacement functions and the resulting stiffness matrices for the
analysis of plate bending has been given by Clough and Tocher (Ref. 10),
Wegmuller and Kostem (Refs. 57,58,59) and Kostem (Ref. 25). They con-
cluded that the ACM rectangular finite element gives very satisfactory
results. By increasing the number of ACM finite elements used to model

a particular continuum an apparent convergence to classical solutions
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has been demonstrated for several example problems (Refs. 10,58). The
. ACM displacément function expresses the vertical displacement, W, as a

twelve term polynomial (Refs. 1,10,55,64):
W =A +Ax+Ay+AX+Axy +AYE +AxP+A R
(x,y) 1 2* 3’ W 5 6 7 o Y
+Axy> +A yP+A X%y +A 8 .
o T HY Y 127 (.11

The inplane deformation is characterized by two displacement
functions‘U and V. U is defined as the in-%lane displacement directed
along the x-axis and V is defined as the in-plane displacement directed
along the y-axis. Thg in-plane displacement polynomials shown below
have been ﬁreéented By Clough:(Réf. 9):

vUt'(x',y)'%;B'«l * is’zg *By +3Bx
(3.12)

v B +B +B + B

.(x’y)_ 5 6 7 4

Previous studies using these in-plane displacement polynomials have been
successfully carried out (Refs. 58,59). The coefficients, Ai's in

Eq. 3.11 and Bi's in Eq. 3.12, correspond to the constant coefficients

of the displacement functions, {0}, used in Eq. 3.5.

Nodal points are considered to be located at the.four corners
of the rectangular finite element positioned on the reference plane in
the middle of the plate. Nodal points are designated by the letters,
I, J, K, L as indicated in Fig. 14. Thus all nodal point displacements
refer to reference plane deformationms. .The terms "reference plane" and

"middle plane'" are considered to be interchangeable in this report.
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The displacement vector is described in terms of five displacements for
each nodal point, i.e. two in—plane displacements and three bending dis-
placements. The total number of displacements per finite element is
twenty, i.e. four nodes at the corners with five degrees of freedom per
node.

The displacement functions W(x,y), V(x,y), and U(x,y) can be

used to define the displacement field {A(x,y)} for any location given

by the coordinates (x,y): A - A
u U
v v
: ; .
Mz} = A > = 1 - (3.13)
6 W
xl o oy
‘ oW
ey T ox
. J - 4

Thus Eq. 3.5 can be established once the displacement functions have
been chosen.

The displacement field‘{A(X,y)}, can be partitioned by sepa-

- rating it into those involving only in-plane displacements and those

involving only bending displacements:

r 1) [ U(x,y) )
A (x,y)
V(x,y)
{A(x,y)} = | ====—m = | == (3.14)
1 g A W(x,}')
6_(x,y)
A¢(X’Y)
0_(x,y) )
L J -




This will simplify further discussion of the stiffness matrices in the
following sections. The subscripts u and ¢ refer tb the in-plane dis~
placements and the bending displacements respectively. Substituting
the displacement functions (Eqs. 3.1l and 3.12) into the right-hand

side of the above equation leads to

8,6y B EXCEN B
A{AGx,y)} = ————— e = : -3 - (3.15)
A¢(x,y) 0 i‘P¢(x,y) A

where [Pu(x,y)] and [P¢(x,y)] correspond to the in-plane and bending
polynomial terms, respectively. The vector i is the partitioned
' A

b0

g is the partitioned
i

I

P¢(x,y) |

R

{a} vector while the matrix

\

[P(x,y)] matrix.

0

3.4.2 Strain-Displacement Relations

The strain-displacement relations are derived using the thin-
plate small-deflection theory as mentioned in Section 3.2. The strain-

displacement relationships for a point at a distance z from the refer-

ence plane are

aUz

(€X)z =5 ‘ (3.16a)
BVZ

(ey)z =%y (3.16b)




ou v

(ny)z =55 e (3.16¢)
where: z = Distance of point under consideration from the
reference plane

UZ = Displacement in the x~direction at any depth =z
Vz = Displacement in the y-direction at any depth z
(Ex) = Strain in the x~direction at any depth z

z
(éy) = Strain in the y-direction at any depth z

z
(ny) = Shear strain at any depth =z

The prescribed dispiacement:functions correspond to reference
plane displacements. The diéplacements Uz and Vz must be expresséd in
terms of these middle plane displacements. Kirchoff's assumption of
plane sections permits the displacement for a point located at any dis-
tance, z, away from the reference plane to be expressed in terms of the
inplane displacements of the reference plane plus the product of the

rotations about the reference plane and the distance z as shown by

Eq. 3.17:
- W
UZ =U -z . (3.17a)
_ oW
W =W
2z
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Substituting Eq. 3.17 into Eq. 3.16 leads to Eq. 3.18 in which'{e}z

represents the strain at depth z:

- - r -
(e ( 3y =3%W
X ox ' 3x2
: : AV 32
{e} = < e - = X — >+ 2z 3 - (3.18)
Z y ’ BY ayz '
du , v %W
ny oy + ox 2 0x9dy
- J 2 - J " o

In the equation above, the strain vector'{e}z is separated into in-plane
and bending contributions. Identifying the required differentials of
Eq. 3.18 to be [Tu]'andﬁ[F¢]3—corresponding to the in-plane and bending

functions respectively, leads to. .

e}, = Ir.] [P;(X’Y>1_f3} +2 [Ty] [P, xy)] {8} (3.19)

Performing the differentiation results in the following equation:

e}, = [Qu]'{B} + z [Q¢] {A} (3.20)
where: [Qu] = [Tu] [Pu(X,Y)]
[Q¢] = [T¢] [P¢(x,y)]

The strains are now expressed in terms of the matrices [Qu] and [Q¢],
which are obtained by differentiating the functions [Pu(x,y)],

[P (x,y)], and multiplying by the associated constant terms'{B} and

¢
{A}.
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As indicated by Eq. 3.8, the unknown polynomial coefficients
in Eq. 3.20 can be related to the nodal point displacement vector {6%}.
The inplane and bending displacement fields have been previously de-
fined as {Au(x,y)} and {A¢(x,y)}, respectively. Substitution of tpe
nodal point coordinates (xn,yn) into the above displacement fields

result in the following expressions:

{62} = {8, .y )} = [c,] {8} (3.21a)

| {ag} = {A¢(xn’yn)} = [C,] {A} (3.21b)
where : [Cu] = [Pu(xh,yn)]
[C¢] = [Pq) (Xn ’yn)]

'{65} and {65} are the in-plane and bending nodal point displacements.

¢

Solving for the vectors {A} and {B} gives

{a} = [C¢]_1 {62} (3.22a)
{B} = [cu]'l {63} (3.22b)

Substituting Eq. 3.22 into the strain—displacement relation of 3.20

yields .
e, = 10,0 [e I {65} + 2 [Q, (o, 17 {85} (3.23)

Equation 3.23 is analogus to Eq. 3.9c and represents the strain dis-
placement equation relating the strains at a distance z from the middle

plane to the basic set of unknowns, i.e. the nodal point displacements.
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For convenience, the [Bu] and [B¢] matrices, defined by Eqs. 3.24a and
b, are substituted into Eq. 3.23. - This results in an expression for

the strain given by Eq. 3.24c:

(8,1 = [q,] [c ™ (3. 242)
[B,1 = [Q,] [c¢]’1 | (3. 24b)
_ e el

{e}z = [Bu] {Gu} + z [B¢] {6¢} (3.24c)

3.4.3 Layering

Multiaxial bending of the slab in both the longitudinal and
transverse directions causes a cdntinuqqsly varying biaxial stress field
within the concrete. The elaéﬁicify mdﬁrix, [D], for a nonlinear mate;
rial depends on the stress level, and, therefore, will also vary
throughout the finite element. In order to evaluate the volume inte-
gral of Eq. 3.3, [D] ﬁust 5é défined.over the volume of the element.
Since the explicit definition of the elasticity matrix for reinforced
concrete under biaxial stress is prohibitevely complex for solution
purposes, this stiffness matrix is evaluated by a combination of ex-
plicit integration and numerical integration. The numérical integra-
tion is performed using a summation process, as explained in the fol-

lowing paragraphs.

A slab finite element will be divided into a series of layers
as shown in Fig. 1l4. This idealization faeilitates inclusion of mate-

rial nonlinearities through the depth, i.e. layer to layer, and through
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the plane of the slab, i.e. element to element. Each layer can have
its own elastiéity relation, [Di]’ which is dependent upon the repre-
sentative state of stress existing within that 1ayer,'{5i}. This im-
plies that there is a constant state of stress and stiffness within any
particular layer and that there is a step-like variation of stress and
stiffness properties through the depth of the finite element. A state

of plane stress is assumed to exist within each layer.

The representative state of stress in a layer is taken to be
equal to the integrated average stress for the mid-plane of that par-
ticular layer. The location of the mid—piane of layer-i is defined by
the distance ;i from thé.reference_plane of the slab. The integrated
aﬁefage stress-ﬁaniﬁe‘expfeésed in termé of the integrated average

strain,'{E}; s using‘Eq.:§{25:
i

{o,} = [, ] {E}—zi T (3.25)

By employing Eq. 2.24c, the integrated average strain may be defined as

6&
Ei [B¢] dxdy ‘—-g- (3.262)
%

b a
where:  AREA =/ / dxdy = 4ab (3.26b)
-b -a

Substitution of Eq. 2.26a into Eq. 2.25 results in an equation defining

1
N

the integrated average stress:
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| ¢

Once the representative state of stress, given by'{Ei}, is
known the elasticity matrix, [Di]’ can be determined for various layers.
Numerical integration can then be performed and the stiffness matrix
can be evaluated. The elasticity matrix is a function of'{ai} which
is, in turn, dependent on the elasticity matrix. Thus the stiffness
matrix is stress-dependent and a step-by-step solution scheme is

required. This will be discussed in Section 3.9.

Reinforcingv bars are treated just the same as any other layér
in the integfation processfﬂuf:éfrcbufée a uniaxial'eiasticity rela-
tionship is used. A separate steel layer is assumed for each set of
reinforcing bars placed at a particulaf_depth and at a particular angle
to the x-axis. Idealizing the reinforcing bars as a layer and not as
individual entities requires the computation of an equivalent steel
layer thickness. The equivalent thickness of a steel layer must be
such that the total area of steel in a cross-section perpendicular to
the bar direction remains the same. The equivalent thickness for a

steel layer can be represented by Eq. 3.28:

b

= S
Ts = bs (3.28)

where A.S indicates the area of a reinforcing bar and bS is. the bar

spacing. This approach to modeling steel reinforcement allows
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consideration of reinforcing systems which have variable bar spacing

and size from element to element and are placed in arbitrary directions

and depths within the slab.
Progressive cracking and crushing of the concrete and yield-

ing of the steel through the depth of the slab during loading can be

monitored by obtaining the stress history for each layer. The angle of

crushing or cracking of a particular concrete layer is not predefined

by previous cracking or crushing and may vary from layer to layer

through the depth of the slab.

3.4.4 Element Stiffneés-Matrix'
Eq. 3.3b defineéxﬁﬁe element stiffness matrix

[k°] = f (81 [p] [B] dv (3.3b)
v
in which matrix [B] relates the strains to the nodal point displace-

ments. Comparison of Egqs. 3.9c and 3.24c shows that Eq. 3.3b can be

rewritten, in this context, as

| 8,17 |
k%] = f : - [D] [Bu] z[Bd)] “dv  (3.29a)
z[B¢]T

Performing the indicated matrix multiplication results in
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T T
(81" [D] [B,] [Bu] [D] z [B¢]
dv

k%] = f (3.29b)
v T T
,1° [0] z (8] (8,17 [0] 2° [B¢]J
The submatrices of Eq. 3.29b will be defined as shown below for
convenience:
e . T
L =~Z: [B,1" [p] [B I dv | (3.30a)
e » _ T
[ku¢] = JC‘ [Bu] [D] =z [B¢]'dv (3.30b)
e 5 _ T 2 .
[k¢¢] = l [B¢] [D] =z [B¢] dv. (3.300¢)

This will result in the following definition of the element

stiffness matrix:

e e
x%] Harl - Hag? (3.30d)
k1 [k ] .
pu olo
e _ e T
where [k¢u] = [ku¢]

[kiu] is the inplane stiffness matrix relating the in-plane force to
the in-plane displacements. [k$¢] is the bending stiffness matrix re-
lating bending forces to bending displacements. The off diagonal sub-

matrices, [k§¢] and [kzu] are the coupling stiffness matrices which
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interrelate the bending and in-plane actions (Ref. 44). The importance

of the coupling stiffness terms has been discussed in Chapter 1.

As was noted in the discussion of layering in Section 3.4.3,
the state of stress, and hence the terms of the elasticity matrix, are
assumed to be constant throughout a particular layer. Therefore, [D]
is not dependent on x or y coordinates. Likewise, since the displace-
ment functions were independent of the coordinate z, [Bu] and [B¢] are
also independent of z. Thus the integrations indicated in Egqs. 3.30

may be separated as shown below:

T
[kiu] -’[’[ [B,] [ [D] dz [B,] dxdy  (3.31a)

[kleld)] = // [Bu]Tv / [D] zdz [B¢] dxdy  (3.31b)
v *x z

e _ T o ; 2 . )

.[k(M)] ./y-.é [B¢] [ [D] z%dz [B¢] dxdy (3.31c)

As also mentioned in Section 3.4.3, a summation process will be used to
approximate the integration over z. This will be done by integrating
over each layer and then summing the results and storing them in the
appropriate [Duu]’ [Du¢], or [D¢¢] matrix. Thus the terms [Du“_‘]’

], and [D,,] may be defined as

[0y 90

i=1

L
[Duu] = '[ [D] dz = L [Di] (Zi+1 - Zi) (3.32a)
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N =

L
= = 2
[D,,] -/Z (0] 2dz =5 I (0] (2, - 2D (3.32b)

i=1

| L
= 24, = 1 3 _ .3
[D¢¢] / [D] 2z%dz = 3 § ;1 2y, - 2D (3.32¢)
Z i=1
Zi_'_1 and‘Zi delineate the boundaries of layer-i. L is the total number

of layers. [Duu], [Du¢], and [D¢¢] are often called, respectively, the

in-plane rigidity, the coupling rigidity, and the bending rigidity.

Substitution of Eqs. 3.32 into Eqs. 3.31 results in the fol-
lowing expressions which can be explicity integrated over the area of

the elements:

.[kiu] =£_/}; [Bu]T [Duﬁ] [Bu] dxdy ’ (3.33a)

[ki¢] =.£/X [Bu]T [:Du(b]' [B(b] dxdy (3.33b)
e _ T

[k¢¢] —-/};L [Bd)] [D¢¢] [B¢] dxdy (3.33¢)

This integration leads to the force-displacement relations for the fi-

nite element given by

h r 9
e e ! e e
Fu [kuu] i [kudJ] (Su
S GRS O oy B (3.34)
e e T | [,e e
“ | legod™ | gl %
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4{Fz} and'{Fz} are, respectively, the inplane and bending forces applied

to the nodes of the element. '{63} and‘{Si} are, respectively, the re-

sulting inplane and bending displacements at the nodes of the element.

3.5 Review of the Layered Beam Model

Theoretical development of the finite element analysis techni-
que as applied to reinforced and prestressed concrete beams is pre-
sented in detail in Refs. 27 and 32. Also in the above references, the
developed methodology is verified through numerous comparisons between
analytic and experimental results. Since the major emphasis of this
is on the layered slab and bridge models, only a brief review of the
layered beam modél will be presented for the sake of completeness.
Explicit expressions for the matrices used in the layered beam model

can be found in Appendix B.

Both inplane and bending displacement polynomials are pre-—

scribed for the beam element:

U(x)

I

B +B x ' (3.35a)
1 2

W(x)

A +Ax+Ax%+AXS (3.35b)
1 2 3 4

U(x) is the axial in-plane displacement of the beam while W(x) is the
vertical bending displacement of the beam. The displacement expres-
sions of Eq. 3.35 are a function of only the coordinate position (x)
and not (x,y) as was the case for the slab. Because of this, the beam

element can be considered as a one-dimensional structrual element. The
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displacement functions chosen for the beam are consistent with those
chosen for the slab (see Eq. 3.11 and 3.12). The beam displacement
field is defined by U(x), W(x), and Gy(x) [i.e. —-OW(x)/0x]. These

three quantities can be obtained from Eq. 3.35.

Nodal points, designated by letters I and K, are located at
the two ends of the beam element and are positioned on the reference
plane as shown in Fig. 15. Thus there are six nodal point displace-
ments for a beam, that is horizontal and vertical displacements and ro-

tations at each end.

The remaining equations necessary to formulate the beam ele-
ment stiffness matrix are analogous. to those employed for the layered

slab in Section 3.4 .and Wili:be‘briéfly summarized below:

1. Strain-Displacement

(‘e:x)Z - :BUZ/SXI | (3.36)
U =U-z 0W/3x (3.37)
(e) =0U/3x - z 3%W/3x® (3.38)
z
(ex)Z = (8] {3} +2 (8] {6$} (3.392)
where sl =1 [c17
(3. 39b)

- -1
[B¢] [Q¢] [C¢]
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2. Stress-Strain

(6) = (@) EJ_ (3.40)
1 Zz1

where stress, strain, and the elasticity relationship are

defined at the centroid of the layer

3. Layer Rigidities

L
(Duu) = 151 (Di) (zi+1 - zi) (Ti) (3.41a)
1 L 2 2
(Du¢) =5 I (Di) (zi+1 - zi) (Ti) (3.41b)
i=1
1 L 3 3 :
Dgp) =35 I (D) (Zyy, - 2)) (T)) (3.41c)
i=1 ,

(Ti) is defined as the layer width measured in the y-direction.
Expressions for the layer ridigities (Eq. 3.41) can be further

simplified by noting the following equivalent expressions

(Zi+1 - Zi) (Ti) = (Ai)’ layer area (3.42)

-% (Z;_'_1 - Z;) (Ti) = (Ai Ei),'statical moment for layer i (3.43)
-2

%’(Z;+1 - Zz) (Ti) = (Ai Zi + Ii)’ moment of inertia for  (3.44)

layer i about the reference plane

After the summations in Eqs. 3.41 are carried out, descriptive
labels, as used in Ref. 27, of equivalent area, equivalent

statical moment, and equivalent.moment of inertia can be used
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in lieu of the more intangible labels of in-plane, coupling,

and bending rigidities, respectively.

4. Element-Stiffness Matrix is the same as Eq. 3.30d, and the

submatrices are defined as

e T

[kuu] = l [Bu] (nuu) [Bu] dx (3.453a)
e _ T

[ku¢] —/}; [Bu] (Du¢) [B¢] dx (3.45b)
e _ T

[k¢¢] -L. [B¢] (D¢¢) [B¢] dx (3.45¢)

3.6 Unloading of Cracked or Crushed Concrete Layers

As stated in Section 2.1.8‘a-concrete layer that has cracked
or crushed will be incapable of sustaining the stress that caused the
failure. The stress within the layer must be reduced to zero by ad-
justing the internal stress field of the damaged layer. At the same
time the internal stress field is adjusted, a statically equivalent
force vector, referred to as a fictitious force vector, is applied to
the structure so as to maintain equilibrium between the externally ap-

plied forces and the internal stress field (Refs. 27,32).

The fictitious force vector can be computed using
e T
{F } ='£ [[Bu] z[B¢]] (6.} av (3.46)
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where the vectorl{ér} is the increment of stress in the x-y coordinate
system to be redistributed and {Fi} is the resulting vector of ficti-
tious forces. The fictitious force vector can be separated into terms

involving only in-plane fictitious forces, {cm}’ and terms involving

bending fictitious forces,'{cm}, as shown below:
r o) [ . "
Fl. .[ (5] {or} dv
of] o i o = 9 —_ o (3-47)
e T pe
F¢c / [B¢] {Or} zdv _
9 o LYV J

If it is assumed that the stress to be unloaded is constant through the
thickness of a layer, the integration of Eq. 3.47 over the thickness of

the layer results in

e ' T . '
{Fuc} /;[; [Bu], dx dy {or} (zi_h - zi) (3.48a)

. T S e 2 2
{Fgc} = [/X [B¢] dx dy {cr} (zi+1 - zi)/z, (3.48)

The amount of stress to be redistributed,'{ér}, for a particu-

lar load cycle can be computed 1n the principal stress space by multiply-
ing the unloading modulus by the appropriate integrated average strain
increment. Transformation of the stress vector from the principal to

thg x~-y global coordinate system is necessary before substituting into

Egs. 3.48.
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3.7 The Layered Bridge Model

3.7.1 Model Characteristics

The bridge superstructure is divided up into a series of beam
and deck slab finite elements as shown in Fig. 1. The beams and deck
slab are further divided up into a series of layers as shown in Fig. 2.
The beam and slab models were combined so as to formulate the bridge
model. Thus comments made for the layered beam model described in
Section 3.5 and the layered slab model described in Section 3.4 are

applicable to the layered bridge model and will not be repeated here.

The layered beam model was developed using an arbitrary re-—
ference plane. This reference plane iéilbcated, for convenience, at
the mid-plane ofithe déCkhsléb. The consideration of an arbitrary re-
ference plane in the beam formulation enabled the eccentricity of the
bridge beams to be includéd-in_the_bridge_formulation (Refs. 27,32,58,
59) . Thus a realistié apﬁroach>fo modeling the structural behavior of
the eccentric beam~slab system could be made. Layer coordinates and
stiffness properties of the beam elements reflect this eccentricity and
are computed using the mid-plane of the slab as the reference plane

(see Eq. 3.41).

The displacement field of the bridge superstructure is de-
fined by the in-plane, U and V, and bending, W, displacements of the
reference plane. Compatibility between beam and slab displacements
is maintained for points that are located at the beam~slab inter-
face. Thus composite action between the beams and the deck slab

is maintained.
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3.7.2 Assembly of the Force-Displacement Equations

As stated previously in Section 3.3, the element stiffness
matrix relates nodal point forces of the element to the nodal displace-
ments of the element. This relationship is expressed in Eq. 3.1. The
individual element stiffness matrices, including all béam and slab fi-
nite elements, are assembled to form the gldbal stiffness matrix of the
entire structure. These individual element stiffness matrices are

generated as previously stated in Sections 3.4 and 3.5.

The global stiffness matrix relates the forces at thé node
points of the structure to the displacements of‘those node pointé. The
process of assembly entails addition of the slab and beam eleﬁent
stiffness terms Whichvcontribute'to the same force-displacement loca-
tion in the global stiffness matrix. The total force at a ﬁérticular
node is determined by adding up the contributing forces ffom the indi-
vidual elements for that particular node. Thus after incorporating
subscript locations in Eq. 3.2, the force-displacement relationship for

the entire bridge superstructure can be expressed as
{F.} = [K;,] {Gj} (3.49)

where i and j correspond to the various degrees of freedom at the node
points. The subscript i indicates row positions in the force vector

and stiffness matrix and j indicates row ﬁositions in the displacement
vector and column locations in the stiffness matrix. Assembly proce-

dures require that
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: - - e

{Fi} = 2 {Fi} (3.50a)
_ e

[Kij] —2 [klj] (3.50b)

where the summation is carried out over all individual slab and beam
elements. The stiffness term kij in the above equation relates the
force at node i to the displacement at node j for element e. Summing
up the contributing stiffness terms from all elements as indicated in
Eq. 3.50b gives the term Kij which populates the (i,j) location in the
global stiffness matrix. The assembly procedure guarantees displace-
ment compatibility at the node points and results in Eq. 3.2. This
equation is then solved for the nodal point displacements. The layer
strains and sﬁrésses can then be computed by substituting the nodal

point displacements into appropriate relationships (see Eqs. 3.26, 3.27

and 3.39a, 3.40).

3.8 Extension to Skewed Highway Bridge Superstructures

Skewed highway bfidge superstructures are commonly encoun-
tered in the field. In these types of bridges the plan view has the
shape of a parallelégram. The presented method can be extended to con-
sider those cases in which the highﬁay bridge is constructéd with a

skew angle.

For the case of skewed superstructures, the deck slab is
divided into a mesh of rombiodal, i.e. parallelogram, finite elements
rather than rectangular finite elements as was done for right bridge

superstuctures. These parallelogram elements have the same skew angle
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as the bridge superstructure. Displacement functions used for the
parallelogram finite element are expressed in skew coordinates rather
than Cartesian coordinates and have the same form as used for the rec-
tangular finite element (Refs. 11,64). The previously developed ex-
pressions in Sections 3.3 through 3.4 that used these displacement
functions are therefore considéred to be applicable in a skew cqordi—
nate system. It is only necessary to apply a series of transformations
so as to obtain the required expressions in the cartesian coordinate

system. A transformation to Cartesian coordinates is necessary since

1. Boundary conditions for the bridge superstructure are usually

defined in the Cartesian system

2. The stress—strain relationships of Chapter 2 are evaluated

using Cartesian stresses and strains

3. Relationships that define structural damage and serviceability
criteria are evaluated using quantities defined in the

Cartesian system.

Quantities in the skew coordinate system will be denoted with
a prime while unprime& quantities will refer to the Cartesian coordi-

nate system. The following transformations will be needed:

{8} = [T6] {8'} displacement (3.51a)
{F} = [TF] {F'} force (3.51b)
{e} = [1e] {e'} strain (3.51c)
{o} = [To] {o'} stress (3.514)
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These transformations have been previously presented by Argyris

(Ref. 2) and will only be reviewed in the following sections.

The beam elements are considered to already be in the
Cartesian coordinate system and need not be transformed. These beams
are aésumed to be parallel to the coordinate axis that is common for
both the Cartesian and the skewed coordinates, i.e. x-axis. - Should
they have been parallel to the other coordinate axis that is not com-
mon for both coordinate systems then a transformation would have been
needed. Therefore, beam finite elements are treated as before. Only

transformations for the skewed deck slab need be considered.

3.8.1 Transformation of Displacement

The polynomial displacement functions describing the bending
and in-plane displacement fields for the parallelogram finite element

can be obtained by writing Eqs. 3.11 and 3.12 in a skew coordinate

system:
’ W' o= Wx',y") (3.52a)
U' = u(x',y") (3.52b)
V' = V(x',y") (3.52¢)

where W', U', and V' are the displacements in the skew coordinate sys-
tem shown in Fig. 16A. W' is in the same direction as W shown in
Figs. 2 and 14. The rotations in the skew coordinate system,

9; and 6;, are obtained by differentiating W'.

-78




3

The corresponding displacements in the Cartesian coordinate

system are defined by

= (3.53)

where [TSu] and [T6¢] are the appropriate in-plane and bending trans-
formation matrices respectively. Transformation matrix [TGu] can be
obtained by considering the covariant components of an arbitrary in-
plane displacement vector shown in Fig. 16b. Therefore from geometry
relationships

1 0

[TS ] = (3.54)
u -1/tan B 1/sin B

Terms in the transformation matrix [T6¢] are obtained by employing the

chain rule for partial differentiation:

(v ] 1 0 0 (W'
' '
1 ex L = 0 dy' /oy - -9x'/dy ) GX g (3.55)
At ' '
LeyJ 0 oy'/ax ox' /ox LGyJ

From geometry the skew coordinate position (x',y') is given by

x - y/tan B (3.56a)

o
i

y/sin B ' (3.56b)

~<
]
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Thus,

1 0 0
[T6¢] = 0 1/sin B 1/tan B (3.57)
0 0 - 1

3.8.2 Transformation of Forces

The in-plane and bending force transformations are [TFu] and
[TF¢] respectively and relate the forces in the skew system to the

forces in the Cartesian system:

(3.58)

=S-

The force transformations can be determined by considering the contra-
variant components of the force vectors shown in Figs. 17a and 17b.

From geometry considerations the following relationships can be

determined:
1 cos B '
0 sin B
1 0 0
[TF¢] = 0 sin B 0 (3.59b)
0 -cos B 1
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3.8.3 Transformation of Strain

Transformation of strain can be accomplished by employing the

chain rule for partial differentiation:

i
]

(ex)

Z

BUZ/Bx (3Uz/8x') (3x'/9x) + (BUZ/By') (9y"'/ox) (3.60a)

(ey)

z

BVz/ay (BVZ/BX') (3x'/3y) + (BVZ/ay') (oy'/3y) (3.60b)

()= (U, /3y + 3V, /3x) = (U, /35') (3y'/3y) + QU /3x") (3x'/3y)
+ (3V_/3y") (3y'/ox) + (avz/ax')'(ax'/ax) (3.60c)

Substitution'of Eqs. 3.53 and 3.56 into Eq. 3.60 will lead to

(¢ ] [ o0 0 1 [
x X
. ey L = 1/tan?B 1/sin B -cos B/sin?B § 8; L (3.61)
-2/tan?B 0 1/sin’B !
V) A 1 U

where the skew strains are defined as

(e;) = BU;/SX' (3.62a)
Z
€'y = 9v /3y’ (3.62b)
y z z
") = BU;IBy' + av;/ax' (3.62¢)
Z

Equation 3.61 will be written as
{e} = [Te] {e"} o (3.63)

where [Te] is the strain transformation matrix.
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3.8.4 Interrelationships Between the Transformation Matrices

The invariance of external and internal work is used to de-
fine relationships between the various transformation matrices. Utili-
zation of these relationships can lead to an efficient procedure in ex-
tending the previously developed method for right angle highway bridge

superstructures to one in which the skew angle is considered.

The invariance of external work in the Cartesian and skew

coordinate systems can be expréssed as
T e car 1T e
{8} {r} = {6'}" {Fr'} (3.64)
Substitution of the displacemént and: £orce transformation leads to
1 T T : ] ] T 1
{6'}" [181" [TF] {F'} = {8'}" {F'} (3.65)

which establishes the relationship

[(T61° = [TF1”} (3.66)

The invariance of internal work in the Cartesian and skew

~coordinate systems can be expressed as
e}t (o} = {e"}T {o"} (3.67)
Substitution of the strain and stress transformation matrices leads to

e} 11e1” [10] {0'} = {e"}T {o"} (3.68)

which establishes the relationship

(e1” = [1017? (3.69)
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3.8.5 Modification of the Right Bridge Formulation

to Consider Skew Bridges

Equation 3.9c¢ will now express the strain in the skew coordi-

nate system:

{e'} = [B] {8'} (3.70)
Transformation from the skew to the Cartesian coordinate system gives
{e} = [Te] [B] [T6]™ {8} (3.71)
Equating external and internal work leads to

. Tr : .
(61" (7} = (5} [Té].“f- ’[B‘]_T, _[TE]T*[D-]' [Te] [B] av' [T8] ' {8}
| vio | o (3.72)

After substituting Eq. 3.66, the stiffness matrix can be expressed as

k1 = (7] 03] [T (3.79)

where [kz] is the stiffness matrix in the skew coordinate system

[k = f (817 [1e]” D] [Te] [B] &v' (3.74)
V'

The integration is carried out over the volume of the finite element

which is expressed in the skew coordinate system:

dv' = dx' dy' dz sin B (3.75)
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where
1 -1/tan B
sin B = . (3.76)
10 sin B

and is obtained from the coordinate relationships of Eq. 3.56.

Equation 3.46, used in determing the fictitious force vector,
must also be modified to reflect the change in coordinate systems.

Employing Eq. 3.72 and using the following definitionm,

{51} = [1e]” [D] [Te] [B] [1617 {8'} (3.77)
gives o _ _
P - [TF] / (81" av' {5} (3.78)
V' .

where {6;} is the stress to be redistributed expressed in the skew co-
ordinate system and is considered to be constant throughout the volumn

of the layer.

3.8.6 Application of Boundary Conditions

Boundary conditions may be imposed in the skew or Cartesian
coordinate systems. Only boundary conditions which will prevent dis-

placements and rotations will be considered.

Boundary conditions specified for the skew coordinate system
will be applied to the skew stiffness matrix [k:] at the element level
rather than at the global level. The particular procedure adopted does
not require the reordering and deletion of equations. The procedure

involves setting the row and column of the skew stiffness matrix, which
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corresponds to the fixed displacements, to zero. The diagonal element
of the stiffness matrix is set equal to one. The corresponding posi-

tion in the skew force vector is then set to zero.

Enforcement 6f bound ary conditiéns specified in the Cartesian
coordinate system is carried out on the global stiffness matrix
expressed in Cartesian coordinates. The diagonal element of the stiff-
ness matrix, which corresponds to the fixed displacment, is multiplied
by a comparatively large number. The associated term of the force

vector in the Cartesian system is set to zero.

3.9 Solution Scheme

The solution process can be divided up into four main phases:

1. Problem definition
2. Dead load and/or prestress solutions
3. Scaling procedure

4. Overload solution procedure

The detailed explanation of the computer program based on the

reported‘analysié scheme including the required input and the generated

output are contained in Refs. 46 and 47. A brief explanation of the

above phases are contained in the following paragraphs:

Ll 1. Problem Definition

This phase defines the particular problem that will be solved.

The following topics must be specified:
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A. Bridge superstructure geometry -

Geometry for the beam and slab finite elements must be
defined. This includes specifying concrete, mild steel
reinforcing bar, and Prestress strand layer thicknesses,

widths, and locations.

B. Material Properties -

Material proper;ieS‘for the concrete, mild steel reinforc-
ing, and prestress strands must be defined. In particu=
lar, parameters-used‘in défining the stress—-strain rela-
tionships of Chapfer_é must be given. These include the
compressive'and tensile strengths, Young's moduli, and

Ramberg-Osgood constants (Refs. 27,45).

C. Loading -

The loads on the superstructures must be defined. These
loads may include dead loads, prestress forces, or live
loads. The live loads are considered to be static in

nature. Thus multiple solutions investigating several

critical vehicle load positions may be desired.

D. Boundary Conditions -

Displacement boundary conditions for the node points are
considered to be either fixed or free and must be speci-
fied. Advantage may be taken of situations where a line

of symmetry exists. In such cases the size of the
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problem and correspondingly the solution time can be re-
duced if the appropriate boundary conditions for that

line of symmetry are employed.

2. Dead Load and/or Prestress Solutions

Since the analytic technique considers material nonlinearities
which are stress dependent, the initial stress state, i.e.

the stress state occurring prior to overload, must be included
in the solution procedure. Due to the nonlinear nature of the
problem the initial stress state solution cannot be directly
superimposed on a separate overload solution. Thus, the ap-
propriate stress field must reflect not only those stresses
due to the overload vehicle but also the initial stress state.
Therefore an initial dead load and/or prestress solution may
be performed to obtain the response and initial stress states
of individual beams subjected to dead loads and/or prestress-
ing. Also a dead load solution in which the entire bridge
superstructure is considered may be performed. This solution

is applicable when there is composite action between the deck

slab and the beams under dead load and produces an initial
stress state in both the beam and slab. The dead load solu-
tion procedure for the entire bridge superstructure would be

desired in monolithic shored construction.

Nonlinear material behavior is considered in the dead load

and prestress solutions. Thus iterations and the application
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of fictitious forces, which result from layer cracking or

crushing, are performed.

3. Scaling Procedure

The scaling procedure prevents an excessive number of live
load solutions from being conducted on essentially an elastic
structure. Scaling of the prescribed live load forces takes
place prior to the incremental overload solution procedure
and following the dead load and/or prestress solution proce-
dures. This proéedure-scaleé.the;initial live load solution
so that the stre;é fiéld:whié£ includeé the dead load stress

state is within specified tolerances of first cracking,

crushing, or yielding whichever governs. Thus solution time
is not wasted and an elastic solution is obtained in one load

increment rather than in many load increments.

4. Overload Solution Procedure

The structural response to an overload vehicle is obtained by

solving the set of global force-displacement equations in

Section 3.7. The force vector is considered to be the incre-
ment of nodal point forces applied to the structure. The
displacement vector is considered to be the displacement in-
crement resulting from the applied force increment. Total
forces and displacements are obtained by addition of the

various increments.
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The global stiffness matrix, which relates the force incre-
ment to the displaceﬁent increment, reflects the instantaneous stiff—_
ness of the bridge superstructure. An incremental approach is neces~—
sary because the global stiffness matrix which reflects the nonlinear
material behavior is dependent upon the state of stress existing within
the material and changes during the loading process. The state of
stress is in turn dependent upon the displacement solution which is de~
pendent upon the global stiffness matrix. Symbolically the above

dependency relationship can be written in equation form as
{F} = [K (0 +6) ] {8 (3.79)

where [K] is shown as being dependent upon the current total stress
plus the unknown stress increment. In the above equation‘{ﬁ} is the
applied force increment and {8} is the resulting displacement increment.
Thus it can be seen that the system of equations to be solved is non-
linear and cannot be solved with the usual techniques employed for a
linear equation system. Thus, the formulation was modified to permit
piecewise - linearization of the nonlinear phenomenon (Eq. 3.79). Two
schemes were employed for the solution of the piecewise — linearized

problem. These schemes will be explained in the following paragraphs.

The analytic results for the overload response are generated
by solving a linear system of equations for a given load increment.
The sjstem of equations reflects the global stiffness of the structure
at the time the load increment is applied. The tangent to the stress-

strain curve for that particular layer is used in computing the element
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stiffness and finally the global stiffness matrix. Since the element
stiffness and global stiffness matrices depend on the current state of
stress, the stiffness matrix is recomputed for each load step. Also,
iteration within each load step or load increment is performed until
convergence of the solution for that load increment has been obtained.
Solution of the displacement equations and updating of the global
stiffness matrix occurs for each iteration. Load increments are scaled
down or up S0 that an optimum load step is applied. This load step
will ensure that the critical stress will be within some specified
tolerance of the failure;stress;vahen iteration within each load step
is employed the procedure ﬁill.ﬁék;éfeffed.to as the "incremental-
iterative'" method. An approximétién to the process of iterating within
each load step is to update the stiffness matrix only at the start of
each load increment. When iteration within each load step is not per-

formed the term "incremental" method will be used.

The advantage of the incremental solution procedure over the
incremental-iterative procedure lies in the fact that less solution
* time is needed for the former than the latter. The disadvantage of the
incremental solution procedure is that judgment and experience must be
used in selection of the size of the fixed load increment. If an ex-
cessively large load increment is selected then the incremental ap-
proach although being faster with respect to solution time, would over-
shoot the true amalytic result. This is beéause a fixed load increment
may cause a layer to overstress in which the stress within the layer

may exceed the specified failure stress. Thus the incremental mode
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produces a load-deflection history that will appear stiffer and lie
above a load-deflection history produced using the incremental-
iterative mode. As the size of the fixed load increment is reduced the
incremental solution will approach ;hat of the incremental-iterative
solution. When using the incremental mode, the load at which specific

structural phenomena (e.g. cracking, crushing, or yielding) occurs can

only be determined to lie within a specific load increment and not at
a specific load as would be the case for the incremental-iterative
approach. Therefore when damage (e.g. c;acking, crushing, or yielding)
occurs within a load increment, the reported load will be the load

after the increment is applied.

Flow charts describing.the basic operations for both the in-
cremental and the incremental-iterative solution schemes are presented
in Fig. 18. The following corresponds to a more elaborate explanation

of several key steps used in the incremental method:

1. Formulate the element stiffness matrices based on the current

total stress level.

2. Form the global stiffness matrix by assembling the element

stiffness matrices.

3. Solve for the displacement increment using the global stiff-
ness matrix and the force increment. Next compute the strain

and the stress increments.

4. Unload the excess layer stresses and compute the corresponding

fictitious force vector if applicable.
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If the current total stress level has exceeded the lower tol--
erance on the failure envelope set the codes for newly cracked

or crushed concrete layers and newly yielded steel layers.

Compute the total stress, strain, displacement, and force
vectors by adding together the old totals and the current

increments.

Apply a new force increment and go to Step 1.

An initial stress and displacement increment of zero is chosen for each

load step. Thus the first iteration within a load step uses an elas-

ticity matrix based on the stress level of the previous load cycle.

The following corresponds to a more elaborate explanation of

several key steps used in the incremental-iterative method:

1.

Formulate the element stiffness matrices based on the current

total stress level.

Form the global stiffness matrix by assembling the element

stiffness matrices.

Solve for the displacement increment using the global stiff-
ness matrix and the force increment. Next compute the strain

and the stress increments.

If the displacement increment has converged to a specified

tolerance go to Step 7, otherwise continue.

If the stress state falls outside the upper tolerance set on

the failure envelope then scale down the applied force
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increment such that the total stress is between the upper and

lower tolerances.

6. If the maximum number of iteration cycles has been reached go

to Step 7; otherwise go to Step 1.

7. Unload the excess layer stresses and compute the corresponding

fictitious force vector if applicable.

8. 1If the current total stress level has exceeded the lower tol-
erance on the failure envelope set the codes for newly cracked

or crushed concrete layers and newly yielded steel layers.

9. Compute the total stress, strain, displacement, and forces
vectors by adding_together:the old totals and the current

increments.

10. Apply a new force increment and go to Step 1.

An initial stress and displacement increment of zero is chosen for each
load step. Thus the first iteration within a load step uses an elas-

“ticity matrix based on the stress level of the previous load cycle.

Allowable limits on deflections, live loads, stresses,
strains, number of cracked, crushed, or yielded layers, and crack
widths can be specified for both the deck slab and beams to define ser-
viceability limits for the bridge superstructure (Refs. 46,47). These
checks can be used to terminate the overload solution procedure if a
specific serviceability limit is exceeded. Thus an efficient solution

procedure is developed, which will meet the requirements of the analyst.
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4. CORRELATION WITH EXPERIMENTAL TESTS

This chapter contains comparisons of experimental and analy-—
tical studies on reinforced concrete slabs, and on reinforced and pre-
stressed concrete highway bridge superstructures. These comparisons
were made so as to provide a basis for the verification of the devel-
oped method. The experimental studies were obtained from the avail-
able literature and were not conducted as part of reported
investigation.

The analytic studies were_carried out using the method re-
ported herein. A total of seven reinforced concrete slabs and five
highway bridge superstructufes were analyzed. To prevent repetition,
two of the seven slabs along with three of the five bridges will be
discussed in this chapter. Another bridge example is presented in
Chapter 5 which presents a limited parametric study. Thus a total of
four bridges are discussed. Detailed presentation of the slab
examples can be found in Ref. 43, while the bridge examples can be
found in Ref. 45. Within the scope of the reported investigation,

satisfactory agreements for all slab and bridge examples were observed.

Development of the layered beam model was not part of this
dissertation. The layered beam model had been previously verified

and numerous test cases can be found in Refs 27 and 32.
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4.1 Reinforced Concrete Slabs

_A comparison of experimental and analytical results are pre-
sented in this section to verify that the developed analytical model
accurately represents reinforced concrete slabs. Comparisons for the
seven test cases listed below have been made. The reference which is
listed along with the example, indicates where the experimental test

is reported:
No. 1: A simply supported reinforced concrete beam (Ref. 66).

No. 2: A rectangular slab simply supported on two opposite sides

and free on the other sides (Ref. 8).
No. 3: A corner supported square slab (Ref. 22).

No. 4: A simply supported square slab with orthogonal reinforce-

ment (Ref. 53).

No. 5: A simply supported square slab with diagonal reinforce-

ment (Ref. 53).

No. 6: A rectangular slab fixed on two opposite sides and free

on the other two (Ref. 54).

No. 7: A square slab fixed on all edges (Ref. 54).

Only No. 2 and No. 7 in the above list will be presented in
this report and will be referred to as the "Simple-Free Slab" and the
"Fixed-Fixed Slab", respectively. Details of all examples can be
found in Ref. 43.

The material properties of the test specimens in units of ksi

are listed below:
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Material Simple~Free Fixed-Fixed

Property Slab Slab
£1-4" — 5.06%
fé 5.150% 4.20
ft 0.502 - 0.375
Ec 4330. 3100.%
fy o 50.0% b4 .6%
Es 30000.* 30000.

* Given

where: fL—A“ = 4" x 4" x 4":cube'strength

fé =6" x 12" cylin&efJStrength

ft = direct tensile strength

E, = Young's modulus for concrete

fy = yield strength fbr steel

ES = ¥oung's modulus for steel

As noted in the above table, not all material properties
needed in the analysis scheme were reported or obtained by the experi-
menters. In all examples either the 6" x 12" cylinder strength, fé, or

the 4" x 4" x 4" cube strength, fé—4", was reported. If the concrete

properties ft and Ec were not experimentally obtained, they were com-

puted from fé or fé-4" in the following mamner :

1. If the cube strength is readily available then it can be con-
verted to cylinder strength by any acceptable relationship

such as the equation below (Refs. 4,41):
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LI t_n
fc 0.83 (fc 4")

2. Young's modulus, Ec’ was obtained using an acceptable formula
such as those mentioned in Section 2.1.1. For example, in the
case of the Simple-Free Slab, EC was computed using Jensen's

equation (Ref. 21).

3. The direct tensile strength, ft; can be obtained from Ref. 41
which gives relationships between the cylinder strength and
the direct ténsile strength. The tensile strength used for
the SimpleQFree Slab is taken as a value previously used by

other investigators (Ref. 8).

The following material propérties were assumed for all test cases:
Poisson's ratio,>v = 0.2
Compression unloading modulus = 1000 ksi (Ref. 27)

Tension unloading modulus = 800 ksi (Ref. 27)

Material properties needed for steel are the yield strength,
Young's modulus, and the Ramberg-Osgood parameters (see Section 2.2.2).

Young's modulus was assumed to be 30 x 10® ksi if it was not given.

4.1.1 Simple-Free Slab

This 54" x 40.5" x 4.14" slab (Slab B7 of Ref. 8) was loaded
by a uniformly distributed moment along two opposite sides as shown in
Fig. 19A. The constant moment region was idealized as one finite ele-
ment. This is an adequate idealization because the stress field does

not, theoretically, vary with position in the plane of the plate. The
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distributed moment was applied on the short sides which were consid-
ered as simbly supported. The long sides of the slab were free to
displace. Reinforcement consisted of 1/4" diameter deformed bars
placed at *45° to the slab edges. The bars closest to the sur-

face of the slab were spaced at 1.5" with a minimum cover of 3/8".

The bars in the next layer were spaced at 1.375" with a cover of 5/8".

The slab was divided into ten concrete layers and two steel
layers as shown in Fig. 19B. 'TS in Fig. 19B indicates the steel layer
thickness and GX indicates the reinforcing bar angle measured from the
x—-axis. The location of the steel layers in the model corresponds to
the centroidal location of the steel reinforcing bars in the test
specimen. The experimental and analytical distributed moment versus
curvature histories are presented‘in Fig. 20. The agreement between
the experimental and analytic results is quite good with respect to
the formation of the collapse mechanism and the ultimate load.

Figures 21 and 22 show the applied moment versus concrete compressive
strain and the moment versus average steel strain (tension side) his-
tories, respecti&ely, for both the experimental and analytic models.
It can be noted that there is scatter of experimental strain readings
about their average values for some levels of applied moment. The
overall agreement between the experimental and analytic results is

quite satisfactory.
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4.1.2 Fixed-Fixed Slab

Two almost identical 6' x 6' x 4" square slabs were tested
as part of the experimental study contained in Ref. 54. The slabs
were fixed on all four sides and loaded by a concentrated center point
load applied through a 9" x 9" steel plate. Reinforcing consisted of
1/4" and 3/8" diameter mild steel bars placed orthogonal to the slab
edges. Both top and bottom tension reinforcements were used since ten-
sile stresses are developed oﬁ botﬁ the top and the bottom surfaces of
the slab due to the boundary conditions. Although the distribution of
reinforcing varied throughout the slab, it is believed that an adequ-
ate model was developed by using a constant thickness for each steel
layer. There is, however, no analytic difficulty in extending this
formulation to consider a steel layer whose thickness varies from
element to element.

The analytic model was developed using the material proper-
ties of the first experimental slab of this pair. These properties
have been previously listed in Section 4.1. A quarter of the slab was
discretized into sixteen finite elements as shown in Fig. 23. The
depth was diVided into six concrete layers and four steel layers as
indicated in Fig. 24.

The load-deflection histories for the two experimental slabs
and the analytic model are shown in Fig. 25. A shear punch failure
occurred during the experimental tests and caused a premature collapse
of the slabs before their full flexural capacity could be developed.

Since the model considers only the flexural action, the shear punch
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type of fai;ure could not be obtained analytically. The possibility

of a shear punch failure can be examined through the use of appropri-
ate design formulas. Enlarged portions of experimental and analytic
load-deflection histories up to the occurrence of the shear punch fail-
ure are shown in Fig. 26. The figure indicates that when flexural
action is dominant a close agreement between experimental and computed
results is obtained. The slight difference between the analytic and
experimental lqad—deflection histories may be attributed to the lack

of total fixity observed by the experimenters. It was estimated that

the fixed edge supports were 907 effective. The analytic work assumes
full restraint along the edges in question. Thus, as indicated, the
analytic model produced a load-deflection history which is stiffer

than that obtained experimentally.

The analytic and experimental crack patterns for the top sur-
face of the quarter slab are shown in Figs. 27A and 27B, respectively.
The experimental crack pattern was not perfectly symmetric but it had
essentially the same general form for all quadrants of the slab. The
top surface cracks in both the experimental and analytic cases devel-~
oped into concentric circle-like patterns around the center of the
slab. The bottom surface crack patterns are shown in Figs. 28A and
28B. The center portion of the slab exhibited extensive cracking due
to the shear punch failure. As would be expected, the analytic model
did not reflect those cracks due to the shear punéh failure. Good
agreement was obtained between the experimental and analytic crack

patterns that were primarily caused by the flexural action in the slab.
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Both the analytic and experimental bottom surface cracks developed

into fan-shape patterns radiating from the center point.

The fact that these experimental slabs failed by shear punch
action does not reduce the value of the flexural analysis presented
herein when applied to the bridge overload problem. Work currently
underway (Ref. 23) substantiates former conclusions that punching
shear failures are very unlikely in bridge decks subjected to vehicu-

lar loadings.

4.1.3 Observations

From the comparisons. présented in Sections 4.1.1 and 4.1.2
and the additional comparisons contained in Ref. 43, several observa-
tions can be made for the developed analytic model. These observa-

tions include:

1. The inelastic flexural behavior of reinforced concrete beams

up to collapse, can be obtained (Slab No. 1 of Ref. 43).

2. The inelastic flexural behavior of reinforced concrete slabs
up to collapse, can be obtained (Slab No. 3 - 5, of Ref. 43

and simple—~free slab of Section 4.1.1).

3. A variety of complex support conditions and loadings can be

handled.

4. An increase in the number of concrete layers used to model
the continuum improves the analytic approximation to the

actual behavior (Slab No. 1 of Ref. 43).
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5. Stgel reinforcing bars placed at different angles and ‘depths
within the slab can be modeled as a system of uniaxially

stressed layers.

6. In-plane boundary conditions and loadings have a pronounced
effect on the behavior of reinforced concrete slabs (Slab

Nos. 4 and 5 of Ref. 43).

7. If the primary response of the slab is due to flexure but the
failure is due to punching shear, then the method can accu-
rately predict the load-deflection behavior up to the initi-
ation of the shear punch failure (Slab No. 6 of Ref. 43 and

Fixed-Fixed Slab of Section 4.1.2).

8. Gross crack patterns can be simulated (Slab No. 6 of Ref. 43

and Fixed-Fixed Slab of Section 4.1.2).

4.2 Beinforced and Prestressed Concrete Beam-Slab

Highway Bridge Superstructures

A comparison of experimental and analytical results will be
presented in this section to verify that the developed analytic model
accurately represents beam—-slab bridge superstructures. Comparisons

for the five test cases listed below have been made:

No. 1: A simply supported bridge at a skew of 75° with a span
length of 65' and a width of 28' having four prestressed

concrete beams (Bridge No. 2 Test-2500 of Refs. 7,12).
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No. 2: A simply supported bridge at a skew of 60° with a span
1eﬁgth of 50' and a width of 24' having four reinforced

concrete beams (Bridge No. 3, Test-3300 of Refs. 7,12).

No. 3: A simply supported right bridge with a span length of 50'
and a width of 15' having three prestressed concrete

beams (Bridge 6A of Refs. 17,18).

No. 4: A simply supported right bridge with a span length of 50'
and a width of 15' having three prestressed concrete beams
(Bridge 6B of Refs. 17,18).

No. 5: A simpl&'suppbrted rightiﬁfidge with a span length of 50'
and a width of 15"having three reinforced concrete beams

(Bridge 8B of Refs. 17,18).

Three of the aBove bridges are included in this chapter.
They are Bridges Nos. 1, 5, and 2, and are referred to as Examples 1,
2, and 3, respectively, within context of this report. Results for
Bridge No. 3 are presented in Chapter 5 as part of the parametric
study. Detailed presentation of all bridges, i.e. No. 1 through No. 5

can be found in Ref. 45.

4.2.1 Example No. 1

A, Geometry:
This bridge was designed using the AASHO HS-20 design loading

and was constructed in 1963. The overload test was conducted in 1970.
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This bridge.consisted of four prestressed precast AASHO Type III
I-beams composite with a concrete deck. The deck had an average thick-
ness of 7 inches. The actual bridge cross-section is shown in

Fig. 29A while the idealized cross-section used for analysis purposes
is depicted in Fig. 29B. 1In these figures only half of the cross-
section is shown since the.cross—section is symmetric about the longi-

tudinal centerline.

The curb portion of the superstructure was considered to be
in the same plane and of the same thickness as the slab. The roadway
of this bridge was placed on a 4;1/2 percent grade and was superele-
vated to accommodate a 4~-1/2° horizontal curve. The superstructure
was built with a skew angle of 75° (90° designates a right bridge).

The grade and superelevation were not considered in this analysis.

A plan view of the superstructure is shown in Fig. 30A. The
length of the bridge was 65 ft. centerline of bearing to centerline of
bearing. The four beams were placed at a center-to-center spacing of
8.9 ft.

Loads were applied to the bridge deck by 200 kip center hole
jacks resting on bearing grills. The bearing grills were constructed
from two 14 in. wide flange beams 46 in. long and spaced 30 in. from
center-to-center. The bearing grills rested on‘concrete pads which
were poured directly on the bridge deck. These pads created a hori-
zontal loading surface and also prevented a punching shear failure .

from occurring. The location of the loaded areas are indicated by the
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cross-hatched rectangles in Fig. 30A. Eight loading jacks were used

and each jack applied an equal increment of load.

Figure 30B shows the idealized superstructure. The idealized
loads are indicated by the cross-hatched areas. The actual loaded
areas positioned on line "A" in Fig. 30A have been extended to the
centerline of the structure. Also the lengths of the loaded areas in
the transverse direction have been extended to cover the distance be-
tween the beams. These modifications of the actual loaded areas while
not necessary, permitted a discretization which results in a more ef-
ficient analysis. The'ldadéﬁgatéas in Fig. 30B correspond to jacks
and are designated by the}lééﬁéri"Q" and numbered from one to four.

The values of the distributed loads have been chosen in such a manner

that equal force is applied by each individual jack. The necessary

ratios of the distributed loads, Q1 through Q“, which are inversely
proportional to the areas that they cover, are listed in Fig. 30B. The
loading devices are depicted in Fig. 31. The photograph clearly shows

the jacks, bearing grills, and concrete pads.

The discretized superstructure is shown in Fig. 32.‘ Thirty-
six finite elements were used in the discretization. This resulted in
a model having 49 node points with a total of 245 degrees of freedom.
Node points and element numberings, dimensions, and loadings are indi-

cated in the figure.

The beam discretization is shown in Fig. 33C. The finite

elements used for modeling the beam have lengths that are equal to

those used for the corresponding slab elements along the length of the
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bridge superstructure. The reference plane is shown as the mid-plane
of the deck slab. Figure 33A shows the actual beam cross-section while
Fig. 33B shows the idealized layered cross-section with appropriate
dimension. The trapezoidal portions of the I-beam cross-section are

approximated as rectangular sectionms.

Prestressing steel is also modeled as a layer or set of
layers. In this example only the centerline eccentricity and total
area of the draped strand were reborted. The area was 4.792 sq. in.
per beam and the centerline eccentricity was 6.45 in. from the bottom
of the beam. An end eccentricity which produced no tension at release
was computed and used in lieu of more precise information. Ome point
draping was also assumed resulting in an analytic strand profile whose
centroid varied linearly from 6.45 in. from the bottom of the cross-
section at the centerline to 10.75 in. at the ends. The prestressing
steel is shown as a dashed line in Fig. 33B. The location of the
steel is that for a cross-section at midspan. The assumed strand pro-

file is shown as the dashed line in Fig. 33C.

The prestress tension of the strands was calculated in
Refs. 7 and 12. The computed value before release of the strands was
found to be 173.5 ksi. The calculated steel stress at the time of the
test was 127.5 ksi. The theoretical method presented herein requires
that all losses except the initial elastic loss at transfer be de-
ducted from the prestressing force, since the elastic loss is auto-
‘matically calculated by the computer program. A prestress of

140.11 ksi was specified as input to the program. This gave a final
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prestress of 133.2 ksi after the elastic loss which is within 5% of

that computed in Refs. 7 and 12.

The reinforced concrete deck slab was divided into six equal
concrete léyers and four éteel layers. The layering and associated
dimensions are given in Fig. 34. The quantities "TS" aﬁd "ex" in the
table below the figure designate the layer thickness and direction of
reinforcement with respect to the x-axis. The exact reinforcement
distributiqn in the slab was ﬁot specified and was selected using cur-

rent design practices.

B. Material Properties -

' curve for the prestressing strand

A "certified load-strain'
used in the bridge was presented in Refs. 7 and 12. This stress-

strain plot is shown as the dashed curve, designated as "B", in

Fig. 35. The idealized Ramberg-Osgood stress~strain curve for the
prestress strand is designated as "A" and is shown as the solid curve
in Fig. 35. The arrow on the end of curve "A" implies that the analy-
tic curve will extend beyond what is shown. The values needed to de-
fine the analytic curve are: Yield Stress, fy = 250 ksi; Young's

n_n

Modulus, Es = 27,000 ksi; a Ramberg-Osgood "m' value m, = 0.67 and a

Ramberg-Osgood "n" value, n, = 25.0.

The stress-strain curve for the steel reinforcement in the
slab is shown in Fig. 36. A steel with a 36 ksi yield stress and a

Young's modulus of 30,000 ksi was assumed. Ramberg-Osgood "m" and "n"
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values of 0.7 and 100.0 were chosen so that the analytic stress-strain

curve would approximate that for mild steel.

Concrete strengths were determined by performing compression
tests on cores taken from the deck slab and beams (Refs. 7,12). The
cores taken from the slab had a maximum, minimum, and average compres-
sive strength of_6.28 ksi, 4.58 ksi, and 5.50 ksi, respectively. Cores
taken from the beams showed maximum, minimum, and average compressive
strengths qf 10.3 ksi, 7.5 ksi, and 8.7 ksi, respectively. Figs. 37
and 38 depict the uniaxial analytic Ramberg~Osgood compressive and
tensile concrete stress-strain cﬁrves for the prestressed concrete

beams. Beam concrete properties include: cylinder strength,

f; 8.7 ksi; direct tensile strength, ft = 0.609 ksi; Young's modulus,

E
c

5374 ksi; downward compressive modulus, Edc,= 3000 ksi; downward
tensile modulus, Edt = 800 ksi; Ramberg-Osgood "m" value, m = 0.8094;
Ramberg-0Osgood "n" value, n, = 9.0. Slab concrete properties include:
f; = 5.5 ksi, ft = 0.44 ksi, Ec = 4273 ksi, Edc = 1000 ksi,

Edt = 800 ksi.

C. Results:

Bridge 2 was described as being "structurally sound" before
the experimental tests were conducted (Refs. 7,12). The average traf-
fic volume was approximately 2000 vehicles per day (counts made in
1968) . This bridge had been in service for approximately five years.
Load tests prior to the ultimate load test included lateral load-

distribution studies and dynamic response studies to both rolling
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loads and vibratory loading. References 7 and 12 contain load-
deflection histories for various points on the bridge superstructure.
Deflection diagrams of the midspan cross-section for various load
levels are presented. Photographs showing the mode of failure are
also included.

Figure 39 shows the experimental and analytical load-
deflection histories for node 18. A load increment of 37.8 kips was
used in the analysis. This node point, which can be located in
Fig. 32, cofresponds to the midspan of the interior beam. The experi-
mental points are plotted.aS~open,circlesvwhile the computed results
are shown as solid lines. Curve ﬁA";c§frésponds to an analysis which
considers the skew angle of 75° while curve "B" corresponds to an
analysis which does not consider the skew. The computed curves are
shown with an arrow drawn on the end to indicate that they will extend
further.

The numbers along the side of the load-deflection history
correspond to load levels at which significant response phenomena
occurs. The analytical response phenomena can be noted by observing
the stress histories of the individual layers along with annotated
printer plots generated by the program. The numbers along the curve

correspond to the following response histogram:

1. At a load of 433 kips first cracking occurred in the beams.
This was experimentally determined by using pulse velocity
tests. The load at first cracking was computed by the

method presented herein to be 382 kips.
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At this load level three concrete layers in the interior beam
have been predicted to crack: Figure 33B shows that these
three concrete layers comprise 327 of the depth of the beam
and that the analytic cracked region would extend past the
center of gravity of the strand. Also at this load level a
cracked region has been predicted to occur in the first con—
crete layer of the slab. The first concrete layer has a
thickness of 1-1/6 in. (see Fig. 34) which corresponds to

16.5% of the slab thickness.

At a load of 521 kips visible cracking of the interior

girders occurred.

At a load of 533 kips analytic results indicate that a pre-~
dicted cracked region has penetrated to-a maximum depth of
four concrete layers in the interior girder corresponding to
a depth of 537 of the total beam depth. Also a predicted
cracked region has penetrated to a maximum depth of three
concrete layers in the deck slab. This corresponds to 507

of the slab thickness.

At a load of 685 kips cracking of the bottom concrete layer

of the exterior beam is predicted.

At a load of 760 kips the analytic cracked region has pene-
trated through seven concrete layers in the beam. This cor-
responds to a distance of 41-1/2 in. or 92% of the beam depth.

Also at this load a predicted cracked region has progressed

to a depth of 67% of the slab thickness.
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7. At a lqad of 950 kips composite action of the interior gird-
ers with the deck slab was lost (Refs. 7,12). The vertical
stirrups crossing the interface between the girder and the
deck slab were sheared. A maximum interface shear of
0.375 ksi was predicted at a load of 950 kips. Also at this
load level predicted cracked regions have penetrated com-

pletely through the interior beams.

8. At a load of 1025 kiﬁs yielding of the prestress strand in

the interior girder was predicted.

9. The measured ultimate load was 1140 kips. At this load the
interior girders were observed to fail after the formation of
diagonal tension cracks. The computed ultimate load was
1139 kips. Aﬁ this load crushing of the concrete in the deck

slab was indicated by the analytic results.

10. The predicted ultimate load from Refs. 7 and 12 was 1267 kips.

Figure 40 shows a photograph of one of the prestressed con—
crete I-beams after the ultimate loéd had been reached. Extensive
cracking is evident in the girder at the time of failure. This is in
agreement to that predicted by the analytic model. The concrete dia-
phragms cracked at a relative early stage of loading and were found by
the experimenters to have no measurable effect on the load-deflection

behavior of the bridge superstructure (Refs. 7,12).

It is possible to obtain the load-deflection histories of

all node points used in the discretization (Fig. 32). Figure 41 shows
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the load-deflection history for node point 18, which was previously
presented in Fig. 39, plus additional node points that lie on the mid-
span node line, 4-11-18-25. As expected node point 25, which is lo-
cated at the center point of the bridge superstructure, is seen to

have the largest deflection for any given load.

Figure 42 shows the deflected shape of the midspan cross-
section for various load levels. The dashed line and solid line cor-
respond to the experimental and analytic results respectively. The

bridge superstructure is seen to be experiencing considerable dishing

in the transverse direction. This dishing was also noted in the exper- .
imental test. The unsymmetrical behavior indicated by the experi-

mental results is due to geometric variables such as the skew and
superelevation of the bridge superstructure. Also undetermined mate-

rial property variations throughout the superstructure may contribute

to the unsymmetrical deflected shape of the cross-section.

Figures 43 and 44 show the progression of analytic cracked
regions on the bottom face of the deck slab and through the depth of
the interior girder, respectively. These figures were constructed
with the aid of the stress histories and printer plots generated by
the computer program. Load levels of 420 kips, 723 kips, and 1108 kips
are represented. Figure 43 is a plan view of the bottom surface of the
deck slab divided into finite elements. The directions of the cracks
are indicated by the dashed lines. Cracking is considered to occur
throughout a layer of a given element and is represented symbolically

by the single line in the figure. At a load level of 420 kips cracks

-112-



have developed in the deck slab between the two interior beams. These
cracks have been caused by the principal stress in the direction per-
pendicular to the given crack directions. At a load level of 723 kips
cracked regions have developed over most of the bottom surface of the
deck slab. From 723 kips to 1108 kips very little increase in the
spread of the predicted cracked regions over the bottom surface is seen
to occur. Therefore at 723 kips the bottom surface crack pattern is
fully developed. Due to high twisting moments near the simple supports
of the bridge superstructure, the cracks are seen to occur at a larger
angle to the 1ongitudinalldirection.than‘those cracks that occur near
midspan. Crack depth within ‘the élab can also be monitored. For the
analyst's convenience crack depth is indicated on the printer plots of

the program output.

The crack depth within the interior beam is shown in Fig. 44.
The dotted line in the figure represents the assumed prestress profile.
The predicted crack depth, designated by the cross-hatching, can be
seen to progress through the entire depth of the girder as the ulti-
mate load is approached. Experimental results corresponding to
Figs. 43 and 44 are not included in the report since the data was not

available (Refs. 7,12).

4.2.2 Example No. 2

A. Geometry:

This bridge was a reinforced concrete beam bridge and was

designed using loading "B", as referred to in Refs. 17 and 18 shown in
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Fig. 45. The bridge was constructed in 1958 and tested in 1970.
Bridge 8B was a right bridge and had a length of 50 ft. center-to-
center of bearing. The deck slab for the bridge had cross-sectional
dimensions of 6.5 in. by 15 ft. Three rectangular reinforced concrete
beams composite with the deck slab were used. TFigures 46A, 46B, and
46C show the shape of the cross-section including dimensions and rein-
forcement details. The total weight of the bridge superstructure was
103.3 kips, which included an average beam weight of 204.9 kips/ft., a

slab weight of 83.7 1bs./sq. ft. and a wood timber guard of 40 1bs./ft.

Loads were applied to the superstructures by a moving over;
load vehicle. The overload vehicle is shown in Fig. 47. Axle spacing
of the overlqad vehicle is indicéted in Fig. 45. The loading proce-
dure consisted of placing weights on the overload vehicle which would
then travel across the bridge usually thirty times. Figure 45 also
indicates the range of axle weights used during the overlbad test.
During the loading process deflections at the midspan position of each
beam were measured. The load was then increased and another set of
runs were made. This procedure was continued until the bridge super-

structure collapsed onto the safety crib.

In the AASHO Road Tests the overload moved across the bridge
rather than having the overload applied in a static manner by £fixed
devices as was done for Example Bridge 1. The moment envelope pro-
duced by the passage of the overload vehicle is of interest since the
behavior of the bridge superstructure is primarily governed by the

flexure action. A series of concentrated loads must be defined so
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that this moment envelope is approximated (Ref. 48). TFigure 48 shows
the plan view for the bridge superstructure. The beam locations are
indicated in the figure. The small squares indicate where the assumed

concentrated forces are placed.

Figure 49 shows the superstructure discretized into a series
of finite elements. The node points, element numbering, and element
dimensions are indicated in the figure. Since the structure was as-
suned to be symmetric in geométry and loading, one-quarter of the
structure was analyzed. Fifteen slab finite elements were used in the
discretization. The éonéenérated nodal point loads are indicated by
the cross-hatched squares. The beam locations are indicated in the
finite element discretization. It should be noted that the interior
beam lies on a line of symmetry and only one-half of the cross-section

is to be included in the model.

The actual beam cross-section and corresponding layered
idealization is shown in Fig. 50. The layer dimensions and centroidal
locations of the steel layers, indicated by the dashed lines, are pre-
sented in the above figure. The top row of steel reinforcing bars had
an area of 2.66 sq. in. while the bottom row had an area of
4.57 sq. in.

Layering for the deck slab is indicated in Fig. 51. Six
equal concrete layers and four steel layers were used. The table be-
low the figure indicates the direction, thickness, and bar size/

spacing for the various reinforcing bar layers.
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B. Material Properties:

Figure 52 shows the idealized and experimental stress-strain
curves for the mild steel reinforcement. Close agreement between the
experimental and the idealized curves is evident. Material properties
for the beam and slab steel‘include: fy = 50.4 ksi, ES = 28800 ksi, .
m = 0.7, n_ = 100.0. An average yield strength of 50.4 ksi was
specified for the reinforcing bars placed in the concrete beams and
slab. The range of yield strengths for the various sizes of reinforc-

ing bars used in beams and slab was considered to be marginal. Thus

no differentiation of the yield strengths was made.

Figures 53 and 54 show the idealized beam concrete compres—
sive and tensile stress-strain curves, respectively. S1lab and beam
concrete material properties include: fé = 4,88 ksi, ft = 0,40 ksi,
Ec = 5700., Edc = 1800. ksi, Edt = 800. ksi, m, = 0.77, n_ = 9.0.

[

C. Results:

The AASHO Road Tests included (Ref 18): (1) a regular test
~traffic program of 500,000 trips, (2) dynamic load tests, and (3) in-
creasing load tests, i.e. overload tests. Therefore, before the in-
creasing load tests, the bridge was subjected to a variety of loading
prdgrams. The testing progfams prior to overloading produced strucs
.tural changes within the bridge superstructure. Tension cracks were

found in all beams of the bridge immédiately aftef removal of the
forms and extensive tensile cracking in the reinforced concrete beams

was observed following the regular test traffic program. The maximum
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crack width exceeded 0.01 in. Cracks were spaced between 6 in. and

8 in. Figure 55A shows cracks which were observed in the field after
the removal of the forms. Analytic crack regions were formed after

the dead load solution was performed by the computer. These regions
designated by the cross-hatching are shown in Fig. 55B. The analytic
cracked region shows very good overall agreement to those actually mea-
sured. Figure 55C indicates the extent of cracking measured after the
regular test traffic. Cracks are seen to‘have penetrated into the

deck slab.

The bridge failed in a flexure mode. Reference 18 presents
the overload behévior of fﬂé bridge in terms of displacement history
plots. The plots show the maximum static moment at midspan caused by
the overload truck versus the average displacement at midspan of the
three beams. The maximum static moment is computed from the known
axle weights and spacings. The deflections reported on the plots were
caused by the overload vehicle. Usually the overload vehicle made
thirty trips with the same load. The load was then increased and the
vehicle would make another thirty trips. If thirty trips were not
made, the number of trips would then be indicated and circled on the

moment-displacement history plots.

Figure 56 shows the midspan moment-displacement history for
the bridge. The experimental and analytic results are indicated by
the dashed and solid lines, respectively. A load increment of
140 kip~ft. was used in the analysis. Five vehicle load increments

were used in the experimental test. The vehicle speed during the first
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124 trips rgnged from 30 to 35 mph. During the last three trips a
speed of 15 mph was maintained. The dots on the experimental curve
indicate load levels where permanent changes in the structure did not
occur. The horizontal portions of the experimentél load-deflection
history indicate that permanent changes have occurred in the bridge
superstructure. These permanent changes reflect material nonlinear
phenomena such as cracking or crushing of the concrete and yielding

of the steel. Only the live load moment caused by the truck is re-
ported in Fig. 56. The total moment at midspan can be obtained by add-
ing a dead load moment of 653 kips-ft. to the moment walues used in
Fig. 56 (Ref. 18). During the seventh trip of the last load increment,

crushing of the top portion of the deck slab was observed.

The load levels numbered in Fig. 56 have the following sig-

nificance in a response histogram:

1. A maximum midspan moment of 503 kip-ft. was caused by the

regular test vehicle.

5. At a moment level of 1171 kip-ft. first yielding of the rein-

forcing steel placed in the beams was predicted in Ref. 18.

6. At a moment level of 1205 kip-ft. first yielding in the steel
reinforcing was predicted by the method presented in this

report.

7. At a moment level of 1390 kip-ft. first yielding of the

reinforcing steel was measured.
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8. An ultimate moment capacity of 1457 kips-ft. was predicted in

Ref. 18.
9. The ultimate moment capacity was measured at 1550 kips-ft.

10. The computed ultimate moment capacity using the presented

method was found to be 1680 kips~ft.

The analytic model and the experimental test both predicted
crushing of the deck slab at the ultimate load. Figure 57A shows the
bridge supefstructure after failure. A photograph showing the rein-
forced concrete beams of the bridge at failure was not presented in
Ref. 18. But instead a phoﬁogréph»of a beam of an "identical' bridge
(Bridge 8A of Refs. 17 and 18) was presented. Bridges 8A and 8B
showed very similar structural response. Therefore this photograph
will be used in lieu of a photograph of the reported bridge example.
Fig. 57B shows the créck depth in one of the reinforced concrete beams
of Bridge 8A. Crack depth was predicted to penetrate through the re-
inforced concrete beams and into the deck slab as observed in the

experimental test.

4.2.3 Example No. 3

A. Geometry:

This bridge will be presented as a last example and will be
used to primarily demonstrate the effect of skew on the analysis.
Figures 58A and 58B show the actual and idealized cross-sections, re-
spectively. As can be noted, the curb section is included in the

analysis.
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Figures 59A and 59B show the actual and idealized plan views.
The superstructure was built with a 60° skew. Two analyses will be
presented: one considering the bridge as an "equivalent" right bridge
and one considering the bridge as skewed. Figure 59B gives the finite
element discretization employed in the analysis. The cross-hatched
squares show where the static loading devices were placed. These de-
vices are similar to those described for Example No.vl in Section 4.2.1.
The idealized loads are indicated in Fig. 59B by the solid dots which
.represent concentrated vertical forces. Ekperimental and analytical
load-displacement results are givén for the positons marked with an -
"X'" in Fig. 59B.

Figures 60A and 60B show the actual and idealized beam cross-
sections employed in the analysis. Eight concrete layers and- three
steel layers which are indicated by the dashed lines, were used. As
can be seen. the curb and parapet have been included in the modeling

of the exterior beams and are assumed to be fully effective.

The slab layering is shown in Fig. 61. Four concrete and
four steel layers were used. The table below the figure indicates the

assumed size and spacing of the reinforcement in the slab.

It should be noted that the following assumptions were made

due to the incompleteness of the information on the bridge (Refs. 7,12):

1. The exact distribution of reinforcing steel in the beam was

not given and therefore was assumed.

© 2. The amount and distribution of reinforcing steel in the slab

was assumed.
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3. The curb and parapet were assumed to act in a fully composite
manner with the rest of the superstructure. However, partial

composite action may actually exist.

4. The effect of the diaphragms were neglected in the analysis.

B. Material Properties:

Figure 62 shows the analytic and experimental stress-strain
curves for the slab and beam steel. The experimental curve for steel
was approximated by specifying the following properties: fy = 65 ksi,

ES = 29000 ksi, ms'= 0;15, n, = 5.0. Beam and slab concrete was ap~-

I

proximated by specifying the following properties: fé 6.5 ksi,

f =0.67 ksi, E = 4870 ksi, m_ = 0.67, n = 9.0, Ed 3000 ksi,
t c c c c

Edt = 800 ksi.

C. Results:

Results for the positions marked with an "X" in Fig. 59 are

given by: (1) Fig. 63 which shows the load-deflection history for the

‘midspan of the exterior beam, and (2) Fig. 64 which shows the load-

deflection history for the centerpoint of the superstructure. The ex-
perimental results are indicated by the open circles while the analytic
results are indicated by curves marked with an "S" (skew) and an "NS"
(no skew). A load step of 90.2 kips was used in the analysis. Several

key load levels at which significant structural phenomena occurred are

listed below:
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1. Load causing first cracking in the slab:
skew - 383 kips.

no skew - 337 kips

2. Load causing first yield (fy = 40 ksi)
experiment - 660 kips (measured from load-deflection
history)

skew - 834 kips

no skew 758 kips

computed 759 kips (Refs. 7,12)

3. Ultimate load

experiment - 1580 kips

skew - 1555 kips
no skew - 1350 kips
computed - 1465 kips (Refs. 7,12)

As expected, due to the assumptions made for the analysis
(see Section 4.2.3, part A) differences between the computer and
experimental load-deflection histories occurred. A significant im—
provement in the analytic load-deflection history was obtained by
including the appropriate skew angle (curveb"S" compared to curve ''NS"
in Figs. 63 and 64). Also the analytic results indicate that the solu-
tion which does not include the skew will result in a more flexible

superstructure as compared to that which includes the skew.
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4.2.4 Observations

From the comparisons presented in Sections 4.2.1, 4.2.2,

4.2.3 and the additional comparisons contained in Ref. 45 several

observations can be made for the developed analytic model. These

observations include:

1.

Satisfactory results were obtained for both prestressed and

reinforced concrete bridges.
Superstructures built with a skew can be considered.

Analytic results obtained using the correct skew angle give
an.upperbound to<an.analysis that neglects the skew where

dimensions are projected onto a Cartesian coordinate system.

Superstructures with a slight superelevation can be

considered.

Superstructures subjected to previous loadings, which have

caused "minor'" damage, can be considered.

Even though the analysis is based on static loading, the
traverse of the vehicle can be approximated as the static
loading which produces the moment envelope or which produces

the maximum static moment diagram.

The incremental solution mode gives an upperbound to the

incremental-iterative solution mode.

The nonlinear response of the individual beams subject to

dead loads and/or prestress can be considered.
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10.

11.

12.

13.

14.

The nonlinear response of the entire bridge superstructure

subjected to dead loads can be considered.
The elastic-live load response can be obtained.
The inelastic~live load response can be obtained.

The progression of cracking and crushing of the concrete and
yielding of the steel can be monitored throughout the entire

bridge superstructure.

Transverse shear in the beam caused by flexural stresses can
be determined. Also the interfacial shear between the beam

and the deck slab can be approximated.

The ultimate capacity of the bridge superstructure can be

predicted.
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5. PARAMETRIC STUDY

5.1 Introduction

This chapter describes a limited parametric study conducted
using the developed analysis scheme‘and the relevant computer program.
The analytic models used in this study are based on Bridge 6A.

Bridge 6A was subjected to an overload as part of the AASHO Road Test

(Refs. 17,18). Three areas were investigated:

1. The effect of load idealization
2. The effect of material properties

3. The effect of load increment size and solution method

The study on the effect of load idealization involves two
analyses: (1) the moment envelope caused by the moving vehicle is
approximated using nodal point forces, and (2) where the maximum
static moment diagram is approximated by nodal point forces, i.e.
positioning the vehicle at midspan to induce the maximum moment condi-
tion. This study will provide the analyst with a comparison between
results using the simplified maximum moﬁent diagram rather than the

computationally involved moment envelope.

The study on the effect of material properties involves two
analyses: (1) default values are employed, and (2) the reported test
values are employed. Default values are defined as the acceptable
approximations for material characteristics. These values are based

on various experimental tests and code recommendations. The developed
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computer program automatically assigns these values unless more pre;
cise information is provided (Ref. 46). This study is of importance
to the analyst since values for the actual material prﬁperties may be
inconclusive due to the fact that: (1) the experimental values were
not reported, (2) statistical evaluation is unreliable due to the
excessive scatter or the limited number of experimental values, or
(3) experimental values are inconsistent with past experience. If
values for the material properties are inconclusive then the analyst
may choose-to use the default values. The default values are computed
from previously reported formulae that are based on past experimental
results. This study will provide the analyst with a comparison
between results based on the default values aﬂd results based on the

reported test values.

The study on the effect of load increment size and solution
method involves three analyses which employs: (1) the incremental
solution method using a fixed load increment of 150 kip-ft., (2) the
incremental solution method using a fixed load increment of 50 kip-ft.,
and (3) the incremental~iterative solution method using a variable
load increment. This study is presented since the analyst can select
one of two solution methods (see Section 3.9) which have associated
advantages and disadvantages and may affect thé results considerably.
The analyses are compared to the experimental results. From this com-—
parison the effect of the size of the fixed load increment and the

effect of the particular solution method used is illustrated.
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It should be noted that this chapter presents a limited para-
metric study. ﬁesults of an overload analysis depend on numerous para-
meters including bridge geometry, boundary conditions, type of vehicle,
load placement, material properties, and solution method. Also just
as important, results depend on how the actual bridge and load config-
urations are idealized so as to be compatible with the finite element
method ‘of analysis. Furthermore, the beam and deck slab exhibit. com—
plex interactions depending on the aforementioned parameters. There-
fore a quaﬁtitative extension of the results of this chapter to des-
cribe the overload behavior.of other'bridgevand load configurations
would be difficult if'ﬁofbiﬁpoSsible,;”Thué this study is of value to

the analyst in a qualitative rather than a quantative manner.

5.2 The Model

Figures 48 and 65 show the plan view and the cross-section
for the bridge. The bridge was simply supported and had a length of
50 ft. The deck slab had a thickness of 6.5 in. and a width of 15 ft.
Transverse and longitudinal reinforcement in the deck slab consisted
of #5 bars at 8 in. and #4 bars at’' 20 in., respectively. A prestress

of 165 ksi was prescribed as input to the computer program.

The compressive strength of the concrete and the yield
strength of the steel were the only material properties specified as
input to the program. The other parameters needed to define the mate-
rial behavior were automatically assigned default values by the compu-

ter program. Assumptions concerning the default values are presented
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in Ref. 46. The fbllowing material properties were used in the

analysis:

For the slab concrete;
f'c = 5.48 ksi (specified), ft = 0.438 ksi (Refs. 41,46),
Ec = 4265.37 ksi (ACI Formula, Ref. 65, Ref. 46),

Edc = 1000.00 ksi (Refs. 43,46), Edt = 800.0 ksi (Refs. 43,46

For the slab steel;

f

y = 50.4 ksi (specified), ES = 29000.0 ksi (assumed),
m.S = 0.70 (Refs. 43,46), n_ = 100.0 (Refs. 43,46)

For the beam concrete;

f'
Cc

]

9.11 ksi (specified), £_= 0.638 ksi (Refs. 41,40),

E
c

Edc = 3000.0 ksi (Refs. 27,46), Edt = 800. ksi (Refs. 27,46),

5499.52 ksi (ACI Formula, Ref. 65, Ref. 46),

m, = 0.828 (Refs. 27,40), n, = 9.0 (Refs. 27,40)

For the beam steel;

f
y

m
]

240. ksi (specified), ES = 27000. ksi (Ref. 46),

0.67 (Ref. 46), n_ = 25.0 (Ref. 46)

Bridge 6A was subjected to a moving overload vehicle. The vehicle
made successive runs across the superstructure with increésing loads
until the structure collapsed. The small squares shown in Fig. 48 re-
present concentrated vertical forces of equal magnitude. These nodal
point forces are used to simulate the moment envelope caused by the

overload wvehicle.
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The deck slab was divided into six equal concrete layers and
four steel layers through the depth. The beams were divided into
eight concrete layers and two steel (prestressing steel) layers. The
finite element representation of the supérstructure is shown in
Fig. 49. Symmetry about the longitudinal and transverse centerlines is

enforced. Thus only a quarter of the superstructure need be analyzed.

5.3 Effect of Load Idealization

Since the overload vehicle:movés over the birdge, an infi-
nite number of static load configurations are applied to the super-
structure. The overload veﬁiclé;primarily induced longitudinal bend-
ing in the superstructure of Bri&ge 6A. In the general case the slab
may be subjected to both longitudinal and transverse bending while the
beams are primarily subjected to longitudinél bending. Construction
of a static load configuration to simulate the moment envelopé and
thus to obtain the maximum possible state of stress at every point in
both the slab and the beams is very difficult if not impossible to
achieve. Therefore, a vehicular loading that will primarily produce
longitudinal bending in both the deck slab and beams is examined. The
idealized load configuration used in the analysis approximates the mo-
ment envelope for the longitudinal direction only. This moment enve-
lope is produced as the vehicle traverses the superstructure and con-

tains the maximum moment values.

From a user's standpoint, nodal point loads that approximate

the maximum static moment diagram may be easier to determine than

~129-




nodal point loads that approximate the moment envelope produced by the
moving vehiclé. In order to ascertain if substantial error in the
general overload behavior of the bridge superstructure will result if
the more simplified procedure in determing the nodal point loads is
chosen, the bridge superstructure was analyzed with the following load

configurations:

1. Loading A simulates the maximum static moment diagram caused

by overload vehicle.

2. Loading B simulates the moment envelope caused by the moving

overload vehicle.

Curves A and B in Fig. 66 depict moment diagrams which were produced
by loadings A and B (each normalized to a value of unity), respec-
tively. Curve C in Fig. 66 represénts the actual moment envelope
caused by the overload vehicle used in the experimental test on
Bridge 6A. Curve C is also normalized to unity. It can' be seen that
points On the moment envelope (curves B and C lie above the static mo-
ment diagram.(curve A). Thus it is expected that for the same midspan
moment, loading B will produce highér stress states and correspond-

ingly a larger "damaged" area than loading A.

Figure 67 shows the load-deflection history plots for
loading A and B. The midspan moment values were obtained by taking
moments about the midspan of the superstructure. The displacement
corresponds to the displacement of node 24 shown in Fig. 49. As

expected curve B falls below curve A indicating that loading B is a
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more severe load configuration. The small deviation between the two
curves starts at~approximately 1000 kip-ft. This deviation can be re-
lated to the different rates of cracking in the beams for the two load-
ings. Figure 68 shows the nunber of cracked léyers in the slab and in
the beams for loadings A and B. The difference between the two curves
is highlighted by the cross-hatching in the figure. As can be seen

the difference in the total number of cracked layers becomes signifi-
cant at approximately 1000 kip-ft. which corresponds to that mentioned

previously‘for the load-deflection histories.

From a practical.pbint;of view the difference between the
load-deflection histories can bé considéred negligible. Furthermore,
at 1000 kip-ft. cracking has penétrated through 80%Z of the depth of
the beam. This condition would never be allowed from the service-
ability standpoint. Thus the deviation after a load level of
1000 kip-ft. would never be realized. Therefore loading A can be used
in the overload analysis rather than the more computationally involved

loading B.

5.4 Effect of Material Properties

Quite often the amalyst will have values for only the com-
pressive strength of the concrete and yield strength of the steel.
Knowledge about the remaining material properties needed for the anal-
ysis may be inconclusive or totally lacking. Therefore, acceptable

default values for concrete or for steel are automatically assigned
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when desired by the analyst (Ref. 46). These values are determined

using only the prescribed compressive strength or yield strength.

To estimate the error involved when using the default values

rather than the actual material properties, analyses were obtained for:

1. Material properties based on the default values reported in

Section 5.2 (Ref. 46)

2. Material properties based on test values reported in

Refs. 17 and 18.

In the following figures, curves designated by the 1etter‘"D" corres—
pond to those obtained using the default values listed under

Section 5.2. Curves designated by the letter "A" correspond to those
obtained using the actual properties reported in Refs. 17 and 18. The

actual properties include:

For the slab concrete;

fé = 5.48 ksi, f 0.438 ksi (assumed), Ec = 5700 ksi

t

For the slab steel;
f
y

n
]

]
]

50.4 ksi, ES 28800 ksi, m = 0.70 (CF),

100.0 (CF)

For the beam concrete;

fé 9.11 ksi, £ 0.71 ksi, Ec = 5900 ksi, m, = 0.772 (CF),

t
9.0 (CF)

n
C
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For the beam steel;

Hh
1]

240 ksi, ES = 27600 ksi, m = 0.75 (CF),

22.829 (CF)

=}
i

Values designated by "CF" have been determined by curve fitting the
analytic stress-strain curves to the experimental stress-strain curves
reported in Refs. 17 and 18. Figure 69 shows the stress-strain curves
for the mild steel reinforcing, the prestressing steel, the beam con-

crete in compression, and the beam concrete in tension.

Figure 70 shows the resulting load-deflection histories
using the default Values‘(D) and thé'repbrted values (A). The differ-
ence between the two load—deflecti."dn curves shown in Fig. 70 is about
47 for both the ultimate and the first cracking loads. The difference
between an analysis using the automatically selected default values
rather than experimental values, which at best are only estimates, can

be considered negligible within practical engineering limits.

5.5 Effect of Load Increment Size and Solution Method

As mentioned in Section 3.9 the user can choose one of two
methods used in the overload analysis procedure: (1) the incremental
method, or (2) the incremental-iterative method. In the incremental-
iterative method load increments are automatically scaled so as to
allow only one layer at a time to fail. Iterations within each load
step take place so as to obtain a solution which approximately satis-

fies convergence of the dispiacement field. In the incremental method
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fixed load increments are applied to the structure. More than one

layer at a fime may fail and iterations are not performed. Each suc-
cessive solution uses stiffness coefficients based on a stress state
of the previous load step. If the load increment is too large signi-

ficant error in the solution may result.

Figure 71 presents results used to evaluate the effect of
the load increment size on the overload behavior. These curves corre-

spond to analyses for:
1. The incremental-iterative method (curve B in Fig. 71)

2. The incremental method using a fixed moment increment of

50 kip-ft. (curve C in Fig. 71)

3. The incremental method using a fixed moment increment of

150 kip~ft. (curve D in Fig. 71)

Curve A in Fig. 71 represents the experimental load-deflection . curve
presented in Ref. 18. The load-deflection curves generated using the
incremental method, i.e. curves C and D, tend toward the load-
deflection curve generated using the incremental-iterative method, i.e.
curve B, as the size of the fixed load increment is reduced. The mea-
sured material properties from Refs. 17 and 18, which are presented in

Section 5.4, were used in the generation of curves B, C, and D.

Care and judgment must be used when specifying the fixed
load increment. It has been found that for prestressed superstruc-—
tures a fixed load increment size equal to about 10% of the load at

first cracking is acceptable. When using the incremental-iterative
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method the load increment size is automatically selected and the

analyst need not be concerned with its value.

5.6 Observations

Several oBservations can be made with respect to the para-
ﬁetric study:
1. The sfatic load configuration which simulates the overload
vehicle need only produce a moment diagram which approximates

the shape of the true moment envelope near the midspan region.

2. The shape of the load-deflection curve for prestressed con-

crete highway bridge superstructures is particularly sensi-

tive to the tensile strength of the concrete and to the shape

of the stress-strain curve for the prestress strand.

3. Acceptable results within practical engineering limits can be
obtained for the overload behavior by knowing the compressive
strength of the concrete and the yield strength of the steel.
Additional material properties needed in the analysis are
automatically assigned values that are consistent with ob-

served experimental behavior of steel or concrete.

4. The incremental method which employs a fixed load increment
uses substantially less computer time than the incremental-

iterative method which employs a variable sized load incre-

ment. The incremental method of solution can be used to gen-
erate the overload behavior of highway bridge supérstructures

if a sufficiently small load step is specified by the analyst.
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6. SUMMARY AND CONCLUSIONS

The research contained herein describes a method for the
overload analysis of beam-slab type highway bridgg superstructures.
Reinforced concrete slabs or beams can be analyzed as a special case
of the highway bridge superstructure. Both right bridgeé‘apd bridges
built with a skew can be analyzed. The method gives a solutiéﬁ‘for
the flexural responée of the structure inclﬁding displacements,
strains, sfresses, and regions of cracking and crushing of the con-
crete and yielding of the steel. Serviceability criteria at various
load levels can also be evaluated (Ref. 46). The solution is appli-

cable up to the flexural collapse of the bridge superstructure.

v The finite element method was used as the basic modeling
technique. The deck slab and beams are discretized into a series of
finite elements interconnected at the node points. These finite ele-
ments are further divided into a series of layers through the depth.
The elements and layers provide a means to monitor the spread of
cracking and crushing of the concrete and yielding of the steel

throughout the bridge superstructure. Also this layering enables the

consideration of material variations through the depth of the finite
element and of nonlinearities inherent in the material stress-strain
curves. The following material nonlinearities have been considered in

the analysis:

1. Nonlinear and linear stress-strain behavior of slab and beam

concrete
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2. Nonlinear and linear stress-strain behavior of prestressing
steel |

3. Elastic-plastic behavior of mild steel reinforcing bars

4. Cracking and crushing of the slab and beam concrete

5. Yielding of the steel

The nonlinearities have been incorporated into the analysis scheme via:

1. Nonlinear/linear uniaxial Ramberg-Osgood stress—-strain laws

for the beam concrete

2. Nonlinear uniaxiai*Ramberg—Osgood stress—-strain laws for the

beam and slab steel.,fv

3. Nonlinear/linear biaxial stress-strain laws for the slab

concrete

4, Biaxial and uniaxial failure criteria for the slab and beam

concrete, respectively

The overload solution is obtained by using a piece-wise
linear tangent stiffness solution technique in which solutions are ob-

tained for each load increment up to collapse. The total solution for

a particular load level is obtained by adding up the previous solution
increments. Two different tangent stiffness solution techniques have
been developed: the incremental-iterative method and the incremental
method. In the incremental-iterative method iterations and updating
of the tangent stiffness matrix take place within each load step until

approximate convergence of the solution is obtained. 1In the
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incremental method iterations are not performed and a stif fness matrix
based on the previous solution is used. The major differences between

the two methods are summarized below:

Incremental- Incremental
Iterative Method Method

Iterations are performed v N
for each load step s e
Automatic selection of Yes N
the optimum load step °
Load step is variable Yes No
Approximate convergence

of the solution Yes No
Failure criteria may be

violated and layers may No Yes
overstress

Solution time is reduced No Yes

The predicted response of five bridges and seven reinforced
concrete slabs have been compared with corresponding experimental re-
sults (Refs. 43,45). Four of the bridges, which includes two right
bridges and two skewed bridges, and two of the slabs have been pre-
sented in this study. 1In all cases adequate agreement was obtained
when the primary behavior mode was flexural. Experimental and analyti-
cal load-deflection curves were compared for all problems. Crack pat-
terns and strain histories were compared where available. The beam
model had been previously developed and was not part of this disserta-
tion. Numerous comparisons between the analytic and experimental

results for the beam model can be found in Refs. 27 and 32.
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The assumptions in Sectioms 1.4 and 3.2 are adequate for the

inelastic analysis of beam-slab type highway bridges subjected to

vehicular overloading. It will be emphasized that:

]_.

Flexural behavior is adequate to describe the overload re-

sponse for the cases presented herein

Dynamic response phenomena need not be considered for the

cases presented herein
Shear punch, local buékling, and lateral torsional buckling
need not be considered for the cases presented herein
The following conclﬁsions can be made:
Concerning beams (From Refs. 27, 32)

A. The layer idealizations for the concrete, reinforcing

bars, and prestressing steel are adequate.

B. The uniaxial Ramberg-~Osgood stress-strain laws for con-

crete, mild steel, and prestressing steel are adequate

C. The elastic/inelastic response due to dead loads and/or

prestress can be obtained.

D. The inelastic flexural behavior up to the collapse of re-
inforced or prestressed concrete beams or of steel beams
can be obtained (due regard to the assumptions of

Sections 1.4 and 3.2 must be made).
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F.

The progression of cracking and crushing of the con-
crete and yielding of the steel can be monitored through-

out the bean.

The dowmward portion of the stress-~strain curve for con-
crete can be used to produce a globally adequate redis-
tribution of stress when modeling the effect of cracking

and crushing in a.one dimensional space.

Transverse shear stresses in the beam caused by flexure

can be determined.

2. Concerning Slabs (From Ref. 43)

AU

The layer idealizations for the reinforcing bars and con-

crete are adequate.

The uniaxial Ramberg~Osgood stress-strain law is adequate

for the steel reinforcing bars.

The biaxial stress—strain law for concrete is an adequate
idealization.

The elastic/inelastic dead load response can be cobtained.

The inelastic flexural behavior up to collapse of rein-
forced concrete slabs can be obtained (due regard to the

assumptions of Sections 1.4 and 3.2 must be made).

The progression of éracking and crushing of the concrete
and yielding of the steel can be monitored throughout

the slab.
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G. The downward portion of the stress-strain curve for con~
crete can be used to produce a globally adequate redis-
tribution of stress when modeling the effects of cracking

and crushing in a two dimensional space.

3. Concerning beam-slab highway bridge superstructures(From Ref.45)

A. The elastic/inelastic response of bridge superstruc-

tures subjected'to dead loads can be obtained.

B. The inelastic flexural behavior up to collapse of rein-
forced or prestressed concrete beam-slab highway bridge
superstructures built with or without a skew can be pre-
dicted (due regard to the assumptions of Sections 1.4

and 3.2 must be made.)

C. The progression of cracking and crushing of the concrete
and yielding of the steel can be monitored throughout

the entire bridge superstructure.

D. The downward portion of the stress—strain curve for con-
crete can be used to produce a globally adequate redis-

tribution of stress when modeling effects of cracking

and crushing.

E. The interfacial shear between the beam and the deck slab

can be approximated.
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F. The overload behavior of the superstructure can be com-
pared with the serviceability criteria to define a con—

dition of "failure".
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Fig. 17B Contravariant Componerts of a Moment’ Vector.
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Fig. 31 Photograph of the Loading Devices (through the
courtesy of The University of Tennessee)
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Fig. 40 Photograph of One of the Prestressed Concrete I-Beams
of Bridge 2 at Collapse (through the courtesy of The
University of Tennessee)
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! ' ol Fig. 47 Photograph of the OVerload Vehicle (through the
‘ courtesy of the Transportation Research Board)
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Fig. 57A Photograph of the Bridge 8B After Collapse
(through the courtesy of the Transportation
Research Board)

Fig. 57B Photograph of One of the Reinforced Concrete Beams
of Bridge 8A After Failure (through the courtesy
of the Transportation Research Board)
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Notes:

Scalars

A,B,C,D

Ed
c

9. NOMENCLATURE

Subscripts u and ¢ refer to in-plane and bending, respectively.

Subscripts uu, u, and ¢¢ refer to in-plane, coupling, and

bending, respectively.

'

Primes, ', refer to quantities expressed in the skew coordi-

nate system.

Baré, - , refer to the non-dimensionalized coordinate system.

= Curve parameters

= Layer area

= In-plane area of an element

= Reinforcing bar area for the slab
= Slab element half lengths

= Reinforcing bar spacing for the slab

sD , = Components of the rigidity matrices where subscripts uu

sD refers to in-plane, ud refers to coupling, and ¢¢

refers to bending

= Initial tangent modulus in uniaxial loading for

_concrete

= Downward slope of the concrete stress-strain curve for
compression
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Ed

Eab’Ezb

| 1
BB

Dovnward slope of the concrete stress-strain curve for

tension

Initial modulus of elasticity for the Ramberg-Osgood

stress-strain relation

Tangent modulus at the peak stresss

Initial modulus of elasticity for steel

Tangent moduli for the two principal stress directions

Tangent moduli for the principal stress directions

employed in formulating [D]
Term of the assembled force vector:
Term of the element force vector

Representative uniaxial compressive cylinder strength

for concrete

4" x 4" x 4" cube strength

Direct tensile strength for concrete

Yield strength fo: steel

Nodal points for the beam element

Nodal points for the. slab element

Moment of inertia for layer i about its centroid
Term of the assembled stiffness matrix

Term of the element stiffness matrix
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K ,K ,K
17727

K ,K ,K
2576

U(x,y) ,U"

U(x)

1

Component matrices of the stiffness matrix

Total number of layers
Beam element length

A dimensionless constant used in the Ramberg-Osgood

stress-strain relation
Ramberg-Osgood "m" parameter for concrete
Ramberg-Osgood "m'" parameter for steel

A dimensionless constant used in the Ramberg-Osgood

stress-strain relation

Ramberg-Osgood "n" parameter for concrete
Ramberg-Osgood "n" parameter for steel
Distributed load

Maximum ratio of the concrete strength in biaxial com-
pression to uniaxial compression

Beam layer (i) width in the y-direction

Equivalent thickness of a reinforcing bar layer for

the slab

In-plane displacement polynomial in the x-direction for

the slab

In-plane displacement polynomial in the x-direction for

the beam
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]
z

v(x,y),V

v,v'

W(x ’Y) ,W'
W(x)

(x »Y)

In-plane displacement in the x-direction at depth 2z

In-plane displacement polynomial in the y-direction for

thevslab

In-plane displacement in the y—directipn at depth z
Volume of the element

Vertical displacement polynomial for the slab
Vertical displacement polynomial for the beam
Local Cartesian coordinates

Skew coordinates

Non~dimensionalized coordinates

Nodal point coordinates for a slab element

Vertical distance from the reference plane

Layer boundaries for layer i measured from the refer-

ence plane in the vertical direction

Centroid location of layer i measured from the refer-

ence plane in the Verfical direction

The stress ratio

The stress ratio for principal direction 1, 02/01
The stress ratio for principal direction 2, 01/02

Stress ratio at point j, Ozj/clj
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)
x

ex(x ’Y) 96;{

ey (x 9}') ’ e;,

Skew angle

Term of the nodal point displacement vector for the

structure

Shear strain at depth z

Shear strain increment

A strain in the principal stress direction

Peak strain for uniaxial compression of concrete
The concrete strain at the peak stress

Concrete strains at the peak stress for the two princi-

pal stress directions
Peak strain for uniaxial tension of concrete

Normal and shear strain increments in the x-y coordi-

nate system
Strains in the principal stress directions
Strain at peak stress for the beam concrete

Strain at which the downward portion of the stress-

strain curve begins for the beam concrete

Angle which defines the principal stress directions
Reinforcing bar angle measured from the x—axis
Rotations about the x and x' axes for the slab

Rotations about the y and y' axes for the slab
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e

ag

~s

y(X)
»V
,E

ct

EN

ct

]

Rotation about the y axis for the beam

Poisson's ratio

Poisson's ratios in the principal stress directions
A principal stress

A peak stress—strain value defining point G' on the

peak strain envelope

Principal stress in direction i at point j on the peak

stress envelope
The peak stress in a principal direction
The peak stress for the two principal directions

Secant yield strength used in the Ramberg-Osgood

stress-strain relation

Normal and shear stress increments in the x-y coordi-

nate systems

Normal and shear stresses in the x-y coordinate system
Uniaxial compressive strength for concrete

Stresses in the principal directiomns

Peak compressive stress at an 0. = 1/V as obtained from

the peak stress envelope

Shear stress increment
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Matrices

“{a}

{B}

[B1,[8,1, [B,]

CINCANCA

[D]

[D,]

1

o 1]

uu
[D, ]

(Do

[D]
'{F};{Fu};{F¢
{F}

{FL {EL L F)

Constant coefficients for the vertical displace-

ment polynomial

]

},{Fr'}=

Constant coefficients for the in-plane displace-

ment polynomial

A connection matrix relating strains within an ele-

ment to the nodal point displacements of an element

Matrix relating nodal displacements of the element

to the {0} constant coefficients

Elasticity matrix based on the current state of
stress which relates the stress increment to the

strain increment in the x~y coordinate system
Elasticity matrix for layer i

In-plane rigidity

Coupling rigidity

Bending rigidity

Elasticity matrix in the principal stress space
Forces applied to the structure at the nodes

Force increment applied at the nodes of the

structure

Nodal forces applied to the element
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e e ..
{Fc},{Fuc}g{Fic}

[x]

[P (X:Y)] ’[Pu(x 3}7) 1,

[P, (x,y)]

¢
[Q1,[Q,1,10,]

[R]

[s]

[t]

[T]

[T8]

[TF]

1]

[

Fictitious forces for an element

The assembled stiffness matrix

Element stiffness matrix

In-plane stiffness matrix for an element
Coupling stiffness matrix for an element
Bending stiffness matrix for an element

Element stiffness matrix in the skew coordinate

system

Polynomial functions used to describe the dis-

placement field

A connection matrix relating strains within an
element to the constant coefficients of the dis-

placement field

Diagonal matrix used in non-dimensionalizing the

formulation
A coordinate transformation for the curvatures

A coordinate transformation for the displacement

field

Used to transform the elasticity relation from

the principal to the x-y coordinate system
Displacement transformation

Force transformation
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[Tel
[To]
{0}
e}
[(T1,IT 1,[T

¢]

[f¢(x,y>1

[A(x,y)],[Au(x,y)],
[A¢(x,y)]

(63,{6"3,46,},16,)

¢
{8}

e e
{8 },{au},{ag}
{e},{e"}

{e}z

(ex)z,(sy)z,(ny>z

{E}E
i

{o},{0"}
{5}
{0,}

1
{6r};{6;}

]

il

Strain transformation

Stress transformation

Constant coefficients of the polynomial functions
The strain increment

Differential operators used to obtain the strain

or curvature fields from the displacement field

Operators used to obtain the polynomial functions
of the displacement field from the vertical dis-

placement function

General displacement field for coordinate

position (x,y)

Node point displacements of the structure
Displacement increment of the mnodal poiﬁts
Nodal displacements of the element

Strain field

Strain field at depth z

Normal and shear strains at depth =z
Integrated average strain for layer i

Stress field
The stress increment

Integrated average stress for layer i
Increment of stress to be redistributed
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APPENDIX A

SIAB ELEMENT STIFFNESS FORMULATION

A.1 Introduction

This appendix is a supplement to Sections 3.4 and 3.8. The
previous developmént of stiffness matrices will be expanded upon 80
that explicit evaluation can be performed. The resulting matrices
will be presented as an aid to those who may carry the work further.

It will be assumed that the reader has read Chapter 3 in detail.

A.2 Displacement Functions

The displacement functions chosen in this analysis were pre-
sented in Eq. 3.11 and Eq. 3.12. Substitution of these equations into

Eq. 3.13 yields:

[P, (x:9)] = (A.1)
0o 0 o0 O 1 x y xy
1 x vy x* xy y2 %3 x2y xy2 y° xay xy 3
[P¢(x,y)] = |0 0 1 O x 2y O x®2  2xy 3y? x}  3xy?
0 -1 0 -2x -y 0 =-3x% -2xy -y2> 0 =-3x%% -y

(A.2)

The W(x,y) displacement function will be non-dimensionalized
to facilitate the inversion of the [C¢] matrix introduced in Eq. 3.21b

and shown inverted in Eq. 3.22a. This is carried out by substituting
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the non-dimensionalized coordinates (X,y) into W(x,y) defined in

Eq. 3.11. Thus

W&,y =[1 x § x x 3 % ¥y xy° y° 2y xy

CW(x,y) = WEH] - [R] - {4} (A.4)
where: X = axX
y = by

[R] is a 12 x 12 diagonal matrix (i.e. all off diagonal elements are
zéro) where the diagonal terms consist of the following values: 1, a,
b, a2, ab, bz, aa, azb-, abz, ba, aab, and ab®. The quantities a and b
are element half lengths in the x—~direction and the y-direction, re-
spectively, and are shown in Fig. 1l4. The three bending displacements
are given by Eq. 3.10. The derivatives in Eq. 3.10 may now be obtained

for example:

OW _ oW(x,y) _ oW(x,y) 9% _ 9 (we= =y7 9% gy’
3y dy 3? dy 55 WE,7) 1 3y [R] {A} (A.5)

Using Eq. 3.14, it is possible to write

Bylxsy) = [T‘¢(x,y)] W(x,y)1 {A} = [P (x,y)] {A} (A.6a)

¢

[?¢(x,y)] is a matrix containing the differential operators indicated

in Eq. 3.13. Substitution of Eq. A.4 yields
By(xsy) = [TyGey) ] MEH ] R {4) (A.6b)

Employing the chain rule of differentiation as indicated in Eq. A.5

results in
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A¢(x ’Y)

where:

(t]

ing the

®,7,)

It

0

e

oy /3y

0
0

9%/ 9x

—

0

1/a

[t] [f¢(§,§)] WG] [R] (A} = [¢] [Py(&:7)] [R] {A} (A7)

The [Cu] and [C¢] matrices can now be obtained by substitut-

nodal point coordinates (xh,yn) into Eq. A.1 for [Cu] and

into Eq. A.7 for [C¢]. (xn,yn) consists of the set of I, J, K,

and L nodal point coordinates (-a,b), (-a,-b), (a,b), (a,-b).

(&9,

consists of the set of non-dimensionalized nodal point coordinates

(-1,1), (-1,-1), (1,1), an& (1,~1). The resulting [C¢] and [Cu] matri-

ces are given as:

[C¢] =

1

0

-1




r*l -a

0 0

1 -a

(c ' 0 0
U] i 1 a
0 0

1 a
00

b -ab
0 .0
~b ab
0 0
b ab
0 0
-b ~ab
0 0

Thus the nodal point displacements are:

e .
{6u} = [Au(xn,yn)]

ROVENCNCINA)

where

F}t]

0
[t} =

o

0 0
(t] 0
0 (t]
0 0

and [t] is defined in Eq. A.7.

A.3 Strains 4

0 0 0
1 -a b
0 0 0
1 -a b
0 0 0
1 a b
0 0 0
1 a -b

[c,1 {8}

1] [C¢] (r] {a}

(e] ]

-ab

ab

ab

-ab_

(A.9)

(A.10)

(A.11)

(A.12)

Appropriate terms must be included in Eq. 3.18 to reflect the

fact that the bending displacement function has been non-

dimensionalized.
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Applying the chain rule results in




where:

[s] =

or:

[s] =

<
.9x 9x
0
0
(1
a2
0
0

-3%y ( -azw W
dx* a2
-2 2
__3____:] »= [S] { -9“W
dy 3y?
~293%W -232y
oxay -
L ) <=
0 0
JH
dy dy
o B3
9x dy
0 0
L
b2
1
° &

(A.13)

(A.14a)

(A.14b)

Thus Eq. 3.18 is modified to reflect the non-dimensionalized coordi-

nates in the following manner: Substitution of Eqs. 3.12, A.4; and

A.13 into Eq. 3.18 leads to

(e,} = [q,] {8} +2 [5] [q,] [R] {a}
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‘in which: .

(A.16)

0 0 0 -2 0 0 -68 -2 0 0 -6x5 O

[Q¢] =lo o o o0 o0 -2 o 0 -2x -6 O -6%

-

0 0 0 0 -2 0 0 -4x -4 O -6X* -677
(A.17)

The constants {A} and {B} can be found as indicated in Eqs. 3.22 if
care is taken to include the new matrices which result from non-

dimensionalizing the bending displacement function.

Thus {B} = [Cufll {53} (A.18)

{A}; [R°1] [c¢"] (™! {6;’;}
(A.19)

Inversion of [Cu] and [C¢] results in the following matrices.

~238-




(c

-1

1

0|

-1
Ic,]

[ 2

]

sl

1
W

[
O

-
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D Ji

O [

o [

(< |3

2 1
3 1
-3 . -1
0 0
-4 -1
0 -1
-1 o
0 0
0 -1
1 1
1 0
1 1
1
1
a
1
b
_L
ab
0
0
0
0




Substitution of Eqs. A.18 and A.19 into Eq. A.15 defines the

strains as a function of the nodal point displacements:

(€}, = 10,1 [e,)7" 63 + 2 8] (Q,) () [R]"" (e, 1™ 1117 (65} (n.22)

After performing the multiplication of the [R] matrices,

e}, = 1Q,] Lc1™" {65} + 2 [s] CRECRI (117 5} (A.23)

Comparison of Eq. A.23 with Eqs. 3.24 shows that the [Bu] and [B¢] ma-

trices can be defined as:

-1
(8,1 = 1a ] [c )" h20m)

. -1 [ §
[B¢] = [s] [Q¢] [C¢] [Tl (A.24b)

A.4 Element Stiffness Matrices

Evaluation of the inplane, coupling and bending stiffness
matrices given in Eqs. 3.33 can now proceed. Substitution of

Eqs. A.24a and A.24b into Egs. 3.33 gives:

T . :
RENCR i (o1 to, 1 [Q,] axdy [c 1™ s

[k® 14= [c 1“Tff @ 1% (0 .1 (51 [Q,] dxdy [c,1”" (11"
u ul ud ¢ ¢ | (A.26)

e —IT —1T T

¥yxX

]—1 -1

[T]
(A.27)

T
[k (sl [D¢¢l (sl [Q¢] dxdy [C¢
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[Duu], [Du¢]’ and [D¢¢] are the rigidities introduced i? Section 3.4.4
and given in Eq. 3.32. The evaluation of the integrals in Eqs. A.25 to
A.27 can be simplified by considering only one element of the rigidity
matrix to be nonzero at a time. This reduces one very.laborious evalu-
ation of each of the three stiffness matrices to six much simpler bro—
blems for each one of the stiffness matrices. For each matrix the re-

sults are then summed up in the following form:

ke]=c]'1T DA [K]+D.A [K]+b [K)1+D I[K]
[\-l'~1 [u [11 1 12 2 13 3 22 b

. -1
+ 1)2‘3 [Ks] +D [Ksl ]uu (c,] (A.__zg)
k] = - [K1+D [K]{n [K1+D (K]
l u¢] [Cu] [Du 1 12 27 13 3 22 4
-1 -1 |
#p ®1+D k1], [cJ™ (.29)
e -1T ]-IT [D XK ]+ D‘ [Kk1+Dp I[K]
[k¢¢] = (nl [C¢ 11 1 12 20 13 s

| _ ' -1 -1 (A.éb)
+ Dzz [Ku] * Dza [K51 + Daa [Ks]]¢¢ [C¢] (1) .

The submatrices pertaining to the inplane stiffness matrix
are evaluated by employing Eq. A.28 as follows:
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(Dll [Kl] )uu

<1 )

uu

) )y

[K“] )uu

K. )

<D33> [Ks] )UU

It

IS
yX

I

yX

/S
yx

I
yx

I

Y

Ir
yx

Q1

[Q 1

Q]

Q]

Q1

e,

—————
o o o}

e E— [
-

————— [
(=) [ o o (=] o

11

21

22
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D [e,]

o

[Q ] dxdy

uu

0 [Q ] dxdy

uu

13

0 (Q,] dxdy

uu

0 [Q 1 dxdy

uu

- dxdy

uu

0 [Q] dxdy

D
33 uu

(A.31a)

(A.31b)

(A.31c)

(A.31d)

(A.31e)

(A.31f)




The (Dij)uu terms in the above equations correspond to elements of the
inplane rigidities given in Eq. 3.32a.. Explicit expressions for
Eq. A.31 can be developed by utilizing Eq. A.16. This has been done to

generate the following formulae:

I —

0.
0 1 symmetric
0 0 O

b2
0. 0 O 3
[K] = bab (A.32a)
1ud 0o 0 0 0 O |

0 0 O o 0 0
0O 0 o 0 0 0 O
0 0 O 0 0O 0 0 0O

0
0 O 'symmetric
0o o0 O
0o 0 O O
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0 0 ‘ symmetxric

[Kaluu = | 4ab (A.32¢)

b2
o 0 0 5 0 0 0 0
B h
0
0 o symmetric
0 0 0
_ 0 0 0 0 ‘
K] = - 4ab (A.324d)
% ud 0 0 0 0 O
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B -
0
0 o symmetric
0 0 o |
0 0 o0 0

[K5]nu = o 06 0o o o 4ad | (A.32e)
0O 0 O 0 0 o0
0 0 1 0 0 1 o
0 0 O g—z_l 0 0 0 O
L i

B oo
0
0o 0 ' symmetric
0 0 1

[K] = : | | 4ab (A. 32f)

| b2
o0 0o o 0 0 0 >

-

In a similar manner the submatrices for the coupling and
bending element stiffness matrices can be developed from Eqs. A.16 and
A.17, Eqs. A.26 and A.27, and Eqs. A.29 and A.30. Care must be exer-
cised to insurebthat the proper rigidities given in Eqs. 3.32b and
3.32c are employed. The submatrices for the coupling and bending
stiffness matrices afe presented in Eqs. A.33 and A.34 respectively.
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(K ]
1
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~-8b

0 QJ

(A.33b)



3 ud
o 0o 0 0 0 0 0 o 0 0 0 0
0 0 o0 i%?l o0 0o 0 0 0 0 O©
o 0 0 0 0 0 0 0 0 0 0 O
- 2
o 0 0o o o0 0o o =8 5. 0 0 o0
- . S 3a |
(A.33c)
— —
5 o 0 6 0 0 0 0 0 0 0 0
o o 0 0 0 ©0 0 0 O 0 0 0
o 0 0 0 0 0 0 0 O 0 0 O
| | o 0o 0 0 0 O ©0 0 0O 0 0 0
(K1, = ,
v 6 0 0 -0 O 0 0 O 0 0O 0 O

O 0 0 0 O :gi o 0 0 ©0 0 O
- 2

o o 0o 0 0 0 0 0 g; 0 0 ©

. e

(A.33d)
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[Ks ]u¢ -

[k ]
6

0

0

0

0

¢
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0 0
¢ 0
0 0
~8a%

0 T3
0 0
0o 0
0 0

-16a 0
3

0 0

0 0

0 0

-16a

3 0

0 0

0 0

0 0

-16b
0 3

0 0 0
0 0 o
0 0 0
0 6 0O
lO 0 .0
0 0 ¢
0 f8 -81
-8a 0 QO

(A.33e).

0 0 }

0 o0

-8 -8

0 0

0 0

-8 -8

0 0

0 O_J
(A.33f)




0o o
0 0 0
0 0 0 15 Symmetric
0o 0 0 0 0
] < 16b 0O 0 0 0 0 0
190 155310 0o 0o o0 0 0 45
o 0 0 0 5

0 0

0
©o 0 0 0 0 0 ©0 0 0 0 15
0

0 0 0 O

s . ‘ S

(A. 34a)
}_ o B
0 0
0 0 O

0 0 0 : Sjmmetric

16
15ab

=
v

[K2]¢¢




0 o0
0 0 o
0 0 0 0 Symmetric

0 o0 o 15 0

K 1. =-16
3700 15a2 |0 0 0 0 -0 0 0
0 0 0 0 0 0 30 o0
0.0 0 0 0 0 O 10 0
0 0 0 0 0 O0 O 0 0 o0
0 0 0 15 0 0 0 0 0 0 O
0 0 0 15 0 0 O 0 0 0 0 0
B | (A.3423
- -
0 o0
0 0 0
0O 0 0 o ' Symmetric
6 0 0 0 O
l6a |0 0 0 0 0 15
[Ku]¢¢ B

15 o 0o 0 0 0 0 o

~250- ' (A.34d4)



X ]

16
15b2

16

6700  15ab

o O O o

o O o

0
15
0
0
0
0
0
0
15
0O o
0 o
0 o
VN
0 0
15 0
15 0
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15

15

Symmetric
0
0 o
0 10 0
0 0 30 o
0 0 0 0
0 0 0 0
Symmetric

20

0 20

0 0 o

0 o

-
(A. 34e)

27
(A.34F)




Addition of the submatrices and multiplication by the [T]1 ",
[C¢]_1, and [Cu]—1 matrices shown in Eqs. A.28, A.29 and A.30 are per-
formed in the computer program. The results are the required stiffness
matrices.

As mentioned in Section 3.8, when applying the method to
superstructures built with a skew it is only necessary to apply a
series of transformations so as to obtain the required expressions in

the Cartesian coordinate system. The following steps are to be used:
1. TFormulate the préduct [TE]T [D] [T€], (see Eq. 3.74).

2. Evaluate the layer rigidities based on the above product

(see Eq. 3.32).

3. Evaluate Eqs. A.28, A.29, and A.30 by employing Eqs. A.32,

A.33, and A.34.

4. Multiply the results by sin B (see Eq. 3.75).

Steps 1 through 4, listed above, are analogous to the evaluation of

Eq. 3.74. To obtain the final stiffness matrix of the skewed slab ele-
ment in a Cartesian coordinate system it is necessary to carry out the
transformation indicated in Eq. 3.73. [TF] in Eq. 3.73 can be evalu-

ated using Eq. 3.59.

Needless to say all of the aforementioned matrix operations
are performed by the computer. Also, key matrices, whose terms are
constant for the entire analysis, may be evaluated once and then stored

for subsequent use.
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APPENDIX B

BEAM ELEMENT STIFFNESS FORMULATION

The matrix expressions involyved in the layered beam formula-
tion, which was presented in Section 3.5, will be derived in this
appendix.
V Sﬁbstitution of the node point coordinates, which are desig-
nated by I(x = 0) and K(x = &) in Fig. 15, into the prescribed dis-

placement functions (see Eq. 3.35) will give

{Gu} = [c ] {8}
(B.1a)
e .
{6¢} = [c¢] {A}
where —i 0
[Cu] = (B.1b)
1 2
B 7]
1 0 0 0
0 -1 0 0
[c.] = ' (B.1c)
¢ 18 82 g
0 -1 =28 =382
- _
Solving for {A} and {B} from Eq. B.la will lead to
o e
{8} = [c,] {6u} |
(B.2a)
. _ -1 e
{A} = [c¢] {6¢}
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where ) | 1 0

[c 1 = ‘ (B.2b)
' -1/4 1/%
P =
1 0 0 0
1 0 -1 0 0
[C¢] = . ’ (B.2c)
-3/%2 2/% 3/%2 1/%
2/0% -1/22 -2/43 -1/22
- .

Substitution of Eq. 3.35 into Eq. 3.38 will give

| (e:x)z = [q,] B} +2 [Q¢]' {A} (B.3a)
L where l=0 11 (8.3b)
[Q¢] =[0 0 -2 -6x] (B.30)

Thus by employing Eqs. B.2 and B.3, the strain can be expressed in

terms of the nodal point displacements

(e) =IB] {ai} + z [B¢] {si} (3.392)
. .

whereby employing Eq. 3.39b

B, =(-1/2 1/8] (B.4a)

(8,1 = [(6/8% - 12x/2%) (-4/% + 6x/8%) (-6/2% + 12x/23) (-2/% + 6x/%%)]
(B.4b)
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Performing the indicated multiplications and integrations of
Eq. 3.45 gives the following expressions for the in-plane, bending,

and coupling stiffness matrices:

. 178 -1/
k& 1= () (B.52)
uu uu -1/%  1/%
r_ -
12/2%  -6/8%  -12/2%  -6/42
. ~6/%2 4/% 6/2° 2/%
(o]0 ulo -12/2%  6/82 12/48° 6/42
| -6/22 2/% 6/22 4/%
tke PN 0 1/% 0 -1/% , (B.5¢c)
- Tud ud 0 -1/% 0 1/%

The inplane, coupling, and bending rigidities, i.e. (Duu), (Du¢)’ and

(D ¢), are defined by Eqs. 3.4la, 3.41b, and 3.4lc, respectively.

¢
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