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ABSTRACT

This dissertation describes an analysis scheme to predict

the overload response of simple-span, right or skewed, beam-slab type

highway bridge superstru~tureswith a reinforced concrete deck slab

and reinforced or prestressed concrete beams. As a subset of the

overall investigation, analytic models for both the individual beam

and slab components of the bridge supe rstructure are presented. The

analysis scheme employs the finite element displacement method. The

bridge superstructure is discretized into beam and slab fi~ite ele­

ments. These finite elements are allowed to defonn in both bending

and in-plane displacement modes.

To allow for the initiation and propagation of material non­

linearity du-ring ove.rl·oading, the beam and slab finite elements are

divided' into a ser"iesof ,layers through their depth. Nonlinear stress­

strain laws are employed on a layer by layer basis. Each layer is

assumed to be in the plane state-of-stress. Beam concrete, prestress­

ing steel, and beam arrd slab mild steel reinforcement are assumed to

be stressed-, uniaxially. J~ biaxial s tress field is used' for the slab

concrete. In a,ddition to the inelastic stress-strain behavior, non­

linearities including cracking and crushing of the concrete and yield­

ing of the steel are also considered. In order' to solve for the
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nonlinear overload response of the bridge superstructure a piece-wise

linear incremental-iterative tangent stiffness approximation is em­

ployed. The iteration procedure used within each load step gives a

solution which satisfies convergence criteria. The total foroe­

displacement response is obtained by adding the values corresponding

to each load increment.

The method is verified through comparisons with laboratory

and field overload tests of seven reinforced concrete slabs, five

full-scale bridge superstructures, and numerous beams. The phase con­

cerned with the overload analysis of reinforced and prestressed con­

crete bridge beams has been previously verified and reported in the

literature.

This report is based on the doctoral research of the first

author.
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Overloading of the superstructure may cause cracking and

crushing 0,£ the concrete and yielding of the steel. These material

nonlinearities, including the inelastic stress~strain behavior for both

steel and concrete, are permitted in the analysis. Thus, structural

damage caused by the overload vehicle can be assessed. In order to

facilitate the inclusion of the material nonlinearities~ the beam and

slab finite elements are divided into a series of layers as shown in

Fig. 2. The extent of damage, including cracking and crushing of th·e

concrete and yielding of the steel, is monitored on a layer by layer

basis throughout the superstructure.

Inclusion of material nonlinearities neces-sitates adoption of

a particular s'olution sch-eme other than' th~t used for 1.inearly elastic

problems. :Thus- ,a tangent .s~iffne-s:s:,approach has been chosen where the

solution is obtaine"d by solving for the response "in a series of piece­

wise-linear steps. Iterations may take place within each step so as to

ensure convergence 0-£ the solution.

The accurac,y of the me-thad is illustrated by several com­

p,aris'ons between exp',er,imental and analytical results. Satisfactory

agreement is obtained for all test cases. Thu-s the analytic model and

solution technique' are verified.

Superstructures built with a skew have also been successfully

analyzed (see Chapter 4). Comparisons of experimental and analytical

load-deflection histories indicate that a marked improvement in the

results can be obtained by including the skew angle. However, correla­

tive studies on the overload behavior of isolated skewed slabe were

-2-



not carried out. The effect of particular boundary conditions, element

geometries, and loadings for the slab model in the inelastic range was

not evaluated. Thus, the accuracy of the model, as applied to skewed

slabs, in determin~ng lQcal effects such as crack patterns could not be

ascertained.

1.1 Prob:Lem, St~teJnent

The overloading of beam-slab type highway bridges is becoming

a very cammon occurrence due to the increasing use of large capacity

vehicles. An overload vehicle is defined as one which exceeds in some

way the design vehicle weight for which the superstruct~rewas propor-

tioned. Overloading of bridge superstructures can result: (1) from

the transport of heavy industrial loads, cons truction equipment, a.nd

National Defense Equipment, (2) from the legal, across-the-board in-

crease' in vehicular weight limits, and (3) from additional permit

'overloa'ds.

". -If. the hig.hway bridge' s:uperstructure does not have sufficient

reserVe capacity 'to, car'ry:' the overload vehicle, then the excessive load

may cause detrimental effects to the superstructure~ Theapplied

overload may produce a response in the elastic region or in the inelas-

tic, i.e. nonlinear~, region. The nonlinear region lie-sbe.tween the

elastic region and 'the ultimate capacity. An elastic analysis and/or

ultimate strength analysis will not allow for the as'sessment of

damage tu the" superstructure for ,a load level·between the elastic

and ultimate loads. Therefore) a nonlinear analysis, which allows

-3-



for the assessment of damage'in the inelastic reg~on, is required

in the overload analysis scheme.

Currently there does not exist, with the exception of the

method presented herein, an analytic sche~ to realistically predict

the structural behavior and associated structural damage, if any, that

would occur to the bridge superstructure when subjected to an overload

vehicle.

1.2 Purpose and Scope of the-Research

The purpo'se of the overall research program is to develop an

.analytic"·model.,and so'lu'ti·on:. ·,t-e.chniq,ue to predict the full-range Qver­

load::respons.e df:'b~arn~Blab typ,e highway bridge superstructures (Ref. 24).

Due to the C'omplexity of -the p:r.ob:lem, the overall- research is divided

into three phases:

1. Th'e development of an inelastic analysis technique for pre­

str'es's-ed'and reinforced concrete beams {Refs. 27,28.,31,32).

2. The development of an inelastic analysis technique for rein­

forced concrete slabs (Ref. 43).

3. Interfacing the separate beam and slab analysis ,techniques,

which were developed and verified in phases 1 and 2, so as to

formulate a consistent analysis technique for prestressed and

reinforced concrete highway bridge superstructures

(Refs. 45,46,47).

-4-



Phase- 1 of the overall research had been previously developed and veri­

fied. This phase is presented in Refs. 26-30 and 32.. Therefore, since

this phase was not part of the particular research being reported, only

major concepts concerning ,Phase 1 will be given.

1. Analytic modeling of reinforced concrete slabs (see

Ch-apter 3)

2.. Analytic modeling of the complete stress-strain behavior

for the biaxial1y stressed concrete including cracking

and crushing (see Chapter 2).

3. Analytic modeling of the stress-strain behavior for the

uniaxially stressed steel including yielding (see

Chapter 2).

,4·... '.. Verif.i:cation of the -slab, analysi.s technique by comparing

analytic re~:~lts to experimental tests (see Chapter 4).

For the bridge:

1. Analytic mqdeling of ~ight and skewed h.ighway bri.dge

sup·erstructures (s·ee Chapter 3).

2. Verification of the analytic model and solution technique

by comapring analytic results to experimental tests (see

Chapter 4).

-5-



1.3 Previous Studies

The end product of this research is to determine the overload

response of beam-slab superstructures. Therefore, only those studies

applicable to this problem ,will be reviewed.

Very few techniques applicable to the overload analysis of

beam-slab type highway bridge superstructures have been reported in the

literature. Analytic techniques that have been developed for possible

application to the overload problem are the finite element method, the

finite difference technique, and the lumped parameter technique.

The finite difference technique has been applied to the in-

elastic analysis of plates by relatively few researchers (e. g. Ref. 6).
(""- .

. 'This h,as ;b'eend':~e_,:t"o'~"th'e"C'omp'lexi.t·i-es ,in 'establishing either the appro-

priate, nonlinear. ,differential, equat1on·.or the assignment of proper

stiffness properties' in 'a·p':te6et.Ti:S:e·~:linear incremental solution.

Furthermore, the manual algebraic operations required in the coding of

these operations for computer based solutions have always been dis-

cQuraging. This· approach is further complicated in bridge overload

problems by the necess'i,ty to' s'olve cou,ple·d in-plane and out-af-plane

differential 'e'quations which is discussed in Section 1.4. This aspect

alone necessitates the adoption of a solution technique other than

finite differences.

Some of the complexities involved in the finite difference

technique have been eliminated through the. use of the lumped parameter

technique. Lopez and Ang (Ref. 38) applied this method to mild steel

-6-



plates. However, its applicability to reinforced concrete slabs and

especially to a bridge overload analysis presents a major problem.

Its accuracy, generality, and ease. ox us.age have· not 'Deen demon~

strated as yet.

The finite element method enjoys' a history of application to

complex problems involvi,ng material nonlinearities, various botmdary

conditions,. and loadings. This method. has been used extensively in

both the analysis of steel, reinforced concrete, and prestresg·ed con­

~rete beams (e.g. Refs. 14,27,29,30,31,32,42,56,58,59) and reinforced

concrete slabs (e.g. Refs. 5,14,16,22,23,35).

Wegmu11er and Kostem (Ref. 59) have developed an analysis

tech:nique and compute-r p.ro-g.ram to predict the elastic-plasticb'e-havior

of plates and eccentrical.ly. stiffe··ned plate systens. 'The technique

employed the finite element method which used the rectangulal:' plate

b'ending element with twelve degrees of freedom developed by, Adini ·an,d

Clough and independently by Melosh (Ref. 1).- In-plane displacement

fieldS reported by Clough (Ref. 9) were also employed in the analysis

technique. The beam and slab elenents were divided into a series of

layers through the depth so that the spread of yielding through the

eccentrically stiffened plate system could be simulated. In this anal­

ysis a material obeying von Mises yield condition was· assuned.

Kulicki and Kostem (Refs. 26,32) developed a technique based

on the finite element method for the inelastic analysis of plates com­

posite with eccentrically placed reinforced or prestressed concrete

beams. In this analysis the von Mises yield criterion was employed for

-7-



the plate as was previously done by Wegmu1ler and Kostem (Ref. 59).

However, reinforced and prestressed concrete beams were realistically'

IrDdeled., Cracking and crushing of the concrete and yielding of the

steel in the beams were considered. Separate stress-strain' curves for

the individual concrete layers and steel layers were also employed.

The above applications have demonstrated that the finite ele-

rrent method is an efficient tool that can be applied to the inelastic

analysis of eccentrically stiffened slab systellB. Complexities in the

stress-strain behavior of the material or materials can be incorporated

directly into the analysis schene.

- ~ +-

,Tli'e',,' Gha:ra:.c.te'.rfs:eics· o.f th-e:'_"':·artalytic. mde:l, ,i.e. the' analyti c

representation of the real Ertruct"ure, must be chos-en to adequat-ely des-

cribe the physical model. In the current context it is desired to des-

cribe the response of prestressed and reinforced concrete highway bridge

superstructures s·ubjected to a vehicular overload. In order· to ade-

quately reflect the inelastic behavior of eccentrically stiffened beam-

slab highw,ay bridge superstructures, the following must be considered:

1. The out-of-plane response

2. TIle in-plane response

3.. The interaction between the in-plane and out-of-plane

responses.

-8-



When the superstructure is subjected to wheel loads, both

longitudinal and transverse bending develops in the deck slab while

longitudinal bending is predominant in the beams. Thus, the out-of­

plane response is primarily des cribed by the flexure' behavior of the

superstructure. Also, beams and slabs with dimensions similar to'

those encountered in bridge design primarily defonn in a flexure mode

when subjected to out-of-p;lane loading.

The de~k slab and beams are considered to act compositely.

For illustration, purposes, the deck slab can be thought of as the co~

pression flange of a comp'osite beam where the eccentricity of the beams

may induce in-plane stresses which are of the same order of magnitude

or .,even greater than, t-he bending stresses. The bending and inplane

responses are interdependent for the class of probleus considered in

this report. This interdependency,. which is connnonly referred to as

coupling, is manifested in the following response characteristic:

application of an out-af-plane (or in-plane) force causes both out-of­

plane and in-plane deformations in both the deck slab and the beams.

This interdependency arises from an unsymmetric distribution of stiff­

ness properties about a reference axis (Ref. 44). This unsymmetric

distribution of stiffness properties is (1) due to the geometry of the

superstructure, e.g. the eccentric placenEnt of the beams, and (2) due

to the nonlinearities inherent in the stress-strain behavior of the

materials. Tenns describing the in-plane and out-of-plane responses

and the associated ·coupling are explicitly presented in Chapter 3.

-9-



Material nonlinearities affect the in-plane, bending, and

coupling terms and have a significant effect on the behavior of the

superstructure. The realistic representation of material behavior is

a key factor in the analysis s cherne. Material response modes appro-

priate to the analysis of beam-slab type highway bridge superstructures

include:

For the beam:

1. Concrete, mild steel reinforcing, and prestressing steel

subjected to uniaxial stress states

For t4e slab:

1. Concrete subjected to biaxial stress states

'2. Mi.ld st'e:el' re:-infor:cing subjected to uniaxial stress

,'. +.+ ~

stat-es

Since inelastic response due to overloading is e.xpected, the nonline-

arities inherent in the stress-s-train behavior of the specific mate-

rials mentioned above must be considered. These nonlinearities

include cracking and crushing of the concrete under both uniaxial and

biaxial stress fields and yielding of the steel.

The basic stress-strain relationships for concrete (Refs. 4,

13,19,20,27,28,30,33,36,37,40,48,50) and for both mild steel reinforc-

ing bars and prestressing strands (Refs. 27 ,28,30,49) have been pre-

viously defined both experimentally and analytically. These basic

stress-strain relationships must be utilized in the stiffness

-10-



formulation for the various finite elements employed in the analysis

scheme. The nonlinearities inherent in the stress-strain relations

have profound affect on the stiffness properties of the elements and,

consequently, on the analytical response of the bridge superstructure.

To account for the var.iation of material properties through the depth

of the slab and the beams, whose aggregation is use d to model the

superstructure, the finite elements are divided into a series of layers

through their depth. Each layer is assumed to be in a state of plane

stress (see Fig. 2). By defining the stress-strain relation on a layer

by layer basis, the penetration of cracking, crushing, and yielding can

be monitore-d throughout the structure. Exce'llent agreement has been

noted in previous investigations that utilized the layer approach

(Re~s',. :,3, :15,~.16 ,,2-7 ,32 , 35 ,5',7 ;5:9·,6~1): ~ ,

Stru·ctural phenoJrena th'at have significant effect on the be­

havior of bridge superstructures have been reviewed in the previous

paragraphs. A consistent set of assumptions is made which simplify the'·

requirements that may be placed on the analytic model but still pennit

the simulation of the basic structural response of the bridge super­

structure.

The be,ams under consideration are assumed:

1. To be prismatic

2. To be simply supported

3. To be made of reinforced or prestressed concrete

4. To have only strong axis bending (minor axis. bending and

torsional stiffnesses are neglected)

-11-



5. To have perfect bond between steel and concrete

6 • To f ail in a flexural mode.

The slabs under consideration are assumed:

1. To lie in one plane, i.e. be planar

2. To have a constant thickness

3. Tp have arbitrary rhomboidal boundaries

4. To have tension and compression reinforcement placed at

arbitrary angles and depths within the slab

5. To be s·ubjected t,o vertical concentrated and patch loads,

'con-cen.t'rate d in~p lane loads., an,d momen,ts

,6 •. T'o ;h:a:ve perfect bond betw,een the s-teel and concrete

7 • To fetilin a f,le2tural mode

The be-am-slab superstructures under consideration are assumed:

1. To be' simply supported

2. To be subjected to static loading

3. To be uncle r small strain and small deformation fields

4. To have full or no composite action between the beams

and the deck slab

5. To fail in a flexural mode

Thus, the development of the analytic model has been based on the pre­

mise that the inelastic response and the progressive collapse of the

slab, beams, and therefore, the bridge superstructure is primarily due

to the flexural response and its associated in-plane and coupling

behavior.

-12-



The geometry and loading for the class of problems being con­

sidered in this investigation permit exclusion of several important

structural effects. These include:

1. Local buckling and lateral torsional buck.li.ng:

The geometry of the deck slab and reinforced or prestressed

concrete bridge beams excludes the possibility of local or

lateral-torsional buckling.

2. Torsional stiffness 0,1; th.e beams:

Torsional stiffness of the beams has a minor effect on the

behavior of right angle beam-slab bridges and therefore, it

can b'e ne'gleeted (Refs. 26,32,58). Torsion becomes more

important in the case of 'skewed superstructures. A limited

number of- analys-e's carried out on the effect of torsion in

right angle superstructures seem to indicate that results

will be on the c-onservative side if torsion is negle-cted

(Ref. 26).

3 • She ar punch failure of the slab:

Loads are transmitted to the bridge supers tructure through

the tires of the vehicle. As the vehicular loads are in­

cre,ased, more wheels are used whi ch will distribute the load

over a greater area. Also, the tires will flatten out as the

load is increased and will cause an additional distribution

of load. Since a substantial area is involved" shear punch

failure is not likely to occur (Ref. 23).

-13-



4. Dynamic effects and i'mpact:

Static loading was assumed since the speed of an overload

vehicle would be slow so as not to produce dynamic effects

and impact during its passage over the bridge superstructures.

Highway bridge superstructures may be constructed with super-

elevation, diaphragms, and permanent me~al deck forms. Theseite~

have not been included in the analysis for the following reasons:

(1) by neglecting the diaphragms and metal deck forms a conservative

result will be obtained, and (2) the magnitude of the superelevation

is usually so small ~hat it can be neglected with little error in the

result.

This ~eport is based on the doctoral research of the first
, ' .

author -'{R"e:·f~· 67)-.
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2 • MATERIAL BEHAVIOR

This chapter presents the stress-strain relationships

employed in the reported analysis scheme. The material stress-strain

relations are defined for the steel reinforcing bars', prestress strands,

and the concrete. These relations are later used in the definition of

the stiffness properties of the bridge components.

The behavior of concrete' is very much dependent on the par­

ticular stress state, i.e. tension or compression, and whether the

stress field is uni'axial, biaxial, or triaxial. A beanL"may be ideal­

ized as a one dimensional structural element in which bending in the

lorfgitudina,l .direction,. p'rodu-.ces: .'a utliaxial state of s tre'ss (Ref. 27).

A slab on the other hand could be "con'sidered as a two dimensional

structural element in which bending in both the longitudinal and the

transverse dire'ction,s produce a biaxial state of stress. Thus the beam

concrete is assumed to-be subje·ct-e·d to uniaxial states of stress while

the slab concrete is ·assumed to b'e subjected to biaxial states of

stress (Ref. 43).

The inelastic biaxial and uniaxial behavior 'of concrete is

analytically described by empirical formulae. These empirical for­

mulae are, based on experimental observations and are characterized by:

1. The utilization of a linear or nonlinear stress-strain curve

(see Sections 2.1.1 and 2.1.2)

-15-



2. The utilization of a biaxial failure envelope which defines

the onset of concrete failure at the peak stress (see

Se ct ion 2 .1. 3)

3. The assignment of a particular strain value (peak strain)

which occurs at the peak stress (see Section 2.1.4)

4. The assignment of a particular slope (peak slope) which occurs

at the peak stress (see Section 2.1.5)

The analytic stres-f)-strain equation's are .differentiated so as

to obtain an expression for the slope, i.e. tangent modulus, of the

stress-strain curve. The tangent modulus is used to formulate the

elasticity matrix, [D], which relates the stress irtcrement to the

The elasticity matrix 'is utilized in formulating the stiffness proper­

ties of the beam and slab finite elements (see Chapter 3).

strain increment:
{6} = [D]' {s} (2.1)

The stress-strain relations discussed in this chapter will

sometimes involve both total stresses and strains and incremental

stresses and strains. Incremental quantities are distinguished by a

dot over the appropriate symbol, e.g. Eq. 2.1.

-16-



2.1 Biaxial Stress-Strain Relationships

A limited number of experiEental investigations of concrete

behavior in the biaxial stress state have been carried out (Refs. 33,

36,37,40). These studies have covered the entire biaxial principal

stress space consisting of the compression-compression region, the

tension-tension region, and the compression-tension (or, conversely

tension-compression) reg.ion. These regions are shown in Fig. 3.

An,alytical expressions for the biaxial prin'cipal stress-

strain relations for the compression-compress'ion region have been

adopted from Liu (Refs. 36 ,37) . Similar formulation is deve-loped,

based on the reported experiments, to cover the n'onlinear compress,ion-

tens,ie:m and't'en.sion-te,n'si'on., regi-on,si~ Th:e -'idealized biaxial stres:s-

strain' cur\tesha,ve' .two" basic fo·tms,:" th-e nonlinear 'form, and the linear

form. The nonlinear equation is used for biaxial stress states where

compression is dominant while the linear expression isuse-d for biaxial

stress states where tension is dominant. Figure 4 shows the approxi-

mate regions in the biaxial stress space where the nonlinear and linear

e'quations are applicable. E in the figure designates the peak slope.
P .

2.1.1 Nonlinear Stress-Strain Equation for Concrete,

The nonlinear stress-strain curve for concrete was assumed to

have the following form (Refs. 36,37);

cr =
A + BE E

C

-17-
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Where: cr = the principal stress in the direction of interest

£ = the strain in direction of interest

v Poisson's ratio (taken to be 0.2 but other choices

are also permissible)

= the ratio of the principal stress in the orthogonal

direction to the principal stress in the direction

of interest, e.g. a = a fa
1 2 1

E
c = Initial tangent modulus in uniaxial loading. E

c

can be obtained by performing a standardcompres~

sian :cylin'der test or through an' accepted formula

su'ch as .. the ,ACI' 'equation (Ref. 65), the Jensen

equation (Ref. 21), the Hognestad equation

(Ref. 30) ~or the Saenz equation (Ref'. 50) .•

A,B,C,D = Curve parameters to be determined

A positive stress from Eq. 2.2 denotes compression, 'and like-

wise a· positive strain denotes contraction. The parameters A,B,C,n are

determined by considering the basic shape of the nonlinear stress-

strain curve: ,the stress-strain· curve ,must pass through the zero

stress-zero strain pO,int at a slope of_ E and must also pass through
c

the peak stress-peak strain point at a slope of E. Enforcing these
p

curve characteristics leads to the following;
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A = 0

B = 1

E
2 E E 8

C = c -+' P c P
a (1 - va) 8

(1 - va)
2

p P cr
P

(2.3)

1
D = -­

2
E

P

E E
P c

2
(1- va) (J

p

whete: a is the peak stress
p

E is the strain at the peak stress
p

,E is the slope of the stress-strain curve at the peak stress
p

,.,The. :instantaneous slope 'o'f the stress~strain c·urve may be

obtamed by di"fferentiatin'g 'Eq. 2.2' resulting in

Where: A = 0

dO
dE =

2
E (1 - DE )

C

2
2

(1 - va) (1 + CE + DE )

(2.4)

B= 1

The 'instantaneous slope of the stress-strain curve, given in Eq. 2.4,

c'an be us:ed to relate the incremental stress in a principal direction

to th'e incremental strain in that S~ direction. Thus the instantane-

DUB slopes of the stress-strain curves for the two pri~cipal ,directions

can be expressed as:
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do E
E1b = dE 1 = (1 _eva)

1 1
2

(1 + C £ + D £2)
1 1 1 1

(2. Sa)

dO" E (1 - D S2)

E'2b
== __..-2 == C 2 2

ds (1 - va ) + D £2)
2

2 (1 + C E
E 2 -2 2 2

(2. 5b)

Where: E
1b

and E
2b

are the tangent moduli in' the two principal direc­

tions 1 and 2 respectively

a = a /a
1 2 1

a = CY /a
2 1 2·

D and "C, are, the D and'C 'curve parameters evalucl'te'd for
1 1.

the "1" principal direction using Eq. 2.3

D· ·.. att:d:.·;,-C" ,"ax'-a:: -the D ,and:','C"-'C'urve parameters evla,'uated for
:2 "', ·2::-, ' ." - --".-- ,

tIle "2." Princip a1 di re ct i on using Eq ~ '2" 3

Thus the' incremental stress-increme:ntal strain relation can be defined

as:

(2.6a)

or in matrix form:

cr E
1b

0 £
1 1

(2.6b)
:

(J 0 E E:
2 2b 2
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The curve parameters C and D, which are presented in Eq. 2. 3,

can be determined if the following quantities are known: E , V, a, a ,
c p

E , and E. The first three quantities, Young's Modulus, Poisson'sp p

ratio and the stress ratio have been previously defined in this section.

The latter three quantities, i.e. the peak stress, the peak strain, and

the peak slope, will be defined in Sections 2.1.3, 2.1.4, and 2.1.5,

respectively.

2.1.2 Linear Stress-Strain Equation for Concrete

The linear stress-strain equat.ion for concrete has the gen-

era! fonn shown below:
a=A+Be:

The curve. parameters , A andB, may b~ defined by forcing the eu rve to

pass through' th·e zero stress-zero strain p'oint, i.e. the origin, and

also through the peak stress-strain point. The curve parameters are

thus defined as
A= 0

(2.8)
a

B =~
E

P

The following stress-strain equation is determined by substituting

Eq. 2.8 into Eq. 2.7
a

a=--ILe:
E

p
(2.9)

A tangent modulus, which is constant, is obtained by differentiating

the stress-strain equation:
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do <1-
_ =-E.
de: e:

p
(2.10)

The incremental stress - incremental strain relationship follows from

Eq. 2.10 as:

a -E 0 E
1 . lb 1

=. .
cr 0 E

2b
E

2 2

Where: dO" G

E
1b

- ----l.. = --El-
dE: E

1 Pl

dO' cr
E

2b
=' -2.. = -l?.6...

·dE Ep22

(2.11a)

(2.lIb)

a
pl

(E
p1

) and O'p2 (E
p2

) ~enote the peak stress (strain) for the "1" and

"2" .principal directions, respectively. The linear stress-strain curve

can be determined if the peak stress and ~eak strain values are known.

In the particular case of the tension-tension ,re-gion the ini-

tia1 slope of E 1:(1 - va), obtained from Hooke's Law, is maintained.
c

Thus, if the peak stress is known, the peak strain in this region can

be defined as E = a (1 - va) IE •
P P c

2.1.3 Biaxial Failure Envelope - Definition of a
p

Non-dimensionsal experimental peak stress envelopes for con-

crete strengths of 2700 psi and 4450 psi are shown in Fig. 5 (Ref. 33).

The close agreement between the two curves indicate that the basic

shape of the failure envelope is essentially invariant and only the
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size of the envelope will change with concrete strength. The true

envelope can be approximated by a series of straight lines as shawn in

Fig. 5. The maximum increase in biaxial compressive strength, as com-

pared to uniaxial strength for the idealized failure envelope is 20%.

This corresponds to a value of 1.2 on the non-dimensional plot in

Fig. 5.

The characteristic points used to define the idealized peak

stress enve.lope are shown in Fig. 6 and are enumerated in the table

below:

Point (J IT
PI p'2

.A f' 0.0
c

B:' Rf" .~ R£~c

c Rf' Rf f

c 'C

D Rf~/aD Rf'
c

E o. O· f'
c

F 0'2F/(J,F (J2F

G -f 0.0
't

H -f -f
t t

I 0.0 -£t

J a
lJ o,J °lJ
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The terms used in the table above and on Fig. 6 are de'fined, as:

ff = uniaxial compressive strength 'from 6'-' x 12'·1 cylinder
c

test (28 days),

f
t

= direct tensilestierigth

cr = principal stress in direction
1

a = principal stress in dire~tion 2
2

ex = a /a
2 1

o = peak stress in direction 1
pl

a = ,peak s'tress in direction 2
P2

. . . ~'. .

a .. ~ ="'stress ..'.in ··dire·ct:~on -i at p'o'int ,j',­
~J

a. = stre·ss ·'rat'io (J • /a .
J 2J 1J

R = increase in ,strength due to the biaxial compressive

stress state

The following values were used in all test examples included in this

report. These values were selected to provide an acceptable approxima-

tion to experimentally observed biaxial stress states (Refs. 33,36).

R = 1.2

CXB
= L= V = 0.2

an

1 19.2cxF = -= -cx
J

a = (J = 0.85 ft
2F 1J c
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Equations defining the straight line segments ued in Fig. 6 are

expressed in terms of the characteristic points and the stress ratio, a.

These equations are explicity presented in Ref. 43.

2.1.4 Peak Strain Envelope - Definition of £
p

The non-dimensional peak strain envelope, shown in Fig. 7, is

idealized as a series of straight lines passing through, or very near

to, the experimental peak strain points indicated in the figure

(Refs. 33,36). Peak strain is defined as the strain occurring at peak

stress. The ch-aracteristic points use·d to define the peak strain enve-

ope are sh'own in Fig. 8 and are enumerate·d in the' table below:

Point, " :(] E
-E.l. --E1-

A' f' 8c c

B' Rf' E
C C

'C' °v 0

D' 0 -VE
c

E' -f -8
t c

F' 0 VEt

Gt (J E
ctct
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R, f~, 'V, and f
t

are defined in the 'previous section. The following

additional terms used in the table above are defined as:

0v = peak compressive stress at an a = l/V as obtained

from the peak stress envelope

a £ = a peak stress-strain value defining point Gt

ct' ct

£ = peak strain for uniaxial compression
c

£t = peak strain for uniaxial tension

The following values were used for all test examples in this report.

They were selected to provide. an acceptable. approximation ,to experimen-

tally ob'se'rved 'peak strains. "in' b.iaxial stress states,

R = 1.2

v = 0.2

a = 0.8 ft
ct c

£ = 1150 microstrain
ct

£ = 2500 microstrain
c

£t = tensile strength divided by Young's modulus

Equations defining the straight line segments used in Fig. 8 are

expressed in terms of the characteristic points and the stress ratio,

a. These equations are explicity presented in Ref. 43.
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2.1.5 Peak Slope - Definition of E
P

The peak slope is defined as the tangent of the non-linear

stress-strain curve evaluated at the peak stress. According to experi-

mental observations the peak slope for the compression-compression

stress region has a value of zero (Refs. 33,36,40). In the tension-

compression region the peak slope may range from a value of zero for

stress states near tmiaxial compression to a value equal to the a IE
p p

for the stress states near uniaxial tension. In this study the ratio

of peak slope to initial slope has been assumed to vary linearly with

respect to the stress ratio, a. The peak slope ratio has a value of

zero for s-tress s-tates near uniaxial compression and ranges to a value

Two pe-ak. slope :r-atios'; ,ne'cessary to define the aforementioned

linear variation, were scaled from the experimental stress-strain

curves, which' are designated as A and C in Fig. 11 and are listed below

along with th~ values of ex associateq. with, those curves.

Point
'Peak Slope
Initial Slope

I -0.204 1.000

II -0.052 0.125

-27-

Points I and II', located in the comp-ression-tension region, were

obtained by measuring the peak slope ratio for curves C and A,

1.000

0.125

-4.900

-19.200II'
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respectively. Points I' ,and II\'" located in the tension~compression

region, were obtained by computing the reciprocals of the values asso­

ciated with points I and II.

Points I, II, I', and II' and a plot of the ratio of peak

slope to initial slope as a function of the stress ratio, a, shown in

Fig. 9. The peak slope function is represented as a series of straight

line segments. These straight line segments and corresponding biaxial

stress plane regions are indicated by the letters A through Ein- Fig. 9.

The corresponding biaxial stress plane regions designate where that

particular straight line segment is applicable. The letters C+ and E+

indicate that the curve ext'ends to a stress ratio of plus infinity

while the letters C- and E- "indicate that the curve extends to negative

infinity at the indicated points on the failure envelope. The straight

line segments de~ineated by the points E-, I, II, A and C+ reflect the

peak slope ratios for .the: c~mpression-tension region through the

compression-compression region-. The· straight line segments associated

with the points C-, II', It, D and E+ describe the peak slope relation­

ship for the tension-compression region through the tension-tension

region.

2.1.6 Biaxial Constitutive Relationships for Concrete

The incremental stress-strain relationship for concrete in

terms of principal stresses is represented by Eq. 2.12 in which the

sub$cripts 1 and 2 !dentify the principal stress direction~ and the

dots indicate, incremental quantities:

-28-



· ·a e:
1 1

· [D] ·(J = E (2.12)
2 2

· ·l' Y1212

Needless to say, the shear stress increment, T , will be zero but its
12

presence is required in the principal stress vector so as to include

the shearing stiff~ess t'erm in the [D] matrix. This is necessary so

that trans'formation of the [D] matrix from principal axes to global

x-y axe,s results in the proper elasticity relationships. The [D]

matrix is t-he constitutive relationship for the p,tinc'.ipal, stress space.

The [D] matrix for anis'otropic materials can be expressed as (Ref. 36).

1 - 'J V
1 2

v "E~b
1

1 - V V
1 2

o

,'\) E'
2 Ib

1 - V V
1 2

1 - V V
1 2

o

o

o

E' E'
Ib 2b

E' + E' + 2V E'
1b 2b 1 2b

(2.13)

E~band E;b are the tangent moduli in the first and second principal

stress directions, respectively, and V and V are the Poisson's ratios
1 2

in the indicated directions. In the equation above it is assumed that
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The analytic stress-strain curves of Section 2.1.1 and 2.1.2

relate the stress in, a particular principal direction to the strain in

that same direction and only that direction. Thus, as indicated by

Eq. 2.6a and 2.11a, relationships of the following form are defined:

.
cr = E e:

i Ib

. . (2.14)
C1 = E e:

2 2b

Where E
1b

and E
2b

are the effective tangent moduli for the principal

stress space obtained by differentiating the analytic stress~strain

curves of Sections 2.1.1 and 2.1.2. The terms in the [D) matrix of

Eq. 2.13 must now be related to the known moduli, E
1b

and E2b •

The unknown terffis in' the stress-strain relations may be

. .
for a and a the relations given by

1 2

expressed as functions of the known E1b and E2b values by diagonalizing

the stress-strain relations of ,Eq. 2.13. Diagonalized relations may be

obtained by eliminating a andcr 'from the first and second algebraic
1 2

equations of matrix equation, Eq. 2.13. This is done by substituting

. .
C1 = (J a

2 1 1

. aa = a
1 2 2

(2.15)

The above substitution leads to

.
E = (J

1 1 (

I va)2 1
_E' - E'

Ib 2b

-30-
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The relation V IE'b = V IE' allows Eq. 2.16 to be expressed as
2 2 1 Ib

.
a. __1_

(1 - va)E
- E~b1 1 1

.
a

E = --2....- (1 - va)E'2 2b 2 2

.
E = cr

2 2
(

1 va)__ -...l....2.
E' E'

2b Ib
(2.16b)

(2.l7a)

(2.17b)

Rearranging E'q. 2.17 lea'ds to the diagonali:zeds·tress-'strain relations

given by

,( E,t," ). ' lb··a =
1 '1 - v Q',

1 1

( E' ). 2bcr =
2 1 - v a,

2 2

.
£

1

£
2

(2.18a)

(2.18b)

Comparison of Eq. 2.18 with Eq. 2.14 shows that the tangent moduli re-

latirtg principal stresses to strains in the corresponding directions

-31-
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E
1b

E;b
= 1 - V ct

1 1

E
Zb

E2b
=

1 - v (),
2 2

(2.l9a)

(2.19b)



Rearranging Eq. 2.19 leads to Eq. 2.20 which defines the moduli E' and
lb

E~b needed in Eq. 2.13:

E'
Ib

E'
2b

(2.20a)

(2.20b)

E
1b

and E
2b

are defined in Eq. 2.5 for the nonlinear case and

in Eq. 2.11b for the linear case. E
lb

and E
2b

are computed llsingthe cur-

rent total stress state. The a's are also based' on the current total

stress state so as to be consistent with the definition of Eib and E2b .

The curve parameters C and D in"the aforementioned expressions are

given by Eq. 2.3.

v and V in Eq. 2.13 must. still be obtained. The relation
1 2

V IE' = V IE'b leads to the following equations:
2 2b 1 1

V = V
A

(2.21a)

(Z.Zlb)

where subscripts (A,B) correspond to directions (1,2) or (2,'1) which-

ever is applicable. AppLicability was determined by selecting the co~

bination that resulted in positive values for both V and V. Th!s ~n~
1 2

vestigatiori has used the value of 0.2 for VA. The range of values for

VB' resulting from the application of Eq. 2.21 for various combinations

of cylinder strength, stress ratios and stress levels, was
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approximately 0.16 to 0.24, or about 80% to 120% of the value assumed

All terms of Eq. 2.13 can thus be defined using Eqs. 2.5,

.2.11b, 2.20, and 2.21. The result·ing [D] matrix is the constitutive

relationship for the particular layer expressed in principal stress

directions. Before computing the contribution of this layer to the

element stiffness matrix, the [D] matrix must be transformed into an

elasticity matrix [D], relating stress and strain in the x-y coordinate

system of the element:

· ·a E
x x

· [D] ·a = E
Y Y

·.. ·T y-
xy' .XY

(2.22)

This transformation is carried out in the fol10W'ing. rna·nner (Refs. 16,

55,64) :

(2.23)

where the transformation matrix, [T] is defined by

[T] =

cos 2e

sin2e

case sine

cos 2 e

-case sine
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The angle ~ is defined as the angle between the 1 and the x dir.ection.

This angle is positive when measured in a clockwise direction from the

positive x axis.

Figures 10-, 11, andl2~ compare the idealized and exper,imental

biaxial stress-stra-in curves (Re'f. 33).' CurVes A, B, and C in each

figure corresponds to, the specific stre'ss ratios listed on the figures.

Two curves are plotted for each stress ratio. One corresponds to

a /a versus E and the other to a /a versus ,8. a and a are the
1 0 1 1 0 2 1 2.

principal stresses as shown in the inset. of each figure while a is the
o

uniaxial compressive strength. € and E are the strains in the first
1 2.

and second principal stres·s'. directions,. respectively.

2.1.7 Concrete Failure Modes

Concrete exhibits different-. types of failure modes which are

dependent upon the applied stre-ss ratio as shown ,in Fig. ;13A.

Figures 13A and l3B each show one-half of a symmetric region. The four

physically distinct failure modes can be described as follows (Ref. 44):

TYPE I. In the tension-tension region and up to a tensile stressl

compressive stress ratio of -1/30 failure occurs by the forma-

tion of one crack perpendicular to the largest tensile stress

and perpendicular to the free plane, i.e. unloaded plane, of

the specimen. For a stress ratio of-equal tension in both

-directions there is no preferred crack direction (Ref. 33).
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TYP'E II. For stress ratios between -1/30 and -1/100 numerous cracks

are formed instead of just a single crack as was the case

for the previous region. These cracks are also perpendicu­

lar to the tensile stress and the free plane of the specimen.

TYPE III. From a stress ratio of -1/100 in the compression-tension

region to a stress ratio of 3/10 in the compression­

c'ompression region, cracks are not only formed perpendicular

to the applied tensile stress and free surface of the speci­

men but also cleavage planes occur parallel the free surface

of ,the specimen.

TYPE IV. For stres'S ratios between 3/10 and 1/1 in ·the compression­

compression-- re.gi,()n, only' 'cleavage cracks parallel to the free

plane· 'ofthe specimen o-ccur.

Kupfer, Hildsorf, and Rusch (Ref. 33) report two geuer,al typ'es of fail~

ure modes. They are a Type IV crushing failure for stress ratios

occurring between 1/1 and -1/15 (-1/30 according to Ref. 40) and a

Type I cracking failure for stress ratios from -1/15 to -1/-1.

The idealized failure modes used in this report are depicted

in Fig. 13B. A cracking failure mode is assumed to occur from the

tension-tension region to a stress ratio of -1/15. The direction of

the crack(s) is assumed to be perpendicular to the largest tensile

stress and to the free surface of the specimen. From the compression­

compression region to the stress ratio of -1/15, a crushing failure
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mode is assumed to occur. The direction of crushing is assumed to be

perpendicular to the largest compres'sive stress and perpendicular to

the free surface of the specimen.

The method presented in this study can define cracked regi9ns

and not individual cracks which may occur in the superstructure.

Within the context of the scope and purpose of this investigation, it

is ,not necessary to obtain the exact or, even. an approximate number of

the individual cleavage and tension cracks. However, it is required

that regions of cracking or crushing be defined. Also, the effect of

cracking or crushing on the stiffness of the element and its subsequent

effect on the rest of the superstructure must be approximated.

2.1.8 Cracked or Crushed Concrete

Cracking' or crushing' o~ the concret'e is deemed to occur when

the principal stress has excee'ded', the i'dealized peak stress as defined

in Fig. 6. The direction of cracking or crushing is assumed ,to be per­

pendicular to the 'direction of the corresponding principal tensile or

compressive stress, whichever is appropriate. The concrete layer is

assumed to have stiffness only in the uncracked or uncrushed direction.

For example, the constitutive stress-strain relation for a concrete

layer which has experienced a failure caused by the stress in

direction 2 would be
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.
E' a ·a 0 £

1 Ib 1

. ·a = 0 0 0 E: (2.25)
2 2

.
0 ·T 0 0 y 1212

The first principal direction is still effective in contributing stiff-

ness to the e,lement. The elasticity matrix, [D], would then be rotated

from the principal stress coordinate axis to the x-y coordinate system

for use in the element stiffness formulation.

The shear retent.ion factor, which provides for shearing

stiffne'ss of the cr·acke'd or crushe·d con'crete, has- been used to mo'del

aggregate interlock behavior along the crack face (Refs. 15,16,34,35,

ysis of sla:b:s~ are'", insensit'ive to' the particular value of the shear

retention fa·c'tor c.hosen (Refs. 15 ,16,35). In the present study it was

assumed that aggregate interlock failure! occurs immediately after

cracking or crushing, and consequently the third term on the diagonal

of Eq. 2.25 has been set to zero.

After cracking or crushing of the concrete layer, the layer

will be incapable of sustain.ing the stress that caused the failure.

This stres:;; must be reduc'ed to zero within the layer while still main-

taining equilibrium between the external forces and internal stresses.

Thus, unloading of the layer stress to zero necessitates the adjustment

of the internal stress field of the slaba This adjustment or redistri-

bution is accomplished through the use of fictit.ious forces which are
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statically equivalent to the amount of stress to be redistributed

within the slab. A solution of the stiffness equations corresponding

to these forces will produce the necessary redistribution of stresses.

Experimental evidence indicates that after attainment of peak

strength, either tension or compression, the concre'te stress-strain

curve has a downward, i.e. unloading, leg (Refs. 4,13,19,20,33,36,52).

It is assumed that this downward portion is a straight line (Ref. 27).

Thus unloading proceeds at some finite rate determined by the slope of

the downward portion of the stress-strain curve. This unloading branch

can also be used to model the tension stiffening effect due to the

gradual transfer of load from the cracked concrete to the steel rein­

forcing bars (Ref. 35).

2.1.9 Additional Considerations

This section describes for the sake of completenes's two addi­

tional considerations that are relevant to the material presented

herein. These considerations have not been included in the pre,sent

analysis scheme due to the lack of verification by experimental evi­

dence. One of the considerations, an isotropic stress-strain law, can

possibly simplify the presented method. Whereas the other one, a con­

strained plastic-flow rule, could refine and complicate the presented

scheme.

A. An isotropic stress-strain law

An alternative stress-strain formulation for biaxially

stressed concrete can be derived by enforcing an isotropic constitutive
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elasticity rela:tionship rather than an anisotropic relationship (see

Eq. 2.13). The isotropic model was not used in the analysis scheme

being reported. The isotropic model has the advantage that V and V
1 2

are defined by the computed tangent moduli, E
1b

and E
2b

, and the stress

ratio, a. Thus it eliminates the assumption of a value for either V
1

or V and then making a subsequent check on the assumption, as.was done
2

in Section 2.1.6.

The ass~tion of an isotropic material will lead to the fo1-

lowing basic relations:

E' = E'
lb 2b

E2b - Elb~
V =,\J' =

... .1 .,' ,'" 2· . :E, 'b CX. - E 'b ex,
, 2' 2 1 f

(2. 26a)

(2.26b)

In addition to the above equations, the isotropic model requires the

rel~tion for peak strain,

a
E: = -.E. (1 - va)

p E
c

(2.27)

to be satisfied for all portions of the stress space where the linear

form of the concrete stress-strain curve is applicable. It must be

noted that within constraints of present knowledge and accuracy of

experimental measurements, the isotropic and anisotropic models, as

presented in this report, are equally valid mathematical approximations

to the observed concrete stress-strain behavior in the biaxial stress

space. However, agreement of the isotropic model to experimental

-39-



stress-strain curves is not as good as that for the anisotropic model.

This lack of agreement, though small, is due to the additional con­

straint placed on the peak strain by Eq. 2.27. This is in contrast to

the anisotropic model which allows one the freedom of obtaining a best

fit approximation to the experimental peak strain points for a portion

of this region.

B. Constrained plastic flow

When concret-e crushes, plastic flow may take place. This

flow may be constrained to follow a certain path ,depending upon the

state of stress existing within the crushed concrete. A constrained

plastic flow must- satisfy a,"spec~f'ied flow rule and yield surface cri­

teria. Analytic models employing such formulation have been developed

and have been used in slab analysis procedures (Refs. 15,35). Previous

analytic studies have indicated that fo'r regions of limited plastic

flow, as would be the practical case in a reinforced concrete slab,

there is a negligible difference between results based on the con­

strained and'unconstrained formulations (Ref. 35). Therefore, since

there is a negligible difference between the results, the present study

employs the computationally more efficient unconstrained plastic flow

concept.

2. 2 Uniaxial Stress-Strain Relation~hips

The steel reinforcing bars and the beam concrete· are consid­

ered to be in a uniaxial state.of stress. The uniaxi~l stress-strain
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curve is assumed to follow the Ramberg-Osgood formulation (Ref,~:. 27,

32,49) given by:

Where:

E=S!-+
E.

1

(J = stress

E = strain

a
s

E..
1.

n

(2.28)

E.·- initial modulus of elasticity
1.

a = secant yield strength equal to the ordinate of the inter­
s

section of the stress-strain curve and a line of slope

(m) • (E .. )
1.

tn = a dimensionless constant d"efining ·a 1.ine or slop's

(m) · (E .. ) on th'estress-strain curve
1

, ,n. == a dimens'ionless" constant

The tangent modulus can be found by differentiating the stress-strain

equation as follows:

do
---l. =
dE

1
l+n

'E.i
·n-I

(2.29)

The constitutive relation between the stress and strain increments is:

. - .
cr D 0 0 £

1 11 1

a = 0 0 0 E: (2.30)
2 2

. .
L 0 0 0 y1212
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Where:

Subscript

-D = da Ide: as defined in Eq. 2.29.
~ 1 1 1

"1" refers to the principal stress direction.

2.2.1 Beam Concrete

The complete stress-strain curve for uniaxial compressed con-

crete is approximated by the combination of three mathematically dis-

tinct curves (Refs. 27,32):

1. A nonlinear Ramberg-Osgood curve passing through the point of

-maximum compressive strength,f~, and a strain of e:

2.
" I I _

A horizontal stra'ight,'.lfne', pas-sing through points (f' E) to
c'

and (f', £ )c m

3. A straight downward leg passing through (f', £ ) to a zeroc m

stress level.

This downward slope Ed is not employed in the stiffness matrix formu­
c

lation but is used to determine the fictitious forces resulting from

the unloading of concrete layer stresses (see Section 2.1.8).

-In steps 2 and 3 above, E and Ed are determined from the
m c

table below (Refs. 27,32):

f' (ksi) - Ed (ksi)E
C m c

5.60 (or greater) 0.0022 3000.

4.75 0.0022 1800.

3.90 0.0023 1250.'

3.00 (or l~ss) 0.0024 700.
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Optimum empirical Ramberg-Osgood curve parameters were

obtained by comparing numerous experim~ntal and corresponding analyti-

cal stress-strain curves. These parameters were ~ound to be (Ref. 27,

28,32):

(J = f' 6" X 12" cylinder strength
s c'

E. = Ec' initial Young's modulus for concrete (see
1-

Section 2.1.1)

's = 0.0020 in./in. for normal weight concrete

n = 9

m £'/(8 E.)
C 1.

The concrete tensile stress-st'rain curve is assumed to be

linear with slop-e, E up t'o the tens-i.l-e strength of the concrete. Then
c

a linear downward leg at a slop'e of Edt is continued to the zero stress

level. The optimum Ramberg-Osgood curve parameters were found to be

(Refs. 27,28,32):

(J f
t

, tensile strength
s

E. = E
1. C

n = 9

m = 1.0 which forces the curve to be linear

Edt = 800 ksi
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2.2.2 Beam and Slab Steel

Stress-strain relations for both mild steel reinforcing and

prestressing strands are approximated with Ramberg-Osgood curves

(Eq. 2.28). Curve parameters for the mild steel are listed as follows:

cr = f y' yield strength of the steels

E
i

= Es'
Young's modulus for steel which may be taken to

equal to 29000 ksi

n - 100.0

m = 0.70

Mathematical distinction between yielded and non-yielded steel need not

be made si.nee the Rambe'rg-Osgood- fo.rmulation provides a continuous

stress-strain curve. Proper selection of the curve parameters can pro­

duce an almost perfectly plastic plateau in the case for mild steel.

This plateau will have some finite slope but its value will be so small

that for all practical purposes its effect on the structural behavior

can be considered negligible.

Ramberg-Osgood parameters for the prestressi.ng strands can be

determined by a trial and error process of fitting various analytic

stress-strain curves to the corresponding experimental curves. Very

close agreement between the experimental and analytic curves is pos­

sible as shown in Fig. 35. In Fig. 35 the following values were used

to generate the curve:
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a = 250. ksi,s

E. = 27000 ksi,
1

n = 0.67, and

m = 25.0

Special consideration must be made when the slab reinforce-

ment is placed at an angle with respect to the longitudinal'x-aXis of

the bridge. In this case, the principal stress direction, "1", does

not coincide with the x-direction. Since the stress-strain relation

must be expressed in the x-y coordinate system, a transform,ation is

needed. The [D] matrix is transformed from the principal stress direc-

tion, which<" c·orre.sp,onds to th'e direction of the reinforcing bars, to

th'e x-y'axes. This t.rans·form'ation is shown in Eq. 2.28 where [T] is

as previou'sly defined boy ·.:Eq,~, ',"2.:•. 2-4".. -..The angle e is the angle b'etween

the x-axis and the longitudinal direction of the reinforcing bars mea-

aured in a clockwise direction.

As can b'e seen in Eq. 2.30, th'e shearing stiffness of the re-

inforcing bars in th'e slab is not considered. Experimental studies on

dowel action of reinforcing bars has been carried out and is available

in the literature (Ref. 39). These experiments were concerned with

investigating dowel action caused by the shearing deformation of the

reinforcing bars in the plane of the slab. The dowel action discussed

here should not be confused with the type of dowel action considered

when discussing shear perpendicular to the plane of the slab. It was

concluded from these studies that after a flexural type of failure in a

reinforced concrete slab, the reinforcing bars do not distort across
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the cracks. This implies that the reinforcing bars do not carry exces­

sive shearing forces. Thus for the analysis procedure reported herein,

it was assumed that the steel reinforcing bars have a shearing stiff­

ness of zero. Furthermore, it should be noted that this assumption is

consistent with the assumpti~n regarding the stress fields of the rein­

forcing bars, i.e. uniaxial stressing.
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3 • FINITE ELEMENT ANALYSIS

3.1 Introduction

The analysis procedure being reported is based on the finite

element method. A complete treatment of the finite element method can

be found in numerous books on the subject (e.g. Refs. 55,64). There­

fore, only the major concepts and necessary steps related to this

research will be presented.

Assumptions and their implications concerning the finite ele­

ment model are fi'rst discussed. A brief review of the. finite element

method is ,presented. Basic equations which help to introduce the nota­

tion,'u'S'e·d- .. in ,la'ter s-e·etions are given in this review section. The fi­

nite e"ieme.n"t' ~·t:h:6',t as .app·lied·· t:o rei.nforced concrete slabs, reinfo'rced

and prestressed concrete beams (Refs. 19, 27 - 32), and reinforced and

prestressed concrete highway bridges (Refs. 45 ,46,47) is discussed.

Finally the solution procedure is outlined.

3.2 Assu1l!Ptions

Several assumptions are employed in the development of the

analytic model. The asstmlptions and associated implications will be

discussed in the foilowing paragraphs.

1. Geometry Restrictions:

Bridge superstructures which are rectangular in plan, i.e.

right bridge~, and rhomboidal in plan, i. e. skewed bridges,
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are considered. The formulation presented in Sections 3.3

through 3.7 is applicable to right bridges. Section 3.8

extends the formulation so that skewed superstructures can

be analyzed.

2. Assumptions Regarding Strain Distr.ibution:

Kirchoff's assumption that plane sections normal to the mid-

dIe surface of the plate, before deformation remain plane and

normal after deformation is employed. Correspondingly, the

Bernoulli beam theory, which applies the plane section as-

sumption to beam bending, analysis is used. ' Application of
. ,

Kirchoff's an·d", Berno,ul1i t,s 'as.s.tm1ptions are a usual practice

in bending solutions' for thin 'plates and 'beams. A thin plate

is defined as a plate whose length and width dimensions are

considerably greater than it~ thickness. It is also assumed

that the slab and beams do not change thickness due to the

applied forces. Thus the strains and stresses normal to the

plane of the slab and beams are neglected. Application of

Kirchoff's and Bernoulli's assumptions and the elimination of

the normal strain offered the following simplifications:
(

A. The reduction of a three-dimensional continuum problem

requiring six stress components to define the state of

stress at a point to a two-dimensional plate bending pro-

blem involving only three stress components (0 , a , T )
X Y xy

and a one-dimensional beam bending problem involving only

one stress component (0).
x
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B. The strains at any depth in the plate or beam can be com-

puted from the displacenents of the reference plane.

The assumed strain distribution does not permit the inclusion

of the bond failure phenomena where slippage between the re­

inforcing bars and the surrounding concrete takes place. A

possible way of including bond-slip is briefly outlined in

Ref. 43.

3. Small DeforJIlations:

The inplane and bending displacements are assumed to be small

in comparison to the dimension of the slab. This implies

that the geome,t"ry,: o~ ·the fini-te elements will not substan­

tially change after deformation. Thus the geometry of the

element need not be updated as the analysis proceeds.

4. Small Strains:

The reinforced concrete slabs and highway bridge- superstruc­

tures are assumed to be subjected to small strains. Thus the

usual linear strain-displacement relations can be used as

opposed to the more involved nonlinear equations necessary

for the large strain formulation.

5. Layering:

The inclusion of material nonlinearities will cause the stiff­

ness properties of the beam and slab finite elements to vary

with depth. These material nonlinearities, incl~ding crack­

ing and crushing of the concrete and yielding of the steel,
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are i,nherent in the stress-strain relations. The existence

of both steel and concrete in the same finite element also

causes a variation of stiffness through the depth of the ele-

ment. To facilitate the computation of the element stiff­

ness, the finite element will be divided into a series of

layers through the depth (Figs. 2 ,14,,15). The total stiff­

ness of the element will then be obtained by a summation of

the stiffness properties of these individual layers. The

st resses within a particular layer will be assumed to be con­

stant within the layer .for the purpose of computing the

.stiffne'ss of e'ach' layer. Thus the, stress field through the

depth ·o·f '"the :sl'ab: :8n'd'beam. wiii vary in a step-like ,manner.

Increasing' th:e number of layers will improve the representa­

tion of the stress field and consequently the accuracy.

3 •3 Review 0 f the Finite Elemen t Methad

The finite element method requires that the continuum be

divided into an assemblage of subunits called finite elements. The

elements are considered to be interconnected at discrete points called

node points. In this context the continuum is a 'highway bridge super­

structure (Fig. 1). The stiffness properties of the elements can be

found using the principles of the, finite element method. The result is

a set of equilibrium equations relating node point forces to node point

displacements:
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Assembly of the elements to form the entire structural system results

in a set of nodal equilibrium equations:

Where: · {Fe} = a vector of applied nodal forces on the, element

eke] = the element stiffness matrix

· {oe} = a vector of nodal displacements for the element

{F} = [K] {oJ

(3.1)

(3.2)

Where: · {F} = a vector of the forces applied to the stru'cture at the

nodes

[K] = the asseDbled stiffness matrix

{a} = a vector of node point displacements

The unknown node point displacements,' '{o}, are obtained by: solving this

set of simultaneous equations.

It can be shown that the element stiffness matrix can be

evaluated using either Eq. 3.3a or,Eq. 3.3b (Refs. 55,64):

[ke ] = [C]-lTfv [Q] T [D] [Q] dv [C]-l

[k
e

] =1 [B]T [D] [B] dv
v

(3.3a)

(3.3b)

where v is the volume of the element.

This presentation will be restricted to an explanation of the

matrices in Eq. 3.3 rather than their derivation. A two-dimensional
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approach employing the coordinates (x,y) will be used. The overall

schen:e is equally valid for a one-dimensional system, i.e. beam, where

only a single coordinate position is needed.

The stress-strain relationships for a layer can be expressed

by an elasticity matrix, [D], as shown in Eq. 3.4:

{cr} = [D] {E} (3.4)

The displacements wit-bin an element are asstUD.ed to be ade-

quately described by a polynomial functiOn of position within the ele-

ment and initially unknown constants. This combination of functions

and constants will be called -a",disp,lacement function. Thus it is pos-

defined by the coordinates (x ,y)

sible to define the displac'ements:"at :any point within the element as:

[P(x,y)] = particular functions of x and y, or their deriva-

( 3.5){A(x,y)} = [P(x,y)]' {a,}

in which:' {~(x,y)}, = displa-cementsat any position within the element

tives, used tb describe the displacement fields

{a} = constant coefficients of the displacement functions

The individual {ex} are: evaluated using the boundary conditions given by

the displacements at the node points of the element:

(3.6)

[C] is populated by substituting the coordinates of each node point,

(x ,y ), into Eq. 3.5 where:
n n
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{~(x ,y )}n n
(3. 7)

Solving Eq. 3.6 for the constant coefficients lead to

(3.8)

The differential operators necessary to define the strains

(see Eq. 3.4) in terms of the displacement fields (see Eq. 3.5) will be

called [fl. Thus

{E} = [f] {~(x,y)}

Substitution of Eq. 3.5 into Eq. 3.• 9a··gives:

(3.9 a)

(3.9b)

[Q] is a connection matrix relating" {E} to· {~} within the element.

Substitution of Eq. 3.8 yields

(3.9c)

Matrix [B] n:lates the strains within the element to the nodal point

displacements.

A summary of the necessary steps in the finite element method

to formulate the elemental stiffness matrix is as follows;

1. Choose displacement functions and formulate the displacement

field (Eq. 3.5).
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2. Express the node point displacements in terms of the constant

coefficients by substituting the known nodal point locations

into step 1 (Eq. 3.6).

3. Solve for {a} (Eq. 3.8).

4. Substitute {a} into step 1 (Eq. 3.5).

5. Identify the strain-displacement relations and perform the re­

quired differentiation of the displacement function (Eq. 3.9).

6. Find the stress-strain relationship [D] (Eq. 3.4).

7. Substitute the necessary matrices into Eq. 3.3 and perform the

indicated int'egration. The result will be the element stiff­

ness matrix-.

3.4 The Layered Slab Model,

The necessary steps in -'the' -formulation of the stiffness

matrix by the finite element method were discussed, abstractly, in

Section 3.3. These steps will be discussed in detail with respect to

the nonlinear analysis of reinforced concrete slabs in the following

sections. Explicit expressions for the matrices used in the layered

slab model can be found in Appendix A.

3.-4.1 Plate Bending and Inplane Displacement Functions

The purpose o,f this section is to present the displacement

functions and describe the displacement field, {~(x,y)}.
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Displacement functions are chosen so that the deformation of

the finite element can be adequately described. These displacement

functions are polynomial expressions in terms of the (x,y) in-plane co-

ordinate locations and unknown constants. AS' stated in Chapter 1 both

the inplane and bending displacements must be considered.

The bending deformation of a plate can be fully described by

the vertical displacement of the middle plane of the plate via assump-·

tions presented in Section 3.2. The bending deformation will consist

of the vertical displacement, W, the rotation about the x-axis, e , and, x

the rotation about the y-axis, e. The rotations may be obtaine d by
y

differentiating, the vertica'l :displacement. Thus the displacellEnt field

which de,scribes the b~nding defannations can be 'expressed in vector

form as

w w

e aw
(3.10)= ayx

e' awJ
y ax

The ACM-Adini, Clough, :Me'losh (Ref. 1) plate bending finite

element will be used in this study. A review of the fini te element

displacement functions and the resulting stiffness matrices for the

analysis of plate bending has been given by Clough and Tocher (Ref. 10),

Wegmuller and Kostem (Refs. 57,58,59) and Kostem (Ref. 25)., They con-

eluded that the ACM rectangular finite element gives very satisfactory

results. By increasing the number of ACM finite elements used to model

a particular continuum an apparent convergence to classical solutions
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h'asbeen demonstrated for several example problems (Refs. 10,58). The

ACM displacement function expresses the vertical diap lacement, W, as a

twelve term polynomial (Refs. 1,10,55,64):

W(x,y) = A + A x + A y + A x 2 + A xy + A y2 + A x 3 + A x 2y
1 2 S 4 5 6 7 a

Theinplane deformation is characterized by two df.spla:cement

+ A xy 2 + A y 3 + A x 3y + A xy 3
9 1 0 1 1 1,2

(3.11)

functions U andV. U is defined as the in-plane di?placement directed

along the x-axis and V is defined as the in-p'lane-' displacement directed

along the .y~axis. Th'e in-plane displacement polynomials shown ~elow

• • ~ I.

have been p"re.sented b,y -Cl,ougJi:· (Re,f. '9):

( 3.12)

V(x,y) B ,+ B· x + B Y + B x.y
5' 6', 7 8 ,

Nodal points are considere,d to be located at the four comers

Previous studies using these in-plane displacement polynomials have been

Eq. 3.11 and Bi's in Eq. 3.12, correspond to the constant coefficients

of the disp"lacement functions, {ct}, used in Eq. 3.5.

The coefficients, A. 's in
1

successfully carried out (Refs. 58,59).

of ,the rectangular finite element positioned on the reference plane in

the ..middle 0,£ the plate. Nodal ~oints are designated by the .~etters,

I, J, K, L as indicate'd in Fig. 14. Thus all nodal point displacements

re'fer 'to reference plane deformations. The terms "reference plane" and

'''nn'ddleplane'' are considered to be interchangeable in this report.
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The displacement vector is described in terms of five displacements for

each nodal point', i.e. two in-plane displacements and three bending dis-

placements. The total number of displacements per finite ~lement is

twenty, i.e. four nodes at the corners with five degrees of freedom per

node.

The displacement functions W(x,y), V(x,y), and U(x,y) can be

used to define the displacement field {~(x,y)} for any location given

by the coordinates (x,y)~

u u

V V

W w
{il(x,y)} = = (~.13)

e aw
x ay

e aw
y - ax

Thus Eq. 3.5 can be established once the displacement functions have

been chosen.

The displacement fi~ld' {~(x,y)}, can be partitioned by sepa-

rating it into those involving only in-plane displacements and those

involving only bending displacements:

{il(x,y)} =

!1 (x,y)
u

~cP(x,y)
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U(x,y)

V(x,y)

W(x,y)

e (x,y)
x

e (x,y)
y

(3.14)



This will simplify further discussion of the stiffness matrices in the

following sections. The subscripts 'u and ~ refer to the in-plane dis-

placements and the bending displaceme~ts respectively. Substituting

the displacement' functions' (Eqs. 3.11 and -3.12) into' the right~hand

side of the above equation leads to

6 (x,y) P (x,y)
I
I 0 Bu U I

, {Li(x,y) }
I

= -.-...-......._.... = --------~-------- (3.15)I
flep(x,y) 0 I Pep(x,y) A

where [Pu(x,y)] and [Pep(x,y)] correspond to the in-plane and bending

polynomial terms, respectively. The vector {-~-} is the partitioned

{ex} vector while the matrix [~~~~~~~-tll-;~(:,;)] is the partitioned,
[P(x,y)] matrix.

ence p lane are

plate small-deflection theory as mentioned in Section 3.2. The strain-

displacement relationships for a point at a distance z from the refer-

(3.16 a)

(3.16b)

au
(E )

Z=,--
x axz

av
(E ) z=--

y z dy

Strain-Displacement Relations

The strain-displacement relations are derived using the thin-

3.4.2
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au av= _z_ + __z
ay ax (3.16 c)

where: z = Distance of point under consideration from the

reference plane

U = Displacement in the x-direction at any depth Zz

v = Displacement in the y-direction at any depth z
z

(8) = Strain in the x-direction at any depth Zx
z

(8) = Strain in the y-direction at any depth z
y z

(Yxy) = Shear strain at any depth z
z

The prescribed displacement functions correspond to reference

plane displacements. The displacements U and V must be expressed inz z

terms of these middle plane displacements. Kirchoff's assumption of

plane sections permits 'the displacement for a point located at any dis-

tance, z, away from the reference plane to be expressed in terms of the

inplane displacements -of the reference plane plus the product of the

rotations about the reference plane and the distance z as shown by

Eq. 3.17:

u u -
aw·-

= z-
z ax

v v - aw
= z ayz

w =w
z

(3.17a)

(3.17b)
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Substituting Eq. 3.17 into Eq. 3.16 leads to Eq. 3.18 in which' {E}
z

represents the strain at depth z:

au -a 2w
£ axx

dX 2

, {E} av + z -a2w (3.18)= E = ayz y dy2

au + av a2w
Yxy -2 --

z
ay ax ' dXdY

In the equation above, the strain vector' {E} is separated into in-plane, z

and, bending cont.rib~u,ti'oilS'~. Identif.ying, the required differentials of

Eq. 3 .18 to.. be [i'u1 ·and: [rcj>l-, corresponding to tbein...,plane and bending

func·tions 'respec·tiyely:, .-:lea.ds' 'to. '

(3.19)

Performing the differentiation results in the following equation:

< {e:} = [Q ]' {B} + z [Q,h] {A}
Z U 't'

(3.20)

where: = [r ] [P (x,y)]
u u

The strains are now expressed in terms of the matrices [QuJ and [Qcj>l~

which are obtained by differentiating the functions [P (x,y)],
u

[Pcj>(x,y)], and multiplying by the associated constant terms {B} and

{A}.
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As indicated by Eq. 3.8, the unknown polynomdal coefficients

in Eq. 3.20 can be related to the nodal point displacement vector {ce}.

The inplane and bending displacement fields have been previously de,-

fined as {~u(x,y)} and {~¢(x,y)}, respectively. Substitution of the

nodal point coordinates (x ,y ) into the above displacement fieldsn n

result in the following expressions:

ice} =' {~ (x ,y )} = [C ] {B}
u u n n u

(3.21a)

(3 .21b)

where:

= [P~(x ,y )]
'f' n n

. {o~} and U;} are the in-plane and bending nodal point displacements.

Solving for the vectors' {A} and {B} gives

(3.22a)

(3.22b)

Substituting Eq. 3.22 into the strain-displacement relation of 3.20

yields

(3.23)

Equation 3.23 is analogus to Eq. 3.9c and represents the strain dis-

placement equation relating the strains at a distance z from the middle

plane to the basic set of unknowns, i.e. the nodal point displacements.
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For convenience, the [Bul and [B¢J matrices, defined by Eqs. 3.24a and

b, are substituted into Eq. 3.23.' This results in an expression for

the strain gi~en by Eq. 3.24c:

[B: ] = [QUJ [c ]-1
. U u

[B¢l
-l

= [Q¢ I fC¢J

. {£} = [B' ]'{oe} + z .[B ]' {eel
z u u ¢ ¢

(3.24a)

(3.24b)

(3.24c)

3.4. 3, Layering

Multiaxia'l bending of the slab in both the longitudinal and

transverse directions: causes a continuously ,varying biaxial stress field

within the concrete. The. elasticity matrix, [D], fo'r a nonlinear mate-

ria:l depen'ds on the stress level,. and", therefore, will also vary

throughout, the finite.e·lemen'~... In: 'order to evaluate the volume inte-

gral of Eq. 3.3, [D} must be defined over the volume of the element.

Since the explicit definition of the elasticity matrix for reinforced

concrete under biaxial s'tress is prohibitevely complex for solution

purposes, th'is stiffness matrix is evaluated by a combination of ex-

pIi.cit integration and numerical integration. The numerical integra-

tion, is performed using a summation process, as explained in the f01-

lowing- paragraphs.

A slab finite element will be divided into a series of layers

as shown in Fig'. 14. This idealization facilitates inclusion of mate-

r.ial nonlinearities through the depth, i.e. layer to layer, and through
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the plane of the slab, i.e. element to element. Each layer can have

its own elasticity relation, [Dil, which is dependent upon the repre­

sentative state of stress existing within that layer,' {cr.}. This i~
1.

plies that there is a constant state of stress and stiffness within any

particular layer and that there is a step-like variation of stress and

stiffness properties through the depth of the finite element.' A state

of plane stress is assumed to exist within each layer.'

The representative state of stress in a layer is taken to ~e

equal to the integrated average stress for the mid-plane of that par~

ticular layer. The ..locat~on of' the mid-plane of layer-i is defined by

the distance z". frbm the. re'ference 'p.lane' of the slab. The integrated
1.

avera,ge s'tress "~an ""be expres~ed 'in terms of the integrated average
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the integrated average stress:

Substitution of Eq. 2.26a into Eq. 2.25 results in an'equation defining

(3.25)

(3.26b)

(3.26a)

{a .} = [ D.] {E}-
1. 1. z.

1.

By employing Eq. 2.24c, the integrated average strain may be defined as

1 JJ [[Bul

(

[B<t>] ]
08

{E}- I - dxdy u=-- I Ziz. AREA I . oe
1. I

I ep
I

where: AREA = [,b f:a dxdy = 4ab
-b

strain,' {~}- , using·Eq.~3.25:
z.

1.



- l'
{cr.} = AREA [D.]

~ 1. JJ [[B ]
u

~
I
I ­II Z.
I l.
I
I

dxdy (3.27)

Once the representative state of stress, given by· {cr.}, is
1..

kno"Wll .the .elasticity matrix, [D. ], can be determined for various layers.
1..

Numerical integration can then be performed and the stiffness matrix

can be evaluated. The elasticity matrix is a function of' '{a.} which
1.

is, in turn, dependent on the elasticity matrix. Thus the stiffness

matrix is stress-dependent and a step-by-step 'solution scheme is

required. This will be discussed in Section 3.9.

Rei~£orcing b~rs:are",-treated just the sci.me as any other layer

in the integration process' but· of 'course a uni'axial elasticity rela-

tianship is used. A separate steel layer is assumed for each set of

reinforcing bars placed" at, a ,p"ar,ticular depth and at a particular angle

to the x-axis. Idealizing the reinforcing bars as a layer and not as

individual entities requires the computation of an equivalent steel

layer thickness. The equivalent thickness of a steel layer must be

such that the total area of steel in a cross-section perpendicular to

the bar direction remains the same. The equivalent thickness for a

steel layer can be represented by Eq. 3.28:

A
T

s
= bs (3.28)

s

where A indicates the area of a reinforcing bar and b is. the bar
s s

spacing. This approach to modeling steel reinforcement allows

-64-



consideration of r~inforcing systems which have variable bar spacing

and size from element to element and are placed in arbitrary directions

and depths within the slab.

Progressive cracking and crushing of the conere te and yield-

ing of the steel through the depth of the slab during loading can be

monitored by obtaining the stress history for each layer. The angle of

crushing or cracking of a particular concrete layer is not predefined

by previous crack~ng or crushing and may vary from layer to layer

through the depth of the slab.

3'.4.4 Element Stiffne'8·g, Mat'rix'

Eq. 3. 3b defines the element' ·stiffness matrix

(3.3b)

in which matrix [B] relates the strains to the nodal point displace-

ments. Comparison of Eqs. 3.9c and 3.24c shows that Eq. 3.3b can be

rewritten, in this context, as

[~]

Performing the indicated matrix multiplication results 'in
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[BU]T [D] [BU] [BU]T [D] Z [B~] 1
[B~]T [D] Z [B

u
] [B~]T [D] z2 [B~]J

dv (3.29b)

The submatrices of Eq. 3.29b will be defined as shown below for

convenience:

[k:u ] =l,

[k:~] = 1
[B ] T [D] [B ] dv

u u (3.30a)

(3.30b)

(3. 30 c)

This will result in the following ,definition of the element

stiffness matrix:

(3.30d)

where

[k
e

] is the inplane stiffness matrix relating the in-plane force to
uu

the in-plane displacements. [k:~] is the bending stiffness matrix re-

lating bending forces to bending displacements. The off diagonal sub­

matrices, [k~~] and [k:u ] are the coupling stiffness matrices which
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interrelate the bending and in-plane actions (Ref. 44). The importance

of the co,upling stiffness terms has been d-iscussed- in Chapter 1.

As was noted in the discussion of layering in Section 3.4.3,

the state of stress, and hence the terms of the elasticity matrix, are

assumed to be constant throughout a particular layer. Therefore, [D]

is not dependent on x or y coordinates. Likewise, since the displace-

ment functions were independent of the coordinate z, [Bul and [B¢] are

also independent of z. Thus the integrations indicated in Eqs. 3.30

may be separated as shOW'n below:

=i £ [Bu]T (I [D] dz

=f f [BulT(Oj
y x z

= i £.. [B¢lT(1 [D]

[B ] dxdy
u

[B¢] dxdy

[B¢l dxdy

(3.31a)

(3.3Ib)

(3.3Ic)

As also mentioned in Section 3.4.3, a summation process will be used to

approximate the integration over z. This will be done by integrating

over each layer and then summing the results and storing them in the

appropriate [Duu] , [Du¢]' or [D¢¢] matrix.

[Du¢J, and [D¢¢] may be defined as

Thus the terms [D ],
uu

[D ] = f [D] dz = ~
uu z i=,l
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[D.] (Z. + - Z.)
1. 1. 1 1.

(3.32a)



z.+ and<Z. delineate the boundaries of layer-i. L is the total number
1 1 1.

of . layers. [Duu]' [Du</>]' and [D</></>] are often called, respectively, the

in-plane rigidity, the coupling rigidity, and the bending rigidity.

[
1 L

[D~~] = z [D] z2 dz = -3. L [D.] (Z~+ - Z~)
'f'Y 1=1 1. 1. 1 1.

(3.32b)

(3.32c)

Substitution of Eqs. 3.32 into Eqs. 3.31 results in the f01-

lowing expressions which can be explici.ty integrated over the area of

the elements:

. eke ] =li [B JT [D . l [B ] dxdy
Uti u uu· u

[ke
] =£i T

[B</>] dxdy[B] [D ]-
uef> u u¢

[k¢</>] =£[ T
[B</>] dxdy[B</>] [D</></>]

(3.33a)

(3.33b)

(3.33c)

This integration leads to the force-displacement relations for the fi-

nite element given by

Fe [k
e

]
I

eke ] 8eI
u uu I u¢ u

=
_______..J ______

(3.34)I

Fe Ike ]T ,I e oe
¢ uel> I [k</></>] ¢I
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. {F~} and {F;} a~e, respectively, the inplane and bending forces applied

to the nodes of the element •. {o~} and {o;} are, respectively, the re­

sulting inplane and bending displacements at the nodes of the element.

3.5 Review of the Layered Beam Model

Theoretical development of the finite element analysis techni-

que as applied to reinforced and prestressed concrete beams is pre-

seuted in detail in Refs. 27 and 32. Also in the above references, the

developed meth-odology is verified through numerous comparisons betw'een

analytic and experimental results. Since the maj or emphasis of this

is on- the l:ayered slab and bridge models, only a brief review of the

layered beam model will b-e presented- for the sake of completeness.

Explicit expressions for the matrices used in the layered beam model

can be found in Appendix B.

Both inplane and bending displacement polynomials are pre~

scribed for the beam element:

U(x) = B + B x
1 2

(3.35a)

W(x) = A + A x + A x 2 + A x 3

1 2 S 4
(3.35b)

U(x) is the axial in-plane displacement of the beam while W(x) is the

vertical bending displacement of the beam. The displacement expres-

sions of Eq. 3.35 are a function of only the coordinate position (x)

and not (x,y) as was the case for the slab. Because of this, the beam

element can be considered as a one-dimensional str~ctrual element. The
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displacement functions chosen for the beam are consistent with those

chosen for the slab (see, Eq. 3.11 and 3.12). The beam disp1ace~nt

field is defined by U(x), W(x), and e (x) [i.e. -OW(X)/dX]. These
y

three quantities can be obtained from Eq. 3.35.

Nodal points, designated by letters I and K, are located at

the two ends of the beam element and are positioned on the reference

plane as shown in Fig. 15. Thus there are six nodal point displace-

ments for a beam, that is horizontal and vertical displacements and ro-

tations at each end.
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ment s ti.ffness matrix are anal-o'gous. ,to ·th·o-se employed for the layered

(3.38)

(3 .36)

(3.37)

(3. 39b)

(3.39a)

(8 ) = au /d"J(
x Zz

U = U - z ow/ax
z

(8 ) = au/ax - z a2W/dX2
x z

(8 ) = [B ]. {ce } + z [B<j>] {a;}
x u u

z

[B ] = [Qu] [C ]-1
U u

[B<j>] = [Q<j>] [C ]-1
<P

The remaining e'quations necessary to formulate the beam ele-

1. Strain-Displacement

where



2. Stress-Strain

(cr )
x.

1.

= (D.) (E )
1. X -.

Zl.

(3.40)

where stress, strain, and the elasticity relationship are

defined at the centroid of the layer

3. Layer Rigidities

L
L

i=l
(D.) (Z •+ - Z.) (T . )

1. 1. 1 1. 1.
(3.41a)

1 L 2 2
(Du~) = -2. E (Dl..) (Z.+ - Z.) (T.)

~ 1=1 1. 1 1. 1.
(3. 41b)

(3.4lc)

(T.) is defined as the layer width measured in the y-direction.
1.

Expressions for the layer.:ridigities (Eq. 3.41) can be further

simplified by noting the 'following equivalent expressions

(z.+ - z. ) (T. ) = (A.) , layer area (3.42)
1. 1 l. l. l.

1 2
Z~) (T. ) (A. Z.), statical moment for layer (3.43)2" (Zi+1 = i

1. l. 1. l.

1 3
- Z:)

-2

3 (Zi+l (T. ) = (A. z. + I.) , moment of inertia for (3.44)
1. l. l. 1. 1-

layer i about the reference plane

After the summations in Eqs. 3.41 are carried out, descriptive

labels, as used in Ref. 27, of equivalent area, equivalent

statical moment, and.equiva1ent .. moIDent of inertia can be used
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in lieu of the more intangible .labels of in-plane, coupling,

and bending rigidities, respectively.

4. Element-Stiffness Matrix is the same as Eq. 3.30d, and the

submatrices are defined as

[ke ] = [ [B ]T (D ) [B ] dx
uu U Ull U

x

[k~</>] =Ix [B ] T (D </» [B</>] dxu u

[k:</>] =1. T
[B</>] dx[B </>] (D</></»

(3.45a)

(3.45b)

(3.45c)

3.6 Unloading of Cracked or Crushed Concrete Layers

As stated in Se-ction 2.•1.8, a· concrete layer that has cracked

or crushed will be incapable of s'ustaining th-e stress that caused the

failure. The stress within the layer must be reduced to zero by ad-

justing the internal stress field of the damaged layer. At the same

time the internal stress field is adjusted, a statically equivalent

force vector, referred to as a fictitious force vector, is applied to

the structure so as to maintain equilibrium between the externally ap-

plied forces and the internal stress field (Refs. 27,32).

The fictitious force vector can be computed using

(3.46)
T

. {a } dv
r
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where the vector' {o } is the increment of stress in the x-y coordinate
r

system to be redistributed and' {Fe} is the resulting vector of ficti­c

tious forces. The fictitious force vector can be separated into terms

involving only in-plane fictitious forces,' {Fe }, and terms involving
uc

bending fictitious forces, {F¢c}' as shown below:

F e
<pc

=
1 [B ]T' {cr } dv

u r
v

(3 .47)

If it is assumed that the stress to be unloaded is constant through the

thickness of a .layer, th-e integrat'ion o.f Eq. 3.47 over the thickness of

the layer results in

{Fe } = (£1 [B ]T dx dy . {cr } (z.+ - z.) (3.48a)uc u r 1. 1 1.

. {F¢c} (£1 [B<j>]T dx dY) '{cr } 2
- z~) /2, (3.48b)= (z.+r 1 1 1

The amount of stress to be redistributed,' {a }, for a particu­
r

lar load cycle can be computed 'in the principal stress space by multiply--

ing the unloading modulus by the appropriate integrated average strain

increment. Transformation of the stress vector from the principal to

the x-y global coordinate system is necessary before substituting into

Eqs. 3.48.
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3. 7 The Layered Bridge Model

3.7.1 Model Characteristics

The bridge superstructure is divided up into a series of beam

and deck slab finite elements as shown in Fig. 1. The beams and deck

slab are further divided up into a series of layers as shown in Fig. 2.

The beam and slab models were combined so as to fonnulate the bridge

model. Thus comments made for the layered beam model described in

Section 3.5 and the layered slab model described in Section 3.4 are

applicable to the layered bridge model and will not be repeated here.

The layered beam model was developed using -an arbitrary re­

ference p'lane. This -re£e·ren·ce p la.ne is :.located, for c"onvenience, at

the mid-plane of the deck slab. Th·e consideration of an arbitrary re­

ference plane in the beam formulation enabled the eccentricity of the

bridge beams to b'e included· in.the.bt"i'd'ge. fonnulation (Refs. 27,32,58,

59). Thus a realistic apP':roach" to modeling the structural behavior of

the eccentric beam-slab system could be made. Layer coordinates and

stiffness properties of the beam elements reflect this eccentricity and

are computed using the mid-plane of the slab as the reference plane

(see Eq. 3.41).

The displacement field of the bridge superstructure is de­

fined by the in-plane, U and V, and bending, W, displacements of the

reference plane. Compatibility between beam and slao displacements

is maintained for points that are located at the beam~slab inter~

face. Thus composite action between the beams and the deck slab

is maintained.
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3.7.2 Assembly of the Force-Displacement Equations

As stated previously in Section 3.3, the element stiffness

matrix relates nodal point forces of the element to the nodal displace-

ments of the element. This relationship is expressed in Eq. 3.1. The

individual element stiffness matrices, including all beam and slab fi-

nite elements, are assembled to form the global stiffness matrix of' the

entire structure. These individual element stiffness matrices are

generated as previously stated in Sections 3.4 and 3.5.

The global stiffness matrix relates the forces at the node

points of the structure to the displacements of those node points. The

process of assemb·ly entails addition of the slab and beam element

stiffness terms, wh-i-·ch contribute to the same force-displacement loca-

tion in the global stiffness matrix. _The total force at a particular

node is determined by adding up the contributing forces from the indi-

vidual elements for that particular node. Thus after incorporating

subscript !'ocations in Eq. 3.2, the force-displacement relationship for

the entire bridge superstructure can be expressed as

- {F.} = [K .. ]' {o.}
1 1J J

(3.49)

where i and j correspond to the various degrees of freedom at the node

points. The subscript i indicates row positions in the force vector

and stiffness matrix and j indicates row positions in the displacement

vector and column locations in the stiffness IDatrix. Assembly proce-

dures require that
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where the summation is carried out over all individual slab and beam

elements. The stiffness term k7. in the above equation relates the
1J

force at node i to the displacement at node j for element e. Summing

. {F.} = E' {F:}
1 1

e

[K .. ] = L [k7.]
1J e 1J

(3.50a)

(3.50b)

up the contributing stiffness terms from all elements as indicated in

Eq. 3.50b gives the term K.• which populates the ('i,j) location in the
1.J

global stiffness matrix. The assembly procedure guarantees displace-

ment compatibility at the node points and results in Eq. 3.2. This

equation is then solve·d for the nodal p'oint displacements. The layer

strains and stresSe'EJ Can. then ·b'e computed by s-ubstituting the nodal

point displacements into appropriate relationships (see Eqs. 3.26, 3.27

and 3.39a, 3.40).

3.8 Extension to Skewe'd H'ighway Bridg~ Superstructures

Skewed highway br'idge superstructures are commonly encoun-

tered in the field. In these types of bridges the plan view has the

shape of a parallelogram. The presented method can be extended to con-

sider those cases in which the highway bridge is constructed with a

skew angle.

For the case of skewed superstructures" the deck slab is

divided into a mesh of rombiodal, i.e. parallelogram, finite elements

rather than rectangular finite elements as was done for right bridge

superstuctures. These parallelogram elements have the same skew angle
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as the bridge superstructure. Displacement functions used for the

parallelogram finite element are expressed in skew coordinates rather

than Cartesian coordinates and have the same form as used for the rec­

tangularfinite element (Refs. 11,64). The previously developed ex­

pressions in Sections 3.3 through 3.4 that used these displacement

functions are therefore considered to be applicable in a ske~ coordi­

nate system. It is only necessary to apply a series of transformations

so as to obtain the required expressions in the cartesian coordinate

system. A 'transformation to Cartesian coordinates is necessary since

1. Boundary conditions for ,the bridge superstructure are usually

defined in the Cartesian s-ystem

2. The stress-strainrel·atioriships of Chapter 2 are evaluated

using Cartesian stresses and strains

3. Relationships that define structural damage and serviceability

criteria are evaluated using quantities defined in the

Cartesian system.

Quantities in the skew coordinate system will be denoted with

a prime while unprimed quantities will refer to the Cartesian coordi-

nate system. The following transformations will be needed:

{oJ = [T8] {ot} displacement (3.51a)

{F} = [TF] {F'} force (3.51b)

, {£} = [TS]' {E' } strain (3.Sle)

{a} = [TO] {at} stress (3.SId)
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These transformations have been previously presented by Argyris

(Re.f.2) and will only be reviewed in the following sections.

The beam elements are considered to already be in the -

Car'tesian coordinate system and need not be transformed. These beams

are' assume,d to be parallel to the coordina te axis that is common for

both the Cartesian and the skewed coordinates, i.e. x-axis •. Should

they have been parallel to the other coordinate axis that is not com-

mon for both coordinate systems then a transformation would have been

needed. Therefore, beam finite elements are treated as before. Only

transformations for the skewed deck slab need be considered.

3.8.1 Transformation of Displacement

The polynomial 'displacement functions describing the bending

and in-plane displacement fields for the parallelogram finite element

can be obtained by writing Eqs. 3.11 and 3.12 in a skew coordinate

system:
w' = W(x' ,y')

u' = U(x' ,y')

V' =V(x',y')

(3.52a)

(3.52b)

(3.52c)

where Wt
, U', and V' are the displacements in the skew coordinate Sy8-

tern shown in Fig. 16A. W' is in the same direction as W shown in

Figs. 2 and 14. The rotations in the skew coordinate system,

S' and 8', are obtained by differentiating W' ·
x y
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I
The correspondi~g displacements in the Cartesian coordinate

system are defined by

where [TOu ] and [TOep] are the appropriate in-plane and bending trans­

formation matrices respectively. Transformation matrix [To ] can be
u

o
u

= [
To 0]

aU TOep

0'
u

0'
ep

(3.53)

obtained by considering the covariant components of an arbitrary in-

plane displacement vector shown in Fig. 16b. Therefore from geometry

relationships

[To ] =
u

(3.54)

Terms in the transformation matrix [TOep] are obtained by employing the

chain rule for partial differentiation:

W 1 0 0 W'
,

e = 0 oy'lay -ax' lay e (3.55)
x x

e 0 -ay'/ax dx'/ax s'
y y

From geometry the skew coordinate position (x' ,y') is given by

x' = x - y/tan S

y' = y/sin S
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3.8.2 Transformation of Forces

Thus,
1

o

o

o

l/sin 13

o ·

o

l/tan S

1

(3.57)

The in-plane and bending force transformations are [TF ] and
u

[TF~] respectively and relate the forces in the skew system to the

forces in the Cartesian system:

F 'TF O· F'
u ,u. u

= (3.58)
Fep 0 .. TF~ F'"ep

The force transformations can be determined by considering the contra-

variant components of the force vectors shown in Figs. 17a and 17b.

From geometry considerations the following relationships can be

determined:

[TF ] =
u

[TF~] =

[:

1

o

o

cos ~]
sin ...,

o

sin,S

-cos S
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3.8.3 Transformation of Strain

Transformation of strain can be accomplished by employi~g the

chain rule for partial differentiation:

(e:) = au lax = (au lax') (ax"/3x) + (au lay') (ay'/ax)x z z zz

(8) = av lay (av lax') (3x'/ay) + (av lay') (ay'lay)
y z z zz

(3.60a)

+ (av lay') (ay'/ax) + (av lax') (dX'/dX)z z

Substitution 'of Eqs. 3.53 and 3.,56 into Eq. 3.60 will lead to

(3.60c)

E 1 0 0 E'
X x

£ = I/tan2 f3 l/sin (3 -cos I3/sin2 f3 E' (3.61)
y y

Yxy
-Z/tan2 (3 0 1/sin2 f3 y.'

xy

where the skew strains are defined as

(8' ) = au' lax'
x z

Z

(E' ) = av' lay'
y z z

,
au'/ay' + ~v'/axt(y" ) =

xy z z. z

Equation 3.61 will be written as

{£} = [Te] {E'}

where [TE] is the strain transformation matrix.
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3.8.4 Interrelationships Between the Transfonmation Matrices

The invariance of external and internal work is used to de­

fine relationships between the various transformation matrices. Utili­

zation of these relationships can lead to an efficient procedure in ex­

tending the previously developed method for right angle highway bridge

superstructures to one in which the skew angle is considered.

The invariance of, external work in the Cartesian and skew

coordinate systems can be expressed as

(3.64)

Substitution of the displacemen,t 'and'· force transformation leads to

which establishes the relationship

(3.65)

[To] T
-1

[TF] (3.66)

The invariance of internal work in the Cartesian and skew

coordinate systems can be expressed. as

(3.67)

Substitution of the strain and stress transfonmation matrices leads to

which establishes the relationship

[TE]T = [Ta]-~
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3.8.5 Modification of the Right Bridge Formulation

to Consider Skew Bridges

Equation 3.9c will now express the strain in the skew coordi-

nate system:

, {£t} = [B]' {cSt} (3.70)

Transformation from the skew to the Cartesian coordinate system gives

{e} = [TE] [B] [TO]-l {8}

Equating external and internal work leads to

(3.71)

{O}T {F} = {o}T [Tol- 1 I, TSJT [TEJT ,[U] [TE] [B] dv' [TO]-l {oJ
(3. 72)

After substituting Eq. 3.66, the stiffness matrix can be expressed as

where [ke ] is the stiffness matrix in the skew coordinate system
s

[ke ] = ( [B] T [TE] T [D] [TE] [B] dv'
s lv'

(3. 73)

(3. 74)

The integration is carried out over the volume of the finite element

which is expressed in the skew coordinate system:

dv' = dx' dy' dz sin a
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where
1 -l/tan S

sin (3 =
o sin f3

and is obtained from the coordinate relationships of Eq. 3.56.

(3.• 76)

Equation 3.46, used in determing the fictitious force vector,

must also be modified to reflect the change in coordinate systems.

Employing Eq. 3.72 and using the following definition,

(3.77)

(3.78)

where {a'} is the stress to be redistributed expressed in the skew co­
r

ordinate system and is considered to be constant throughout the volumn

of the layer.

3.8.6 Application of Boundary Conditions

Boundary conditions may be imposed in the skew or Cartesian

coordinate systems. Only boundary condi tions which will prevent dis-

placements and rotations will be considered.

Boundary conditions specified for the skew coordinate system

will be applied to the skew stiffness matrix eke] at the element levels

rather than at the global level. The particular procedure adopted does

not require the reordering and deletion of equations. The procedure

involves setting the row and column of the skew stiffness matrix, which
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corresponds to the fixed displacements, to zero. The diagonal ele~nt

of the stiffness matrix is set equal to one. The corresponding posi­

tion in the skew force vector is then set to zero.

En£orcenent of boundary conditions specified in the Cartesian

coordinate system is carried -out on the global stiffness matrix

expressed in Cartesian coordinates. The diagonal element of the stiff­

ness matrix t which corresponds to the fixed displacment, is multiplied

by a comparatively large number. The associated term of the force

vector in the Cartesian system is set to ,zero.

3.9 Solution Scheme

The solution process can be divided up into four main phases:

1. Problem definition

2. Dead load and/or prestress solutions

3. Scaling procedure

4. Overload solution procedure

The detailed explanation of the computer program based on the

reported, analysis scheme including the required input and the generated

output are contained in Refs. 46 and 47. A brief explanation of the

above phases are contained in the following paragraphs:

1. Problem Definition

This phase defines the particular problem that will be solved.

The following topics must be specified:
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A. Bridge superstructure geometry -

Geometry for the beam and slab finite elenents must be

defined. This includes specifying concrete, mdld steel

reinforcing bar, and Prestress strand layer thfcknesses,

widths, and locations.

B. Material Properties -

Material properties' for the concrete, mild steel reinforc-

ing, and prestress strands must be defined. In particn~

lar, parame't'ers· use·d in de,fining the stress-strain rela-
, .

tionships of Ch-ap te r .2 mus t b'e given. These include the

compressive and tep.sile strengths, Young's moduli, and

Ramberg-Osgood const~ts (Refs. 27,45).

c. Loading-

The loads on the superstructures must be defined. These

loads m~ include dead loads" prestress forces, or live

loads. The live loads are considered to be static in

nature. Thus multip·le solutions investigating several

critical vehicle load positions may be desired.

D. Boundary Conditions -

Displacement boundary conditions for the node points are

considered to be either fixed or free and must be speci-

fied. Advantage may be taken of situations where a line

of symmetry exists. In such cases the size of the
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problem and correspondingly the solution time can be re­

duced if the appropriate boundary conditions for that

line of symmetry are employed.

2. Dead Load and/or Prestress Solutions

Since the analytic technique considers material nonlinearities

which are stress dependent, the initial stress state, i.e.

the stress state occurring prior to overload, must be included

in the solution procedure. Due to the nonlinear nature of the

problem the initial stress state solution cannot be directly

superimposed ,on a separate overload solution. Thus, the ap­

propriate stress field must reflect not only those stresses

due to the overload vehicle but also the initial stress state.

Therefore an initial dead load and/or "prestress solution may

be performed "to obtain the' response and initial stress states

of individual beams subjected ~o dead loads and/or prestress­

ing. Also a dead load solution in which the entire bridge

superstructure is considered may be performed. This solution

is applicable when there is composite action between the deck

slab and the beams under dead load and produces an initial

stress state in both the beam and slab. The dead load solu­

tion procedure for the entire bridge superstructure would be

desired in monolithic shored construction.

Nonlinear material behavior is considered in the dead load

and prestress solutions. Thus iterations and the application
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of fictitious forces, which result from layer cracking or

crushing, are performed.

3. Scaling Procedure

The scaling procedure prevents an excessive number of live

load s~lutions from being conducted on essentially an elastic

structure. Scaling of the prescribed live load forces takes

place prior to the incremental overload solution procedure

and following the dead load and/or prestress solution proce­

dures. This p'roce,dure 's·c·ale·s· the'. initial live load solution

so that the stress·,'fie·l'd.which includes the dead load stress

state is within specif'ied tolerances of first cracking,

crushing, or yielding whichever governs. Thus solution time

is not waste-d and an elastic. solution is obtained in one load

increment rather than in many load increments.

4. Overload Solution Procedure

The structural response to an overload ,vehicle is obtained by

solving the set of global force-displacement equations in

Section 3.7. The ,force vector is considered to be the incre-

ment of nodal point forces applied to the structure. The

displacement vector is considered to be the displacement in­

crement resulting from the applied force increment. Total

forces and displacements are obtained by addition of the

various increments.
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The global stiffness matrix, which relates the force incre­

ment to the displacement increment, reflects the instantaneous stiff­

ness of the bridge superstructure. An incremental approach is neces­

sary because the global stiffness matrix which reflects the nonlinear

material behavior is dependent upon the state of stress existing within

the material and changes during the loading process. The state of

stress is in turn dependent upon the displacement solution which is de­

pendent upon the global stiffness matrix. Symbolically the above

dependency'relationship can be written in equation form as

. {F} = [K (a + 6) ]" {8} .' (3. 79)

where [K] is' shown as bein'g 'depen.dent upon the current total stress

plus the unknown" stress increment. In the above equation" {F} is the

applied force increment and' {8} is the resulting displacement in,crement.

Thus it can be seen that the system of equations to be solved is non­

linear and cannot be solved with the usual techniques employed for a

linear equation system. Thus, the formulation was modified to permit

piecewise - linearization of the nonlinear phenomenon (Eq. 3.79). Two

schemes were employed for the solution of the piecewise - linearized

problem. These schemes will be explained in the following paragraphse

The analytic results for the overload response are generated

by solving a linear system of equations for a given load increment.

The system of equations reflects the global stiffness of the structure

at the time the load increment is applied. The tangent to the stress­

strain curve for that particular layer is used in computing the element
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stiffness and finally the global stiffness matrix. Since the element

stiffness and global stiffness matrices depend on the current state of

stress, ,the stiffness matrix is recomputed for each load step. Also,

iteration within each load step or load increment is performed until

convergence of the solution for that load increment has been obtained.

Solution of the displacement equations and updating of the global

stiffness matrix occurs for each iteration. Load increnents are scaled

down or up so that an optimum load step is applied. This load step

will ensure-that the critical stress will be within some specified

tolerance of the failure- "St'ress.', "~Whe-n, itera't-ion -within each load step

is employed the procedure, 'w-iil,b'e :.,:re~f.err,red' to as the "incremental-

iterative" method. An approximation to the process of iterating within

each load step is to update the stiffness matrix only at the start of

each load increment. When iteration within each load step is not per-

formed the term "incremental" method will be used.

The advantage of the incremental solution procedure over the

incremental-iterative procedure lies in the fact that less solution

time is needed for the former than the latter. The disadvantage of the

incremental solution procedure is that judgment and experience must be

used in selection of the size of the fixed load increment. If an ex-

cessively large load increment is selected then the incremental ap-

proach although being faster with respect to solution time, would over-

shoot the true analytic result. This is because a fixed load increment

may cause a layer to overstress in which the stress within the layer

may exceed the specified failure stress. Thus the incremental mode
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produces a load-deflection history that will appear stiffer and lie

above a load-deflection history produced using the incremental­

iterative mode. As the size of the fixed load increment is reduced the

incremental solution will approach that of the incremental-iterative

solution. When using the incr~mental mode, the load at which specific

structural phenomena (e.g. cracking, crushing, or yielding) occurs can

only be determined to lie within a specific load increment and not at

a specific load as would be ·the case for the incremental-iterative

approach. Therefore when damage (e._g. cracking, crushing, or yielding)

occurs within a load increment, the reported load will be the load

after the increment is applied.

Flow ch'ar'ts des'cribi:ng .-the basic operat'ions for both the in­

cremental and the incremental-iterative solution schemes are presented

in Fig. 18. The following corresponds to a more elaborate explanation

of several key steps used in the incremental method:

1. Formulate the element stiffness matrices based on the current

total stress level.

2. Form the global stiffness matrix by assembling the element

stiffness matrices.

3. Solve for the displacement increment using the global stiff­

ness matrix and the force increment. Next compute the strain

and the stress increments.

4. Unload the excess layer stresses and compute the corresponding

fictitious force vector if applicable_
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5. If the current total stress level has exceeded the lower tol-·

erance on the failure envelope set the codes, for newly cracked

or crushed concrete layers and newly yielded steel layers.

6. Compute the total stress, strain, displacement, and force

vectors by adding together the old totals and the current

increments.

7. Apply a new force incren:ent and go to Step 1.

An initial stress and displacement increment of zero is chosen for each

load step. Thus the firs't itera,t-ion, with,in a load step uses an elas­

ticity matrix based on the stress level of the pre"\7ious load cycle.

The following corresponds to a more elaborate explanation of

several key steps used in the incremental-iterative method:

1. Formulate the element stiffness matrices based on the current

total stress level.

2. Form the global stiffness matrix by assembling the element

stiffness matrices.

3. Solve for the displacement increment using the global stiff­

ness matrix and the force increment. Next compute the strain

and the stress increments.

4. If the displacement increment has converged to a specified

tolerance go to Step 7, otherwise continue.

S. If the stress state falls outside the upper toler'ance set on

the failure envelope then scale down the applied force
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increment such that the total stress is between the upper and

lower tolerances.

6. If the maximum number of iteration cycles has been reached go

to Step 7; otherwise go to Step 1.

7. Unload the excess layer stresses and compute the corresponding

fictitious force vector if applicable.

8. If the current total stress level has exceeded the lower tol­

erance on the failure envelope set the codes for newly cracked

or crushed concrete layers and newly yielded steel layers.

9. Compute the total stress" a·train, displacement, and forces

vectors 'by adding,' t'oge·th·e,r. the old totals and the current

inc rements •

10. Apply a new force increment and go to Step 1.

An initial stres·s and displacement increment of zero is chosen for each

load step. Thus the first iteration within a load step uses an elas­

ticity matrix based on the stress level of the previous load cycle.

Allowable limits on deflections, live loads, stresses,

strains, number of cracked, crushed, or yielded layers, and crack

widths can be specified for both the deck slab and beams to define ser­

viceability limdts for the bridge superstructure (Refs. 46,47). These

checks can be used to terminate the overload solution procedure if a

specific serviceability liDdt is exceeded. Thus an efficient solution

procedure is developed, which will meet the requirements of the analyst.
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4. CORRELATION WITH EXPERIMENTAL TESTS

This chapter contains comparisons of experimental and analy­

tical studies on reinforced concrete slabs, and on reinforced and pre­

stressed concrete highway bridge superstructures. These comparisons

were made so as to provide a basis for the verification of the devel-

oped nethod. The experimental studies were obtained from the avail-

able literature and were not conducted as part of reported

investigat'ion.

The analytic studies w~rec-arried out using the method re­

ported herein. A total of :s-even' re-irtfo·rced concrete slabs and five

highway bridge superstructures were analyzed. To prevent repetition,

two of the seven slabs along with three of the five bridges will be

discussed in this chapter. Another bridge example is presented in

Chapter 5 which presents a limited parametric study. Thus a total of

four bridges are dis cussed. Detailed presentation of the slab

examples can be found in Ref. 43, while the bridge examples can be

found in Ref. 45. Within the scope of the reported investigation,

satisfactory agreements for all slab and bridge examples were observed.

Development of the layered beam model was not part of this

dissertation. The layered beam model had been previously verified

and numerous test cases can be found in Refs 27 and 32.
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4.1 Reinforced Concrete Slabs

A comparison of experimental and analytical results are pre­

sented in this section to verifY that the developed analytical ~del

accurately represents reinforced concrete slabs. Comparisons for the

seven test cases listed below have been made. The reference which is

listed along with the example, indicates where the experimental test

is reported:

No.1: A simply supported reinforced concrete beam (Ref. 66).

No.2: A rectangular slab simply supported on two opposite sides

arid free on the other sides (Ref. 8).

No.3: A comer sUPP'or'ted square slab (Ref. 22).

No.4: A simply supported square slab with orthogonal reinforce­

ment (Ref.' 53) •

No.5: A simply supported square slab with diagonal reinforce­

ment (Ref. 53).

No.6: A rec tangular slab fixed on Olo opposite sides and free

on the other two (Ref. 54).

No.7: A square slab fixed on all edges (Ref. 54).

Only No. 2 and No. 7 in the above list will be presented in

this report and will be referred to as the "Simple-Free Slab" and the'

"Fixed-Fixed Slab", respectively. Details of all examples can be

found in Ref. 43.

The material properties of the test specimens in units of ksi

are listed below:
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Material,
P~operty

f' -4"
c

f'
c

f
Y

E
s

.* Given

Simple-Free
Slab

5.150*

0.502

4330.

50.0*

30000.*

Fixed-Fixed
Slab

5.06*

4.20

0.375

3100.*

44.6*

30000.

where: f' -4" = 4" x ·4".x 4 II:, ,cub·e ·,strength
c

f' = 6" x 12" cylinde,r strength
c

f t = direct tensile' strength

E = Young's modulus for concretec

f =. yield strength:£or steely

E = Young's modulus for steel
s

As noted in the above table, not all material properties

needed in the analysis scheme were reported or obtained by the experi-

~nters. In all examples either the 6" x 12" cylinder strength, f', or
c

the 4" x 4" x 4" cube strength, £1-4", was reported. If the concretec

properties f
t

and E
c

were not experimentally obtained, they were com­

puted from f' or ft -4" in the following manner:
c c

1. If the cube strength is readily available then it can be con-

verted to cylinder strength by any acceptable relationship

such as the equation below (Refs. 4,41):
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f' = 0.83 (f'-4")
c c

2. Young's modulus, E , was obtained using an acceptable formula
c

such as those mentioned in Section 2.1.1. For example, in the

case of the Simple-Free Slab, E was computed using Jensen's
c

equation (Ref. 21).

3. The direct tensile strength, ft' can be obtained from Ref. 41

which gives relationships between the cylinder strength and

the direct tensile strength. The tensile strength used for

the Simple-Free Slab is- taken as a value previously used by

other investigators ,(Ref. 8).

The following material properties were assumed for all test cases:

Poisson's ratio, ','v= 0.2

Compression unloading modulus = 1000 ksi (Ref. 27)

Tension unloading modulus =, "800 k'si (Ref. 27)

Material properties needed for steel are the yield strength,

Young's modulus, and the Ramberg-Osgood parameters (see Section 2.2.2).

Young's modulus was assumed to be 30 x lOs ksi if it was not given.

4.1.1 Simple-Free Slab

This 54" x 40.5" x 4.14" slab (Slab B7 of Ref. 8) was loaded

by a uniformly distributed moment along two opposite sides as shown in

Fig. 19A. The constant moment region was idealized as one finite ele-

rrent. This is an adequate idealization because the stress. field does

not, theoretically, vary with position in the plane of the plate. The
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distributed moment was applied on the short sides which were consid-

ered as simply supported. The long sides of the slab were free to

displace. Reinforcement consiste.d of 1/4" diameter deformed bars

placed at ±45° to the slab edges. The bars closest to "the sur-

face of the slab were spaced at 1.5" with a minimum cover of 3/8".

The bars in the next layer were spaced at 1.375" with a cover of 5/8".

The slab was divided into ten concrete layers and two steel

layers as shown in Fig. 19B. 'T in Fig. 19B indicates the steel layer
s

thickness and ex indicates the reinforcing bar angle measured from the

x-axis. The location of the steel layers in the model corresponds to

the centroidal location of the steel reinforcing bars in the test

specimen. The experimental and analytical distributed moment versus

curvature hist.ories are presented in Fig. ,20. The agreement between

the experimental and analytic results is quite good with respect to

the formation of the collapse mechanism and the ultimate load.

Figures 21 and 22 show the applied moment versus concrete compressive

strain and the moment versus average steel strain (tension side) 'his-

tories, respectively, for both the experimental and analytic models.

It can be noted that there is scatter of experimental strain readings

about their average values for some levels of applied moment. The

overall agreement between the experimental and analytic results is

quite satisfactory.
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4.1.2 Fixed-Fixed Slab

Two almost identical 6 t x 6' x 4" square slabs were tested

as part of the experimental study contained in Ref. 54. The slabs

were fixed on all four sides and loaded by a concentrated center point

load applied through a 9" x g" steel plate. Reinforcing consisted of

1/4" and 3/8" diameter mild steel bars placed orthogonal to the slab

edges. Both top and bottom tension reinforcements were used since ten­

sile stresses are developed on both the top and the bottom surfaces of

the slab due to the boundary conditions. Although the distribution of

reinforcing varied throughout the slab, it is believed that an adequ­

ate model was developed by using a constant thickness for each steel

layer. There is, however, no analytic difficulty in extending this

formulation to consider a steel layer whose thickness varies from

element to element.

The analytic model was developed using the material proper­

ties of the first experimental slab of this pair. These properties

have been previo~sly listed in Section 4.1. A quarter of the slab was

discretized into sixteen finite elements as shown in Fig. 23. The

depth was divided into six concrete layers and four steel layers as

indicated in Fig. 24.

The load-deflection histories for the two experi~ental slabs

and the analytic model are shown in Fig. 25. A shear punch failure

occurred during the experimental tests and caused a premature collapse

of the slabs before their full flexural capacity could be ,developed.

Since the model considers only the flexural action, the shear punch
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type of failure could not be obtained analytically. The possibility

of a shear punch failu,re can be examined through the use of appropri­

ate design formulas. Enlarged portions of experimental and analytic

load-deflection histories up to the occurrence of-the shear punch fail­

ure are shown in Fig. 26. The figure indicates that when flexural

action is dominant a close agreement between experimental and computed

results is obtained. The slight difference between the analytic and

experimental load-deflection histories may be attributed to the lack

of total fixity observed by the experimenters. It was estimated that

the fixed edge supports were 90% 'effective. The analytic work assumes

full restraint al,?ng the edges in question. Thus, as indicated, the

analytic model produced a load-deflection history which is stiffer

than that obtained experimentally.

The analytic and experimental crack patterns for the top sur­

face of ~he quarter slab are shown in Figs. 27A and 27B, respectively.

The experimental crack pattern was not perfectly symmetric but it had

essentially the same general form for all quadrants .of the slab. The

top surface cracks in both the experimental and analytic cases devel­

oped into concentric circle-like patterns around the center of the

slab. The bottom surface crack patterns are shown in Figs. 28A and

28B. The center portion of the slab exhibited extensive cracking due

to the shear punch failure. As would be expected, the analytic model

did not reflect those cracks due to the shear punch failure. Good

agreement was obtained between the experimental and analyt~c crack

patterns that were primarily caused by the flexural action in the slab.
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Both the analytic and experimental bottom surface cracks developed

into fan-shape patterns radiating fram the center point.

The fact that these experimental slabs failed by shear punch

action does not reduce the value of the flexural analysis presented

herein when applied to the bridge overload problem. Work currently

underway (Ref. 23) substantiates former conclusions that punching

shear failures are very unlikely in bridge decks subjected to vehicu­

lar loadings.

4.1.3 Observations

From the comparisons., p're'sented in Sections 4.1.1 and 4.1.2

and the additional camp arisons contained in Ref. 43, several observa­

tions ~an be made for the developed analytic model. These observa­

tions include:

1. The inelastic flexural behavior of reinforced concrete beams

up to collapse, can be obtained (Slab No.1 of Ref. 43).

2. The inelastic flexural behavior of reinforced concrete slabs

up to collapse, can be obtained (Slab No.3 - 5, of Ref. 43

and simple-free slab of Section 4.1.1).

3. A variety of complex support conditions and loadings can be

handled.

4. An increase in the number of concrete layers used to model

the continuum improves the analytic approximation to the

actual behavior (Slab No.1 of Ref. 43).
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5. Steel reinforcing bars placed at different angles and ·depths

within the slab can be modeled as a system of uniaxially

stressed layers.

6 • In-plane boundary conditions and loadings have a pronounced

effect on the behavior of reinforced concrete slabs (Slab

Nos. 4 and 5 of Ref. 43).

7. If the primary response of the slab is due to flexure but the

failure is due to punching shear, then the method can accu­

rately predict the load~deflectionbehavior up to the initi­

ation of the shear punch failure (Slab No. 6 of Ref. 43 and

Fixed-Fixed Slab of Section 4.1.2).

8. Gross crack patterns can be simulated (Slab No.6 of Ref. 43

and Fixed-Fixed Slab of Section 4.1.2).

4.2 Reinforced and Prestressed Concrete Beam-Slab

Highway Bridge Superstructures

A comparison of experimental and analytical results will be

presented in this section to verify that the developed analytic model

accurately represents beron-slab bridge superstructures. Comparisons

for the five test cases listed below have been made:

No.1: A simply supported bridge at a skew of 75 0 with a span

length of 65' and a width of 28' having four prestressed

concrete beams (Bridge No.2 Test-2500 of Refs. 7,12).
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No.2: A simply supported bri.dge at a skew of 60° with a span

length of 50' and a width of 24' having four reinforced

concrete beams (Bridge No.3, Test-3300 of Refs. 7,12).

No.3: A simply supported right bridge with a span length of 50'

and a width of 15' having three prestressed concrete

beams (Bridge 6A of Refs. 17,18).

No.4: A simply supported right bridge with a span length of 50'

and a width of 15' having three prestressed concrete beams

(Bridge 6B of ,Refs. 17 ,.18),.

No.5: A simply' s.upporte·d ri·~t" bridge with a span length of 50'

and a width of ·15'· ·having three reinforced' concrete beams

(Bridge 8B ,of Refs. 17,18).

Three of the above bridges are included in this chapter.

They are Bridges Nos. 1, 5, and 2, an'd are referred to as Examples 1,

2, and 3, respe ctively, within context of this report. Results for

Bridge No. 3 are presented in Chapter 5 as part of the parametric

study. Detailed presentation of all bridges, i.e. No.1 through No.5

can be found in Ref. 45.

4.2.1 Example No.1

A. Geometry:

This bridge was designed using the MSHO HS-20 design loading

and'was constructed in 1963. The overload test was conducted in 1970.
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This bridge consisted of four prestressed precast AASHO Type III

I-beams composite with a concrete deck. The deck had an average thick­

ness of 7 inches. The actual bridge cross-section is shown in

Fig. 29A while the idealized cross-section used for analysis purposes

is depicted in Fig. 29B. In these figures only'half of the cross­

section is shown since the cross-section is symmetric about the longi­

tudinal centerline.

The curb portion of the superstructure was considered to be

in the same plane and of the same thickness as the slab. The roadway

of this bridge was placed on a 4-1/2 percent grade and was superele­

vated to accommodate a 4-1/2° horizontal curve. The superstructure

was built with a skew angle of 75° (90 0 designates a right bridge).

The grade and superelevation were not considered in this analysis.

A plan view of the superstructure is shown in Fig. 30A. The

length of the bridge was 65 ft. centerline of bearing to centerline of

bearing. The four beams were placed at a 'center-to-center spacing of

8.9 ft.

Loads were applied to the bridge deck by 200 kip center hole

jacks resting on bearing grills. T~e bearing grills were constructed

from two 14 in. wide flange beams 46 in. long and spaced 30 in. from

center-to-center. The bearing grills rested on concrete pads which

were poured directly on the bridge deck. These pads created a hori­

zontal loading surface and also prevented a punching shear failure

from occurringo The location of the loaded areas are indicated by the
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cross-hatched rectangles in Fig. 30A. Eight loading jacks were used

and each jack applied an equal increment of load.

Figure 30B shows the idealized superstructure. The idealized

loads are indicated by the cross-hatched areas. The actual loaded

areas positioned on line "A" in Fig. 30A have been extended to the

,centerline of the structure. Also the lengths of the loaded areas in

the transverse direction have been extended to cover the distance be-

tween the beams. These modifications of the actual loaded areas while

not necessary, permitted a discretiz'ation which results in a more ef-

ficient analysis. The: -lo-a·de;:,d:."a~~as' in Fig. 30B correspond to jacks

and are designated by the' let.ter" '''-Q'' :and 'ntnnbered from one to four.

The values of the distributed loads have been chosen in such a manner

that equal force is applied by each individual jack. The necessary

ratios of the distributed loads, Q through Q , which are inversely
1· It

proportional to the areas that 'they cover, are listed in Fig. 30B. The

loading devices are depicted in Fig. 31. The photograph clearly shows

the jacks, bearing grills, and concrete pads.

The discreti~ed superstructure is shown in Fig. 32. Thirty-

six finite elements were used in the discretization. This resulted in

a model having 49 nod~ points with a total of 245 degrees of freedom.

Node points and element nuniJerings, dimensions, and loadings are indi-

cated in the figure.

The beam discretization is shown in Fig. 33C. The finite

elements used for modeling the beam have lengths that are 'equal to

those used for the corresponding slab elements along the length of the
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bridge superstructure. The reference plane is shown as the mid-plane

of the deck slab. Figure 33A shows the actual beam cross-section while

Fig. 33B shows the idealized layered cross-section with appropriate

dimension. The trapezoidal p'ortions of the I-beam cross-section are

approximated as rectangular sections.

Prestressing steel is also modeled as a layer or set of

layers. In this example only the centerline eccentricity and total

area of the draped strand were reported. The area was 4. 792 sq. in.

per beam and the centerline eccentricity was 6.45 in. from the bottom

of the beam. An end eccentricity which produced no· tension at release

was computed and used in lieu of more precise information. One point

draping was also assumed resulting in an analytic strand profile whose

centroid varied linearly from 6.45 in. from the bottom of the cross­

section at the centerline to 10.75 in. at the ends. The prestressing

steel is shown as a dashed line in Fig. 33B. The location of the

steel is that for a cross-section at midspan. The assumed strand pro­

file is shown as the. dashed line in Fig. 33C.

The prestress tension of the strands was calculated in

Refs. 7 and 12. The computed value before release of the strands was

found to be 173.5 ksi. The calculated steel stress at the time of the

test was 127.5 ksi~ The theoretical method presented herein requires

that all losses except the initial elastic loss at transfer be de­

ducted from the prestressing force, since the elastic loss is auto­

matically calculated by the computer program. A prestress' of

140.11 ksi was specified as input to the program. This gave a final
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prestress of 133.2 ksi after the elastic loss which is within 5% of

that computed in Refs. 7 and 12.

The reinforced concrete deck slab was divided into six equal

concrete layers and four steel layers. The layering and associated

table below the figure designate the layer thickness and direction of

reinforcement with respect to the x-axis. The exact reinforcement

dimensions are given in Fig. 34. The quantities "T tt and "6 " in thes x

distribution in the slab was not specified and was selected using cur-

rent design. practices.

B. Material Propertie's ',_ ""

A "certified load-strain" curve for the prestressing strand

used in the bridge was presented in Refs. 7 and 12. This stress-

strain plot is shown as the dashed curve, designated as "B", in

Fig. 35. The idealized Ramberg-Osgood stress-strain curve for the

prestress strand is designated as "Au and is shown as the solid curve

in Fig. 35., . The arrow on the end of curve "A" implies that the analy-

tic curve will extend beyond what is shown. The values needed to de-

fine the analytic curve are: Yield Stress, f = 250 ksi; Young's
y

Modulus, E = 27,000 ksi; a Ramberg-Osgood "m" value m = 0.67 and a
s s

Ramberg-Osgood "n" value, n = 25.0.
s

The stress-strain curve for the steel reinforcement in the

slab is shown in Fig. 36. A steel with a 36 ksi yield stress and a

Young's modulus of 30,000 ksi was assumed. Ramberg-Osgood "m" and "n"
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values of o. 7 and 100.0 were chosen so that the analytic stress-strain

curve would approximate that for mild steel.

Concrete strengths were determined by performing compression

tests on cores taken from the deck slab and beams (Refs. 7,12). The

cores taken from the slab had a maximtml, minimum, and average 'compres-

sive strength of 6.28 ksi~ 4.58 ksi, and 5.50 ksi, respectively. Cores

taken from the beams showed maximum, minimum, and average compressive

strengths of 10.3 ksi, 7.5 ksi, and 8.7 ,ksi, respectively. Figs. 37

and 38 depict the uniaxial analytic Ramberg-Osgood compressive" and

tensile concrete stress-strain curves for the prestressed concrete

beams. Beam concrete properties include: cylinder strength,

f~ = 8.7 ksi; direct tensile strength, f
t

= 0.609 ksi; Young's modulus,

E = 5374 ksi; downward compressive modulus, Ed = 3000 ksi; downward
C C'

tensile modulus., Edt = 800 ksi; Ramberg-Osgood ttm" value, me = 0.8094;

Ramberg-Osgood "ntt value, n = 9.0. Slab concrete properties include:
c

f~ = 5.5 ksi, f
t

Edt = 800 ksi.

Oe44 ksi, E = 4273 ksi, Ed = 1000 ksi,
c c

c. Results:

Bridge 2 was described as being "structurally sound" b,efore

the experimental tests were conducted (Refs. 7,12). The aver~ge traf-

fic volume was approximately 2000 vehicles per day (counts made in

1968). This bridge had been in service for approximately five yearse

Load tests prior to the ultimate load test included lateral load-

distribution studies and dynamic response studies to both rolling
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loads and vibrat<:>ry loading. References 7 and 12 contain load­

deflection histories for various points on the bridge superstructure.

Deflection diagrams of the midspan cross-section for various load

levels are presented. Photographs showing the mode of failure are

also included.

Figure 39 shows the experimental and analytical load­

deflection histories for node 18. A load increment of 37.8 kips was

used in the analysis. This node point, which can be located in

Fig. 32, corresponds to the midspan of the interior beam. The experi­

mental points are plotte·d.~s. op'en .. ci.r:,cle·s"wh'ile the computed results

are shown as solid lines. Curve ·':flA"·. corresponds to an analysis which

considers the skew angle of 75 0 while curve "B" corresponds to an

analysis which does not consider the skew. The computed curves are

shown with an arrow drawn on the end to indicate that they will extend

further.

The numbers along the side of the load-deflection history

correspond to load levels at which significant response phenomena

occurs. The analytical response p~enomena can be noted by observing

the stress histories of the individual layers along with annotated

printer plots generated by the program. The numbers along the curve

correspond to the following response histogram:

1. At a load of 433 kips first crackin~ occurred in the beams.

This was experimentally determined by using pulse velocity

tests. The load at first cracking was computed by the

method presented herein to be 382 kips.
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2. At. this load level three concrete layers in the interior beam

have been predicted to crack:. Figure 33B shows that these

three concrete layers comprise 32% of the depth of the beam

and that the analytic cracked region would extend past the

center of gravity of the strand. Also at this load level a

cracked region has been predicted to occur in the first con­

crete layer of the slab. The first concrete layer has a

thickness of 1-1/6 in. (see Fig. 34) ,which corresponds to

16.5% of the slab thickness.

3. At a load of 521 kips visible cracking of the interior

girders occurred.

4. At a load of 533 kips analytic results indicate that a pre­

dicted cracked region has penetrated to'a maximum depth of

four concrete layers in the interior girder corresponding to

a depth of 53% of the total beam depth. Also a predicted

cracked region has penetrated to a maximum depth of three

concrete layers in the deck slab. This corresponds to 50%

of'the slab thickness.

5. At a load of 685 kips cracking of the bottom concrete layer

of the exterior beam is predicted.

6. At a load of 760 kips the analytic cracked region has pene­

trated through seven concrete layers in the beam. This cor­

responds to a distance of 41-1/2 in. or 92% of the beam depth.

Also at this load a predicted cracked region has progressed

to a deptl1 of 67% of the slab thickness 0
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7. At a load of 950 kips conposite action of the interior gird-,

ers with the deck slab was lost (Refs. 7,12). The vertical

stirrups crossing the interface between the girder and the

deck slab were sheared. A maximum interface shear of

0.375 ksi was predicted at a load of 950 kips. Also at this

load level predicted cracked regions have penetrated com­

pletely through the interior beams.

8. At a load of 1025 kips yielding of the prestress strand in

the interior girder was predicte'd.

9. The measured ultimate load was· 1140 kips. At this load the

interior girders were observed to fail after the formation of

diagonal tension cracks. The computed ultimate load was

1139 kips. At this load crushing of the concrete in the deck

slab was indicated by the analytic results.

10. The predicted ultimate load from Refs. 7 and 12 was 1267 kips.

Figure 40 shows a photograph of one of the prestressed con­

crete I-beams after the ultimate load had been reached. Extensive

cracking is evident in the girder at the time of failure. This is in

agreement to that predicted by the analytic model. The concrete dia­

phragms cracked at a relative early stage of loading and were found by

the experimenters to have no measurable effect on the load-deflection

behavior of the bridge superstructure (Refs. 7,12).

It is possible to obtain the load-deflection histories of

all node points used in the discretization (Fig. 32). Figure 41 shows
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the load-de~lectionhistory for node point 18, which was previously

presented in Fig. 39, plus additional node points that lie on the mid­

span node line, 4-11-18-25. As expecte'd node point 25, which is lo­

cated at the'center point of the bridge superstructure, is seen to

have the largest deflection for any given load.

Figure 42 shows the deflected shape of the midspan cross­

section for various load levels. The dashed line and solid line cor­

respond to the experimental and analytic results respectively. The

bridge superstructure is seen to be experiencing considerable dishing

in the transverse direction. This dishing was also noted in the exper­

imental test. The unsymmetrical behavior indicated by the experi­

mental results is due to geometric variables such as the skew and

superelevation of the bridge superstructure. Also undetermined mate­

rial property variations throughout the superstructure may contribute

to the unsymmetrical deflected shape of the cross-section.

Figures 43 and 44 show the progression of analytic cracked

regions on the bottom face of the deck slab and through the depth of

the interior girder, respect;ive.ly. These figures were constructed

with the aid of the stress histories and printer plots generated by

the computer program. Load levels of 420 kips, 723 kips, and 1108 kips

are r~presented. Figure 43 is a plan view of the bottom surface of the

deck slab divided into finite elements. The directions of the cracks

are indicated by the dashed lines. Cracking is considered to occur

throughout a layer of a given element and is represented symbolically.

by the single line in the figure. At a load level of 420 kips cracks
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have developed in the deck slab between the two interior beams. These

cracks have been caused by the principal stress in the direction per-­

pendicular to the given crack directions 0 At a load level of 723 kips

cracked regions have developed over'most of the bottom surface of the

deck slab. From 723 kips to 1108 kips very little increase in the

spread of the predicted cracked regions over the bottom surface is seen

to occur. Therefore at 723 kips the bottom surface crack pattern is

fully developed. Due to high· twisting moments near the simple supports

of the bridge superstructure, the cracks. are seen to occur at a larger

angle to the longitudinal di"rect:io-n~'·than·those cracks that occur near

midspan. Crack depth within·':'-the slab' can also be monitored. For the

analyst's convenience crack depth is indicated on the printer plots of

the program output.

The crack depth within the interior beam is shown in Fig. 44.

The dotted line in the figure represents the assumed prestress profile.

The predicted crack depth, designated by the cross-hatching, can be

seen to progress through the entire depth of the girder as the ulti­

mate load is approached. Experimental results corresponding to

Figs. 43 and 44 are not included in the report since the data was not

available (Refs. 7,12).

4 •2 •2 Examp Ie No. 2

A. Geometry:

This bridge was a reinforced concrete beam bridge and was

designed using loading l1B", as referred to in Refs. 17 and 18 shoWn in
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Fig. 45. The bridge was constructed in 1958 and tested in 1970.

Bridge 8B was a right bridge and had a length of 50 ft. center-to­

center of bearing. The deCk slab for the bridge had cross-sectional

dimensions of 6.5 in. by 15 ft. Three rectangular reinforced concrete

beams composite with the deck slab were used. Figures 46A, 46B, and

46C show the shape of the cross-section including dimensions and rein­

forcement details. The total weight of the bridge superstructure was

·103.3 kips, which included an average beam weight of 204.9 kips/ft., a

slab weight of 83.7 Ibs./sq •.ft. and a wood timber guard of 40 Ibs./ft.

Loads were applied to the superstructures by a moving over­

load vehicle. The overload vehicle is shown in Fig. 47. Axle spacing

of the overload vehicle is indicated in Fig. 45. The loading proce­

dure consisted of placing weights on the overload vehicle which would

then travel across the bridge usually thirty times. Figure 45 also

indicates the range of axle weights used during the overload test.

During the loading process deflections at the midspan position of each

beam were measured. The load was then increased and another set of

runs were made. This procedure was continued until the bridge super­

structure collapsed onto the safety crib.

In the AASHO Road Tests the overload moved across the bridge

rather than having the overload applied in a static manner by fixed

devices as was done for Example Bridge 1. The moment envelope pro­

duced by the passage of the overload vehicle is of interest since the

behavior of the bridge superstructure is primarily governed by the

flexure action~ A series of concentrated loads must be defined so
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that this moment envelope is approximated (Ref. 48). Figure 48 shows

the plan view for the bridge superstructure. The beam locations are

indicated in the figure. The small squares indicate where the assumed

concentrated forces are placed.

Figure 49 shows the superstructure.discretized into a series

of finite elements. The node points, element numbering, and element

dimensions are indicated in the figure. Since the structure was as­

sumed to be synunetric in geometry and loading, one-quarter of the

structure was analyzed. Fifte-en slab finite elements were used in the

discretization. The concent'rate~ n'odal 'poirtt loads are indicated by

the cross-hatched squares. The beam locations are indicated in the

finite element discretization. It should be noted that the interior

beam lies on a line of symmetry and only one-half of the cross-section

is to be included in the model.

The actual beam cross-section and corresponding layered

idealization is shown in Fig. 50. The layer dimensions and centroida!

locations of the steel layers, indicated by the dashed lines, are pre­

sented in the above figure. The top row of steel ~einforcing bars had

an area of 2.66 sq. in. while the bottom row had an area of

4.57 sq. in.

Layering for the deck slab is indicated in Fig. 51. Six

equal concrete layers and four steel layers were used. The table be­

low the figure indicates the direction, thickness, and bar size/

spacing for the various reinforcing bar layers.
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B. Material Properties:

Figure 52 shows the idealized and experimental stress-strain

curves for the mdld steel reinforcement. Close agreement between the

experimental and the idealized curves is evident. Material properties

for the beam and slab steel include: f =50.4 ksi, E = 28800 ksi,
y s

m = 0.7, n = 100.0. An average yield strength of 50.4 ksi was
s s

specified for the reinforcing bars placed in the concrete beams and

slab. The ,range of yield strengths for the various sizes of reinforc-

ing bars used in beams and slab was considered to be marginal. Thus

no differentiation of the yield strengths was made.

Figures 53 and 54 show ,the idealized beam concrete campres-

sive and tensile stress-strain curves, respectively. Slab and beam

concrete material properties include: ft = 4.88 ksi, f = 0.40 ksi,
c t

Ec = 5700., Edc = 1800. ksi, Edt = 800. ksi, ID
C

= 0.77, n c = 9.0.

c. Results:

The AASHO Road Tests included (Ref 18): (1) a regular test

traffic program of 500,000 trips, (2) dynamic load tests, and (3) in-

creasing load tests, i.e. overload tests. Therefore, before the in-

creasing load tests, the bridge was subjected to a variety of loading

programs. The testing programs prior to overloading produced struc~

tural changes within the bridge superstructure. Tension cracks were

found in all beams of the bridge immediately after removal of the

fonms and extensive tensile cracking in the reinforced concrete beams

was observed following the regular test traffic program. The maximum
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crack width exceeded 0.01 in. Cracks were spaced between 6 in. and

8 in. Figure 55A shows cracks which were observed in the field after

the removal of the forms. Analytic crack regions were formed after

the dead load solution was performed by the computer. These regions

designated by the cross-hatchi~g are shown in Fig. 55B. The analytic

cracked region shows very good overall agreement to those actually mea­

sured. Figure sse indicates the extent of cracking measured after the

regular test traffic. Cracks' are seen to have penetrated into the

deck slab.

T1:J;e bridge f.aile·d itl. ,a ..f,lexu:re mode. Reference 18 presents

the overload behavior of -the br~'dge in terms of displacement history

plots. The plots show the maximum static moment at midspan caused by

the overload truck versus the average displacement at midspan of the

three beams. The maximum static moment is computed from the known

axle weights and spacings. The deflections reported on the plots were

caused by the overload vehicle. Usually the overload vehicle made

thirty trips with the same load. The load was then increased and the

vehicle would make another thirty trips. If thirty trips were not

made, the number of trips would then be indicated and circled on the

moment-displacement history plots.

Figure 56 shows the midspan moment-displacement history for

the bridge. The experimental and analytic results are indicated by

the dashed and solid lines, respectively. A load increment of

140 kip-ft. was used in the analysis. Five vehicle load increments

were used in the experinental test. The vehicle speed during the first
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124 trips ranged from 30 to 35 mph. During the last three trips a

speed of 15 mph was maintained. The dots on the experimental curve

indicate load 'levels where permanent changes in the structure did not

occur. The horizontal portions of the experimentci"l load-deflection

history indicate that permanent changes have occurred in the bridge

superstructure. These permanent changes reflect material nonlinear

phenomena such as cracking or crushing of the concrete and yielding

of the steel. Only the live load moment caused by the truck 'is re­

ported in Fig. 56. The total ~oment at midspan can be obtained by add­

ing a dead load moment of 653 kips-ft. to the moment> :values used in

Fig. 56 (Ref. 18). Dur''ing the 'seventh trip of the last load increment,

crushing of the top portion of the deck slab was observed.

The load levels numbered in Fig. 56 have the following sig­

nificance in a response histogram:

1. A maximum midspan moment of ,503 kip-ft. was caused by the

regular test vehicle.

5. At a moment level of 1171 kip-ft. first yielding of the rein­

forcing steel placed in the beams was predicted in ~f. 18.

6. At a moment level of 1205 kip-ft. first yielding in the steel

reinforcing was predicted, by, the method presented in this

report.

7. At a moment level of 1390 kip-ft. first yielding of the

reinforcing steel was measured.
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8. An ultimate moment capacity of 1457 kips-ft. was predicted in

Ref. 18.

9. The ultimate moment capacity was measured at 1550 kips-ft.

10. The computed ultimate moment capacity using the presented

method was found to be 1680 kips-ft.

The analytic model and the experimental test both predicted

cr~shing of the deck slab at the ultimate load. Figure 57A shows the

pridge superstructure after failure. A photograph showing the rein­

forced concrete beams of the bridge at- failure was not presented in

Ref. 18. But instead a phot·o·graph· of a beam of an "identical" bridge

(Bridge 8A of Refs. 17 and 18) was presented. Bridges 8A and 8B

showed very similar structural response. Therefore this photograph

will be used in lieu of a photograph of the reported bridge example.

Fig. 57B shows the crack depth in one of the reinforced concrete bea~

of Bridge 8A. Crack depth was predicted to penetrate through the re­

inforced concrete beams and into the deck slab as observed in the

experimental test.

4.2.3 Example No.3

A. Geome try :

This bridge will be presented as a last example and will be

used to primarily demonstrate the effect of skew on the analysis.

Figures 58A and 58B show the actual and idealized cross-sections, re­

spectively. As can be noted, the curb section is included in the

analysis.
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Figures 59A and 59B show the actual and idealized plan views.

The superstructure was built with a .60 0 skew. Two analyses will be

presented: one considering the bridge as an "equivalent" right bridge

and one considering the bridge as skewed. Figure 59B gives the fini te

element discretization employed in the analysis. The cross-hatched

squares show where the static loading devices were placed. These de­

vices are similar to those described for Example No.1 in Section 4.2.1.

The idealized loads are indicated in Fig. 59B by the solid dots which

.represent concentrated vertical forces. Experimental and analytical

load-displace1llent results are given for the positons marked with an

"X" in Fig. 59B.

Figures 60A and 60B show the actual and idealized beam cross­

sections employed in the analysis. Eight concrete layers and''"' three

steel layers which are indicated by the dashed lines, were used. As

can be seen. the curb and parapet have been included in the modeling

of the exterior beams and are assumed to be fully effective.

The slab layering is shown in Fig. 61. Four concrete and

four steel layers were used. The table below the figure indicates the

assumed size and spacing of the reinforcement in the slab.

It should be noted that the following assumptions were made

due to the incompleteness of the information on the bridge (Refs. 7~12):

1. The exact distribution of reinforcing steel in the beam was

not given and therefore was assumed.

2. The amount and distribution of reinforcing steel in the slab

was assumed ..
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3. The curb and parapet were assumed to act in a fully composite

manner with the rest of the sup~rstructure. However, partial

composite action may actually exist.

4. The effect of the diaphragms were neglected in the analysis.

B. Material Properties:

Figure 62 shows the analytic and experimental stress-strain

curves for the slab and beam steel. The experimental curve for steel

was approximated by specifying the ."fo"llowing ·p'roperties: f = 65 ksi,
y

E = 2900'0 ksi, m" = 0.15, n = $';.0., 'Be.am and slab concrete was ap-s s, s

proximated by specifying the following properties: f t = 6.5 ksi,
c

f
t

= 0.67 ksi, E = 4870 ksi, m = 0.67, n = 9.0, Ed = 3000 ksi,
c c c c

Edt = 800 ksi.

c. Results:

Results for the positions marked with an "X" in Fig. 59 are

given by: (1) Fig. 63 which shows the load-deflection history for the

midspan of the exterior beam, and (2) Fig. 64 which shows the load-

deflection history for the centerpoint of the superstructure. The ex-

perimental results are indicated by the open cir'cles while the analytic

results are indicated by curves marked with an "s" (skew) and an tiNS"

(no skew). A load step of 90.2 kips was used in the analysis. Several

key load levels at which significant structural phenoDena occurred are

lis ted below:
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1. Load causing first cracking in the slab:

skew

no skew

- 383 kips,

- 337 kips

2. Load causing first yield (f =40 ksi)
y

experiment - 660 kips (measured from load-deflection

history)

skew - 834 kips

no skew - 758 kips

computed - 759 kips (Refs. 7,12)

3. Ul.timate load

experiment - 1580 kips

skew - 1555 kips

no skew - 1350 kips

computed - 1465 kips (Refs. 7,12)

As expected, due to the assumptions made for the analysis

{see Section 4.2.3, part A) differences between the computer and

experimental load-deflection histories occurred. A significant im-

provement in the analytic load-deflection history was obtained by

including the appropriate skew angle (curve "s" compared to curve "NS"

in Figs. 63 and 64). Also the analytic results indicate that the solu-

tion which does not include the skew will result in a more flexible

superstructure as compared to that which includes the skew.
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4.2.4 Observations

From the comparisons presented in Sections 4.2.1, 4.2.2,

4.2.3 and the additional comparisons contained in Ref. 45 several

observations can b'e made for the developed analytic model. These

observations include:

1. Satisfactory results were obtained for both prestressed and

reinforced concrete bridges.

2. Superstructures built with a skew can be considered.

3. Analytic r~'sults obtained us.ing. the correct skew angle give

an upperbotmd to ·an .ana.lysis that ne'glects the skew where

dimensions are projected onto a Cartesian coordinate system.

4. Superstructures with a slight superelevation can be

considered.

5. Superstructures subjected to previous loadings, which have

caused "minor" damage, can be considered.

6. Even though the analysis is based on static loading, the

traverse of the vehicle can be approximated as the static

loading which produces the moment envelope or which produces

the maximum static moment diagram.

7. The incremental solution mode gives an upperbound to the

incremental-iterative solution mode.

8. The nonlinear response of the individual beams subject to

dead loads and/or prestress can be considered.
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9. Th~ nonlinear response of the entire bridge superstructure

subjected to dead loads can be considered.

10. The elastic-live load response can be obtained.

11. The inelastic-live load response can be obtained.

12. The progression of cracking and crushing of the concrete and

yielding of the steel can be monitored throughout the entire

bridge superstructure.

13. Transverse shear in the beam caused by flexural stresses can

be determined. Also the- interfacial shear between the beam

and the deck slab can be approximated.

14. The ultimate capacity of the bridge superstructure can be

predicted.
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5 • PARAMETRIC STUDY

5.1 Introduction

This chapter describes a limdted parametric study conducted

using the developed analysis scheme and the relevant computer program.

The analytic models used in this study are based on Bridge 6A.

Bridge 6A was subjected to an overload as part of the AASHO Road Test

(Refs. 17,18). Three areas were investigated:

1. Th'e effect of load idealization

2. The effect of material p'-roperties

3. The effect of load inc·reme'nt size and solution method

The study on the effect of load idealization involves two

analyses: {'l) the moment :enve~ope, caused by the moving vehicle is

approximated using nodal point forces, and (2) where the maximum

static moment diagram is approximated by nodal p',oint forces, i.e.

positioning the vehicle at lllidspan to induce the maximum moment condi­

tion. This study will provide the analyst with a comparison between

results using the simplified maximum moment diagram rather than the

computationally involved mment envelope.

The study on the effect of material properties involves two

analyses: (1) default values are employed, and (2) the reported test

values are employed. Def ault values are defined as the acceptable

approximations for material characteristics. These values are based

on various experimental tests and code recommendations. The developed
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computer program automatically assigns these values unless more pre­

cise information is provided (Ref. 46). This study is of importance

to the analyst since values for the actual material properties may be

inconclusive due to the fact that: (1) the experimental values were

not reported, (2) statistical evaluation is unreliable due to the

excessive scatter or the limited number of experimental values, or

(3) experimental values are inconsistent with past experience. If

values for the material properties are inconclusive then the analyst

may choose to use the default values. The default values are computed

from previously reported formulae that are based on past experimental

results. This study will provide the analyst with a comparison

between results based on the default values and results based on the

reported test values.

The study on the effect of load increment size and solution

method involves three analyses which employs: (1) the incremental

solution method using a fixed load increment of 150 kip-ft., (2) the

incremental solution method using a fixed load increment of SO kip-ft.,

and (3) the incremental-iterative solution method using a variable

load increment. This study is presented since the analyst can select

one of two solution methods (see Section 3.9) which have associated

advantages and disadvantages and may affect the results considerably.

The analyses are compared to the experimental results. From this com­

parison the effect of the size of the fixed load increment and the

effect of the particular solution method used is illustratedo
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It should be noted that this chapter presents a limited para­

metric study. Results of an overload analysis depend on numerous para­

meters including bridge geometry, boundary conditions, type of vehicle,

load placement, material properties, and solution method. Also just

as important, results depend on how the actual bridge and load config­

urations are idealized so as to be compatible with the finite elenent

method 'of analysis. Furthermore, the beam and deck. slab exhibit" com­

plex interactions depending on the aforementioned parameters. There­

fore a quantitative extension of the results of this chapter to des­

cribe the overload behavior·Q'f other brid,ge and load configurations

would be difficult if :not inlposs,ibl:e. ' .. Thus this study is of value to

the analyst in a qualitative rather "t'han a quantative manner.

5.2 The Model

Figures 48 and 65 show the plan view and the cross-section

for the bridge. The bridge was simply supported and had a length of

50 ft. The ,deck. slab had a thickness of 6.5 in. and a width of 15 ft.

Transverse and longitudinal reinforcement in the deck slab consisted

of 115 bars at 8 in. and 114 bars at' 20 in., respectively. A prestress

of 165 ksi was prescribed as input to the computer program.

The compressive strength of the concrete and the yield

strength of the steel were the only material properties specified as

input to the program. The other parameters needed to define the mate­

rial behavior were automatically assigned default values by the compu­

ter program. Assumptions concerning the default values are presented
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in Ref. 46.. The following material properties were used in the

analysis:

For the slab concrete;

ftc = 5.48 ksi (specified), f
t

= 0.438 ksi (Refs. 41,46),

E = 4265.37 ksi (ACI Formula, Ref. 65, Ref. 46),c

Edc = 1000.00 ksi (Refs. 43,46), Edt = 800.0 ksi (Refs. 43,46

For the slab steel;

f = 50.4 ksi (specified), E = 29000.0 ksi (assumed),
y . s

m = 0.70 (Refse 43,46), n = 100.0 (Refs. 43,46)s s

For the beam concrete;

f~ = 9.11 ksi (specified), f
t

= 0.638 ksi (Refs. 41,40),

E = 5499.52 ksi (ACI Formula, Ref. 65, Ref. 46),c

Edc = 3000.0 ksi (Refs. 27,46), Edt = 800. ksi (Refs. 27,46),

m = 0.828 (Refs. 27,40), n = 9.0 (Refs. 27,40)
c c

For the beam steel;

f = 240. ksi (specified), E = 27000. ksi (Ref. 46),
y s

m = 0.67 (Ref. 46), n = 25.0 (Ref. 46)s s

Bridge 6A was subjected to a moving overload vehicle. The vehicle

made successive runs across the superstructure with increasing loads'

until the structure collapsed. The small squares shown in Fig. 48 re-

present concentrated vertical forces of equal magnitude. These nodal

point forces are used to simulate the moment envelope caused by the

overload vehicle.
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The deck slab was divided into six equal concrete layers and

four steel layers through the depth. The beams were divided into

eight concrete layers and two steel (prestressing steel) layers. The

finite element representation of the superstructure is shown in

Fig. 49. Symmetry about the longitudinal and transverse centerlines is

enforced. Thus only a quarter of the superstructure need be analyzed.

5.3 Effect of Load Idealization

Since the overload vehicle ,moves over the birdge, an infi­

nite number of static loa-d corrfi-gura-tions are applied to the super­

structure. The overload vehicle- p.rimarily induced longitudinal bend­

ing in the superstructure of Bridge 6A. In the general case the slab

may be subjected .to both longitudinal and transverse bending while the

beams are primarily subjec-ted to longitudinal bending. Construction

of a static load configuration to simulate the moment envelope and

thus to obtain the maximum possible state of stress at every point in

both the slab and the beams is very difficult if not impossible to

achieve. Therefore, a vehicular loading that will primarily produce

longitudinal bending in both the deck slab and beams is examined. The

idealized load configuration used in the analysis approximates the mo­

ment envelope for the longitudinal direction only. This moment enve­

lope is produced as the vehicle traverses the superstructure and con­

tains the maximum lOOment values.

From a.user,'s standpoint, nodal point loads that approximate

the maximum static moment diagram may be easier to determine than
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nodal point loads that approximate the moment envelope produced by the

moving vehicle. In order to ascertain if substantial error in the

general overload behavior of the bridge superstructure will result if

the more simplified proced~re in determing the nodal point loads is

chosen, the bridge superstructure was analyzed with the following load

configurations:

Curves A and B in Fig. 66 depict moment diagrams which were produced

by loadings A and B (each normalized to a value of unity), respec­

tively. Curve C in Fig. 66 represents the actual monent envelope

caused by the overload vehicle used in the experimental test on

Bridge 6A. Curve C is also normalized to unity. It can be seen that

points On the moment envelope (curves B and C lie above the static mo­

ment diagram. (curve A). Thus it is expected that for the same midspan

moment, loading B will produce higher stress states and corresponcl-:­

ingly a larger "damaged" area than loading A.

Figure 67 shows the load-deflection history plots for

loading A and B. The inidspan moment values were obtained by taking

moments about the midspan of the superstructure 0 The displacement

corresponds to the displacement of node 24 shown in Fig. 49. As

expected curve B falls below curve A indicating that loading B is a
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more severe load configuration. The small deviation between the two

curves starts at approximately 1000 kip-ft. This deviation can be re­

lated to the different rates of cracking in the beams for the two load­

ings. Figure 68 shows the number of cracked layers in the slab and in

the beams for loadings A and B. The difference between the two curves

is highlighted by the cross-hatching in the figure. As can be seen

the difference in the total number of cracked layers becomes signifi­

cant at approximately 1000 kip-ft. which corresponds to that mentioned

previously for the load-deflection histories.

From a practic·al. point"::of view the difference between the

load-deflection histories can be- considered negligible. Furthermore,

at 1000 kip-ft. cracking has penetrated through 80% of the depth of

the beam. This condition would never be allowed from the service­

ability standpoint. Thus the deviation after a load level of

1000 kip-ft. would never be realized. Therefore loading A can be used

in the overload analysis rather than the more computationally involved

loading B.

5.4 Effect of Material Properties

Quite often the analyst will have values for only the com­

pressive strength of the concrete and yield strength of the steel.

Knowledge about the remaining material properties' needed for the anal­

ysis may be inconclusive or totally lacking. Therefore, acceptable

default values for concrete or for steel are automatically assigned
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when desir~d by the analyst (Ref. 46). These values are determined

using only the prescribed compressive strength or yield strength.

To estimate the error involved when using the default values

rather than the actual material properties, analyses were obtained for:

1. Material properties based on the default values reported in

Section 5.2 (Ref. 46)

2. Material properties based on test values reported in

Refs. 17 and 18.

In the following figures, curves designated by the letter "n" corres-

pond to those obtained using the default values listed under

Section 5.2. Curves designated by the letter "Alf correspond to those

obtained using the actual properties reported in Refs. 17 an4 18. The

actual properties include:

For the slab concrete;

ft = 5. 48 ksi, f
t

= 0.438 ksi (assumed), E = 5700 kai
c c

For the slab steel;

f = 50.4 ksi, E = 28800 ksi, m = O. 70 (CF) ,
Y s s

n = 100.0 (CF)
s

For the beam concrete;

ft = 9.11 ksi, f
t

O. 71 ksi, E = 5900 ksi, m 0.772 (CF) ,
c c c

n = 9.0 (CF)
c
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For the beam steel;

f = 240 ksi, E = 27600 ksi, m = 0.75 (CF),
Y s s

Us = 22.829 (CF)

Values designated by "CF" have been determined by curve fitting the

analytic stress-strain curves to the experinental stress-strain curves

reported in Refs. 17 and 18. Figure 69 shows the stress-strain curves

for the mild steel reinforcing, the prestressing steel, the beam con-

crete in c<;lmpression, and the beam concrete in tension.

Figure 70 s-hows the ,re·~ultiltg.lo~l.'d-de·flectionhistories

using the default values (D) and· the', rep,'orted values (A). The,/differ-

ence between the two load~deflecti'on curves shown in Fig. 70 is about

4% for both the ultimate and the first cracking loads~ The difference

between an analysis using the automatically selected default values

rather than experimental values, which at best are only estimates, can

be considered negligible within practical engineering limits.

5.5 Effect of Load Incre111eut Size and Solution Method

.As mentioned in Section 3.9 the user can choose one of two

methods used in the overload analysis procedure: (1) the incremental

method, or (2) the incremental-iterative method. In the incremental-

iterative method load increments are automatically scaled so as to

allow only one layer at a time to fail. Iterations within each load

step take place so as to obtain a solution which approximately satis-

fies convergence of the dispiacement field. In the incremental method
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fixed load increments are applied to the structure. More than one

layer at a time may fail and iterations are not performed. Each suc­

cessive solution uses stiffness coefficients based on a stress state

of the previous load step. If the load increment is too la.rge signi­

ficant error in the solution may result.

Figure 71 presents results used to evaluate the effect of

the load increment size on the overload behavior. These curves corre­

spond to analyses for:

1. The incremental-iterative method (curve B in Fig. 71)

2. The incremental method using a fixed moment increment of

50 kip-ft. (curve C in Fig. 71)

3. The incremental method using a fixed moment increment of

150 kip-ft. (curve D in Fig. 71)

Curve A in Fig. 71 represents the experimental load-deflection.curve

presented in Ref. 18. The load-deflection curves generated using the

incremental method, i.e. curves C and D, tend toward the load­

deflection curve generated using the incremental-iterative method, i.e.

curve B, as the size of the fixed load increment is reduced. The mea­

sured material properties from Refs. 17 and 18, which are presented in

Section 5.4, were used in the generation of curves B, C, and D~

Care and judgment must be used when specifying the fixed

load increment. It has been found that for prestressed superstruc­

tures a fixed load increment size equal to about 10% of the load at

first cracking is acceptable. When using the incremental-iterative
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method the load increment size is automatically selected and the

analyst need not be concerned with its value.

5.6 Observations

Several observations can be made with respect to the para­

metric study:

1. The static load configur~tion which simulates the overload

vehicle need only produce a moment diagram which approximates

the shape of the true moment envelope near the midspan region.

2. The shape of .. the lo-ad-de.;flection :curve for prestressed con­

crete highway bridge superstructures is particularly sensi­

tive to the tensile strength of the concrete and to the shape

of the stress-strain curve for the prestress strand.

3. Acceptable results within practical engineering limits can be

obtained for the overload behavior by knowing the compressive

strength of the concrete and the yield strength of the steel.

Additional material properties needed in the analysis are

automatically assigned values that are consistent with ob­

served experimental behavior of steel or concrete.

4. The incremental lDethod which employs a fixed load increment

uses substantially less computer tine than the incremental­

iterative method which employs a variable sized load incre~

mente The incremental method of solution can be used to, gen­

erate the overload behavior of highway bridge superstructures

if a sufficiently small load step is specified by the analyst.
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6. SUMMARY AND CONCLUSIONS

The research contained herein describes a method for the

overload analysis of beam-slab type highway br~dge superstructures.

Reinforced concrete slabs or beams can be analyzed as a special case

of the highway bridge superstructure. Both right bridges, and bridges

built with a skew can be analyzed. The IEthod, gives a solution for

the flexural response of the structure including displacements,

strains, stresses, and regions of cracking and crushing of the con­

crete and yielding of the steel. Serviceability criteria at various

load levels can also ·be evaluated (Ref. 46). The solution is appli­

cable up to the flexural collapse of the bridge superstructure.

The finite element method was used as the basic modeling

technique. The deck slab and beams are discretized into a series of

finite elements interconnected at the node points. These finite ele­

ments are further divided into a series of layers through the depth.

The elements and layers provide a means to monitor the spread of

cracking and crushing of the concrete and yielding of the steel

throughout the bridge superstructure. Also this layering enables the

consideration of material variations through the depth of the finite

element and of nonlinearities inherent in the material stress-strain

curves. The following material nonlinearities have been considered in

the analysis:

1. Nonlinear and linear stress-strain behavior of, slab and beam

concrete
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2. Nonlinear and linear stress-strain behavior of prestressing

steel

3. Elastic-plastic behavior of mild steel reinforcing bars

4. Cracking and crushing of the slab and beam concrete

5. Yielding of the steel

The nonlinearities have been incorporated into the analysis scheme via:

1. Nonlinear/linear uni,axial Ramberg-Osgood stress.-strain laws

for the beam concrete

2. Nonlinear uniaxial,:'Ramb~rg-'Osgoo4'stress-strain law-s for the

beam and sl'ab steel,

3. Nonlinear/linear biaxial stress-strain laws for the slab

c·oncrete

4. Biaxial and uniaxial failure criteria for the slab and beam

conere te, .respe ctive ly

The overload solution is obtained by using a piece-wise

linear tangent stiffness solution technique in which solutions are ob­

tained for each load increment up to collapse. The total solution for

a particular load level is obtained by adding up the previous solution

increments. Two different tangent stiffness solution techniques have

been developed: the incremental-iterative method and the incremental

method. In the incremental-iterative method iterations and updating

of the tangent stiffness matrix take place within each load step until

approximate convergence of the solution is obtained. In the
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incremental method iterations are not performed and a stiffness matrix

based on the previous solution is used. The major differ,ences between

the two methods are sU1IIDlarized below:

Iterations are performed
for each load step

Automatic selection of
the optimum load step

Load step is variable

Approximate convergence
of the solution

Failure criteria may be
violated and layers, may
overstress

Solution time is reduced

Incremental­
Iterative Method

Yes

Yes

Yes

Yes

No

No

Incremental
Method

No

No

No

No

Yes

Yes

The predicted response of five bridges and seven reinforced

concrete slabs have been compared with corresponding experimental re-

suIts (Refs. 43 ,45) 0 Four of the bridges, which includes two right

bridges and two skewed bridges, and two of the slabs have been pre-

sented in this study. In all cases adequate agreement was obtained

when the primary behavior mode was flexural. Experimental and' analyti-

cal load-deflection curves were compared for all problems. Crack pat-

terns and strain histories were compared where available. The beam

model had been previously developed and was not part of this disserta-

tion. Numerous comparisons between the analytic and exper,imental

results for the beam model can be found in Refs. 27 and 32.
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The a~sumptions in Sections 1.4 and 3.2 are adequate for the

inelastic analysis of beam-slab type highway bri.dges subjected to

vehicular overloading. It will be emphasized that:

1. Flexural behavior is adequate to describe the overload re­

sponse for the cases pre'sented herein

2. Dynamic response phenomena need not be considered for the

cases presented herein

3. Shear punch, local buckling, and lateral torsional buckling

need not b'e cansi-de red ·for th'e cas-es presented herein

The following conclusions can be made:

1. Concerning beams (From' Refs. 27, 32)

A. The layer ~idealizations for the concrete, reinforcing

bars, and prestressing steel are adequate.

B. The uniaxial Ramberg-Osgood stress-strain laws for con­

crete, mild steel, and, prestressing steel are adequate

c. The elastic/inelastic response due to dead loads and/or

prestress can be obtained.

D. The inelastic flexural behavior up to the collapse of re­

inforced or prestressed concrete beams or of steel beams

can be obtained (due regard to ,the assumptions of

Sections 1.4 and 3.2 must be made).

-139-



E. The progression of cracking and crushi:ng of the con­

crete and yielding of the steel can be monitored through­

out the beam.

F. The downward portion of the stress-strain curve for con­

crete can be used to produce a globally adequate redis­

tribution of stress when modeling the effect of cracking

and crushing in alone dimensional space.

G. Transverse shear stresses in the beam caused by flexure

can be de te nnined •

2. Concerning Slabs (From Ref·~ 431

A. The layer idealizations for the reinforcing bars and con­

crete are adequate.

B. The uniaxial Ramberg-Osgood stress-strain law is adequate

for the steel reinforcing bars.

c. The biaxial stress-strain law for concrete is an adequate

idealization .

D. The elastic/inelastic dead load response can be obtained.

E. The inelastic flexural behavior up to collapse of rein­

forced concrete slabs can be obtained (due regard to the

assumptions of Sections 1.4 and 3.2 must be made).

F. The progression of cracking and crushing of the concrete

and yielding of the steel can be DOnitored throughout

the slab.
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G. The downward portion of the stress-strain curve for con~

crete can be used to produce a globally adequate redis­

tribution of stress when modeling the effects of cracking

and crushing in a two dimensional space.

3. Concerning beam-slab highway bridge superstructuresCFrom Ref~45}

A. The elastic/inelastic response of bridge superstruc­

tures subjected to dead loads can be obtained.

B. The inelastic flexural. behavior up to collapse of rein­

forced or p.restresse·d. ~oncrete beam-slab highway bridge

superstructures built with or without a skew can be pre­

dicted (due regard to the assumptions of Sections 1.4

and 3.2 must be made_}

c. The progression of cracking and crushing of the concrete

and yielding of the steel can be monitored throughout

the entire bridge superstructure.

D. The downward portion of the stress-strain curve for con­

crete can be used to produce a globally adequate redis­

tribut.ion of stress when modeling effects of cracking

and crushing.

E. The interfacial shear between the beam and. the deck slab

can be approximated.
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F. The overload behavior of the supers tructure can be com­

pared with the serviceability criteria to define a con­

dition of "failure".
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7. FIGURES
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Fig. 31 Photograph of the Loading Devices (through the
courtesy of The University of Tennessee)
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" Fig. 37' E~~le No. 1 (Bridge 2): Analytic Stress-Strain
C~'rve, for the Beam Concrete in Compression
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Fig. 40 Photograph of One of the Prestressed Concrete I-Beams
of Briage 2 at Collapse (through the courtesy of The

University of Ten~essee)
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Fig. 47
f

Photograph of the, Overload -Vehicle, (through the
courtesy of the Transportation Research Board)

-190-



l- 50· _I

2 ..331

8m ..

I
I-'
\0

'I

8m.

D-

o

o

o

o

.0

o

o

.0

[J

o

Cl

4.6'7'1,

4.67'

8m" [J 0 . DID n Ll I I

-&3.33" _

'Fig. 48 Example No. 2 (Bridge 8B): Idealized Loading and Plan View



-Ck.
~20-l1 52 11 52u 5211

1 24"
...

1 I ---I--
8m. - - 23ht3 "A+--rt&.19 20 21 22-

(0 @ @ @

13

0
14 15

0
16 17

0 0
[7 8m.I

8 9---'- IOa-r II...- -
\.0
tv

0) I ~ 0 1 0 1
I 0) 0

2-1 -31 41 5 6

Fig. 49 Ex~~e N~. 2 (Bridge 8B): Fi:nite Element Discretization and Loading



.;~.

- ~ .+

( B)

. ~ .:{

I--> - - - - "--

H - _.- _.:-
2.75 11

J;5.62II

3.5
11

16.5 11

.. 11.5 11

1 2.75~I I .' • •
J-l -\0 2.63 11

e If
w
J

",~·-(Al:

Fi.g. 59' E~§imple No.2 (Bridge 8B):

."I, ~ j



" ,

1~437"

LA.Y~a
e THICKNESS SIZE/SPACINGx

ii:

'. A ·90~. ' 0.0379" 115 @ 8"

B 90° 0.0379" 115 '@ 8"

C 0,0 0.0143" -'11'4 @ 14"

D 0°' 0.0143" 114 @ 14"

"

Firg. 51 ~xample Wo.. 2 (Bridge 8B): Slab' Layering

-194- '



en,
.en
w·
0::,
~,en-

- ~ - ,- - - ..,. - --

- - - Experimental

------ Ideal ized

4000 8000 . 12'000

M1CRO'STR!AIN ,,': ,

Fig. 52 Example No. 2 (Bridge 8B): Stress-Strain Curve
for the Mild Steel Reinforcing

-195-'



I
J-l
\0
0\
j

6-

4

STRESS·

ksi

2

0- 600 1200', 1800,

MICROSTRAIN

2400

Fig. 53 Example No. 2 (Bridge 8B): Stress-Strain Curve­
for the Beam Concrete- in Compr~ssion



0.8

...........
U) 0.6
~

~

en
(f)
w

"a:: '
I- 0.4r(f)

0.2

120' ",18'0
MICRO'STRAIN

'240

. .
Fig. 54 Example No. 2 (Bridge BB): Stress-Strain CUl;ve

,for the,. Beam Concrete 'in Tension

~lg7-



,September 1958

.l.t.J)~Cl.JJ~I·1 ((t\~(~ b/~l!l.rt
10 15' 20 25

(A) Measured

... .
o

. . .
A •
S

Removal of Forms MI05PAN~

. Removal of Forms'

-Node Point em Cracked Region
(B) Predicted

"'anuary, 1961 End of Regular Test Traffic

25201510

(C) Measured

-198-

5

Fig~ 55 Example No.2 (Bridge BB): Crack Patte~ns

in the Exterior Beam

/Z/ I j j /) I j1\( LID (Iv\ LJ I) l}l JllA·· · · Ii... • • ... .4 • • • • .. .'. • • .. •.• • • ...
o



1412

--------- ......
(j)

- - - Experiment :

---Computed

6 8 10
D-ISPLACE-MEN-T (in.)

4

...

2

10

9 ..

----I'

7 8

5 6

(f)

0-
~..
-e-

.::: 100
I-
Z
W
I~

~o
\0

I :E 500

1500
.........

Fig. 56 Example No. 2 (Bridge 8B): Load-Deflection History



Fig. 57A Photograph of the Bridge BB After Collapse
(through the courte.sy of the Transportation

Research Board)

Fig'. 57B Photograph' of One of the Reinforced Concrete Beams
of Bridge 8A After Failure (through the courtesy

of the Transportation Research Board)
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Fig. 61 Example No. 3 (Bridge '3): Slab Layering
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9. NOMENCLATURE

Notes: Subscripts u and ep refer to in-plane and bending, respectively.

Subscripts uu, u¢, and <txt> refer to in-plane, coupling, and

bending, respectively.

Primes, " refer to quantities expressed in the skew coordi-

nate sys tem.

Bars, - , refer to the non-dimensionalized coordinate system.

Scalars

A,B,C,D = Curve parameters

A. = Layer area
l.

AREA = In-plane area of an element

A = Reinforcing bar area for the slabs

(a,h) = Slab element half lengths

b = Reinforcing bar spacing for the slabs

D ,D ,D ,
11 12 13

D ,D ,D
22 23 33

E
c

Ed
c

= Components of the rigidity matrices where subscripts uu

refers to in-plane, u¢ refers to coupling, and ~¢

refers to bending

= Initial tangent modulus in uniaxial loading for

concrete

= Downward slope of the concrete stress-strain curve for

compression
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E.­
1

E
P

Es

F.
1.

f'
c

f t -4"
c

f
Y

I,K

I,J,K,L

K ••
J.J

e
k ..

1.J

= Downward slope of the concrete stress-strain curve for

tension

= Initial modulus of elasticity for the Ramberg-Osgood

stress-strain relation

= Tangent ~dulus at the peak stresss

= Initial modulus of elasticity for steel

= Tangent moduli for the two principal stress directions

= Tangent moduli for the principal stress directions

employed in formulating [D]

= Term of the assembled force vector-

= Term of the element force vector

= Representative uniaxial compressive cylinder strength

for concrete

= 4" x 4" x 4" cube strength

= Direct tensile strength for concrete

= Yield strength for steel

= Nodal p-oints for the beam element

= Nodal points for the. slab element

= Moment of inertia for layer i about its centroid

= Term of the assembled stiffness matrix

= Term of the element stiffness matrix
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K ,K ,K ,
1 2 a

K ,K ,K
456

L

m

m
c

m
s

n

n c

n
s

Q

.R

T.
1

T
s

U(x,y) ,Ut

U(x)

= Component matrices of "the stiffness matrix

= Total number of layers

= Beam element length

:::; A dimensionless conatant used in the Ramberg-Osgood

stress-strain relation

= Ramberg-Osgood "m" parameter for concrete

= Ramberg-Osgood "m'.' parameter for steel

= A dimensionless constant used in the Ramberg-Osgood

stress-strain relation

= Ramberg-Osgood "n" parameter for concrete

:;: Ramberg-Osgood "n" parameter for steel

= Distributed load

= Maximum ratio of the concrete strength in biaxial com-

pression to uniaxial compression

= Beam layer (i) width, in t~~ y-direetion

=Equivalent thickness of a -reinforcing bar layer for

the slab

= In-plane displacement polrn0mia1 in the x-dire etion for

the slab

= In-plane displacement polynomial in the x-direction for

the beam
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uz

V(x,y) ,V'

v
z

v,v'

W(x,y),W'

W(x)

(x,y)

(x' ,y')

(x,y)

~Xn'Yn)'

(xn,Yn)

z

ct
1

a,
2

<l.
J

= In-plane displacement in the x-direction at depth Z

= In-plane displacement polynomial in the y-direction for

the slab

= In-plane displacement in the y-direction at depth z

= Volume of the elenent

= Vertical displacement polynomial for the slab

= Vertical displacement polynomial for the beam

= Local Cartesian coordinates

= Skew coordinates

= Non-dimensionalized coordinates

= N'odal point coordinates for a slab element

= Vertical distance from the reference plane

= Layer boundaries for layer i measured from the refer-

ence plane in the vertical direction

= Centroid location of layer i measured from the refer-

ence plane in the vertical direction

= The stress ratio

= The stress ratio for principal direction 1, cr, /0
2 1

The stress ratio for principal direction 2, a /0
1 2

= Stress ratio at point j, 02j/Olj
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o.
J

.
y

E

E
C

E
P

E Epl' p2

E E: y.
x' y' x:y

e: ,E
1 2

E

E
m

e·

e
X

e (x,y),8'
X X

e (x,y),8'y y

= S.kew angle

= Term of the nodal point displacement vector for the

structure

= Shear strain at depth z

= Shear strain increment

= A strain in the principal stress direction

= Peak strain for uniaxial co~ression of concrete

= The concrete strain at the peak stress

= Concrete strains at the peak stress for the two princi-

pal stress directions

= Peak strain for uniaxial tension of concrete

= Normal and shear strain increments in the x-y coordi~

nate system

= Strains in the principal stress directions

= Strain at peak stress for the beam concret~

= Strain at which the downward portion of the stress-

strain curve begins for the beam concrete

= Angle which defines the principal stress directions

= Reinforcing bar angle measured from the x-axis

= Rotations about the x and x' axes for the slab

Rotations about the y and y' axes for the slab
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e (x)
y

V ,v
1 2

(J E
ct' ct

crp

(J (J
PI' P2

(J
s'

. . .
(J ,0 ,T

X Y xy

cr ,0' ,-1" .
X Y xy

a
o

(J ,0
1 2

.
'['

= Rotation about the y axis for the beam.

= Poisson t s ratio

= Poisson's ratios in the principal stress directions

= A principal stress

= A peak stress-strain value defining point G' on" the

peak strain envelope

= Principal stress in direction i at point j on the peak

stress envelope

= The peak stress in a principal direction

= The peak stress for ,the two princ'ipal directions

= Secant yield strength used in the Ramberg-Osgood

stress-strain relation

= Normal and shear stress increments in the x-y coordi-

nate systems

= Normal and shear stresses in the x-y coordinate system

= Uniaxial compressive strength for concrete

= Stresses in the principal directions

= Peak compressive stress at an a = I/V as obtained from

the peak stress envelope

= Shear stress increment
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Matrices

= Constant coefficients for the vertical displace-

ment polynomial

[D]

[D. ]
1

Constant coefficients for the in-plane displace-

ment polynomial

= A connection matrix relating strains within an e1e-

ment to the nodal point displacenents of an element

= Matrix relating nodal displacements of the element

to the' {a,} constant coefficients

= Elasticity matrix based on the current state of

stress which relates the stress increment to the

strain increment in the x-y coordinate system

= Elasticity matrix for layer i

= In-plane rigidity

= Coupling rigidity

= Bending rigidity

= Elasticity matrix in the principal stress space

. {Fl",{Ful",{F<j>},{F'}= Forces applied to the structure at the nodes

= Force increment appl.ied at the nodes of the

structure

= Nodal forces applied to the element
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element to the constant coefficients of the dis-

[p(x,y)],[P (x,y)], = Polynomial functions used to describe the dis­
u

[P</l(x,y)] placement field

formulation

placement field

field

system

= Element stiffness matrix

= The assembled stiffness matrix

= Fictitious forces for an element

= In-plane stiffness matrix for an element

= Element stiffness matrix in the skew coordinate

= A connection matrix relating strains within an

= Used to transform the elasticity relation from

= A coordinate transformation for the displacement

= A coordinate transformation for the curvatures

= Coupling stiffness matrix for an element.

= Bending stiffness matrix for an element

= Diagonal matrix used in non-dimensionalizing the

[K]

[R]

[T]

[ke ]u<p

[k$</l]

[k
e

]
s

[S]

[t]

the principal to the x-y coordinate system

[To] = Displacement transformation

[TF] = Force transformation
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[rE]

[TO]

= Strain transformation

= Stress transformation

= Constant coefficients of the polynomial functions

= The strain increment

= Differential operators used to obtain the strain

or curvature fields from the displacement field

= Operators used to obtain the polynomial functions

of the displacement field from the vertical dis-

placement function

[~(x,y)],[Li (x,y)], = General displacement field for coordinate
u

[~~(x,y)] position (x,y)

{o},{o' },{ou},{o~} = Node point displacements of the structure

{5} = Displacement increment of the nodal points

{ ..r-e } {..r-e} {.t'e} N dal d· 1 f h 1u u u = 0 1SP acements 0 tee ement, u' <P

{E}',{E'} = Strain field

{E} = Strain field at depth z
z

(EX) ,(Ey) '(Yxy) = Normal and shear strains at depth z
z z z

{E}- = Integrated average strain' for layer i
zi

{a}',{a'} = Stress field

{cr- } = The stress increment

{cr.} = Integrated average stress for layer i
].

{a }',{a'} = Increment of stress to be redistributed
r r
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APPENDIX A

SLAB ELEMENT STIFFNESS FORMULATION

A.l Introduction

This appendix is a supplement to Sections 3.4 and 3.8. The

previous development of stiffness matrices will be expanded upon so

that explicit evaluation can be perfonned. The resulting matrices

will be presented as an aid to those who may carry the work further.

It will be assumed that the reader has read Chapter 3 in de tail.

A.2 Displacement Functions

The displaceJ:J:ent functions chosen in this analysis were pre-

sented in Eq. 3.11 and Eq. 3.12. SUbstitution of these equations into

Eq. 3.13 yields:

~
l

[P (x,y)] ....
u

x y

o 0

xy

o

o

1

o 0

x y
(A. 1)

1 x y x 2 xy y2 x3 x2y xy2 y3 x 3y xy3

[P<j>(x,y)] 0 0 1 0 x 2y 0 x2 2xy 3y2 x 3 3xy2

0 -1 0 -2x -y 0 -3x2 -2xy _y2 0 -3x2y -y

(A.2)

The W(x,y) displacement function will be non-dimensionalized

to facilitate the inversion of the [C<j>] matrix introduced ill Eq. 3.2lb

and shown inverted in Eq. 3.22a. This is carried out by substituting
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the non-dimensionalized coordinates (x,y) into W(x,y) defined in

Eq. 3.11. Thus

(- -) [ -2 -2 3 -x2-y -xy-2 y- 3 -x3y- -xy- 3]W x-,y = 1 x y x xy y X (A.3)

W(x,y) = [W(i,~)] · [R] • {A}

where: x = aX

y = by

(A.4)

[R] is a 12 "x 12 diagonal matrix (i.e. all off diagonal elements are

zero) where the diagonal terms consist of the following values: 1, a,

b 2 b b 2 3 2b" b 2 b 3 3 d 3, a , a, ,a, a ,a , ,a b, an ab • The quantities a and b

are element half lengths in the x-direction and the 'y-direction, re-

spectively, and are shown in Fig. 14. The three bending displacements

are given by Eq. 3.10. The derivatives in Eq. 3.10 may now be obtained

for example:

oW aW(x,y)
ay = 3y

= aW(x,y) 1i = l- [W(x -)] ~ [R]' {A}
ay ay ay 'Yay (A.5)

Using Eq. 3.14, it is possible to write

results in

Employing the chain rule of differentiation as indicated in Eq. A.5

(A.6a)

(A.6b)

-
[r</>(x,y)] is a matrix containing the differential ~perators indicated

in Eq. '3.13. Substitution of Eq. A.4 yields
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8cj>(X~Y) = [t] [rcj>(x~y)] [W(x,y)] [R] {A} = [t] [Pcj>(x,y)] [R] {A} (A.7)

where:
1 0 0 1 0 0

[t] = 0 dy-/ay 0 = 0 lib 0

0 0 dX/dX 0 0 Ila



A~ 3 Strains

Appropriate terms must be include~. ill Eq. 3.18 to ref lect the

fact that tl1e bending displacement function has been non-

dirnensionalize d. Applying the cll·ai.n rule reslll ts ill
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...a~w -a2 W,--
'3x2 ai2

-a2w = [5] -a2w
ay 2 Cly2

-2a~W -2a2W
aXdY 3icy

where:

ax ax
0 0.ax ax

[5] -= 0 lili o·ay ay

0 0 ax li
ax ay

(A.13)

{A. 14a)

or:

1 0 0
a2

[8] = 0
1

0
b 2

0 0 1
ab

(A.14b)

Thus Eq. 3.18 is modified to reflect the non-dimensionalized coordi-

nates in tIle following manner: Substitution of Eqs. 3.12, A.4, and

A.13 into Eq. 3.18 leads to

(A.15)
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'in which:

0 1 0 y 0 0 0 0
(A.16)

[Q ] = 0 0 0 0 0 O' 1 xu

0 0 1 x 0 1 0 y

0 0 0 -2 0 0 -6x -29 0 0 -6xy 0

[Q ] = 0 0 0 0 ·0 -2 0 0 -2x -6y 0 -6-ep

0 0 0 0 -2 0 0 -4x -4y 0 6-2 6-2
- X - y-

(A.17)

·The constants {A} and {B} can be found as indicated in Eqs. 3.22 if

care is taken to include the new matrices which result from 'non-

dimensionalizing the bending displacement .function.

Thus (A.I8)

Inversion of [C
u

] and [C~] results in the following matrices.
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2 ·-1 -1 2 1 -1 2 -1 1 2 1 1

-3 1 1 -3 -1 1 3 -1 1 3· 1 1

3 -1 -1 -3 -1 °1 3 -1 1 -3 ° -1 -1

0 U 1 0 0 1 ,0 0 -1 0 0 -1

-4 1 1 I. 1 -1 It -1 1 -4 -1 -1

[C ]-1= 1:
0 1 0 0 -1 0 0 1 0 0 -1 0

4> 8 1 0 -1 1 0 -1 -1 o· -1 -1 0 -1

0 0 1 0 0 -:-1 0 0 -1 0 0 1

0 -1 0 0 1 0 0 1 0 0 -1 0

-1 1 0 1 1 0 -1 1 0 1 1 0

1 0 -1 -1 o . 1 -1 0 -1 1 0 1

1 -1 0 -1 -1 0 -1 1 0 °1 1 0

(A.20)

1 0 1 0 1 0 1 0

1
0 1

0 1
0

1 0- - - -a a a a

1 0 1
0 1

0 1 0- - b - bb b

1 0 L 0 1
0 1 0-- - abab ab ab

[c ]-1 1
::::- -

U 4
0 1 0 1 0 1 0 1

1 1
0 1

0
10 -- - 0 - ---a a a a

,1 1
0 1 0

1
0 b

0 - b b - b :

1 1
0 1

0
1:

0 0 --'-- ab ab aboah

(A.21)
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Substitution of Eqs. A.IS and A.19 into Eq. A.15 defines the

st~ains as a function of the nodal point displacements:

After performing the multiplication of the [R] matrices,

(A.23)

Comparison of Eq. A.23 with Eqs. 3.24 shows that the [Bul and [Bepl ma­

trices can be defined as:

[B ] := IQ ] [C ]~1
U U.U (A.24a)

Ev~uation of the inplane, coupling and bending stiffness

(A.27)

(A.26)

(A.25)

(A. 24b)
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[k

e
] = [c ]-1 ff [Q ]T [D A-l [S] [QA-] dxdy [C",]-l [T]-1

uet> U U u,+, '+' 't'yx

matrices given in Eqs. 3.33 can now proceed. Substitution of

A.4 Element Stiffness Matrices

Eqs. A.24a and A.24b into Eqs. 3.33 gives:

(k e ] = [C ]_IT jf [Q ]T [D ] [Q ] dxdy (G]-1
uu u u uu u uyx



[Duu]' [Du¢J, and [D¢¢J are the rigidities introduced in Section 3.4.4

and given in Eq. 3.32. The evaluation of the integrals in Eqs. A.25 to

A. 27 can be simplified by considering on.ly one element of the rigidit:y

matrix to be nonzero at a time. This reduces one very laborious evalu-

ation of each of the three stiffness matrices to six much simpler pro-

blems for each one of the stiffness matrices. For each matrix' the re-

suIts are then summed up in the following form:

T
[ Dl1

[k
e

] = [c ]-1 [K ] +D [K ] +D [K ] +D [K ]
uu U. 1 12 2 13 3 22 It

+D [K ] +D [K ]
]uu

[c ]-1 (A•.28)
23 5 33 6 U

= [C J-
1T [n [K] + D

U 11 1 . 12

+ D [K] + D [K
6
]] ulk

23 5 33 't'

[K ] ,+ D
2 . 13

[K ] + D
3 22.

[K ]
It

(A.29)

The submatrices pertaining to ~e inplane stiffness matrix

[k~",] = [T]-1T [C",]-l T [n [K] + n [K] + D [K]
't'\f 'f 11 I, 1 ~ 2. . 1 3 3

, ] [C
tP
l-1 [T]-l+ D' [K] +. D [K] + D [K] tkrk

22 ~ 23 5 33 6 ~~

are evaluated by employing Eq. A.28 as follows:
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D 0
11

(D11 [K ] ) = II [Q ]T .0 0 0 [Q ] dxdy (A.31a)1 uu U U 'yx
0 0 0

uu

0 D 0
12

( D
I2

[K ] )
= If [Q ] T D 0 a [Qu] dxdy (A.31b)2 I u 21uu

yx
a 0 0

Ull

0 0 D
1 3

(D [K] ) = If [Q ]1: 0 0 0 [Qul dxdy (A.31c)1 3 3 UU U
yx

D 0 0
3 1 UU

D 0
22

o

( n [K]) = ·rf [Q]T 0
22 4 UU . U

yx

o

o

o

o

o
uu

[Qu] dxdy (A.31d)

o

(n [K] )uu =If [Qu]T a
23 5 yx

o

o

a

D
. 23

[Qu] dxdy (A. 31e)

0 0 0

( D33
[K ] ) = II [Q ]T 0 0 0 [Qu] dxdy (A.31£)

6 uu U
yx

0 a })
3 3 uu
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The (Dij ) uu tenns in the above equations correspond to elements of the

inplane rigidities given in Eq. 3.32a..• Explicit expressions for

Eq. A.31 can be developed by utilizing Eq. A.16. This ha~ been done to

generate the following formulae:

o·

0 1 symmetric

0 0 0

0 0
b2

0 -3
[K] = 4ab (A. 32a)

1 UU O. 0 0 0 0

0 0 0 0 -0 0

0 0 0 0 0 ,0 0

0' 0 0 0 0 0 0 0

0

0 0 symmetric

0 0 0

0, 0 0 O'
[K] = 4ab (A.32b)

2 UU 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0 0
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0

0 0 symmetric

0 1 0

0 0 0 0
[K] r::: 4ab (A.32c)

3 UU 0 0 0 0 0

0 1 0 0 0 0'

0 0 0 0 0 0 0

0 0 0
b"2

0 0 '0 0
3

0

0 0 symmetric

0 0 0

0 0 0 0
[K ] . = 4ab (Ao 32d)

'+ uu 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1

0 d 0 0 0 0 0
a 2

3
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0
"

0 0 symme~ric

0 0 0

'0 0 0 0
[KS]uu D, 4ab (Ao32e)

0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 1 0

0 0 0 a2
0 0 O· 0-3 .,

0

0 0 symmet'ric

0 0 1

0 0 0 a2

-3
[K] I: 4ab (AD 32£)

6 UU 0 0 0 0 0

0 0 1 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0
b2

3

In a similar manner the sub-matrices for the coupling and

bending element stifflless matri ces can be :developed from Eqs. A.16 and

A.17, Eqs. A.26 and A.27, and Eqs. A.29 and A.30. Care must be exer-

cised to insure that the proper rigidities given in Eqs. 3~32b and

3.32c are employed. The submatrices for the coupling and bending

stiffness matrices are presented in Eqs. A.33 and A.34 respectively..
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0 0 0 o· 0 a .0 a 0 0 0 0

0 0 0 -8b
0 0 0 0 0 0 o. 0-a

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
_8b 2

0 0 0 0
[K J = 3a

1 Uep .
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 O· 0 0 0

(A. 33a)

0 0 0 a 0 0 0 0 0 0 0 0

0 0 0 0 0 ~ 0 0 a 0 0 '0
b

0 0 0 0 0 0 0 0 0 0 0 0

0 0 a 0 0 0 0 0 0 -8a 0 0
(K] 4> =

2: U 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
-8b

0 0 0 0 0 0 '0 0a

0 0 0 0 0 0 -8b 0 0 0 0 0

(A.33b)
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0 0 0 0 0 0 o· : 0 0 0 0 0

0 0 0 0 0 0 0, 0 0 0 0 0

'0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

[K] :'
It u<p 0 0 0 . 0 0 '0 0 0 0 0 0 0

:0 ' 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
-8a 0 0 0 0 0 0

b

0 0 0 0 0 0 a 0
-8a2

0 0 (1
3b

(A:. 33d)
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0 0 0 o . 0 0 0 0 0 0, 0 0

0 o. 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -8a
0 0 0 0 0 0b

0 0 0 0 0 0 0
--Bat

0 0 00 3b

o I
[K J =

5 ueJ> 0 0 0 0 0 0 0 0 0 0 0 I
l

-8a I

0 0 0 0 0 0 0 0 0 0 o tb
t

0 0 0 0 -8 0 0 0 0 0 -8 -8l
}

0 0 0 0 0 0 0
-16a

0 -8a a oj
3

(A.33e)~

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -8 0 0 0 0 0 -8 -8

0 () 0 0 0 0 0
-16a

0 0 0 0
J 3

[i<] t:t 106 u¢J
0 0 ,0 0 0 0 0 0 0 0 0

0 0 0 0 -8 0 0 0 o . 0 -·8 -8

0 0 0 0 0 0 () 0 0 0 0 0

0 '0 0 0 0 0. 0 0
-l6k 0 0 oj3. -

(1'0 33£)

-248-



0

0 0

0 0 0

0 0 0 0 Symmetric

0 0 0 0 0

'16 0 0 0 15 0 0

[K2 ]<I>'~ = 15ab
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 15 0 ' O·

-0 0 0 0 0 0 0 15 0 0

0 0 0 0 0 0 0 0 0 0 0

." 0 0 0 0 0 0 0 0 0 0 15 0
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0

0 0

0 0 0

-0 0' 0 0 Symmetric

0 0 0 15 0

[K] ~ -.!L
0 0 0 0 0 0

3 ¢'4> 15a2 0 0 0 0 0 0 0

0 0 0 0 0 0 30 0

o . 0 0 0 0 0 0 10 0

0 0 0 0 0 0 0 0 -0 0
-,'

0 0 0 15 0 0 0 0 0 0 0

0 0 ,0 15 0 0 0 0 0 0 0 0

(A. 34c)

0

0 0

0 0 0

0 0 0 0 Symmetric

0 0 0 0 0

[K] = 16a
0 0 0 0 0 15

4 -4>-<t> 1Sh 3 0 0 0 0 0 -0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 0 0 45

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 15
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-1
.Addition of the submatrlces and multiplication by the [T] t

-1 -1
[Gepl , and [Gu ] matrices shown ,in Eqs. A.28, .A.29 and A.30 are per-

formed in the computer program. The results are the required stiffness

matrices.

As mentioned in Se ction 3. 8, when applying the me thod to

superstructures built with a skew it is only necessary to apply a

series of transformations so as to obtain the required expressions in

the Cartesian coordinate system. The following steps are to be used:

1.

2.

< T
Formulate the product [T] [D] [T ], (see Eq. 3.74).

E E ,

Evaluate the layer rigidities based on the above product

(see Eq. 3.32).

3. Evaluate Eqs. A.2a, A.29, and A.30 by employing Eqs. A.32,

A.33, and A.34.

4. Multiply the results by sin a (see Eq. 3.75).

Steps 1 through 4, listed above, are analogous to the evaluation of

Eq. 3.74. To obtain the final stiffness matrix of the skewed slab ele-

ment in a Cartesian coordinate system it is necessary to carry out the

transformation indicated in Eq. 3.73. [TF] in Eq. 3.73 c~ be evalu-

ated using Eq. 3.59.

Needless to say all of the aforementioned matrix operations

are performed by the computer. Also, key matrices, whose terms are

constant for the entire analysis, may be evaluated once and then stored

for subsequent use.
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APPENDIX B

BEAM ELEMENT STIFFNESS FORMULATION

The matrix expressions involved in the layered beam fonnula-

tion, which was presented in Section 3.5, will be derived in this

appendix.

Substitution of the node point coordinates, which are desig-

nated by I(x =,0) and K(x = ~) in Fig. 15, into the prescribed dis-

placement functions (see Eq. 3.35) will give

. {oe} = [C ]' {B}
u u

.{o;} = [C~] {A}

where

~ :][C ] =
u

(B .1a)

(B.1b)

1 0

o -1

1

o

o

o

o
(B .le)

Solving for {A} and {B} from Eq. B.~a will lead to
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(B~2a)



1 0 0 0

[C ]-1
0 -1 0 0

= (B.2e)
<P -3/22 2/2 3/t2 lit

2/9.,3 -1/t2 _2/£3 _1/~2

where
[c ]-1 = 11

u· tl/~
(B .2b)

Substitution of Eq. 3.35 into Eq. 3.38 will give

(E ) = [Qu] {B} + z [Q</>]. {A}x z

where [Qul = [0 1]

[Q</>] = [0 0 -2 -6x]

(B.3a)

(B.3c)

Thus by employing Eqs. B.2 and B.3, the strain can be exp.ressed in
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terms of the nodal point displacements

(B.4a)

(3 .39a)

lIt][B ] = [-lIt
u

whereby employing Eq. 3.39b

[B</>] = [(6/,Q,2 - 12x/,Q,3) (-4/,Q, + 6x/,Q,2) (_6/,Q,2 + 12x/,Q,3) (-2/,Q, + 6x/,Q,2)]

(B.4b)



Performing the indicated multiplications and integrations of
. .

Eq. 3.45 gives the following expressions for the in-plane, bending,

and coupling stiffness matrices:

[ke
] ~l/~ -l/J= (D

uU
)

uu -lIt lIt

12/t 3 -6/£2 -12/R,3 -6/£2

e -6/t2 4ft 6/R,2 2/£
[k<jl<jl] = (D<jl<jl)

-12/R,3 .. 6/~2 l2/R,s 6/t2

-6/£2 2/9v 6/R,2 4/R,

(B.5a)

[: lIt

-lIt

o

o
-l/~

l/~
(B.5 c)

.- .,

The inplane, coupling, and bending rigidities, i.e. (Duu)' (D~), and

(D<jl<jl)' are defined by Eqs. 3.4la, 3.4lb, and 3.4lc, respectively.
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