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ABSTRACT 

Twelve full size beams with Category E welded details were 

fabricated from A36, A588 and A514 steels which met the current AASHTO 

toughness specifications. These beams were cyclically loaded at room 

temperature for 2 million cycles and then at temperatures - 40° F 

(-40° C) and lower until rapid fracture occurred. The fracture resis~ 

tance of each beam was estimated using Linear Elastic Fracture Mechan

ics and compared to the material toughness test results. Current 

material toughness and fatigue specification were also checked for 

applicability to full scale beams. 

Results of the beam fracture resistance estimations were in 

direct correlation with the slow bend (one second loading), 3 point 

bend, material tests. The welding residual stresses had a significant 

contribution to the fracture resistance estimation. 

Category E of the current AASHTO fatigue specifications was 

found to be applicable to the 12 in. (305 mm) flange attachment. How-

ever, this category was observed to overestimate the fatigue strength 

of the full size cover plate beams. At the time of fracture most of 

the fatigue life oi the welded girder was exhausted. Hence, fatigue 

resistance design is a major objective of any fracture control plan 

for bridge girders. 
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1. INTRODUCTION 

Recent fractures of steel bridges in the United States, 

along with the current trend of designing welded details with thick 

high-strength steel has prompted FHWA to sponsor this project. 

Entitled "Determination of Tolerable Flaw Sizes in Full Size Bridge 

Weldments", the main objective is to correlate actual full size beam 

fractures with current material characterization tests. From these 

correlations, simple design guidelines and information are to be de

veloped. Other objectives are to test present fracture toughness spec

ifications and to develop guidelines for in-service bridge inspections. 

A welded detail can be considered as a region of material 

with many small or microscopic flaws. Recent studies have revealed 

that these microscopic flaws can become macroscopic after repeated 

application of load. The major factors affecting crack initiation, 

crack growth and the eventual fatigue life of a welded bridge member 

are the stress range, the stress concentration, and the initial flaw 

condition 1
•

2
• 

The fabrication of a welded detail results in residual 

stresses. These residual stresses have large tensile components in or 

near the welds. This, in combination with the complex stress concen

tration and macroscopic fatigue flaws, can make welded details suscep

tible to rapid fracture. This is especially true of those details 

fabricated with thick high-strength steel. 
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This project consists of three parts. The first is the 

fatigue and fracture testing of 24 full size welded beam specimens 

with details which are commonly used in bridge design. The details 

were chosen from the AASHTO categories for fatigue design 3
• Two· 

Category E details were chosen: the coverplate and the lateral attach

ment. The intermediate Category C detail was the transverse stiffener. 

The flange thickness transition provided the upper bound fatigue 

strength detail (Category B). Six beams were fabricated for each of 

the four detail categories. Each detail type was fabricated in thre.e 

types of steel. A list of the details is shown in Table 1.1. 

The second part of the study was a detailed material charac

terization. Materials from which these beams were fabricated were 

evaluated using several fracture toughness tests. 

The third part is an analytical treatment of crack shapes 

which may be encountered during the beam tests. This has been com

pleted in a report by Irwin and Tada4
• The results of this study were 

used to estimate the critical stress intensity factor for the frac

tured beams. 

This report contains the results and discussion of the 12 

beam tests with lateral attachment details and cover plate details, 

and a summary of part of the material characteristics. Also included 

is a description of the tests and testing procedures. 

-3-



2. DESCRIPTION OF TESTS 

2.1 Test Specimens 

The twelve welded beam specimens were fabricated by the 

Bethlehem Steel Corporation at their Bridge Division Fabrication Plant. 

in Pottstown, Pennsylvania. All specimens were fabricated using cur

rent fabrication and inspection techniq~es. 

Each thickness of material was furnished from the same heat 

for each of the three types of steel. Chemical composition, as de

fined by the mill reports, is shown in Tables 2.1. As beam components 

were flame cut from the larger rolled plates, a cutting schedule was 

maintained. Material testing samples were later cut from the same 

plate. 

After the beam components were cut to size, the edges of the 

web plate were blast cleaned. The web and flange components were then 

assembled in a beam welder and the web to flange longitudinal fillet 

welds were then made by an automatic submerged-arc process. These 

welds were kept continuous. Any visible flaw such as excessive por

osity was gouged out and rewelded. 

The lateral attachment plates and the cover plates were con

nected after the cross section was completed. The groove weld lateral 

attachment plates were welded by a semi-automatic submerged arc pro

cess. The run-out tabs were then ground to an approximate radius of 

0.75 in. (19.1 mm). The transverse fillet welds at the overlapped 

lateral attachment plate were made manually. 
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For each type of steel, ASTM A36, A588 Gr50, and A514, two 

beams were fabricated. A detailed drawing of beam specimen B4 is 

shown in Fig. 2.la. Note that Beams B2 and B2A have smaller flange 

dimensions which were necessary to satisfy the jack capacity. 

The cover plate beam specimens were also fabricated in three 

steel types. The A36 and A588 beams were rolled sections, W36 x 260 

and \-136 x 230 respectively, and the A514 was a built-up member. Each 

beam had two details, one with a transverse end weld and one without a 

transverse end weld. Detailed drawings of Beams B3 and Bl are shown 

in Figs. 2.lb and 2.lc. All measured beam dimensions are summarized 

in Table 2.2. 

2.2 Test Setup 

All beam testing was done on the dynamic test bed in Fritz 

Engineering Laboratory, Lehigh University. The test span length was 

21ft. (6.40 m). Two 110 kip (489.5 kN) Amsler jacks driven by a 

single pulsator were used for the 260 cpm (4.3 Hz) cyclic load. When 

needed to raise the level of maximum stress, a constant load jack was 

also used. 

The latter jack was a 200 kip (890 kN) Parker-Hannifin jack 

loaded with an Amsler accumulator and maintained by a column of nitro

gen. A schematic of the loading setup and geometry is shown in 

Fig. 2.2. Photographs of the setup are shmvn in Figs. 2.3 and 2.5. 
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2.3 Instrumentation 

SR-4 strain gages were used extensively to control the 

strain during the fatigue and fracture tests. Also, electrical resis

tance temperature gages were used to monitor the beam's temperature. 

Four electrical resistance strain gages were mounted on the 

tension flange and used as strain control when determining the beam de

flections and loads. Two gages on the compression flange were used as 

a lateral buckling indicator. Since the strain gages were mounted 

close to the section to be cooled, temperature compensation plates 

were used to counteract thermal effects. The position of these gages 

is shown in Fig. 2.4 for the lateral attachment beam specimens. The 

cover plate beam specimens used a similar strain gage layout. 

Initially, temperature gages were mounted directly on the 

steel beam at the critical section. After two fracture tests, it was 

found that the same surface temperature readings could be obtained by 

attaching the gages to steel plates, 1/16 in. x 1~ x 1~ in. 

(1.6 mm x 38.1 mm x 38.1 mm) and clamping these plates to the critical 

section of the beam. This procedure was very economical, since one 

gage could be reused for several tests. Usually three to five tempera

ture gages \vere used on one beam section during a fracture test on the 

lateral attachment beam specimens. The position of these gages is 

also shown in Fig. 2.4. The cover plate beam fracture tests utilized 

only two temperature gages at the end of each cover plate on the outer 

flange surface. 
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To eliminate air temperature effects, the outer surface of 

the plates was covered with a 1/2 in. (12.7 mm) thick styrofoam insula

tion. The gages were positioned to avoid direct liquid nitrogen con

tact to assure accurate surface temperature. 

2.4 Cooling Apparatus and Enclosure 

Each beam was cooled from room temperature to a desired tem

perature with liquid nitrogen. The section or sections of the beam to 

be cooled were completely enclosed in a styrofoam box. The boxes were 

made relatively leak-proof by the use of sealing compound and duct 

tape. Inside each box was a copper tubing network which sprayed the 

top and both sides of the beam with liquid nitrogen. 

Since cold gaseous nitrogen is heavy, the cold gas had a ten

dency to settle to the bottom of the cooling box. Without convective 

flow, this would cause a sharp temperature gradient across the beam 

section. Therefore, the inlet for the nitrogen was placed at the top 

of the beam. Connected to this inlet was a pressurized dewar of 

liquid nitrogen. By regulating the pressure within this container, 

the temperature in the box could be controlled. 

An attempt was made to achieve unifom temperature through

out the beam cross-section. Since most of the nitrogen still in its 

liquid state remained in a tray at the bottom of the box, trays were 

also placed in the upper section of the box. This device made tempera

tures noticeably more uniform across the section being cooled. A 

sketch and photographs are shmvn in Figs. 2.2 and 2.5. 
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2.5 Design Stresses 

In accordance with the 1974 Interim Specifications, the 

lateral attachment details and the cover plate details were classified 

as Category E. The allowable stress range for these types of details 

for two million design cycles is 8 ksi (55.2 MPa). 

2.5.1 Lateral Attachment Details 

Each beam had two different lateral attachment details as 

illustrated in Fig. 2.la. One was an overlapped, 12 in. (305 mm) long 

attachment with transverse fillet welds on the·inside of the tension 

flange, and a longitudinal fillet weld along the beam flange-tip. The 

other was a 12 in. (305 mm) long, groove weld attachment welded to the 

flange-tip. The 1 in. (25.4 mm) thick plate was flush with the outer 

surface of the flanges. The groove welded attachment had a sharp 

radius of about 0.75 in. (19.1 mm) where the reinforcement was removed 

by grinding at the weld ends. 

The maximum stress was governed by the outermost fiber of 

the tension flange. The stress range was set on the inside of the ten

sion flange. This yielded a nominal applied maximum stress and stress 

range at the overlapped fillet weld detail of (0.889) x (0.55 oy) and 

8 ksi (56.2 ~Wa) respectively. At the groove weld detail the maximum 

stress and stress range were 0.55 oy and 9 ksi (62.1 MPa). These 

values were slightly different for Beams B2 and B2A. Actual values 

are shown in a schematic for each steel type in Figs. 2.6a, b and c. 
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2.5.2 Cover Plate Details 

The maximum stress, .55 cry, and the stress range, 8 ksi, 

were set on the outermost fiber of the tension flange at the cover 

plate ends. Actual values of these stresses are shown in Figs. 2.6 d, 

e, and f for each steel type. 

2.6 Load and Deflection Control 

Deflection control was used during the fatigue testing at 

room temperature. The desired stresses were obtained by averaging the 

four strain gages mounted on the tension flange. For each stress, 

deflections were obtained from a pair of deflection gages placed on 

either surface of the tension flange. When the maximum and minimum 

stresses were set, an appropriate set of deflections was obtained. 

The beam was then loaded cyclically between these deflections. There

fore, load adjustments for inertia forces were not required. A toler

ance of ±0.003 in. (0.8 mm) deflection was maintained. 

The fracture test loading could not be deflection controlled 

since any small temperature gradient across the beam section may. have 

caused misleading deflections. Therefore, the dynamic loads were 

noted during the fatigue testing and these loads were then used to con

trol loading during the fracture tests. Dynamic stress measurements 

confirmed the adequacy of the procedure. 
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2.7 General Testing Procedure 

The first beam tested, B4A, served as a pilot study. Ini-

tially 1.5 million cycles of load were applied at a stress range of 

8 ksi (55.25 MPa) at the fillet weld detail and 9 ksi (62.1 MPa) at the 

groove weld detail. At this point the beam section containing the 

largest fatigue cracks was tested at -40° F (-40° C) for one-half hour. 

No fracture occurred and the beam was fatigue cycled for an additional 

250,000 cycles, at which time another -40° F (-40° C) test was run. 

This fatigue and fracture test sequence was repeated until a fracture 

occurred. 

Failure did not occur when the fatigue cracks were small and 

still in the stress concentration area. The fatigue cracks destroyed 

about 70% of the tension flange area before fracture occurred. This 

extended fatigue and fracture sequence took considerable time to com-

plete as altogether eight test sequences were carried out. For these 

reasons the test procedure was modified on subsequent tests as follows. 

Each subsequent beam was cyclically loaded for two million 

cycles or until the fatigue cracks became a possible critical size, 

whichever occurred first. At this point each section of the beam con-

taining the details was cooled to -40° F (-40° C). The beam was then 

cycled for at least one-half hour between a maximum stress of 0.55 ay 

and a minimum stress of 0.55 a -a . If no visible fatigue cracks 
Y r 

existed after two million cycles the fracture test was discontinued 

and further fatigue cycles applied at room temperature. 
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If there \vas a possible critical fatigue crack at the begin-

ning of the first fracture test and no fracture occurred in the first 

one-half hour, either an extended test at -40° F (-40° C) .was run or 

the temperature was dropped below -40° F (-40° C). This temperature 

drop was done slowly to obtain accurate surface temperature readings. 

This extended test was continued until fracture or until the liquid 

nitrogen supply was depleted. If there was no fracture, the beam was 

again fatigue cycled at room temperature to increase the crack size. 

The next low temperature test was run on the detail with the 

largest fatigue crack after the crack had grown a predetermined amount. 

This fatigue and fracture test sequence was continued until a fracture 

occurred. 

2.8 Fatigue Testing 

The stress range used in the fatigue test was in accordknce 
\ 

with the 1974 AASHTO allowable range of stress for two million cycles 

at the fillet welded attachment for a Category E detail. An allowable 

stress range of 8 ksi (55.2 ~~a) is permitted for a Category E detail. 

It was initially intended to fatigue cycle between the same 

minimum and maximum stress limits as in the fracture tests. However, 

this ~as discontinued after three tests for several reasons. First, 

operating the constant load jack under cyclic deflection for such ex-

tended periods caused excessive wear and heating which caused damage to 

the hydraulic ram. In addition, it appeared that fatigue cracking at 

room temperature at the limit of allowable stress could cause effects 
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known as "warm prestressing" 5
•

6
• Such effects, if present, could re

sult in a greater apparent fracture resistant condition. The earlier 

studies by Fisher, et al. 1
•

2 have demonstrated that the level of maxi

mum stress has no appreciable affect on fatigue. Hence, in subsequent 

tests, the cyclic stress range was applied at a lower level of maximum 

stress. 

During the fatigue test period, frequent checks were made 

for visible fatigue cracks. Nainly, visual inspections were made with 

a lOX magnifying glass and a clearner fluid. At times a magnetic 

particle probe was also used. Since the cycling was continued 

twenty-four hours a day, some of the cracks were 1 in. (25.4 mm) 

corner cracks before they were discovered. 

An automatic shut-off switch was used to prevent extremely 

large edge cracks from occurring before the scheduled fracture tests. 

The switch was usually set for a 0.005 in. (.13 mm) deflection 

increase. 

2.9 Fracture Testing 

During the pilot study, the beam was tested at low tempera

tures after an initial 1.5 million cycles of loading. In subsequent 

tests, the initial fracture test was run after accumulating two million 

cycles of cyclic load, as it \vas apparent that no brittle fracture 

would occur at this stage of testing as the fatigue cracks were small. 

In preparation for the fracture test, the moveable tempera

ture gage plates were clamped to the beam at various points around 
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both beam sections to be cooled as shown in Fig. 4. The gages used 

for test control were placed at the crack planes on the exterior sur-

face of the tension flange. Actual temperature gage placement is 

noted in Table 2.3. 

The cooling apparatus was then put in place and the styro-

foam boxes were sealed. Most leakage was stopped during the initial 

cooling period. The temperature was monitored constantly and recorded 

every five minutes. \-lhen the temperature at the test control gages 

reached -40° F (-40° C), the liquid nitrogen flow was regulated to 

maintain the test temperature. 

During the first fracture test, both beam sections contain-

ing the '~elded details were cooled simultaneously. By regulating the 

liquid nitrogen flow, the temperature in each box was kept relatively 

close, ±5° F (±2.8° C). 

~en the temperatures at the critical details became stable, 
I 

cyclic loads were applied. Prior to applying the maximum allowable 

stress of 0.55 cry and the full design stress range level, the crack 

tip was marked by applying cyclic stresses between the limits of 

0.55 cry - crr and 0.55 cry - crr/2. This cyclically applied stress was 

continuted for approximately thirty minutes, after which the full 

stress range was applied to the maximum nominal stress of 0.55 cry. 

In most cases, the initial set of dynamic loads yielded a minimum 

stress of 0.55 cry - ar and a maximum stress of 0.55 cry. A load his-

tory for each beam is show~ in Tables 2.4 through 2.15. 
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During each low temperature test, one of the tension flange 

strain gages was monitored on a memory oscilloscope. This trace 

showed both the sinusoidal loading rate and the fracture point. Since 

the triggering at failure was manual, only one trace was obtained at 

fracture and is shown in Fig. 2.7. 

A sinusoidal loading rate of 260 cpm (4.3 Hz) was provided 

by the Amsler pulsator. This resulted in a loading rate of about 

0.12 sec. from the minimum stress to maximum stress level. The sinu

soidal nature of the cyclic load yielded a maximum loading rate of 

100 ksi/sec. (690 MPa/sec.). As can be seen in Fig. 2.7 the fracture 

occurred at a point approximately 95% of the maximum load. This was 

typical of subsequent tests as well. However, the nominal maximum 

load will be used for the fracture analysis. 
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3. HATE RIALS CHARACTERIZATION 

3.1 Test Plan 

For the purposes of material characterization Standard 

Charpy V-Notch (CVN) and Dynamic and Static Fracture Toughness (K ) 
c 

tests were carried out on each plate thickness. Mill test data for 

each plate was also available. Initially it was desirable to deter-

mine the fracture toughness of the flange plates {2 in. (51 mm) -

A36 steel; 2 in. (51 mm) - A588 steel; and 1-1/2 in. (38 mm) - A514 

steel}. The chemical composition and mill test data are· summarized in 

Tables 2.la, b, c and d. These plates were used to fabricate the test 

beams described in this report. In this section, a brief description 

of the experimental procedure and the test results are presented. 

3.2 Charpy V-Notch Impact Tests 

In order to determine the macroscopic brittle-ductile transi-

tion behavior of the plate materials, conventional ASTM standard 

A370-68 Type A Charpy V-Notch specimens were prepared from each of the 

three plates. The specimens were all transverse (LT) with notch direc-

tion perpendicular to the rolling direction. The impact test data was 

analyzed using a least squares best fit sigmoidal computer program 

developed at Lehigh University. 

3.3 Fracture Toughness .Heasurements 

The Charpy V-Notch data was used to select a test temperature 

range so that valid fracture toughness data could be acquired for the 
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I~ 

plates. Temperatures of 0° F (18° C), -40° F (-40° C) and -80° F 

(-62° C) were chosen for dynamic testing. A lower temperature range 

based on the transition temperature shift7 was selected for the slow 

bend (intermediate loading rate) tests. Equation 1 was used to esti-

mate where additional tests were conducted at other temperatures 

Tshift = 215 - 1.5 cry (1) 

T = transition temperature shift (° F) 
shift 

cry = room temperature static yield stress (ksi) 

3.3.1 Drop Weight Test Apparatus . 

The dynamic K testing was carried out using the Lehigh drop 
c 

weight test machine (see Fig. 3.1). The details of this apparatus are 

described in Ref. 8. The impact loading of the three-point bend speci-

men (~ig. 3.2) was achieved by means of a falling mass (400 lbs.) guided 

vertically along two parallel rails. An instrumented loading tup 8 at 

the bottom of the mass was calibrated to act as a load-dynamometer. 

As the specimen was loaded the strain output from the tup was recorded. 

A typical load-time relationship is shown in Fig. 3. 3. The drop \veight 

mass in a given set of tests was chosen to minimize the test specimen 

inertia. In order to minimize the influence of the specimen inertia, 

3/4 in. x 1/2 in. (19.1 mm x 12.7 mm) half-rounds were positioned on 

the test specimen. This cushioned the application of the load and 

increased the loading time to about one millisecond. The half round 

cushions were machined from unhardened drill rods. The test specimen 
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temperatures were controlled by a variety of means. All were held at 

the required test temperature for at least ten minutes prior to test-

ing. A test was completed within ten seconds of the specimen's 

removal from the temperature bath. 

3.3.2 Slow Bend Test Apparatus 

Slow bend tests* were carried out on a standard 120 kip 

Tinius-Olsen screw-type tensile testing machine. The cross head of 

the machine could be moved at various speeds. The specimen was loaded 

with the same tup used for the dynamic testing. A loading rate of 

20 kips per second was selected for all slow bend tests. This re-

sulted in a loading time of about 1 second. Load-time data was 

recorded on x-y recorders. Fracture tests of the customary "static" 

type, with a loading time to fracture of several minutes, were not 

conducted. 

3.3.3 K Specimen Preparation c 

The test specimen geometry for all K tests in this program 
c 

is shown in Fig. 3.2. All specimens were sa~.r cut from the original 

plate with their long dimension in the rolling direction. This re-

sulted in the crack being perpendicular to the rolling direction. 

* Tests in which the fracture load occurs about 1 second after the 
start of loading are not "slow" in the customary usage of the term. 
Such tests are sometimes termed "intermediate speed" tests. Hmv
ever, for simplicity of language in this report, the 1 second load
ing time tests ~.Jill be termed "slow bend". 
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After the individual specimens were saw cut from the plates the cut 

surfaces were shaped so as to be normal to the plate surfaces. The 

thickness of the A36 and A588 steel specimens was reduced to 1-1/2 in. 

(38 mm). A notch with a 30° chevron front was machined at the center 

of the specimens to help initiate crack growth during the precracking 

process. The cyclic-loading for precracking was done on a 10 ton 

Amsler Vibrafore using three-point bending. The fatigue crack was 

formed in two stages. During the first stage, the crack was grown as 

quickly as possible. The final 1/8 in. (3 mm) of the crack was grown 

slowly so that the average crack growth rate was equal or less than 

1 microinch per cycle (25.4 nm per cycle). The maximum K during 

fatigue precracking was about 40 ksi lin. (44 MPa {; ) • 

3.3.4 Fracture Toughness Data Evaluation 

The fracture toughness, K , values were determined from the 
c 

maximum load at the fracture of the three-point. bend specimens
9

• K 

was determined from the relationship 

2 3' ~ 

y 1.93- 3.12 (~') + 14.68 (:')-:- 25.3 (:') + 25.9 (:') 

(2) 

where y dimensionless ratio 

B specimen width 

w specimen depth (3.0 in.) 

p applied load 

L span length (10. 0 in.) 
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a = effective crack length 

r plastic-zone size 
y 

a' = a+ r. 
y 

The plastic-zone size, ry, was defined as 

where 

r 
y 27f 

(3) 1 =-

cry is yield stress 

Equations 2 and 3 were solved by a simple iteration method
9

• 

The value of cry corresponded to the temperature and loading speed of 

the test conditions. This was determined by the following equation10
• 

where t 

I+ 75° F' t 
0 

+ -----=1::..:.7-'-4.LO..:...c0:-:0____ _ 2 7 . 4 
(T + 459) log (2 x 1010 t) 

= loading time to maximum load 

(4) 

t = time of load application for a static test (50 sec.) 
0 

T testing temperature (°F) 

cry yield stress (ksi) 

crYd elevated yield stress (ksi) at test conditions 

3.4 Drop Tear Energy Measurements 

A method of direct measurement of fracture energy was des-

cribed in Ref. 8. After the specimen is fractured the drop weight is 



arrested by two cushions made from Type 1100-0 or 6061-0 electrical 

grade aluminum 1 in. (25.4 mm) diameter rods. Figure 3.1 shows the test 

setup. When the drop weight impacts the aluminum blocks, they are 

compressed inelastically and their difference in height is a measure 

of the energy absorbed. In addition, the drill rod cushions are sub-

jected to permanent diamond shaped indentation during loading of the 

specimen. The length of the identation is also a function of the 

energy absorbed. 

The initial potential energy in the system less the sum of 

the energies absorbed by the aluminum and drill rod cushions repre-

sents the net energy absorbed by the fractured specimen. This value 

divided by the fracture surface area yields the drop tear energy (DTE). 

Material behavior in terms of DTE as a function of temperature is 

obtained simultaneously with the K tests. 

3.5 Results of Fracture Tests 

3.5.1 Charpy V-Notch Tests 

' Figures 3.4 through 3.8 summarize the CVN test results in the 

form of standard Charpy V-Notch curves. For the three materials the 

energy absorption and the lateral expansion data, plotted against 

temperature, show a conventional form with relatively sharp transition 

behavior. The 15 ft.-lb. (20 joule) energy level and the 15 mil. 

(0.38 mm) lateral expansion transition temperatures are listed in 

Table 3.1 for each flange plate. 
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3.5.2 K Test Results 
c 

The dynamic and static fracture toughness for the flange 

plates are summarized in Figs. 3.9 through 3.13. Also shown is the 

limiting test validity requirement 10 • 

2 

B > 2.5 (:;) 

where B specimen thickness 

K fracture toughness value 
c 

cry yield stress of the material at test conditions 

(5) 

In some cases, computed K values were obtained which did not satisfy 
c 

the above ASTM thickness requirement. The trend curves for the 

limited test data were based on earlier results. Although from these 

curves it was possible to indicate the brittle-ductile transition 

! 

temperatures, it appears that another independent method to evaluate 

fracture toughness values at these temperatures will be needed. The 

J-integral type tests with three-point bend specimens might provide 

the required data points to confirm the fracture behavior in the 

transition temperature range. 

Barsom's temperature shift relationship (see Eq. 1) was used 

to determine the expected temperature shift caused by the change in 

loading rates between dynamic and static tests. These values are 

listed below for each steel. 
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A36 

A588 

A514 

A36 Rolled 

A588 Rolled 

Temperature Shift 

149 

124 

32 

129 

115 

65 

51 

0 

54 

46 

The actual temperature shifts are shown in the K vs. temperature 
c 

plots (Figs. 3.9 through 3.13) for the dynamic and intermediate load-

ing rate tests used in this project. These actual values were in each 

case, larger than the shifts predicted by Barsom. Hence Eq. 1 is 

conservative. 

The CVN and dynamic ~C results were compared by using the 

relationship proposed by Barsom7 for the transition temperature 

region of the CVN plots 
1 

Kid= [5E (CVN)]~ 

E modulus of elasticity (psi) 

Kid fracture toughness (psi ~.) 

CVN Charpy energy (ft.-lbs.) 

These values are also plotted on the K vs. temperature plots in 
c 

(6) 

Figs. 3. 9 through 3 .13. There is a good correlation betw·een the mea-

sured Kid values and the plot given by Eq. 6 for A36 steel and the A588 

rolled beam steel. However, the correlation is not as good for the A36 

rolled beam steel and the A588 and A514 plates. Very conservative re-

sults \vere obtained for the A514 steel. Several unconservative points 

were obtained for the A588 steel and the A36 rolled beam steel. 
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3.5.3 Drop Tear Energy Test Results 

The DTE data points were obtained simultaneously with the 

Kid test data. A full DTE vs. Temperature plot was not obtained. 

Most of the points were on the lower shelf or in the transition region. 

The DTE vs. Temperature plots are presented in Figs. 3.14 through 3.16. 

Generally, the transition temperatures from these diagrams are higher 

and more conservative than the respective CVN transition temperature 

for the same plate. 
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4. LATERAL ATTACHN&'IT BE.AH TEST RESULTS AND ANALYSES 

4.1 Fatigue Cracks 

The fatigue cracks at the groove weld lateral attachments 

were initially detected on the flange edge~ at the sharp 0.75 in. 

(19.1 mm) or less radius, as 1/4 in. (6 mm) elliptical surface cracks. 

These surface cracks soon became elliptical corner cracks and then 

edge cracks. All final fractures at this detail were precipitated 

from an edge crack. 

On the overlapped fillet weld detail~ fatigue cracks were 

initiated at the toe of the transverse fillet weld. Host of these 

cracks were initially detected as several 0.5 in. (13 mm) elliptical 

surface cracks which eventually connected to form one large elliptical 

surface crack. As with the groove weld detail, these cracks then 

became corner cracks and finally edge cracks. Beam B6 was the only 

specimen to fracture from this detail. 

The size of the fatigue cracks at each critical detail can 

be found by referencing the small letters on the fracture surface draw

ings in Figs. 4.1 to 4.6 with the load history tables given in 

Tables 2.4 to 2.9. 

}fany additional fatigue cracks existed at other details on 

the beams. Figures 4.7 and 4.8 show these fatigue cracks at all de

tails at two million cycles and prior to the last fracture test. The 

surface measurements of these cracks is shown adjacent to the crack. 

The crack shapes are merely estimates from these surface measurements. 
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4.2 Remaining Fatigue Life 

The number of cyclic loads needed to propagate an edge crack 

from its fracture initiation point to an edge crack size of 75% of the 

flange width, b, was defined as the remaining useful fatigue life had 

brittle fracture not occurred. The following crack growth relation~ 

ship determined from earlier studies on welded details was used 12
• 

da -= 
dN 

As defined in Section 4.5.2 the stress intensity range can be found 

from the following relationship 

M..= rra' 
tan 2b 

Secondary stress intensity effects from residual stresses were ne-

(7) 

(8) 

glected for this analysis. Also by this stage of growth the crack had 
t 

grown out of the stress concentration zone. Through numerical inte-

gration of Eq. 8 the remaining fatigue life was estimated. The 

results for each beam are listed in Table 4.1. 

Figure 4.9 shows the mean S-N curve and its confidence limits 

for Category E details. The data base used to develop this curve 

utilized tests on 12 to 14 inch (35 to 36 mm) deep beams with a maxi-

mum flange thickness of 1/2 in. (12.7 mm). The fatigue results for 

the lateral attachment beams, ~-1hich had a maximum flange thickness of 

2 in. (51 mm) are plotted on the same curve. The open figures repre-

sent the point at \vhich the fatigue cracks were first observed and the 
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closed figures represent the point of fracture~ There is a good corre

lation between the fracture points and the Category E fatigue-life 

relationship. 

As can also be seen from Fig. 4.9 and the additional life 

estimated and tabulated in Table 4 .1, an incremental addition to the 

fatigue life was small and would not have significantly altered the 

strength as all the points were well within the 95% confidence limits. 

Hence even if rapid fracture had not occurred very little residual 

life would have remained. Fatigue resistance design is therefore a 

major objective of any fracture control plan in the design of bridge 

girders. 

4.3 Beam Fracture Tests 

Beam B4A 

Eight fracture tests were carried out on Beam B4A as the 

test procedure was developed. Three of these tests were on the over

lapped fillet weld detail while five were on the groove weld detail. 

The first five fracture tests were run with fatigue cracks 

still in the stress concentration zone. After 1.5 million cycles the 

largest fatigue crack found was a 1 in. x 1/16 in. (25.4 mm x 1.6 mm) 

elliptical corner crack (see Fig. 4. 7) at a transverse fillet ~.,reld. 

The first two fracture tests were on this detail. At t~.,ro million 

cycles, a 3/8 in. x 1 in. (9.5 mm x 25.4 mm) elliptical corner crack 

was observed at a groove weld detail. The fracture tests were carried 

out at test temperatures between -40° F (-40° C) and -60° F (-51° C) 
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as can be seen in Table 2.7. No crack instability developed during 

any of these three tests. 

A test was run on the fillet weld detail where a 

1-7/8 in. x 9/16 in. (48 rom x 14 rom) elliptical corner crack existed. 

No fracture occurred there as well. With a 1-1/2 in. x 1-3/4 in. 

(38.mm x 44 rom) corner crack at the groove weld detail (test h) the 

next test reached a temperature of -170° F (112° C), however, no frac-

ture occurred. 

The cracks t-Tere extended by applying 250, 000 cycles of 

fatigue loading at room temperature. The critical fatigue crack at 

the groove weld detail was grown to a ~ 2-3/4 in. (70 mm) edge crack 

during this cyclic loading. At this point a -70° F (-56.5° C) frac-

ture test was run. The test lasted 2.67 hours. During this test, the 

fatigue crack grew very rapidly through the high tensile residual 

stress region of the web to flange fillet welds. Finally, the beam 
I 

fractured with an average edge crack size of 4.8 in. (122 mm) and 

temperature of -96° F (-71° C). Fatigue crack extension of approxi-

mately 2 in. (5l.rom) was experienced during this test prior to crack 

instability. 

Beam B4 

It was apparent from experience with Beam B4A that rapid 

fracture was not likely to occur at -40° F (-40° C) with small cracks 

in the stress concentration zone. Therefore, the beam was cycled at 

room temperature for b~o million cycles. At this point several large 

elliptical corner cracks existed as shown in Figs. 4.3 and 4.7. The 
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first fracture test las.ted for one-half hour and both details were 

tested. simultaneously. No fracture occurred. 

The beam was then cycled at room temperature to extend the 

fatigue cracks. When the crack at the critical detail became a 

~. 2-3/8 in. (60 mm) edge crack, a second fracture test was run. A 

temperature of -70° F (-56.5° C) was obtained before the cyclic load 

was applied. A stress range of 9 ksi (62.1 MPa) was applied for forty 

minutes. To speed the incipient fracture, the load range was increased 

to 9.8 ksi (67.6 MPa) while maintaining the same maximum stress. After 

one hour at this stress range and a nominal temperature of -70° F 

(-56.5° C) fracture occurred. At fracture, the temperature was -80° F 

(-62.0° C). A~ 3/4 in. (19 mm) fatigue crack extension was experi

enced during this test. The fracture occurred when the crack tip was 

in the high tensile residual stress zone of the web to flange weld. 

Beam B6 

The first fracture test was run on both details simultane

ously after two million fatigue cycles. Since very small fatigue 

cracks existed (see Fig. 4.7) no fracture occurred. After 800,000 

cycles of additional fatigue load the elliptical surface crack at the 

critical fillet weld detail grew to a large 2-3/8 in. x 1-1/2 in. 

(60 rom x 38 mm) elliptical corner crack. At this point two consecu

tive five hour fracture tests were run (test d and e, see Fig. 4.5) on 

this detail. Fracture occurred after the elliptical fatigue crack be

came an edge crack. The fracture temperature was -53° F (-47.0° C). 

This was the only fracture to occur at a fillet weld detail. 
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During the fatigue cycling of this beam, the ram in the con

stant load jack overheated. This caused the maximum load to decrease 

during the fatigue cycling overnight. Although the maximum load 

decreased, the stress range remained the same. The actual drop in 

maximum stress was 4.5 ksi (31.03 MPa) for 400,000 cycles. 

Beam B2A 

Five fracture tests were run on this beam (see Fig. :4 .2) 

The first test at two million cycles was on both details. Both 

details contained large corner cracks at this point (see Fig. 4.7), 

however no fracture occurred at -40° F (:-40° C). Since the elliptical 

corner crack at the groove weld detail grew quickly to a critical edge 

crack, the remainder of the fracture tests were conducted on this 

detail alone. During the last test, the temperature was maintained 

at -40° (-40° C) for 1~ hours. While the beam was still being cycli

cally loaded, the temperature was slowly dropped to -140° F (-95.S° C) 

in over 1~ hours. The -140° F (-95.5° C) temperature was maintained 

for another 1~ hours before fracture occurred at -144° F (-98° C). 

About 1/4 in. (6.4 mm) fatigue crack extension was experienced during 

the test prior to crack instability. 

Note that the beam was fatigue cycled at a lower maximum 

stress than that during the fracture test. The same stress range was 

maintained during both fatigue and fracture testing. See Table 2.5 

for the actual stresses and stress ranges used. 
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Beam B6A 

The first fracture test was run on both details (see Fig . .4. 7) 

at -40° F (-40° C). No fracture occurred. After an additional. 

730,000 cycles of fatigue load at room temperature, a corner crack at 

the groove weld detail became a ~ 1-1/4 in. (32 mm) edge crack. The 

subsequent fracture test lasted 1.67 hours during which the temperature 

was slowly dropped from -40° F (-40° C) to -92° F (-69° C) at which 

point rapid fracture occurred. An average fatigue crack extension of 

1/4 in. (6.4 mm) (see test d, Fig. 4.6) was experienced prior to 

fracture . 

. Beam B2 

At two million cycles, a 1 in. (25 mm) edge crack existed at 

the groove weld detail while smaller elliptical corner cracks existed 

at the fillet weld detail (see Fig. 4. 7) • Both details were tested for 

forty minutes at -40° F (-40° C). At this time the cyclic load was 

stopped and the groove weld detail was cooled to -140°· F (-95.5° C). 

After this temperature was obtained, the cyclic load was reapplied. 

After t~venty minutes of cycling, fracture occurred at a temperature of 

-155° F (-104° C). A 1/4 in. (6.4 mm) fatigue crack extension was 

experienced during the last test (see test b, Fig. 4.1). 

The beam was fatigue cycled at a lower maximum stress than 

that during the fracture test. The same stress range was maintained 

during both fatigue and fracture testing. See Table 2.4 for the actual 

stresses and stress ranges used. 
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4.4 Fracture Test Variables Affecting Fracture Toughness 

Each fracture test had two major variables affecting the 

fracture resistance of the steel beam. These were the fatigue crack 

size and test temperature. 

Since no beam fractured on the first cycle of load an effort 

was made to induce rapid fracture at -40° F (-40° C) by growing the 

fatigue crack to a critical size. As noted in Section 4.3, Beams B4, 

B4A, and B6 experienced average fatigue crack extensions of 0.65 in. 

(17 mm), 2.0 in. (51 mm), and 1.3 in. (33 mm), respectively, prior to 

brittle fracture. These large crack extensions took several hours to 

achieve. 

Since time was a limiting factor, the test temperature was 

used as another variable. The slow cooling rate of approximately 1° F 

(.6° C) per minute '~as used. Temperature at the critical details are 

shown graphically in Figs. 4.10 t~ 4.12 for the final 60 minutes bf the 

last fracture test. In every case the temperature was slowly decreas

ing when fracture occurred. 

Although large temperature gradients existed around the 

critical beam section, as shown in Table 2.3 an effort was made to keep 

accurate account of the surface temperature at the critical welded 

detail. The temperature gages were positioned at the critical detail 

on the exterior of the tension flange, thus being out of direct con

tact with the liquid nitrogen. 
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4.5 Stress Intensity Estimates 

4.5.1 Introduction 

All the flange cracks in the lateral attachment details were 

large edge cracks at fracture. This tended to simplify the calcula

tions of the stress intensity factor. However, since the plates were 

flame cut and the beams and details.were welded a rather comple~ resid

ual stress pattern was present at the detail cross-section. Therefore 

several steps were used to estimate the value of the stress intensity 

factor, K. 

By the method of superposition the following contributions 

were used to determine the magnitude of K. The primary contribution 

was from the applied stresses at failure. A secondary contribution 

was from the residual stresses at the detail cross-section. The resid

ual stresses.at the cracked section resulted from two contributions. 

One contribution to K was from the residual stresses at a typical 

cross-section of the welded beam. These stresses were caused by the · 

web-to-flange welds and the flame cut plate edges. The other contri

bution was due to the residual stresses caused by the local detail 

welds. In this draft these residual stresses were estimated from 

available information. 

In one case, the flange edge crack grew through the web-to

flange welds. The fatigue crack growth continued in two directions, 

upward into the web and across the flange. Therefore, when estimating 

the stress intensity, the web interaction had to be considered as well. 

The web restrained the large flange crack from opening. Thus the 
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contribution of this web restraint to the stress intensity estimate 

was negative. 

The actual value of K was found to be the sum of three or 

four terms as shown in Eq. 9 

K = KAs + ~s + i).w + ~ (9) 

The subscripts K .. in Eq. 9 are the various contributions to the criti-
1J 

cal stress intensity. These include contributions from the applied 

stress, KAS; the residual stress caused by flame cut edges and web-to

flange welds, ~S; the residual stress caused by local detail welds, 

i).w; and the web restraint of the flange in B4A, K1~· 

·Plastic-zone corrections were made by using the following 

plane stress relationship. 

(10) 

Using an iterative process between Eqs. 9 and 10 values of K were 

obtained. 

4.5.2 Contribution from the Applied Stress 

To estimate the stress intensity from the applied stress for 

a flange edge crack, the following format was used. Generally, 

F (a') a Ina' AS · (11) 

where F (a') consists of four parts as discussed by Albrecht and 
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F (a') 

FE elliptical crack front correction 

F5 = free surface correction ( t:-1 ws) 
FG = stress concentration correction 

FW = finite width correction 

For this study FE was taken as 1.0 since the cracks were edge cracks. 

F
5 

was assumed to be ~ 1.0 because of the lateral restraint offered by 

the lateral attachment. FG was also taken as 1.0 for the large edge 

cracks in this study. This correction affects only small elliptical 

surface and corner cracks and will be discussed in the next section. 

The finite width correction, FW' was defined by Eq. 12~. 

b 

a' = 

a = 

r 
y 

flange width 

a + r y 

crack size 

plastic-zone 

2b 
rra' 

rra' 
tan Th 

correction 

(12) 

This finite width correction is exact for the model shown in Fig. 4.13. 

This is not exactly the situation with the flange edge cracks adjacent 

to the lateral attachment details, however it is a good approximation. 

The web was assumed to prevent in-plane bending of the flange and the 
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lateral attachment plates were assumed to partially prevent Poisson 

contractions on the flange tip as shown in Fig. 4.13b. For these rea-

sons the dimensions used are those shown in Fig. 4.13b. 

In the actual beam fractures, the stresses were not uniform 

through the plate thicknesses nor were the edge crack fronts. For 

these reasons the critical stress intensity was estimated for 1/3 

levels through the flange thickness. The average crack size and 

stress were used for the respective one-third thickness of the flange. 

The measured values of the critical crack size, a, for each beam are 

listed in Table 4.2. The estimated values of KAS are listed in 

Table 4.3. 

4.5.3 Contributions from Stress Concentration 

The stress concentrations for the groove weld details were 

determined from a current study at Fritz Engineering Laboratory. In 
I 

this study, similar details were modeled using a three-dimensionsal 

f . . 1 1 . 14 
~n~te e ement ana ys~s • By comparing certain dimensional para-

meters, the stress concentration for the uncracked detail was deter-

mined to be 2.22 for the groove weld detail with a .75 in. (19 mm) 

radius transition at the 1.5 in. x 6 in. (38 mm x 152 mm) flange. 

Similarly, the stress concentration for the groove weld detail 

attached to the 2 in. x 7 in. (51 mm x 178 mm) flange was estimated 

as 2.19. These stress concentration factors are lower bound esti-

mates. Examination of the fabricated details showed that for the 

critical details that cracked, the transition was irregular and not a 
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' 
smooth radius (see Fig. 4.14a). These irregularities were modeled for 

the most severe case, a 45° angle reentrant corner with 3/4 in. (19 mm) 

legs (see Fig. 4~14b). A stress concentration factor of about 7.9 was 

estimated for this case. 

Yne overlapped fillet weld detail had a comparable stress 

concentration at approximately 7.1 for the 1-1/2 in. x 6 in. 

(38. mm x 156 mm) flange and 7.3 for the 2 in. x 7 in. (51 mm x 178 mm) 

flange. However, only one beam failed from this detail. There are at 

least two reasons for this. First, surface fabrication discontinuities 

at the radius elevated the apparent stress concentration. Second, the 

stress range at the groove weld detail was 12.5% higher than that at 

the fillet weld detail. The combination of these two differences made 

the groove weld detail more critical in all but one case. 

The stress concentration, KT, decays as a crack initiates 

and g~ows at the detail. This decay is also being studied at Fritz 

Engineering Laboratory by Zettlemoyer14 
•. The study matches the decay 

described by Albrecht and Yamada13
, to an uncracked elliptical model. 

By varying the size of the ellipse in an infinite plate the effect of 

stress concentration decay can be matched. The purpose of this study 

is to develop a quick and inexpensive method to determine this decay 

for any detail and stress concentration situation. This analysis was 

used to model a groove weld detail for stress intensity variation with 

crack size. 

The A514 steel groove weld detail on Beam B2A was examined 

for stress concentration effects on the stress intensity factor, K. 
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Results \vere obtained for two attachment-to-flange reentrant corner . 

models: Case A was the smooth 3/4 in. (19 mm) radius transition (see 

Fig. 4.14a), Case B was the 3/4 in. (19 mm), 45° straight line transi

tion shown in Fig. 4.14b. The stress concentration decay with crack 

size, FG, is shown in Fig. 4.15 for both cases. Since the stress 

concentration value,. K._r,in Case B was much higher than that used in 

Case A, the decay of ~ with crack growth for Case B was more rapid 

than Case A. Because of this the maximum stress intensity obtained 

for Case B was lower than the value obtained for Case A (see 

Fig. 4.16). Hence, this elevated stress concentration (Case B) at 

these details did not appreciably magnify the stress concentration, 

when compared to Case A results, but did cause a more rapid crack 

initiation. 

The variation of stress intensity and crack size is sum

marized in Fig. 4.16 for both cases. It was conservatively assum~d 

that the small cracks began as small elliptical corner cracks. The 

variation of the semi-major and semi-minor axes was defined by Eq. 13 

c 1. 465 a o • 2 o 2 (13) 

where c semi-major axis 

a = semi-minor axis 

This relationship was determined from crack size measurement data. As 

can be seen in Fig. 4.16, the maximum stress intensity obtained for 

elliptical corner cracks was 126 ksi /in. (139 HPa fu ) for a crack 

size of . 35 in. (9 mm). This value \vas less than the critical stress 
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intensity of 145 ksi /in. (159.5 MPa 1m) for Beam B2A. This value is 

also less than any slow bend material test result at -40° F (-40° C) 

(see Fig. 6.3). 

4.5.4 Contribution From The Nominal Residual Stresses 

~ is either positive or negative depending upon the magni-

tude and distribution of the cross-section residaul stresses and the 

crack size. When a crack grows through a tensile residual stress 

field there is an additional crack opening caused by the residual 

stresses which yields a positive~· Similarly, when a crack grows 

through a compressive residual stress field there is crack closure and 

thus ~S is negative. Wnen a crack grows through both positive and 

negative residual stress fields, the residual stress condition near 

the crack tip, along the path of the crack, has an overriding effect. 

The residual stress field through which the crack has grown 

can be approximated by superposition of small block stresses (see 

Fig. 4.17). ~ can be obtained by using the following equation along 

with the method of superposition15 

.?.. a /rra' 
1f rs 

2b Tia 1 

-,tan Zb na 
( 

• TIC ) sJ.n 2b 
. na' 

SJ.n Th 

a' edge crack size+ pla~tic zone correction 

(see Table 4. 2) 

(14) 

c dimension from the plate edge to the end or beginning 

of the approximated block of residual stress 

b = plate width 
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a = magnitude of the residual stress block rs 

To obtain a good approximation of ~S' stress block widths 

of 0.02 in. (.5 mm) were used over the entire crack length. Results 

of ~ for each beam fracture are listed in Table 4.3 and plotted as a 

function of crack size in Figs. 4.18 to 4.23. 

Actual measured residual stresses of the nominal beam sec-

tions were not available at the time of the lateral attachment detail 

analyses. The flange residual stresses were estimated from previous 

. . h" k . 16 17 studies lo~ith s~m~lar plate t .~c nesses '· • Two assumptions were 

made in this estimation. First, the distribution of residual stresses 

through the plate thickness was assumed to be linear. Second, the re-

sidual stresses in the flange alone were assumed to be in equilibrium. 

The estimated residual stress distributions are shown in Figs. 4.25a 

to 4.27a for each steel. The actual measured residual stress distribu-

tions are also shown in Figs. 4.25b to 4.27b. 

4.5.5 Contribution from the Local Weld Residual Stresses 

The local detail welds change the nominal section residual 

stress pattern over the entire cross-section at the detail. Ideally, 

there should be only one residual stress contribution from the actual 

residual stresses at this critical section. Since there was no avail-

able data on residual stress state at this section, a two step proce-

dure was used to estimate the effect along with the principle of 

superposition. 

After the nominal beam section residual stresses ·were esti-

mated, an additional local residual stress was assumed to account for 
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the detail welds. Both the nominal residual stresses and the local 

residual stresses are being measured. Pending completion of these 

measurements, the local welding effect was simulated in the following 

manner. 

The residual stress distribution along the flange tip at the 

groove weld detail was assumed as is shown in Fig. 4.28. The decay of 

the stress along the flange tip was assumed to be very rapid beyond· 

the attachment edge. The stress at the location where most of the 

cracks initiated was assumed to be about cry/4. This stress was as

sumed to be distributed over 1/2 in. (12.7 mm) of the flange tip as 

shown in Fig. 4.28. Equation 14 was again used to determine the contri

bution from local welding. These values are also listed in Table 4.3. 

The fillet weld detail, top one-third analysis included a 

different local residual stress distribution because the detail had a 

fillet weld along the inside surface of the flange. It was assumed 

that the magnitude of the local residual stress, cry/4, at the flange 

tip decayed to cry/8 at the end of the transverse weld (see Fig. 4.29). 

The middle and bottom third levels were treated similar to the groove 

weld details because there was also a longitudinal fillet weld made 

along the flange tip. 

4.5.6 Contribution From The Heb Restraint 

Only beam B4A was observed to develop web restraint since 

the fatigue crack at fracture had grown as an edge crack through the 

web-to-flange.welds and then became a two ended crack. This is shown 
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in Fig. 4.4. The analysis of the web restraint and the apparent reduc-

tion of the stress intensity is an iterative solution which is very 

involved. The actual analysis is discussed in detail in Appendix A. 

The web restraint was predicted to decrease K by -12 ksi lin. 

(-13.2 MPa ~ ). 

4.5.7 Summary and Discussion of the Various Contributions 

The values of KAS, ~S' ~Wand ~ are listed in Table 4.3 

for each one-third level of the flange thickness for each critical 

fatigue crack. The critical value for each beam was taken as the maxi-

mum value. Some modification of these values will be made when actual 

residual stress measurements are available. Plots showing the vari-

ation of each K .. parameter with crack size are presented in Figs. 4.18 
1] 

to 4.23 for the critical one-third level ·of flange thickness. 

The estimated residual stress diagrams shown in Figs. 4'.25 

to 4.27 were used to determine the average residual stress distribution 

for each one-third level of flange thickness. A linear distribution 

was assumed through the thickness. The upper one-third level had the 

greatest residual stress inrluence while the bottom one-third level 

had the least. 

For crack growth less than approximately 1.1 in. (28 mrn), 

the crack shape was an elliptical corner crack as described in 

Section 4.5.3 for the groove weld details. The local weld tensile 

residual stresses and the nominal section tensile residual stresses on 
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the flange tip both influenced the total stress intensity value in 

addition to the applied stress magnification by the stress concentra

tion parameter, FG. These variations with crack size, a, are shown in 

Fig. 4.16 for Beam B2A. ~ben the crack size for the elliptical .corner 

cracks was approximately 1.1 in. (28 mm) the semi-major axis became 

equal to the flange thickness. At this point the crack rapidly became 

a 1.1 in. (28 mm) edge crack and the stress intensity suddenly 

increased. This discontinuity is shown in Fig. 4.16. 

The residual stress effects on stress intensity for edge 

cracks can readily be seen in the ~S vs. Edge Crack Size plots (see 

Figs. 4.18 to 4.23). As the edge crack grew a size of 1.1 in. (28 -mm) 

into the negative residual stress zone there was a decrease in ~s· 

which extended over the next 2 in. of crack growth. In most cases 

this decrease in ~S held the total stress intensity value, K, con

stant over this region. 

Continued crack growth resulted in a rapid increase in ~S 

as the fatigue crack gre\• into the high tensile residual stress region 

caused by the web-to-flange fillet welds. This also caused K to in

crease rapidly. This residual stress influence on K greatly affected 

the fracture of Beam B4 (top one-third .analysis, Fig. 4.20) and B6 (top 

one-third analysis, Fig. 4.22). Each beam fractured with a crack size 

at or near the peak K value caused by KRs· The fracture of beam B6A, 

v7as caused by a rising ~ and K, (see Fig. 4 .23). The point of frac

ture is marked on each "K vs. a" plot. 

-42-



KAS increased at a near constant rate for edge crack growth. 

Since the applied stresses were very high in the A514 beams this para

meter had an overriding effect on ~S and ~w· This is shown in the 

bottom one-third analysis for Beams B2 and B2A, Figs. 4.18 and 4.19 

respectively. 

1).\.f had its greatest influence on small elliptical corner 

cracks (see Fig. 4.16). For edge cracks at the groove weld details 

this contribution became constant and comparatively small. This con

tribution was slightly higher for the overlapped fillet weld detail. 

The fracture of B4 was precipitated by the presence of the 

high tensile residual stress area at the web-to-flange welds. Beam B4A 

Beam B4A had a fatigue crack which grew through the same area during a 

fracture test and at a 6% higher applied stress but did not fail. 

This can only be explained by a difference in test temperatures when 

the fatigue cracks grew into this critical area. As can be seen from 

the material tests K vs. Temperature plot for A36 steel. (Fig. 6 .1), a 

slight difference in the test temperatures would cause a large change 

in the critical stress intensity factor, KC. This was the case as the 

Beam B4A test temperature {-70° F (-57° C)} was warmer than the tem

perature of Beam B4 {-80° F (-62° C)} when the fatigue crack grew into 

this region. As the fatigue crack in Beam B4A gre\v through the web

to-flange \-lelds ~ \-las continually increasing. Hm.,rever ~ ·this was 

counter balanced by the flange crack opening restraint of the web. 

Only when the crack gre,.,r rv l~ in. (rv 32 mm) past the \veb did fracture 

-43-



occur. ~ had only a small effect on the estimated stress intensity 

since, at the time of fracture, the critical K was determined at the 

bottome one-third level of flange thickness. 
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5. COVER PLATE BEAM TEST RESULTS .AND ANALYSES 

5.1 Fatigue Cracks 

The fatigue cracks on the end-weld cover plate beams were 

initially detected as ~ in. (13 mm) surface cracks. As these surface 

cracks grew larger they became either elliptical corner cracks (see 

Beam BlA, Fig. 5.2) or through cracks (see B3, Fig. 5.3) •. 

On the cover plate detail without end weld the fatigue 

cracks were detected as ~ in. (13 mm) surface cracks at the end of the 

longitudinal fillet weld. After extended crack growth the fatigue· 

cracks became elliptical corner cracks and then quickly edge cracks. 

The size of the fatigue cracks at each critical detail can 

be found by referencing the small letters on the crack surface draw

ings in Figs. 5.1 to 5.6 \vith the load history tables given in 

Tables 2.10 to 2.15. 

Additional fatigue cracks existed at the other detail on 

each beam. Fig. 5.7 shows the fatigue cracks at all details prior to 

the last fracture test. The surface measurements of these cracks 

are shown adjacent to the crack. The crack shapes were estimated 

from these surface measurements. 

5.2 Fatigue Life 

The number of cycles needed to propagate an elliptical sur

face crack from its fracture initiation point to a through thickness 
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flange crack was defined as the remaining useful fatigue life had brit

tle fracture not occurred. The remaining fatigue life was estimated 

by a numerical integration routine using Equations 7 and 11 as pre

sented in Section 4.2. Secondary stress intensity effects from the 

residual stresses were neglected. Appropriate correction factors~ Fs~ 

Fw~ Fe and FE were used for the cover plate details. 

Beams BlA, B3 and B3A had no appreciable remaining fatigue 

life at the time of fracture. Beams Bl, B5 and B5A had 106,000, 

607,000 and 70,000cycles of remaining fatigue life, respectively. 

Figure 5.8 shows the mean S-N curve and its confidence limits 

for the Category E details. The data base used to develop this curve 

utilized tests on 12 to 14 in. (305 to 356 mm) deep beams with a max

imum flange thickness of~ in. (13 mm). The fatigue results for the 

cover plate beams, which had flange thicknesses between 1.25 in. (32 mm) 

and 1~ in. (38 mm), are plotted on the same curve. The open figures 

represent the point at which the cracks were first observed and the 

closed figures represent the point of fracture. 

Each cover plate details fatigue life at fracture was near 

or below the lo~ver 95% confidence limit which corresponds to the de

sign strength for category E details. The rapid fatigue crack initi

ation and growth wasapparentlycaused by the higher stress concentra

tion which existed at these full size details. These fatigue results 

were similar to those obtained in Reference 18 to 30 smaller scale 

cover plate beams ~vith cover plates wider than the flange and no end 
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welds. The lower confidence limit for these details is also shown in 

Fig. 5.8. All cover plate details presented in this section had fa-

tigue lives between the mean and the upper 95% confidence limit for 

this lm.;er fatigue life detail type. This study has indicated that 

additional tests are needed on the fatigue behavior of full size ·welded 

cover plate details, particularly at low stress range levels. 

5.3 Beam Fracture Tests* 

Beam Bl 

Since the fatigue crack at the end-weld detail initiated and 

grew very rapidly (see Fig. 5.1), the first fracture test was con-

ducted before the beam reached its 2 million cycle fatigue design life. 

At this point only a small 5/8 in. (16 mm) long elliptical surface 

crack existed at the no-end-•.;eld detail. (see Fig. 5. 7). 

Only one fracture test was run on this beam. Both the end-

weld detail and the no-end-weld details were tested at -40°F(-40°C) 

for ~hour. Since no fracture occurred at this point, the critical de-

tail was cooled further while being cyclically loaded for 2~ hours un-

til fracture occurred at -200°F (-129°C). The fatigue crack extension 

during this fracture test \vas approximately 1/8 in. (3 mm) as can be 

seen in Fig. 5.1. 

*Temperature at the critical details are shown graphically in Figs. 5;9 
to 5.11 for the final 60 minutes of the last fracture test. 
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Beam BlA 

A very large 5-7/8 in. x 1-1/4 in. ( 149 rom x 32 rom) el

liptical corner crack existed at the end-weld detail after 1.134 

million cycles (see Fig. 5.2). No cracks were found at the unwelded 

end. 

Only one fracture test was run on Beam BlA. Both details 

were cooled to -40°F (-40°C) and then cyclically loaded. Just as 

the maximum stress and stress range was obtained, fracture occurred at 

the end-weld detail. The temperature at fracture was -48°F (-44°C). 

Beam B3 

After 2 million cycles a large 12 in. (305 rom) elliptical 

surface crack existed along the weld toe of the end-weld detail. Two 

1-1/4 in. (32 rom) long elliptical shaped crac.ks also existed at the 

detail without a transverse end weld. 

Both details were cooled to -40°F (-40°C) and cyclically 

tested for 1/2 hour. No fracture occurred. An additional 162,000 

fatigue cycles were applied at room temperature. At this stage of 

crack growth the large elliptical surface crack at the end welded de

tail became a through-thickness crack (see Figs. 5.3 and 5.7). Both 

details were again cooled to -40°F (-40°C) and cyclically loaded. 

Fracture occurred while loading. A mcximum stress of 17.2 ksi 

(118.6 }~a) and stress range of 5.4 ksi (37.2 }ITa) was applied at the 

time of fracture. 
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Beam B3A 

After 1.79 million cycles of fatigue loading at room temper

ature, a 5 in. (127 mm) edge crack existed at the unwelded detail (see 

·Figs. 5.4 and 5.7). A series of small elliptical shaped surface 

cracks also existed along the weld toe of the end-weld detail (see 

Fig. 5.7). 

Both details were cooled to -40°F (-40°C) and cyclically 

loaded for 1 hour. No fracture occurred at either detail during this 

phase of testing. Testing was continued at the unwelded end with the 

large edge crack. The detail was slowly cooled to -96°F (-71°C) at 

which point fracture occurred. 

Beam BS 

A series of small elliptical surface flaws existed at the end

welded detail while only a small 1-1/4 in. (32 mm) surface flaw existed 

at the no-end-weld detail (see Figs. 5.5 and 5.7) after application 

of 2,000,000 load cycles. 

Only the end-weld detail was cooled to -40°F (-40°C). The 

beam was then cyclically loaded for 30 min~ without any sign of dis

tress. After loading was removed, the detail was then cooled further 

to -140°F (-96°C). Then the cyclic load was reapplied and in 

20 minutes fracture occurred at approximately -150°F (-101°C). 

-49-



Beam BSA 

After 1.863 million cycles of fatigue loading there was a 

2 1/2 in. (64 mm) elliptical surface crack at the unwelded end. At 

the end-welded detail there also existed a 2 in. (51 rom) long ellip

tical surface crack (see Figs. 5.6 and 5.7). Both details were cooled 

to -123°F (-86°C) and cyclic load was applied for 1 hour during which 

time the temperature was slowly lowered to -190°F (-123°C). No frac

ture occurred. 

Additional cyclic loading (.123 million) was applied at room 

temperature until the 2 million cycle fatigue'design life was reached. 

Little fatigue crack growth was experienced (see Figs. 5.6 and 5.7). 

At this time both details were cooled to -40°F (-40°C) and cyclically 

loaded for 1/2 hour. Since no fracture occurred, the unwelded end was 

cooled further to -99°F (-73°C) while being cyclically loaded. Frac

ture occurred at -99°F (-73°C). 

5.4 Stress Intensity Estimates for Cover Plate Details 

5.4.1 Introduction 

All the cover plate beam specimens, except Beam B3A, frac

tured from an elliptical surface crack or an elliptical corner crack. 

The method of superposition ~vas used to estimate the effects of ap

plied load and residual stresses. This method was presented in sec

tion 4.5 for the lateral attachment detail edge cracks. Beam B3A and 

the elliptical cracks in Beams Bl and BlA were also analyzed using 
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the edge crack relationships presented in Section 4.5. This section 

summarizes the relationships used to evaluate the elliptical cracks 

encountered at the cover plate details. 

Several contributions to the stress intensity were estimated 

separately as presented in Equation 9. The contribution from the ap-

plied stress, KAS' was estimated from known solutions under uniform ap

lied stress. Both the nominal section residual stress contribution, 

~S' and the local weld residual stress contribution, ~W' had non

uniform stresses over an elliptical crack surface. To estimate these 

effects a stress-free state was created on the crack surface as was done 

with the flange attachments. A numerical integration method was used 

which is presented in. Section 5.4.4. 

The variation of stress intensity with crack size was not 

obtained since many of the elliptical cracks had different crack 

geometry relationships. Therefore, the semimajor axis, C, and th~ 

semiminor axis, a, values were used as ~own in the fatigue and frac-

ture surface sketches (Figs. 5.1 to 5.6) for the crack size at frac-

ture. C was held constant while the semiminor axis, a, was varied 

+ 0.3 in. (± 8 mm) to calculate several values of K to incorporate the 

plastic zone correction. 

The plastic zone correction, r , (see Equation 9) was used 
y 

when possible when evaluating the stress intensity, K. Several 

stress intensity estimates for the critical crack sizes ~vould not 

converge when this correction was used (see Tables 5.2 a,b). 
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5.4.2 Contribution from the Applied Stress 

The stress intensity for elliptical crack shapes is defined 

by Equation 11 (see Section 4.5.2). The factor, 

can be determined for the elliptical cracks encountered at the cover 

plate details as: 

FE = Crack shape correction 

h F = 1 [1. - k-2 cos 2~] ~ w ere E ~' 

Ek, k, and ~ are defined in Figure 5.12. 

FG Stress concentration correction 

= Free surface correction 

FW Finite width or thickness correction 

2 
For this study FE varied bettveen 1.0 and ·1f for an ellipti-

cal crack growing from a shallow semi-elliptical crack to a semi-cir-

cular crack. FG varied with crack size as shown in Figure 5.13. For 

crack sizes greater than 0.9 in. (10 mm), FG ~ 1.0. F5 was taken as 

1.0 because of the lateral restraint offered by the cover plate in 

the through thickness direction of the flange. FW was defined as a 

function of plate thickness, tf, and crack sizes as equal to: 

na' tan 
2tf 
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where a' = a + r y 

FW approaches infinity when a' approaches tf. 

5.4.3 Contribution from the Stress Concentration 

In a recent study at Fritz Engineering Laboratory, 

Zettlemoyer 1 ~ developed a relationship for stress concentration 

factors, ~ at uncracked cover plate details. Values equal to about 

6.5 were determined for the various cover plate beam specimens from 

Equation 16. 

K log [ (if)-1.54 (~) 0.86] +5.80 (16) 
T e 

Tf = Thickness of flange 

T = Thickness of cover plate cp 

z = Fillet weld leg size 

The stress concentration effect decays rapidly as the crack size in-

creases. This is discussed in more detail in Section 4.5.2. A plot 

of the decay with crack size, a, is shovm in Fig. 5.13 for a typical 

end-weld cover plate beam specimen (\~36x260). The decay·is quite 

rapid. For crack sizes, a, of 0.01 in. (.3 mm) and 0.10 in. (3 mm), 

the stress concentration is 4.56 and 1.73 respectively. 

The effect of stress concentration on stress intensity is 

shmm in Fig. 5.14 for an elliptical crack grm.;ing at the toe of an 

end-welded cover plate. Because of the rapid decay of the stress 

concentration, IZ.r• crack instability did not develop at small 
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elliptical cracks. However the stress concentration significantly 

affected the fatigue strength of the beams. 

5.4.4 Contibution from the Nominal Residual Stresses 

The nominal beam cross section residual stresses were es

timated from measurements on a beam section cut from a length of a 

typical beam. The results shown in Figs. 4.27b, 5.17 and 5.18 were 

determined by using the sectioning method. 19 The stresses were 

adjusted for equilibrium and variation through the flange thickness 

was assumed to be linear. 

The contribution to stress intensity from the cross-section 

residual stresses, KRS , will be positive or negative depending on 

the orientation of the crack and the residual stress distribution. 

An edge crack growing through the residual stress field can be analyzed 

in the same manner presented in Section 4.5.6. However, the estimate 

of ~S' becomes more involved when an elliptical crack grows in the 

non-uniform residual stress field. 

To estimate KRS for an elliptical crack, a numerical in

tegration procedure was developed. An approximate solution for the 

stress intensity, at a point on the crack front from applied splitting 

forces at a point on the crack surface was presented in Reference 4 

and is sho\.U in Fig. 5.15. A computer program was developed using 

this point by point approximation of K, to numerically integrate over 

the area of an elliptical crack. The crack surface was approximated 
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by a 0.03 in. (0.8 mm) mesh. The stress at each mesh point was esti

mated by assuming a linear variation between the flange surfaces. This 

permitted the average force acting on each mesh point to be determined. 

5.4.5 Contribution from the Local Weld Residual Stresses 

The local stresses at the ends of the cover plate were es

timated by using the hole drilling method. 20 By drilling several 

holes near each detail a good estimate of the local residual stresses 

at the crack plane could be reade. Results of these studies are pre

sented in Figs. 5.19 to 5.21 for coverplated beams with and without 

end welds. 

Using the same numerical integration procedure as pre

sented in Section 5.4, the local weld contribution, ~W' to stress 

intensity was estimated. 

5.4.6 Summary and Discussion of the Various Contributions 

The values of K, KAS, ~S' and ~W are summarized in 

Tables 5.2 a,b for each cover plate beam specimen. The stress in

tensity values listed for Beams Bl, B~A, B3 and B5A are for the 

actual crack size at fracture. The plastic zone correction to the 

semiminor crack size, a, would not converge for these beams. 

Each estimate of ~S and ~H \vas checked by numerically 

integrating a uniform stress over the same crack size mesh. The 

stress intensity values obtained were compared with the stress 
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intensity results for uniform stress from the kno~Jn solutions pre-

sented in Section 5.4 Table 5.1 shmvs the sensitivity of this 

numerical integration technique to the a/c ratio and ~- Generally, 

the errors encountered v1ere less than 10%. However, when a/ c was 

less than 0.25 and~ other than 90°, large errors were encountered. 

Hheri comparing the solutions of the stress intensity.estimated by· 

numerical integration and a direct solution for Beam BlA, there was 

an 80.~3% overestimate in the numerical integration solutions. To 

account for this gross overestimate the values obtained for KRS and 

~W were scaled by a factor of 1.0/1.803. 

Because of this overestimate and the small a/c ratio, the 

large elliptical cracks in Beams Bl and BlA were also analyzed as 

edge cracks for the center third of the flange width (see Figs. 5.1 

and 5.2). The nominal section and local weld residual stresses were 

averaged over the central third width and assumed to vary linearly 

through the flange thickness. An analysis similar to that presented 

in Section 4.5 was used. The results shown in Table 5.2 are very 

similar to the results obtained by the elliptical crack numerical in-

tegration method presented in Section 5.4.4. 

/1 . 
~major contribution was from the applied stress, KAs· 

1-j 
Values of KAS were at least ke% of the total stress intensity values 

obtained for each beam fracture analysis. 

The contribution from the nominal residual stress, KRS• was 

much less than KAs· Values of ~S were less than 25% of the total 
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stress intensity estimate, K. The elliptical cracks present in these 

welded cover plate details grew in both positive and negative nom-

inal residual stress areas w·hich tended to compensate and minimize 

their effect. 

The contribution from the local weld residual stress, ~W' 

was approximately gg% of the total stress intensity estimate, K, for 

beams Bl, BlA and B3 if the full local residual stress was applied. 

The remaining beams hadKLw estimateswhich were less than 20% of the 

total stress intensity. 

There are two areas of uncertainty related to the local 

weld residual stress estimates. First, the stress measurements made 

by the hole drilling method were made ~ in. (6 mm) away from the weld 

toe. Hence, the actual stresses at the crack growth planes Here not 

knolVTI. Second, the stresses measured Here only surface residual 

stresses. Therefore, the distribution through the thickness Has un-

knmm. The assumptions made in determining the local Held residual 

stress distribution sholVn in Figs. 5.19 to 5.21 Here conservative. A 

lower bound estimate of Kuv was then made by taking 50% of the cal-

culated value. These values are also listed in Tables 5.2 a,b. 

The stress concentration effects had a negligible effect 

on the stress intensity factor. The stress concentration -.;.;as pre-

dieted to decay rapidly with crack growth. At the fracture point the 

stress stress concentration correction, FG' was approximately 1.0 for 

each cover plate fracture. 
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All of the analyses in this study utilized linear elastic 

fracture mecahnics. 'Vhenever the net ligament at an elliptical crack, 

or flange thickness at an edge crack, becomes less than the plastic 

zone size using ~ the value of Equation 10, the validity of this 

method is diminished. Beam BlA had obvious plasticity on the· frac

ture surface at the~ in. (6 mm) net ligament (see Fig. 5.2.). An 

elastic plastic method might have been more applicable for this case 

even though the estimated fracture resistance was in agreement with 

the material resistance. Table 5.3 shows the net ligament sizes for 

all the cover plate beam specimens. 
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6. COMPARISON OF BEAH K ESTHIATES AND MATERIAL K TESTS 
c 

6.1 Lateral Attachment Details 

The beam fracture stress intensity estimates were correlated 

with the static and dynamic material toughness characterizations. Both 

the A36 and A588 beam fractures occurred at temperatures in the transi-

tion temperature region of the slow bend KIC material tests. As can 

be seen in Figs. 6.1 to 6.3, there is a very good correlation between 

the beam K estimates and the slow bend material tests. The A514 beam 

fractures occurred at temperatures below the slow bend curve transi-

tion temperature region. The beam stress intensity estimates, however, 

were conservative since these points were above the KIC value. 

The good correlation between the beam stress intensity esti-

mates and the slmo~ bend KIC material tests can be attributed to their 

similar loading rates. As discussed in Section 2.9, the beam fracture 

test loading rate was between 70 and 100 ksi/sec. and occurred as the 

crack front was being advanced under cyclic loading. The slow bend, 

three-point bend specimens were loaded at a rate of 20 kips/sec. which 

is 50 ksi/sec. at the crack tip. The dynamic KID specimens were frac

tured in approximately 4 x 10-~ se~. The beam tests demonstrated that 

the fracture resistance of these welded bridge details corresponded to 

the fracture toughness measurements which used a loading time of about 

one second. 
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Also plotted in Figs. 6.1 to 6.3 are the beam stress inten

sity estimates from the applied stress alone (KAS). There is good 

correlation between KAS for Beams B2, B2A, B4A, and B6A and their 

respective slow bend material test results. This demonstrates that in 

these tests, the residual stresses from welding and flame cutting did 

not significantly alter the fracture resistance. However the contribu

tion to the stress intensity estimate from the residual stress field, 

~S should be considered when the crack tip is in the high tensile 

residual stress region of the web-to-flange welds. This can readily 

be seen in Figs. 4.3 and 4.5 for Beams B4 and B6, respectively. In 

both of these cases ~ was nearly 50% of the total stress intensity 

estimate. 

6.2 Cover Plate Details 

The cover plated beam stress intensity estimates at fracture 

were correlated with the static and dynamic fracture toughness charac

terizations. Beams BlA (A514) B3, B34 (A36, rolled) and BSA (A588, 

rolled) fractured at temperatures in the transition region of the slow 

bend KIC material tests. As can be seen in Figs. 6.4 to 6.6, there is 

good correlation bet~..reen the predicted stress intensity estimates, K, 

and the extrapolated portion of the material test curve. Also plotted 

in these figures is the stress intensity value using only ~ ~w· From 

these test analyses no distinction can be made as to which of the 

local weld effects, ~W or ~2. ~W is the better estimate. Haterial 

-60-



tests were run at temperatures in this region, however there was no 

convergence in the test analyses between Eqs. 2 and 3. 

Both Bl (A514) and B5 (A588, rolled) fractured at tempera

tures lower than the transition temperatures for the slow bend material 

tests. The stress intensity estimate, K, for Beam B5 was in direct 

correlation with the KIC material tests results (see Fig. 6.5). How

ever, the stress intensity estimate, K, for Beam Bl was quite conserva

tive (see Fig. 6.6). 

With the exception of Beam B3, the stress intensity esti

mates of beam fractures which precipitated from the large fatigue 

cracks in Beams Bl, BlA, and B3A, were adequately predicted by KAS 

alone (see Figs. 6.4 and 6.6). The stress intensity estimates of 

beam fractures which precipitated from small elliptical cracks 

(Beams B5 and B5A) were best estimated by including all of the resid

ual stress contributions, KRS and ~H (see Fig. 6.5). Generally,' a 

good estimation of stress intensity was obtained by considering only 

the applied stress contribution, KAS' and the nominal section residual 

stress distribution, KRS" These points are also shown in Figs. 6.4 

to 6.6. 

The beam fracture toughness was in good correlation with the 

slow bend KIC material test results. This can be attributed to the 

similarities in the loading rates and the reasonableness of the criti

cal K estimates as was discussed in Section 6.1. 
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7. CONCLUSIONS 

This report summarizes the fatigue and fracture resistance 

of full scale welded beams with lateral attachments and cover plates. 

The fatigue test results were correlated with available test data 

obtained from smaller beams. The beam fracture resistance was corre

lated with fracture control tests made on the same material. 

1. The stress intensity estimates from the beam fractures were 

best modeled by the slow bend KIC fracture toughness. The 

beam fracture tests and the slow bend KIC tests had similar 

loading rates. These tests have demonstrated the applicabil

ity of the one second loading time to measurements of frac

ture resistance of bridge beams. 

2. For relatively large edge cracks, at the lateral attachment 

details, a good approximation of the critical stress inten

sity factor, K, for beam fractures can be estimated by only 

considering the applied stress. However if the edge crack 

tip has moved into the high tensile residual stress field 

near the web-to-flange welds, the residual stress contribu

tion, ~S' should be included. Fracture usually occurred 

when the crack tip was in this region. In one instance there 

was rapid fatigue crack growth through this region due to a 

rise inK, however, fracture did not occur until the fatigue 

crack was larger. 
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3. For the cover plated beam details, a good approximation of 

the critical stress intensity factor, K, for beam fractures 

was obtained by considering only the applied stress contri-

bution, KAS' and the nominal section residual stress contri-

bution, ~s· 

4. Category E of the current AASHTO fatigue specifications was 

found to be applicable to the 12 in. (305 mrn) flange attach-

ment. However, this category was observed to overestimate 

the fatigue strength of the full size cover plated beam de-

tails. The fatigue life for each cover plate detail was at 

or below the design fatigue strength which was based on the 

lower confidence limit of tests of smaller scale cover plated 

18 
beams • 

5. The stress concentration effects for small elliptical corner 
I 

cracks at a groove weld detail was analyzed. The maximum 

stress intensity was at an elliptical corner crack with a 

semi-minor axis of 0.4 in. (10 mm). The predicted stress 

intensity factor was less than the estimated resistance at 

fracture. This value was also less than the predicted frac-

ture toughness value from the slow bend material tests at a 

service temperature of -40° F (-40° C). Similar results and 

comparisons were obtained for the cover plate details. Hence 

small fatigue cracks in materials satisfying the AASHTO tough-

ness specification should not become unstable. 
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6. The Charpy V-notch data in the transition zone was converted 

to stress intensity values by Barsom's equation. Excellent 

correlation was found for the A36 steel and the A588 rolled 

beam steel. However, nonconservative values were predicted 

for the A588 steel and A36 rolled beam steel, and very con

servative results were predicted for the A514 steel. 

7. The measured loading rate temperature shift was always 

greater than the empirical approximation suggested by Barsom. 

Hence this approximation is a conservative estimate. 
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8. TABLES 
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TABLE 1.1 LIST OF TEST SPECIMENS 

/ Beam Numbers 
Detail Typysteel Type A36 A588 A514 

Lateral Attachment B4 B6 B2 

Category E B4A B6A B2A 

Cover Plate B3* B5* Bl 

Category E B3A* B5A* BlA 

Transverse Stiffener B9 Bll B7 

Category C B9A BllA B7A 

Flange Transition BlO Bl2 B8 

Category B BlOA Bl2A B8A 

* Rolled Beams 

All Others Welded 

24 Beams - Total 
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TABLE 2.la RESULTS OF MILL TESTS 

Yield Tensile El 
Plate Heat ono-. 

Pt. Strength o c M p s si c Ni c v M B 
t Steel Number (ksi) (ksi) Gage/% n u r 0 

1/2" A36 401Pl041 44.10 66.20 8/31 .14 1.06 .013 .017 .191 

1" A36 411P4511 40.70 61.40 8/32 .14 1.06 .014 .032 .19'. 

2" A36 402P7031 44.00 70.00 2/34 .17 1.06 .013 .022 .21 

3" A36 432N4 711 45.00 72.00 2/32 .17 1.09 .015 .024 .21 

I 1/2" A588 401N6061 57.20 74.70 8/26 .13 1.09 .019 .028 .28 .28 .37 • 57 .038 
0\ 
........ 1/2" A588 432N2461 53.50 74.60 8/27 .12 1.17 .011 .023 .25 .29 .34 .50 .031 I 

2" A588 401P8161 56.50 78.50 2/33 .12 1.09 .013 • 019 .24 .26 .32 .54 .033 

2" A588 402P7731 61.00 80.00 8/33 .10 1.12 .011 .025 .28 .29 .28 .55 .030 

3" A588 494N5681 57.50 79.50 2/30 .12 1.08 .010 .027 .29 .29 .31 .51 .028 

3/8" A514/J 801P03810 113.63 118.50 2/24 .17 .61 .008 .023 .27 .57 .0025 

1/2" A514/J 801P03810 113.00 120.25 2/30 .17 .61 .008 .023 .27 .. 57 .0025 

1" A514/J 801P03810 114.55 121.80 2/32 .17 .61 .008 .023 .27 .57 .0025 

1-1/2" A514/M 802P50780 125.10 134.15 2/31 .18 .61 .008 .023 .31 1.40 .52 .0028 

1-1/2" A514/ 802N80660 117.00 129.50 2/21 .17 .59 .008 .021 .29 1.37 .49 .0022 
RQ1008 

2 A514/M 801N18640 110.00 122.25 2/19 .18 .66 .007 .023 .26 1.33 .50 .0036 



TABLE 2.lb RESULTS OF MILL TESTS 

Yield Tensile El 
Plate Heat Pt. Strength ong. c M p s si cu Ni c v M 'B t Steel Number (MPa) (MPa) Gage/% n r 0 

1/2" A36 401Pl041 304 456 8/31 .14 1. 06 .013 .017 .19 

1" A36 411P4571 281 423 8/32 .14 1.06 .014 .032 .19 

2" A36 402P7031 303 483 2/34 .17 1.06 .013 .022 .21 

3" A36 432N4711 310 496 2/32 .17 1.09 .015 .024 .21 

I i/2" A588 401N6061 394 515 8/26 .13 1.09 .019 .028 .28 .28 ,' • 37 .57 .038 0'\ 
00 
I 1/2" A588 432N2461 369 514 8/27 .12 1.17 • 011 .023 .25 .29 .34 .50 .031 

')II ... A588 401P8161 390 541 2/33 .12 1.09 .013 .019 .24 .26 .32 .54 .033 

2" A588 402P771 421 552 8/33 .10 1.12 .011 .025 .28 • 29 .28 .55 .030 

3" A588 494N5681 396 548 2/30 .12 1.08 .010 .027 .29 .29 .31 .51 .028 

3/8" A514/ J 801P03810 783 817 2/24 .17 .61 .008 .023 .27 .57 .0025 

1-1/2" A514/ J. 801P03810 779 829 2/30 .17 .61 .008 .023 .27 .57 .0025 

1" A514/J 801P03810 790 840 2/32 .17 .61 .008 .023 .27 .57 .0025 

1-1/2" A514/M 802P50780 863 925 2/31 .18 .61 .008 .023 .31 1.40 .52 .0028 

1-1/2" A514/ 802N80660 807 893 2/21 .17 . .59 .008 .021 .29 1.37 .49 .0022 
RQ1008. 

2 A514/M 801Nl8640 758 843 2/19 .18 .66 .007 . 023 .26 1.33 .50 .0036 



TABLE 2.1 a,b (CONT'D) RESULTS OF MILL TESTS 

Steel Heat Yield Pt Tensile Elong. c M p s si c Ni c v 
Number (ksi) Strength Gage/% n u r 

(ksi) 

A36 
W36X260 122N478 57.9 75.4 8/28.5 .16 1.23 .015 .012 

A588 
W36X230 185N056 66.4 85.2 8/25.2 .16 .94 .012 • 024 .24 . • 31 • 34.55 . 02 

t 
0'\ (b) 1..0 
I 

Steel Heat Yield Pt Tensile Elong. c M p s si c Ni c v 
Number (ksi) Strength Gage/% n u r 

(MPa) (MPa) 

A36 
IV36X260 122N478 399 520 8/28.5 .16 1.23 .05 .012 

A588 
W36X230 185N056 458 587 8/25.5 .16 .94 .012 .024 .24 .31 .34.55 .02 



TABLE 2.lc MILL TEST CVN RESULTS 

Charpy Results Test Spec. Charpy Results Test Spec. 
Plate Heat (Ft-lbs.) Temp. Ft-lbs. (Joules) Temp. Joules 

t Steel Number 1 2 3 (oF) @ OF 1 2 3 (oC) @ oc 

1/2" A36 401Pl041 157 170 163 40 15@ 40 213 231 221 4.5 20@ 4.5 

1" A36 411P4571 68 53 34 40 15@ 40 92 72 46 4.5 20@ 4.5 

2" A36 402P7031 39 54 53 40 15@ 40 53 73 72 4.5 . 20@ 4.5 

3" A36 432N4711 74 75 60 40 15@ 40 100 102 81 4.5 20 @ 4. 5 

I 1/2" A588 401N6061 52 46 49 40 15@ 40 71 62 67 4.5 20@ 4.5 ....... 
0 
I 1/2" A588 432N2461 48 44 22 40 15@ 40 65 60 30 4.5 20@ 4.5 

2" A588 401P8161 82 65 83 40 15@ 40 111 88 113 4.5 20 @ 4 ~ 5 

2" A588 402P7731 65 77 40 40 15@ 40 88 105 54 4.5 20@ 4.5 

3" A588 494N5681 37 41 57 40 15@ 40 50 56 77 4.5 20@ 4. 5 

3/8" A514/5 801P03810 28/39 20/34 19/28 0 25@ 0 38/53 27/46 26/38 -18 34@ -18 

1/2" A514/5 801P03810 32 32 34 0 25@ 0 43 43 46 -18 34@ -18 

1" A514/5 801P03810 62/26 56/26 47/26 0 25@ 0 84/35 76/35 64/35 -18 34@ -18 

1-1/2" A514/5 802P50780 55 56 49 ·0 25@ 0 75 76 67 -18 34@ -18 

1-1/2" A514( 802N80660 28 27 27 0 25@ 0 38 37 37 -18 34@ -18 
RQlOOB 

2 A514/M 801N18610 64 62 60 0 25@ 0 87 84 81 -18 34@ -18 



Steel 

A36 
W36X260 

A588 
W36X230 

Heat 
Number 

122N478 

185N056 

TABLE 2.lc (CONT'D) MILL TEST CVN RESULTS 

Charpy Results 
(Ft-lbs) 

1 2 3 

239 239 239 

87 75 60 

Test 
Temp 
CF) 

40 

40 

Spec 
Ft-lbs 

@ OF 

15@40 

15@40 

Charpy Results 
(Joules) 

1 2 3 

324 324 324 

118 102 81 

Test 
Temp. 

oc 

Spec. 
Joules 

@ oc 

4.5 20@4.5 

4.5 20@4.5 



TABLE 2.2a CROSS-SECTIONAL PROPERTIES OF TEST SPECIMENS 

Nominal - Nominal 
Flange Web Total Moment of Section 

Beam Width Thickness Thickness Depth Inertia Modulus 
Number Steel (in.) (in.) (in.) (in.) (in. 4 ) (in. 3

) 

B2 A514 5.97 1.567 0.385 36.08 6482 360.1 

B2A A514 6.15 1.561 0.386 36.19 6482 360.1 

B4 A36 6.97 2.019 0.375 35.98 9125 506.9 

B4A A36 7.00 2.016 0.375 35.91 9125 506.9 

B6 A588 7.03 2.035 0.387 36.00 . 9125 506.9 
I 

-...J B6A A588 6.98 2.032 0.393 35.98 9125 506.9 N 
I 

B3 A36 16.50 1.478 0.883 36.25 17300 952 
W36X260 

B3A A36 16.56 1.493 0.867 36.25 17300 952 
W36X260 

B5 A588 16.41 1.234 0.780 35.94 15000 837 
W36X230 

B5A A588 16.50 1.246 o. 777 35.94 15000 837 
W36X230 

Bl A514 5.94 1.570 .376 36.06 6482 360.1 

BlA A514 6.00 1.573 .376 36.09 6482 360.1 



TABLE 2.2b CROSS-SECTIONAL PROPERTIES OF TEST SPECIMENS 
I 

Nominal Nominal 
Flange Web Total Moment of Section 

Beam Width Thickness Thickness Depth Inertia Modulus 
Number Steel (nnn) (nnn) (nnn) (nnn) (cm4

) (cm 3 ) 

B2 A514 152 39.67 9.78 916 269,667 5901 

B2A .A514 156 39.65 9.80 919 269,667 5901 

B4 A36 177 51.28 9.53 914 379,623 8307 

B4A A36 178 51.21 9.53 912 379,623 8307 

B6 A588 . 179 51.69 . 9.83 914 379,623 8307 

B6A A588 177 51.61 . 9. 98 914 379,623 8307 

I B3 A36 
-..,J 

W36X260 419 37.54 22.43 921. 720,080 15645 w 
I 

B3A A36 
W36X260 421 37.92 22.02 921 720,080 15645 

B5 A588 
W36X230 417 31.34 19.81 .. 913 624,347 13702 

B5A A588 
W36X230 419 31.65 19.74 913 624,347 13702 

Bl A514 151 39.88 9.55 916 269,667 5901 

BlA A514 152 39.95 9.55 917 269,667 5901 



I 
-....! 
~ 
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Order 
Beam of 

Number Test 

B2 6 

B2A 4 

B4 2 

B4A 1 

B6 3 

B6A 5 

TABLE 2.3a CROSS-SECTION TEMPERATURES AT FRACTURE 

(Lateral Attachment Beams) 

Temperatures at Fracture** 

Bottom Web Top Bottom Top 
Flange Stiff. Flange Flange Flange 

Tl T2 T3 T4 T5 
(oF) CF) (oF) (oF) (oF) 

-155* -106 -102 -171 ---

-61 -71 --- -144* -67 

-80* -59 -45 --- ---

--- -40 --- -105/-96* -36 

--- --- --- --- ---

-43 -77 --- -90/-94* -68 

* Denotes test control gage at critical detail 

** See Fig. 2.4 for gage locations 

I 

I 
I 

Bottom Web Top 
Flange Stiff. Flange 

T6 T7 T8 
(oF) (oF) (oF) 

--- --- ---

I 
--- --- ---

I 

--- --- ---

--- --- ---

-53* -19 -08 

--- --- ---



I 
...... 
I.J1 
I 

Order 
Beam of 

Number Test I 

B2 6 

B2A 4 

B4 2 I 
I 

B4A 1 

B6 3 

B6A 5 

TABLE 2.3b CROSS-SECTION TEMPERATURES AT FRACTURE 

(Lateral Attachment Beams) 

Temperatures at Fracture** 

Bottom Web Top Bottom Top Bottom 
Flange Stiff. Flange Flange Flange Flange 

Tl T2 T3 T4 T5 T6 
CO c) CO c) (oC) (oC) (oC) CO c) 

-104* -77 -74 -113 --- ---

-52 -57 --- -98* -55 ---

-62 -51 -43 --- --- ---

--- -40 --- -76/-71* -38 ---
I 

--- --- --- --- --- -47* 

-42 -61 --- -68/-70* -56 ---

* Denotes test control gage at critical detail 

** See Fig. 2.4 for gage locations 

I 
I 

Web 
i 

Top 
Stiff. Flange 

T7 T8 
(oC) CCC) 

--- ---

I --- ---
: 

--- ---

--- ---

-28 -22 

--- ---
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TABLE 2.4a LOAD HISTORY FOR BEAM B2 (A514) 

Testing ID Subtotal Cumm. Fracture Test Data 
Event 

* ** Fract. 
Detail Temp. Temp. 

() 
r 

N N Tested No. OF OF ksi 

Fatigue a 2,009,100 2,009,100 

Fracture b 10,000 2,019,100 F,G 1 -40 8.7 

8.0 

b 5,000 2,024,100 G 1 -130 -155 8.7 
to 

-155 

* See fracture surface sketches for banding identification 

F - Fillet welded detail 

G - Groove welded detail 

Steel type A514 

** Temperatures at controling gages 

Fatigue Data 

() () () 
max r max 

ksi ksi ksi 

G 8.7 26.0 

F 8.0 

55.0 

I 
55.0 
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TABLE 2.4b LOAD HISTORY FOR BEAM B2 (A514) 

Testing ID Subtotal Cunnn. Fracture Test Data 
Event 

* ''(* Fract. 
Detail Temp. Temp. a r 

N N Tested No. oc oc MPa 

Fatigue a 2,009,100 2,009,100 

Fracture b 10,000 2,019,100 F,G 1 -40 60 

55 

b 5,000 2,024,100 G 1 -90 -104 60 
to 

-104 

* See fra.cture surface sketches for banding identification 

F - Fillet welded detail 

G Groove welded detail 

Steel type A514 

** Temperatures at controling gages 

<, 

Fatigue Data 

a a a max r max 
MPa MPa MPa 

G 60 179 

'F 55 

379 

379 I 
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TABbE 2.5a LOAD HISTORY FOR BEAM B2A (A514) 

Testing ID Subtotal Fracture Test Data Fatigue I 
Cumm. Data 

Event * ** 
Detail Temp. 

N N Tested No. OF 

Fatigue a 1,982,800 1, 982 '800 

Fracture b 15,000+ G 1 -40 
F 1 -40 

35,000 2,017,800 G 1 -40 
F 1 -40 

· Fracture c 13,800+ G 2 -40 . 
55,000 2,072,800 G 2 -40 

Fatigue I d 407,500 2,480,300 

.. 
Fracture e 12,500+ G 3 -40 

48,750 2,529,050 G 3 -40 

Fracture .c: 87,500 2,616,550 G 4 -40 J. 

Fatigue g 180,400 2,796,950 

Fracture 

I 
h 68,750 2,865,700 G 5 -40 

to 
-144 

* 
** 

See fracture surface sketches for banding identification 
Temperature at controlling gages 
Steel Type - A514 

Fract. 
(J (J (J (J, 

Temp. r max r max 
OF ksi ksi ksi ksi 

' 

G 8.7 26.0 
F 8.0 2·3. 8 

4.3 50.6 I 4.0 46.4 
8.7 55.0 
8.0 -50.4 

4.3 50.6 
I 

8.7 55.0 I 

' 
G 8.7 26.0 
F 8.0 23.8 

4.3 50.6 
8.7 55.0 

8.7 55.0 

G 8.7 26.0 
F 8.0 23.8 

-144 8.7 55.0 

G - Groove welded detail 
F - Fillet welded detail 

+ - Cycles for marking crack front 



I 
-...J 
\.0 
I 

I 

TABLE 2 .5b LOAD HISTORY FOR BEAM B2A (A514) 

Testing ID Subtotal Cumm. Fracture Test Data Fatigue Data 
Event * ** Fract. 

Detail Temp. Temp. 
(J (J (J (J 

r r max 
N N Tested No. oc oc MPa MPa MPa MPa 

Fatigue a 1,982,800 1,982,800 ' G 60 179 
F 55 164 

Fracture b 15,000+ G 1 -40 30 349 
.. 

F 1 -40 28 320 
35,000 2,017,800 G I 1 -40 60 379 

F 1 -40 55 348 

Fracture c 13,800+ G 2 -40 30 349 
55,000 2,072,800 G 2 -40 60 379 

Fatigue d 407,500 2,480,300 G 60 179 
F 55 164 

Fracture 12,500+ 3 -40 
I 

349 e G 30 
48,750 2,529,050 G 3 -40 60 379 

Fracture f 87,500 2,616,550 G 4 -40 60 379 

Fatigue g 180,400 2,796,950 G 60 179 
F 55 164 

Fracture h 68,750 2,865,700 G 5 -40 -98 60 379 
to 

-98 

* See fracture surface sketches for banding identification 
** Temperature at controlling gages 

Steel type - A514 + 

G - Greave welded detail 
F - Fillet welded detail 

Cycles for marking crack front 

/ 
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TABLE 2.6a LOAD HISTORY OF BEAM B4 (A36) 

Testing ID Subtotal Cumm. Fracture Test Data 
Event 

* ** 
Nominal Fract. 

Detail Temp. Temp. 
N N Tested No; OF OF 

Fatigue a 2,001,800 2,001,800 

Fracture b 1o,ooo+ G 1 -40 
F 1 -40 

7,500 2,009,300 G 1 -40 
F 1 -40 

Fatigue c. 299,200 2,308,500 

Fatigue d 36,700 2,345,200 

Fracture e 5,ooo+ G 2 -55 
10,000 2,355,200 G 2 -70 
14,500 2,369,700 G 2 -70 -80 

I ---

* See fracture surface sketches for banding identification 
** Temperature at controlling gages 
G - Groove welded detail 
F - Fillet .welded detail 
+ - Cycles for marking crack front 

Steel type - A36 

a a r max 
ksi ksi 

4.5 15.3 
4.0 13.6 

9.0 19.8 
8.0 17.6 

4.5 15.3 
9.0 19.8 
9.8 19.8 

Fatigue Data 

a a r max 
ksi ksi 

G 9.0 19.8 
F 8.0 17.6 

I 
G/F 9.0/8.0 19.8/17.6 

I G/F 6.0/5.3 15.0/13.3 
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TABLE 2.6b LOAD HISTORY OF BEAM B4 (A36) 

Testing ID Subtotal Cumm. Fracture Test Data 
Event 

* ** 
Nominal 

Detail Temp. 
N N Tested No. oc 

·Fatigue a 2,001,800 2,001,800 

Fracture b 10,000+ G 1 -40 
F 1 -40 

7,500 2,009,300 G 1 -40 
F 1 -40 

Fatigue c 299,200 2,308,500 

Fatigue d 36,700 2,845,200 

Fracture e 5,000+ ,., 2 -48 \7 

10,000 2,355,200 G 2 -57 
14,500 2,369,700 G 2 -57 

* See fracture surface sketches for banding identification 
** Temperature at controlling gages 
G - Groove welded detail 
F - Fillet welded detail 
+ - Cycles for marking crack front 

Steel type A36 

Fract. 
Temp. 

oc 

' 

-62 

cr r 
NPa 

31 
28 

62 
55 

31 
62 
68 

Fatigue 
i 

Data 
I 

I 
I 

cr cr cr max r !max 
MPa MPa MPa 

G 62 137 
F 55 121 I 

105 
94 

I 
137 I 
121 

' 

G/F 62/55 137/121 

G/F 41/37 103/92 

105 
137 
137 
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TABLE 2.7a LOAD HISTORY OF BEAM B4A (A36) 

Testing ID Subtotal Cumm. 
Event * Detail 

N N Tested No. 
Fatigue a 1,500,000 1,500,000 
Fracture a 7,5oo+ F 1 

7,500 1,507,500 F 1 
Fatigue a 250,000 1,757,500 
Fracture a 7,5oo+ F 2 

7,500 1,765,000 F 2 
Fatigue a 250,000 2,015,000 
Fracture b 7,5oo+ G 3 

7,500 2,022,500 G 3 
_Fatigue c 250,000 2,272,500 
Fracture d 7,5oo+ G 4 

7,500 2,280,000 G 4 
Fatigue e 250,000 2,530,000 
Fracture f 7,5oo+ G 5 

18,750 2,548,750 G 5 
Fatigue g 352,000 2,900,750 
Fracture g 7,5oo+ F 6 

7,500 2,908,250 F 6 
Fatigue g 67,900 2,976,150 
Fracture h 7,5oo+ G 7 

7,500 2,983,650 G 7 
5,000 2,988,650 G 7 

27,5oo+ G 7 
Fatigue i 243,100 3,231,750 

8,7oo+ 
Fracture j 5,000 3,236,750 G 8 

L__lt.Q..100Q 3,276,750 G 8 

* See fracture surface sketches for band in g 
** Temperature at controlling gages 

Steel type - A36 

Fracture Test Data Fatigue Data 
)~* Fract. s a s a 

Temp. Temp. 
OF OF 

-40 
-40 

-40 
-40 

-40 
-40 

-40 
-40 

-60 
-60 

-40 
-40 

-40 
-40 

-120 to -170 
-170 to -100 

-70 
-70 to -96 -96 

identification 

r max r 
1 

max 

ksi ksi ksi ksi 
G/F 9.0/8.0 1.98/17.6 

4.0 13.6 I 
I 

8.0 17.6 I 

G/F 9.0/8.0 1918/17.6 
4.0 13.6 
8.0 17.6 

G/F 9.0/8.0 19.8/17.6 
4.5 15.3 
9.0 19.8 

G/F 9.0/8.0 19.8/17.6 
4.5 15.3 I 

9.0 19.8 
G/F 9.0/8.0 19.8/17.6 

4.5 15.3 
9.0 19.8 

G/F 9.0/8.0 19.8/17.6 
4.0 13.6 
8.0 17.6 

G/F 9.0/8.0 19.8/17.6 
4.5 15.3 
9.0 19.8 
4.5 15.3 
9.0 19.8 

G/F 9.0/8.0 19.8/17.6 
G/F 4.5/4.0 15.3/13.6 

4.5 15.3 
9.0 19.8 

G - Groove welded detail 
F - Fillet welded detail 

+ - Cycles for marking crack front 

i 
I 
I' 
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TABLE 2.7b LOAD HISTORY OF BEAM B4A (A36) 

Testing ID Subtotal Cumm. Fracture Test 
Event * ')'~-;~ 

Detail Temp. 
N N Tested No. oc 

Fatigue a 1,500,000 1,500,00 
Fracture a 7,5oo+ F 1 -40 

7,500 1,507,500 F 1 -40 
Fatigue a 250,000 1,757,500 
Fracture a 7,5oo+ F 2 -40 

7,500 1,765,000 F 2 -40 
Fatigue a 250,000 2,015 .ooo I 
Fracture b 7,5oo+ G 3 -40 

7,500 2,022,500 G 3 -40 
Fatigue c 250,000 2,272,500 
Fracture d 7,5oo+ G 4 -40 

7,500 2,280,000 G 4 -40 
Fatigue e 250,000 2,580·,000 
Fracture f 7 ,5oo+ . G 5 -51 

18,750 2,548,750 G 5 -51 
Fatigue g 352,000+ 2,900,750 
Fracture g 7,500 I F 6 -40 

7,500 2,908,250 F 6 -40 
Fatigue g 67,900 2,976,150 
Fracture h 7,500+ G 7 -40 

7,500 2,983,650 G 7 -40 
5,000 2,988,650 G 7 -84 to -112 

27,500+ G 7 -112 to -73 
Fatigue i 243,100 3,231,750 

8,7oo+ 
Fracture j 5,000 3,236,750 G 8 -57 

40 000 3 2 276.750 1 G 8 -57 to -n· 
* 
** 

See fracture surface sketches for banding 1dentification 
Temperature at controlling gages . 
Steel type - A36 

Data Fatigue Data 
Fract. 
Temp. 

(J (J (J (J 
r max r max 

oc MPa MPa HPa MPa - G/F 62/55 137/121 
28 94 
55 121 

G/F 62/55 137/121 
28 94 
55 121 

G/F 62/55 137/121 
31 105 
62 137 

G/F 62/55 137/121 
31 105 
62 137 

G/F 62/55 137/121 
31 105 
62 137 

G/F 62/55 137/121 
28 94 
55 121 

G/F 62/55 137/121 
31 105 
62 137 
31 105 
62 137 

G/F 62/55 137/121 
G/F 31/28 105/94 

31 105 
-71 62 137 

G - Groove welded deta1l 
F - Fillet welded detail 

+ - Cycles for marking crack front 
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TABLE 2.8a LOAD HISTORY OF BEAM B6 (A588) 

Testing ID Subtotal Cunnn. Fracture Test Data 
Event 

* ** 
Detail Temp. 

N N Tested No. OF 

Fatigue a 1,999,800 1,999,800 

Fracture b 5,000+ G 1 .'-30 
F 1 ·'-30 

7,500 2,007,300 G 1 -40 
F 1 -40 

Fatigue c 797,400 2,804,700 

; 

Fracture d 18,750+ F 2 -40 
75,000 2,879,700 F 2. -40 

Fracture e 7,500 F 3 -40 
75,000 2,954,700 F 3 -40 

* See fracture surface sketches for banding identification 
** Temperature at controlling gages 
G - Groove welded detail 
F - Fillet welded detail 
+ - Cycles for marking crack front 

Fract. 
Temp. a r 

OF ksi 

4.5 
4.0 
9.0 
8.0 

\ 

4.0 
8.0 

4.0 
-53 8.0 

,, 

Fatigue I Data 
I 

a a a! 
max r max 

ksi ksi ksi 

G 9.0 27.5 
F 8.0 24 .ll 

23.0 
20.4 
27.5 
24.4 

! 
G 9.0 27 5x· ,• 
F 8.0 24.4 

20.4 
24.4 

20.4 
24.7Y 

x- Static jack dropped load maximum stress changed from 27.5 to ~23 for 400,000 cycles of load 
y - Static jack increased load 

Steel type - A588 

I 
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TABLE 2.8b LOAD HISTORY OF BEAM B6 (A588) 

Testing ID Subtotal Cumm. Fracture 
Event * ** 

Detail Temp. 
N N Tested No. oc 

Fatigue a 1,999,800 1,999,800 

Fracture b 5,000+ G 1 -34 
F 1 -34 

7,500 2,007,300 G 1 -40 
F 1 -40 

Fatigue c 797,400 2,804,700 

Fracture d 18,750+ F 2 -40 
75,000 2,879,700 F 2 -40 

Fracture e 7,500 F 3 -40 
75,000 2,954,700 F 3 -40 

* See fracture surface sketches for banding identification 
** Temperature at controlling gages 
G - Groove welded detail 
F - Fillet welded detail 
+ - Cycles for marking crack front 

Test Data 
Fract. 
Temp. 0 r 

oc MPa 

31 
28 
62 
55 

28 
55 

28 
-47 55 

Fatigue Data 

0 0 0 max r max 
MPa MPa MPa 

G 62 190 
F 55 168 

159 
141 
190 
168 

G 62 190x 
F 55 168 

141 
168 

141 
170y 

x- Static jack dropped load maximum stress changed from 27.5 to ~23 for 400,000 cycles of load 
y - Static jack increased load 

Steel type - A588 
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TABLE 2.9a LOAD HISTORY OF BEAM B6A (A588) 

Testing ID Subtotal Cumm. Fracture Test Data 
Event 

'/( '/(* 
Detail Temp. 

N N Tested No. OF 

Fatigue a 2,042,600 2,042,600 

Fracture b 22,500 2,065,100 G 1 -40 
F 1 -40 

Fatigue c 732,400 2,797,500 

Fracture d 25,000 2,822,500 G 2 -40/-90 

* See fracture surface sketches for banding identification 
** Temperature at controlling gages 
G - Groove welded detail 
F - Fillet·welded detail 
x - Static jack increased load 

Steel type - A588 

Fract. 
Temp. 

OF 

-92 

Fatigue Data 
.. 

a a· a a 
r max r max 

ksi ksi ksi ksi 

G 9.0 19.0 
F 8.0 16.9 

9.0 27.5 
8.0 24.4 

G 9.0 19.0 
F 8.0 

I 
16.9 

9.0 28.3x 
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TABLE 2. 9b LOAD HISTORY OF BEAM B6A (A588) 

Testing ID Subtotal Cunnn. Fracture Test Data 
Event * ** 

Detail Temp. 
N N Tested No. oc 

Fatigue a 2,042,600 2,042,600 

Fracture b 22,500 2,065,100 G 1 -40 
F 1 -40 

Fatigue c 732,400 2,797,500 

Fracture d 25,ooo I 2,822,5oo G 2 -40/-68 

* See fracture surface sketches for banding identification 
** Temperature at controlling gages 
G Groove welded detail 
F - Fillet welded detail 
x - Static jack increased load 

Steel type - A588 

Fract. 
Temp. 

oc 

-69 

I 
Fatigue Data 

i 

i 
(J (J (J (J 

r max r :max 
MPa MPa MPa MPa 

G 62 131 
F 55 117 

62 190 
I 

' 
55 168 ' ! 

G 62 i31 
F 55 117 

62 195x 
I 
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TABLE 2.10a LOAD HISTORY/BEAM Bl (A514) 

Testing *ID Subtotal Cumm. Fracture Test Data 
Event 

*,"( Fract. a 
Detail Temp. Temp. r 

N N Tested No. OF OF ksi 

Fatigue a 1,765,000 1,765,000 

Fracture b 7,500 1,772,500 E,N 1 ":"40 8 
33,800 1,806,300 E 1 -40/ -200 8 

-200 

TABLE 2 .lOb 

Testing ;'(ID Subtotal Cumm, Fracture Test Dat~ 
Event 

·M~ 

Detail Temp. 
N N Tested No. oc 

Fatigue a 1,765,000 1,765,000 ., 

Fracture b 7,500 1, 772,500 E,N 1 -40 
33,800 1,806,300 E 1 -40/ 

-129 

* See Fracture Surface Sketches for banding identification 
E - End Weld Coverplate 
N - No End Weld Coverplate 
** Ternperatures.at controlling gage 

F:ract. 
Temp. a 

r 
oc MPa 

55 
-129 55 

., 

Fatigue 
1
Data 

a a a 
max r max 

ksi ksi ksi 
I 

8.0 26.0 

55 
55 

Fatigue Dat 

a a a max r max 
MPa MPa MPa 

55 179 

379 
379 
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TABLE 2.lla LOAD HISTQR¥_/BEAM BlA (A514) 

Testing *ID Subtotal Cunun. Fracture Test Data 
Event 

Detail l *"~ Fract. a 
Temp. Temp. r 

N N Tested No. OF OF ksi 

Fatigue a 1,134,200 1,134,200 

Fracture b 1,134,200 Et,N 1 -48 .-48 8 

TABLE 2.llb 

Testing *ID Subtotal Cumm. Fracture Tes,t, ;Data 
Event 

** 
Detail Temp. 

N N Tested No. oc 

Fatigue a 1,134,200 1,134,200 

Fracture b 1,134,200 Et,N 1 -44 

* See Fracture Surface Sketches for banding identification 
E - End Held Coverplate 
N - No End Weld Coverplate 
** Temperature at controlling gage 
t Critical Detail 

Fract. 
Temp. a r 

oc MPa 

-44 55 

Fatigue Data 

a a a max r max 
ksi ksi ksi 

8.0 26.0 

55 

Fatigue Data· 

a a a max r max 
l1Pa MPa NPa 

55 179 

379 
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TABLE 2.12a LOAD HISTORY/BEAM B3 

Testing *ID Subtotal Cunnn. Fracture Test Data 
Event 

** Fract. 
Detail Temp. Temp. 

(J 
r 

N N Tested No. OF OF ksi 

Fatigue a 2,001,200 2,001,200 

Fracture b 7,500 2,008,700 E,N 1 -40 8.0 

Fatigue c 162,000 2,170,700 

Fracture d 2,170,700 Et,N 2 -40 -45 5.4 

TABLE 2.12b 

Testing *ID Subtotal Cunnn. Fracture Test Data 
Event 

'~* 

Detail Temp. 
N N Tested No. oc 

--
Fatigue a 2,001,200 2,001,200 

Fracture b 7,500 2,008,700 E,N 1. -40 

Fatigue c 162,000 2,170,700 

Fracture d 2,170,700 Et,N 2 -40 

* See Fracture Surface Sketches for banding identification 
E - End Weld Coverplate 
N - No End Held Coverplate 
** Temperat.ure at controlling gage 
t Critical Detail 

Fract. 
Temp. 

(J 
r 

oc MPa 

55 

-43 37 

Fatigue Data 

(J (J (J 
max r max 

ksi ksi ksi 

8.0 9.8 

19.8 

8.0 9.8 

17.2. 

:Fatigue Data 

(J (J (J 
max r max 

MPa 11Pa MPa 

55 68 

136 

55 68 

119 
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TABLE 2.13a LOAD HISTORY/BEAM B3A (A36, W36x260) 

Testing *ID Subtotal Cumm. Fracture Test Data 
Event 

** Fract. 
Detail Temp. Temp. 0' r 

N N Tested No. OF OF ksi 

Fatigue a 1,790,900 1,790,900 

Fracture b 15,000 1,805,900 E,N 1 -40 8.0 
11,300 1,817,200 E 1 -43/ -96 8.0 

-96 --

TABLE 2.13b 

Testing )~ID Subtotal Cumm. Fracture Test Data 
Event 

*~"( Fract. 
Detail Temp. Temp. 0' r 

N N Tested No. oc oc MPa 

Fatigue a 1,790,900 1,790,900 

Fracture b 15,000 1,805,900 E,N 1 ... 4o 55 
11,300 1,817,200 E. 1 -42/ -71 55 

-71 

* See Fracture Surface Sketches for banding identification 
E - End Weld Coverplate 
N - No End Weld Coverplate 
** Temperature at controlling gage 

.. 
.I 

Fatigue Data 
I 

0' 0' Ia 
max r max 

ksi ksi 1 ksi 
I 

8.0 9.8 

19.8 
19.8 

Fatigue Data 

0' 0' 0' 
max r max 

MPa MPa MPa 

55 68 

137 
137 
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TABLE 2.14a LOAD HISTORY/BEAM B5 (A588, W36x230) 

Testing *ID Subtotal Cumm. Fracture Test Data 
Event 

** Fract. 
Detail Temp. Temp. a r 

N N Tested No. OF OF ksi 

Fatigue a 2,000,000 2,000,000 

Fracture b 7,500 2,007,500 E 1 ... 40 8,0 
5,000 2,012,500 E 1 ':""150 ... 150 8.0 

TABLE 2.14b 

Testing *ID Subtotal Cumm. Fracture Test Data 
Event 

** Fract. 
Detail Temp. Temp. a r 

N N Tested No. oc oc 'MPa 

Fatigue a 2,000,000 2,000,000 

Fracture b 7,500 2,007,500 E 1 ':""40 55 
5,000 2,012,500 E 1 ':""101 -101 55 

* See Fracture Surface Sketches for banding identification 
E - End Weld Coverplate · 
N - No End Weld Coverplate 
"~* Temperature at controlling gage 

Fatigue Data 

a a a max r max 
ksi ksi ksi 

8.0 10.5 

27.5 
27.5 

Fatigue Data 

a a a max r max 
'MPa MPa NPa 

55 72 

190 
190 
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TABLE 2.15a LOAD HISTORY/BEAM B5A (A588, W36x230) 

Testing *ID Subtotal Cumm. Fracture Test Data 
Event ** Fract. 

Detail Temp. Temp. 
a 

r 
N N Tested No. OF OF ksi 

Fatigue a 1,862,500 1,862,500 

Fracture b 15,000 1,877,000 E,N .1 -129/ 8.0 
-190 

Fatigue c 123,000 2,000,000 

Fracture c 7,500 2,007,500 E,N 2 -40 8.0 
10,000 2,017,500 E -40/ -99 

-99 

- - TABLE 2 .15b 

Testing *ID Subtotal Cumm. Fracture Test Data 
Event ** Fract. 

Detail Temp. Temp. a 
r 

' N N Tested No. oc oc MPa 

Fatigue a 1,862,500 1,862,500 

Fracture b 15,000 1,877,000 E,N 1 -40 55 

Fatigue c 1,230,000 2,000,000 

Fracture 

I 
c 7,500 2,007,500 E,N 2 -40 

10,000 2,017,500 E -40/ -73 55 
-73 . . * See Fracture Surface Sketches for band~ng ~dent~ficat~on 

E - End 1.\Teld Coverplate 
N - No End Weld Coverplate 
** Temperature at controlling gage 

Fatigue Data 

a a a 
max r max 

ksi ksi ksi 

8.0 12.9 

27.5 

8.0 12.9 

27.5 

Fatigue Data 

a a a 
max r max 

MPa MPa MPa 

55 89 

190 

55 89 

190 



TABLE 3.la TRANSITION T~WEfu\TURE DATA FOR FLANGE PLATES 

Transition Temperature (°F) 

Material (15 ft.-lb.) (15 mil) 

A36 (2" Pl) -16 -26 

A588 (2 11 Pl) -24 -15 

A514 (1-1/2" Pl) -133 -102 

A36 (1-7/16" Pl) -37 -46 

A588 (1-1/4" Pl) -73* -74 

(a) 

TABLE 3.lb 

Transition Temperature (°C) 

Material (20 Joule) (0.38 mm) 

A36 (51 mm Pl) -26.5 -32 

A588 (51 mm Pl) -31 -26 

A514 (38 mm Pl) -91.5 -74.5 

A36 (37 mm Pl) -38 -43 
W36X260 

A588 (32 mm Pl) -58* -59 
W36X260 

(b) 

*Transition Temperature of 17 ft-lbs (23 Joules) 

-94--



TABLE 4.1 REMAINING FATIGUE LIFE: 
LATERAL ATTACID1ENT DETAILS 

Beam Remaining Fatigue Life* 

Steel Number (Cycles) 

B2 1,168,100 

A514 

B2A 576,500 

B4 175,200 

A36 

B4A 9,800 

B6 408,000 

A588 

B6A 669,600 

* Fatigue failure defined at an edge 

crack size = ~ flange width 

-95-
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TABLE 4 . 2a CRACK SIZE MEASUREMENTS : 
LATERAL ATTACHMENT DETAILS 

Measured Crack Sizes Averaged Crack Sizes (in.) 

(1) (2) (3) (4) (1)+ (2)+ (3)+ ( 4) (1)+(2) (2)+(3) (3)+(4) 
I 

a' c;) a'(;) 
4 2 2 2 

Beam a. a 
~ 0 

Number (in.) (in.) (in.) (in.) a aT ~ aB ave 

B2 0.60 0.90 1.17 1.26 0. 98 0.75 1.04 1.21 

B2A 1.37 1.64 1. 78 1.80 1.65 1.51 1.71 1. 79 

B4 2.92 3.12 3.32 3.38 3.19 3.02 3.22 3.35 

B4A 4.62 4.90 5.03 4.93 4.87 4. 76 4.96 4.98 

B6 2.97 2. 85 2.58 2.19 2.65 2.93 2. 72 2.39 

B6A 0.93 1.41 1.82 1.96 1.53 1.17 1.61 1.87 

* Correction used at critical flange t thickness (see Table 4.3) 

r * y 
Correction 
Pl .. Stress 

(in.) 

0.09 

0.14 

0.41 

0.47 

1. 27 

0.10 



I 
~ 

. " I 
Measured 

(1) (2) 

a 1 C-}) Beam a. 
l. 

Number (mm) (mm) 

B2 15 23 

B2A 35 42 

B4 74 79 

B4A 117 124 

L;_ 75 72 

24 36 A 

a. 
l. 

a I c;) 

a 
l---0----<>~1 

TABLE 4.2b CRACK SIZE MEASUREMENTS: 
LATERAL ATTACHHENT DETAILS 

Crack Sizes Averaged Crack Sizes (mm) · 

(3) (4) {12+{22+{32+{42 {12+~22 ~22+(3) 

a' Ci-) 4 2 2 
a 

0 

(mm) (mm) a I aT ~ 

30 32 25 19 26 

45 46 42 38 43 

84 86 81 77 82 

128 125 124 120 126 

66 56 67 74 69 

46 50 39 30 41 
-

1 * Correction used at critical flange. 3 thickness (see Table 4. 3) 

r * y 
(3)+~4) Correction 

2 Pl. Stress 

aB (mm) 

31 2 

45 4 

85 10 

126 12 

61 32 

48 3 



TABLE 4.3a STRESS INTENSITY ESTIMATES: 
LATERAL ATTACH£.-JENT DETAILS 

Beam No./ Applied Crack (1) (2) (3) (4) (1)+(2)+ 
Flange Size (3)+(4) 

Thickness Stress a+r KAS KRS ~w ~ K y 
Level (ksi) (in.) (ksilfu) (ksifu) , (ksi/in) (ksilfu) (ksi~) 

B2 (oyd=l55.6 ksi) 

TOD 46.5 0.78 74 -28 21 NA 67 
HID 47.8 1.10 92 -16 17 NA 93 

*BOT 49.2 1.30 101 -3 16 NA 114 

B2A(oyd=l53.5 ksi) 

TOP 51.2 1.56 118 50 15 NA 83 
MID 52.7 1.80 130 -29 14 NA 115 

*BOT 54.2 1.93 139 -9 14 NA 144 

B4 (o d=65.5 ksi) y . 
*TOP 16.8 3.43 62 39 4 NA 105 

MID 17.5 3.54 66 ' 23 4 NA 93 
BOT 18.2 3.57 69 -4 4 NA 77 

-

B4A(oyd=67. 7 ksi) 

TOP 18.0 5.20 103 15 5 -12 112 
MID 18.7 5.43 116 0 5 -6 115 

*BOT 19.4 5 ·'•5 102 9 5 0 116 
-

B6 (oyd=79.3 ksi) 

*TOP 25.0 4.20 110 83 30 NA 223 
MID 26.0 2.92 85 -3 6 NA 88 
BOT 27.0 2.54 81 -8 6 NA 79 

B6A(oyd=84.1 ksi) 

TOP 25.0 1.18 49 -38 8 NA 19 
MID 26.0 1.64 61 -30 7 NA 38 

*BOT 27.0 1.99 70 -11 7 NA 66 

* Denotes critical flange thickness level 

oyd = Yield stress at test temperature and loading rate (Eq. 4) 
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TABLE 4.3b STRESS INTENSITY ESTIMATES: 
LATERAL ATTACHMENT DETAILS 

- ~-- -- -
-Beam-N-o. I ' (1)+(2)+ 

Applied Crack (1) (2) (3) (4) 
·Flange Size (3)+(4) 
Thickness Stress a+r KAS KRS ~w ~.ffi. K 

y 
Level (MPa) (mm) (MPaln~) (MParm) (HParm) (MParm) (MParm) 

B2 (ayd=l073 MPa) 

TOP 321 20 81 -31 23 NA 73 
MID 330 30 101 -18 19 NA 102 

*BOT 339 33 111 -3 18 NA 126 

B2A (ayd=l058 MPa) 

TOP 353 40 130 -55 17 NA 92 
MID 363 46 143 -32 15 NA 126 

*BOT 374 49 153 -10 15 NA 158 

B4 (ayd = 452 MPa) 

*TOP 116 87 68 43 4 NA 115 
MID 121 90 73 25 4 NA 102 
BOT 125 91 76 4 4 NA 84 

B4A (ayd = 467 MPa) 

TOP 124 132 113 17 6 -13 123 
MID 129 138 128 0 6 -7 127 

*BOT 134 138 112 10 6 0 128 

B6 (ayd = 547 MPa) 

*TOP 172 91 121 91 33 NA 245 
MID 179 74 94 -3 7 NA 98 
BOT 186 65 89 -9 7 NA 87 

B6A (ayd = 580 I1Pa) 

TOP 172 30 5LJ -42 9 NA 21 
MID 179 42 67 -33 8 NA 42 

*BOT 186 51 77 -12 8 NA 73 

* Denotes Critical Flange Thickness Level 

ayd = Yield stress at test temperature and loading rate (Eq. 4) 
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TABLE 5 .1 NUMERICAL INTEGRATION ERRORS, CO\i'ER PLATE DETAILS 

Beam No. 

. Bl 

BlA 

B3 

B3A 

B5 

B5A 

Crack Size 
a + r 

y 
(in/mm) 

1.05/27 

1. 25/52 

2.1/53 

N.A. 

0.61/15 

1.13/29 

Semi Major 
axis C 

(in/mm) 

2. 95/75 

5.9/150 

7.15/182 

N.A. 

1.175/30 

1. 95/50 

(a+r )/C 
y 

• 36 

.21 

.29 

N.A. 

.52 

.58 

~ 

Degree 

90° 

120° 

90° 

N.A. 

90° 

46.2° 

Percent 
Error in 

~w' ~s 

+5.8 

+80.3* 

+9.6 

N .A. t. 

-1.3 

-7.9 

* ~S and ~W were scaled down in preparation to this overestimate. 

t Flange Edge Crack Analysis 

-100-



I 

Beam 
No 

++-Bl 

Bl 

Steel 
Type 

A514 

A514 

++-BlA A514 

Table 5.2a Stress Intensity Estimates, Cover Plate Details 

Crack 
size, a 

in 

1.0 

1.05 

1.1 

Plastic 
zone size 

r in 
y 

* 

* 
* 

Applied 
Stress 
ksi 

52.71 

52.71 

52.71 

** 
crrd 
ksi 

159 

159 

133 

1 ·.·... 2, 3 + Fracture 
Temp. KAS ~s ~w 
. °F ksi/in ksiliii ksii:Gl 

-200 113 5 187/93 

-200 118 if t:fls~4 

1 + 2 + 3 
K 

ksiv'iii 

305/211* 

fJ~/240 
2-33/lBr* 

-48 125 13 196/98 334/236* 

6 BlA A514 1. 25 * 52.71 133 -48 160 , ? ? ~ftftf!B t ~B/44~ ~ ----··~ J.00/238* 
t-' 
2 

B3 A36 
Rolled 2.10 * 17.2 71 

B3A A36 
Rolled 5.63 0.47 19.8 78 

BS A588 
Rolled o.ss 0.05 26.54 96 

B5A A588 
Rolled 1.13 * 26.54 87 

-45 70 

-96 80 

-150 36 

-99 82 

49 

21 

12 

29 

,IW/70 
-74/3;; 

15/7 

zr9 j/ec; 
l.g3/156 

116/109 

62/55 

/~7//U 
l-25/118ir 

* No convergencewas obtained when the plastic zone correction was used. Results shown are for the 
actual crack size at fracture. 

** From equation 4 with t = 0.12 sec. a = 95% of the mill report yield stress. (See Table 2.la,b) 
+ Local weld contribution reduced 50%, ysvalue listed on right side of /. 
++ Edge crack analysis on center third of. flange width. 



Table 5.2b Stress Intensity Estimates, Cover Plate Details 

Crack Plastic Applied ** Fracture 1 2 3+ 1 + 2 + 3 

Beam Steel size, a zone size Stress (Jyd Temp. KAS ~s ~w K 

No Type mm r ymm MPa MPa oc MPav'm' MPav'm' MPav'm' MPaTm 

++Bl A514 25.4 * 363 1096 -129 124 6 206/102 336/232 
31 ~7//()3 ~&-e/Zb.S 

Bl A514 26.7 * 363 1096 -129 130 H 4:-14/5? 2§6/199 

-H-BlA A514 27.9 * 363 917 -44 138 14 216/108 367/260 

I BlA A514 31.8 * 363 
~ ~ 4-~/Z-J--9 71P/¢t;o 

917 -44 176 f-8. 136/68 330/262 
1-' 
0 

&u~/us N B3 A36 lffl--/77 I 

Rolled 53.3 * 119 490 -43 77 54 Sl:/41 2l2/172 

B3A A36 
Rolled 143.0 11.9 137 538 -71 88 23 17/8 128/120 

B5 A588 
Rolled 14.2 1.3 183 662 -101 40 .13 15/8 68/61 

B5A A588 ::44 1s1/t3~ 
Rolled 28.7 * 183 600 -73 90 32 1-38/130 

'/( No convergence was obtained when the plastic zone correction was used. Results shmm are for the 
actual crack size at fracture. 

** From equation 4 with t = 0.12 sec. CJ ~ 95% of the mill report yield stress. (See Table 2.la,b) 
+ Local weld contribution reduced 50%,ysvalue listed on right side of /. 
++ Edge crack analysis on center third of flange 'Hidth. 



' . 1 

< . ; 

----~-=------- --
Beam No. 

Bl 

BlA 

B3 

B3A 

B5 

B5A 

Steel 
Type 

A514 

A514 

A36 
(W36X260) 

A36 
(W36X260) 

A588 
(W36X230) 

A588 
(W36X230) 

TABLE 5.3 NET LIGAHENT SIZES 

1 K 
4TI- ·oyd 

(in.) I (mm) 

.1714 

.40110 

.59115 

.1815 

.031.8 

~1614 

2 

Net Ligament 
B-a 

(in.) I (mm) 

.5113 

.3519 

.84121** 

1.·44137* 

.113 

* Flange Thickness - Edge Crack (see Fig. 5.4) 

** Web Thickness -(see Fig. 5.3) 
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Fig. 2.3 Photograph of Test Setup 
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11. APPENDICES 
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APPENDIX A 

The two-ended crack shown in Fig. A.l was analyzed by using a 

method similar to that proposed by Madison 21
• The crack openings of 

the flange and web crack at the web-to-flange junction are known to be 

equal. Therefore, to satisfy compatibility, a closing force was 

applied to the flange crack and an opening force is applied to the web 

crack. 

The flange crack opening at the compatibility point is a 

function of the applied stress and the residual stress.· Local weld 

effects can be neglected since the crack tip is distant from the 

detail welds. 

vf was obtained from the formulation presented in Ref. 15 (see 
AS 

Fig. A.l 

4 a a 
= 

E 

v (~) 1 
1 (~~) 

0.007 

v 
1 

{0.459 

( . Tia ) s~n 2b 

(sin ~:) - 0.065 

5 

+ cosh- 1 
(sec 

3 

( . Tia ) 
s~n 2b 

~:)} 

(Al) 

(A2) 

v f was derived follmving the formulation presented by Madison21 for 
RS 

a partially loaded edge crack (see Fig. A.3) 
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X < c: 

X > c: 

- x coth- 1 

4cr 
=-

ETI 

X 0 

4cr 
ETI 

-CB2-~2 "} 
X 2 2 a - c 

x2 sin- 1 E. + c tanh - 1 vs2 - x
2 -

a 2 2 a - c 

E.+ c coth- 1 

a (1 -::) 

(A3) 

-1/2} 
(A4) 

The web crack opening at the compatibility point is also a 

function of the applied stress and the residual stress15
• 

v 
w 

v + v 
WAS WRS 

v was estimated following the formulation presented in Ref. 15 for 
wAS 

the in-plane bending case (see Fig. A.3 for the diagram) 

4 a a v (:) v 
E WAS 2 

2 
v (~) 0.8-1.7 (~) +2.4 (~) + 

0.66 
(AS) 2 (1-:)2 
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V was derived in a manner identical to vf 
w~ ~ 

If vf < vw there is no web restraint and the stress inten

sity can be computed by analyzing the flange edge crack alone. If 

vf > vw, there is a web restraining effect. 

The difference between vf and vw' ~v, has to equal zero 

to meet the compatibility conditions 

(A6) 

After defining an interaction area (see Fig. A.2) a closing force was 

applied to the flange crack. Similarly, an opening force is applied 

to the .. web crack. This force must be defined as a stress acting over 

an interaction area since crack displacement at a point load is not 

defined. The flange closing, vf , and the web opening, vw , are 
c 0 

defined by Eqs. Al and AS as a function of stress crf and crw. 

(A7) 

v f (cr ) w w 
0 

Since the interaction area is assumed to be common to both the flange 

and ,.;reb then 
icr.,l = 1-cr I 

.L w 

By the compatibility condition 

+ v 
w 

0 

~v 
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(A9) 



of or a 
w 

0 c 
stress in 

can be solved directly from Eqs. A7 and A9. From the 

the flange crf, and the assumed interaction area a restrain-

ing value of K can be determined through Eq. 14 in Section 4.5.4. 

Ideally this procedure should be an iterative one using the 

plane stress plastic zone correction 

Since the fracture toughness, K , of the material from the material 
c 

characterization is known, a first approximation of r can be obtained 
y 

and thus a good estimate of ~· This was the case for analysis of 

beam B4A. Only one iteration was needed since the interaction area 

was in the top one-third of the flange thickness as shown in Fig. A.2. 

The restraint was decreased linearly to the bottom one-third. Thus 

~was -12, -6, 0 for top, middle and bottom levels of the flange 

thickness. 

-206-



APPENDLX B - NOMENCLATURE 

a = edge crack size; semi-minor axis crack size for an elliptical 

crack 

a' = a + r 
y 

B = 3 point bend specimen width 

b = flange width 

C = semi-major axis crack size for an elliptical crack 

c = dimension from the plate edge to the end or beginning of the 

approximated block of residual stress (see Fig. 4.17) 

E Young's Modulus, 29000 ksi 

Ek = elliptical integral of the second kind 

F(a')= 

1 
= elliptical crack front correction, for ~ = 90° 

ER 

FG stress concentration correction 

F
5 

= free surface correction 

F~.] finite ·width correction 

K linear elastic fracture mechanics stress intensity factor 

= KAS + ~ + ~H + ~VR 

KAS stress intensity contributions from the applied stress 

~S stress intensity contribution from the nominal section residual 

stresses 
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~W stress intensity contribution from the local weld residual 

stresses 

~ = stress intensity contribution from the web restraint 

K fracture toughness value 
c 

KTd = fracture toughness value from the dynamic material test 

~ stress concentration factor 

k ~- (f/] 
-1/2 

P applied load 

r = plastic zone size 
y 

t = loading time to maximum load 

t = time of load application for a static tensile test 
0 

T = testing temperature 

T cover plate thickness 
cp 

v f = flange crack opening, = v + V f 
fAS RS 

v flange crack opening from the applied stress 
fAS 

v flange crack opening from the residual stress 
fRS 

v web crack opening 
\'1 

v web crack opening from the applied stress 
HAS 

v web crack opening from the residual stress 
WRS 
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z = fillet weld leg size 

"" 
" OAS applied stress 

cry yield stress 

0 YD yield stress as a function with loading rate and temperature 

a· 
r 

stress range 

0 residual stress block stress 
rs 

~ = parametric angle, see Fig. 5.12 

-209-



• 

-"" 

12. VITA 

Keith Dale Boyer, the son of Eleanor and Lee D. Boyer, was 

born on January 24, 1952 in Ashland, Pennsylvania. The author grew up 

in Lebanon, Pennsylvania and was graduated from Lebanon Senior High 

School in 1969. 

His undergraduate studies were conducted at Lehigh University 

where he received two undergraduate degrees. In 1973 he received a 

Bachelor of Arts in Applied Science and in 1974 he received a Bachelor 

of Science in Civil Engineering. Continuing his education at Lehigh 

University, he was awarded a Research Assistantship in Civil Engineer

ing at Fritz Engineering Laboratory, Lehigh University, in September 

1974 and received his Master of Science in Civil Engineering, with a 

structures major, in May 1976. 

The author has co-authored Fritz Engineering Laboratory 

Report No. 399-2(76), "Fracture Analyses of Full Size Beams with 

Welded Lateral Attachments". 

-210-


	Lehigh University
	Lehigh Preserve
	1976

	Fracture analysis of full size beams with welded details, May 1976 (MS thesis)
	Keith D. Boyer
	Recommended Citation


	tmp.1394460055.pdf.34lbp

