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ABSTRACT

This dissertation describes an analytical technique for
predicting the response to overloads of simple-span and continuous
multi-girder beam—-slab type highway bridge superstructures made of
steel beams and reinforced concrete slabs. The nonlinear overload
response is obtained by using a tangent stiffness solution process.
The analysis scheme also employs the displacement based finite ele-
ment method of structural analysis, where the superstructure is
discretized into a series of beam and slab finite elements, and, in
addition, where the elements are further subdivided into a series
of layers through their depth. The beam and slab finite elements in
this model are allowed to deform in both bending and in-plane dis-
placement modes, while the beam finite elements are also permitted
to deform in shear. Each of the element layers is assumed to have
its own stiffness properties and to be in a state of plane stress.
The nonlinearities included in the model are: inelastic stress-
strain relationships, cracking and crushing of concrete, yielding and
strain hardening of steel, buckling of beam compression flanges, and
buckling of plate girder webs and compression flanges. The method
is verified through comparisons of analytical results and laboratory

or field overload test results.




1. INTRODUCTION

1.1 Introduction

This dissertation describes a mathematical model which
predicts the overload response resulting from the placement of
overweight vehicles on simple-span or continuous multi-girder high-
way bridge superstructures, with steel beams (girders) and a rein-
forced concrete deck. Because the overload vehicles lack standard-
ization in size, shape, and load distribution, and because each
bridge superstructure is different, the analytical technique pre-
sented herein has been made general enough to perform a nonlinear
analysis of many different bridge superstructures and loading
patterns., This analytical technique can also perform an overload
analysis of deteriorated beam-slab bridges, of composite beams, of

plate girders, and of concrete slabs.

This algorithm employs the finite element method in which
the concrete slab and steel beams (girders) are divided into a
series of finite elements (Fig. 1), interconnected at discrete node
points (Fig. 2). The beam and slab elements are then further sub-
divided into layers (Fig. 3), where each layer has its own stiff-
ness properties. This finite element idealization permits a
realistic simulation of the structural response of the bridge

superstructures. (Refs. 42, 43, 52, 54, 55, 68 and 69).

-2-




The solution scheme also uses a tangent stiffness or piece-
wise linear solution process to simulate the expected inelastic
structural response. In this process the loads are applied in a
series of load increments or load steps, to allow for changes in
the overall structural stiffness due to nonlinear responses, i.e.
inelastic stress-strain relationships or buckling. This tangent
stiffness solution process provides a continuous description of the
structural response from initial load levels in the elastic range

up to the collapse load levels.

The reliability of this analytical technique is illustrated
by several collations between experimental and analytical results.
Comparing the experimental and analytical load versus deformation
diagrams and load versus damage assessments for the various test
structures, more than adequate correlation exists to verify the

reliability of the analytical technique.

1.2 Problem Statement

The overloading of beam-slab highway bridges with rein-

forced concrete slabs and steel beams or girders, hereafter

referred to as steel bridges, has become a relatively common occur-
rence due to basically three factors: (1) increases in the allowable
vehicular weight limitations, (2) transportation of heav& industrial
and comstruction equipment, and (3) the issuing of overload permits
for specialized overweight and oversized vehicles. As a result of
this increased frequency of structural overloads, the bridge

-3-




engineer has an urgent requirement to accurately assess the reserve
capacity and serviceability limits of any bridge superstructure on

which overload vehicles are expected to traverse.

Since an accurate overload analysis requires knowledge of
the actual distribution of forces and stresses in the component
members, the commonly used reverse design method of analysis is
inadequate., This is so because in the reverse design process the
loads are distributed to the composite beam and slab according to
assumed distribution factors; thus the actual interaction of bridge
components to the given load is not considered. 1In addition, if
during an overload the slab cracks, or the beam yields or buckles,
it becomes extremely important to know: the location of such a
failure; the post-failure strength of the component which has failed;
and the manner in which the forces and stresses will redistribute
themselves due to the failure. Again, typical analysis procedures
which evaluate one beam at a time cannot account for these phenomené
because no interaction between bridge components takes place. How-
ever, the method presented in this dissertation allows for the con-
sideration of all these phenomena. It should also be noted that
while methods have been developed to predict the ultimate capacity
of steel bridges or their components, none of these methods
adequately predicts the structural response of the bridge in the
region between design load levels and ultimate capacity load levels.
Therefore, an analysis method is required which.reliably predicts
both the elastic and inelastic response of a bridge superstructure

4=




as well as .that ill-defined region between the design limit and the
ultimate capacity. Such an analysis scheme would permit through the
application of serviceability limits the defining of the limiting

overloads.

Another analysis technique found in the literature realis-—
tically predicts the structural response to overloads of concrete
slab-concrete beam highway bridge superstructures (Refs. 52, 55),
hereafter referred to as concrete bridges. But no method has been
previously reported in the literature, with the exception of the
technique presented herein, which will reliably predict the entire
structural response to overloads in terms of load versus deformation,
material failure, and local buckling of bridges with steel beams

(girders) with reinforced concrete decks.

1.3 Purpose and Scope of Investigation

As was stated earlier, the goal of the overall research
program is the development of a mathematical model and analysis
technique to reliably predict the complete response of steel high-
way bridge superstructures when. subjected to overloads. Previous
research efforts have successfully predicted the overload behavior
of slab-beam bridges with reinforced or prestressed concrete beams
and concrete decks (Ref. 54, 55); and, simulated the linear elastic
behavior of beam-slab structures with steel beams, including the
effects of shear deformation of the beam, shear lag in the deck, and
slip between the slab and the beam (Ref. 69). The results of these

—~5-



two research efforts served as a basis for the presently reported

work which was divided into three phases:

1.

The "integration" of the algorithms for the
inelastic slab (Ref. 52) and linear elastic
beam (Ref. 64) to produce a composite algor-
ithm, and ultimately a computer program
capable of analyzing the overload response

of steel bridges. This computer program
differs from previous inelastic analytical
techniques by including the effects of slip,
shear deformation of the beam, and shear

lag in the deck, into the inelastic analysis.
The accuracy of the developed analytical technique
is verified via correlation of analytical and

experimental results (Ref. 27).

The extension of the inelastic method_for
analyzing steel bridges, which was developed
for phase 1, to include the effects of:
strain hardening of the beam steel; buckling

of girder webs; and flange buckling (Ref. 28).

The determination of the possible effects of
torsion in the beams and of the possible
occurrence of fatigue cracking in susceptible
details when steel bridges are subjected to

overloads.-




Phase 1 has been reported on and verified in detail (Ref. 27), thus,
only those features of phase l which are essential for a clear
understanding of the contents of this dissertation are to be pre-
sented. Phase 2, while being extensively reported upon and verified
(Ref. 28), will be presented in detail within the context of this
report, because this phase represents the main focus or contribution
to the overall research. The investigative results of phase 3 are

also presented.

To summariée3 this report includes the following
material:
1. A brief description of the analytical techniques
employed to model the material stress=-strain
relationships for the concrete and the steel

materials (see Chapter 2).

2. A description of the analytical modeling
scheme employed to include the predictions
of and effects of flange and web buckling

(Chapter 2).

3. A brief review of the finite element method
and how the finite element method is employed
in the analysis scheme presented in this

report (Chapter 3).

4, Verification of the method through comparisons

with actual test results (Chapter 4).
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5. The determination of the possible effects of
torsion in the beams and of the possible occur-
rence of fatigue failure of susceptible
details when steel bridges are subjected to

overload. (Chapter 5)

1.4 Previous Research

The objective of this research is the determination of the
overload response of simple span or continuous steel multi-girder
highway bridge superstructures. Therefore, only those works which
are reported upon in the literature and which are applicable to the

present problem will be reviewed.

Beam-slab highway bridge superstructures can be divided
into two categories: those with reinforced or prestressed concrete
beams (concrete bridges), and those with steel beams or girders
(steel bridges). While many similarities exist when comparing the
response characteristics of these two types of bridges, concrete
bridges and steel bridges also have many response characteristics
which are applicable only to one or the other. For example, one
of the primary modes of failure for the concrete bridges is the
cracking of the concrete beams, while for the steel bridges the
possible modes of failure may be the formation of plastic hinges,
or the buckling of webs or flanges. Thus, those response character—
istics which are evident in steel bridges may not occur in concrete

bridges, and vice versa.




The first developmental work concerning the analysis of
structures with concrete decks and steel beams was presented in two
papers by Newmark (Refs. 51, 59). The first of these papers did
not consider the composite action of the beam and slab. The
second paper overcame this deficiency and presented a derivation
for the differential equation describing the axial forces of the
component parts in the elastic region. However, this equation
was applicable only to isolated T-beams and not to multi-girder
systems, Others have expanded upon the theory formulated by Newmark
to account for non-uniform connector spacing, initial strains, and

nonlinear material properties using an iterative solution procedure.

Proctor, Baldwin, Henry and Sweeney at the University of
Missouri (Ref. 5) and Yam and Chapman at Imperial College (Ref. 72)
treat the boundary value problem as an initial value problem and
solve the equations by successive approximation; and Dia,
Thirufengadam and Seiss at the University of Illinois (Ref. 19),
Wu at Lehigh University (Ref. 71), and Fu at the University of
Maryland (Ref. 25) use finite differences in conjunction with
Newmark's work. Nonevof thesé methods, however, considers fully
the problem of shear lag, shear deformation of the beam, slip
between the slab and the beam, and continuous structures, whereas,

Tumminelli and Kostem (Ref. 64) employing a finite element method




to include the above deficiency into a linear elastic solution

process with no inelastic capabilities.

Research by Wegmuller and Kostem (Refs. 68, 69) led to the
development of an analysis technique and computer program to predict
the elastic-plastic structural response of eccentrically stiffened
plate systems. This technique, which employed the finite element
method, used the ACM (Ref. 1) rectangular plate element modified
for in-plane displacement by Clough (Ref. 18). The elements were
layered to monitor the spread of yielding throughout the structure.
In addition, the material was assumed to obey a von Mises yield
condition. Based on this work Kulicki and Kostem (Refs. 40, 43)
extended the model and the technique to incorporate eccentrically
placed reinforced concrete or prestressed concrete beams. In this
analysis the response characteristics of the concrete beams were
realistically modelled, including the cracking and crushing of
concrete and yielding of steel. Subséquently, Peterson and Kostem
(Refs. 52, 54, 55) further extended the analysis technique to
accurately simulate the biaxial behavior of reinforced concrete
slabs, and thus in the end, to reliably predict the overload
response of concrete highway bridge superstructures. However, this
still left the problem of the overload analysis of steel bridges to

be solved.

The above research efforts have demonstrated that the
finite element method of analysis provided an efficient tool that

can be used to perform an inelastic analysis of eccentrically

-10-




stiffened glab systems. The complexities in material behavior and
losses in stiffness due to yielding, cracking, crushing, or local
instability can be directly incorporated into the analysis scheme.
Thus, by integrating the works of Tumminelli and Kostem and Peterson
and Kostem, and including the effects of strain hardening, flange
buckling, and web buckling into a concise finite element computer
program, a realistic model for predicting the overload response of
continuous steel multi-girder highway bridges can be developed. The
main contribution of the material in this dissertation, is the

development of such a realistic model.

1.5 The Analytical Model

The analytical model should adequately reflect the
structural characteristics of the actual structure. To reliably
describe the inelastic rééponse of beam-slab highway bridge super-
structures with steel beams or girders, the following must be con-
sidered:

1. The out-of-plame or flekural behavior of the

structure;

2. The in-plane response of the beam and slab

due to the eccentricity of the beams.

3. The coupling action of the in-plane and out~

of-plane responses;

4, Material nonlinearities.

-11-




5. The possibility of slip between the beam and the
slab (i.e. amount of composite action).

6. Shear deformation of the beams or girders.

7. Local instability of the beam and/or girder
flanges or webs, and any associated post-

buckling behavior.

When bridge superstructures are subjected to vehicular
loads, i.e. out-of-plane forces, both longitudinal and transverse
bending moments which are out-of-plane responses, and axial forces
which are in-plane responses, occur in the slab. At the same time,
longitudinal bending moments and axial forces are predominant in the
beams and/or girders; The development of these axial forces in the
slab and beams is due to the eccentricity of the center of gravity
of the beams in relation to the midheight of the slab. Thus, the
application of out-of-plane loads to the bridge superstructure
produces both in-plane and out-of-plane responses‘in the slab and
beam. This interdependency between in-plane and out-of-plane actions
is commonly referred to as coupling action. While coupling action
has little effect on the structural response in the elastic region,
it has significant effect on the inelastic structural response as

explained in detail in Ref. 55.

Since the material nonlinearities have a profound effect
on the structural response of the superstructure by causing changes
in the structural stiffness, a realistic representation of the

material stress-strain relationships of the component parts is

-12-




essential. For steel highway bridge superstructures the appropriate

material representations needed are:

For the beam or girder:
1. Steel subjected to uniaxial stress states.
For the slab:
1. Concrete subjected to biaxial stress states.
2, Mild steel reinforcing subjected to uniaxial

stress states.

Since the response due to overloads is expected to
eventually cause nonlinear stress-strain behavior, the appropriate
inelastic stress-strain relationships of the component materials
must be included. Thus, the present analysis scheme utilizes the
biaxial stress-strain relationships developed in Refs. 45, 47, 48,
50, 52, 55 to describe the inelastic behavior of concrete slabs,
and in addition, utilizes the uniaxial stress-strain relations
developed in Refs. 27, 28, 39; 40, 42, 57 to describe the inelastic

response of steel.

To adequately reflect the variation in material stiffness
properties through the depth of the beam or slab members,
due to cracking of concrete or yielding of steel, or some other
material failure, the finite elements are subdivided into a series
of layers. Each layer is assumed to‘Be in a state of biaxial or
uniaxial stress and each assumed to have distinct material

properties. Then by defining the stress-strain relationship on a

layer by layer basis, the progression of nonlinear material behavior
-13-




through the structure can be monitored. Through the utilization
of the layering technique good agreement has been obtained between

analytical and test results (Refs. 6, 30, 31, 40, 43, 53, 66, 70).

Typical analytical models for composite structures assume
that no slip occurs between the slab and the beams. But if there
does not exist sufficient linkage between the slab and the bean,
then slip will occur and the percentage of load shared by the beam
and the slab will change. Thus, the analytical model should be able
to account for the possibility of slip. In addition, due to shear
deformation, beams and particularly plate girders with thin webs,
will deflect considerably more than standard beam theory would
predict. Thus the model should be able to adequately reflect the

effects of shear deformation.

Finally, because beams and plate girders are of thin
walled open cross~sections, they are susceptible to local buckiing
phenomena, prior to attaining maximum stress conditions. Therefore,
the analytical technique should be capable of predicting the
occurrence of local buckling and any post-~buckling strength of

such sections.

The preceding paragraphs contain the major structural
phenomena which have significant effect on the structural behavior
of steel bridge superstructures. The underlying premise of the
entire nonlinear response and ultimate collapse of the bridge
superstructure is that the primary response of the structure is

flexural in nature with the associated in-plane and coupling
-14-




actions. While the effects of torsion of the beams is considered to
be of minor importance, and, therefore, not included in the analy-
tical method, an investigation into the effects of torsion of the
beams in the elastic region is still presented. Other structural
pheonomena considered to be of secondary importance and excluded

from the analysis technique are:

1. Minor axis bending of the beams. This will affect
the forces in the bracing and hence the major axis
bending moments, but the contribution to the overall

structural response is considered extremely minimal.

2. Shear punch failure of the slab. Because in normal

bridge superstructures the loads are transmitted

through the vehicle tires, such failures are highly
unlikely due to the large distribution of load

(Ref. 74).

3. Dynamic¢ and impact effects. It is assumed that the
speed of the overload vehicle would be slow enough

so as not to produce any d&namic or impact effects

(Ref. 75).

4, Superelevation. Comparisons of analytical and ex-
perimental results of bridges which had large super-
elevation, but were modelled with no superelevation
showed that little or no noticeable error occurs by

ignoring the effects of superelevation (Refs. 54, 55).

-15-



2. MATERTAL BEHAVIOR AND STABILITY CONSIDERATIONS

2.1 Introduction

This chapter presents the material stress-strain relation-
ships and stability criterion employed in the reported analytical
technique. Material stress-strain relations are defined for the
beam steel, reinforcing bar steel, and for the slab concrete.

In addition, the equations defining the initiation of buckling
in the flanges and webs of the beams (girders) and the post-
buckling response of the beams (girders) are described. These
relations and equations are later used to establish the stiffness

properties of the bridge components.

The behavior of concrete and steel is dependent upon the
particular stress state, i.e. tension or compression, and whether
or not the stress field is uniaxial or biaxial. A beam, for
example, may be idealized as a one—-dimensional structural element
in which major axis bending produces a uniaxial state of stress
(Ref. 40). A slab, on the other hand, may be envisioned as a two-
dimensional structural element in which bending and in-plane
actions in both the longitudinal and transverse directions produce
a biaxial stress state (Refs. 52, 55). Thus, the beam (girder)
steel is assumed to be in a uniaxial state of stress, while the

slab concrete is assumed to be in a biaxial state of stress.

-16-




The inelastic uniaxial stress-strain relationship of the
beam (giraer) steel is analytically defined in this model by a
modified Ramberg-Osgood formulation (Refs. 27, 28, 57). Similarly,
the nonlinear biaxial stress-strain relationship of the concrete
slab is analytically described by empirical formulae whicﬁ are
presented in detail in Ref. 52 and briefly outlined herein. In
addition, since the flanges and webs of the beams or girders may
buckle, empirical and theoretical formulae are employed to predict
the initiation of buckling and any post-buckling behavior of the

beam (Ref. 28).

By differentiation of these stress-strain equations the
instantaneous slope, tangent modulus, of the'particular stress—
strain curve is obtained; This tangent modulus and a reduced
modulus due to the buckling phenomena are then used to formulate
the element elasticity matrix, [D], which relates the stress incre-
ment to the strain increment.

{c} = [D] {e} (2.1)

The elasticity matrix is then utilized to establish the slab

and beam (girder) finite element stiffness properties (Chapter 3).

Throughout this dissertation the stress-strain relation-
ships are discussed in terms of both incremental and total stresses
and strains. To distinguish between the two type of stress and
strain, the incremental quantities will be designated with the

customary dot (.) over the appropriate quantity, e.g. Eq. 2.1.

-17-




" 2.2 Uniaxial Stress-Strain Relationship for Steel

The uniaxial nonlinear stress—-strain relationship for the
steel of the beams (girders) and slab reinforcement has been
established for the layered finite element model using a Ramberg-

Osgood formulation (Refs. 27, 28, 40, 43, 57):

n
_ 1- Hl) e 1
€= {O+( m 'n-—l} E, (2.2)
(o) 1
y
where
g = gtress
€ = strain
E, = initial modulus of elasticity

0 _ = yield stress
m = 0.7 for mild steel reinforcement
0.67 for beam steel
"n = 300 for mild steel reinforcement

400 for beam steel

The instantaneous slope, tangent modulus, of this stress-strain

curve is then given by (Refs. 27, 28, 40, 43, 57):

E,

de n-1
: 1 -m ,0
1+n . ( - )(G )

-18-




However, when the limiting strain of the plastic range, €gps is
attained in a layer, a parabolic post-plastic strain-hardening

relationship is assumed to exist (Refs. 28, 29). Thus, when

Ie I > € = limit of plastic range (2.4)
then
g = O +/ Bb + Yy € (2.5)
where
[cz—oz-ZE g (e - )1
o = u v st 'y " u st
2 [ou - oy - ESt (eu - sst)]
Bb - (Oy - 0('b - 2Est €st)(dy - o"b)
Yb =2 Est (Gy - 0Lb)
and 0u = the ultimate stress on stress-strain curve (Fig. 5)
€, = the strain corresponding to ultimate stress, Uu
ESt = initial strain hardening modulus.

The complete stress—strain curve for steel (Fig. 5) is, thus,

established analytically. The tangent modulus, E_, for the strain-

t’
hardening portion of the curve is then determined from Eq. 2.5 to

be (Ref. 28):

-19-




(2.5)

In the elastic portion of the stress~strain curve, the
instantaneous shearing modulus, G, is assumed to be equal to

(Ref. 28):

E.
G = —> (2.6)
2 (1 + V)

where V = Poisson's ratio = 0.3 for steel. However, according to
Lay (Ref. 46), the shearing modulus in the post-plastic range can

be given by:

G, = (2.7)

4Et 1+ v

.

Using Eqs. 2.5, 2.6 and 2.7 the instantaneous shearing modulus in

the strain-hardening range (i.e.| e | > est)’ becomes:

2Y E,
G = b 4 (2.8)

2 Yb (1 +v) + E, (o - 0n)

From the initiation of yielding to the initiation of strain-
hardening, the instantaneous shear modulus is assumed to vary
linearly with respect to the strain, €, from an initial value

given by Eq. 2.6 to a final value given by Eq. 2.8.

-20-




2.3 Biaxial Stress-Strain Relationship for Slab Concrete

Based upon experimental investigations into the biaxial
behavior of concrete (Refs. 45, 48, 49, 50) and employing analy-
tical expressions developed by Liu (Refs. 48, 49), for the
biaxial principal stress—strain relations of concrete, Peterson
and Kostem (Refs. 52, 54, 55) developed effective linear and non-
linear biaxial stress—-strain relationships for concrete slabs.
The nonlinear principal stress-strain curve, in compression

dominant regions, can be given by (Refs. 27, 52, 55):

£ Ec
g = (2.9)

(L -va)(1 + ce + Dez)

where
o = principal stress in direction of
interest
€ = strain in direction of interest
v = Poisson's ratio = 0.20 (concrete)
0 = ratio of principal stresses
Ec = initial uniaxial tangent modulus for concrete

C, D = constants which depend upon Ec’ V, o
and the peak stress, Op, strain, EP, and

modulus, E .
P
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The peak stress values of Eq. 2.9 can be obtained from the
idealized nondimensional biaxial failure envelope (Fig. 6). Then,
from experiments and analytical approximations, corresponding values
of peak strain and peak modulus can also be found (Ref. 52, 55).
Thus, once the initial stress-state, defined by a, is known, the
complete nonlinear stress—-strain relation is analytically deter-

mined.

From Eq. 2.9 the instantaneous slope, tangent modulus, is
determined to be (Refs. 27, 52, 55):

E 2
g, =39 e A-De) (.10

(L -va) (1L+cCce + De2)

It should be noted that a separate tangent modulus exists for each

principal stress direction.

While Eq. 2.9 and 2.10 are applicable in compression
dominant regions, the linear biaxial stress—-strain relation for

concrete in tension dominant regions is given by (Refs. 27, 52, 57):

g o]
B =8=2 (2.11)
p

To relate the principal biaxial stress state to the
principal biaxial strain state, the following anisotropic con~

stitutive relationship is required (Ref. 48):
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£ e Y r . 3
% €1
402 »= [D] ¢ &, $ o (2.12)
| 12 L 12
where _
E1p Vo "1b 0
1 - vl Vz 1 - vl vz
v, E} E.
1 - 1 “2b 2b 0 ,
l=-\)1\)2 l—\)l\)z
E’ E;
0 0 1b “2b
L Ep ¥ Bgp + 2 Vg By

(2.13)
and subscripts 1, 2 denote principal stress directions. It should
be noted that Eb in Eqs. 2.10 and 2.11 relates the stress in a
particular direction to the strain in that same direction, and
only that direction, while Eib and Eéb represent the actual tangent
moduli, where the principal stress is related to the strains in

both principal directions and to the shearing strain. The relation-—

ship which exists between Eb and Eg is (Ref. 55):

Elb = Elb 1 - v al) (2.14a3)

and

E2b = E2b 1 - Vy az) (2.14b)
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Thus, all the terms required for determining the elasticity matrix,
[5], are now defined analytically. However, since the [D] matrix
relates only stresses and strains in the principal stress direc-
tions, a transformation must take place to relate the stresses and
strains in the global x-y coordinated system (Eq. 2.15). Such a
transformétion is required; so that the slab element stiffnesses in

the x-y directions may be computed.

e ()
X ex
Lo, p = D19 ,;y > (2.15)
L:CXYJ § ny J
where D] = [T] [D] [T]° (2.16)

and [T] is a transformation matrix relating the 1, 2 coordinate

system to the x, y coordinate system (Ref. 55).

In the analytical model when the principal stress exceeds
the idealized peak stress as defined by Fig. 6, cracking or crushing
of the concrete is assumed to occur (Refs. 52, 54, 55). As a
result of this cracking or crushing the concrete layer is assumed
to have a stiffness only in the uncracked or uncrushed direction.
Thus, if cracking or crushing occurs in the "2" direction, the

resulting constitutive stress-strain relationship would become:
1

R = Tr.

9 Eib 0 O 811

(% % = |0 00 Jez L (2.17)
’I.‘;Lz 0 0 O 1.(12
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It should be noted that the shearing stiffness term, D33, is also
set equal to zero. This is done because previous research has shown
that slabs in flexure are insensitive to the value for the shearing

stiffness once cracking has occurred (Refs. 30, 31, 47).

After failure of the concrete layer due to cracking or
crushing, the layer would be incapable of sustaining the stress that
caused the failure, and, thus this stress must be reduced to zero
within the layer while maintaining external and internal equilibrium.
This unloading of stress and redistribution of forces to neighboring
layers is accomplished through the application of a fictitious
force matrix (Refs; 52, 54, 55). However, in the actual overload
analysis of continuous steel highway bridges it becomes possible at
extremely high load levels for the concrete slab to become com-
pletely cracked, i.e. cracked through the entire depth of the slab.
Such complete cracking of the slab can occur, for example, over
interior supports in the transverse direction or over the beams in
the longitudinal direction. When complete cracking does occur in
the finite element model the slab element stiffness in the direction
perpendicular to the crack would become zero. However, experience
has shown that when the slab element stiffness becomes zero in one
principal direction, numerical difficulties often occur in the
solution process and inaccurate solutions can result., To avoid
this possibility of numerical instability in the solution process
the cracked or crushed layer is given an artificial stiffness equal

to Ec/l,OO0,000 rather than zero. It should be noted that there is
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no loss of accuracy in employing this approximation. A similar

procedure will be used frequently throughout this dissertation to
prevent mathematical instabilities in the solution process when

failures occur.

2.4 Torsional Buckling of Compression Flange

In continuous composite beams the strength in the positive
moment region is generally controlled by the yielding of steel in
tension or by the crushing of concrete in compression; however,
in the negative moment region the strength may be limited by
torsional buckling of the compression flange. According to Lay
(Ref. 46) torsional flange buckling of conventional wide flange
shapes is essentially an inelastic phenomena. It should be noted,
however, that therinélastic plate buckling equation can also be

applied in the elastic range with some modifications.

Typically, fhe‘compression flange is envisioned as being
partially restrained against twisting by a torsiomal spring
(Fig. 8a). The assumed deformed shape of a torsionally buckled
compression flange is presented in Fig. 7; In the case of elastic
plate buckling the critical stress for torsional buckling, Gcr’
is based upon the width to thickness ratio of the flange, 2t/b, and

the assumed stiffness coefficient, kv’

2 . \2
c =k _mE (gt-:—> (2.18)
V12 @ -v) b
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The stiffness coefficient is related to the torsional restraint
provided by the beam web. If the web is flexible and provides

only vertical support then kv = 0.425 (Ref. 39); however, if the
web is exceedingly stiff and provides vertical support and consider-
able torsional restraint then kv = 1,277 (Ref. 39) (Figs. 8b and
8c). In order to relate the coefficient kv directly to the dimen-—
sions of the web and, therefore, the web's elastic torsional
restraint capacity, Lay's inelastic torsional buckling equation,

Eq. 2.19, will be modified for elastic conditions (Ref. 28).

2 2
" am L
b "cr";z Gt'KI‘+<L> Ee To +kt(n’rr)}
o

t

(2.19)
where:
Gt = inelastic shearing modulus
Et = inelastic tangent modulus
kt = torsional stiffness of web )
bt3

KT = ——

3
7 [p3 43
w 16 144

I —

% = half wave length of buckle
112

-2 .2

r b

If the above inelastic equation is assumed to apply also in the

elastic range, then the elastic values for G and E can be
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substituted for the inelastic values, Gt and Et' By then solving
Eq. 2.19, with G and E, for the lowest value of nT/L and sub-
stituting that value back into Eq. 2.19, the following equation is

obtained:

= 1 "{ |
bt o, =5 {GKT +24 k E Iw} (2.20)
o}

The torsional stiffness, k_, derived from the deformed shape of the

t,
1
web (Fig. 7) is:
k, ™ ——E—-—"—’-—z—— (2.21)
3 (1 -vHd

. . o= 2 .
Substituting the values for Kps l/r0 s Ty andlﬂL into Eq. 2.20

gives the following elastic critical stress equation:

3 ! 2
’ ={__z_+§ L(z)y__l__}E(g)
er \T+Vv " 2V27 \t) d {_ 2 b

(2.22)

By comparing Eqs. 2.18 and 2.22 with v = 0.3, the stiffness coef-

ficient, kv, is found to be:

3
k, = 0.4255 + 0.2215 (Yt—) < 1.277

alo

(2.23)

Thus, for any given beam cross-section the critical elastic

torsional flange buckling stress, dcr’ can be calculated analytiéally

using Eqs. 2.18 and 2.23. However, it should be noted that
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experiments by Winter (Ref. 39) have shown that due to the presence
of residual stresses and due to the effects of shear lag in the
flanges, there can exist a nonuniform stress distribution in the
flanges, and,rthus even if the average stress value in the flange
is less than the critical value, Gcr’ buckling can occur. Based
upon experimental results and employing an effective flange width
type concept, i.e. only part of the flange is capable of resisting
the load , Winter has proposed a semi-empirically derived critical
buckling stress transition equation for plates supported at omne

edge (Ref. 39):

Oy = 1.19\/0Cr cry (1 -0.3 \/Gcr/o’y) (2.24a)

The relationship between Eq. 2.18 and 2.24 is shown graphically in

Fig. 4, where [ o 2. ,
>\=2%\[_X 12 (1 - v7) . (2.24b)

E ™k

v

If A>1.3 then Eq. 2.18 controls, and if A < 1.3 and G<i0y then

Eq. 2.24 controls.

If the strain, €, in the flange exceeds the yield strain,
€y’ then the inelastic torsional flange buckling stress equation

derived from Eq. 2.19 must be employed (Refs. 28 and 46):
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where kt in Eq. 2.19 is equal to Gt W3/3d. The values for Et and
Gt come from the equations established in Section 2.2 for inelastic

behavior of steel.

‘When the average stress, of all the layers which make up the
compression flange of any beam element, exceeds the critical tor-
sional buckling stress, the flange ia assumed to buckle. Since the
beam finite element cannot deform as shown in Fig. 7, the buckling
and post-buckling behavior of the beam compression flange must be
simulated as follows. Ideally the flange would have either a
negative stiffness value, to permit a redistribution of stress within
the beam element, or have a zero stiffness value. Experience and
experimental correlations indicate that adequate agreement between
experimental and analytical results can be obtained by assigning an
artifically low stiffness value of'(Ei/100,000) to all the critical
compression flange layers. If the flange stiffness had been set
equal to zero, numerical instabilities may have occurred in the

solution process (see Section 2.3).

2.5 Buckling of Plate Girder Web Panels and Compression

of Flanges

In the past one of the design criteria for plate girders
was based upon the assumption that the load-carrying capacity of
the web plate was limited by buckiing of the web; however, exper-
iments indicated that transversely stiffened web plate panels have
considerable post-buckling strength. Basler was one of the first

to present a definitive analysis of the strength of plate girders
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under pure bending, pure shear, and combined bending and shear
loading cgnditions (Refs. 7, 8, 9). The results of Basler's exper-
iments showed that plate girder strength was limited by: (1) web
buckling due to shear, or éombined shear and bending; (2) vertical
buckling of the compression flange; (3) lateral buckling of the
compression flange; (4) torsional buckling of compression flange;
and (5) yielding. In a simple span composite slab-girder structure
the compression flange is laterally and torsionally restrained by
the concrete deck; thus, instability of the compression flange is
unlikely. In addition, the web panel, in a simple span structure,
is unlikely to buckle under combined shear and bending because
bending forces will be dominant. In a continuous slab-girder super-
structure, however, there exists an increased likelihood of flange
or web panel buckling in the vicinity of the interior supports, due
to a lack of complete lateral support for the compression flange
and the high shear condition for the web. The problem of web panel
failure will be dealt with in Sections 2.5.1 and 2.5.2, while the
problem of compression flange failure will be covered in Section

2.5.3.

2.5.1 Web Panel Buckling

‘Since the publication of Basler's works, numerous models
have been proposed to predict the initiation of web buckling and
any associated post-buckling behavior of transversely stiffened
plate girders (Refs. 15, 16, 17, 39, 58). Each of the new models

seeks to eliminate the deficiencies in Basler's original tension
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field model. While all of the proposed models can reasonably

predict the ultimate load capacity of the plate girders, the Chern

and Ostapenko formulation (Refs. 15, 16. 17) forms the basis for
the present analysis scheme because of its simplicity and relia-

bility.

A typical section of a transverely stiffened plate girder

is depicted in Fig, 11. When the plate girder is subjected to

combined bending and shear, the resultant stress pattern on the

web panel can be idealized as shown in Fig. 9, where the horizontal

boundaries of the web plate panel are determined by the flanges,
and the vertical boundaries by the transverse stiffeners. The
stress distribqtion at the initiation of web buckling can be
determined with sufficient accuracy by means of the following

interaction equation (Refs. 17 and 39):

g crb 2 T 2

S ( + ( = = 1.0 (2.26a)
o] o T

cer ber ccr

where

—
i

shear buckling stress under combined

c
loads
2 2
Toer = ks —ll—ji—~7f— (-g ) , buckling stress
12(1 - V%)
under pure shear condition (2.26b)
Ob = bending buckling stress at the extreme

compression fiber under combined loads
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72E 2
kb-——J————?r- ( E) s, buckling stress under

Q
I

ber 12(1 - v d
pure bending condition (2.26¢)
Oue = compressive buckling ;tress under combined loads
Gccr = kcv—~¥—ﬂfg—i— ( %)2, buckling stress under
12(1 - V)
pure compression; (2.264d)

The buckling coefficients, kS, kb’ and kc are dependent upon whether
the unloaded horizontal edge of the web plate panel is assumed to
act as a fixed edge, i.e. stiff flanges, or to act as a simply
supported edge, i.e. flekible flanges. The fiked edge condition
will be designated by an asterisk superscript, and the simply
supported condition by no superscript.

* _5.34 , 2.31

k = + === - 3.44 + 8.39 a
s 2 o, P
o,
P
k= 4.0 + 223
s o
P
for o < 1.0
p —
*
k"= 808 + 2282 192
s o a
p P
k= 5.34 + 290
s o
p
for o > 1.0
p —
ap =-%, panel aspect ratio,”or ratio of panel

width to panel depth.
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39.6, k= 23.9

k =6.97, k = 4.0
c c

The critical stress values given by Eqs. 2.26b, 2.26c, and
2.26d are elastic buckling values. Howevér, experiments have shown
that due to the presence of residual stresses, initial imperfections
and strain hardening that buckling can occur prior to reaching the
maximum stress of T or O. r Thus, the following transitional

cer be

relations are employed for calculating Tecr (Ref. 15):

for 0.58 < A < V2

1.18}

Toep = Ty{l - 0.615 (Av - 0.58) (2.26e)
for }\v < 0.58
_ _ 1.58
Tear = ry {1 + 4.30 (0.58 Av) } (2.26F)

where

T 12 (1 - v5) .
by ﬁ/_l - (é)z

v kS Tr2 E W

T =0/ V3
y y

Likewise when the pure bending stress, in Eq. 2.26c, exceeds

%ber
0.8 0& the following additional relationship is employed to compute
Oper (Ref. 77):

for o, > 0.8 0
(o4

ber — y
. 0.160y
Oper = oy {1 - 5 } (2.26g)
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When the stress condition under combined loads is such
that Eq. 2.26a is satisfied, the web panel is assumed to buckle.
Thus, the total shear force carried by the web panel at the initia-

tion of buckling becomes:

VTc =T, AW =T, wd (2.27)

2.5.2 Web Panel Post-Buckling Behavior

After the web panel buckles, considerable post-buckling
strength may be realized by the development of a web panel tension
field (Fig. 11); In evaluating this post-buckling strength the
following assumptions are made: (1) the web buckling stresses,
Ooe? Op2 and Tc; remain constant after the web plate buckled, i.e.
no unloading; (2) the linearly varying bending stress, ob,‘and
constant compressive streés; 0,» are replaced by their average,
Ope (Fig. 13); and (3) the ultimate strength of the web is reached
when the combined stresé state of shear stress, Tc; of average
bending and compressive stress; Op o and of the tension field
stress, o, (Fig. 13); satisfy a von Mises yield condition. An
approximation for the ekpected tension field stress distribution
(Figs. 12a, b) has been made for simplicity in the following
derivations (Ref; 17); It éhould be noted that the direction of

action of the tension field is at the as yet unknown angle ¢c

(Fig. 13).

By superimposing the tension field stress state, Opee UPOR
the buckling stress state‘,'Tc and Opc? and imposing the von Mises
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yield criteria, the following relation for Otc (where Gtc and ¢c

are the only unknowns) is arrived at:

g, = GYW{\/l - 3R2 - S2 + [0.58 + 1.5R sin (2¢c + 2(5)]2

tc
- (0.5 + 1.5R sin (2¢c + 26)}' (2.28)
where
g__ = yield stress of web
yw
S =_E—ib._c.
4 0
yw
C = ratio of maximum tensile stress.to maximum
compressive stress
- Gb +-0cc
C = 5735
b cc
T 2!
R -\/s?‘+(——9)
(0}
yw

The tension field shear force of the web plate panel, VGc’ can be
determined from Fig. 12b.

1
= = . - 0. + 0.
vV e =3 wd Ore (sin 2¢c 0.5 ap 0.5 ap cos 2¢c)

(2.29)
Since all of the terms in Eq. 2.29 with the exception of

o,  and ¢2 are known, and since from Eq. 2.28 Ore is known to be a

te
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function of ¢c only, then V Ge is also a function of ¢C only.
The maximum tension field action shear force, V oo’ can then be
obtained by differentiating Eq. 2.29 with respect to ¢c’ setting

the derivative equal to zero, and then solving for ¢co:

[sin 2 ¢co - 0.5 ocp + 0.5 ocp cos 2 ¢co] )

co

+ 2 [cos 2 ¢co - 0.5 ap sin 2 ¢co] ctc = 0 (2.30)

where ¢co denotes the value of ¢C obtained when solving Eq. 2.30.
The solution of Eq. 2.30 for ¢co is found by the Newton-Raphson
iteration method where the left hand side of the equation is
defined as F(#). Then, since ¢co is known to be between 0° and 45°
an initial trial wvalue of ¢l is made using Basler's original for-

mulation, Eq. 2.31, and then computing the function F(¢l).

¢1 = arctan (Jy1 - upz - ap) (2.31).

If F(¢l) is not within a reasonable tolerance, 0.000001, of the
value zero, then a new value of F(¢2) is computed where ¢2 is ten
percent greater than ¢1. If F(¢2) is still not within the required
tolerance, then the following recursion equation is employed to

solve for the new @:

U
Bivg =0 = By -~ 9y (2.32)
w2 T T ) - 0D
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The operation expressed in the above equation is then repeated until

the required accuracy is obtained. By substituting the value of
¢co back into Egqs. 2.28 and 2.29 the maximum tension field shear

becomes:

1 ; -
Vcc =3 wd o [sin 2¢co 0.5 ap + 0.5 ap cos 2¢co]

(2.33)

After buckling of the web plate panel only the stresses
parallel to the tension field direction are assumed to increase.
Thus, the panel is assumed to have a stiffness only in the tension
field direction and no stiffness in the orthagonal direction.
Referring to the anisotropic elasticity relation presented in Eq.
2.13, and assuming a similar relationship now exists for the web

panel except that E_, = Ei and E2b = 0, the following web plate

1b

panel constitutive relationship can be assumed to exist:

. - _‘ r N
oy ) E, 0 0f e

1 g, L =] 0 0 0 Wez ) (2.34)
. 0 o ol |Y

\ T12‘ B 4 { 12

where the 1, 2 coordinate axes are shown in Fig. 14. Transforming
I
this state of stress to the x,z' coordinate system (Fig. 14) by

means of transformation matrix, [T],
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c0329 sin29 ~ 2 cos8® sin®
[T] = sin29 cosze 2 cos® sin®
. . 2 . 2
cos® sin® - cos@ sin® cos @ - sin @
(2.35)
where 8 = -¢co’ and employing Eq. 2.16, the x,z' coordinate axes

stress—-strain relationship becomes:

(-1 [ 4 2 2 3 ] (- )
O cos © sin"0@ cos”® cos™O sind o

ﬁ Tzt b = sinze cos29 sin49 cos@ sinSG E; ﬁ ez’ &

' cos39 sin® cos@ sin39 c0329 sinze A

2\ xzd | . _ L X2
(2.36)

However, since the layered finite element beam formulation con-
siders only the tangent stiffness modulus and the shearing stiffness
modulus corresponding to the x-axis direction, Eq. 2.36 can be

_simplified to:

E, cos49 0 0 €
i

0 0 E, cos29 sin29 Y

{ xz' L_ i xz'
o e

(2.37a)
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or

Q
]

4 .
x Ei cos O ex = pr €y (2.37p)

2 . 2 _ y
Ei cos 8 sin 6 sz, = pr Y

A
1]

<z (2.37¢)

where pr and Gpd represent the effective post-buckling tangent
stiffness modulus and shearing stiffness modulus for the web plate
panel. However, the initial attempts to model the actual post-
buckling behavior of the web plate panel using the above relationms,
indicated that the overall post-buckling panel behavior was stiffer
than that observed in experiments. Based upon the distribution of
the tension field stress a reduction factor, Cl’ was derived to
sufficiently decrease the post—buckling stiffness parameters, pr
and pr, to more accurately model the post-buckling web plate

panel behavior.

By assuming that only part of the entire web panel is
fully effective in contributing to the post-buckling sfiffness, a
reduction factor is feasible. Thus, considering only that portion
of the web plate panel not subjected to the full tension field
(i.e. the outer tension field portion) as contributing fully to the
stiffness properties of the web panel, the reduction factor becomes
(Fig. 14):

a | a tan ¢co| |a tan ¢co'

Cl = 2 d = —3 (2.38)

area of outer tension field/area web plate panel,

and the resulting modulii become:
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E c Ei cos49 : (2.39a)

pb 1

2 , 2
pr C1 Ei cos ©® sin"® (2.39b)

As will be shown later in the experimental correlations, these
assumed post-buckling stiffness parameters provide reasonable

agreement with the test results.

The failure load for the limit of the post-buckling behav-
ior occurs when the total web plate panel shear force given by

Eq. 2.40 is attained.

Vrr = Ve * Vo (2.40)
where VTc and Voc are given by Eqs. 2.27 and 2.33 respectively.
Beyond this point the web panel is incapable of sustaining addi~
tional load and as with the case of flange buckling this loss of
stiffness due to the complete failure of the plate girder pamnel is

simulated by setting the panel stiffness equal to Ei/100000.

2.5.3 Lateral Buckling of the Compression Flange of Plate

Girders
As has been mentioned previously when a transversely
stiffened plate girder is subjected to combined shear and bending
loads one or more of the plate girder panels may fail due to
buckling of the web, buckling of the compression flange, or both.
While buckling of the web is the predominant mode of failure when |
a panel is subjected to high shear stress, lateral buckling of

the compression flange is the (Fig. 15) predominant mode of
41~




failure when a panel is subjected to large bending stresses.
According to the theory originally proposed by Basler, the critical

flange buckling stress for plate girders can be given by:

2

T .Ei . o
ey = n /rz) =~;EZ (2.41a)
b A 2
where-
lb = unbraced length of the compression flange ‘
[..3 '
r = -22—1%2——-= radius of gyration
bt + = wd
6
L. | O
__b/__z__ 2
Aﬂ T r 2 2

'ITEi

If, however, lg < V2 then a transition equation is required to

calculate the flange buckling stress:

22
o, =g, (1L-—Y for 0 < »

per = Oy -+ <2 (2.41b)

L

Ostapenko and Chern (Ref. 16) however, modified this relationship

slightly by assuming the radius of gyration to be:

E
r = —b——til—z——z ‘ (2.42)

bt + 30 w

Thus, employing Eqs. 2.4l1a, b and 2.42 the lateral flange buckling
stress can be calculated for any plate girder flange. The unbraced
length of the plate girder compression flange can be taken as equal

to the distance between points of lateral support in the plate
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girder. This assumption is conservative because Eqs. 2.4la, b
assume that the flange is in a state of uniform compression
throughout its length, while an actual plate girder flange will be

in a continually varying stress state due to moment gradients.

Once the compression flange buckles, the flange is unable
to sustain any additional increase in load. To simulate the loss
of stiffness, the post-buckling flange stiffness should be set
equal to Ei/100000, as before. However, comparisons to experimental
results indicate that such a reduction in stiffﬁess is inadequate
to effectively model the post-buckling strength of the plate
girder. Reliable modelling of the post-buckling stiffness was
obtained, however, by assuming that both the flange and the web
plate panel suffered a cdomplete loss of stiffness upon reaching

the buckling load.

In the preceding paragraphs and sectiogs an attempt has
been made to show how the major modes of failure and any
post-failure strength of transversely stiffened plate girders can
be effectively modelled. As will be shown later in the chapter
on experimental correlations, the failure to include these
stability considerations into the analyses would lead to highly
inaccurate results. However, the present analysis scheme produces
reasonably accurate results in terms of load versus deformation

curves, load versus stress, and load versus damage records.
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3. FINITE ELEMENT ANALYSIS

3.1 Introduction and Assumptions

As has been indicated previously; the analytical technique
employed in the reported research is based upon the finite element
method of analysis (i.e. Refs. 63, 73). A detailed treatment of the
finite element method as applied to this research is presented in a
number of other related reports, Refs; 27, 40, 43, 52, 54, 64.

Thus, only those fundamentals of the method which are necessary for
clarity, and those basic assumptions which pertain to the specific

features of the analysis, are presented herein.

The following assumptions are made with regards to the

development of the analytical model:

1. Geometry - The bridge superstructures to be
analyzed are limited essentially to bridges with
no skew, i.e. right bridges. However, previous
research (Refs. 55 and 75) has indicated that
bridges with moderate skew, i.e. @ = 90° to

¢ = 60°, can be analyzed as right bridges

with no loss in accuracy.

2, Strain Distribution - Plane sections remain
plane before and after deformation of the
slab and beam, except that a Timoshenko

by




approach has been employed to include shearing
deformation in the beam. In addition, the slab

is assumed to behave as a thin plate; and, the beam
and slab are assumed not to change thickness.

It should be noted that these common assumptions
reduce a three-dimensionai problem to one of
flexure and one of.two—dimensional plate bending
where the strain distribution is linear in both

cases.

Deformations — The deformations are assumed small

in comparison to dimensions of the slab, thus, all
calculations are based upon the undeformed geometry.’
Again, it should be noted that previous experience
with bridge overloading (Ref. 54) supports this

assumption.

Strains - Small strains are assumed thus, first
order linear strain-displacement relationships can

be employed (Ref. 54). -

Layering - The slab and beam finite elements are
layered, each layer having its own stiffness
properties, so as to accurately model material

nonlinearities and progressive material failure.
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6.' Stability Failures - When the average stress, of
all of the compression flange layers of any beam
element, exceeds the critical stress, the
compression flange is assumed to buckle, and
all of the critical layers are assigned artifically
low stiffness values (Ei/1000000). Similarly,
when the average stress state of the web plate
panel reaches the critical conditions, all of the
web layers of the entire web plate panel are

assigned new stiffness values.

3.2 The Finite Element Method

In the finite element method of structural analysis the
continuum, i.e. structure, is subdivided into an assemblage of
discrete subunits called finite elements, which are interconnected
at discrete node points. The behavior of each finite element can
be described by the element stiffness matrix, [ki]e, which relates

node point forces to node point displacements.

{F}° = k1% {6)° (3.1)
where

'{F}e = vector of element node point forces

.{G}e = ve;tor of element node point displacements

By stacking all of the element stiffness matrices and
considering the applied node point loads and node point con-

straints the following set of equilibrium equations results:
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{r}

K] {8} (3.2)
where
{F} = vector of applied forces at node points
[X]
{6}

Z'{ki}e = global stiffness matrix

vector of displacements at node points

The primary concern of the analysis becomes the determina-

tion of the element stiffness matrices, [ki]e, for the slab and the

‘girder (Refs. 27, 52, and 69). It can be shown that this element

stiffness matrix can be determined by use of Eq. 3.3.

[k, 1° =f (817 [DI[B] av (3.3)
+ v

where

[B]
(D]

\'

strain-displacement matrix

]

stress-strain (elasticity) matrix

volume of element

The evaluation of these matrices begins by assuming a
displacement field, usually a polynomial function, to describe the

element deformations.

- {f}

[P(x,y)] {z} 7 (3.4)
where

{f} = displacement field of the element

[P(x,y)] = functions of x and y used to describe the
shape of displacement field
{C}'= coefficients of x and y functions of [P(x,y)].
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By enforcing the element boundary conditions at the nodes, and in
addition, equilibrium and/or compatibility conditions, Eq. 3.4 can

be used to define the element node point displacements {G}E,

{83% = [c1 {z} (3.5)
where
[c] = [P (xn,yn)] or the polynomial evaluated

at all the element node points.

Solving Eq. 3.5 for the constant coefficients, {},

(g} = (17 (8)° (3.6)
and then substituting back into Eq. 3.4 gives the following
relationship:

{5} = [P Gy el (83 = N (6}° (3.7)
where

[N]

shape function matrix.

The element strains are found by then differentiating the displace-

ment field, with respect to either x, y, or Xy:

{e} = [T] {£} = [TIPGxICI™T {6}°  (3.8a)
where

{e} = vector of element strains

[T] = differential operator matrix
or

{e} = [Ql[c1™t {8}° = [B] {6}° (3.8b)
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where

[Q] = [T]1[P(x,y)] = connection matrix.
With matrix [B] of Eq; 3.3 now defined, only the elasticity matrix,
[D], is still required; Assuming that no initial stresses or
strains exist in the element to start; the element constitutive

relationship can be given by (Refs. 27, 52 and 69):

"{o} = [D] {e} (3.9)
where

{0} = vector of element stresses.

Thus, with the appropriate choice for the displacement fields to
model the desired phenomena, and the correctly chosen constitutive
relations for the particular type of element, the element stiffness

matrices can be explicitly determined.

3.3 The 'Slab Elemeént

Explicit and in-depth derivations of the layered slab
element are presented in Refs. 27; 52; 54, and 55. Only the
salient features of slab element development are presented herein.
For a detailed treatment of the element development the reader

should refer to one of the above references.

The layered slab finite element has a total of four corner
point nodes, each with five degrees of freedom (Fig. 16): the
vertical z-axis displacement; W; the rotation about x-axis, Gx; the
rotation about y-aiis; Qy; the displacement in the i—direction, U;

49—




and displacement on the y-direction, V. A twelve term poly-
nomial, which is a function of k and y, is used to describe the
vertical displacements (Réf; 1): Two four term polynomials are
‘used to describe the longitudinal and transverse displacements.
The rotations are obtained by differentiation of the vertical

displacement field.

For computational efficiency the displacement field is
partitioned into those displacements involving bending action only

and those displacements involving in-plane action only:

L)L | 1l .

(3.10)

where the subscript u and @), designate in-plane and bending dis~
placement respectively. Then the element strain obtained by

differentiation of the element displacement functions are:
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where
z = distance from midheight of slab to the point

under consideration
(e.) () ,(y_ ) = strain in x-direction, y-direction, and
Xz Yz X,
shearing strain at depth z
oU 9V . s oas .
3%’ 5§3etc = differentiation of respective polynomial

function with respect to x,y,or Xxy.

Performing the operations outlined in Section 3.2,

Eq. 3.11 becomes:

RO [Bu]{Gu}e + z [B¢]'{a}e (3.12)

As has been mentioned earlier, the slab finite element is
subdivided into a series of layers, each layer having its own
elasticity matrix, [Di], which depends upon the average stress
state in the layer,'{ai}. This average stress, which is located at
the mid-depth of the slab layer and at a distance E£ from the mid-
height of the slab, is obtained by multiplying the elasticity matrix

by the integrated average strain of Eq. 3.12:
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[B_] dxdy {81° + 2, [By] dxdy {6¢}e
y Xy
(3.13)

Since the elasticity matrix, [Di]’ depends upon the current
total stress state, and the current total stress state depends upon
the elasticity matrix, an iterative solution procedure is required
to obtain a solution of Eq. 3.13 (see Section 3.6). The steel
reinforcing bar layers are included in the integration processes

in the same manner as the concrete layers except that the direction

of action of the elasticity matrix is uniaxial.

The partitioned slab element stiffness matrix obtained by

employing Eq. 3.3 is:

—

z [B ] [D] [B¢]

(B ] [p] [B]

|
|
|
— _+_ —_— av
|
|

k1€ =
z [B¢] [D] [B] [B¢] [D] {B¢]
v
(3.14a)
or _ l -
[, 05 | Tkygl®
k1€ = —_ -t - — - (3.14b)
T
e e
[k g1 I [kgg]
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where

[kuu]e = the in-plane stiffness matrix

= the coupling stiffness matrix

(kg

which relates in-plane and

bending actions

[k¢¢]e = the bending stiffness matrix

Noting from previous discussions that the elasticity
matrix is dependent only upon z and that the strain displacement

matrices are dependent only upon x and y, the stiffness matrices

[k,,1° f f (8,17 (D1 [B,] dx dy
x vy
T
f f[B“] [Du¢] [B¢] dx dy
x vy
[k¢¢]e = / f[B¢]T [D¢¢] [B¢] dx dy
x Yy

become:

]e

[k

(3.15)
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where

(o1

uu

[l
~
o
[ N
[
~
N
o
+
=
)
N
N’

[Du¢] 'jz::[Dij %ﬂ(zzi+l - zzi) (3.16)

[D¢¢] =

|
L |
(w]
e
et
Wi
~
N
o w
+
|—l
i
N
w
l.-l
A

and where the summation is over all of the layers, and z,

i+l and 24

are the distances from the mid-height of slab to top and bottom of

layer i, respectively.

In Appendix A of Ref. 27 the slab element stiffness matrix
(Eq. 3.14) and submatrices obtained by performing the integration
indicated by Eq. 3.15 are given. It should be noted that prior to
presentation of the results in Appendix A of Ref. 27 all of the
matrix operations performed in Eq. 3.15 wére completed by the
computer, whereas now the slab element stiffness matrix can be

calculated by direct substitution alomne.

3.4 The Beam Element

Extensive coverage of the theoretical development of the

elagtic composite beam finite element is presented in Ref. 64, and

a similarly detailed development of the inelastic layered composite
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beam model is presented in Ref. 27. The key features of those
developments will now be presented. For a more detailed presenta-
tion of the material the reader should refer to the above mentioned

references.

The typical arrangement of the beam and slab node points
is depicted in Fig; 2, where the slab and beam node point deforma-
tions and sign conventions are given in Fig. 17. The vertical dis-
placement, W; for the'béam and slab finite element are assumed to
be identical; The layered beam finite element has one node point
at each end of the element, with each node point having two degrees
of freedom: the displacement in the x—a%is direction, UB; and the
rotation of the beam about the y-axis, QB' A separate rotation
field is required for the beam because the rotation of the beam is
not equal to the rotation of the slab node. This is due to the
additional change in rotation caused by the shearing strain, Yg-
The above displacements, UB and QB’ are described by separate

three-term polynomials. The related slab displacements

" dw .
W, 6 = I and UA (Fig. 17),

A
are obtained from the polynomials presented in Section 3.3 with y

held constant (Ref. 27).

Enforcing compatibility between the node point displace-
ments and the displacement fields, leads to the generation of the

[C1] matrix, which relates ten displacement terms, (Fig. 17), to
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thirteen coefficient terms (Ref. 27):

{8} [c11 (¢} (3.17)

It should be noted that Eq. 3;6 cannot be used to solve for tHe
constant coefficients;'{C}; because of thé'three additional coef-
ficients. However, by'considering the equilibrium of the axial
forces, the interface shear flow, s; between the beam and slab
(Fig. 18); and by then enforcing compatibility between the vertical
displacement fields and the rotation fiélds, (Eq. 3.18), three

additional equations relating the constant coefficients are obtained,

(Eq. 3.19)
0 ='%§-+ 05 + g (3.18)
{0} = [c2] {z} (3.19).

Egs. 3.17 and 3.19 can then be combined to form Eq. 3.20:

— -y

{6}¢ cl
- - =1 {z} (3.20)

{0} c2
L. —

which can in turn be solved according to Eq. 3.6:
| {81°
re1™t ﬁx:lcx : (3.21)
|
| {03 } {o} )

{c}

where

[CC] = coefficient displacement matrix consisting of the
first ten columns of [C]—l (Ref. 27,64).
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The [CC] matrix can be further partitioned to handle the displace-

ment fields separately:

[cC] = [CA | CB | CW | CD]T (3.22)

where [CA], [CB], [CW], and [CD] are the coefficient-displacement

matrices for the U W, and OB fields respectively. From the

a* Up’
above coefficient-displacement matrices the beam finite element

stiffness matrices can be derived.

This is done by first performing the required operations
on the displacement fields as indicated by [T'] in Eq. 3.8a and sub-
stituting the coefficient-displacement matrices as in 3.8b to give

the following strain-displacement matrices:

axial strain in beam;

- au, de
B - B
B~ & T Z (3.232)
leads to
eep = [Bgly {8} (3.23b)

shearing strain in the beam;

Yg =.%§ - o, (3.24a)
becomes
vg = [B] {8)¢ (3.24b)
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slip af interface of beam and slab;

- dwy '
8U = (U, -z, S - (U - 2,5 0 (3.25a)
""" becomes
6u =[], {6}° | (3.25b)

Then with the above expressions for the strain-displacement matrices,
and the appropriate elasticity relations (Chapter 2) the component

stiffness matrices, via Eq. 3.3, become:

gl = [BB]: [E,] [Byl, av (3.26a)
v

kgl = [BB]T [eg) [Bg] v (3.26b)
V S S

[kl = [B]dT [k, 1 [B], dx (3.26¢)
L

where

beam stiffness due to flexure

i

[kgly

[Eg] = beam elasticity matrix (fleiure)

[kB] = beam stiffness due to shear

T s

[Gg] = beam elasticity matrix (shear)

[k]d = beam sfiffness due to slip

[ksc] = the stiffqess of the uniform connection used

to mathematically describe the shear connectors.
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It should be noted that explicit value for kSc have not
as yet been directly related to the number of shear connectors or
their arrangement, but that an upper bound approximation for the
values of ksc needed to insure composite action can be given by

(Ref. 28 and Sectiomn 5.11).

10 2 2
ko) =733 (EAA(G)”’EAB(ZBB“Q))
max. dL
(3.27)
where
EAA = axial rigidity of slab
EAB = axial rigidity of beam
Z3B = distance between midheight of slab and
centroid of beam
By |7y
EAA+EAB
d = ZBB
L = beam element length.

The beam finite element, like the slab finite element, is
subdivided into a series of layers as shown in Fig. 3, with each
layer having its own [Ej] and [Gj] elasticity terms. In order to
form the element stiffness matrices of Egqs. 3.26a, b, c, the fol-
lowing four terms must be defined by summation of all of the

individual layer stiffnesses:
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where

EA =
B
ES, =
EI, =
GA_p =
E., G,
3’ 73
AJ, AsB.,Ij

k|
Z
j

[=]

(3.28a)

(3.28b)

(3.28¢c)

(3.284)

the tangent modulus and corresponding

shearing modulus for beam layer j

the area, shear area, and moment of

inertia for layer j

the distance from beam reference plane to

the layer j centroid.

Once the terms of Eq. 3.28 are determined the beam finite element

stiffness matrices of Eq. 3.26 can be defined explicitly as shown

in detail in Appendix B of Ref. 27.

In addition, it should be

noted that the layer elasticity terms, Ej and Gj’ are dependent
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upon the stress level, and vice versa. Thus, as was the case with
the slab elements an iterative process is required to accurately

determine the layer stiffness corresponding to a given load level.

3.5 Concrete Failure and Unloading

As was noted in Section 2.3 when a concrete layer has
cracked or crushed, the layer is incapable of sustaining the stress
that caused the failure. Thus, the layer stress perpendicular to
crack must be reduced to zero, while at the same time redistri-
buting the stress to uncracked or uncrushed layers. In order to
maintain equilibrium, a statically equivalent fictitious force
vector must be applied to the structure to redistribute the stress
loss due to the failure. In Ref. 54 the equations needed for
computing the required fictitious force vector are presented in
detail. The reader need only to be aware of the necessity of, and
not the specifics of, this fictitious force vector to understand

its contribution to the solution process.

3.6 Buckling Failure

As was noted in Sections 2.4 and 2.5 when compression flanges
buckle or web plate panels reach their ultimate capacity in shear,
the flange and/or web of the beam or girder cannot sustain any ad-
ditional force. Unlike the concrete failure where unloading is re-—
quired, the loss of stiffness can be effectively modelled by as-

signing the flange or web an artifically low stiffness of
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1/100000 times its original stiffness (see detailed discussion

Sec. 2.4 and 2.5). Since the failed flange and/or web has little
stiffness, any additional force is automatically redistributed to
neighboring elements. Experimental correlations in Chapter 4 verify

the reliability of this approximation for post-buckling behavior.

3.7 Solution Sc¢heme

The developed solution scheme solves the overload problem
in a logical sequence of operations, while including the material
and stability relations presented in the preceding sections of
Chapter 2 and 3. In addition, Eq. 3.2 is solwved for various load
levels while providing node point deformations, element layer

stresses, layer-failures, and buckling failures at each load level.

This solution process consists of four main phases:

1. Problem Definition
a. Bridge Description
b. Bridge Loading

2, Dead Load Solutions

3. Scaling Procedure

4, Overload Solution Procedure

These phases have been incorporated iﬁto a computer program, BOVAS
(Bridge Overload Analysis - Steel) (Ref. 76). A simplified flow
chart of the relationship between the above phases is shown in

Fig. 19, with detailed descriptions of these phases being presented -

in the following sections.
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3.7.1 Problem Definition

To define the problem, essentially two operations are
required: (1) the bridge description and (2) the bridge loadings.
In order to fully describe the superstructure the following informa-
tion must be provided: the bridge superstructure geometry and
finite element discretization in terms of elements and layers; the
type and location of slab concrete and reinforcement, and beém.steel;
the material property parameters needed to fully define the complete
stress—-strain relationships for each of the varied materials; the
location of any web plate panels; and the boundary or support
conditions needed for the analysis, employing lines of symmetry
where appropriate. With this information all the initial stiffness
properties and node point constraints, i;e. boundary conditions, are
determined. However, to fully establish the set of equilibrium
equations given by Eq. 3.2, the force vector, i.e. the loads, are

still required.

The bridge loadings are composed of three parts; the dead
loads acting on the beams, i.e. the dead weight of concrete and
steel; the dead loads acting on the composite structure, i.e.
weight of curbs, parapets, and future wearing surface; and the live
load or overload vehicle Weigﬂts and their position. Once this

information is provided the solution process can begin.

3.7.2 Dead Load Solution

Since the analytical technique employed considers material

nonlinearities, which are stress dependent, an accurate assessment
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of the stress state prior to the application of the overloads is
required. It should be noted that due to the ekpected nonlinear
behavior of the structure, the principle of superposition cannot
be employed. Therefore, the superstructure must be analyzed to
obtain the following stresses prior to the application of the
overload: the stresses in the beams due to the dead weight of the
slab and beams; and the stresses in the beams and slabs due to the
dead weight of parapets, curbs, or future wearing surface. The
initial stress state and any material failures or nonlinearities
due to the application of these dead loads will thus be reflected

prior to the application of the overloads.

3.7.3 'Scaling Procedure

As long as the initial solution due to the overloads pro-
duces elastic respomnse, i.e;'no nonlinear response, the load is
increased proportionally to the lowest load level corresponding to
one of the following element stress limitations: 60% of the compres-
sive strength of concrete, 907 of the tensile strength of concrete,

97.5% of the yield strength of steel, and 100% of the buckling

stress, whichever is the smallest. Because this technique scales
up the initial load level; only one elastic solution is obtained,
i.e. subsequent solutions will have nonlinear respbnse. Thus, the
number of elastic solutions are kept to a minimum. If, howeﬁer,
the initial solution causes any maéerial or stability failure, i.e.
nonlinear response; the initial live load is scaled down so that -

a linear solution can be obtained. Then the scaled down load is
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incremented until nonlinear response occurs. Once nonlinear
response begins, i.e. cracking, yielding, or buckling begins, the

overload solution procedure is employed.

3.7.4 Overload Solution Procedure

The structural response to an overload vehicle is obtained

by solving the set of equilibrium equations expressed by:
{F} = [K] {6} (3.1)

Because the response is eventually expected to be nonlinear in

nature, a piecewise linear or incremental approach must be employed.
{F} = [K (0 + 0)] {8} (3.29)

The force vector,'{é}, is considered to be the increment of the node
point forces applied to the structure, and, {é}, the corresponding
incremental node point displacement vector. The total forces and
displacements are obtained by addition of the various increments.
The stiffness matrix [K (o + é)] reflects the instantaneous stiff-
ness of the bridge superstructure, and depends upon the current
total stress state, o, and an unknown stress increment, &. Because
the unknown stress increment is dependent upon the stiffness and the

stiffness is in turn dependent upon the stress increment, conven-

tional linear elastic solution techniques cannot be employed.

However, using a tangent stiffness approach or piecewise

linearization of the nonlinear phenomena, the overload problem can
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__A_Pe solved. In such an approach, the system of equations expressed
by 3.29 are assumed to be linear in a given load increment. Then
by computing the tangent to the stress—strain curve for each layer,
based upon the current stress state, the layer stiffnesses, element
stiffness, and ultimately the global stiffness matrik can be cal-
culated. Equation 3.29 is then solved for the incremental node
point displacements; from which the incremental element étrains

are calculated; From these element strains the incremental layer
strains are calculated. Then by employing the material stress-
strain relationships the corresponding layer stress values are
obtained. These incremental stress values are added to the total
stress state which existed prior to application of the load incre-
ment, thus arriving at a new current stress state. The new current
stress state is in turn used to recompute the stiffness matrices,
and thus, to resolve Eq. 3.29 for the incremental node point dis-
placements. This process is repeated, i.e. iterations take place,
-until the solution for the increment converges. Should a layer
fail during the application of the load increment, the load incre-
ment is scaled down so that the layer stress just barely causes
failure. Thus, in this method which is called the "incremental-
iterative'" method, the stiffness matrices are continuaily,updated
within each load increment or step. As an approximation to the
"incremental-iterative" method it is possible to gpdate the stiff-
ness matrix only at the start of the load increment, i.e.

"incremental" method; however, in such a solution scheme, where
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no updating of the stiffness matrix takes place within the load
increment, error is introduced in the first increment and contin-
ually compounded in subsequent increments. For this reason, the
"incremental" method has not been used in the present research. An

"incremental" method as used in the

explicit description of the
analysis of concrete bridges is presented in Ref. 54. The
"incremental iterative" technique as used in the overload analysis

of steel bridges appears in the flow chart of Fig. 20 with the

detail descriptions of the steps appearing below:

1. TFormulate the element stiffness matrices
based on current total stress levels.

2. Stack the element stiffness matrices to
form the global stiffness matrix.

3. Solve for the incremental node point
displacement using the global stiffness
matrix and incremental force vector.
Compute the incremental strains and
then stresses.

4, If the incremental displacements have
converged to the specified tolerance, 20%,
go to Step 7; otherwise continue.

5. If the maximum number of iterations, 3,
within a load increment has been reached,

to to Step 7; otherwise continue.
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6. If the stress state exceeds the upper

tolerance specified which would cause
yielding, cracking, crushing, strain
hardening, or buckling, then scale

down the applied force increment such
that a state of incipient failure exists
and go back to Step'l;

7. Unload the excess concrete layer
stresses and compute the corresponding
fictitious force vector for unloading,
if applicable.

8. If the current total stress level, or
total strain has exceeded the lower
tolerance specified which would cause
yielding (¢ > 0.975 oy), cracking
(6 > 0.9 £), crushing (g > 0.9 f;),
strain hardening (g, > 1.0 Est)’ or

buckling (o > 1.0 Gcr)’ then set the

codes to indicate which layers, flanges,
web panels have failed.
9. Compute the total stress, strain, dis-

placement, and force vectors by adding

together the old totals and the new

increments.
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10. Check the live load stress range of
various specified details to see if
allowable fatigue stress range values
have been exceeded, and if so, note this
fact. (Only applicable when details
are specified.)

11. Apply new force increment and go to Step 1.

It should be noted that the initial solution of each load cycle is
based upon zero stress and displacement increment values, thus, the
first iteration of each step is based upon the stiffness matrix of

the previous load cycle.

The overload analyéis process terminates when one of the
specified termination checks is exceeded. The termination checks
are defined in terms of allowable values of: deflections, live
loads, stresses, strains, number of failed layers, or crack widths.
Thus, an efficient solution procedure is developed to meet the

requirements of the analyst.
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4. COMPARISONS OF ANALYTICAL AND EXPERIMENTAL RESULTS

4.1 Introduction

This chapter contains comparisons of experimental and
analytical results. The investigations involve: simple span and
continuous beam-slab highway bridge superstructures; continuous
composite beam structures; and transversely stiffened plate girder
structures. In addition, a simulated overload analysis of a four-
span continuous plate girder-slab bridge superstructure is pre-
sented as an example of the implementation of the analytical
technique. The above comparisons are made so as to provide a basis
for the verification of the reported mathematical model. The exper-
imental studies are obtained from the available literature and

were not conducted as part of this investigation.

The analytical studies were made by employing the reported
method. First, a total of four concrete slab and steel beam
structures, which had been previously subjected to overload testing
were analyzed. Two of the test structures were full size bridge
superstructures, while the remaining two were scaled structural
models. The representative results of the full size bridge super-
structure comparisons are presented herein. A detailed description
of all four tests and the comparative results can be found in Ref.
27.
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It should be noted that because the above investigations
occurred during phase 1 of the research (Section 1.3), the stability
considerations were not as yet a part of the analysis scheme. Thus,
if buckling of a component member had occurred the method would not
have predicted any buckling. However, due to the proportions of
the slab and beams, buckling did not occur in any of the tests with
the exception of the University of Tennessee test. In that test,
buckling took place oﬁly after the formation of a plastic hinge and
at a load level of approximately 97% of the ultimate load. Thus,
there is no loss of accuracy in three of the analytical results and
negligible loss of accuracy in the other analytical prediction by

not having included buckling considerations.

The remaining experimental tests were selected because
buckling was a major mode of failure. Thus, the reliability of
the analytical method in predicting the occurrence of buckling and
any post-buckling behavior could be verified. A comparison of the
analytical and experimental results of two composite beam tests
and seven plate girder tests was presented in detail in Ref., 28,
Since similar results were obtained in all cases only one of the
composite beam tests and three of the plate girder tests will be

présented herein.

Also, as an example of the implementation of the analyt-
ical method, an analysis is performed on a typical continuous
plate girder bridge, which is taken from the Federal Highway

e L Administration's standard drawings (Ref. 67). While there are no
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experimental results which can be used for comparison with the

analytical predictions, the analysis will show the applicability
of the method and the expected types of nonlinear behavior and
distress that should Qccur in a typical continuous plate girder
bridge. While this particular analysis does not verify the
validity of the method, the proven réliability of the technique
as demonstrated in the other experimental and analytical compar-
isons, indicates that the results of this plate girder bridge

analysis should also be reliable.

4.2 Beam-Slab Bridge Superstructures -

Comparisons have been made between ekperimental results
and analytical results of four beam-slab highway bridge super-
structures which were subjected to overloads (Ref. 27). The com-
parisons, which are listed below along with the reference in which
the experimental results were presented, were conducted to verify
the validity of the developed analytical model. It should be noted

that the analytical model does not consider any response due to

diaphragms.
No. 1: A simply supported right bridge with a
span length of 15.24 m (50') and a width of 4.57 m
(15') having three W18x60 steel beams with partial

length coverplates (Bridge 3B, Refs. 33 and 34).

No. 2: A four-span continuous right bridge with
span lengths of 21.34 m, 27.43 m, 27.43 m, 21.34 m (70',

90", 90', 70') and a width of 10.52 m (34'-3") and having
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four W36x170 steel beams with W36x160 beams with
céverplates over = interior supports (Bridge 1, Test
1300, Refs. 14 and 21).

No. 3: A two-span continuous right bridge model
with two span lengths of 2.74 m (9') and a width of
1.6 m (5'=3") with three S6x12.5 steel beams and
partial length coverplates. (Two-span model of Refs.
12, 13, 25 and 32).

No. 4: A three-span continuous right bridge model
with three span lengths of 1.83 m (6') and a width of
1.6 m (5'-3") with three S5x10 steel beams and partial

length coverplates. (Refs. 12, 13, 25, and 32).

Only examples No. 1 and No. 2 of the above list will be presented
herein, and they will be referred to as "Bridge 3B - AASHTO Bridge

Test" and "Test 1 - University of Tennessee", respectively.

4.2,1 Example No. 1 - Bridge 3B = AASHTO Bridge Test

This bridge was constructed és part of the AASHTO Road
Test conducted in the early 1960's (Refs. 33 and 34). The testing
consisted of three phases: (1) a regular test traffic program of
500,000 trips, (2) dynamic load tests, and (3) increasing load
tests, i.e. overioad tests. Bridge 3B was designed as a simply
supported composite slab and steel girder bridge with a span

length of 15.24 m (50') center-to-center of bearing. The
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deck slab for the bridge had an average measured depth of 164 mm
(6.45") and was 4;57 m (15'") Wide: Three W18x60 steel beams were
placed 1;52 m (5') apart with 11.1 mm i 152 mm (7/16" x 6") cover-
plates‘exténding ovér 5:64 m (18'-6") of the middle of the span.
Figures 21 and 22 show the elevational and cross-sectional views

of Bridge 3B.

The loads were applied to the superstructure by moving
overload vehicles. For the testing of Bridge 3B three different
overload vehiCIeé‘were'used-(vehicles 97; 98 and 99 as shown in
Fig. 23). The 1oadiﬁg procedure consisted of placing weights on
the overload vehicle which would then travel across the bridge,
usually thirty times. During the loading process the midspan
deflections of each beam were monitored and recorded. The load was
then increased and another set of runs made. The procedure was
continued until tﬁe bridge superstructure- collapsed onto the

safety crib below the bridge superstructure.

Because the loads were not applied in a static manner but
by moving vehicles, the moment envelope produced by the passage
of the overload vehicle is of interest. Since the finite element
program requires a static loading pattern which will then be
incremented, an equivalent static loading pattern which would
correspond to a realistic simulation is required. In addition,
because three different overload vehicles were used, three

different moment envelopes must be simulated by one constant loading
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pattern. Based upon previous experience and numerical computations,
the moment envelope could be best simulated by a line load over

the beams (Ref. 55).

Figure 24 shows the superstructure discretized into a
series of finite elements. The node points, element numbering,
and element dimensions are indicated in the figure. Since the
structure was assumed to be symmetric in geometry and loading,
only one-quarter of the structure need be analyzed. A total of
eighteen slab elements and twelve beam elements were used. It
should be noted that because a line of symmetry iies along the
axis of the interior beam; only one-half of the interior beam
cross—section is included in the model. The line load was simulated
by a series of concentrated loads indicated by the cross-hatched

squares.,

The layered slab and beam models are shown in Fig. 25.
A total of six layers of concrete and four layers of steel rein-
forcement were used in the slab finite element. The direction of
action of the reinforcement is indicated by the cross-hatched area
and is given along with the thickness, and bar size/spacing in
Table 1A. The beam finite element consists of a total of eleven
layers as indicated; The croés-hatched layer, which represents the
coverplate, has two sets of material properties. In the region
where no coverplate exists in the actual structure, the material
stiffnes properties are set to artifically low values to simulate

the absence of the coverplate. In the area where there is a
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coverplate the properties of steel were used. In Table 2 are
presented the material properties of the steel and concrete used
in Bridge 3B, and the corresponding material properties used in the

finite element simulation.

At the end of the regular test traffic program one of the
three beams of Bridge 3B was discovered to have a fatigue crack at
the end of the coverplate. Even so, it was determined that the small
permanent set in the bridge at that stage was due to cracking of the
concrete slab and yielding of the steel; thus, the fatigue crack had
no effect on the stiffness of the bridge. Prior to the overload test
the fatigue crack was repaired with a butt weld in order to prevent

premature failure.

The bridge failed in a flexure mode and in Ref. 34 the
overload behavior of the bridge is presented in terms of a plot
of the maximum static moment at midspan caused by the overload
vehicle versus the average displacement at midspan of the three
beams. Figure 26 shows the midspan moment displacement history of
the bridge. The analytical results of program BOVAS and the test
results are presented by the (@) and (©) symbols as noted. As can
be observed from the plots, the results produced by the two methods
agree relatively well, especiélly at the beginning, and from a
deflection of 102 mm (4") (1/150 deflection to span ratio) to
about 254 mm (10") (1/60 deflection to span ratio). The main
discrepancies between test results and the calculated response

occur within two regions: first, from approximately 33 mm to 102 mm
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(1.3" to 4.0") deflection, and secondly, from about 254 mm (10")

in deflection to the termination of the test.

Some difference between test results and computed results
is to be expected because the loads were applied to the test
structure by three different overload vehicles in motion and the
finite element program applied an approiimate equivalent static
loading pattern in an incremental fashion; In addition, as with
any finite element model, there exists the effect of the size of
the discretization used: However, in the second region of dis~-
agreement the'differeﬁce in ma%imum loads is only around seven
percent and thus within acceptable modeling limits: A considerable
improvement can be made in the modeling scheme if the effects of
residual stresses in the steel beams are included. Residual stress
measurements in the beams were made and reported on in Ref. 33.
Assuming a parabolic distribution of residual stresses in both the
flanges and the web; an average value of residual stress in each of
these parts of the cross-section is calculated. Using these values
of residual stress as initial stress values in the beams and
repeating the finite element analysis, much better agreement with

test results is obtained, as indicated on Fig. 26.

A qualitative description of the extent of damage at
different load levels, as reported in Ref. 34 is compared to damage
as predicted by program BOVAS in Table 3. In general the damage

record shows that the method of failure and the loads at which
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different types-of structural damage occurred can be predicted by

program BOVAS,

4.2.2 Example No, 2 - Bridge 1 - University of Tennessee

This bridge was one of four bridges which were to be
inundated as part of a reservoir in Tennessee (Ref; 14) . Bridge 1,
referred to as such by'thé experimental researchers, was a four-
span continuous composite structure with span lengths of 21.34 m,
27.43 m, 27.43 m and 21;34 m (70", 90'; 90' and 70'). It was
constructed in 1963 and deéigﬁéd for HS-20 loading: The deck slab
was 178 mm (7") deep and was 10.52 m k34'—6") wide; including the
curb (Fig; 27): For the'finité'elemént analysis the curb portion
of the superstructure was considered to be in the same plane and
of the same thickness as the slab; A total of four W36x1l70 steel
beams were used to support the deck with 2.54 m (8'-4") spacing
center—-to-center between the beam; In the negative moment regions
there were W36x160 steel beams with 267 mm x 25.4 mm (10-1/2" by 1")
coverplates. A plan view of the superstructure and the location
of the applied loads and points where readings were taken are shown

in Fig. 28.

The loads were applied to the bridge deck by 890 kN (200 k)
center hole jacks resting on bearing grills; The bearing grills
were constructed from two W14x30 steel beams 1.17 m (46") long and
0.76 m (30") center;to—center; and resting on concrete pads poured
directly on the bridge deck;' The location of the grills is shown

in Fig. 28 by cross-hatched areas.
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Due to the symmetry of the loads only one~half the
structure needs to be discretized. The node points, element
numbering, and element dimeﬁSions of the discretized structure are
indicated in Fig; 29; The cross-hatched areas represent the loca-
tion of the patch loads that must be applied to the idealized
structure. A total of 42 sléb finite elements and 28 beam elements
were used, resulting in 90 nodes and 360 degrees of freedom.

The area of main étructural interest was the portion of the bridge
near the midspan of the loaded span; therefore, the element dis-—
cretization is finer in this region and much coarser in other spans.
While the coarse discretization of the unloaded spans will be
sufficient to model accurately the stiffness of the'bridge; de~
flections and stresées in these regions will not be reliable because

of the element size.

The layered slab and beam finite elements are shown in
Fig. 30. A total of éik layers of concrete and four layers of steel
reinforcement were used; The direction of action of the slab rein-
forcement is perpendicular to the cross-hatched area and is
specified, along with the thickness and bar size/spacing, in
Table 1B. The exact reinforcement and pattern in the slab were
not specified in Ref. 14, so a reinforcement distribution based
upon the existing design practices was chosen. The beam finite
element consists of eleven layers as indicated. Bec;use the length
of the coverplated sections were not specified, the same beam

element, i.e. W36x170, was used throughout.

~79-




In Table 4 the actual material properties of the steel and
concrete used in Bridge 1 and the material properties and parameters

assumed for the finite element analysis are listed.

Bridge 1 was described as being "structurally sound" prior
to the beginning of the experimental tests (Refs. 14 and 21). The
bridge had been in service for approgimately five years”and;
prior to the testing, the average daily traffic was 600 vehicles
per day; Before thé'ulfimate'load test was conducted; other load
tests involving lateral load distribution studies and dynamic
response studies to rolling and vibratory ldading were carried
out, Refs; 14 and 21 contain all thé'information concerning the

results of these other tests.

A plot of the load and corresponding average deflection at
the midspan of the loaded span is presented in Fig. 31 for both the
analytical (@) and experimental (®) results. In general, the two

curves are in close agreement except in the range of about 127 mm

(5") (1/216 deflection to span ratio) to 330 mm (13") (1/83
deflection to span ratio) deflection. However, even in this range

the maximum difference in load is only five percent.

Qualitative bridge damage, as reported in Refs. 14 and
21, is compared to damage as predicted by program BOVAS in Table 5.
As can be seen, considerable difference can be observed between
the first cracking loads for the experiment and the analytical
predictions. This noticeable differenCé ié not all that disturbing

if one evaluates all the facts. First, the real structure had
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coverplated sections over the piers, making the composite section in
tg;;_;rea more resistant to cracking. Second, and most important,
the finite element discretization in the region near the support
piers is extremely coarse. This leads to poor element stress dis-
tribution and, therefore, damage predictions. As mentioned before,
however, the coarse discretization still produces reliable stiffness
properties (i;e. overall load versus deflection results). Lastly,
the visual observation of cracking in the slab does not give any
quantitative information on the'eitént of cracking through the

slab; The reported'crackiﬁg thus may be either "éurface deep"

or halfway through the depth of the'slab: Looking at other recorded
damage the’Observafion §f first yield in the beams differs by only
ten percent; and considering the qualitative nature of the observa-

tion, this is within acceptable limits.

As reported in Refs. 14 and 21, at a load just abéve first
yvielding the bridge "lifted off'" the abutment nearest the load.
The present version of the finite element model is not capable of
simulating this behavior; but as indicated in Fig. 31 the experi-
mental and analytical results are not very different. This is, in
part, due to the fact that when the "1lift off" occurred, the moment
capacity of the composite section over the first pier had reached
much is its capacity. Considering coarseness of the discretization,
the leaving out of the coverplated sections; and the lifting off of

the bridge from the abutment, the BOVAS results are remarkedly good.
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4.3 Continuous. Composite Beams

Comparisons were made between the analytical results and
experimental results of two continuous composite beams which were
subjected to overloads (Ref; 28) . The'comparisons; which were
conducted to verify the reliability of the developed analytical
teclinique in predicting the”bccurreﬁée of torsional buckling of
beam compression flanges, are listed below. The'ekperimental

results were originally presented in Ref., 29,

No. 1 - A two-span continuous composite beam with
equal span lengths of 3.66 m (12') and com-
posed of a 102 mm (4") deep by 1219 mm
(48") wide reinforced'concreté slab
connected compositely to a W1l2x27 wide

flange beam (Test CB2 - Ref. 29)

No. 2 - A two-span continuous composite beam with
equal span lengths of 3.66 m (12') and

composed of a 102 mm x 1219 mm (4" x 48")

- reinforced concrete slab connected
compositely to a W10x21 wide flange beam

(Test CB3, Ref. 29).

To avoid repetition, as mentioned earlier, only one of

these comparisons, No. 1 - Test CB2, will be presented herein.
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4.3.1 Example No. 3 - Test CB2:

The following experimental results were obtained from one
of three tests conducted on composite beams which were reported in
a paper by Hamada and Longworth at the University of Alberta (Ref.
29). All of the composite beams in thé'tests were loaded incre-
mentally until failure: Test beam CBZ; was composed of a 102 mm
(4") deep by 1219 mm (48") wide reinforced concrete slab connected
compositely to a Wl2k27 steél'beam: As shown in Fig. 32a, the
composite beam had two equal spans of 3658 mm (144") and two
equal loads were placed at thé'midspan of each épan; The material
properties for the concrete;’réinforcing steel“and beam steel are

given in Table 6.

Only one-quarter of the‘Strﬁcture is discretized due to
lines of symmetry in both the longitudinal and transvérse direction.
The resulting finite element mesh (Fig: 33) is composed of 14 slab
elements, 14 beam elements; and 45 node points: The slab and beam
layers are defined in Figé. 33a, b; with the respective slab
reinforcement and orientation presented in Table 7. In the actual
experiment, no reinforcement was provided in the longitudinal
direction in the positive moment regions. In the finite element
analysis the longitudinal slab reinforcement in this region was
modelled by assigning an artificial stiffness of 1/1000th of the
normal values to the modulus of elasticity for the reinforcement.
In addition; residual stresses for the steel béam were approximated
according to the ﬁethod developéd'in Ref; 27:
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The analytical and ekperimental load versus deflection
curves for Test CB2 (Fig. 35) do not exhibit perfect correlation;
however, considerable similarity in the shapes of the curves does
exist. In particular the slépe of the inelastic plateau appears to
be the same in both the experimental and analytical cases; indica~
ting reasonable agreement ekists in the post-elastic region. It
should be noted that, in general; much better agreement is obtained
when comparing test results on full-size bridge structures and
analytical results, than when comparing test results on model-size
structures, as in this case;'and analytical results (Ref. 27).
Thus, some of the differenCeé between the load versus deflection
curves may, possibly, be attributed to the size of the structure,
and thus the accuracy of thé‘scale'model structure in reflecting .real
life structural response; HoweVer; even with the apparent differ-
ences the maximum error is only 10%, which is within acceptable

limits.

Much better agreement is obtained when comparing the
analytical and experimental load versus damage records as reported
in Table 8. As can be seen, the actual flange buckling load of
578.3 kN (130 kips) and the finite element prediction of 589.8 kN
(132.6 kips) indicates an error of only two percent. In addition,
the analytical load for cracking of the slab is only off by 127%.
Considering tﬁe difficulty during the test to accurately assess the
degree of cracking occurring in the slab, such an error is well

within reason.
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A review of the analytical and experimental results of Test
CB3 in Ref. 28, shows the same geﬁeral trends as shown in the com-
parison just presented for Test CBZI ‘Based upon these comparisons
of load versus deflection diagrams and load versus damage reports,
it is justifiable to conclude that the developed method can ade-
quately predict the effects of the torsional flange buckling phenom-
ena. This conclusion becomés'more evident if one would consider the

results, if flange buckling was excluded from the analysis scheme,

i.e. flange buckling ignored.

4.4 Transversely Stiffened Unsymmetrical Plate Girders

A total of eight ultimate load tests were conducted at
Lehigh University by Dimitri and Ostapenko (Ref. 20) on three
different 914 mm (36") deep transversely stiffened unsymmetrical
plate girders, UGl, UG2 and UG3. The top and bottom flanges in
each case were 203 mm x 16 mm (8" x 5/8") with a 277 mm x 19 mm
(10-1/2" x 3/4") coverplate welded to the bottom flange of all the
girders. The web was 914 mm i 3 mm (36" % 1/8") in the center
portion of each girder and 914 mm x 5 mm (36" x 3/16") elsewhere.
The loading patterns employed were chosen to evaluate the ultimate
strength of the girders in pure bending; pure shear, and combined
shear and bending (Fig. 36). Since similar results are obtained in
each of the different load categories; i.e; shear; bending, or
combined, only the‘reéults pertaining fo girder UG2 (Fig; 37) will
be presented, as they aré representivé of all the tests; A detailed
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comparison of all of the tests and analytical results can be found

in Ref. 28.

Plate girder UG2 and the finite élement discretization
are shown in Fig. 37. It should be noted that the finite element
computer program, BOVAS, reqﬁites'thé e%istence of a slab, and since
the actual plate girder has no élab, the absence of the slab is
modelled by a fictitious slab of 610 mm x 25 mm (24" x 1") with
stiffness properties equal to 1/10000th of the normal values or
about 3.45 MPa (0.5 ksi). With éuch S£iffness values the slab
elements have no noticeable influence oﬁ any results; The discre-~
tization, therefore, contaiﬁs 14 fictitious slab elements, 14 beam
elements, and 45 node poiﬁts; Due to éymmetry in the transverse
direction only one~half of the plate girder is discretized with a
total of 11 beam layers (Fig. 38). The load placement for girder
tests UG2.1, UGZ;Z and UG2;3 aﬁd the modes of failure expected are
given in Figs. 36c, d, e, with the material properties given in

Table 9.

The comparison of analytical and ekperimental load versus
deformation curves for test UG2.1 (shear) is presented in Fig. 39.
In the analytical model the critical web plate shear panels were
assumed to be the two web plate panels to either side of the
interior load and one web plate panel‘ﬁo the right of right hand
support. As can be seen from the'plot;‘thére exists close agreement

between the analytical and experimental results., In addition, as
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reported in Table 10 the maximum load obtained for the test was
80.1 kN (17.8 kips) while the computer prediction was 81.0 kN
(18.0 kips) or only 1% error. Similarly, the actual web buckling
load of 11.7 kN (2.6 kips) compares favorably with the BOVAS
prediction of 13.5 kN (3.0 kips). While the difference in these
two buckling values would appear to be large, a comparison of
buckling loads is somewhat questionable due to the qualitative
nature of the determination of the actual web buckling load. In
addition, it should be noted that while each of the different
plate girder tension field models developed, for predicting the
plate girder ultimate strength, predicts different loads for the
~initiation of web buckling, all of the ultimate load predictions,
i.e. maximum load predictions, are approximately equal. Thus,
while there is great significance attributed to the fact that the
plate girder web panel buckles, the actual buckling load is of
less significance., This fact is clearly evident in Fig. 39, where
the effects of web panel buckling are ignored for the analytical
curve labeled, BOVAS no shear panels (i.e. no web plate panels
specified in BOVAS). 1In this case, the first indication of
nonlinear behavior does not occur until well outside the graph at
a load of 448.7 kN (100.9 kips) and a deflection of 12.8 mm (0.5").
Thus, considerable error can occur by not including the effects

of web plate panel buckling.
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In Fig. 40 the comparison of analytical and ekperimental
load versus deformation curves for test UG2,2 (combined) is pre-
sented. In this case, the buckled panel of test UG2.l was repaired
with a diagonal brace; however, the effect of the repair on the
future load versus deflection behavior of the girder is not known.
Ideally, the repair would be just sufficient to make the panel
behave as if it has never buckled; however, the repaired panel
probably would respond éomewhat stiffer than the ideal. To model
these two possibilities, two analytical studies were conducted:
in one case, only the two web plate shear panels to either side of
the interior load wetre considered critical; i.e. the panel stiffer
than ideal; and in the second case, the repaired panel was also
considered critical, i.e. the panel treated as if nothing had
previously occurred. As can be seen in Fig. 40, the two models
mentioned above quite effectively bracket the actual test results
as would be expected. From Table 10 the maximum loads for the
test of 90.9 kN (20.2 kips) and for the ideal case, 3 panels, of
91.4 kN (20.3 kips) indicate an error of only 0.6%. In this case,
no test value is given for the web buckling 1oad; Again, when the
effects of web plate panel buckling are ignored, i.e. the case of
no shear panels, considerable error in estimating the ultimate
strength of the plate girder can occur, While in this case the
magnitude of the error is less than in the pure shear condition,

UG2.1, the magnitude is still quite large.
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In test UG2.3 (bending) failure occurred due to lateral
buckling of the compressidn flange;‘ As can be seen in Fig. 41 some
discrepancies exist between'the'experimental and analytical load
deflection results. Some of this difference may be attributed to
the repairs on the buckled panels. In spite of these differences,
however, the comparisons are.still reasonably good. It should be
noted that two post-buCklingacurves are given for the analytical
results. Referring to Section 2;5.3‘one finds that after reaching
the critical flange buckling stress, the post-buckling loss of
stiffness was modeled in two different ways: first, assuming that
only the flange loses stiffness (labeled - BOVAS - in Fig. 41); and
second, assuming that both the flange and the web plate panel lose
stiffness (labeled - BOVAS - complete failure - in Fig. 41).
Considerable improvement in the post-buckling behavior can be noted
in Fig. 41 by employing the complete failure assumption; therefore,
in all future cases this mode of failure, due to lateral buckling,
will be used. The makimum load obtained from Table 10 for the
test of 286.7 kN (63.7 kips) compares reasonably well with the

predicted value of 315.0 kN (70.8 kips) i.e. 10% error. While the

maximum loads are not as close as in the previous examples, they
are within acceptable limits, especially considering the behavior

when lateral buckling is ignored, i.e. no shear panels.

The comparisons of analytical and experimental results on
plate girders indicate: that the analytical model reliably predicts
the occurrence of web buckling, lateral flange buckling, and ultimate
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load capacity of the girder; that while the analytical model seems
to produce a slightly stiffer than normal behavior in the case of
bending or combined bending énd éhear, the overall behavior still
reflects the actual girder behavior; and that failure to include
these effects can lead to considerable error; Thus, the conclusion
can be drawn that BOVAS can reliably predict the response of trans—
versely stiffened plate girders to loads, bdth'in the elastic and

inelastic regionms.

4.5 Analysis of a Four-Span Continuous Highway Bridge

In Chapter 2, the occurrence of and the effects of flange
and web buckling on individual beams and girders was presented;
The experimental comparisons of Sections 4.3 and 4.4, however,
involved individual beams and girders and not actual steel multi-
girder highway bridge superStructures; Thus, in order to fully
investigate the applicability of the aﬁalytical method to an actual
plate girder bridge superstructure, an analysis was conducted on a
typical four-span continuous highway bridge; While there are no
experimental results which can be used for comparison, the analysis
will indicate the expected types of nonlinear behavior and distress

when such a bridge is subjected to overload.
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4,5.1 FHWA Four-Span Continuous Bridge Superstructure

The bridge to be analyzed comes from the Federal Highway
Administration's plans on Typical Continuous Bridges by Load Factor
Design (Ref. 67). This bridge supérstructure has spans of 30.5 m,
(42.7 m, 42.7 m, and 30.5 m (100 ft; 140 ft; 140 ft; and 100 ft)
with a 13.4 m (44 ft) roadway width (Figs. 42, 43). The concrete
deck averages 229 mm (9'") thick and the welded plate girders have
web plates 1676 mm x 10 mm (66" x 3/8"). The variation in the
girder flange plates is shown in Fig. 44; The girders are braced
laterally at the supports by channel sections and at approximately
every 7.62 m (25 ft) with steel cross-bracing. The material prop-
erties of the concrete, reinforcing steel, and girder steel used |
in the analysis are outlined in Table 11, The girder web is
composed of A36 steel while the girder flanges are composed of

either A36 or A441 steel as noted in Fig. 44.

The layered finite element models (Figs. 45, 46) consist of
six concrete and four reinforcing layers for the slab, and a total
of fifteen steel layers for the girder. It should be noted that,
while the transverse slab reinforcement remains constant through-
out the slab, the longitudinal reinforcement is increased in the
negative moment regions (Table 13). Also, due to the variation
in flange thickness along the length of the beam (Fig. 44), certain
cross~sections will have layers where theoretically no steel can

exist., This fact is modelled by specifying a fictitious material
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with effectively no stiffness (Tables 11, 12) in the appropriate

areas.

Based upon previous results (Ref. 27), which indicate
that the maximum moment envelope of a bridge superstructure can be
obtained by a uniform distributed loéd pattern, a uniformly distri-
buted load pattern will also be applied in this case. While such a
loading condition will not necessarily give the worst possible
loading condition; the‘reéults should effectively e%hibit buckling,
post-buckling, and any other nonlinear behavior, if any; of

conventional bridges.-

The uniformly distributed load will be applied over the
entire slab surface between girders 1 and 3 (Fig. 43) for the entire
length of the superstructure. Due to the symmetry about the center
support; Pier 3, only one-~half the structure in the longitudinal
direction will be discretized; A plan view of the finite element
discretization and loading pattern (cross-hatched area) is pre-
sented in Fig. 47a, b, where there are a total of 252 nodes, 120
slab elements, and 100 beam elements. A total of sik transversely
stiffened web plate panels per girder are specified in the analysis.
The first four are over the first interior support, Pier 2, with the
two to the left of the support having aspect ratios,Aap,~of 6.758,
and those to the right with aspect ratios of 0.707. The last two
web plate panels are at the center support and have aspect ratios

of 0.707. Based upon the lateral bracing, the unbraced lengths of
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the web plate panel compression flanges are assumed to be equal

to: 7.62 m (300"), 7.11 m (280"); and 7.11 m (280"), respectively.
It should also be noted that in this analysis;_the fatigue live load
stress range feature of program BOVAS is employed. This program
feature calculates the live load stress range of specified girder
details and compares these values to allowable fatigue stress range
values. If the actual strésS'range at some load level exceeds the
allowable value; a warniﬁg noting that fact is printed. The com-
plete details of the fatigue stress range check, for this analysis

is presented in Section 5.1.2,.

The load versus deflection diagram; Fig. 48, indicates
the relationship between the maximum static moment at Pier 2 and the
maximum deflection of girder 2 at midspan of the second span. On
the diagram some key points of failure are noted with capital
letters. These capital letters correspond to the maximum moment
load levels as reported in the moment versus damage record of Table
12, Perhaps the most significant feature is point A which corres-
ponds to approximately the maximum static moment caused by two
HS-20 lane loadings and corresponding point loads, as specified
by AASHTO specifications. This moment value was obtained by com-—
‘pleting an additional BOVAS analysis of only a few load cycles
where the additional concentrated loads were placed at midspan.

The preliminary results of that abreviated analysis indicate that

the web plate panel over pier 2 will buckle before reaching load

level A; however, the first significant failure for the present
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analysis, i.e. no concentrated loads, does not occur until load
level B is reached where the first web plate panel over pier 2

buckles.

It should be noted from the load versus deflection plot
that the overall structural response is still linéar up to load
level C, 6055 kN-m (4466 kip-ft); and that the first large deviation
from linear behavior does not start until load level E, 2478 kN-m
(6352 kip-ft) has been'réaChéd: This is particularly important be-
cause many of the web plate panels have buckled by the time this
load level is reached, but due to the highly redundant nature of
the slab-girder structure there is minimum effect on the overall
behavior when local failure occurs. Similarly, after lateral
buckling of the compression flange at 12928 kN-m (9535 kip-ft),

point H, the overall effects of the buckling are still minimal.

And finally, the load level which just causes yielding
of the girder steel to begin; does not occur until reaching 19287
kN-m (14225 kip-ft), point J. This corresponds to about 3.4 times
the load level at which the first web buckling occurs. Thus, this
overload analysis of a continuous multi-girder highway bridge
superstructure using program BOVAS, clearly shows its usefulness in
being able to predict the occurrence of buckling and post-buckling -
behavior. The analysis also shows that failure to include the
effects of buckling would cause conéiderable error in the actual
results, and that an assessment of the superstructure's resistance

to overload is possible through the use of program BOVAS.
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To summarize the results of the analysis on the four-span

continuous bridge, the following observations can be made:

1. The load versus deflection response is linear up
to a load level of 6055 kN-m (4466 kip-ft).

2. Cracking of the.slab over the interior support is
the first nonlinear form of behavior at 5543 kN-m
(4088 kip-ft).

3. Web plate: panels over interior support do not buckle
until load level 6055 kN-m (4466 kip-ft) is reached.

4, By assuming a total of 12 HS-40 trucks lined up
bumper to bumper in each lane, the total load on
the bridge would be 7687 kN (1728 kips). Since the
total load on the bridge at the first web buckling
loads is 7117 kN (1600 kips), it is possible for
web buckling to occur in an actual bridge super—
structure.

5. Even after considerable web buckling has occurred,
the redundancy of the superstructure prevents large
changes in the deflection characteristics of the
superstructure.

6. A realistic picture of the load versus damage
record of the superstructure is available for
determining possible serviceability limits of the

superstructure,’

-95-




5. FURTHER CONSIDERATIONS

5.1 Introduction

In Section 1.5 the major structural response character-
istics of steel highway bridges were outlined. In Chapter 2 and
3 the manner in which these response characteristics were included
into the analytical model was presented. In addition, the effects
of these characteristics on the overall structural response was
also studied in Chapter 4 on experimental comparisons. However,
two important features of the amalytical model, the shear connector
stiffness and fatigue, need to be discussed in more detail to
fully understand their importance to the overall structural response
of beam-slab highway bridges with steel beams. In addition, a study
of the effects of torsion of the beams is necessary to fully
justify its exclusion from the analytical model at this time.
Thus, in this chapter a discussion of these three topics will be

presented.

5.1.1 Shear Connector Stiffness

The term ksc in Eq. 3.26c is the shear connector stiffness
per element length (Refs. 27,28,64). By changing the values of kSc
appropriately, the finite element model can successfully simulate
varying degrees of composite action between the slab and beam.
However, at this time no definitive study has been done to
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explicitly define values for ksc' Thus, the upperbound values
used for ksc in the reported model are those which just produce full

composite action (Refs. 27, 28, 64):

(ksc ) = dz_lo'z‘ (EAA (ez) + EBg (zBB - e)2) (5.1)
max L

where
EA, = axial rigidity of the slab
EAB = axial rigidity of the beam or girder

ZBB = distance from mid-height of slab to

centroid of beam or girder

EAp X Zpp
EA,  EA

with respect to mid-~height of slab

e = = centroid of composite section

d = ZBB

L = length of beam element

As was pointed out in Ref. 28, Eq. 5.1 was developed for a different
combination of elements than is employed in the present finite
element model; thus, the maximum shear connector stiffness equation
(Eq. 5.1) should be reformulated. By adding together the appro-—
priate terms of the following matrices, [kuu]e, [ku¢]e,_[k¢¢]e,
[kB]b’ [kB]S, and [k]d from the Appendices of Ref. 27, and then -

solving for ksc’ the following equation results.
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3

' 12 2 2 2
k) —[;—- [EIQB+EAA(e)+EIB (a -e)]

2 = 2
0.75 J1'L (EIB - EAB ZB )

1.2 2.3 -
- ( e 0.6 J1L + 0.075 J1°L7) GAB]

1 .

1.2 &2
(' —BA o6 m%3c . +0.075 J12L30TBZ)'

X

L BATB

(5.2)

Equation 5.2 is given only to show the degree of complexity
' _
for calculating (ksc) . A complete definition of all the terms
max

contained in Eq. 5.2 is, therefore, not necessary. However, a

complete description of all of these terms can be found in Ref. 27.

Employing both Eq. 5.1 and Eq. 5.2 to calculate values for
ksc’ and then pérforming an actual analysis indicates that the over-
all structural response is approximately 3% stiffer when Eq. 5.2

is used. In addition to this fact, it should be noted that:

1. In previous work reliable results have been

obtained using Eq. 5.1,
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2. In general, finite element models produce
a stiffer structure than the actual
structure, thus, a reduction in stiffness
(i.e. using Eq. 5.1 instead of Eq. 5.2)

would be beneficial.

3. Using Eq. 5.1 is far less complicated than

using Eq. 5.2.

Based upon the above discussions, Eq. 5.1 is employed in calcu-
lating upperbound values for ksc in the present model; however,
should actual shear connector stiffness values become available
from future research, then these actual values should be employed

instead of Eq. 5.1.

5.1.2 Fatigue

In normal bridge design, the designer accounts for fatigue
by checking the live load stress range of particular bfidge details
and comparing these stress range values to allowable stress range
values. The allowable stress range is dependent upon basically

three variables:

1. The type of detail
2. The expected number of cycles
3. Type of member (i.e. redundant or non-

redundant) .

-99-




The actual stress range depends basically on the actual live load.
In the reported analysis scheme and thus BOVAS, the live load

stress ranges of user specified details are automatically calculated
an& cdmpared to user specified allowable stress ranges at each’

load level. If the allowable stress range for any detail is ex~

ceeded, a warning is printed.

For example, the fatigue stress range checking capabilities
of program BOVAS were implemented in analysis of the FHWA four-span
continuous bridge analyzed in Section 4.5.“ The live load stress
range of a total of 70 layers were to be'checked against the allow-
able stress range values. The 70 layers correspond to essentially
two types of critical details: (1) the groove weld connecting flanges
of differing sizé when reinforcement is not removed (Stress Category
é), and (2) transverse stiffener to web or flange welds (Stress
Category C*). Assuming a redundant load path structure and over
2,000,000 cycles as the criteria, the allowable stress ranges become
68.95 MPa (10 ksi) and 82;74 MPa (12 ksi) for Categories C and C¥%,

respectively.

It was not until a load level where a moment of 12445 kN-M
(9179 kip-ft) was reached, that the live load stress range of any
detail exceeded the allowable value. In this case, the longitudinal
stress in the transverse stiffener detail over pier 2, finally
exceeded the extreme life value of 82;74 MPa (12 ksi). Since this
load level is extremely high, it is highly unlikely that the

structure will ever undergo 2,000,000 cycles at this load level.
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In fact, it is doubtful that the structure would experience even a

couple hundred cycles at this load level.

However, for more severe details such as Category E,
where the extreme life stress range value is 34.47 MPa (5 ksi),
the critical load level might be low enough that damage would
be more likely. Thus, while the present global analysis performed
by BOVAS does not indicate any fatigue problems, this does not mean

that fatigue is not a problemzwith this structure.

Bridge details; where stress concentrations are present
due to the severity of the‘detail; tend to be very susceptible to
fatigue failure. Thus, if a very fine finite element discretization
is made in the vicinity of an enpected area of stress concentration,

i.e. the details, then an accurate representation of the local

stress distribution can be obtained. Based upon such a local stress

distribution a more accurate assessment of the possibility of fatigue

failure can be made. The developed analytical method for per-
forming the overload structural analysis of steel bridge super-
structures, BOVAS, dqes not and cannot be extended to predict local
high stress gradients, i.e. stress concentrations. However, a
reliable fatigue analysis requires an accurate assessment of the
true local stress gradient of the area in question. The incorpora-
tion of these two methods of analysis into a single analysis scheme
is possible, but is considered to be a highly impractical

proposition,
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Since fatigue is known to be one of the critical issues
in steel bridge superstructures, incorporation of a fatigue check,
regardless of how approximate, was deemed necessary. In the
developed formulation, therefore, stress range checks were per-
formed for predefined details. However, the methodology has been
kept sufficiently general to permit the inclusion of other fatigue
checks. Further refinements of the present approach can be ob-
tained by using more refined meshes as compared to those reported
in this study, and also by the inclusion of other related checks

as they are developed.

5.1.3 Torsion of the Beams or Girders

In the finite element model presented in this disserta-
tion the steel beams and/or girders; as well as the entire bridge
superstructure, are assumed to fail in essentially a flexural
mode. The beam element node points are permitted only major axis
bending degrees of freedom: longitudinal displacements, Uj
vertical displacements, W; and bending rotations, 6. In its
present form then the model precludes any consideration of twisting
or torsion about the 1ongitudina1 axis. Thus, in all the preceding
analyses, the effects of torsion in the beam have been completely

ignored. To include the effects of torsion would:

1. Require a considerable number of parametric studies
to investigate fully the effects of torsion.of the

beams in the elastic and inelastic regions.
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2. Require development of linear and nonlinear finite
elements to model this behavior.

3. Require considerable more computer solution time,
due to the added degree of freedom.

4, Require.extensive alterations in the coding of
the developed computer program, BOVAS,

5. In the end, may not improve the results of the
analysis, because previous studies with concrete
beams have shown negligible effect on the overall
bridge response when torsion is considered

(Ref. 44)

However, since steel beams are thin-walled open cross-sections they
are more susceptible to the effects of twisting than are concrete
beams. Thus, some form of investigation is needed to assess the

effects of torsion in a conventional steel bridge superstructure

to determine if the assumption of negligible effect is justifiable.

For this purpose, the four-span continuous composite
welded steel girder bridge superstructure presented in Section 4.5
is reanalyzed with eccentric loads. The elevational and typical
cross~sectional views of this structure are presented in Figs. 42
and 43. It should be noted that the girders are laterally braced
at the supports by channel sections and at approximately every

7.62 m (25') with steel truss diaphragms.
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o In order to determine whether or not the inclusion of

a torsional degree of freedom for the beams has a significant

effect on overall structural response of this bridge superstructure,
a finite element analysis using SAP IV (Ref. 10) was performed where
the degree of lateral restraint is varied to study the effects of
twisting of the beams., The finite element discretization employed
in these analyses is shown in Fig. 49. It should be noted that due
to symmetry in the longitudinal direction only one-half of the
entire structure is discretized. The finite element model contains
567 nodes, 260 plate elements for the slab, 130 plate elements for
the girder webs, 260 beam elements for the girder flanges, 135
beam-slab connector elements; and three different sets of beam and
truss elements for the lateral bracing: To simulate the actual
support conditions, the vertical displacement of the bottom flange
is prevented at the support locations. However, due to the symmetry
employed the longitudinal displacements of the slab, top flange, and
bottom flange at Pier 3 are also restrained. To prevent instability,
the bottom flange of the centermost girder is restricted from
moving in the transverse direction at each support. With this
minimal amount of restriction an accurate assessment of the effects

of the twisting degree of freedom can be made.

The degree of lateral restraint is varied by changing the
frequency of lateral bracing along the length of the bridge. If
no lateral bracing is present only the slab and the supports are
providing lateral and torsional restraint and thus, the effects of
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twisting Would be the most noticeable. However, since in a real
life structure, lateral bracing is always provided at the supports,
the finite element model for the least amount of lateral restraint
has cross-bracing only at the supports. In the actual structure
the design calls for additional cross-bracing between the girders
at approximately every 7.62 m (25'). In the model this condition
is considered as the basis because it most accurately reflects the
actual structure. If the structure was braced all along the length,
twisting of the beams would not occur at all. It should be notéd
that this corresponds to the analytical model presented in this
report. This condition can be simulated effectively by providing
bracing at approximately every 3;05 m (10') in the structure. By
applying the same eccentric load to the above different models,

the effects of the varying degrees of lateral restfaint on the

stresses and deflections of the superstructure can be investigated.

For this investigation two different loading patterns were
applied to the three differently braced structures discussed above
to give a total of six separate analyses. It should be noted that
the loads applied must realistically simulate actual traffic loads,
i.e. only vertical downward loads are applied to the structure.

In the first loading condition a uniform live load is placed mid-
way between girder 1 and girder 2, exterior and interior girders
(Fig. 43), to cause the worst possible torsional type loading
condition due to gravity loads. In the second loading condition
the same live load is split in half with each half applied directly
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over girders 1 and 2. This last loading condition also approximates
the condition of no consideration of twist because the load is

applied directly over the girders.

In the first three load cases A; B, and C a uniform line
load is placed between the girders. Then the degree of lateral
restraint for each case is: A ~ at the supports only; B - at the
supports and at every 7.62 m (25'); and C - at the supports and
at every 3.05 m (10'). Likewise, for the last three load cases,

D, E, and F, two equal line loads with one-half the magnitude of
the line load for cases A, B; and C are placed directly over the
exterior and interior beams. Also; the degree of lateral restraint
of cases D, E, and F is the same as A, B, and C, respectively.
Since load case B reflects most accurately the actual structure,

it is used as the basis in the comparisons. In Table 15, the
percent difference between the maximum stréss in the critical girder
of load case B, i.e. the basis, and of the other load cases is
presented. Likewise Table 16 presents the percent difference in
maximum deflection between the basis and the other load cases. As
can be noted in these tables the maximum percent difference is 5%
for stress and 4% for deflection. More importantly, however, when
comparing the basis to load case C, which most accurately reflects
the results of the analytical method presented in this dissertation
because there is almost complete lateral restraint, the maximum
percent difference is only 1.4%. This suggests that the probable

error introduced into the present analysis technique by ignoring
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the twisting degree of freedom in the elastic range is about 1.4%.
Of course, many more comparisons would be required to completely
confirm that the error is only around 1.5%, but sufficient justi-
fication exists to continue to neglect the twisting degree of

freedom for the beam.
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6. SUMMARY AND CONCLUSIONS

6.1 Summary

In Section 1.4 it was noted that previous research by
Peterson and Kostem led to the development of a finite element model
which could successfully predict the complete overload response of
beam-slab highway bridges, made of prestressed or reinforced concrete
beams and a reinforced concrete slab (Refs. 54 and 55). That finite
element model could not, however, perform a reliable overload analysis
on beam-slab highway bridges made with steel beams (girders) and a
reinforced concrete slab. In the same section it was also noted that
another finite element model for analyzing steel bridges was developed
by Tumminelli and Kostem (Ref. 64). This model, while including the
effects of slip between the beam and the slab and the effects of shear
deformation in the beams, was limited to the elastic response of the
structure. By "integrating" the works of Peterson and Kostem, and
also, Tumminelli and Kostem, and introducing the additional nonlinear
response characteristics mentioned at the end of this section (6.1),
a new analytical model (presented in this report) was developed for
performing an accurate overload analysis of steel beam-concrete slab

highway bridges.

This new method of analysis gives a solution for the re-
sponse of the structure to overloads in terms of displacements,

stresses, cracking and crushing of concrete, yielding and strain
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hardening of steel, and buckling of flanges and webs. Once service-
ability limits, in terms of damage, stress, or deflection-have been
firmly established, then a check of these limits can be made at
various load levels by employing the response information. The
solution process is applicable up to the complete collapse of the

structure,

In the reported analytical technique the following non-
linearities, which were taken from the previously noted research, are

considered in the analysis:

1. Nonlinear and linear stress-strain behavior of
the slab concrete.

2. Elastic-plastic stress-strain relationships
for the beam (girder) steel and reinforcing
bar steel.

3. Cracking and crushing of slab concrete.

4, Yielding of steel.

In addition to the above phenomena, the following nonlinear response

characteristics have been included in the analysis for the first

time:

1. Post-plastic stress-strain relationships for the
beam (girder) steel.

2. Strain hardening of steel.

3. Buckling of beam compression flanges and plate
girder webs and compression flanges.

4., Post-buckling response of the flanges and webs.
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In the analytical model a piecewise linear solution process
is used, in which solutions are obtained for each load increment up
to the collapse of the structure. The total solution for a particular
load level is obtained by summing up all the previous solution incre-
ments. While two different tangent stiffness solution techniques
were available for the analyses; the incremental-iterative method
or the incremental method; only the incremental-iterative method was
employed in the research presented in this dissertation. In this
method the tangent stiffness matriﬁ is continually updated within
each load increment, thus, providing a more reliable solution than

the incremental process where no updating within the increment occurs.

The predicted response of two bridges, two bridge models,
two composite beams, and eight plate girder tests have been compared
with corresponding experimental results (Refs. 27, 28). The two
bridges, one of the composite beams, and three of the plate girder
tests have been presented in this report. In all cases adequate
agreement was. obtained in the comparisons. Experimental and analy-
tical load versus deformation curves were compared for all problems,

as were load versus damage records, where applicable.

The additional considerations of shear connector stiffness,
fatigue, and torsion of the beams have been investigated. While
the shear connector stiffness calculation and fatigue stress range
check are included in the analysis, the effect of torsion of the
beams was determined to still be of minor importance and not

included in the analysis. Besides neglecting the effects of torsion
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in the analysis, the following phenomena are also neglected in the

analysis scheme:

1. Dynamic and impact effects.
2. Shear punching failure of the slab.

3. Minor axis bending of the beams.

6.2 Conclusions-

Based upon the comparisons between the experimental results
and the analytical results, the following observations and con-

clusions can be noted:

1. The overload structural response of steel beam
concrete slab highway bridges, composite beams,
and plate girder structures, in terms of
stresses, deflections, and damages, can be
adequately predicted by the developed
analytical method.

2. In continuous beam-slab bridge superstructures

the first failure is the cracking of the concrete

slab in the negative moment regiomn.

3. In all the continuous structures analyzed the
negative moment regions of the‘étructures appeared
to suffer the greatest amount of damage.

4, The effects of cross-bracing on the overall

structure response are negligible.
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5. Based upon the experimental and analytical
results studied so far, it would appear that
web plate panel buckling would be more likely
to occur than that of torsional buckling of
the beam compression flange.

6. The failure to include the effects of web plate
panel buckling in plate girder structures can
lead to considerable error in results.

7. The occurrence of slip between the slab and the
beam and, thus, the effects of the shear con-
nector stiffness, ksc’ appear to be of minimal
importance (i.e. an assumption of full composite

action is very reasonable).

The observations and conclusions presented in Section 6.2
are those which were clearly evident in the ekamples studied as part
of this research. It would be expected that further analytical
results would confirm these conclusions. However, because the
results already obtained come from only a limited number of tests,

the following recommendations are made for future research:

1. Conduct an extensive parametric study on many
different beam-slab bridge superstructures and loading
patterns using program BOVAS. This study would more

firmly establish overload response characteristics.
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2, Conduct further studies on the effects of torsion

| in the beams to more fﬁlly justify its exclusion
from the analytical model.

3. Investigate the feasibility of including cross
beams in the analytical model so that superstructures
with stringer and floor beam systems can be
analyzed using BOVAS.

4, Investigate the variation in the overall response
of bridge superstructures when the shear connector
stiffness is varied from 1007 full composite action
to approiimately 50% full composite action.

5. Determine; if possible, through experimental data,
field observations and analytical studies made
with BOVAS, appropriate serviceability limits for

frequent and infrequent overloads.

If all of this research is conducted, a more complete
understanding of the overload response characteristics of steel
multi-girder bridge superstructures will be established. Thus,
the bridge engineer should then have an even better capacity for
making an accurate assessment of the resistance of any superstructure

to overloads.
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NOMENCLATURE

Aj = layer area

Agp = effective shear area of beam

Aw = cross-sectional area of beam web

c,D = curve parameters of concrete stress-strain
relationship

C,R,S = parameters of tension field stress equation

Cl = reduction factor

E,Et = tangent modulus and inelastic tangent

EA,,EA; = axial rigidity (E x A)

Ec = initial modulus of elastic

Ei = initial modulus of elasticity, steel

Ej = tangent modulus beam layer

Ep = peak modulus concrete

pr,pr = post-buckling tangent modulus and shearing

modulus of web plate panel

ESt = initial strain hardening modulus of elasticity
Elb’EZb = tangent moduli for principal stress directiomns

of slab
E;b’E;b = tangent moduli for principal‘stress directions of

slab employed in formulating [D]

G,G = ghearing modulus and inelastic shearing modulus
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il

L/n

B’"A

NOMENCLATURE (continued)

beam layer moment of inertia

warping constant

St. Venant's constant

length of beam element

half wave length of compression flange buckle
axial displacement for beam or in-plane
displacement for x—-direction of slab

shear force or volume of finite element

in-plane displacement for y-direction of slab

shear in web plate panel

displacement in z-direction

distance between midheight of slab and centroid
of beam

slab element half lengths

plate girder web plate panel length

flange half width

beam web depth or distance between midheight

of slab and centroid of beam

eccentricity of beam and slab

uniaxial compreséive strength of concrete

tensile strength of concrete
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"NOMENCLATURE - (continued)

stiffness coefficients web panel buckling
stiffness of shear connector

stiffness parameters. torsional flange buckling
unbraced length compression flange
Ramberg-0Osgood curve parameters

interface shear flow

thickness of flange

loeal cartesian coordinates

nodal point coordinates

thickness of web

vertical direction web panel

vertical distances from reference planes
stress ratios

curve parameters post-plastic region steel
ratio of web panel length~to-depth

shear strain and shear strain increment
shear strain in beam

curve parameter tension field equation
strain and strain increment in principal direction
limiting strain plastic region of steel
total strain in steel layer -

angle which defined principal stress directions
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A’"B

o ,0
cc’ cer
Cr° av
g .
cr, in

o}
fer

NOMENCLATURE (continued)

rotations about X and y axes and slab and beam
element rotations

nondimensional parameters

Poisson's ratio and Poisson's ratio in principal
directions

a principal stress and stress increment

bending buckling stresses web plate panel
combined buckling stress web plate panel

compressive buckling stresses web plate panel
compression flange buckling stresses

lateral buckling stress

peak stress and peak strain

tension field stress

yield stress or stress in y direction
web yield stress

ultimate stress and corresponding strain
shear stress and stress increment

shear buckling stresses web plate panel

direction of action of tension field
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Matrices
[B]

[c],[c1]
(c2]

rc1t

[cec CcX]
[cAl,[CB],
[cwl, [cD])
[D1,[D]

[0, ]

"' 'NOMENCLATURE - (continued)

strain-displacement matrices

= matrices relating element nodal point

[EB] ’ [GB] =

(£, 6, ]

{F} {F}°
{F}

{f}
[K],[k]®
[N]
[P(x,y)]
[Ql
[T]

i

displacements to polynomial coefficients

coefficient displacement matrices

element elasticity matrices of slab
elasticity matrix layer i

beam element elasticity matrices (flexure and shear)

beam layer rigidity and shear matrices

global and element force vectors
incremental force vector

vector of shape functions

global and element stiffness matrices
shape fvnction matrix

polynomial function matrix
connectivity matrix

transformation matrix
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"NOMENCLATURE (continued)

Matrices:

{E};{é} = gtrain and incremental strain vectors

[T] = matrii differential operator

{6},{&} = displacement and incremental displacement vectors
Az} = polynominal coefficients vector

{o},{o} = stress and incremental stress vectors

{ék} = integrated average stress vector

Notes:

1. The use of subscripts u, #, b, s, and d on matrices

indicates that the matriﬁ is derived from the consider-
ation of in-plane deformations (u), bending deformations
(#), axial and bending deformations (b), shear
deformations (s), and slip (d).

The use of the subscripts uu, uf), and @@ on matrices
indicates that the matrix is derived from the considera-
tion of in-plane deformations (uu), coupling

deformations (u@)) , and bending deformations (@) .

The use of the subscripts A and B used alone indicates the
parameter is associated with either the plate (A) or

the beam (B).
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" 'NOMENCLATURE (continued)

The use of L or M as a subscript indicates that the
quantity is at node L or M.

The use of ('), primes; indicates quantities expressed
in skew coordinates.

The use of superscript, e, on vectors or matrices
indicates that the quantities are applicable to the
element.

The use of 1, 2 as subscripts indicates that the
quantities are with respect to the directions of
principle stress.

A (°) dot used over any term indicates an

incremental quantity;

The subscripts x,y,é,xy denote the direction of action

in local coordinates.
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TABLE 1A - SLAB REINFORCEMENT AND ORIENTATION

EXAMPLE ‘1 (AASHTO ~ 3B)

Centroidal Location -ex~‘ - Thickness Size/Spacing
(Positive Dowmward) ‘(degrees) ’
- 36, 4mm 1.575 mm 5@ 127 mm
(- 1.435 in) - 90 (0.0620 in) (5 @ 5 in)
- 23.7 mm 0 1.397 mm 3 @ 508 mm
(= 0.934 in) (0.0550 in) (3 @ 20 in)
23,7 mm 0 1.397 mm 3@ 508 mm
(0.935 in) (0.0550 in) (3 @ 20 in)
'36.4 mm - 90 1.575 mm 5@ 127 mm
(1.435 in) (0.0620 in) (5 @ 5 in)

TABLE 1B SLAB REINFORCEMENT AND ORIENTATION

EXAMPLE 2 (UNIV. TENN)

Centroidal Location OX Thickness Size/Spacing
(Positive Downward) = (degrees) ’
43 mm - 90 1.432 mm 5@ 140 mm
(-1.6875 in) (0.05636 in) (5 @ 5.5 in)
27 mm 0 0.984 mm 5@ 203 mm
(-1.0625 in) (0.03875 in) (5 @ 8 in)
27 mm 0 0.984 mm 5@ 203 mm
( 1.0625 in) (0.03875 in) (5 @ 8 in)
43 mm - 90 1.432 mm 5@ 140 mm
(1.5625 in) (0.05636 in) (5 @ 5.5 in)
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TABLE 2 MATERIAL PROPERTIES: -

EXAMPLE ‘1 (AASHTO - 3B)

Property Material Actual BOVAS
]
fc 39.58 MPa
(5.74 ksi)
£, Slab . 3.17 MPa
(0.459 ksi)
Ec Concrete 35852 MPa
(5200 ksi)
Uy 422.0 MPa
Reinforcing (61.2 ksi)
Ei 198,569 MPa
Steel .
(28,800 ksi)
Gy’ flange 242.0 MPa
(35.1 ksi)
oy, web 275.1 MPa
Beam (39.9 ksi)
g , cover- 268.1 MPa
plate | 1 (38.9 ksi)
. 206,842 MPa
i (30,000 ksi)
Est Sst NOT EMPLOYED IN
THIS ANALYSIS
o, €
u u
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TABLE 3 LOAD VERSUS DAMAGE RECORD - EXAMPLE 1 (AASHTO - 3B)

Load Load
kN-M Damage - Test kN-M Damage -~ BOVAS
(kip-ft) (kip~ft)

1033 Yielding of exterior
(762) beam bottom flange at
midspan

1228 Yielding of interior
(906) beam bottom flange at
midspan

1436 Yielding of coverplate
(1059) of exterior beam at
midspan

1567 Yielding of exterior and
(1156) dinterior beam bottom
flange at end of

coverplate
1807 Yielding of bottom 1849 Complete yielding of
(1333) flange near ends of (1364) exterior beam cover-
coverplate plate. 857 of exterior
beam bottom flange has
yielded
2024 Almost complete yield- 1973 Complete yielding of
(1493) 1ing of bottom flange (1455) dinterior beam cover-
except near supports, plate. 85% of interior
extensive coverplate beam bottom flange has
yielding yielded

2253 Bottom layer of slab has
(1662) a transverse crack all
- the way across at mid-
span

2553 The web of exterior
(1883) beam has yielded over
70% of its depth

2712 Web yielding is clearly 2602 The web of interior

(2000) evident (1919) beam has yielded over
70%Z of its depth
3087 Extensive web yielding 3113 The slab has a trans
(2277) and tension cracks in (2296) verse crack through 50%
slab halfway through of its depth at midspan
depth in coverplated and 337 through depth
section in coverplated section.

The web has yielded
through 867 of depth at
midspan
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TABLE 4 MATERIAL PROPERTIES - EXAMPLE 2 (UNIV. TENNESSEE)

Property Material BOVAS
\]
f 47.37 MPa
¢ (6.87 ksi)
Slab
ft 3.38 MPa
(0.49 ksi)
Concrete
E 32,929 MPa
¢ (4,776 ksi)
o] 275.8 MPa
¥ Reinforecing (40 ksi)
199,948 MPa
Ey Steel (29,000 ksi)
o] 275.8 MPa
y (40 ksi)
Beam
E, 212,014 MPa
* (30,750 ksi)
E £ Steel Not employed in
s st this analysis
o, €
u u
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TABLE 5 LOAD VERSUS DAMAGE RECORD - EXAMPLE 2 (UNIV. TENNESSEE)

Load Damage - Test Load
kN kN,
(kip) (kip)
1154
(259.5)
1790
(402.5)
1987
(446.7)
2475
(556.4)
2628
(590.9)
2758 First yielding of steel 2782
(620) appears to occur at (625.5)
this load - shortly
after yielding started
the bridge "lifted
of f" the abutment
nearest the load
2891 Tension cracks visible
(650) in deck slab over
first pier
3114 Tension cracks which 3160
(700) extend across the (710.4)

slab and through
the curb at second
pier are visible
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Damage - BOVAS

Up to this point there
has only been longitud-
inal cracking of the
slab in the bottom
layers at the centerline
of the bridge under or
near the load

The first transverse
cracks appear in the
top layer of the slab
near first pier

Transverse cracks appear
in the top of slab near
the second pier

First yielding begins
in bottom flange of
interior beams in area
under the load

First yielding begins
in bottom of web of
interior beams in areas
under the load

The transverse crack
over the first pier is
now through 50% of the
slab depth

The first transverse
crack in the bottom of
the slab in the area
under the load now
appears




TABLE 5 LOAD VERSUS DAMAGE RECORD - EXAMPLE 2 (UNIV. TENNESSEE)

(continued)
Load Load
kN Damage - Test kN Damage - BOVAS
(kip) (kip)
3370 The slab over first pier
(757.5) 1is now completely
cracked longitudinally
through the complete
depth, however, the
reinforcement is still
functional
3415 The slab over second
(767.8) pier is now cracked
completely through the
depth in the longitud-
inal direction
3644 Yielding of the bottom
(819,3) flange of the exterior
beams in the area of
the load has started
3788 The slab between the
(851.6) interior and exterior
beam at the second pier
is now also cracked
through 607 of its
depth in the longitud-
inal direction
4116 The bottom transverse
(925.4) reinforcement in the
slab in the area of the
load has now yielded
in tension
4411 Yielding in compression
(991.6) of the bottom flange
of interior beam at
first pier
4577 The transverse crack in
(1029.2) the bottom of the slab
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under the load is now
halfway through the slab
depth in the area near
the center of the
bridge




TABLE 5 LOAD VERSUS DAMAGE RECORD - EXAMPLE 2 (UNIV. TENNESSEE)

(continued)
Load Load
kN Damage - Test kN Damage - BOVAS
(kip) (kip)
4771 The web of interior
(1072.6) beam under the load is
now fully yielded
4982 First crushing of slab
(1119.9) at load point
5348 Yielding in compression
(1202.3) of top transverse slab
reinforcement in area
under load. Yielding
in tension of top
longitudinal slab
reinforcement near the
first pier. Yielding
in temnsion of bottom
longitudinal slab
reinforcement in area
under the load.
5432 The interior beam in the
(1221.2) area under the load has
now fully yielded
forming a plastic hinge
in the beam
5627 Maximum load 5581 The web of exterior
(1265) reached. Com- (1254.7) beam under point of

pression failure
of curb section
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loading has now fully
yielded




TABLE 6 MATERTAL PROPERTIES -~ TEST BEAM CB2

Property Material BOVAS
1
fc 37.65 MPa
Concrete (5.46 ksi)
ft 3.01 MPa
S1ab (0.44 ksi)
B 29,355 MPa (4258 ksi)
# 3 Bars # 5 Bars
Reinforcing
g 364.8 MPa 346.8 MPa
y (52.9 ksi) (50.3 ksi)
E Steel
i 199,948 MPa
(29,000 ksi)
Web Flange
o 338.5 MPa 311.6 MPa
y Beam (49.1 ksi) (45.2 ksi)
E. 208,221 MPa 215,806 MPa
1 (30,200 ksi) (31,300 ksi)
E Steel 6,895 MPa 7,998 MPa
st (1,000 ksi) (1,160 ksi)
€ 0.0226 mm/mm 0.0104 mm/mm
st (in/in) (in/in)
o 459.9 MPa 465.4 MPa
u (66.7 ksi) (67.5 ksi)
€ 0.120 mm/mm |0.120 mm/mm
u in/in) in/in)
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TABLE 7 SLAB REINFORCEMENT - ORIENTATION CB2

Centroidal 0
Distance X
Test |from midheight | (orientation
Beam -+ down) w.r.t. X axis)| Thickness | Size/Spacing
0.00 0° 1.64 mm #5 @ 122 mm
(0.06458 in) [ (#5 @ 4.8 in)
CB2
0.00 90° 0.62 mm #3 @ 114 mm
(0.02444 in) | (#3 @ 4.5 mm)
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TABLE 8 LOAD VERSUS DAMAGE RECORD — CB2

Load Damage - Test Load Damage - BOVAS
kN kN
(kip) (kip)
110.3 Slab completely cracked
(24.8) in transverse direction
over interior support
348.7 First yielding of beam,
(78.4) tension flange under
the load and compression
web over interior
support
470.2 Web under load starts
(105.1) to yield
478.2 Tension flange over
(107.5) interior support
yields
521.8 Slab in vieinity of
(117.3) load completely
cracked
533.8 Initial flange
(120.0) buckling load
560.5 Strain hardening begins
(126.0) in tension flange under
load
578.3 Complete flange
(130.0) buckling
581.4 Strain hardening begins
(130.7) in compression flange
over interior support
589.8 Compression flange
(132.6) buckles
591.6- Crushing failure
605.0 of slab in
(133.0- positive moment
136.0) region
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TABLE 9 MATERTIAL PROPERTIES - TEST GIRDER UG2

Bottom Cover
Property Top Flange Flange Plate Web
o (actual) 253.0 MPa | 248.9 MPa | 244,8 MPa 299.2 MPa
¥ (36.7 ksi) | (36.1 ksi) [(35.5 ksi) | (43.4 ksi)
E (assumed) 203,400 MPa (29,500 ksi)
ESt (assumed) _ 5,500 MPa (800 ksi)
Est (assumed) 0.014 mm/mm (in/in)
Ou (assumed) 403.3 MPa (58.5 ksi)
€4 (assumed) 0.120 mm/mm (in/in)
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TABLE 10 BUCKLING LOADS FOR TEST UG2.l=$UG2.3

FLANGE+
WEB BUCKLING BUCKLING ULTIMATE LOAD
TEST LOAD (P) LOAD (P) LOAD (P)
TEST BOVAS | BOVAS TEST BOVAS
UG2.1 | 11.7 kN 13.5 kN . 80.1 kN 81.0 kN
(2.6 kips) {(3.0 kips) (17.8 kips) | (18.0 kips)
UG2,2% . 13.1 kN . 90.9 kN 91.4 kN
(2.9 kips) (20.2 kips) | (20.3 kips)
UG2.3 . . 294 .8 kN |286.7 kN 315.0 kN
(65.5 kips)(63.7 kips) (70.0 kips)
*
3 Panels

+
No test results
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TABLE 11 MATERTAL PROPERTIES -~ FHWA FOUR~SPAN

Property Material N ... BOVAS .
¥
£ c 37.9 MPa (5.5 ksi)
' Concrete
ft , 3.0 MPa (0.44 ksi)
— Slab
Ec ~ 29,462.0 MPa (4273 ksi)
0& 413.7 MPa (60 ksi)
Reinforcing
E, Steel 203,395.0 MPa (29,500 ksi)
A36 . A441 Fictitious*
o 248.0 MPa 317.0 MPa 248 MPa
y (36 ksi) (46 ksi) (36 ksi)
E, 203,395 MPa 21 MPa
+ Beam (29,500 ksi) (3 ksi)
E ¢ 5515 MPa 4826 MPa 0.6 MPa
s (800 ksi) (700 ksi) (0.08 ksi)
Steel
€qt 0.014 mm/mm |0.0215 mm/mm | 140 mm/mm
s (in/in) (in/in)|  (in/in)
403 MPa 462 MPa 403 MPa
Ou (58.5 ksi) (67.0 ksi) |(58.5 ksi)
0.120 mm/mm 0.120 mm/mm {1200 mm/mm
€u (in/in) (in/in) (in/in)

*In the layered finite element model, the number of
layers must remain constant; however, since the width
and thickness of the flanges changes from section to
section, certain layers (Table 12) are given
fictitious material- properties to model the non-
existence of material for that section.
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TABLE 12 TOP 'AND BOTTOM FLANGE CROSS~-SECTIONS

" 'TOP FLANGE CROSS~SECTIONS

Section Layer width (b.) Material
1 %
1 2 305 mm *
3 (12 in) A36
1 %
2 2 406 mm A441
3 (16 in) A441
1 *
3 2 305 mm *
3 (12 in) A36
1 A441
4 2 406 mm A441
3 (16 1in) AG41

BOTTOM FLANGE CROSS-SECTION

Section | Layer | Width (b,) | Material
12 A36
1 23 406 mm *
14 (16 in) *
15 *
12 ALh1
5 13 406 mm A441
14 (16 in) A441
15 %
12 A36
3 13 406 mmm A36
14 (16 in) *
15 %
12 A4h1
13 JVAAL
4 14 ?i; e AGLL
15 i AL41

Fictitious Material - See

=134~
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TABLE 13 SLAB REINFORCEMENT - FHWA FOUR-~SPAN

Centroidal o
Location X
For Slab | from midheight | orientation
Elements | (+ downward) w.r.t. x axis) [Thickness |[Size/Spacing
- 55.6 mm - 90° 1.57 mm | #5 @ 127 mm
(-2.1875 in) (0.062 in)| #5 @ 5 1in)
1-36 - 41.3 m 0° 0.87 mn | #5 @ 229 m
(-1.625 in) (0.034 in)| #5 @ 9 in)
and
66.7 mm 0° 0.78mm | #5 @ 165 mm
61-102 (2.625 in) (0.031 in)| #5 @ 5 in)
81.0 mm - 90% 1.57m | #5 @ 127 mm
(3.1875 in) (0.062 in)| #5 @ 5 in)
- 55.6 mm - 90° 1.57 mm | #5 @ 127 mm
(~2.1875 in) (0.062 in)| #5 @ 5 in)
37-60 - 41.3 mm 0° 1.75m | #5 @ 114 mm
(~1.625 in) (0.069 in)| #5 @ 4.5 in)
and 66.7 mn 0° 0.78 mm | #5 @ 165 mm
(2.625 in) (0.031 in)| #5 @ 65 in)
103-120 81.0 mm - 90° 1.57 mm | #5 @ 127 mm
(3.1875 in) (0.062 in)| #5 @ 5 in)
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TABLE 14 MOMENT VERSUS DAMAGE -RECORD

FHWA FOUR-SPAN

Maximum Static Moment, Damage
kN-M, (kips-ft)

4095 A  Maximum Static Moment

(3020) corresponding to two lanes of
uniform live load for HS-20
loading plus concentrated loads

5543 First cracking of slab in trans-~

(4088) verse direction over interior
supports

5616 B Web plate panel of girder 2

(4142) over Pier 2 buckles

6055 C Web plate panel of girder 2

(4466) over Pier 3 buckles, first

significant deviation from
linear load versus deflection
behavior noted

6310 All six web plate panels of
(4654) girder 2 have now buckled

6799 D Web plate panel of girder 1
(5015) ; over Pier 3 buckles

7500 All six web plate panels

(5532) of girder 2 have now buckled
8478 E First web plate panels buckle
(6253) for girder 3, and first cracking

of slab in longitudinal direction,
large derivation in load versus
deflection behavior starts

9256 All six web plate panels of
(6827) girder 3 have now buckled
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TABLE 14 MOMENT VERSUS DAMAGE RECORD

FHWA FOUR-SPAN (continued)

Maximum Static Moment, Damage
kN-M, (kips-ft)

11,630 F Slab completely cracked over
(8578) girder 2 at interior supports
12,445 G Maximum deflection allowed by
(9179) AASHTO of 1/1000 of span length

exceeded. Also the longi-
tudinal live load stress

range for transverse stiffener
detail exceeds allowance for
over 2,000,000 cycles of

82.74 MPa (12 ksi)

12,928 H Web plate panel compression
(9535) flange for girder 2 over Pier 2
buckles laterally.
13,461 I Web plate panel compression
(9928) flange for girder 2 over Pier 3
buckles laterally
19,287 J  First yield of girder flange
(14,225) at midspan second span for
: girder 2
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'TABLE 15 STRESS COMPARISON OF TORSION STUDY

Ratio Maximum
Percent Differeénce from Basis Exterior to Interior

Load Case

Exterior Interior Girder Stress
. Girder . Girder

A 1.7 2.9 1.36

B 0.0 0.0 - 1.37

C - 0.6 - 1.4 1.38

D 5.2 - 4.0 1.50

E 1.7 - 3.8 1.45

F 0.5 - 3.9 1.44

TABLE 16 DEFLECTION COMPARISON OF TORSION STUDY

Percent Difference from Basis

Load Case Exterior Interior Ratio Ext. Def.
Girder ‘ Girder to Int. Def.
A 1.8 1.5 1.40
B 0.0 0.0 1.40
c - 0.8 - 1.4 1.41
D 4.3 - 3.0 1.50
E 1.2 - 2.4 1.45
F - 0.2 -~ 2.5 1.43
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Fig. 5 1Idealized Stress-Strain Relationship for Steel
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Fig. 7 Torsional Buckling of Compression

Flange - Deformed Shape

| b/2 | Torsional Spring = ky
!" : ’;gg 0.425 < ky < 1.277
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Fig. 8 Torsional Buckling Coefficient kv
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BRIDGE DESCRIPTION:
(NO. ELEMENTS, LAYERS, MATERIAL
PROPERTIES, DETAILS, TYPE PROBLEM, EIC.)

\
| BRIDGE LOADING:
| DEAD LOADS, AND LIVE LOADS

)
DEAD LOAD SOLUTIONS

\
SCALING PROCEDURE

Y
OVERLOAD SOLUTION PROCEDURE

|
YES
TERMINATION CHECKS STOP

NO

APPLY ANOTHER LOAD INCREMENT

Y

A

Fig. 19 Flow Chart BOVAS Solution Scheme

-152-



DATA INPUT AND COMPUTE THE
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i
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Fig. 20 TFlow Chart BOVAS Overload Solution Process
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Fig. 22 Example No. 1 - Bridge 3B - Cross-section
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Fig. 23 Overloaded Test Vehicles - Example
No. 1 (AASHTO Bridge 3B)
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