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ABSTRACT

This dissertation describes an analytical technique for

predicting the response to overloads of simple-span and continuous

,multi-girder beam-slab type highway bridge superstructures made of

steel beams and reinforced concrete slabs.. The nonlinear overload

response is obtained by using a tangent stiffness solution process.

The analysis scheme also employs the displacement based finite ele

ment method of structural analysis, where -the superstructure is

discretized into a series of beam and slab finite elements, and, in

addition, where the elements are further subdivided into a series

of layers through their depth. The beam. and slab finite elements in

this model are allowed to deform in both bending and in-plane dis

placement modes, while the beam: finite elements are also permitted

to deform in shear. Each of the element layers is assumed to have

its own stiffness properties and to be in a state of plane stress.

The nonlinearities included in the model are: inelastic stress

strain relationships, cracking and crushing of concrete, yielding and

strain hardening of steel, buckling of beam compression flanges, and

buckling of plate girder webs and compression flanges. The method

is verified through comparisons of analytical results and laboratory

or field overload test results.
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1. INTRODUCTION

1.1 Introduction

This dissertation describes a mathematical model which

predicts the overload response resulting from the placement of

overweight vehicles on simple-span or continuous multi-girder high

way bridge superstructures, with steel beams (girders) and a rein

forced concrete deck. Because the overload vehicles lack standard

ization in size, shape, and load distribution, and because each

bridge superstructure is different, the analytical technique pre

sented herein has been made general enough to perform a nonlinear

analysis of many different bridge superstructures and loading

patterns. This analytical technique can also perform an overload

analysis of deteriorated beam-slab bridges, of composit~ beams., of

plate girders, and of concrete slabs.

This algorithm employs the finite element method in which

the concrete slab and steel beams (girders) are divided into a

series of finite elements (Fig. 1), interconnected at discrete node

points (Fig. 2). The beam and slab elements are then further sub

divided into layers (Fig. 3), where each layer has its own stiff

ness properties. This finite element idealization permits a

realistic simulation of the structural response of the bridge

superstructures. (Refs. 42, 43,52,54, 55, 68 and 69).
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T~e solution scheme also uses a tangent stiffness or piece

wise linear solution process to simulate the expected inelastic

structural response. In this process the loads are applied in a

series of load increments or load steps, to allow for changes in

the overall structural stiffness due to nonlinear responses, i.e.

inelastic stress-strain relationships or buckling. This tangent

stiffness solution process provides a continuous description of the'

structural response from initial load levels in the elastic range

up to the collapse load levels.

The reliability of this analytical technique is illustrated

by several collations between experimental and analytical results.

Comparing the experimental and analytical load versus deformation

diagrams and load versus damage assessments for the various test

structures, more than adequate correlation exists to verify the

reliability of the analytical technique.

1.2 Problem Statement

The overloading of beam-slab highway bridges with rein

forced concrete slabs and steel beams or girders, hereafter

referred to as steel bridges, has become a relatively common occur

rence due to basically three factors: (1) increases in the allowable

vehicular weight limitations, (2) transportation of heavy industrial

and construction equipment, and (3) the issuing of overload permits

for specialized overweight and oversized vehicles. As a result of

this increased frequency of structural overloads, the bridge

-3-



engineer has an~urgent requirement to accurately assess the reserve

capacity and serviceability limits of any bridge superstructure on

which overload vehicles are expected to traverse.

Since an accurate overload analysis. requires knowledge of

the actual distribution of forces and stresses in the component

members, the commonly used reverse des~gn method of analysis is

inadequate. This is so because in the reverse design process the

loads are distributed to the composite beam and slab according to

assumed distribution factors; thus the actual interaction of bridge

components to the given load is not considered. In addition, if

during an overload the slab cracks, or the beam yields or buckles,

it becomes extremely important to know: the location of such a

failure; the post-failure strength of the component which has failed;

and the manner in which the forces and stresses will redistribute

themselves ,due to the failure. Again, typical analysis procedures

which evaluat'e one beam at a time cannot account for these phenomena

because no interaction between bridge components takes place. How

ever, the method presented in this dissertation allows for the con

sideration of all these phenomena. It should also be noted that

while methods have been developed to predict the ultimate capacity

of steel bridges or their components, none of these methods

adequately predicts the structural response of the bridge in the

region between design load levels and ultimate capacity load levels.

Therefore, an analysis method is required which reliably predicts

both the elastic and inelastic response of a bridge superstructure

-4-



as well as.that ill-defined region between the design limit and the

ultimate capacity. Such an analysis scheme would permit through the

application of serviceability limits, the defining of the limiting

overloads.

Another analysis technique found in the literature realis

tically predicts the structural response to overloads of concrete

slab-concrete beam highway bridge superstructures (Refs. 52,55),

hereafter referred 'to as concrete bridges. 'But no method has been

previously reported in the literature" with the exception of the

technique presented herein, which will reliably predict the entire

structural response to overloads in terms of -load versus deformation,

material failure" and local buckling of bridges 'with steel beams

(girders) with reinforced concrete decks.

1.3 Purpose, and Scope of Investigation

As was stated earlier, the goal of the overall research

program ,is the' development of a mathematica,l model and analysis

technique to reliably predict the complete response of steel high

way bridge superstructures when. subjected to overloads. Previous

research efforts have successfully predicted the overload behavior

of slab-beam bridges with reinforced or prestressed concrete beams

and concrete decks (Ref. 54, 55); and, simulated the linear elastic

behavior of beam-slab structures with steel beams, including the

effects of shear deformation of the beam, shear lag in the deck, and

slip between the slab and the beam (Ref. 69). The results of these

-5-



two research efforts served as a basis for the presently reported

work which was divided into three phases:

1. The "integration" of the algorithms for the

inelastic slab (Ref. 52) and linear elastic

beam (Ref. 64) to produce a composite algor

ithm, and ultimately a computer program

capable of analyzing the overload response

of steel bridges. This computer program

differs from previous inelastic analytical

techniques by including the effects of slip,

shear deformation of the beam, and shear

lag in the deck, into the inelastic analysis.

The accuracy of the developed analytical technique

is verified via correlation of analytical and

experimental results (Ref. 27).

2. The extension of the inelastic method for

analyzing steel bridges, which was developed

for phase 1, to include the effects of:

strain hardening of the beam steel; buckling

of girder webs; and flange buckling (Ref. 28).

3. The determination of the possible effects of

torsion in the beams and of the possible

occurrence of fatigue cracking in susceptible

details when steel bridges are subjected to

overloads. -
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Phase 1 has been reported' on and verified in detail (Ref. 27), thus,

only those features of phase 1 which are essential for a clear

understanding of the contents of this dissertation are to be pre

sented. Phase 2, while being extensively reported upon and verified

(Ref. 28), will be presented' in detail within the context of this

report, because this phase represents the main focus or contribution

to the overall research. The' investigative results of phase 3 are

also presented.

To summarize', this report includes the following

material:

1. A brief description of" the' analytical techniques

employed to model the material stress-strain

relationships for the' concrete and the steel

materials (see Chapter 2).

2. A description of the analytical modeling

scheme employed to include the predictions

of and effects of flange and web buckling

(Chapter 2).

3. A brief review of the finite element method

and how the finite element method is employed

in the analysis scheme presented in this

report (Chapter 3).

4. Verification of the method through comparisons

with actual test results (Chapter 4).
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5. The determination of the possible effects of

torsion in the beams and of the possible occur

rence of fatigue failure of susceptible

details when steel bridges are subjected to

overload. (Chapter 5)

1.4 Previous Research

The objective of this research is the determination of the

overload response of simple span or continuous steel multi-girder

highway bridge superstructures. Therefore, only those works which

are reported upon in the literature and which are applicable to the

present problem will be reviewed.

Beam-slab highway bridge superstructures can. be divided

into two categories: those with reinforced or prestressed concrete

beams (concrete bridges), and those with steel' beams or girders

(steel bridges). While many similarities exist when comparing the

response characteristics of these two types of bridges, concrete

bridges and steel bridges also have many response characteristics

which are applicable only to one or the other. For example, one

of the primary modes of failure for the concrete bridges is the

cracking of ~he concrete beams, while for the steel bridges the

possible modes of failure may be the formation of plastic hinges,

or the buckling of webs or flanges. Thus, those response character

istics which are evident. in steel bridges may not occur in concrete

bridges, and vice versa.
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The first developmental work concerning the analysis of

structures with concrete decks and steel beams was·presented in two

papers by Newmark (Refs. 51,59). The first of these papers did

not consider the composite action of the beam and slab. The

second paper overcame this deficiency and presented a derivation

for the differential equation describing the axial forces of the

component parts in the elastic -region. However, this equation

was applicable -only to isolated T-beams and not to multi-girder

systems. Others have expanded upon the theory formulated by Newmark

to account for non-uniform connector spacing, initial strains, and

nonlinear material properties using an iterative solution procedure.

Proctor, Baldwin, -Henry and Sweeney at the University of

Missouri (Ref. 5) and Yam and Chapman at Imperial College (Ref. 72)

treat the boundary value problem as an initial value problem and

solve the equations by successive approximation; and Dia,

Thiruvengadam and Seiss at the University of Illinois (Ref. 19),

Wu at Lehigh University (Ref. 71), and Fu at the University of

Maryland (Ref. 25) use finite differences in conjunction with

Newmark's work. None of these methods, however, considers fully

-the problem of shear lag, shear deformation of the beam, slip

between the slab and the beam, and continuous structures, whereas,

Tumminelli and Kostem' (Ref. 64) employing a finite element method
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to include the above deficiency into a linear elastic solution

process with no inelastic capabilities.

Research by Wegmul1er and Kostem (Refs. 68, 69) led to the

development of an analysis technique and computer program to predict

the elastic-plastic structural response of eccentrically stiffened

plate systems. This technique, which employed the finite element

method, used the ACM (Ref. 1) rectangular plate element modified

for in-plane displacement by Clough (Ref. 18). The elements were

layered to monitor the spread of yielding throughout the structure.

In addition, the material was assumed to obey a von Mises yield

condition. Based. on this work Kulicki and Kostem (Refs. 40, 43)

extended the model and the technique to incorporate eccentrically

placed reinforced concrete or prestressed concrete beams. In this

analysis the response characteristics of the concrete beams were

realistically modelled, including the cracking and crushing of

concrete and yielding of steel. Subsequently, Peterson and Kostem

(Refs. 52, 54, 55) further extended the analysis technique to

accurately simulate the biaxial behavior of reinforced concrete

slabs, and thus in the end, to reliably predict the overload

response of concrete highway pridge superstructures. However, this

still left the problem of the overload analysis of steel bridges to

be solved.

The above research efforts have demonstrated that the

finite element method of analysis provided an efficient tool that

can be used to perform an inelastic analysis of eccentrically

-10-



stiffened slab systems. The complexities in material behavior and

losses in stiffness due to yielding, cracking, crushing, or local

instability can be directly incorporated into the analysis scheme.

Thus, by integrating the works of Tumminelli and Kostem and Peterson

and Kostem, and including the effects of strain hardening, flange

buckling, and web buckling into a concise finite element computer

program, a realistic model for predicting the overload response of

continuous steel multi-girder highway bridges can be developed. The

main contribution of the material in this dissertation, is the

development of such a realistic model.

1. 5 The Analyti'cal Model

The' analytical model should adequately reflect the

structural characteristics of the actual structure. To reliably

describe the inelastic response of beam-slab highway bridge super-

structures with steel beams or girders, the following must be con-

sidered:

1. Th~-out-of-plane or flexural behavior of the

structure.

2. The in-plane response of the beam and slab

due to the eccentricity of the beams.

3. The coupling action of the in-plane and Qut-

of-plane responses.

4. Material nonlinearities.

-11-



5. Th~ possibility of slip between the beam and the

slab (i.e. amount of composite action).

6. Shear deformation of the beams or girders.

7. Local instability of the beam and/or girder

flanges or webs, and any associated post

buckling behavior.

When bridge superstructures are subjected ta vehicular

loads, i.e. out-af-plane forces, both longitudinal and transverse

bending moments which are out-of-plane ,responses, and axial forces

which are in-plane responses, occur in the slab. At the same time,

longitudinal bending moments and axial forces are predominant in the

beams and/or girders. The· development of these axial forces in the

slab and beams is due to the eccentricity of the center of gravity

of the beams in relation to the midheight of the slab. Thus, the

application of Qut-of-plane loads to the bridge superstructure

produces both in-plane and out-of-plane responses in the slab and

beam. This interdependency between in-plane and out-of-plane actions

is commonly referred to as coupling action. While coupling action

has little effect on the structural response in the elastic region,

it has significant effect on the inelastic structural response as

explained in detail in Ref. 55.

Since the material nonlinearities have a profound effect

on the structural response of the superstructure by causing changes

in the structural stiffness, a realistic representation of the

material stress-strain relationships of the component parts is

~12-



essential. For steel- highway bridge superstructures the appropriate

material representations needed are:

For the beam or girder:

1. Steel subjected to uniaxial stress statese

For the slab:

1. Concrete subjected to biaxial stress states.

2. Mild steel reinforcing' subjected to uniaxial

stress states.

Since the response due to overloads is expected to

eventually cause nonlinear stress-strain behavior, the appropriate

inelastic stress-strain relationships of the component materials

must be included. Thus, the present analysis scheme utilizes the

biaxial stress-strain relationships developed in Refs. 45, 47, 48,

50, 52, 55 to describe the inelastic behavior of concrete slabs,

and in addition, utilizes the uniaxial stress-strain relations

developed in Refs. 27, 28, 39, 40, 42, 57 to describe the inelastic

response of steel.

To adequately reflect the variation in material stiffness

properties through the depth of the beam or slab mem~ers,

due to cracking of concrete or yielding of steel, or some other

material failure, the finite elements are subdivided into a series

of layers. Each layer is assumed to be in a state of biaxial or

uniaxial stress and each assumed to have distinct material

properties. Then by defining the stress-strain relationship on a

layer by layer basis, the progression of nonlinear material behavior

-13-



through the structure can be monitored. Through the utilization

of the layering technique good agreement has been obtained between

analytical and test results (Refs. 6, 30, 31,40, 43, 53,66, 70).

Typical analytical models for composite structures assume

that no slip occurs between the slab and the beams. But if there

does not exist sufficient linkage between the slab and the beam,

then slip will occur and the percentage of load shared by the beam

and the slab will change. Thus, the analytical model should be able

to account for the possibility' of slip. In addition, due to shear

deformation, beams and particularly plate girders with thin webs,

will deflect considerably more than standard beam theory would

predict. Thus the model should be able to adequately reflect the

effects of shear deformation.

Finally, because beams and plate girders are of thin

walled open. cross-sections, they are susceptible to local buckling

phenomena, prior to attaining maximum stress conditions. Therefore,

the analytical technique should be capable of predicting the

occurrence of local buckling and any post-buckling strength of

such sections.

The preceding paragraphs contain the major structural

phenomena which have significant effect on the structural behavior

of steel bridge superstructures. The underlying premise of the

entire nonlinear response and ultimate collapse of the bridge

superstructure is that the primary response of the structure is

flexural in nature with the associated in-plane and coupling

-14-



actions. While the effects of torsion of the beams is considered to

be of minor importance, and, therefore, not included in the analy~

tical method, an investigation into the effects of torsion of the

beams in the elastic region is still presented. Other structural

pheonomena considered to be' of secondary importance and excluded

from the analysis technique are:

1. Minor axis bending of the beams. This will affect

the forces in the bracing and hence the major axis

bending moments, but the contribution to the overall

structural response is considered extremely minimal 0

2. Shear punch failure of the slab. Because in normal

bridge superstructures· the' loads are transmitted

through the vehicle tires, such failures are highly

unlikely due to the large distribution of load

(Ref. 74).

3. Dynamic and impact effects. It is assumed that the

speed of the overload vehicle would be slow enough

so as not to produce any dynamic or impact effects

(Ref. 75).

4. Superelevation. Comparisons of analytical and ex

perimental results of bridges which had large super

elevation, but were modelled with no superelevation

showed that little or no noticeable error occurs by

ignoring the· effects of superelevation (Refs. 54,55).
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2. MATERIAL BEHAVIOR AND STABILITY CONSIDERATIONS

2.1 Introduction

This chapter presents the material stress-strain relation

ships and stability criterion employed in the reported analytical

technique. Material stress-strain 'relations are defined for the

beam steel, reinforcing bar steel, and for the slab concrete.

In addition, the equations defining the initiation of buckling

in the flanges and webs of the beams (girders) and the post

buckling response of the beams (girders) are described. These

relations and equations are later used to establish the stiffness

properties of the bridge components.

The behavior of concrete and steel is dependent upon the

particular stress state, i.e. tension or compression, and whether

or not the stress field is uniaxial or biaxial. A beam, for

example, may be idealized as a one-dimensional structural element

in which major axis bending produces a uniaxial state of stress

(Ref. 40). A slab, on the other hand, may be envisioned as a two-,

dimensional structural element in which bending and in-plane

actions in both the longitudinal and transverse directions produce

a biaxial stress state (Refs. 52,55). Thus, the beam (girder)

steel is assumed to be in a uniaxial state of stress, while the

slab concrete is assumed to be in a biaxial state of stress.

-16-



The inelastic uniaxial ~tress-strain relationship of the

beam (girder) steel is analytically defined in this model by a

modified Ramberg-Osgood formulation (Refs. 27, 28, 57). Similarly,

the nonlinear biaxial stress-strain relationship of the concrete

slab is analytically described by empirical formulae which are

presented in detail in Ref. 52 and briefly outlined herein. In

addition, since the flanges and webs of the beams or girders may

buckle, empirical and theoretical formulae are employed to predict

the initiation of buckling and any post-buckling behavior of the

beam (Ref. 28).

By differentiation of the~e stress-strain equations the

instantaneous slope, tangent modulus, of the particular stress~

s·train curve is obtained. This tangent modulus and a reduced

modulus· due to the buckling phenomena are then used to formulate

the element elasticity matrix) [D]) which relates the stress incre-

ment to the strain increment.
. .

{cr} = [D] {E} (2.1)

The elasticity matrix is then utilized to establish the slab

and beam (girder) finite element stiffness properties (Chapter 3).

Throughout this dissertation the stress-strain relation-

ships are discussed in terms of both incremental and total stresses

and strains. To distinguish between the two type of stress and

strain, the incremental quantities will be designated with the

customary dot (.) over the appropriate quantity, e.g. Eq. 2.1.

-17-



- 2.2 Uniaxial Stress-Strain Relationship for-Steel

The uniaxial nonlinear stress-strain relationship for the

steel of the beams (girders) and slab reinforcement has been

established for the layered finite element model using a Ramberg-

Osgood formulation (Refs. 27, 28, 40, 43, 57):

1
E.

1

(2.2)

where

(J = stress

E = strain

E. = initial modulus of elasticity
~

cr = yield stressy

m = 0.7 for mild steel reinforcement

0.67 for beam steel

'n = 300 for mild steel reinforcement

400 for beam steel

The instantaneous slope, tangent modulus, of this stress-strain

curve is then given by (Refs. 27, 28, 40, 43, 57):

-18-
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However, when the limiting strain of the plastic range, Cst' is

attained in a layer, a parabolic post-plastic strain-hardening

relationship is assumed to exist (Refs. 28, 29)~ Thus, when

then

where

IE I > Est = limit of plastic range

[0 2 _0
2

- 2E 0 (E - E )]
u y at y u st

(2.4)

(2.5)

and
(J

u = the ultimate stress on stress-strain curve (Fig. 5)

E the strain corresponding to ultimate stress, cru /U

Est = initial strain hardening modulus.

The complete stress-strain curve for steel (Fig. 5) is, thus,

established analytically. The tangent modulus~ E
t

, for the strain

hardening portion of the curve is then determined from Eq. 2.5 to

be (Ref. 28):
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a - ~
(2.5)

instantaneous shearing modulus, G, is assumed ·to be equal to

In the elastic portion of the stress-strain curve, the

(Ref. 28):

G =
E.
~

2 (1 + v)
(2.6)

where V = Poisson's ratio = 0.3 for steel. However, according to

Lay (Ref. 46), the shearing modulus in the post-plastic range can

be given by:

2G
G:' = ----------t . E.

1 + 1. _

4E
t

(1 + v)

(2. 7)

Using Eqs. 2.5, 2.6 and 2.7 the instantaneous shearing modulus in

the strain-hardening range (i.e. I E I > Est)' becomes:

(2.8)

From the initiation of yielding to the initiation of strain-

hardening, the instantaneous shear modulus is assumed to vary

linearly with respect to the s~rain, E, from an initial value

given by Eq. 2.6 to a final value given by Eq. 2.8.
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2.3 Biaxial Stress-Strain Relationship for Slab Concrete

Based upon experimental inves~igations into the biaxial

behavior of concrete (Refse 45, 48, 49, 50) and employing analy-

tical expressions developed by Liu (Refs 0 48, 49), for the

biaxial principal stress-strain relations of concrete, Peterson

and Kostem (Refs. 52, 54, 55) developed effective. linear and non-

linear biaxial s,tress-strain relationships for concrete slabs.

The nonlinear principal stress-strain curve, in compression

dominant regions~ can be given by (Refs. 27, 52, 55):

E E
c

2
(1 - va) (1 + Ce: + DE )

where

cr = principal stress in direction of

interest

(2.9)

e:

E
c

C, D

= strain in direction of interest

= Poisson's ratio = 0.20 (concrete)

= ratio of principal stresses

= initial uniaxial tangent modulus for concrete

= constants which depend upon E , v, a
c

and the peak stress, cr , strain, E , andp p

modulus, E .
P
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The peak stress values of Eq. 2.9 can be obtained from the

idealized nondimensional biaxial failure envelope (Fig. 6). Then,

from experiments and analytical approximations, corresponding values

of peak strain and peak modulus can also be found (Ref. 52, 55).

Thus, once the initial stress-state, defined by a, is known, the

complete nonlinear stress-strain relation is analytically deter-

mined.

From Eq. 2.9 the instantaneous slope, tangent modulus, is

determined to be (Refs. 27, 52, 55):

·.E' .,
c

(1 - va)
2

(1 + CE + DE2)
(2.10)

·It should be noted that a separate tangent modulus exists for each

principal stress direction.

While Eq. 2.9 and 2.10 are applicable in compression

dominant regions, the linear biaxial stress-strain relation for

concrete in tension dominant regions is given by (Refs. 27, 52, 57):

(2.11)

To relate the principal biaxial st~ess state to the

principal biaxial strain state, the following anisotropic con'!"'P"

stitutive relationship is required (Ref. 48):
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(2.12)

o

a

0"1 E
1

0"2 = [D] EZ

TI2 Y12

where

E1b "2 E1b
1 - "I "2 1 - VI \>2

[D]
VI Eib ,Eib

=
1 - VI "2 1 - VI "2

o o
E1b + EZb + 2 V1 Eib

(2 .1:3)

and subscripts 1, 2 denote principal stress directions. It should

be noted that Eb in Eqs,. 2.10 and 2.11 relates the stress in a

particular direction to the strain in that same direction, and

only that direction, while E1b and E2b represent the actual tangent

moduli, where the principal stress is related to the strains in

both principal directions and to the shearing strain. The relation

ship which exists between Eb and Eb is (Ref. 55):

(2.14a)

and

(2.14b)
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Thus, all the terms required for determining the elasticity matrix,

[D], are now defined analytically. However, since the [D] matrix

relates only stresses and strains in the principal stress direc-

tiona, a transformation must take-place to relate the stresses and

strains in the global x-y coordinated system (Eq,. 2.15). Such a

transformation is required, so that the slab element stiffnesses in

the x-y directions may be computed'.

(1 e:
x x

cry = [D] £y

T Yxyxy

where [D] = [T] [D] [T] T

(2.15)

(2.16)

and [T] is a transformation matrix relating the 1, 2 coordinate

system to the x, y coordinate system (Ref. 55).

In the analytical model when the principal stress exceeds

the idealized peak stress as defined by Fig. 6, cracking or crushing

of the concrete is assumed to occur (Refs~ 52, 54, 55). As a

result of this cracking or crushing the concrete layer is assumed

to have a.stiffness only in the uncracked or uncrushed direction.

Thus, if cracking or crushing occurs in the "2" direction, the

resulting constitutive stress-strain relationship would become:
I

0"1 E1b 0 0 8
1

(12 0 0 0 (2.17)=

L 12 0 0
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It should be noted that the shearing stiffness term, D
33

, is also

set equal to zero. This is done because previous research has shown

that slabs in flexure are insensitive to the value for the shearing

stiffness once cracking has occurred (Refs. 30, 31, 47).

After failure of the concrete layer due to cracking or

crushing, the layer would be incapable of sustaining the stress that

caused the failure, and, thus this stress must be reduced to zero

within the layer while maintaining. external and internal equilibrium.

This unloading of stress and redistribution of forces to neighboring

layers is accomplished through the application of a fictitious

force matrix (Refs.. 52,54,55). However, in the actual overload

analysis of continuous steel'highway bridges it becomes possible at

extremely high load levels for the concrete slab to become com-

pletely cracked, i.e. cracked through the entire depth of the slab.

Such complete cracking of the· slab can occur, for example,- over

interior supports in the transverse direction or over the beams in

the longitudinal direction. When complete cracking does occur in

the finite element model the· slab element stiffness in the direction

perpendicular to the crack would become zero. However, experience

has shown that when the slab element stiffness becomes zero in one

principal direction, numerical difficulties often occur in the

solution process and inaccurate solutions can result. To avoid

this possibility of numerical instability in the solution process

the cracked or crushed layer is given an artificial stiffness equal

to E /1,000,000 rather than zero. It should be noted that there isc

-25-



no loss of accuracy in employing this approximation. A similar

procedure will be used, frequently ,throughout this dissertation to

prevent mathematical instabilities in the solution process when

failures occur.

2.4 Torsional Bucklirtg'of"Compressiort"Flange

In continuous composite beams the strength in the positive

moment region is generally controlled by the yielding of steel in

tension or by the crushing of concrete in compression; however,

in the negative moment region the strength may be limited by

torsional buckling of the compression flange. According to Lay

(Ref. 46) torsional flange ,buckling of conventional wide flange

shapes is essentially an inelastic phenomena. It should be noted,

however, that the in~lastic plate buckling equation can also be

applied in the elastic range with some modifications.

Typically, the' compression flange is envisioned as being

partially restrained against "twisting by a torsional spring

(Fig.8a). The assumed deformed shape of a torsionally buckled

compression flange is presented in Fig. 7. In the case of elastic

plate buckling the critical stress for torsional buckling, crcr

is based upon the width to thickness ratio of the flange, 2t/b, and

the assumed stiffness coefficient, k •v

cr
cr = k

v
n
2

E" . (2
b
t)2

12 (1 - v)
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The stiffness coefficient is related to the torsional restraint

provid~d by the beam web. If the web is flexible and provides

only vertical support then'k = 0.425 (Ref. 39); however, if the
v

web is exceedingly stiff and provides vertical support and consider~

able torsional restraint then k = 10277 (Ref. 39) (Figs v 8b and
v

8c) • In order to relate the' coefficient k directly to the dimenv

sions of the web and, therefore, the web's elastic torsional

restraint capacity, Lay's inelastic torsional buckling equation,

Eq. 2.19, will be modified for elastic conditions (Ref. 28).

where:

bt (j = _1 {G. IL + (n7f)2 EI + k(~)2}
cr -2 t -1. L t W t n7f

r
o

(2.19)

G
t

= inelastic shearing modulus

E
t

= inelastic tangent modulus

k
t

= torsional stiffness of web

~
bt

3
= -3-

I w
7 {U3

}=-16 144

L
n

= half wave length of buckle

I 12
r 2 = b2

o

If the above inelastic equation is assumed to apply also ,in the

elastic range, then the elastic values for G and E can be
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substituted for the inelastic values, G
t

and E
t

. By then solvi~g

Eq. 2.19, with G and E, for the lowest value of n~/L and sub-

stituting that value back into Eq. 2.19, the following equation is

obtained:

(2.20)

The torsional stiffness, k
t

, derived from the deformed shape of the
I

web (Fig. 7) is:

(2.21)

Substituting the values for IL, 1/:r 2, lw" and k into Eq. 2.20
-~ 0 ' t.

gives the following elastic critical stress equation:

-{ 2 +1- /-l (w
t

)3 b
dcrcr - 1 + V 2 '127 _1I}E(!.)2

(1 _ v2) b

(2.22)

By comparing Eqs. 2.18 and 2.22 with v= 0.3, the stiffness coef-

ficient, k , is found to be:
v

(2.23)

Thus, for any given beam cross-section the critical elastic

torsional flange buckling stress, cr , can be calculated analyticallycr

using Eqs. 2.18 and 2.23. However~ it should be noted that
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experiments by Winter (Ref. 39) have shown that due to the presence

of residual stresses and due to the effects of shear lag in the

flanges, there can exist a nonuniform stress distribution in the

flanges, and, thus even if the average stress value in the flange

is less than the critical value, cr ,buckling can occuro Basedcr

upon experimental results and employing an effective flange width

type concept, i.e. only part of the flange is capable of resisting

the load '- Winter has proposed a semi-empirically derived critical

buckling stress transition equation for plates supported at one

edge (Ref. 39):

(J = 1.19 J (J (J (1 -= 0.3 Ja /a \)
av cr y cr y

The relationship between Eq. 2.18 and 2~24 is shown graphically in

If A>1.,3 then Eq. 2.18 controls, and if A. < 1.3 and cr < a then
y

Fig. 4, where b J(J
'\ - - ...:L

, 1\ - 2t E (2.24b)

Eq. 2.24 controls.

If the strain, 8, in the flange exceeds the yield strain,

E , then the inelastic torsional flange buckling stress equation
y

derived from Eq. 2.19 must be employed (Refs. 28 and 46):

a = {G
t

+
cr,in

(2.25)
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3where k
t

in Eq.· ~.19 is equal to G
t

W /3d. The values for E and
t

G
t

come from the equations established in Section 2.2 for inelastic

behavior of steel.

When the average stress, of all the layers which make up the

compression flange, of any 'beam element, exceeds the critical tor-

sional buckling stress, the flange ia assumed to buckle. Since the

beam ·finite element cannot deform as shown in Fig. 7, the buckling

and post-buckling behavior 'of the, beam compression flange must be

simulated as follows. Ideally the flange would have either a

negative stiffness value, to, permit a redistribution of stress within

the beam element, or have a zero stiffness 'value. Experience and

experimental correlations indicate that adequate agreement between

experimental and analytical results can be obtained by assigning an

artifical1y low stiffness value of- (E./lOO,OOO) to all the critical
1

compression flange layers. If the flange stiffness had been set

equal to zero, numerical instabilities may have occurred in the

solution process (see Section 2.3).

2.5 Buckling of Plate Girder Web Panels and-Compression

of Flanges'

In the past one of the design criteria for plate girders

was based upon the assumption that the load-carrying capacity of

the web plate was limited by buckling of the web; however, exper-

iments indicated that transversely stiffened web plate panels have

considerable post-buckling strength. Basler was one of the first

to present a definitive analysis of the strength of plate girders
-30-



under pure bending, pure shear, and combined bending and shear

loading conditions (Refs. 7, 8, 9). The results of Basler's exper

iments showed that plate girder strength was limited by: (1) web

buckling due to shear, or combined shear and bending; (2) vertical

buckling of the compression flange; (3) lateral buckling of the

compression flange; (4) torsional buckling of compression flange;

and (5) yielding. In a simple span composite slab-girder structure

the compression flange is laterally and torsionally restrained by

the concrete deck; thus, instability of the ,compression flange is

unlikely. In addition, the web panel, in a simple span structure,

is unlikely to buckle under combined shear and bending because

bending forces will be dominant. In a continuous slab-girder ~uper

structure, however, there exists an increased likelihood' of fla~ge

or web panel buckling in the vicinity of the interior supports, due

to a lack of complete lateral support for the compression flange

and the high shear condition for the web. The· problem of web panel

failure will be dealt with in Sections 2.5.1 and 2.5.2, while the

problem of compression flange failure will be covered in Section

2.5.3.

2.5.1 Web Panel 'Buckling.

_Since the publication of Basler's works, numerous models

have been proposed to predict the initiation of web buckling and

any associated post-buckling behavior of transversely stiffened

plate girders (Refs. 15, 16, 17, 39, 58). Each of the new models

seeks to eliminate the deficiencies in Basler's original tension
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field model. While all of the proposed models can reasonably

predict the ultimate load capacity of the plate girders, the Chern

and Ostapenko formulation (Refs. 15, 16. 17) forms the basis for

the present analysis scheme because of its simplicity and relia-

bility.

A typical section of a transverely stiffened plate girder

is depicted in Fig. 11. When the plate girder is subjected to

combined bending and shear, the'resultant stress pattern on the

web panel can be- idealized as shown in Fig. 9, where the horizontal

boundaries of the web plate panel are determined by the flanges,

and the vertical boundaries by' the transverse stiffeners. The

stress distribution at the initiation of web buckling can he

determined with sufficient accuracy by means of the following

int~raction equation (Refs. 17 and 39):

(~) + (-l)2 + (l)2 = 1.0
creer abcr Leer

(2.26a)

where

buckling stress
2

(:) ,= k
s

= shear buckling stress under combined

loads

7f2 E
Tccr

T
c

crb = bending buckling stress at the extreme

compression fiber under combined loads

under pure shear condition (2.26b)
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2 (~t,cr ~
'IT E buckling stress under=bcr 12(1 - v2

)

pure bending condi~ion (2026c)

(J = compressive buckling stress under combined loadscc

cr k
7f2E (~y, buckling stress under=ccr c 12(1 -- v2

)

pure compressiono (2.26d)

The buckling coefficients, k , ~,' and k are dependent upon whethers -0 c

the unloaded horizontal edge of the web ·plate panel is assumed to

act as a fixed edge,. i.e. stiff flanges, or to act as a simply

supported edge, i.e. flexible flanges. The fixed -edge condition

will be designated by an asterisk superscript, and the simply

supported condition by no superscript.

k * = 5.34 + 2.31 3 44 + 8 39 ex
s 2 ex -. • p

ctp P

k = 4 0 + 5.34
s • ex

p

for Q', < 1.0
p

* 8.98 + 5.6~ _ 1.9;k =s ex a,
p P

k = 5 34 + 4.00
s • a,

p

for ex > 1.0
p-

aap = d' panel aspect ratio, or ratio of panel

width to panel -depth."
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*~ = 39.6, ~ = 23.9

*k = 6.97, k = 4.0
c c

The critical stress values given by Eqs. 2.26b, 2.26c, and

2.26d are elastic buckling values.. However, experiments have shown

that due to the presence of residual stresses, initial imperfections

and strain hardening that buckling can occur prior to reaching the

maximum stress of L or ab • Thus, the following transitional
ccr cr

relations are employed for calculating T (Ref. 15):ccr

for 0.58 < A < 12- v-

T
ccr

= T {1 - 0.615 (A - 0.58)1.18}
y v

(2.26e)

for A </0.58v-

where

T
ccr

= L {I + 4.30 (0.58 - A )1.S8}
Y v

(2.26£)

JT 12 (1 - vZ)
'\ J.. (d)2
/\v=k 2

s Tf E W

L =cr/fiy y

Likewise when the pure bending stress, crb in Eq. 2.26c, exceedscr

0.8 a the following additional relationship is employed to compute
y

aber (Ref. 77):

for cr
b

> 0.8 crcr - y

0.160'
a = cr . {I - -~---~y}
ber y v bcr
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When the stress condition under combined loads is such

that Eq. 2.26a is satisfied, the web panel is assumed to buckle.

Thus, the total shear force carried by the web panel at the initia-

tion of buckling becomes:

(2.27)

After the'web panel buckles, considerable post-buckling

strength may be realized by' the development of a web panel tension

field (Fig. 11). In evaluating this post~buckling strength the

following assumptions are made: (1) the'web buckling stresses,

a , Gb , and T , remain constant after the web' plate buckled, i.e.ce e

no unloading; (2) the linearly varying bending stress, 0b' 'and

constant compressive stress, cr , are replaced by their average,
c

abc (Fig. 13); and (3) the' ultimate strength of the web is reached

when the combined stress state of shear stress, lC; of average

bending and compressive stress, abc; and of the tension field

stress, a tc (Fig. 13); satisfy a von Mises yield condition. An

approximation for the expected tension field stress distribution

(Figs. 12a, b) has been made for simplicity in the following

derivations (Ref. 17). It should be noted that the direction of

action of the' tension field is at the as yet unknown angle 0
c

(Fig. 13).

By superimposing the tension field stress· state, ate' upon

the' buckling stress state,',' T c and CYbc ' and imposing the von Mises
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yield criteria,. the following relation for cr (where cr and 0
tc tc c

are the only unknowns) is arrived at:

3R2 - S2 + [0.5S + 1.5R sin (20 + 28)]2
c

where

ate ={l -
- (0.5S + 1.5R sin (20e + 25)} (2.28)

cr = yield stress of web
yw

s
C abc

= ----4 (J
yw

C = ratio of maximum tensile stress.to maximum

compressive stress

determined from Fig •. 12b.

- cr' + ab cc=
Clb + cr

cc

a = .1. tan -1
2

c

The tension field shear force of the web plate panel, V ,can becrc

v = 1
2

wd cr (sin 20 - 0.5' ~ + 0.5 a cos 20 )
crc tc c P P c

(2.29)

Since all of the terms in Eq. 2.29 with the exception of

ate and O2 are known, and since from Eq. 2.28 ate is known to be a
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function of 0c only, then V crc is also a function of 0c only.

The maximum tension ,field action shear force, V ,can then becrc

obtained by differentiating Eq. 2.29 with respect to 0 , setting
c

the derivative equal to zero, and then solving for 0 :
co

[sin 2 0 - 0.5 a + 0.5 a cos 2 0 ]co p p co

+ 2 [cos 2 ~ - 0.5 a sin 2 ~ ] crt = 0co p co c
(2030)

where 0 denotes the value of 0 obtained when solving Eqo 2 s30eco c

The solution of Eq. 2.30 for ~ is found by the Newton-Raphson
co

iteration' method where the left hand side of the equation is

defined as F(0). Then, since 0 is known to be between 0° and 45
0

co

an initial trial value of ~1 is made using Basler's original for

mulation, Eq. 2.31, and then computing the function F(01).

J 2'01 = arctan ( 1 - a - a .)
p p

(2.31).

If F(0
1

) is not within a reasonable tolerance, 0.000001, of the

value zero, then a new value of F(0Z) is computed where O2 is ten

percent greater than 01 • If F(0Z) is still not within the required

tolerance, then the following recursion equation is employed to

solve for the new 0:

{l1i+2
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The operation expressed in the above equation is then repeated until

the required accuracy is obtained. By substituting the value of

~ back into Eqs. 2.28 and 2.29 the maximum tension field shear
co

becomes:

(2.33)

After buckling of the web plate panel only the stresses

parallel to the tension field direction are assumed to increase.

Thus, the panel is assumed to have a stiffness only in the tension

field' direction and no stiffness in the orthagonal direction.

Referring to the anisotropic elasticity relation, present~d in Eq.

2.13, and assuming a similar relationship now exists for the web

panel except that E
1b

= E
i

and E
2b

= 0" the following web plate

panel constitutive relationship can be as'surned to exist:

=

E.
1.

o

o

o

o

a

o

o

o

(2.34)

where the 1, 2 coordinate axes are shown in Fig. 14. Transforming

I
this state of stress to the x,z' coordinate system (Fig. 14) by

means of transformation matrix, [T],
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2 • 28 ...,. 2 singcos Q S1n casQ

[T] · 29
2

2= S1n cos e cosQ sing

case sing - cosB sinQ 29 • 29cos -- Sl.n

(2.35)

where 9 = -0 ,and employing Eq. 2.16, the x,z' coordinate axesco

stress-strain relationship becomes:

4 · 29 29 cos 3e sinQ r:x 1
cr cos e S1n cosx

cr , 2 2 . 49 cose sin3
Q E. E 'Z = sin e cos e Sln

l. z
p

3 sinS
3 2 2

Ycos 9 cose sin Q cos 9 sin 9 XZ)

(2.36)

However, since the layered finite element beam formulation con-

siders only the tangent stiffness modulus and the shearing stiffness

modulus corresponding to the x-axis direction, Eq. 2.36 can be

_simplified to:

(2.37a)

o

o

E
29 • 2("\. cos S1n 0

J.

o

o

oo

o

4E. cos {3
1

=

Txz'

cr ,
z
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where Epb and Gpd represent the effective post-buckling tangent

stiffness modulus and shearing stiffness modulus for the web plate

panel. However, the initial attempts to model the actual post-

buckling behavior 0'£ the web plate panel using the above relations,

indicated that the overall post-buckling panel behavior was stiffer

than that observed in experiments. Based upon the distribution of

the tension field stress a reduction factor, el , was derived to

sufficiently decrease the post-buckl~ng stiffness parameters, Epb

and Gpb ' to more accurately model the post-buckling web plate

panel behavior.

By assuming that only part of the entire web panel is

fully effective in contributing to the post-buckling stiffness, a

reduction factor is feasible. Thus, considering only that portion

of the web plate panel not subjected to the full tension field

(i.e. the outer tension field portion) as contributing fully to the

stiffness properties of the web panel, the reduction factor becomes

(Fig. 14):

= area of outer tension field/area web plate panel,

~ '.coa I a tan 0coII a tan
=-------

add
(2.38)

and the resulting modulii become:
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G E 2n • 20pb = C1 i cos ~ S1n ~

(2.39a)

(2.39b)

As will be shown later in the experimental correlations, these

assumed post-buckling stiffness parameters provide reasonable

agreement with the test results.

The failure load for the" limit of the' post-buckling behav-

ior occurs when the total web plate panel shear force given by

Eq. 2.40 is attained.

(2.40)

where V
TC

and Vcrc are given by Eqs. 2.27 and 2.33- respectively.

Beyond this point the web panel is incapable of sustaining addi~

tiona! load and as with the case of flange buckling this loss of

stiffness due to the complete failure of the plate girder panel is

simulated by setting the· panel stiffness equal to Ei/lOOOOO.

2.5.3 Lateral Buckling of the Compression Flange of Plate

Girders

As has been mentioned previously when a transversely

stiffened plate girder is subjected to combined shear and bending

loads one or more of the plate girder panels may fail due to

buckling of .the web, buckling of the compression flange, or botho

While buckling of the web is the" predominant mode of failure when

a panel is subjected to high shear stress~ lateral buckling of

the compression flange is the' (Fig. 15) predominant mode of

-41-



failure when a panel is subjected to large bending stresses.

According to the theory originally proposed by Basler, the critical

flange buckling stress for plate girders can be given by:

cr£cr

2
.7f E.

~=---
2

('ib/r )
(2.41a)

2
b

= unbraced length of the compression flange

r --J bt
3
/1

1
2 \ -- radius of gyration

bt + "6 wd

A=R,b~> 2
R, r~:2;:

7T i

If, however, At < I~ then a transition equation is required to

calculate the flange buckling stress:

:\2
(J = (J (1 ~ 4t ) for 0 _< An _<- ... 2R,cr y XI

(2.41b)

Ostapenko and Chern (Ref. 16) however, modified this relationship

slightly by assuming the radius of gyration to be:

(2.42)

Thus, employing Eqs. 2.41a, band 2.42 the lateral flange buckling

stress can be ~alcu1ated for any plate girder flange. The unbraced

length of the plate girder compression flange can be taken as equal

to the distance between points of lateral support in the plate
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girder. +his assumption is conservative because Eqs. 2.41a, b

assume that the flange is in a state of uniform compressio~

throughout its length, while an actual plate girder flange will be

in a continually varying stress state due to moment gradients.

Once the compression flange buckles, the flange is unable

to sustain any additional increase in load. To simulate the loss

of stiffness, the post-buckling flange stiffness should be set

equal to E./IOOOOO, as before. However, comparisons to experimental
~

results indicate that such a reduction in stiffness is inadequate

to effectively model the post-buckling strength of the plate

girder. Reliable modelling of the post-buckling stiffness was

obtained, however, by assuming that both the flange and the web

plate panel suffered a complete loss of stiffness upon reaching

.the buckling load.

In the preceding paragraphs and sections an attempt has

been made to show how the major modes of failure and any

post-failure strength of transversely stiffened plate girders can

be effectively modelled. As will be shown ~ater in the chapter

on experimental correlations, the failure to include these

stability considerations into the analyses would lead to highly

inaccurate results. However, the present analysis scheme produces

reasonably accurate results in terms of load versus deformation

curves, load versus stress, and load versus damage records.
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3. FINITE ELEMENT ANALYSIS

3.1 Introduction and Assumptions

As has been indicated previously, the analytical technique

employed in the reported research is based upon the finite element

method of analysis (i.e. Refs. 63, 73). A detailed treatment of the

finite element method as applied to this research is presented in a

number of other related reports, Refs. 27, 40, 43, 52, 54, 64.

Thus, only those fundamentals of the method which are necessary for

clarity, and those basic assumptions which pertain to the specific

features of the analysis, are presented herein.

The following assumptions are made with regards to the

development of the. analytical model:

1. Geometry·- The bridge superstructures to be

analyzed are limited essentially to bridges with

no skew, i.e. right bridges. However, previous

research (Refs. 55 and 75) has indicated that

bridges with moderate skew, i.e. ~ = 900 to

o= 60°, can be analyzed as right bridges

with no loss in accuracy.

2. Strain Distribution - Plane sections remain

plane before and after deformation of the

slab and beam, except that a Timoshenko
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approach has been employed to include shearing

deformation in the beam. In addition, the slab

is assumed to behave as a thin plate; and, the beam

and slab are assumed not to change thickness.

It should be noted that these common assumptions

reduce a three-dimensional problem to one of

flexure and one of two-dimensional plate bending

where the strain distribution is linear in both

cases.

3. Deformations - The deformations are assumed small

in comparison to dimensions of the slab, thus, all

calculations are based upon the undeformed geometry •.

Again, it should be noted that previous experience

with bridge overloading (Ref. 54) supports this

assumption.

4. Strains - Small strains are assumed thus, first

order linear strain-displacement relationships can

be employed (Ref. 54).

5. Layering - The slab and beam finite elements are

layered, each layer having its own stiffness

properties, so as to accurately model material

nonlinearities and progressive material failure.
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6. Stability Failures - When the average stress, of

all of the compression flange layers of any beam

element, exceeds the critical stress, the

compression. flange is assumed to buckle, and

all of the critical layers are assigned artifical1y

low stif-fnessvalues (E.• /lOOOOOO) • Similarly,
1

when the average stress state· of the web plate

panel reaches the critical conditions, all of the

web layers of the entire, web plate panel are

assigned new stiffness values.

3.2 The Finite 'Element 'Method

In the finite element method of structural analysis the

continuum, i.e. structure, is subdivided into an assemblage of

discrete subunits called finite elements, which are interconnected

at discrete node points •. The behavior of e'ach -finite element can

be described by the element stiffness matrix, [k.]e, which relates
1.

node point forces to node point displacements.

(3.1)

where

. {F}e =-vector of element- node point forces

. {ole = vector of element node point displacements

By stacking all of the element stiffness matrices and

considering the applied node point loads and node point con-

straints the following set of equilibrium equations results:
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· {F} = [K] {a} (302)

where

· {F} = vector of applied forces at node points

[K] = L' {ko}e = global stiffness matrix
1

· {oJ = vector of displacements at node points

The primary concern of the analysis becomes the determina~

tion of the element stiffness matrices, [ki]e, for the slab and the

. girder (Refs. 27, 52, and 69). It can be shown that this element

stiffness matrix can be determined by use of Eq. 3.3.

where

[B] = strain-displacement matrix

[D] = stress-strain (elasticity) matrix

v = volume of element

(3.3)

The evaluation of these matrices begins by assuming a

displacement field, usually a polynomial function, to describe the

element deformations •

. {f} = [P(x,y)] {r;}'

where

(3.4)

. {f} = displacement field of the element

[P(x,y)] = functions of x and y used to describe the

shape of displacement field

. {~}' = coefficients of x and y functions of [P(x,y)].
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By enforcing the element boundary conditions at the nodes, and in

addition, equilibrium and/or compatibility conditions, Eq. 3.4 can

be used to define the element node point displacements {o}e,

where

(3.5)

[c] = [P (x ,y )] or the polynomial evaluated
n n

at all.the element node points.

Solving Eq. 3.5 for the constant coefficients, {~},

(3.6)

and then substituting back into Eq. 3.4 gives the following

relationship:

The element strains are found by then differentiating the displace-

. If} = [P (x,y)][C]-L {5}e = [N] {5}e

where

[N] = shape function matrix.

(3'.7)

ment field, with respect to either x, y, or xy:

{E} [r] {f}
-1· e (3.8a)= = [r][p(x,y)][C] {a}

where

- {E} = vector of element strains

[r] = differential operator matrix

or

{E} = [Q][C]-l {5}e = [B]" {o}e (3.8b)
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where

[Q] = [r][p(x,y)] = connection matrix.

strains exist in the element to start, the' element constitutive

[D], is still required~ Assuming that no initial stresses or

With matrix [B] of Eq. 3.3 now defined, only the elasticity matrix,

(3.9)

relationship can be given by' (Refs. 27, 52 and 69):

. {cr} = [D]' {e:}

where

. {cr} = vector of element stresses.

Thus, with the' appropriate choice for the· displacement fields to

model the desired phenomena., and the' correctly chosen constitutive

relations for the' particular type of element" the element stiffness

matrices can be explicitly determined.

3.3 The:Sla.b'Elemertt

Explicit and in-depth derivations of the layered slab

element are presented in Refs. 27, 52, 54, and 55. Only the

salient features of slab element development are presented herein.

For a detailed treatment of the element development the reader

should refer to one of the above references.

The layered slab finite element has a total of four corner

point nodes, each with five degrees of freedom (Fig. 16): the

vertical z-axis displacement, W; the rotation about x-axis, Q ; the
x

rotation about y-axis, 9y ; the displacement in the x-direction, U;
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and, displacement on the y-direction, V. A twelve term poly

nomial, which is a function ofx and'y, is used to describe the

vertical displacements (Ref~ 1). Two four term polynomials are

'used to describe the' longitudinal and transverse displacements.

The rotations are obtained'by'differentiation of the'vertical

displacement field.

For computational efficiency the' displacement field is

partitioned into those displacements involving bending action only

and those displacements involving in-plane action only:

o
u

=

p
u(x,y)

a

+

o

p
0(x,y)

(3.10)

where the subscript u and ~, designate in-plane and bending dis

placement respectively. Then' the element strain obtained by

differentiation of the element displacement functions are:
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z = distance from midheight of slab to the point
where

E:x

= e:
y

z

au
ax

: "aU' 'av-+oy dX

+ z (3.11)

under" consideration

(EX) (cy) ,(yo ) = strain in x-direction, y~direction, and
z, z xy z

shearing strain at depth z

'au av
ax' ay,etc = differentiation of respective polynomial

function with respect to x,y,or XYo

Performing the operations outlined in Section 3e2,

Eq. 3.11 becomes:

(3.12)

As has been mentioned earlier, the slab finite element is

subdivided into ~ series of layers, each layer having its own

elasticity matrix, [D.], which depends upon the average stress
1

state in the layer," {cr.}. This average stress, which is located at
1

the mid-depth of the' slab layer" and at a distance z. from the mid~
1

height of the'slab, is obtained by multiplying the elasticity matrix

by the" integrated average strain of Eq. 3.12:
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(3e13)

Since the elasticity matrix, [D.], depends upon the current
1

total stress state, and the" current total stress state depends upon

the elasticity matrix, an iterative solution procedure is required

to obtain a solution of Eq. 3.13 (see Section 3.6). The steel

reinforcing bar layers are included" in the" integration processes

in the' same manner as the concrete layers except that the direction

of action of the elasticity matri~ is uniaxial.

The partitioned slab element stiffness matrix obtained by

employing Eq. 3.3 is:

I

[B ]T [D] [B ] I z [B ]T [D] [B~]u u I
u

[k]e - + dV

[B ]T [D] [B ] I 2 [B~]T [D] [B~]z z
~ u

I
V

(3.14a)

or
I

[k ]8 I [k ]e
uu u0

[k]e = --- .+---- (3014b)

[k leT I e
u0 I [k~~]
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where

[k ]e = the' in-plane stiffness matrix
uu

[ku~]e = the coupling stiffness matrix

which relates in-plane and

bending actions

e
[k~~] = the bending stiffness matrix

Noting from previous discussions that the elasticity

matrix is dependent only upon z and that the' strain dis~lacement

matrices are dependent only upon x and y, the stiffness matrices

become:

..
[k ]e iI [B ]T= [D ] [B ] dx dy

uu u uu u

[k ]e = I I [Bu]T [Du~] [B~] dx dyu0
x y

e 1~ [[B~]T [D~~] [B~] dx dy[k~~] =

(3.15)
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where

L

[Du \i1] "";'E [Di ] ;. (zZ'i+l

i+l

(3.16)
2

z ~)
1.

[D.] (z.+l - z.)
1.. 1. 1.

L

i+l

[D
uu

]

L

i+l

and where the sununation is over all of the layers, and zi+l and zi

are the distances from the"mid-height'of slab to top and bottom of

layer i, respectively.

In Appendix A of Ref. 27 the slab element stiffness matrix

(Eq. 3.14) and submatrices obtained by performing the integration

indicated by Eq. 3.15 a're given. It should be noted that prior to

presentation of the results in Appendix A of Ref. 27 all of the

matrix operations performed in Eq. 3.15 were completed .by the

computer, whereas now the slab element stiffness matrix can be

calculated by direct substitution alone.

3'.4 The Beam Element

Extensive coverage of the theoretical development of the

elastic composite beam finite element is presented in Ref. 64, and

a similarly detailed development of the inelastic layered composite
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beam mode~ is presented in Ref. 27. The key features of those

developments will now be presented... For a more detailed presenta-

tion of the material the' reader should refer to the above mentioned

references.

The typical arrangement of the beam and slab node points

is depicted in Fig. 2, where the slab and beam node point deforme-

tions and sign conventions are given in Fig. 17. The vertical dis-

placement, W, for the'beam and slab finite element are assumed to

be identical. The' layered beam finite element has one node point

at each end of the' element, with each node point having two degrees

of freedom: the displacement in the' x-axis direction, UB; and the

rotation of the'beam about the' y-axis, QB. A separate rotation

field is required for the beam because the rotation of the beam is

not equal to the' rotation of the slab node. This is due to the

additional change in rotation caused by the shearing strain, YB-

The above displacements, UB and 9B, are described by separate

three-term polynomials. The related slab displacements

, 'dw
W, QA = dx' and UA (Fig. 17),

are obtained from the polynomials presented in Section 3.3 with y

. held constant (Ref. 27).

Enforcing compatibility between the'node point displace~

ments and the displacement fields, leads to the generation of the

[el] matrix, which relates ten displacement terms, (Fig. 17), to
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thirteen coefficient terms (Ref. 27):

(3.17)

It should be' noted that Eq". 3.6 cannot be' used to solve for the

constant coefficients, {~}, because of the'three additional coef-

ficients. However', by' considering the equilibrium of the axial

forces, the interface shear flow, s, between the beam and slab

(Fig. 18), and by then enforcing compatibility between the vertical

displacement fields and the' rotation fields, (Eq. 3.18), three

additional equations relating the constant coefficients are obtained,

(Eq. 3.19)

'dw .
o = dx + QB + YB

(3.19) .

Eqs. 3.17 and 3.19 can then be' combined to form Eq. 3.20:

which can in turn be solved according to Eq. 3.6:

=

Cl

C2

{c;} (3.20)

{a}
\.

where

{a} J
(3.21)

[CCl = coefficient displacement matrix consisting of the

first ten columns of [C]-l (Ref. 27,64).
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The [eC] matrix can be further partitioned to handle the displace~

ment fields separately:

[ee] = rCA CB I CWo I CD]T

where [CAl, [CB], [CW], and [Cn] are the coefficient~displacement

matrices for the"U
A

, U
B

, W, and QB fields respectively. From the

above coefficient-displacement matrices' the beam finite element

stiffness matrices can be derived.

This is done by' first performing the required operations

on the displacement fields as indicated' by [r] in Eq. 3.8a and sub-

stituting the" coefficient-displacement matrices as in 3.8b to give

the' following strain-disp'lacement matrices":

axial strain in beam;

dUB .dQB

£xB = dx - z dx

leads to

shearing strain in the beam;

dw
= dx - 9B

becomes

-57-
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slip at interface of beam and slab;

becomes

(3.25a)

(3.25b)

Then with the above expressions for the strain-displacement matrices,

and the appropriate elasticity' relations (Chapter 2) the component

stiffness matrices, via'Eq. 3.3, become:

where

[k ] [B]d dx
BC

[~]b = beam stiffness due to flexure

[EB] = beam elasticity matrix (flexure)

[k
B

] = beam stiffness due to shear
s

(3.26a)

(3.26b)

(3.26c)

[GB] = beam elasticity matrix (shear)

[k]d = beam stiffness due to slip

[k ] = the stiffness of the uniform connection usedse

to mathematically describe the shear connectors.
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It should be noted that explicit value for k have not
se

as yet been directly related to the number of shear connectors or

their arrangement, but that an upper bound approximation for the

values of k needed to insure composite action can be given by
se

(Ref. 28 and Section 5.11)~

(k
sc

)
max.

(3.27)

where

EAA = axial rigidity of slab

E~ = axial rigidity of beam

Z3B = distance between midheight of slab and

centroid of beam

~I ZBBI
e =-----

EA.A + EAB

L = beam element length.

The beam finite element, like the slab finite element, is

subdivided into a series of layers as shown in Fig. 3, with each

layer having its own [E,] and [G,l elasticity terms. In order to
J J

form the element stiffness matrices of Eqs.' 3.26a, b, c, the £01-

lowing four terms must be defined by summation of all of the

individual layer stiffnesses:
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n

EA = ~ E. A.
B J J

j.=l

n

ESB = ~ E. A. z.
J J J

j=l

n

EIB ~ E. (I. + A.
2

= z. )
J J J J

j=l

n

GAsB = ~ G. A
J sB.

J
j=l

(3.28b)

(3.28c)

(3.28d)

where

E ., G. = the tangent modulus and corresponding
J J

shearing modulus for .,beam layer j

A., A B ' I.. = the area, shear area, and moment of
J S j J

inertia for layer j

z. = the distance from beam reference plane to
J

the layer j centroid.

Once the terms of Eq. 3.28 are determined the beam finite element

stiffness matrices of Eq. 3.26 can be defined explicitly as shown

in detail in Appendix B of Ref. 27. In addition, it should be

noted that the'layer elasticity' terms, E. and G., are dependent
J J



upon the stress level, and vice versa. Thus, as was the case with

the slab elements an iterative process is required to accurately

determine the layer stiffness corresponding to a given load level.

305 Concrete Failure and'Unloading

As was noted in Section' 2.3 when a concrete layer has

cracked or crushed, the layer is incapable of sustaining the stress

that caused the failure. Thus, the layer ·stress perpendicular to

crack must be. reduced to zero, while at the same time redistri

buting the stress to uncracked or uncrushed layers. In order to

maintain equilibrium, a statically equivalent fictitious force

vector must be applied to the structure to redistribute the stress

loss due to the failure. In Ref. 54 the equations needed for

computing the required fict'itious force vector are pres.ented in

detail. The reader need only to be aware of the necessity of, and

not the specifics of" this fic.titious force vector "to understand

its contribution to the solution process.

3.6 Buckling Failure

As 'was noted in Sections 2 .. 4 and 2.5 when compression flanges

buckle or web plate panels reach their ultimate capacity in shear,

the flange and/or web of the beam or girder cannot sustain any ad

ditional force. Unlike the concrete failure where-unloading is re

quired, the loss of stiffness can be effectively modelled by as

s,igning the flange or web an "artifical1y low· stiffness of
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1/100000 times its original stiffness (see detailed discussion

Sec. 2.4 and 2.5). Since the failed flange and/or web has little

stiffness, any additional force is automatically redistributed to

neighboring elements. Experimental correlations in Chapter 4 verify

the reliability of this approximation for post-buckling behavior.

3.7' Solution'Scheme

The developed solution scheme solves the overload problem

in a logical sequence of operations, while including the material

and stability relations presented in the preceding sections of

Chapter 2 and 3. In addition, Eq. 3.2 is solved for various load

levels while providing node point deformations, element layer

stresses, layer-failures, and buckling failures at each load level.

This solution process consists of four main phases:

1. Problem Definition

a. Bridge Description

b. Bridge Loading

2. Dead Load Solutions

3. Scaling Procedure

4. Overload Solution Procedure

These phases have been incorporated into a computer program, BOVAS

(Bridge Overload Analysis - Steel) (Ref. 76). A simplified flow

chart of the relationship between the above phases is shown in

Fig. 19, with detailed descriptions of these phases being presented

in the following sections.
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3.7.1 Problem Definition

To define the problem, essentially two operations are

required: (1) the bridge description and (2) the bridge loadings.

In order to fully describe the superstructure the following informa~

tion must be'provided: the'bridge superstructure geometry and

finite element discretization in terms of elements and layers; the

type and location of slab concrete and reinforcement, and beam steel;

the material property' parameters needed to fully define the complete

stress-strain relationships for each of the varied materials; the

location of any web plate' panels,; and the'boundary or support

conditions needed for the' analysis, employing lines of symmetry

where appropriate. With this information all the' initial stiffness

properties and node point constraints, i.e. boundary conditions, are

determined. However, to fully establish the set of equilibrium

equations given by Eq. 3.2, the force vector, i.e. the loads, are

still required.

The bridge loadings'are composed of t~ree parts; the dead

loads acting on the beams, i.e. the dead weight of concrete and

steel; the dead loads acting on the composite structure, i.e.

weight of curbs, parapets, and future wearing surface; and the live

load or overload vehicle weights and. their position. Once this

information is provided the solution process can begin.

3.7.2 Dead 'Load Solution

Since the· analytical technique employed considers material

nonlinearities, which are stress dependent, an accurate assessment
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of the stress state prior to the application of the overloads is

required. It should be noted that due to the expected nonlinear

behavior of the structure, the principle of superposition cannot

be employed. Therefore, the' superstructure must be analyzed to

obtain the following stresses prior to the application of the

overload: the stresses in the beams due to the dead weight of the

slab and beams; and the'stresses in the'beams and slabs due to the

dead weight' of parapets, curbs, or future wearing surface. The

initial stress state and any material failures or nonlinearities

due to the application of these dead loads will thus be reflected

prior to the' application of the' overloads~

3.7.3 'Scaling Procedure

As long as the' initial solution due to the overloads pro-

duces elastic response, i.e. no nonlinear response, the load is

increased proportionally to the" lowest load level corresponding to

one of the following element stress limitations: 60% of the compres-

sive strength of concrete, 90% of the tensile strength of concrete,

97.5% of the~ield strength' of steel, and 100% of the buckling

stress, whichever is the smallest. Because this technique scales

up the initial load level; only one elastic solution is obtained,

i.e. subsequent solutions will have nonlinear response. Thus, the

number of elastic solutions are kept to a minimum. If, however,

the initial solution causes any material or stability failure, i.e.

nonlinear response, the initial live load is scaled down so that

a linear solution can be' obtained". Then the" scaled down" load is
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incremented until nonlinear response" occurs. Once nonlinear

response begins, i.e. cracking, yielding, or buckling begins, the

overload solution procedure is employed.

3.7.4 Overload Solution"Procedure

The structural response" to an overload vehicle is obtained

by solving the set of equilibrium equations expressed by:

{F} = [K] {<S} (3.1)

Because the response is eventually expected to be nonlinear in

nature, a piecewise linear or incremental approach must be employed.

. .
{F} = [K (a + a)]" {8} (3.29)

.
The force vector," {F}, is considered to be the increment of the node

.
point forces applied" to the" structure, and, {o}, the corresponding

incremental node point displacement vector. The total forces and

displacements are obtained by addition of the various increments •
.

The stiffness matrix [K (cr + d)] reflects the instantaneous stiff-

ness of the bridge superstructure, and depends upon the current

total stress state, cr, and an unknown stress increment, a. Because

the unknown"' stress increment is dependent upon the stiffness and the

stiffness is in turn dependent upon the stress increment, conven-

tiona,l linear elastic solution techniques cannot be employed.

However, using a tangent stiffness approach or piecewise

linearization of the nonlinear phenomena, the overload problem can
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be solved. In such an approach, the system of equations expressed

by 3.29 are assumed to be linear in a given load increment. Then

by computing the tangent to the' stress-strain curve for each layer,

based upon the current stress state, the layer stiffnesses, element

stiffness, and ultimately the· global stiffness matrix can be cal

culated. Equation 3.29 is then solved for the incremental node

point displacements, from which the'incremental element strains

are calculated. From these element strains the incremental layer

strains are calculated. "Then by employing the" material stress

strain relationships the corresponding layer stress values are

obtained. These incremental stress values are added to the total

stress state which existed' prior to application of the load incre

ment, thus arriving at a new' current stress state. The new current

stress state is in turn used to recompute the stiffness matrices,

and thus, to resolve Eq. 3.29 for the' incremental node point dis

placements. This process is repeated, i.e. iterations take place,

-until the solution for the' increment converges. Should a layer

fail during the applicati~n of the load increment, the load incre

ment is scaled down so that the layer stress just barely causes

failure. Thus, in this method which is called the uincremental

iterative" method, the stiffness matrices are continually, updated

within each load increment or step. As an approximation to the

"incremental-iterative" method it is possible to update the stiff

ness matrix only at the start of the load increment, i.e.

"incremental" method; however, in such a solution scheme, where
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no updating of the stiffness matrix takes place within the load

increment, error is introduced in the first increment and contin

ually compounded in subsequent increments. For this reason, the

"incremental" method has not beeil used in the present research. An

explicit description of the "incremental" method as used in the

analysis of concrete bridges is presented in Ref. 54. The

"incremental iterative" technique as used in the overload analysis

of steel 'bridges appears in the flow chart of Fig. 20 with the

detail descriptions of the' steps appearing below:

1. Formulate the element stiffness matrices

based on current total stress levels.

2. Stack the element stiffness matrices to

form the global stiffness matrix.

3. Solve for the incremental node point

displacement using the global stiffness

matrix and incremental force vector.

Compute the incremental strains and

then stresses.

4. If the -incremental displacements have

converged to the specified tolerance, 20%,

go to Step 7; otherwise continue.

5. If the maximum number of iterations, 3,

within a load increment has been reached,

to to Step 7; otherwise continue.
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6. If·the stress state exceeds the upper

tolerance specified'which would cause

yielding, cracking, crushing, strain

hardening, or buckling, then scale

down'the applied force increment such

that a state'of incipient failure exists

and go back to Step' 1.

7. Unload the excess concrete layer

stresses and compute the corresponding

fictitious force vector for unloading,

if applicable.

8. If the current total stress level, or

total strain has exceeded the lower

tolerance spec'ified which would cause

yielding (d ~ 0.975 cr ), cracking
y . ,

(0 ~ 0.9 ft)' crushing (d > 0.9 f ),
- c

strain hardening (c
t

' ~ 1.0 Est)' or

buckling (0 ~ 1.0 Ocr)' then set the

codes to indicate which layers, flanges,

web panels have failed.

9. Compute the total stress, strain, dis-

placement, and force vectors by adding

together the' old totals and the new

increments.
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10. Check the live load stress range of

various specified details to see if

allowable fatigue stress range values

have been exceeded~ and if so, note this

fact. (Only applicable when details

are specified.)

11., Apply new' force increment and go to Step Ie

It should be noted that the' initial solution of each load cycle is

based upon zero stress 'and displacement increment values, thus, the

first iteration of each step is based upon the' stiffness matrix of

the previous load cycle.

The'overload analysis process terminates when one of the

specified termination checks is exceeded. The termination checks

are defined in terms of allowable values of: deflections, live

loads, stresses, strains, number' of failed layers, or crack widths.

Thus, an efficient solution procedure is developed to meet the

requirements of the analyst.
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4. COMPARISONS ;OF ANALYTICAL-:"AND 'EXPERIMENTAL "RESULTS

4.1 Introduction

This chapter contains comparisons of experimental and

analytical results. The" investigations involve: simple span and

continuous beam-slab highway bridge superstructures; continuous

composite beam structures; and transversely stiffened plate girder

structures. In addition, a simulated overload analysis of a four~

span continuous plate girder-slab bridge superstructure is pre-

sented as an example of the' implementation of the" analytical

technique. The' above comparisons are made so as to provide a basis

for the verification of the reported mathematical model. The exper-

imental studies are obtained from the" available literature and

were not conducted as part of this investigation.

The analytical studies were made by'employing the reported

method. First, a total of four concrete slab and steel beam

structures, which had been previously subjected to overload testing

were analyzed. Two of the test structures were full size bridge

superstructures, while the remaining two were scaled structural

models. The representative results of the full size bridge super-

structure comparisons are presented herein. A detailed description

of all four tests and the comparative results can be found in Ref.

27.
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It should be noted that because the above inves~igations

occurred during phase 1 of the" research (Section 1.3), the stability

considerations were not as "yet a part of the analysis scheme. Thus,

if buckling of a component member had occurred the method would not

have predicted any buckling. However, due to the proportions of

the slab and beams, buckling did not occur in any of the tests with

the exception of the'University of Tennessee' test. In that test,

buckling took place only after' the formation of a plastic hinge and

at a load level of approximately 97% of the ultimate load. Thus,

there is no loss of accuracy in three of the analytical results and

negligible loss of accuracy in the other analytical prediction by

not having included buckling considerations.

The remaining experimental tests were selected because

buckling was a major mode of failure. Thus, the reliability of

the analytical method in predicting the 'occurrence of buckling and

any post-buckling behavior could be verified. A' comparison of the

,analytical and experimental results of two composite beam tests

and seven plate girder tests was presented in detail in Ref. 28.

Since similar results were obtained in all cases only one of the

composite beam tests and three of the plate girder tests will be

presented herein.

Also, as an example of the implementation of the analyt

ical method, an analysis is performed on a typical continuous

plate, girder bridge,- which is taken from the' Federal Highway

Administration's standard drawings (Ref". 67). While there are no
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experimental res~lts which can be used for comparison with the

analytical predictions, the analysis will show the applicability

of the method and the expected types of nonlinear behavior and

distress that should occur in a typical continuous plate girder

bridge. While this particular analysis does not .verify the

validity of the method, the proven re'liability of the technique

as demonstrated in the other' experimental and analytical compar-

isons, indicates that the results of this plate girder bridge

analysis should. also be reliable.

4.2 Beam...;.Slab· Bridge: Superstructures' .

Comparisons have been made between experimental results

and analytical results of four beam~slab highway bridge super-

structures'which were subjected' to overloads (Ref. 27). The com-

parisons, which are listed below along with the reference in which

the experimental 'results were 'p'resented', werecenducted to verify

the validity of the developed analytical. model. It should be noted

that the analytical model does. ·not consider, any response due to

diaphragms.

No.1: A simply supported. right bridge with a

span length of 15.24 m (50') and a width of 4.57 m

(15') having three W18x60 steel beams with partial

length coverplates (Bridge 3B, Refs. 33 and 34).

No.2: A four-span continuous right bridge with

span lengths of 21.34 m, 27.43 m, 27.43 ID, 21.34 m (70',

90', 90'~ 70') and a width of 10.52 m (34'-3") and having
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four W36x170 steel beams with W36x160 beams with

coverplates over interior supports (Bridge 1, Test

1300, Refs. 14 and 21).

No.3: A two-span continuous right bridge model

wi'th two span lengths of 2. 74 m (9') and a width of

1.6 m (5'-3") with three S6x12.5 steel beams' and

partial length coverplates. ~Two-span model of Refs o

12, 13, 25 and 32).

No.4: A three--span continuous right bridge model

with three span lengths of le83 m (6') and a width of

1.6 m (5'-3") with three S5xlO steel beams and partial

length coverplates. (Refs. 12, 13, 25, and 32).

Only examples No. 1 and No. 2 of the above list will be presented

herein, and they will be' referred to as ftBridge 3B - AASHTO Bridge

Test" and ftTest 1 - University of Tennessee", respectively.

4.2.1 E~ample No.1 -·Bridge:3B ~'AASHTO'Bridge'Test

This bridge was constructed as part of the AASHTO Road

Test conducted in the early 1960's (Refs. 33 and 34). The testing

consisted of three phases: (1) a regular test traffic program of

500,000 trips, (2) dynamic load tests, and (3) increasing load

tests, i.e. overload tests. Bridge 3B was designed as a simply

supported composite slab and steel girder bridge with a span

length of 15.24 m (50') center-to-center of bearing. The
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deck slab for the bridge had an average measured dep£h of 164 rom

(6.45") and was 4.57 m (15') wide. Three W18x60 steel beams were

placed 1.52 m (5') apart with 11.1 mm x 152 mm (7/16" x 6") cover

plates extending over 5.64 m (18'-611
) of the middle of the span.

Figures 21 and 22 show the elevational and cross-sectional views

of Bridge 3B.

The" loads were applied- to the superstructure by moving

overload vehicles. For the testing of Bridge 3B three different

overload vehicles were "used .(vehicles 97, 98 and 99 as shown in

Fig. 23). The'loading procedure consisted of placing weights on

the overload vehicle which would then travel" across the' bridge,

usually thirty times'. 'During the' loading process the midspan

deflections of each beam were monitored and recorded. The load was

then increased and another' set of runs made. The procedure was

continued until the bridge superstructure' collapsed onto the

safety crib below the bridge superstructure.

Because the loads were not applied in a static manner but

by moving vehicles, the moment envelope produced by the passage

of the overload vehicle is of interest. Since the finite element

program requires a static loading pattern which will then be

incremented, an equivalent static loading pattern which would

correspond to a realistic simulation is required. In addition,

because three different overload vehicles were used, three

different moment envelopes must be simulated by one constant loading
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pattern. Based upon previous experience and numerical computations,

the moment envelope could be best simulated by a line load over

the beams (Ref. 55).

Figure 24 shows the' superstructure discretized into a

series of finite elements. The" node points t element number~ng,

and element dimensions are indicated' in the- figure. Since the'

structure was assumed' to be symmetric in geometry and loading,

only one-quarter of the' structure need be analyzed. A total of

eighteen slab elements and twelve beam elements were used. It

should be noted that because "a line of symmetry lies along the

axis of the interior beam, only one-half of the interior beam

cross-section is included in the'model·. The' line load was simulated

by a, series of concentrated loads indicated by the cross-hatched

squares.

The layered slab and beam models are shoWn. in Fig. 25.

A total of six layers of concrete and four layers of steel rein

forcement were used in the' slab finite element. The direction of

action of the reinforc'ement is indicated by the cross-hatched area

and ,is given along with the thickness, and bar size/spacing in

Table lA. The beam finite element consists of a total of eleven

, layers as indicated. The cross-hatched layer~ which represents the

coverplate, has two sets of material properties. In the region

where no coverplate exists in the' actual structure, the material

stiffnes properties" are set to artifical1y low-values to simulate

the absence of the coverplate. In the area'where there is a
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cQverplate the ~roperties of steel were used. In Table 2 are

presented the material properties of the steel and concrete used

in Bridge 3B, and the corresponding material properties used in the

finite element simulation.

At the end of the regular 'test traffic program one of the

three beams of Bridge 3B was discovered to have a fatigue crack at

the end of the coverplate. Even SQ"it was det ermined- that the small

permanent set in the bridge at th'a,t stage was due· to cracking of the

concrete slab and yielding of the steel; thus" the fatigue crack had

no effect on the stif£nes~ of the bridge. Prior to the overload test

the fatigue crack was repaired with a butt weld in order, to prevent

premature failure.

The bridge -failed in a flexure mode and in Ref. 34 the

overload behavior of the bridge is presented in terms of a plot

of the maximum static moment at midspan caused by the overload

vehicle versus the average displacement. at midspan of the three

beams. Figure 26 shows the midspan moment displacement history of

the bridge. The analytical results of program BOVAS and the test

results are presented by the (0) and (0) symbols as· noted. As can

be observed from the plots', the results produced by the two methods

agree relatively well, especially at the- beginning, and from a

deflection of 102 mm (4") (1/15.0 deflection to span ratio) to

about 254 m.m (10") (1/60 deflection to span ratio). The main

discrepancies between test results and the calculated response

occur within two regions: -first, from approximately 33 mm to 102 rom
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(1.3" to 4.0") deflection, and secondly, from about 254 mm (lOti)

in deflection to the' termination of the test.

Some difference between test results and computed results

is to be expected because the loads were applied' to the' test

structure by three different: overload vehicles in motion and the

finite element program applied an approximate equivalent static

loading pattern in an incremental fashion. In addition, as with

any finite element model., there exists the' effect of the size of

the discretization used. However, in. the' second r.egion of dis

agreement the' difference in maximum loads is only around seven

percent and thus within acceptable modeling limits. A considerable

improvement can be made in the' modeling scheme. if the effects of

residual stresses in the steel beams are included. Residual stress

measurements in the beams were made and reported on in Ref. 33.

Assuming a parabolic distribution of residual stresses in both the

flanges ~nd the'web, an average value of residual stress in each of

these parts of the' cross-sect'ion is calculated. Using these values

of residual stress as initial stress values in the beams and

repeating the finite element analysis, much better agreement with

test results is obtained, as indicated on Fig. 26.

A qualitative description of the extent of damage at

different load levels, as reported in Ref. 34 is compared to damage

as predicted by program BOVAS in Table 3. In general the damage

record shows that the' method of failure and the'loads at which
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different types-of structural da~age occurred can be predicted by

program BOVAS.

4.2.2 Example "No~ '2'~ "Bridge"l"~"University of "Tennessee

This bridge was one: of four bridges' which were to be

inundated as part of a reservoir in Tennessee (Ref. 14). Bridge 1,

referred to as such by' the experimental researchers, was a four-

span con'tinUQllS composite" structure with span lengths of 21.34 m,

27.43 m, 27.43 in and 21.34 m (70', 90', "90' and 70'). It was

constructed in 1963 and designed for HS-20 loading. The'deck slab

was 178 mm (7") deep and was 10.52 m (34"-6") wide, including the

curb (Fig. 27).. For the' finite" element analysis the' curb portion

of the superstructure was considered to be in the' same plane and

of the same thickness' as the slab.' A total of four W36x170 steel

beams were used to support the deck with 2 e 54 m (8'-4") spacing

center-to-center" between' the'beam. In the negative moment regions

there were W36x160 steel beains with 267 mm x 25.4 mm (10-1/2" by 1")

coverplates. A plan view of the' superstructure and the location

of the applied loads and points where readings were taken are shown

in Fig. 28.

The' loads were applied to the' bridge deck by 890 kN (200 k)

center hole jacks resting on bearing grills. The bearing grills

were constructed from two W14x30 steel beains 1.17 m (46") long and

o. 76 m (301t
). center~to-center', and resting on concrete pads poured

directly on the'bridge deck." The'location of the grills is shown

in Fig. 28 by cross-hatched' areas.
-78-



Due to the' symmetry of the loads only one-half the

structure needs to be' discretized. The'node points, element

numbering, and element dimensions of the discretized structure are

indicated in Fig. 29. The cross~hatched' areas represent the loca

tion of the patch loads that ,must be' app'lied' to the' idealized

structure. A total of 42 slab finite elements and 28 beam elements

were used, resulting in 90' nodes' and 360 degrees of freedom.

The area of main structural interest' was the portion of the bridge

near the midspan of the' loaded span; therefore, the element dis

cretization is finer in this region and much coarser in other spans.

While the coarse discretization of the'unloaded spans will be

sufficient to model accurately the'stiffness of the'bridge, de~·

flections and stresses in these regions will not be reliable because

of the- element size'.

The layered slab and beam finite elements are shown in

Fig. 30. A total of six layers of concrete and four layers of steel

reinforcement were used. The direction of action of the slab rein

forcement is perpe~dicular to the cross-hatched area and is

specified, along with the' thickness and bar size/spacing, in

Table lB. The exact reinforcement and pattern. in the slab were

not specified in Ref. 14, so a reinforcement distribution based

upon the' existing design practices was chosen. The beam finite

element consists of eleven layers as indicated. Because the length

of the' coverplated sections were not specified, the same beam

element, i.e. W36x170, was used throughout.
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In Table 4 the' actual material properties of the steel and

concrete used in Bridge 1 and the' material properties and parameters

assumed for the finite element analysis are listed.

Bridge 1 was described' as being tfstructural1y sound" prior

to the beginning of the experimental tests (Refs. 14 and 21). The

bridge had been in service for approximately five years and,

prior to the" testing, the average daily traffic was 600 vehicles

per day. Before the' ultimate'load test was conducted, other load

tests involving lateral10ad distribution studies and dynamic

response studies to'rol1~ng and vibratory loading were carried

out, Refs. 14 and 21 contain all the" information concerning the

results' of these other tests.

A plot of the load and correspond~ng average deflection at

the midspan of the" loaded' span' is presented in Fig. 31" for both the

analytical (8) and experimental (0) results". In general, the two

curves are in close agreement except in the range 6f about 127 rom

(5") (1/216 deflection to span ratio) to 330 mm (13") (1/83

deflection to span ratio) deflection. However, even in this range

the maximum difference in load is only five percent.

Qualitative bridge damage, as reported in Refs. 14 and

21, is compared to damage as predicted by program BOVAS in Table 5.

As can be seen, considerable difference can be "observed between

the first cracking loads for the' experiment and the analytical

predictions. This noticeable difference is not all that disturbing

if one evaluates all the" facts. First, the" real structure had
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coverplated sections over the' piers, making the composite section in

that area more resistant to' cracking. Second, and most important,

the finite element discretization in the region near the support

piers is extremely coarse. This leads to poor" element stress dis

tribution and, therefore,'damage predictions. As mentioned before,

however, the coarse discretization still produces reliable stiffness

properties (i.e. overall load versus deflection results). Lastly,

the visual observation of crack~ng in the- slab does not give any

quantitative information on the" extent of cracking through the

slab. The reported" cracking thus may be either "surface deep"

or halfway through the" depth of the slab. Looking at other recorded

damage the" observation of first yield in' the" beams differs by only

ten percent, and considering the' qualitative nature of the observa

tion, this is within acceptable limits~

As reported" in Refs. 14 and 21, at a load just above first

yielding the bridge "lifted off" the" abutment nearest the load.

The present version of the finite element model is not capable of

simulating this behavior, but as indicated in Fig. 31 the experi

mental and analytical results are not very different. This is, in

part, due to the fact that when the "Ii,ft off" occurred, the moment

capacity of the composite section over the first pier had reached

much is its capacity. Considering coarseness of the discretization,

the leaving out of the coverplated sections, and the lifting off of

the bridge from the abutment, the'BOVAS results are remarkedly good.
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4.3 Cont,inuous. Composite' Beams

Comparisons were made between the analytical results and

experimental results of two continuous composite beams which were

subjected to overloads (Ref. 28). The' comparisons, which were

conducted to verify the reliability' of the'developed analytical

technique in predicting the" occurrence of torsional buckling of

beam compression flanges, are listed below.' The' experimental

results wete originally pres~nted' in Ref~ 29.

No. 1 - A two~span continuous composite beam with

equal span lengths' of 3.66 m (12') and com

posed of a 102 tmIl (4") deep by 1219 mm

(4~t) wide reinforced' concrete slab

connected compositely to a W12x27 wide

flange beam (Test eB2 - Ref. 29)

No. 2 - A two~span continuous composite beam with

equal span lengths of 3.66 m (12') and

composed of a 102 nnIl-X 1219 mm (4" x 48")

reinforced concrete slab connected

compositely to a WlOx21 wide flange beam

(Test CB3, Ref. 29).

To avoid repetition, as mentioned earlier, only one of

these comparisons, No.1 - Test CB2, will be'presented"herein.
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4.3.1 Example No.3 - Test'CB2·,

The following experimental results' were obtained from one

of three tests conducted on composite" beams which were reported in

a paper by Hamada and Longworth at the University of Alberta (Ref.

29). All of the composite beams in the" tests were loaded incre-

mentally until failure. Test-beam CB2, was composed of a 102 mm

(4") deep by 1219 nnn (48") wide reinforced' concrete slab connected

compositely to a W12x27 steel" beam. As shoWn-in Fig. 32a, the'

composite beam had two" equal spans of 3658 mm (144") and two"

equal loads were placed" at the" midspan of each span. The material

properties for the" concrete,' reinforcing steel and beam steel are

given in Table 6.

Only one-quarter of the' structure is discretized due to

lines of synnnetry in both the" longitudinal and transverse direction.

The resulting finite element mesh (Fig. 3'3) is composed of 14 slab

experiment, no reinforcement was provided in the longitudinal

according to the'method dev~lriped' in Ref~ 27.

layers are defined in Figs. 33a, b, with' the" respective slab

thof 1/1000 of the

direction in the positive moment regions. In the finite element

modelled by assigning an artificial stiffness

analysis the" longitudinal slab reinforcement in this region was

elements, 14 beam elements, and 45 node points. The'slab and beam

normal values to the modulus of elasticity'for the reinforcement.

reinforcement and orientation presented in Table 7. In the actual

In addition, residual stresses for the" steel beam were approximated
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The analytical and experimental load versus deflection

curves for Test CB2 (Fig •. 35) do not exhibit perfect correlation;

however, considerable similarity" in the shapes of the curves does

exist. In particular the slope of the' inelastic plateau appears to

be the same in both the experimental and analytical cases~ indica

ting reasonable agreement exists in the post-elastic region. It

should be noted' that,' in general, much better agreement is obtained

when comparing test results on full-size bridge structures and

analytical results, than when" comparing test results on model-size

structures, as in this case," and analytical results (Ref. 27).

Thus, some of the differences between,' the" load versus deflection

curves may, possibly, be attributed to the size' of the structure,

and thus the accuracy'of the' scale ·model structure in reflecting-real

life structural response. However, even with, the apparent differ-'

ences the maximum error is, only 10%, which is within acceptable

limits.

Much better agreement is obtained when comparing the

analytical and experimental load versus damage records as reported

in Table 8. As can be seen, the' actual flange buckling load of

578.3 kN (130 kips) and the finite element prediction of 589.8 kN

(132.6 kips) indicates an error of only two percent. In ,addition,

the analytical load for crack~ng of the'slab is only off by 12%.

Considering the" difficulty during the'test to accurately assess the

degree of crack~ng occurring in the" slab,' such an error is well

within reason.
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A review of the' ana~yti~al and experimental_ results of Test

CB3 in Ref. 28, shows the' sam~ general trends as shoWn'in the com-

parisen just presented' fer Test CB2. 'Based upon these comparisons

of load versus deflection d~agrams and load versus damage reports,

it is justifiable to conclude that the· developed method can ade~

quately predict the effects' of the'torsional flange buckling phenom-

ena. This conclusion becomes' more evident if one would consider the

results, if flange buckl~ng was excluded from the analysis scheme,

i.e. flange buckling ignored~

4.4 Trartsversely Stiffened 'Urtsytmnettical'Plate Girder's

A total of eight ultimate load tests were conducted at

Lehigh University by Dimitri and Ostapenko (Ref. 20) on three

different 914 mm (36") deep transversely stiffened unsymmetrical

plate girders, UGl, UG2 and UG3.' The· top and bottom flanges in

each case were 203 mm x 16 mm (8" x 5/8") with a 277 mID x 19 mm

(10-1/2" x 3/4") coverplate welded to the bottom flange of all the

girders. The web was 914 mm x 3 imn (36" x 1/8") in the center

portion of each girder and 914 nun x 5 rnm (36" x 3/16") elsewhere.

The' loading patterns employed were chosen to evaluate the ultimate

str~ngth of the girders in pure bending, pure shear, and combined

shear and bending (Fig. 36). Since similar results are obtained in

each of the'different load categories, i.e. shear, bending, or

combined, only the'results pertain~ng to girder UG2 (Fig. 37) will

be presented, as they are representive of all the tests~ A detailed
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comparison of all of the tests and analytical results can be found

in Ref. 28.

4.4.1 Example '4a, b, ·c "~'Tests'"'UG2~1;'UG2~2 "and 'UG2.3

Plate girder UG2 and the finite element discretization

are shown in Fig. 37. It should be" noted that the finite element

computer program, BOVAS, requites" the existence of a slab, and since

the actual plate girder has no slab, the" absence of the slab is

modelled by a fictitious slab of 610 mm x 25 'mm (24" x 1") with,

stiffness properties" equal to l!lOOOOth of the normal values or

about 3.45 MFa (0.5 ksi). With such stiffness values the slab

elements have no noticeable influence on any results. The discre

tization, therefore, contains 14 fictitious slab elements, 14 beam

elements, and 45 node points.. Due to symmetry in the transverse

direction only one-half of the" plate girder is discretized with a

total of 11 beam layers (Fig". 38). The" load placement for girder

tests UG2.1, UG2.2 and UG2.3 and the modes of failure expected are

given in Figs. 36c, d, e, with the material properties given in

Table 9.

The comparison of analytical and experimental load versus

deformation curves for test UG2.1 (shear) is presented in Fig. 39.

In the analytical model the critical web plate shear panels were

assumed to be the' two" web plate panels to either side of the

interior load and one web plate panel' to the- right of right hand

support. As can be seen from the" plot, there exists close agreement

between'the analytical and experimental results. In addition, as
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reported in Table 10 the maximum load obtained for the test was

80.1 kN (17.8 kips) while the computer prediction was 81.0 kN

(18.0 kips) or only 1% er~or. Similarly, the actual web buckling

load of 11.7 kN (206 kips) compares favorably with the BOVAS

prediction of 13.5 kN (3.0 kips). While the difference in these

two buckling values would appear to be large, a comparison of

buckling loads is somewhat questionable due to the qualitative

nature of the determination of the actual web buckling load. In

addition, it should be noted that while each of the different

pl~te girder tension field models developed, for predicting the

plate girder ultimate strength, predicts different loads for the

. initiation of web buckling, all of the ultimate load predictions,

ieee maximum load predictions,- are approximately equal. Thus,

while there is great significance attributed to the fact that the

plate girder web panel buckles, the actual buckling load is of

less significance. This fact is clearly evident in Fig. 39, where

the effects of web panel buckling are ignored for the analytical

curve labeled, BOVAS no shear panels (i.e. no web plate panels

specified in BOVAS). In this case, the first indication of

nonlinear behavior does not occur until well outside the graph at

a load of 448.7 kN (100.9 kips) and a deflection of 12.8 rom (0.5").

Thus, considerable error can occur by not including the effects

of web plate panel buckling.
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In Fig". 40 the' comparison of analytical and experimental

load versus deformation curves' for test UG2.2 (combined) is pre

sented. In this case, the' buckled panel of test UG2.l was repaired

with a diagonal brace,; however, the effect of the repair on the'

future load versus deflection behavior of the girder is not known.

Ideally, the'repair would be"just sufficient to make the panel

behave as if it has never buckled; however, the'repaired panel

probably would respond s'omewhat stiffer than the' ideal. To model

these two possibilities, two'analytical studies were conducted:

in one case, only the' two'web plate shear panels to either side of

the interior load were cons,idered critical, i.e. the panel stiffer

than ideal; and in the second, case, the' repaired panel' was also

considered critical, i.e. the panel treated as if nothing had

previously occurred. As can be seen in Fig. 40, the two models

mentioned above quite effectively bracket the actual test results

as would be expected. From Table 10 the maximum loads for the

test of 90.9 kN (20.2 kips) and for the ideal case, 3 panels, of

91.4 kN (20.3 kips) indicate an error of only 0.6%. In this case,

no test value is given for the web buckling load. Again, when the

effects of web plate panel buckling are ignored, i.e. the case of

no shear panels, considerable error in estimating the ultimate

strength of the plate girder ·can occur. While in this case the

magnitude of the error is less than in the pure shear condition,

UG2.1, the 'magnitude is still quite large.
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~n test UG2.3 "(betiding) failure occurred due to lateral

buckling of the compression f1~nge.· As can be seen" in Fig. 41 some

discrepancies exist between' the" experimental and analytical load

deflection results. Some of this difference may be attributed to

the repairs on the'buckled'panels. In spite of these differences~

however, the comparisons are"still reasonably good. It should be

noted that two post-buckling;.cutves are given for the" analytical

results. Referring to'Se~t1on 2.5.3'one finds that after reaching

the critical flange buckl~ng stress~ the post-buckling loss of

stiffness was modeled in two' different ways: first, assuming that

only the flange loses stiffness' (labeled - BOVAS - in Fig. 41); and

second, assuming that both the' flange and the'web plate panel lose

stiffness (labeled - BOVAS - complete' failure - in Fig. 41).

Considerable improvement in the post-buckling behavior can be noted

in Fig. 41 by employing the· complete failure assumption; therefore,

in all future cases this mode of failure, due to lateral,buckling~

will be used. The maximum load obtained from Table 10 for the

test of 286.7 kN (63.7 kips) compares reasonably well with the

predicted value of 315.0 kN (70.8 kips) i.e. 10% error. While the

maximum loads are not as close as in the previous examples, they

are within acceptable limits, especially considering the behavior

when lateral buckling is ignored, i.e. no shear panels.

The comparisons of analytical and experimental results on

plate girders indicate: that the analytical model reliably predicts

the occurrence of web buckling, lateral flange buckling, and ultimate
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load capacity of the girder; that while the analytical model seems

to produce a slightly stiffer than normal behavior in the case of

bending or combined bendi~g and shear, the overall behavior still

reflects the actual girder'behavior; and that failure to include

these effects can lead to considerable error. Thus, the· conclusion

can be drawn that BOVAS can reliably predict the' response of trans-

versely stiffened plate girders to loads, both'in the' elastic and

inelastic ~egions.

4.5 Analysis of a Four-Span Continuous 'Highway Bridge

In Chapter 2, the occurrence of and the' effects· of flange

and web buckling on individual beams and girders was presented.

The experimental comparisons of Sections 4.3 and 4.4, however,

involved individual beams and girders and not actual steel multi-

girder highway bridge superstructures. Thus, in order to fully

investigate the applicability of the analytical method to an actual

plate girder bridge superstructure, an analysis was conducted on a

typical four-span continuous highway bridge. While there are no

experimental results which can be used for comparison, the analysis

will indicate the expected types of nonlinear behavior and distress

when such a bridge is subjected to overload.

~9b-



4.5.1 FHWA Four-Span Continuous Bridge Superstructure

The bridge to be analyzed comes from the Federal Highway

Administration's plans on Typical Continuous Bridges by Load Factor

Design (Ref. 67). This bridge superstructure has spans of 30.5 m,

(42.7 m, 42.7 m, and 30.5 m (100 ft; 140 ft; 140 ft; and 100 ft)

with a 13.4 m (44 ft) roadway width (Figs. 42', 43). The concrete

deck averages 229 mm (9"') thick and the welded plate girders have

web plates 1676 mm x 10 mm. (66" x 3/8"). The variation in the

girder flange plates is shown in Fig. 44. The girders are braced

laterally at the supports by channel sections and at approximately

every 7.62 m (25 ft) with ~teel cross-bracing. The material prop

erties of the concrete, reinforcing steel, and girder steel used

in the analysis are outlined in Table 11. The girder web is

composed of A36 steel while the girder flanges are composed of

either A36 or A441 steel as noted in Fig. 44.

The layered finite element models (Figs. 45, 46) consist of

six concrete and four reinforcing layers for the slab, and a total

of fifteen steel layers for the girder. It should be noted that,

while the transverse slab reinforcement remains constant through

out the slab, the longitudinal reinforcement is increased in the

negative moment regi'ons (Table 13). Also, due to the variation

in flange thickness along the length of the beam (Fig •. 44), certain

cross-sections, will have layers where theoretically no steel can

exist. This fact is-modelled by specifying a fictitious material
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with effectively no stiffness (Tables 11, 12) in the appropriate

areas.

Based upon previous results (Ref. 27), which indicate

that the maximum moment envelope of a bridge superstructure can be

obtained by a uniform distributed load pattern, a uniformly distri-

buted load pattern will also' be" applied in this case. While such a

loading condition will not necessarily give the worst possible

load~ng condition, the· results should effectively exhibit buckling,

post-buckling, and any',other nonlinear behavior, if any, of

conventional bridges.'

The uniformly distributed. load will be applied' over the

entire slab surface between' girders 1 and 3 '(Fig. 43)" for the entire

l~ngth of the' superstructure. Due to the· symmetry about the center

support, Pier 3, only one~half the" structure in the'longitudinal

direction will be discretized. A plan view of the' finite element

discretization and loading pattern (cross-hatched area) is pre-

seuted in Fig. 47a, b, where there are a total of 252 nodes, 120

slab elements, and 100 beam elements. A total of six transversely

stiffened web plate panels per girder are specified in the analysis.

The first four are over the first interior support, Pier 2, with the

two to the left of the support having aspect ratios, a ,'of 0.758,
P

~d those to the' right with aspect ratios of 0.707. The last two

web plate panels are at the· center support and h~e aspect ratios

of 0.707. Based upon the" lateral brac~ng, the' unbraced lengths of
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the web plate panel compression flanges are assumed to be equal

to: 7.62 m (300"), 7.11 m (280"), and 7.11 m (280"), respectively.

It should also be noted' that in this analysis, the fatigue live load

stress range feature of program BOVAS is employed. This program

feature calculates the' live load stress range of specified girder

details and compares these values to allowable fatigue stress range

values. If the actual stress'range at some load level exceeds the

allowable value, a warn~ng not~ng that fact is printed. The com

plete details of the" fa~igue stress range check, for this analysis

is presented in Section 5.1.2.

The load versus deflection diagram, Fig. 48, indicates

the relationship between' the'maximum static moment at Pier 2 and the

maximum deflection of girder' 2 at midspan of the second span. On

the diagram some key points of failure are noted with capital

letters. These capital letters correspond to the'maximum moment

load levels as reported in the moment versus damage record of Table

12. Perhaps the most significant feature is point A which corres

ponds to approximately the'maximum static moment caused by two

HS-20 lane loadings and corresponding point loads, as specified

by AASHTO specifications. This moment. value was obtained by com-

.. pleting an additi'onal BOVAS analysis of only a few load cycles

where the' additional'concentrated loads were placed at midspan.

The preliminary results of that abreviated analysis indicate that

the" web plate panel over-pier 2 will buckle before reaching load

level A; however, the first'significant failure for the' present
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analysis, i.e. no concentrated' loads,'does not occur until load

level B is reached where the" first' web plate'panel over pier 2

buckles.

It should be" noted from the" load versus deflection plot

that the overall structural response is still linear up to load

level C, 6055 kN~m (4466 kip-ft), and that the first large deviation

from linear behavior does" not ,start until load level E, 2478 kN-m

(6352 kip-ft) has been' reached~ This is particularly important be

cause many of the web plate'panels have buckled by the time this

load level is reached', 'but due to the highly redundant nature of

the slab-girder structure there is minimum, effect on the overall

behavior when local failure occurs. Similarly, after lateral

buckling of the' compression flange at 12928 kN~m (9535 kip-ft),

point H, the overall effects of the buckling are still minimal.

And finally, the load level which just causes yielding

of the girder steel to begin, does not occur until reaching 19287

kN-m (14225 kip-ft), point J. This corresponds to about 3.4 times

the load level at which the first web buckling occurs. Thus, this

overload analysis of a continuous multi-girder highway bridge"

superstructure using program BOVAS, clearly shows its usefulness in

being able to predict the occurrence of buckling and post-buckling

behavior. The analysis also shows that failure to include the

effects of buckling would cause considerable error in the actual

results, and that an assessment of the· superstructure's resistance

to'overload is possible through the'use of program BOVAS.
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To summarize the' results 'of the analysis on the four-span

continuous bridge, the· following observations can be made:

1. The load versus deflection response is linear up

to a load level'of 6055 kN-m (4466 kip-ft).

2. Cracking of the '" slab over the interiar support is

the first'nonlinear form of behavior at 5543 kN-m

(4088 kip-ft) '.

3. Web plate', panels over interior support do not buckle

until load level' '6055 kN-m (4466 kip-ft) is reached.

4. By assum~ng'a total of 12 HS-40 trucks lined up

bumper to'bumper'in each lane, the total load on

the bridge, would be' 7687 kN (1728 kips). Since the

total load on the' bridge at the first web buckling

loads is 7117 kN' (1600 kips» it is possible for

web buckling to occur in an actual bridge super

structure.

5. Even after considerable web buckling has occurred,

the redundancy of the' superstructure prevents large

changes in the deflection characteristics of the

superstructure.

6. A realistic picture of the load versus damage

record of the' superstructure is available for

determining possible serviceability limits of the

superstructure. '
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5. FURTHER CONSIDERATIONS

5.1 Introduction

In Section 1.5 the major structural response character-

istics of steel highway bridges were outlined. In Chapter 2 and

3 the manner in which these response characteristics were included

into the analytical 'model was presented. In addition, the effects

of these characteristics on the overall structural response was

also studied in Chapter 4 on experimental comparisons. However,

two important features of the analytical model, the shear connector

stiffness and fatigue, need to be discussed in more detail to

fully understand their importance to the overall structural response

of beam-slab highway bridges with steel beams. In addition, a study

of the effects of torsion of the beams is necessary to fully

justify its exclusion from the analytical model at this time.

Thus, in this chapter a discussion of these three topics will be

presented.

5.1.1 Shear Connector Stiffness

The termk in Eq. 3.26e is the shear connector stiffness
Be

appropriately, the finite element model can successfully simulate

per element length (Refs. 27,28,64). By changing the values of ksc

varying degrees of composite action between the slab and beam.

However, at this time no definitive study has been done to
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explicitly define values for k • ~hus, the upperbound valuesBe

used for k in the reported model are those which just produce fullse

composite action (Refs. 27, 28, 64):

(k ) =
BCmax

where

EA = axial rigidity of the slab
A

E~ = axial rigidity of the beam or girder

ZBB = distance from mid-height of slab to

centroid of beam or girder

E~ x ZBB
centroid of composite sectione = =EAA + EAB

with respect to mid-height of slab

d = ZBB

L = length of beam element

As was pointed out in- Ref. 28, Eq. 5.1 was developed for a different

combination of elements than is employed in the present finite

element model; ~hus, the maximum shear connector stiffness equation

(Eq. 5.1) should be reformulated. By adding together the appro

priate terms of the following matrices, [k ]8, [k ~]e, [km~]e,
uu U'P· 'PYJ

[~]b' [kB]s' and [k]d from the Appendices of Ref. 27, and then'

solving for k , the following equation results.
BC
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(k )
Be

2 - 2
- 0.75 J1 L (EIB - EAB ZB )

( li
2

- 0.6 JlL + 0.075 Jl
2
L

3
) GAB}

1
X 2 '

(
. 1. 2 C BA 2 3 2 3 2 )

L + 0.6 J1 L CBACTB + 0.075 J1 L CTB .

(5.2)

Equation 5.2 is given only to show the degree of complexity
,

for calculating (k )
BC

A complete definition of all the terms
max

contained in Eq. 5.2 is, therefore, not necessary. However, a

complete description of all of these terms can be found in Ref. 27.

Employing both Eq. 5.1 and Eq. 5.2 to calculate values for

k , arid then performing an actual analysis indicates that the aver
se

all structural response is approximately 3% stiffer when Eq. 5.2

is used. In addition to this fact, it should be noted that:

1. In previous work reliable results have been

obtained using Eq. 5.1.
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2. In general, finite element models produce

a stiffer structure than the actual

structure, thus~ a reduction in stiffness

(i.e. using Eq. 5.1 instead of Eq. 5.2)

would be beneficial.

3. Using Eq. 5.1 is far less complicated than

using Eq. 5.2.

Based upon the above discussions, Eq. 5.1 is employed in calcu-

lating upperbound values for k in the present model; however,Be

should actual shear connector stiffness values become available

from future research, then these actual values should be employed

instead of Eq. 5.1.

5.1.2 Fatigue

In normal bridge design, the designer accounts for fatigue

by checking the live load stress range of particular bridge details

and comparing these stress range values to allowable stress range

values. The allowable stress range is dependent upon basically

three variables:

1. The' type of detail

2. The expected number of cycles

3. Type of member (i.e. redundant or non-

redundant).
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The actual stre~s range depends basically on the actual live load.

In the reported analysis scheme and thus BOVAS, the live load

stress ranges of user specified details are automatically calculated

and compared to user specified allowable stress ranges at each

load level. If the allowable stress range for any detail is ex

ceeded, a warning is printed.

For example., the fatigue stress range checking capabilities

of program BOVAS were 'implemented' in analysis of the FHWA four-span

continuous bridge analyzed. in Section 4.5. The live load stress

range of a total of 70 layers were to be checked against the allow

able stress range values. The' 70 layers correspond to essentially

two -types of critical details: (1) the groove weld connecting flanges

of differing size when reinforcement is not removed (Stress Category

C), and (2) transverse stiffener to web or flange welds (Stress

Category C*). Assuming a redundant load path structure and over

2,000,000 cycles as the criteria, the' allowable stress ranges become

68.95 MPa (10 ksi) and' 82. 74 MPa. (I2ksi) 'for Categories C and C*,

respectively.

It was not until a load level where a moment of 12445 kN-M

(9179 kip-ft) was reached, that the live load stress range of any

detail exceeded the allowable value. In this case, the longitudinal

stress in the transverse stiffener detail over pier 2, finally

exceeded the extreme life value of 82.74 MPa (12 ksi). Since this

load level is extremely high, it is highly unlikely that the

structure will ever undergo 2,000,000 cycles at this load level.
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In fact, it is doubtful that the structure would experience even a

couple hundred cycles at this load level.

However~ for more severe details such as Category E,

where the extreme life stress range value is 34.47 MPa (5 ksi) ,

the critical load level might be low enough that damage would

be more likely. Thus, while the present global analysis performed

by BOVAS- does not indicate any fatigue problems, this does not mean

that fatigue is not a problem with this structure.

Bridge details, where stress concentrations are present

due to the severity of the" detail, tend to be very susceptible to

fatigue failure. Thus, if a very fine finite element discretization

is made in the vicinity'of an exPected area of stress concentration,

i.e". the details, then' an accurate representation of the local

stress distribution can be obtained~ Based upon such a local str~ss

distribution a more accurate assessment of the possibility of fatigue

failure can be made. The" developed analytical method for per

forming the" overload structural analysis of steel bridge super

structures, BOVAS, does not and cannot be' extended to predict local

high stress gradients, i.e. stress concentrations. However, a

reliable fatigue analysis requires an accurate assessment of the

true local stress gradient of the area in question. The incorpora

tion of these two "methods of analysis into a single analysis scheme

is possible, but is considered to be a highly impractical

proposition.
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Since fatigue is known to be one of the critical issues

in steel bridge superstructures, incorporation of a fatigue check,

regardless of how approximate, was deemed necessary. In the

developed formulation, therefore, stress range checks were per

formed for predefined details. However, the methodology has been

kept sufficiently general to permit the inclusion of other fatigue

checks. Further refinements of the present approach can be ob

tained by using more refined meshes as compared to those reported

in this study, and also by the inclusion of other related checks

as they are developed.

5.1.3 Torsion of the Beams or'Girders

In the finite element model presented in this disserta

tion the steel beams and/or girders, as well as the entire bridge

superstructure, are assumed- to fail in essentially a flexural

mode. The beam element node points are permitted only major axis

bending degrees of freedom: longitudinal displacements, U;

vertical displacements, W; and bending rotations, Q". In its

present form then the model precludes any consideration of twisting

or torsion about the longitudinal axis. Thus, in all the preceding

analyses, the effects of torsion in the beam have been completely

ignored. To include the effects of torsion would:

1. Require a considerable number of parametric studies

to investigate fully the effects of torsion~of the

beams in the elastic and inelastic regions.
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2. Require development of linear and nonlinear finite

elements to· model this behavior.

3. Require considerable more computer solution time,

due to the added degree of freedom.

4. Require extensive alterations in the coding of

the developed computer program, BOVAS.

5. In the end, may not improve the results of the

analysis, because previous studies with concrete

beams have shown negligible effect on the overall

bridge response when torsion is considered

(Ref 0 44)

However, since steel beams are thin-walled open cross-sections they

are more susceptible to the effects of twisting than are concrete

beams. Thus, some form of investigation is needed to assess the

effects of torsion in a conventional steel bridge superstructure

to determine if the assumption of negligible effect is justifiable.

For this purpose, the four-span·continuous composite

welded. steel girder bridge superstructure. presented in Section 4.5

is reanalyzed with eccentric loads. The elevational and typical

cross-sectional views of this structure are presented in Figs. 42

and 43. It should be noted that the girders are laterally braced

at the supports by channel sections and at approximately every

7.62 m (25') with steel truss diaphragms.
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In order to determine whether or not the inclusion of

a torsional degree of freedom for the beams has a significant

effect on overall structural response of this bridge superstructure,

a finite element analysis using SAP IV (Ref. 10) was performed where

the degree of lateral restraint is varied to study the effects of

twisting of the beams. The finite element discretization employed

in these analyses is shoWn in Fig. 49. It should' be noted that due

to symmetry in the longi.tudinal direction only one-half of the

entire structure is discretized. The' finite element model contains

567 nodes, 260 plate elements for the slab,· 130 plate elements for

the girder webs, 260 beam elements for the girder flanges, 135

beam-slab connector el'ements, and three different sets of beam and

truss elements for the lateral bracing. To simulate the actual

support conditions, the vertical displacement of the bottom flange

is prevented at the support locations. However~ due to the symmetry

employed the longitudinal, displacements of the slab, top flange, and

bottom flange at P·ier' 3 are also restrained. To prevent instability,

the bottom flange of the cent~rmost girder is restricted- from

moving in the transverse direction at each support. With this

minimal amount of restriction an accurate assessment of the effects

of the twisting degree of freedom can be made.

The degree of lateral restraint is varied by changing the

frequency of" lateral braci~g along the length of the bridge. If

no lateral bracing is present only the slab and the supports are

providing lateral and torsional restraint and thus, the effects of

-104-



twisting would be the most noticeable. However, since in a real

life structure, lateral bracing is always provided at the supports,

the finite element model for the least amount of lateral restraint

has cross-bracing only at the supports., In the actual structure

the design calls for additional cross-bracing between the girders

at approximately every 7.62 m (25'). In the model this condition

is considered as the basis because it most accurately reflects the

actual structure. If the structure was braced all along the length,

twisting of the beams would not occur at all. It should be noted

that this corresponds to the analytical model presented in this

report. This condition can be simulated effectively by providing

bracing at approximately every 3.05 m (10') in the structure. By

applying the same eccentric load to the above different models,

the effects of the varying degrees of lateral restraint on the

stresses and deflections of the superstructure can be investigated.

For this investigation two'different loading patterns were

applied to the three differently braced structures discussed above

to give a total of six separate analyses. It should be noted that

the loads applied must realistically simulate actual traffic loads,

i.e. only vertical downward loads are applied- to the structure.

In the first loading condition a uniform live load is placed mid

way between girder 1 and girder 2, exterior and interior girders

(Fig. 43), to cause the worst possible torsional type loading

condition due to gravity loads. In the second loading condition

the same live load is split in half with each half applied directly
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over girders 1 and 2. This last loading condition also approximates

the condition of no consideration' of twist because the load is

applied directly over the girders.

In the first three load cases A, B, and C a uniform line

load is placed between the girders. Then the degree of lateral

restraint for each case is: A - at the supports only; B - at the

supports and at every 7.62 m (25');' and C - at the supports and

at every 3.05 m (10'). Likewise, for the last three load cases,

D, E, and F, two equal line loads with one-half the magnitude of

the line load for cases A, B, and C are placed directly over the

exterior and interior beams. Also, the degree of lateral restraint

of cases D, E, and F is the same as A, B, and C, respectively.

Since load case B reflects most accurately the actual structure,

it is used as the basis in the comparisons. In Table 15, the

percent difference between the maximum stress in the critical girder

of load case B, i.e. the basis, and of the other load cases is

presented. Likewise Table 16 presents the percent difference in

maximum deflection between the'basis and the other load cases. As

can be noted in these tables the maximum percent diffe~ence is 5%

for stress and 4% for deflection. More importantly, however, when

comparing the basis to load case C, which most accurately reflects

the results of the analytical method presented in this dissertation

because there is almost complete lateral restraint, the maximum

percent difference is only 1.4%. This suggests that the probable

error introduced into the present analysis technique by ignoring
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the twisting degree of freedom in the elastic range is about 1.4%.

Of course, many more comparisons would be required to completely

confirm that the error is only around 1.5%, but sufficient justi~

fication exists to continue to neglect the twisting degree of

freedom for the hearne
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6. SUMMARY AND CONCLUSIONS

6.1 Summary

In Section 1.4 it was noted that previous research by

Peterson and Kostem led to the development of a finite element model

which could successfully predict the complete overload response of

beam-slab highway bridges, made of prestressed or reinforced concrete

beams and a reinforced concrete slab (Refs. 54 and 55). That finite

element model could not, however, perform a reliable overload analysis

on beam-slab highway bridges made with steel beams (girders) and a

reinforced concrete slab. In the same, section it was also noted that

another finite element model for analyzing steel bridges was developed

by Tumminel1i and Kostem (Ref. 64). This model, while including the

effects of slip between the beam and the slab and the effects of shear

deformation in the beams, was limited to the elastic response of the

structure. By "integrating" the works of Peterson and Kostem', and

also, Tumminel1i and Kostem, and introducing the additional nonlinear

response characteristics mentioned at the' end of this section (6.1),

a new analytical model (presented in this report) was developed for

performing an. accurate overload analysis of steel beam-concrete slab

highway bridges.

This new method of analysis gives a solution for the re

sponse of the structure to overloads in terms of displacements,

stresses, cracking and crushing of concrete, yielding and strain
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hardening of steel, and buckling of flanges and webs. Once service-

ability limits, in terms of damage, stress, or deflection have been

firmly established, then. a check of these limits can be made at

various load levels by employing the response information. The

solution process is applicable up to the complete collapse of the

structure.

In the reported analytical technique the following non-

linearities, which were taken from the previously noted research, are

considered in the analysis:

1. Nonlinear and linear stress-strain behavior of

the slab concrete.

2. Elastic-plastic stress-strain relationships

for the beam (girder) steel and reinforcing

bar steel.

3. Cracking and crushing of slab concrete.

4. Yielding of steel.

In addition to the above phenomena,. the following nonlinear response

characteristics have been included in the analysis for the first

time:

1. Post~plastic stress-strain relationship~ for the

beam (girder) steel.

2. Strain hardening of steel.

3. Buckling of beam compression flanges and plate

girder webs and compression flanges.

4. Post-buckling response of the flanges and webs.
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In the analytical model a piecewise linear solution process

is used, in which solutions are obtained for each load increment up

to the collapse of the structure. The total solution for a particular

load level is obtained by summing, up all the previous solution incre

ments. While two different tangent stiffness solution techniques

were available for the analyses; the incremental-iterative method

or the incremental method; only the incremental-iterative method was

employed in the research 'presented in this dissertation. In this

method the tangent stiffness matrix is continually updated within

each load increment~ thus, providing a more reliable solution than

the incremental process where no updating within the increment occurs.

The, predicted response of two"bridges, two bridge models,

two composite beams, and eight plate girder tests have been compared

with corresponding experimental results (Refs. 27, 28). The two

bridges, one of the composite beams, and three of the plate girder

tests have been presented in this report. In all cases adequate

agreement was. obtained in the comparisons. Experimental and analy

tical load versus deformation curves were' compared for all problems,

as were load versus damage records, where applicable.

The additional considerations of shear connector stiffness,

fatigue, and torsion of the beams have been investigated. While

the shear connector stiffness calculation and fatigue stress range

check are included in the analysis, the effect of torsion of the

beams was determined to still be of minor importance and not

included in the analysis. Besides neglecting the effects of torsion
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in the analysis, the following phenomena are also neglected in the

analysis scheme:

1. Dynamic and impact effects.

2. Shear punching failure of the slab.

3. Minor axis bending of the beams.

6.2 Conclusions"

Based upon the" comparisons' between. the experimental results

and the analytical results, the following observations and con

clusions can be noted:

1. The overload structural response of steel beam

concrete slab highway bridges~ composite beams,

and plate girder structures, in terms of

stresses, deflections, and damages, can be

adequately predicted by the' developed

analytical method.

2. In continuous beam-slab bridge superstructures

the first failure is the cracking of the concrete

slab in the negative moment region.

3. In all the continuous structures analyzed the

negative moment regions of the· structures appeared

to suffer the greatest amount of damage.

4. The effects of cross-bracing on the overall

structure response are negligible.
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5. Bas~d upon the experimental and analytical

results studied so far, it would appear that

web plate panel buckling would be more likely

to occur than that of torsional buckling of

the beam compression flange.

6. The failure to include the effects of web plate

panel buckling in plate girder structures can

lead to considerable error in results.

7. The occurrence, of slip between the slab and the

beam and, thus, the effects of the shear con-

nectar stiffness, k ,appear to be of minimal
BC

importance (i.e. an assumption of full composite

action is very reasonable).

6.3 Suggestiorts.:for Ftiture:Research

The observations and conclusions presented in Section 6.2

are those which were clearly evident in the examples studied as part

of this research. It would be expected that further analytical

results would confirm these conclusions. However, because the

results already obtained come from only a limited number of tests,

the following recommendations are made for future research:

1. Conduct an extensive parametric study on many
,-

different beam-slab bridge superstructures and loading

patterns using program BOVAS. This study would more

firmly establish overload response characteristics.
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2. Conduct further studies on the effects of torsion

in the beams to more fully justify its exclusion

from the analytical model.

3. Investigate the feasibility of including cross

beams in the analytical model so that superstructures

with stringer and floor beam systems can be

analyzed using BOVAS.

4. Investigate the variation in the overall response

of bridge superstructures when 'the shear connector

stiffness is varied from 100% full composite action

to approximately 50% full composite action.

5. Determine, if possible, through experimental data,

field observat-ions and analytical studies made

with BOVAS, appropriate serviceability limits for

frequent and infrequent overloads.

If all of this research is conducted, a more complete

understanding of the overload response characteristics of steel

multi-girder bridge superstructures will be established. Thus,

the bridge engineer should then have an even better capacity for

making an accurate assessment of the resistance of any superstructure

to overloads.

-113-



NOMENCLATURE

A. = layer area
J

ASB = effective shear area of beam

Aw = cross-sectional area of beam web

C,D = curve parameters of concrete stress~strain

relationship

C,R,S = parameters of tension field stress equation

= reduction factor

= tangent modulus and inelastic tangent

= axial rigidity (E x A)

= initial modulus of elastic

= initial modulus of elasticity, steel

= tangent ·modulus beam layer

= peak modulus concrete

= post-buckling -tangent. modulus and shearing

modulus of web plate panel

= initial strain hardening modulus of elasticity

= tangent moduli for principal stress directions

of slab

= tangent moduli for principal stress directions of

slab employed in formulating [D]

G~Gt = shearing modulus and inelastic shearing modulus
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NOMENCLATURE (continued)

= beam layer moment of inertia

= warping constant

= St. Venant's constant

= length of beam element

= half wave length of compression flange buckle

= axial displacement for beam or in-plane

displacement for x-direction of slab

= shear force or volume of finite element

= in-plane displacement for y-direction of slab

= shear in web plate panel

= displacement in z-direction

= distance between midheight of slab and centroid

of beam

= slab element half lengths

= plate girder web plate panel length

= flange half width

= beam web depth or distance between midheight

of slab and centroid of beam

= eccentricity of beam and slab

= uniaxial compressive strength of concrete

= tensile strength of concrete
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"NOMENCLATURE' (continued)

k ,~,k = stiffness coefficients web panel buckling
S -0 C

k ,k. = stiffness of shear connectorBe max

kv,k
t

= stiffness parameters~ torsional flange buckling

~b = unbraced length compression flange

m,n = Ramberg-Osgood curve parameters

s = interface shear flow

t = thickness of flange

x,y,z = loeal cartesian coordinates

x y = nodal point coordinatesn' n

w = thickness of web
,

z = vertical direction web panel-

z. = vertical distances from reference planes
1

~,6b'Yb = curve parameters post-plastic region steel

a = ratio of web panel length~to-depth
p

Y,Y = shear strain and shear strain increment

YB = shear strain in beam

8 = curve parameter tension field equation

E,E = strain and strain increment in principal direction

Est limiting strain plastic region of steel

E t = total strain in steel layer

Q = angle which defined principal stress directions
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NOMENCLATURE (continued)

directions

element rotations

= rotations about x and y axes and slab and beam

= Poisson's ratio and Poisson's ratio in principal

= nondimensional parameters

cr ,eJ = a principal st'ress and stress increment

crb,crbcr = bending buckling stresses web plate panel

abc = combined buckling stress web plate panel

crcc,CJccr = compressive buckling stresses web plate panel

(J ,(1 }
cr av = compression flange buckling stresses

(J •cr, ~n

cr = lateral buckling stresstcr

cr ,E: = peak stress and peak strainp p

ate = tension field stress

cr = yield stress or stress in y directiony

cr = web yield stressyw

cr e: = ultimate stress and corresponding strainu' u

T,T = shear stress and stress increment

Lc,Lccr = shear buckling stresses web plate panel

a a ~ = direction of action of tension field'P,VJc,VJco
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, 'NOMENCLATURE < (continued)

Matrices

coefficient displacement matrices

displacements to polynomial coefficients

= strain-displacement matrices

= elasticity matrix layer i

= matrices relating element nodal point

= element elasticity" matrices of slab

[B]

[C],[Cl]
[e2]

[C]--l

[ec ex]

[CAl , reB]

[ew], [CD]

[D] , [D]

[D. ]
1

[EB],[GB] = beam element elasticity matrices (flexure and shear)

[E.],[G.] = beam layer rigidity and shear matrices
J J.

{F} {F}e = global and element force vectors

•
{F} = incremental force vector

. {f} = vector of shape functions

[K] ,[k]e = global and element stiffness matrices

[N] = shape f·p.nction matrix

[P(x,y)] = polynomial function matrix

[Q] = connectivity matrix

[T] = transformation matrix
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'NOMENCLATURE (continued)

Matrices'
.

{e:}', {E}

[r]
.

{O},{cS}

. {c;}

{cr},{cr}

{cr .}
1.

Notes:

= strain and incremental strain vectors

= matrix differential operator

= displacement and incremental displacement vectors

= polynominal coefficients vector

= 'S'tress and incremental stress vectors

= integrated average stress vector

1. The use of subscripts. u, ~, b, s, and d on matrices

indicates that the matrix is derived from the consider-

ation of in-plane deformations (u), bending deformations

(~), axial and bending deformations (b), shear

deformations (s), and slip (d).

2. The use of the subscripts uu, u0, and 00 on matrices

indicates that the matrix is derived from the considera-

tion of in-plane deformations (uu) , coupling

deformations (u~), and bending deformations (0~).

3. The use of the subscripts A and B used alone indicates the

parameter is associated with either the plate (A) or

the beam (B).
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'NOMENCLATURE (continued)

4. The use of L or M as a subscript indicates that the

quantity is at node L or M.

5. The use of ('), primes, indicates quantities expressed

in skew coordinates.

6. The use of superscript, e, on vectors or matrices

indicates that the' quantities are applicable to the

element.

7. The use of 1, 2 as subscripts indicates that the

quantities are with respect to the" directions of

principle stress.

8. A (.) dot used over any term indicates an

incremental quantity.

9. The subscripts x,y,z,xy denote the direction of action

in local coordinates.
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TABLE lA .SLAB :REINFORCEMENT AND ORIENTATION

EXAMPLE'! (AASHTO'~ 3B)

Centroidal Location 9 Thickness Size/Spacing. ·x·
(Positive Downward) , (degrees)

-- 36. 4mm 1.575 mm 5 @127 mm

(- 1.435 in) - 90 (0.0620 in) (5 @ 5 in)

- 23.7 mm 0 1.397 mm 3 @508 nnn

(am 0.934 in) (0.0550 in) (3 @ 20 in)

23.7 mm 0 1.397 mm 3 @ 508 mm

(0.935 in) (0.0550 in) (3 @ 20 in)

36.4 mm - 90 1.575 mm 5 @127 DIm

(1.435 in) (0.0620 in) (5 @ 5 in)

TABLE IB SLAB REINFORCEMENT AND 'ORIENTATION

EXAMPLE 2 (UNIV .. TENN)

'Centroidal Location Q Thickness Size/Spacing
(Positive Downward) (de~rees)

43 mm' - 90 1.432 rmn 5 @140 rom

(-1.6875 in) (0.05636 in) (5 @ 5.5 in)

27 nun 0 0.984 !rim 5 @ 203 mm

(-1.0625 in) (0.03875 in) (5 @ 8 in)

27 nnn 0 0.984 mm 5 @ 203 mm

( 1.0625 in) (0.03875 in) (5 @ 8 in)

43 mm - 90 1.432 mm 5 @140 nnn

(1.5625 in) (0.05636 in) (5 @ 5.5 in)
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TABLE 2 :MATERIAL·PR0PERTIES;~:EXAMPLE·l, (AASHTO"- 3B)

Property Material Actual BOVAS
,

f 39.58 MPac
(5.74 ksi)

f
t

Slab
3.17 MPa-

(0.459 ksi'l

E Concrete
35.852 MPac

(5200 ksi)

cr 422.0 MPay
Reinforcing (61.2 ksi)

E. 198,569 MPa
~ Steel (28,800 ksi)

(J , flange 24?O MFa
y

(35.1 ksi)

cr , web 275.1 MPa
y

Beam (39.9 ksi)

(J , cover- 268.1 MFa
y plate (38.9 ksi)Steel

E.
206,842 MPa

1 (30,000 ksi)

Est' Est NOT EMPLOYED IN
THIS ANALYSIS

cr , E
u u
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TABLE 3 LOAD ·VERSUS DAMAGE RECORD - EXAMPLE 1 (AASHTO - 3B)

Load
ld~-11

(kip-ft)

1807
(1333)

2024
(1493)

2712
(2000)

3087
(2277)

Damage - Test

Yielding of bottom
flange near ends of
coverplate

Almost complete yield
ing of bottom flange
except near supports,
extensive coverplate
yielding

Web yielding is clearly
evident

Extensive web yielding
and tension cracks in
slab halfway through
depth in coverp1ated
section

Load
kN-l1

(kip-ft)

1033
(762)

1228
(906)

1436
(1059)

1567
(1156)

1849
(1364)

1973
(1455)

2253
(1662)

2553
(1883)

2602
(1919)

3113
(2296)

Damage - BOVAS

Yielding of exterior
beam bottom flange at
midspan

Yielding of interior
beam bottom flange at
midspan

Yielding of coverplate
of exterior beam at
midspan

Yielding of exterior and
interior beam bottom
flange at end of
coverplate

Complete yielding of
exterior beam CQver
plate. 85% of exterior
beam bottom flange has
yielded

Complete yielding of
interior beam cover
plate. 85% of interior
beam bottom flange has
yielded

Bottom layer of slab has
a transverse crack all
the way across at mid
span

The web of exterior
beam has yielded over
70% of its depth

The web of interior
bea~ has yielded over
70% of its depth

The slab has a trans
verse crack through 50%
of its depth at midspan
and 33% through depth
in coverplated section.
The web has yielded
through 86% of depth at
midspan
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TABLE 4 MATERIAL PROPERTIES - EXAMPLE 2 (UNIV. TENNESSEE)

,
f 47.37 MPa

c (6.87 ksi)

Slab

f
t

3.38 MFa
(0049 ksi)

Concrete

E 32,929 MFa
c (4, 776- ksi)

cr 275.8 MPa
y Reinforcing (40 ksi)

E. Steel 199,948 MPa
1 (29,000 ksi)

cr 275.8 MPa
y (40 ksi)

Beam
E. 212,014 MFa

l. (30,750 ksi)

Est' E
Steel Not employed in

st this analysis
(J , E

u u

Property Material

-·124-
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TABLE 5 LOAD VERSUS DAMAGE RECORD - EXAMPLE 2 (UNIV. TENNESSEE)

Load
kN

(kip)

2758
(620)

2891
(650)

3114
(700)

Damage - Test

First yielding of steel
appears to occur at
this load - shortly
after yielding started
the bridge "lifted
off" the abutment
nearest the load

Tension cracks visible
in deck slab over
first pier

Tension cracks which
extend across the
slab and through
the curb at second
pier are visible

Load
·kN·
(kip)

1154
(259.5)

1790
(402.5)

1987
(446.7)

2475
(55604)

2628
(590.9)

2782
(625.5)

3160
(710.4)

Damage - BOVAS

Up to this point there
has only been longitud
inal cracking of the
slab in the bottom
layers at the centerline
of the bridge under or
near the load

The first transverse
cracks appear in the
top layer of the slab
near first pier

Transverse cracks appear
in the top of slab near
the second pier

First yielding begins
in bottom flange of
interior beams in area
under the load

First yielding begins
in bottom of web of
interior beams in areas
under the load

The transverse crack
over the first pier is
now through 50% of the
slab depth

The first transverse
crack in the bottom of
the slab in the area
under the load now
appears
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TABLE 5 LOAD VERSUS DAMAGE RECORD - EXAMPLE 2 (UNIV. TENNESSEE)

(continued)

Load
kN

(kip)
Damage - Test

Load
kN

(kip)

3370
(757.5)

3415
(767.8)

3644
(819.3)

3788
(851.6)

4116
(925.4)

4411
(991.6)

4577
(1029.2)
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Damage - BOVAS

The slab over first pier
is now completely
cracked longitudinally
through the complete
depth, however, the
reinforcement is still
functional

The slab over second
pier is now cracked
completely through the
depth in the longitud
inal direction

Yielding of ·the botto~

flange of the exterior
beams in the area of
the load has started

The slab between the
interior and exterior
beam at the second pier
is now also cracked
through 60% of its
depth in the longitud
inal direction

The bottom transverse
reinforcement in the
slab in the area of the
load has now yielded
in tension

Yielding in compression
of the bottom flange
of interior beam at
first pier

The transverse crack in
the bottom of the slab
under the load is now
halfway through the slab
depth in the area near
the center of the
bridge



TABLE 5 LOAD VERSUS DAMAGE RECORD - EXAMPLE 2 (UNIV. TENNESSEE)

(continued)

Load
kN .

. (kip)

5627
(1265)

Damage .... Test

Maximum load
reached. Com
pression failure
of curb section

Load
kN

(kip)

4771
(1072.6)

4982
(1119.9)

5348
(1202.3)

5432
(1221.2)

5581
(1254.7)

-I27!'""'

Damage ...", BOVAS

The web of interior
beam under the load is
now fully yielded

First crushing of slab
at load point

Yielding in compression
of top transverse slab
reinforcement in area
under load. Yielding
in tension of top
longitudinal slab
reinforcement near the
first pier. Yielding
in tension of bottom
longitudinal slab
reinforcement in area
under the load.

The interior beam in the
area under the load has
now fully yielded
forming a plastic hinge
in the beam

The web of exterior
beam under point of
loading has now fully
yielded



TABLE 6· MATERIAL PROPERTIES -·TEST BEAM CB2

Property Material BOVAS

,
f 37.65 MPa

c (5.46 ksi)Concrete

f
t

3.01 MPa

Slab
(0.44 ksi)

E 29,355 MPa (4258 ksi)c

II 3 Bars II 5 Bars
Reinforcing

0'. 364.8 :MFa 346.8 :MPa
y (52.9 ksi) (50.3 ksi)

E. Steel
1 199,948 MPa

(29,000 ksi)

~~;eb Flange

cr 338.5 MPa 311.6 MPa
y Beam (49.1·ksi) (45.2 ksi)

E. 208,221 MPa 215,806 MPa
1 (30,200 ksi) (31,300 ksi)

Est
Steel 6,895 MPa 7,998 MFa

(1,000 ksi) (1,160 ksi)

£ 0.0226 mm/mm 0.0104 mm/mm
st (in/in) (in/in)

cr 459.9 MPa 465.4 MPa
u (66.7 ksi) (67.5 ksi)

£ 0.120 mm/mm o.120 nnn/mm
u in/in} in/in)
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TABLE 7 SLAB REINFORCEMENT - ORIENTATION CB2

Centroidal 9
Distance x

Test from midheight (Qrientation
Beam .+ down) w.r.• t. x axis) Thickness Size/Spacing

0.00 00 1.64 mm. lIs @ 122 mrn
(0.06458 in) (115 @4e8 in)

CB2

0.00 90
0 Oe62 mm 113 @ 114 nun

(0.02444 in) (113 @ 4. 5 nmt)

-129-



TABLE 8 LOAD VERSUS DAMAGE RECORD - CB2

Load
k.N

(kip),

533.8
(120.0)

578.3
(130.0)

591.6
605.0

(133.0·
136.0)

Damage - Test

Initial flange
buckling load

Complete flange
buckling

Crushing failure
of slab in
positive moment
region

Load
k.N

(kip)

110.3
(24.8)

348.7
(78.4)

470.2
(105.1)

478.2
(107 .5)

521.8'
(117 .3)

560.5
(126.0)

581.4
(130. 7)

589.8
(132.6)

-130~

Damage - BOVAS

Slab completely cracked
in transverse direction
over interior support

First yielding of beam,
tension flange under
the load and compression
web over interior
support

Web under load starts
to yield

Tension flange over
interior support
yields

Slab in vicinity of
load completely
cracked

Strain hardening begins
in tension flange under
load

Strain hardening begins
in compression flange
over interior support

Compression flange
buckles



TABLE 9 "MATERIAL PROPERTIES ~'TEST"GIRDER-UG2

Bottom Cover
Property Top Flange Flange Plate Web

cr (actual) 253.0 MPa 248.9 MPa 244.8 MFa 299.2 MFa
y (36.7 ksi) (36.1 ksi) (35.5 ksi) (43.4 ksi)

E (assumed) 203,400 MPa (29,500 ksi)

Est (assumed) 5,500 MPa (800 ksi)

Est (assumed) 0.014 mm/mm (in/in)

cr (assumed)- 403.3 MFa (58.5 ksi)
u

E: (assumed) 0.120 mm/mm (in/in)
u

" " -
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TABLE 10 BUCKLING LOADS FOR TEST UG2.1~UG2.3

FLANGE+
WEB BUCKLING BUCKLING ULTIMATE LOAD

TEST LOAD (P) LOAD (F) LOAD (P)
TEST BOVA~: BOVAS TEST BOVAS

UG2.1 11.7 kN 13.5 kN 80.1 kN 81.0 kN
(2.6 kips) K3.0 kips) -- (17.8 kips) (18.0 kips)

UG2.2* 13.1 kN 90a9 kN 91.4 kN-- (2.9 kips) -- (20.2 kips) (20.3 kips)

UG2.3 294.8 kN 286.7 kN 315.0 kN-- -- (65.5 kips) (63.7 kips) (70.0 kips)

*3 Panels

+No test results
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TABLE 11 MATERIAL· PROPERTIES - FHWA FOUR-SPAN

Property Material .. BOVAS
--,

f 37.9 MPa (5.5 ksi)
c

Concrete
f 3.0 MPa (0.44 ksi)

t

Slab
E 7~ '. 46~ .•.q MFa (4273 k~i)c ..

!
, . , . . . ,

. ,

. , "

cr 413.7 MFa (60 ksi)y
Reinforcing

E
i

Steel ~O~ '. 39~. q MPa (29,500 ks!)
. , . , : ' . , . . . . . ,

..··.A36 .. A441 Fictitious*

cry 248.0 MPa 317.0 MFa 248 MPa
(36 ksi) (46 ksi) (36 ksi)

E. 203,395 MFa 21 MPa
1 Beam (29,500 ksi) (3 ksi)

E 5515 MPa 4826 MPa 0.6 MPa
st (800 ksi) (700 ksi) (0.08 ksi)

Steel

Est 0.014 mm/mm 0.0215 mm/mm 140 rmn/mm
(in/in) (in/in) (in/in)

403 MPa 462 MPa 403 MPa
au (58.5 ksi) (67.0 ksi) (58.5 ksi)

0.120 mm/mm 0.120 nnn/mm 1200 mm/mm.
Eu (in/in) (in/in) (in/in)

*In the layered finite element model, the number of
layers must remain constant; however, since the width
and thickness of the flanges changes from section to
section, certain layers (Table 12) are given
fictitious material-properties to model the non
existence of material for that section.
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TABLE 12 "TOP 'AND ,BOTTOM FLANGE "CROSS-SECTIONS

" "TOP FLANGE CROSS-SECTIONS

Section Layer Width (b t ) Material

1 *
1 2 305, rom *

3 (12 in) A36

1 *
2 2 406 mm. A441

3 (16 in) A441

1 *
3 2 305 rom *

3 (12 in) A36

1 A441
4 2 406 mm A441

3 (16 in) A441

BOTTOM'FLANGE CROSS-SECTION

Section Laye~ . Wi~th ,(bb) Material. , . . ...

12 A36
13 *1 14 406 mm

*15 (16 in)
*

12 A441

2 13 406 nun A441
14 (16 in) A441
15 *
12 A36

3
13 406 nnn A36
14 (16 in) *
15 *
12 A441

4
13

457 nnn A441
14 A441
15 (18 in)

A441

*Fictitious Material - See Table 11
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TABLE 13 SLAB :REINFORCEMENT .- FHWA FOUR-SPAN

Centroida1
Location x

For Slab from midheight orientation
Elements (+ downward) Wllrot~ x axis) Thickness Size/Spacing

- 55.6 mm - 90
0 1.57 nnn tis @ 127 nun

(-2.1875 in) (0.062 in) 115 @ 5 in)

1-36 - 41.3 mm 0° 0.87 nnn 11-5 @ 229 nnn

and
(-1.625 in) (0-.034 in) 115 @ 9 in)

66.7 mm 00 0.78 nun 115 @ 16~ mm

61-102 (2.625 in) (0.031 in) 115 @ 5 in)

81.0 m.m -- 900 -, 1.57 mm tl5 @ 127 nnn
(3.1875 in) (0.062 in) 115 @ 5 in)

- 55.6 mm -- 90° 1.57 mm 115 @ 127 mm
(-2.1875 in) (0.062 in) 115 @ 5 in)

37-60 - 41.3 mm 00 1.75 mm 115 @114 mm.
(-1.625 in) (0.069 in) tl5 @ 4.5 in)

and 66.7 mm 00 0.78 rom tl5 @ 165 mm
(2.625 in) (0.031 in) 115 @ 65 in)

103-120 81.0 rom - 90
0 1.57 mm tl5 @ 127 nnn.

(3.1875 in) (0.062 in) 115 @ 5 in)
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TABLE 14' 'MOMENT' VERSUS DAMAGE.' RECORD

FHWA FOUR~SPAN'

Maximum Static Moment,
kN-M, (kips-ft)

4095
(3020)

5543
(4088)

5616
(4142)

6055
(4466)

6310
(4654)

6799
(5015)

7500
(5532)

8478
(6253)

9256
(6827)

Damage

A Maximum Static Moment

corresponding to two' lanes of
uniform live load for HS-20
loading plus concentrated loads

First cracking of slab in trans
verse direction over interior
supports

B Web plate panel of girder 2
over Pier 2 buckles

C Web plate panel of girder 2
over Pier 3 buckles, first
significant deviation from
linear load versus deflection
behavior noted

All six web plate panels of
girder 2 have now buckled

D Web plate panel of girder 1
over Pier 3 buckles

All six web plate panels
of girder 2 have now buckled

E First web plate panels buckle
for girder 3, and first cracking
of slab in longitudinal direction,
large derivation in load versus
deflection behavior starts

All six web plate panels of
girder 3 have now buckled
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TABLE '14 .. MO:MENT VERSUS' DAMAGE' RECORD

FHWA FOUR~SPAN (continued)

Maximum Static Moment,
kN-M, (kips-ft)

11,630
(8578)

12,445
(9179)

12,928
(9535)

13,461
.(9928)

19,287
(14,225)

Damage

F Slab completely cracked over
girder 2 at interior supports

G Maximum deflection allowed by
AASHTO of 1/1000 of span length
exceeded. Also the longi
tudinal live load ~tress

range for transverse stiffener
detail exceeds allowance for
over 2,000,000 cycles of
82.74 MPa (12 ksi)

H Web plate panel compression
f-lange for girder 2 over Pier 2
buckles laterally.

I Web plate panel compression
flange for girder 2 over Pier 3
buckles laterally

J First yield of girder flange
at midspan second span for
girder 2
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TABLE ,15- "STRESS 'COMPARISON OF TORSION STUDY

Load Case Percent Difference'ftom'Basis
Exterior Interior
Giidei .~frd~r .

Ratio Maximum
Exterior to Interior

Girder Stress

A 1.7 2.9 1.36

B 0.0 0.0 1.37

C - 0.6 - 1.4 1.38

D 5.2 - 4.0 1.50

E 1.7 - 3.8 1.45

F 0.5 - 3.9 1.44

TABLE 16 DEFLECTION COl1PARISON OF TORSION STUDY

Percent Difference ftom Basis

Load Case Exterior .Interior Ra.tio Ext • Def.
Girder Girder to' Int. Def.

A 1.8 1.5 1.40

B 0.0 0.0 1.40

C - 0.8 - 1.4 1.41

D 4.3 3.0 1.50

E 1.2 - 2.4 1.45

F - 0.2 - 2.5 1.43
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NODES

Z (DECK)

Y (DECK)

______1Z Y (BEAM)

Z(BEAM)

' .... --.
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Fig. 2 Beam and Slab Node Point Arrangement

OOF PER DECK NODE DOF PER BEAM N~DE
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Eq. 2..18"

o

1.0.---..........

b>' 0.8

"t-
o
o 0.6
~

o

b O.4.,
'
(.)

o 0.2

Fig. 4 Torsional Buckling Curves

403.3
(58.5)

------.....--~ .............. ,
'"

248.~..----...---- (CTy , € t )
(36)

A 36

0.12

E·I

€ (in/in)
(mm/mm)

Fig. 5 Idealized Stress-Strain Relationship for Steel

0.00122 0.014

-142-

(MPa)
(ksi)



Cl2

B C

-143-

Fig. 6 Idealized Biaxial Failure Envelope with Characteristic
Points
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Fig. 7 Torsional Buckling of Compression

Flange - Deformed Shape

t

b/2 Torsional Spring = kt

0.425 ~ kv S 1.277

kv =0.425

Torsional "Buckling Coefficient kvFig. 8

kv =1.277
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-(7' T'c - I -(j

b b

F~g. 9 Stress Distribution in Web Plate Panel

at Critical Buckling Load

Flange Layers-

1- a -I

Fig. 10 Finite Element Idealization of Web

Plate Panel
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Outer Tension· Field
~I

Outer Tension Field

Fig. 11 Typical Transversely Stiffened Plate Girder

Web Plate Panel Under Combined Moment and

Shear

--11- 0 .5 0""tc

Vcrc
Vcrc

~~ d J~ Vcrc Va-c

1- . 1 I .

--l ~0.5O"tc

a a •

(a) Expected (b) Idealized

Fig. 12 Tension Field of Web Plate Panel
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-

-- rc a'bc/2

N.A.

Fig. 13 Combined Buckling Stress State and

Tension Field Stress State

2
z'

d x

o I ton <Pc I

1-- a -I

Fig. 14 Local Coordinate Axes and Tension Field

Axes for Web Plate Panel
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,--- _ _ _ _ -, __...__ Lateral
/1- - ~-J Buckling

I J
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BRIDGE DESCRIPTION:

(NO. ELEMENTS, LAYERS, MATERIAL

PROPERTIES, DETAILS, TYP~ PROBLEM', ETC.)

BRIDGE LOADING:

DEAD LOADS, AND LIVE LOADS

.,
DEAD LOAD SOLUTIONS

SCALING PROCEDURE

r1 OVERLOAD SOLUTION PROCEDURE

TERMINATION CHECKS

NO.,
APPLY ANOTHER LOAD INCREMENT

YES J I-I STOP

Fig. 19 Flow Chart BOVAS Solution Scheme

-.152-



DATA INPUT AND COMPUTE THE
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FAILURES

FORMULATE GLOBAL SUM INCREMENTS TO

STIFFNESS MATRIX GET TOTAL {8},{F},etc.

.
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.
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SOLVE FOR
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•y
CONVERGED E-------...--------..,5!NO

+NO
NO DOES THE STRESS STATE
~

EXCEED THE FAILURE STRESS
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.

SCALE DOWN {F}

,r

Fig. 20 Flow Chart BOVAS Overload Solution Process
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Fig. 21 Example No.1 - Bridge 3B - Elevation
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Fig. 23 Overloaded Test Vehicles - Example

Noo 1 (AASHTO Bridge 3B)
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Fig. 24 Example No. 1 (AASHTO - Bridge 3B) - Finite Element

Discretization
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Slab and Beam Layering
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