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I. INTRODUCTTON

'The plastic strength ("collapse'" load) of statically
indeterminate structures is usually determined, theoretically
and experimentally, through the application of a system of
proportional steadily increasing loads. However, when the loads
are varied within certain limits, either independently of each
other or in a certain loading pattern, the structure may
continue to deform plastically upon repeated application of the
loads. This type of failure has been discussed for example by
Symonds<l)* . The problem is to determine critical limits such
that, if not exceeded by the variable loads, plastic deformation
will cease after some repeated application of the loads, due to a
state of residual stress caused by the initial plastic deformation.
Then the deflections of the structure will stabilize with a
cegsation of further progressive deformations., The term
Wshakedown" has been used to describe this process., Consequently,
the set of critical limits is called the stabilizing (or
"shakedown") load, It is felt that the term "stabilizing loagd"
used in this report is more descriptive of the actual phenomenon

than "shakedown load',

Massonnet(2) carried out tests on a structure with
loads applied and removed in a random manner but encountered
difficulties due to lateral buckling. Neal(3) summarized the

work of previous investigators on the shakedown theory of

B E. cam o — o o — Ee. — e o o - o - - — — - — oo

* See list of references
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trusses., He also investigated corresponding phenomena of
continuous beams and plane frames(”) and stated:
"If any state of residual stress can be found for
a structure that enables all further variations
of the external loads between their prescribed
limits to be supported in a purely elastic

manner, then the structure will skakedown'.

The object of the tests described in this report was
to investigate experimentally the behavior of a statically
indeterminate structure under the application of proportional
loads and of repeated variable loads. The selected structure was
a continuous beam, simply supported over two equal spans and
carryling two concentrated loads at points symmetrical about the
central support (Figure 1). PFurthermore, a theoretical analysis
of the structure 1s presented as a basis for the comparison of

experimental results with theoretical predictions.

II. THEORETICAL ANALYSTIS

1. Proportional Loading

The structure, a two-span continuous beam, is shown
in Fig. 1. The points of support and load application are
numbered 1, 2, 3, 4% and 5. It is commonly assumed that all
plastic deformation takes place in plastic hinges which, when
the ultimate load is reached, are developed in sufficient
number to make the structure a mechanism., With this simplifying

assumption maximum loads and load-deflection relations can be
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derived 1n a simple manner (6), Possible locations of plastic

hinges are 2, 3, and 4, the points of extreme bending moment.

Two loading conditions are considered:
(a) Symmetric loading by two equal loads (Fig. 1).
" (b) ©Single load applied to one span only (Fig. 2).
Figures 1 and 2 also show the mechanisms formed at the computed
ultimate load, the plastic hinges being indicated by circles.

The ultimate load, P, is the same for both cases.
Py = 20 Mp/3L . . . . . . (1

with Mp = full plastic moment of the section. It is
interesting to note that although the maximum loads are equal
for cases (a) and (b), the sequence of formation of the plastic

hinges is reversed. Consequently, the load vs. deflection curves

differ as shown in Fig. 3(6),

2, Cyclic Loading

The structure being symmetrical, only deformations of
sections 2 and 3 will be analyzed. When the structure is
subjected to independently varying loads beyond certain critical
limits to be defined later (none of which would produce
simultaneous formation of plastic hinges) rotations (in the same
gsense) can be built up at these sections. If loads as shown in
Figures 1 and 2 compose the loading cycle, in case (a) Hinge 3
is rotated while in case (b) this occurs at Hinge 2. As a
result, the deflection at Point 2 is increased at the end of
each cycle. ©Such cyclic repetitions will eventually produce

excessive deflections.
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The continued deflection as each cycle is applied
can only occur in a statically indeterminate structure wherein
residual moments exist as a consequence of plastic deformation.
An example of this occurs in case (a), Figure 1, when the beam
ig loaded as shown and Secfion 3 deforms plastically. The equal
loads ére subsequently removed and under this zero load condition,
the plastic deformation of Sectlon 3 would deflect point 1
downward were the support at this point removed. Hence there
exist positive residual moments in the beam with the zero loads.,
A single load as in case (b) is applied next and when the sum of
the positive residual moment and the super-imposed bending
moment at Section 2 eduals the plastic moment of the section,
the deflection will increase a finite amount. Section 2 may
behave in similar fashion for the loading sequence case (b) to

case (a) causing an increase of the deflections.

After sufficient applications of the cyclic loads, the
structure may have acquired a particular set of residual
moments whereby all further applications of the loads up to a
prescribed 1imit will be supported in an elastic manner., This
prescribed 1limit is the stabilizing ("shakedown") load above

which deflections will continue to increase, resulting in

excessive deformations of the structure.

Due to conditions inherent in the chosen test set-up,
a single concentrated load necessary for maximum bending moment
at Section 2 could not be realized but was accompanied by a one-

kip load acting on the adjacent span as shown in Figure #(b).
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In the following theoretical derivations this minimum value of
P has been chosen ?iP, ? being a numerical coefficient less than
~unity., Maximum moment for Section 3 occurred for the loading

condition shown in Figure 4(a), The elastic bending moment
diagrams for both loading conditions are shown in Figures 4(a)
and %(b). The fesidual moment diagram can only have the shape
shown in Figure 4(c¢). The necessary condition of the "shakedown"
theory that the sum of the residual moment and the superimposed
bending moment must not exceed the plastic moment of the section

leads to the following inequalities for sections 2 and 3

respectively:
PL 3w, <
Zot (114 - 36'?)4-3 MM, . . . (2)
120 |
— %2 P LbMe 2 =My . . .. (3)
with

My = residual moment at 3

In the limiting case the equal signs are valid. Solving

equations (2) and (3) then gives the critical stabilizing load, Pg.
s=___légﬁ_?§6§<%p_) N S

When the structure is loaded at Point 4 only, the moment at 2

reverses and could cause plastic rotation in the opposite

direction. This phenomena is called alternating plastic flow,

which alse must be avoided in order to obtain completely elastic
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behavior, CallingzxMy the total available elastic moment range,

this condition can be expressed by the following inequality

Pg

5 (114 - 363 )+€—5,- (36 - 114 5)KAMy .. (5)

O\

Simplifying inequality (5):

P 25 [AlMy
s$6(l_.§)( ) N O

Equations (4) and (5a) each determine a value of Pg. Obviously

the lowest of the two 1s the actual stabilizing load.

3, The Influence of Strain-Hardening

The above theoretical derivations are based on the
simplifying assumption that the maximum moment a section can
sustain is 1ts full plastic moment, M,. However, due to strain-
hardening of the material moments larger than Mp can be carried(8),
When a beam is subjected to a constant moment the influence of
strain-hardening will start when the angle of rotation per unit
length has reached the value @gt corresponding to a strain of the
outer fiber &g4t. As the ratio of the strain at strain-hardening,
&gt, to the strain at which yielding starts, Ey, is of the order
of 10 to 15 the influence will only become apparent after
relatively large deformations. When the beam is subjected to
a moment gradient the influence is felt immediately after yielding
has started. This is the case for the loading conditions of
Fig. 1 and Fig. 2. Therefore the actual behavior can be expected
to be quite different from the simplified load deflection curves

shown in Fig. 3.
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Consider first loading condition (a) with two equal
loads which are steadily increased but kept equal (proportional

loading). For certain values of the loads, P,, the moment at

p?
sections 2 and 3 will have values Mo and M3 respectively and

the deflection at the loading points will have a certain value
ég. The loads,Pp, can be expressed in terms of Mp and M3 as

follows:

1/25 _5
Pp = -]-_J—(ng— M2 é-MB) . N . . ° ° (6)

Assume next that the loads are varied between the limits !§PL
and Py, in such a manner that symmetrical deformations are
produced as in the above considered case of proportional loading.
Then the deformations will stabilize at the same value, Ss, of
the deflections of the loading points if the following equations

are satisfied:

P

"é""g‘“ (114 - 36‘?)1.5 Mp =M, . . . . (7D
. 120
éoe L L+Mr e e e e (8)

Solving equations (7) and (8) gives

625 Mow3/5 M
186 36%‘ ..,.._..___.__,..3. . ¢ ® . (9)

Comparing equations (6) and (9) shows that

P, _ 150 "
’13;"%"'6‘1-3?‘°""’ (10)
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The same reasoning could be applied to case b with proportional
loading and with cyclic loading producing the same deformations.

The result would be identical with equation (10).

The important conclusion is that the same deflections

which occur under proportional loading up to load Pp can be

obtained if the loads are varied between the 1imits§'PL and Pp .

The ratio of Py and P, is then given by equation (10).

p

IIT, EXPERIMENTAL TNVESTTIGATTION

1., Test Bet-Up

The test set-up is shown in Figures 5, 6 and 7 .
Instead of the downward acting concentrated loads at points
2 and % (Pig. 1) forces were applied in the upward direction
by hydraulic jacks, In this way the jacks and the supports were
acting in tension and a simple set-up was obtained by attaching

them to a rigid frame surrounding the specimen,

To simulate simple supports, thin plates were welded
to the specimen, the moment of inertia of the central support

being approximately 1/250 of that of the specimen.

The loads applied by the jacks were measured by
dynamometers, Furthermore, SR-4 gages were attached at both

end supports in order to measure the end reactions.
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Analysis shows that the ratio of the maximum load
under proportional loading and the stabilizing load of the
structure increases when the points of load application
approach the central support. In order to be able to determine
this ratio experimentally it was desired that the theoretical
ratio of ultimate to stabilizing load be not less than 120%. On
the other hand the moment gradient should not be too steep to
minimize the effect of shearing forces. Accordingly, the load
points were chosen at a distance of 2/5 of the span length from

the central support.

The specimens were cut from an as-delivered 4YWF13
rolled beam, taken from the middle third of a rolling. A
span length of 4 feet was considered sufficient for this program.
Since tests were to be carried out far into the plastic range,
lateral buckling was avoilded by testing the specimens, about
their weak axis. The loading and support stiffeners were
welded to the specimens prior to stress relieving treatment.
Thus all specimens were practically free of any residual
stresses due to cold bending and welding. The beams were
whitewashed in order to make a qualitative study of the yielding
process., The plate supports were also whitewashed such that
possible yield lines due to stress concentration could be

observed.

Deflections and rotations were measured with Ames
dials, the deflection measurements being taken at the load

points and the supports and the rotation measurements being
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taken at the plastic hinges (Sections 2, 3 and 4). The rotation
indicators were installed to measure the relative rotation
of two cross-gsections separated by a distance equal to the

depth of the bean,

Finally, the loading jacks were carefully aligned with
the axis of the specimen to assure equal distribution of the

| loads to both flanges,

2, Test Program

The tests are summarized in Table 1. First two tests,
P-1 and P-2, were performed with proportional, steadily
increasing loads to investigate the actual behavior under the
loading conditions of case (a) and (b) (Figs. 1 and 2). As the
jack=beam connections and the supports were designed to act in
tension, zero loads were replaced by a minimum load of one kip.
In the plastic range readings were taken after loads and

deflections had stabilized.

In test P-1 the residual moments were measured. This
was done by removing the loads after applying the load of 17.7
kips. The residual moments could then be determined from the

measured end reactions.

Cyclic loading tests were performed next on three
specimens, Cl, C2 and C3. Téble 1 shows the steps constituting
one cycle, PL being the upper 1limit of a chosen load range,

The procedure followed for starting the cyclic test was to

bring both equal loads to the chosen upper limit corresponding
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to Step (a) with readings taken at appropriate increments.
Thereafter, readings were taken after each step was completed,
Step (e) concluded one cycle. Consequently, the deformations
at Step (e) were taken as a basis of comparison for determining

the progress of deformation with increasing number of cycles,

A sufficient number of loading cycles was applied
until deformations stabilized. Test C-1 was carried out with
a relatively large value of the upper limit, PL“ With tests
C-2 and C-3, P was increased each time the deformations

stabilized.

Four representative tension coupons were tested in a
60,000 1b. hydraulic machine with a valve opening corresponding to
a strain rate of 1 miero in./in. per sec. Loads and strains
were recorded with a Templin automatic stress-strain recorder
- using a gage length of 8 in. The tension coupons were
dimensioned according to A.S.T.M. standards, The geometrical
properties of the section were determined with micrometerss

the measurements were checked against carbon imprints.,

3, Test Results

A summary of properties of the LWF13 shape tested in
this program is shown in Table 2, Also included are the
section properties derived from the material and geometrical
properties. With these section properties, values of critical

loads predicted by theory can now be derived.
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The predicted maximum load under proportional loading

is given by equation (1)

P, = 16.81 kips

Values of the stabilizing load are obtained from equation (4):

P, = 13.72 kips

and from equation 5a:

<

Py 14,85 kips

Thus, being the smallest of the two, the first value is the

theoretical critical stablilizing load.

In Fig. 8 the load vs, deflection curve is plotted
for the proportional loading test P-1, The deflection values
- plotted are the mean values of the deflections at the two load
points. Most previous tests have given an obvious maximum value
of the load. However, in this case no such convenient "leveling
of f" point was observed because of the point loading and
elimination of buckling. Fig. 9 shows the load vs. deflection

curve for test P2,

In Figs., 8 and 9 the value at the intersection of the
elastic and plastic slope lines has been selected as the
experimental ultimate load. At this load the deflection starts
to increase '"more rapidly" and therefore this criterion is

called a deflection-rate criterion, The experimental values
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obtained are:

Case (a) (Test P=1) P 17,08 kips (101.5% of its

theoretical value)

17.68 kips (105% of its
theoretical value)

u

Case (b) (Test P-2) P,

Massonnet (2) defined as "experimental collapse load"
the load af which the deflection is twice the deflection at the
intersection of elastic and plastic slope lines (deflection
criterion)., For Cases (a) and (b) this results in Py = 17.58 kips

and Py = 17.78 kips respectively.

From the observed values of the end reactions, the
moments at sections 2 and 3 were computed and plotted ws. the
applied load in Figure 10 for test P-1l and in Fig., 11 for test
P=2, Theoretically, when both moments at these two points attain
the full plastic moment of the section, the structure reacheé
its maximum load. As shown in Figure 11, the moments M, and M3
became nearly equal in magnitude at a load of 16.0 kips. 1In
test P-2 (Fig., 11) M, and M3 came close to each other at a load
of 18,0 kips. The full plastic moment of the section based
on the average lower yield stress of the tension coupons
(Table 1) was 121,0 in-kips. Both figures also show good
agreement of observed values with theoretical predictions

within the elastic range.

During test P-2 the structure was completely unloaded
after being loaded to 17.7 kips. Fig. 10 shows the existence

of residual moments.
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As mentioned previously, rotation measurements were
taken using a gage iength equal to the depth of the beam. The
mean values of the moment over the gage length, M', have been
computed in addition to the extreme values at the loading points
and center support. Figs. 12 and 13 show the experimental
and idealized M-@ curves for both proportional loading tests, @
being the rotation per unit length (curvature). The idealized
curve was derived from the geometrical and material properties of
the section neglecting the influence of strain-hardening. The
test results indicate again that the cross-section is capable of

developing a greater resistance than the plastic moment.

Results of the three cyclic loading tests, C-1, C-2 and
C-3, are shown in Fig. 14 with the number of cycles plotted vs.
the average deflections at the end of step (e) of the cycle
(Table 1). Test C=1 represents a case of typical progressive
deformation, The test was stopped when the deflections reached
1.2 inches., Although the deflections had not yet stabilized, it
appears from Fig. 14 that stabilization would have occurred at a
deflection of perhaps 1,3 to 1.k in. Test C-2 was started with
an upper limit of 14.75 kips and stabilized fairly well after
6 cycles. Subsequent increments of 250 lbs. were next applied up
to a limit of 15.25 kips. For all these loads the deformations
stabilized after 6 cycles. At 16.0 kips stabilization had not
yet occurred after 6 cycles, though it would have with more
repetitiousness. Finally, Test C-3 was performed to check the

results of Test C-2., Eventually it stabilized.
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In Fig. 15 the load deflection curve for test P-1 has
been replotted. From this curve a Py vs, g‘s curve has been
derived by the use of equation (10) and is compared with the
test results in the same figure., Defining as the experimental
critical stabilizing load the value of Pp at which the
stabilized deflection, g ay Starts to increase more rapidly,

gives

Py = 14.8 kips (108% of the theoretical stabilizing
load)

The test results are summarized in Table 3,

Finally, the behavior of the beam under cyclic
loading will be illustrated by analyzing steps (a), (b) and (c)
of the first cycle of test C-=1,

Shown in Fig. 17a are the observed moment diagrams
of step (a) and the computed corresponding elastic moments. The
difference between elastic and observed moments is cross~hatched
in the figure. Complete unloading would occur in a purely
elastic manner and positive residual moments, Mp, would be left
in the structure (Figure 17b). Applying the load of step (d)
as shown in Fig. 18a the positive elastic moment augmented by
the previous positive residual moment at the now critical hinge
4 would result in a value for beyond the available full plastic
moment of the section., Hence plastic rotation of hinge 4% took
place, The observed moments are also shown in Fig. 18a, Due

to the rotation of plastic hinge 4 the residual moments are now
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negative (Fig. 18b). Going from step (b) to step (c) (Figs. 19a
and 19b) causes only unloading of all parts of the structure.

- No plastic deformation takes place and theoretically the
residual moments remain unchanged., Actually the residual
moments at the center support decreased from — 19.8 in-kips to

— 21.4% in-kips. DuringAstep () of the next cycle the residual
moments will become positive again and the same sequence will be
repeated. Consequently, the deformations will increase during
each cycle., When the residual moments are such that the sum
of residual and elastic moments does not exceed M, and M3 at
Sections 2 and 3 respectively, the deflections will stabilize

at the corresponding value 83°

IV, DISCUSSTON

The beams loaded proportionally were definitely
stronger than predicted by the simple plastic theory that
neglects strain-hardening. The maximum load applied (20 kips)
was about 20% greater than predicted by theory. Had the test
assembly permitted, the beams would have carried more load.
Because of point loading and the elimination of buckling nho

convenient "leveling of'f" point was observed.

A deflection-rate criterion, selected in order to
compare predicted with observed values, appears to be a
reasonable method of comparing the results of proportional and
cyclie loading tests, It is consistent with the real philosophy

of plastic analysis, (the onset of deflections much greater than
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those experienced at lower loads).

In the case of proportional loading this criterion
leads to good agreement with theoretical predictions (Obs./Theor,
102 and 105%). However, in the case of cyclic loading the
theory seems to underestimate the stabilizing load (Obs./Theor

108%) .,

It should be kept in mind that the deflection-rate
criterion specified the lower limit of ultimate and stabilizing
load. The test results show a correlation between the load
deflection curve for proportional loading and the upper limit

load vs, stabilized deflection curve for cyclic loading.

Beams with considerable length under near-uniform
moment do not reveal the strain-hardening effect shown in Fig, 16,
For such cases, the deflection-rate criterion possibly
represents a value that would not be exceeded, Tests to
explore this would be desirable. Another important factor may

be the influence of buckling.

The loading cycle was undoubtedly more severe than

would be encountered in practice ( %’: 0,07), The actual
reduction in load capacity was 13%. The theory of "deflection
stability" predicts an 18% reduction.

These tests, therefore, show that "Instability of
*“ Deflection" may not be as severe a limitation to the application of
plastic analysis to design as the theory would indicate. It need
only be of concern when the important loads on a structure are

subject to nearly complete fluctuation.



205G, 1

-18

V. SUMMARY (TABLE3)

Using the deflection-rate criterion, experimental values

of the ultimate load, Py were obtained which are in good

Obs., value —
agreement with theoretical predictions( = 102 to 105%)
Theor. value

Due to point loading and strain-hardening loads increased
beyond the computed ultimate load, A true "ultimate"
load could not be obtained within the limits of the test

set-up.

For the tested structure the theory underestimated the

stabilizing load (Obs° value 109%)
Theor., value

However, the actual difference between stabilizing and
collapse load of 13% is still considerable. It should be
taken into account whenever complete load removal takes

place,
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Table 1
Test Program - 4 WF13 Shape
Test No. Loading Type Loads Remarks
P-1 Proportional Two equal loads See Fig. 1
pP-2 Proportional Single load See Fig. 2
c-1 Cyclick Py = 17.0%
C=2 Cyclic* P1, = 1%.75k; lS.Ok;
15.25%; 16,0k,
c-3 Cyclick P, = 14,0k; 15,5k
* Loading Cycles ¢$i $¢L
Step (a) e 75 2>
rd o
} .
Step (b) A o 5
R S
Step (¢) st
1K *Fl
Step (d) oy ¥ 5 . N
&E. ¢R.
.Step (e) = A - A 7\

Step (a)
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Table 2

Flange Tension Coupons

Yield Stress:

71 : G, = 39.30 ksi
T-2 3 Ty = 38.65 ksi
T-3 3 Uy = 37.40 ksi
T-4 ¢ Uy = 38.80 ksi

Material Properties:

Modulus of elasticity (assumed) E = 29.6 x 103 ksi
Yield Stress (average of coupons) (7; = 38.5 ksi
Geometrical Properties:
Flange width b = 4,117 in.
Flange thickness (tapering) average t = 0,366 in.
Depth d = 3.808 in.
Web thickness - w = 0.2906 in.
Section modulus (weak axis) S = 2.073 in,3
Plastic modulus (weak axis) Z = 3,143 in.3
Moment of inertia (weak axis) I = 4,269 in. 4
Shape factor f = 1,516
Section PPOperties of Shape:
Yield moment My = 79.83 in. kips
Plastic moment Mp = 121.0 in. kips
Curvature at initial yield @y = My/BI = 0.63 x 1073 rad./in

Available elastic moment range AMy = 2My = 159.6 in. kips
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Table 3
Summary of Test Results
(a) Proportional Loading, P, (kips)
Theoretical Observed
Simple Pl. | Equalization | Defl. Crit. Defl., Rate
Test Theory of moments Massonnet(2) | Criterion
Obs, Obs, ’ Obs.,
Theor, Theor. Theor.
P-1 (case a) 16.81 16.00{ 95.2% 17.58 | 104.6% | 17.08 | 101.6%
P-2 (case b) 16.81 18.00| 107.1%| 17,78 | 105,84 | 17.68 105.2%
(b) Proportional and Cyclic Loading, P, and Pgq
Pu kips Pg kips PS/Pp
Simple Plastic Theory 16.81 13.7 81.6%
Observed (deflection- 17,08 14,80 86.8%
rate criterion) Obs. = 101.6% Obs., = 1087
Theor. Theor.

P—
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