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SYNOPS IS
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Present day analysils and design of contimuous structures
as defined by specifications and deslgn codes are based on an
assumed elastic behavior of the structure. The criterion of

the design in most cases is the attainment of an allowable ex-

treme fiber stress. While a design that results from using

such a procedure will be safe, the actual degree of safety is
unknown and may vary between extreme limits,

Recently, a differént type of analysis based on the
maximum carrying capacity of a structure as a whole has "come

of age", This new procedure known as "plastic analysis" or
Y

"plastic design" gives a clearer insight into the actual strength

of structures and therefore promises a more economic usage of
materials. It should also be noted that the procedure is
rational and has proven to be time saving,

After listing the baslc assumptions of plastic analysis,
this péper presents a method whereby complex multiple span
frames can be readily designed, Several design examples are
carried out.: The problem of economy in main member is also
discussed and procedures are presented whereby the design of a

M east weight" structure can be approached,
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I, INTRODUCTTION

During the past several years much attention has been
“directed toward the method of structural analysis and design
known as Plastic Design. In essence, these procedures have as
their end objective the determination of the load at which a
structure becomes a mechanism through the development of "yield"
(more often referred to as plastic) hinges at points of maximum
moment throughout the structure. This reduction to a mechanism
corregsponds to the maximum carrying capacity of the structure

provided certain conditions are met. According to the simple

¥

plastic theory, these ares™
(a) The momentmcurﬁature relationship for the
material and cross=seotion in guestion is
as shown in Figure (1) that is, as moment
approaches its full plastic value, Mpg
curvature increases at an ever increasing
rate;
(b} The strength of the structure can be suff-
| iciently defined by considering a first
order theory: that ls, equilibrium is
formilated in the undeformed position;
(c) No instability will occur before the attain-
ment of the full plastic load;
(d) DNo influence of axial thrust or shear is

considered;

The degree to which "practical structures" meet these require-
ments and the methods of modification for including the in-
fluence of certain of these facltors have been discussged in
several papers. See for example References 5 and 10,

e
)
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(e) Continulity is assumed at connections; that

i1s, there 1s a known amount of maximum
moment that can be transmitted through the
connection; and

(f) All loads are increased proportionally (see

Figure 2),

As shown in References (1} and (2), the necessary and
sufficient conditions for a plastic analysis solutlon are as
follows:

(a) The structure must be in equilibrium,

(b} The moment at any section must be less

than or equal to the fully plastic moment,
that 1s, [M] = Mp, and

(¢} A mechanism must be formed.

SeVeral approaches or procedures could be used to arrive
at a solution tﬂat will satisfy these conditions, The more
noteworthy among these are (a) the Statical Method, (b) the
Mechanism Method, (c) the Method of Inequalitles, and (d) the
Moment Balancing Method. Consider each of these individually.
(8) Statical Methoa(3), (L)

For continuous beams and certaln other problems, it is
possible to viéualize from the outset the general paftern that
the ultimate carrying capacity moment dilagram must take, A
plastic analysis soiution could therefore be obtalned by ad-
justing the magnitudes of the maximum moment values of this
diagram always keeping |M| = M, until a sufficient number of
plastic hinges had been developed to reduce the structure to a

mechanism. This method is a simple and relatively fast means
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of solving continuous beam problems, It can also be effectively

used in the solution of certain types of frame problems where
only a few redundants exist. The solution to more complex prob
lems by this method, however, becomes extremely complicated.

(b) Mechanism Method(>) s ()

The mechanism method of solution approaches the problem
from an entirely different point of view. Since the structure
will fail at its first opportunity, a systematic investigation
of each of the possible failure configurations and a determina-
tion of the corresponding critical loads will enable one to
select the lowest of these and thereby the correct solution.
Since a procedure of this type gives a upper limit (or bound)
to the true carrying capacity of the structure(s)s it is nec~
essary to determine a lower limit in order that one may be
certain of the correctness of the assumed answer, This is
accomplished by the establishment of the moment diagram (Plag-

ticity check). If the moment value nowhere exceeds M, the

P
assumed sofution is the correct one, since each of the three
necessary condltlons will have been fulfilled.

. This type of procedure 1s very general and lends itself
readily to the solutlon of extremely complicated problems. It
will be used in the development of the solution to the gable

frame problems that will be discussed later,

{c¢) Method of Inequalities(7)

Since it is known that a member can sustain a moment

equal to or less than its full plastic value, a set of linear

inequalities could be written for each of the points of possible

plastic hinge formation within the structure. By combining and
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eliminating these Inequalitles the correct soiution can be ob-
tained, While thils type of prosedure is elegant, a computer
is recommended for the solution of the more complex problems,

(d) Moment Balancing(8),(9)

As in the casse 6f elastic design a successive relaxation
of moment values could be carried out for plastic design taking
into account the plasticity condition, [Ml = Mo For plastic
analysis or design by this method a much greater degree of free=-
dom is allowed the designer thénvin the elastic case.

In this report the mechanism method will be used to plase
tically desgign single and multiple span gable frames. The re-
sults will be given in curve form and design examples will be

carried out to 1llustrate their use.

II., SINGLE SPAN PINNED-BASE FRAMES

Since the mechanism method assumes a possible fallure
conflguration from the outset, one of the three necessary cone-
ditions for g plastlc analysis solution is automatically ful-
filled if this method is used, If In addition a virtual dis=
placement type of procedure is employed to relate the external
loads to the internal strengths of the various members, then
equilibrium is also satisfied.” By investigating sll of the
possible modes in which the structure may fall, the third re-

maining condition can be satisfled., As was pointed out earlier,
* It should be pointed out that such a procedure assumes that
the structure and the applied loads are in equilibrium at the
instant the mechanism is formed. Therefore, the increase in
internal work assoclated with the virtual displacement will
equal the corresponding external work, Furthermore, the in-
crease in internal work will take place only at points of
plastic hinge formation since only at these points will ine-
creased rotations occur,
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this can also be checked by computing for the assumed correct
solution the moment diagram of the structure. If it nowhere

exceeds the full plastic value, (that is, -My 5 M # My), then

9
the correct answer has been obtalned.

Consider the pinned-base, gable freme shown in Figure
(3). The span length is "L", the height of the columms is
"aL" and the total rise of the rafters is "bL", There is a
uniformly distributed vertical load of "w" 1bs/ft. acting on
each of the rafters as well as a concentrated horizontal load P
acting at the eave, It 1s assumed that both the rafters and the
columns deliver a given Mp value in the presence of whatever
axlial thrust may be actingo<10) As shown in Reference (11}, such
an assumption will result in a minlmum total weight of sitructure
for a majority of the cases found in practice,

To ascertain the possible failure configurations, it is
first of all necessary to locate the points of possible plastic
hinge formation. 8Since these can occur only at points of zero
shear, at corners or where more than two members join; the
possible plastic hinge locations for thls problem are as shown
in Figure (L). They have been numbered (1) through (5). It
should be noted that the exact locatlons of hinges (2) and (l)
have not been specified. These would be determined by mini-
mizing the resulting expression for critical load, or in the
case of‘design maximizing the required Mp value for the given
loading.

Since for the case in question, only two plastic hinges
are needed to reduce the structure to a mechanism, there are

ten (10) combinations of these filve possible hinges that could
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result in failure. This follows from

Cy = (NMN—IHN—ig["(N‘R+U ____________ (1)

where pCy is the number of possible combinations of hinges, N
the number of possible plastic hinges and R the number of hinges

required for "failure", For the problem in question

C = 5@
275 (2)

:10

The combinations of hinges would be 1-2, 1-3, 1=l, 1-5, 2=3, 2-l,
2-5, 3-L4, 3~5 and L4-5.
By determining the critical load corresponding to each

of fhese ten possible failure configurations, all possibilities
of failure will have been examined and the lowest critical load
will be the correct solution., It 1s possible for the problem
in question, however, to exclude certalin of the combinations as
being virtually impossible from the outset., For example, for
hinges to form at locations. (1) and (2) a part of the applied
external load would have to do negative work; that is, the
: struqture would have to move against the load., 8Since the
gtructure will in general fall In as easy a manner asg possible,
it ﬁould seem more probable that the external loads should do
positive work during failure, and for the majority of single
span cases, this 1s found to be true.

| A somewhat different approach for determining the possible

failure mechanisms is that illustrated in References (5}, (6).
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If it 1s assumed that the structure will fail as whole®™, then it

can be shown that there will be (N-X) independent modes in which

the structure may fail. The condition can therefore be written
~Number of Independent Mechanisms = (N = X) .cececocscamnoe (2)

As to what is termed independent, full freedom of choice is left
‘to the individual. For example, for the problem in question,
there are five (5) points of possible plastic hinge formation.
The structure is one (1) time redundant. Therefore,

Number of Independent Mechanisms = (5 -~ 1) = I

Four possible independent mechanisms are shown in Figure (5).
It 1s obvious that these are independent since in each case a
"iew" hinge is involved.

To complete the solution of the problem it is necessary
to determine the critiéal load corresponding to each of these
aséumed independent mechanisms. PFurthermore, all of thelr comb-
incations must also be examined. As an 1llustration of what is
_meant by a comblnatlon, consider a failure configuration con-
1sisting of a combination of the mechanisms shown in Figures 5(a)
and'S(b). If the structure shown in Figure 5(a) is assumed to
"sway" to the right and that shown in Figure 5(b) to the left,
oné can conceilve of a composite mechanism of these two assumed

independent cases which has hinges only at locations (1) and (2).

*For the single span structure in question, if failure occurs in
any manner whatsoever, it will fail as whole. For other struc-
tures, for example, a :-two~span frame; it 1s possible for a part
to fail and the remainder to be below 1ts maeximum carrying capa-
city. It should be recognized that such a condition does not
repregent the most efficient use of material.
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This then 1s a possible fallure configuration that must be in-
vestigated, It should be noted, however, that for such a fallure
to occur the horizontal force P will have to do negative work.,
Such will also be found to be the case for the other combinations
of the chosen independent modes. Therefore, an investigation of
only the four cases shown in Figure (5) should give the correct
solution. To be absolutely certain of the result, however, it

is advisable to plot the moment diagram for the assumed solution.
If it nowhere exceeds My, then there is no question; all three of
the‘necessary conditions for a plastic analysis solution will
have been fulfilled.

The question i1s immediately raised as to what happens if

more hinges develop than the minimum number required to produce

a mechanism. For example,.consider the case where hinges form
at (1), (2) and (5). Since only two are required to reduce the
structure to a mechanism, the structure at fallure is "over-
determinate", In considering the geriousness of this situation,
agsume first of all that instead of having an Mp value at loca-
tion (1) that there was a value of lolMp. For such a case, it
'is obvious that failure would be of the (b) type shown in Figure
(5), since a plastic hinge would not develop at (1). If, how-
ever, location (2) had the increased strength, failure would
havé been of the (a) type. Since this line of reasoning holds
regardless of/how small the increase in strength above the Mp
value; ahd since it 1is inconceivable to think that an infinit-
esimal increase in member size at a given location can mater-
ially change the carrying capacity of the structure; the critical

loads computed using either mechanisms (a) or (b) should give
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identical%answers. This is found to be the case. Furthermore,
when polotting the moment diagram, Mp values will be observed

at each of the points (1), (2) and (5) regardless of which
‘agsumption of‘failure was originally mnmade.

Proceeding then to determine the critical loads for each
of the chosen independent mechanisms shown in Figure (5}, con-
sider the mechanism shown in Figure (6}, If the columns are
assumed to be subjected to a virtual rotation about their base
equal to O, the horizontal force P will move through a horizontal
distance (G)(&L). The distributed vertical load, on the other
hand, will remain at a fixéd vertical height (assume a first
order movement). It therefore does no work during failure,
Interna11Y:‘each of the plastic hinges at the tops of the columns
rotates through a virtual angle 6. The work expression associated

wlth the assumed virtual displacement is therefore
Wext = Wint

P (aD) (0) = 1, (6) + 1 (6),

or the critlcal load corresponding to this failure configuration

is | 2 Mp
Raiarye e (3)

For the solution of the mechanism shown in Figure (7), it
is desirable to use the concept of the Instantaneocus Center of
Rotation to aid in the definition of the geometry. The readsr
is referred to Lecture (6) of Reference (10) for a detailed dis-
cussionbof this procedure.

‘Assuming that the horizontal distance from the left hand
(windward) column to the plastic hinge in the left hand rafter

ig AL, it can be shown that the vertical distance from the top
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of the right hand column to the instantaneous center of rotation

of the rigid bar connecting plastic hinges (2} and (5) is
a
iz - & + 2b)

If now the structure 1s subjected to a virtual displacement,

all angles may readily be determined from simple geometrical

relationships. Assuming that 6g = 6, linkage (2)=(5) will

rotate about I.C., with a value 7

6, = o alL. -0 a D)
he {M%-a+2bj L-—m+i%a}

Since the top of the right hand column must move through the

same horizontal distance as point (5) of linkage (2)-(5).

Similarly,

_ I S
6y = 9{1-a+%m} | (5)

Since at plastic hinge (2) the member must rotate through both

the virtual angles 6, and €1 g , and since at hinge (5) it rust
rotate through ©1 o, and 6p

1
B, = O |l—m— | e e 6
2 elii—(x"'z—bo(jl ()
a
and
b
I+ 279
@5.::@ S
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At each of these locations the full plastic hinge value, Mp,
acts. Therefore, the total internal work associated with this

agssumed virtual displacement equals

Externally, the loads must be considered in parts, For
example, the horizontal force P acts on the linkage (A)-(2).
Since the instantaneous center of this linkage is at (A), the
horizontal distance through which the load moves during the
virtual disturbance equals the rotation at A, that is, 0, times
the vertical distance from (A) to the load. That part of the
verticsl load to the left of hinge (2) also rotates about point
(A, Therefore, its external work is computed as %W(OQ'L)a 9p.
Correspondingly, the Vertical load to the right of hinge 62)
rotates about I.C., since it ‘acts on linkage (2)-(5), which
has its center of rotation at I.C. |

The total virtual work expression for this assumed

failure condlition is therefore

wext = Wint

| - wl? 2 71—« W () _ohol
—_—l et =2 (1) |
P(aL)e[l—-‘o(+—2fab(x:|+ > () Q[l—o(-t— —ggb—O(:l+ 2 (1 )Qli1 ot Zb(le

1 1 +-%?a
=MPQ[]_—O(+%bO(+ 1“0(+£a—b—0k ***** - (8)

Noting that each of the external work terms contain a whk®/2

except that for horizontal force, equation (8) can be
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reduced to

Mp . ,4_[<1—°<><A+°‘>} ________ (9)
4 I+ 2

providing the parameter "A" is chosen according to the equation

A = Za(-v%) ——————————— (10)

That is,
P (8L) = (A) (WL3/2)  — - mmm e m (108)

It will be noted that equétibn (9) is in terms of the
unknown distance &L to the plastic hinge in the left rafter.
S8ince &« 18 an independent variable and since the structure
will fall at its first opportunity, the correct o distance

will be determined from the expression
= 0 @ — (11)

Equation (9) is of the general form "u/v". Therefore,

the differentiation will be according to the formula

J (%> _ vdu_\:zudv

But since this expression will be set equal to zero,

vdu -udv = 0 | | ———— — == — = — — — — (12)

Performing this operation on Equation (9), the correct "o "

distance is then



205.56 ~13

a>:f;;-iJ1e-§[A<1+ b)q] -1 ) |
for gé >0
and >~ (13)
O’:[iéé], for ID/a—o

The mechanism shown in Figure (8) is a special case of
that, given in Figure (7), where o is set equal to 1/2. The

aolubion for this case is therefore

\)P

1
Mp LAt F e (1)
LR

Similariy, the failure configuration shown in Figure (6) is a
specilal case of Figure (7) with o =0, The resulting expression

for IM,/wL® would be

iz ‘1_

WL

Mp :{A.J ________________ (15)

This corresponds to the solution given in Equation (3).
Golng through the same process for the mechanlism shown
in Figure (9) as was done in the case of Figure (7), it is

found +that
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%[g:zi{o‘l(:o;fm} . (16)
i + -a~0(
where i B |
/om —— b -
o = J1+£[1+A] 1 -
a3 L ?
for = > 0
and > —— = an
|r§+ ] b |
= = ?_‘JI , for 7 =0

The problem now is to determine which of equations (9),
{1hy, {15) or (16) requires (for a gilven loading condition) the
largest plastic value®, This will in general depend on the
value of b/a and A under consideration. By assuming various
values for these parameters and solving each of the equations
for the corresponding Mp/’v\rL8 value, ranges of applicaebility for
each equation can be determined, Carrying out such a procedure
it is observed that only equation (9) and its special case,
eguation (15}, govern the solutions., Plotting the resulting
values of b/a versus A versus Mp/WLa, the design curves shown
in Figure (10) are obtained, Belowuthe dashed line in this
figure, Equation (9) governs. Above the line, Equation (15)
defines the solution., The corresponding X values are shown in

*Since Equatlons (1l) and (15) are special cases of Equations (9)
and/or (16}, only these two equations need be consgidered.
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It should be noted that for a value of A=0; that is, no
horizontal load: the structure may "sway" either to the right
or to the left with equal ease, As a consequence, plastic
hinges will develop symmetrically at each of the locations (1),
(2), (L)} and (5). To show that such a failure mode will result
in the same value of Mp/wLa3 consider the fallure mechanism shown
in Figure (12). Noting that the center part of the rafters; that
is, linkage (2)-(L}; will move vertically'downward, the instant-
aneous center of linkage (1)-(2) will be vertically above (1)} at
a height equal to fhevheight of hinge (2). A similar condition
will exist for linkage (4)=-(5). Going through the process of
equating external work To internal work as described earlier,

it will be found that the equation governing this failure mech-

aniasm is
Mp ! {o((l—o()J (18)
=7 | 4k | T
w 4 11+ =
Wh@l”e
N
L [ +.b
c><—-% <a) 1 , for =— >0 ‘
> ——— (19)
and
_ 1 b
AR = 5 for =0

This solubtion is the same as Equations (9), (1L) and (16) for

the cage where A = O,
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If the horizontal load scting on the structure in question
is distributed rather than concentrated, a conservative Mp pre-
diction (suitable for design) can be obtained by selecting an
effective value of P for the concentrated load problem (Design
Curve - Figure 10) which has an "over-turning" moment about the
base of the structure equal to that of the distributed horizontal
load., (This will be true providing a hinge would not have dev=
eloped 1in the left hand column; a condition which will not occur
for the majority of practical cases.) For the notation shown in

Figure (13},

K\NLZ 2 |
Pere (a).) = ——2—"’( a+b)yf —————— (20)

But for use in the deslign curves of Figures (10} and (11), it is
not necegsary to explicitly solve for Pepp and then determine the

corresponding "A" value., This can be done in one operation,

2 LZ
P (AL) = A WZL - Y2 (ate)?

or

A =r@a+b)? o ——

To show that such a prediction will be on the safe side,
consider Figure (1lL). Assuming that the location of the hinge
in the left rafter is the same as it was in the concentrated
load case (see Figure 7), the internal work at each of the
corresponding hinges will be i1dentical. Therefore, a qualita-
tive comparison of only the external work dué to the two
asgumptions of horizontal forces will give a means of proving

the above statement. By making the "over-turning" moment of
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the Pgrp system the same as that of the distributed load case,
it is assumed that there 1s a linear increase in virtual hori-
zontal deflection from zero at the base of the left hand column
to a maximum value at the upmost point of the rafter., But as
seen in Figure (1l) this is not true for the distributed case;
above the plastic hinge in the rafter the rate of virtusl de-
formation decreases. Therefore, by making the overturning
moments equal, more external work 1s introduced into the system
than will actually occur. (Note the heavily cross-hatched re-
gion of deformation shown in Figure 1l). Thus, a design based

on this aggsumption will be conservative,

IfI. MUL T I -8 PAN, PINNED-BASE FRAMES

1, Direct Procedurs

Having solved the pinned-base, single-span, gable frame
problem for the assumptilons listed; and having found that for
a major range of variables the mechanism that will control the
design 1s the one where hinges develop in the windward rafter
and at the top of the right hand column; a logical first at-
tempt at a mechanism for the multi-span problem might be that
shown in Figure(lSl For the two-span problem shown the lengths
of span, heights of columns and total rise of rafters have been
chosen equal, Furthermore, the plastic strengths, My, of each
of the spans are also asssumed to be equal. It cannot be
agsumed, however, that the distances to the hinges in the wind-
ward rafters willl correspond. The resulting expression for Mp

will therefore contain the varlables o and B; and since each

of these are independent, two separate differentiations {(one of
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M
aﬁp— =0} will be needed to

solve for the correct K and ﬁ values.

3
the form agP_ =0 and the other

The consistent virtual rotations as determined from a
consideration of the instantaneous centers shown in Figure (16)

are as followsgs

6. = 6 -
By = 6F
- 1 -
Op= 69
1—o<+36Tbu | S (e
I
QICI—Q? ] — &+ 2bg
a
Yol
Ore,= O _ b
2 I -B+325
Where
SD"" 1’&
1-B+2bp -

Using the same notation as previously described (that is,

AT e WLz 3 . M 2
Pal=A “"’2") s the resulting expression for Mp/wL® is

---(23)

MP _ = (2= 2B - BB A0+ 3K +ﬂ«p<2+2a—b<><ﬁ+ %b/s’o( +A-AB - A —é«o(/f

|
=— N b b2
w2 4 2-/3+ —% o —%bo(/s—d*"a‘ﬁ*z(?{)"(/f’
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Needless to say, the differentiation of this expression and
subsequent solution for X and ,3 is somewhat involved. More-
over, even 1f an expliclt solution of o and /[ were. obtained,
it 1s questionable if such an equation as (23) could be used

in design.

Another possibility, however, exlsts. Assuming that the
loading and geometry of the frame are given, the variables in-
volved are (X 9/6 and Mpo An implicit differentiation of.the
work expression rather than the explicit one considered above

may lead to an easier formulation of the :solution.

As shown on page 138 of Beference.(ié); if a function

F(Mp, o, s)=0 ——=—————————— (2ly)
M M o
is gilven; and if 1t is known that E;ME- =0 and {%gﬂ =0, then
it can be shown that
e
SF
== =0
X F —_—— e — —— — (25)
Sk _
/3 0 7

Consider now, for the problem in question, the work ex-

pression in the implicit form. That is,

F=Wing - Wext = O
Noting that all of the angles, and thus the work expressions,
for the left hand span are multiplied by ? , I can be written

a8

F(Mp, &, 5)=§ [R(MP, «)| +9tMp. ) =0
or dividing through by ‘9 (which is a.function of /3 alone)

F(Mp,d',ﬁ)=R(MP,O(')+S(MPr/3>=O —-————= (26)
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This 1indicates that the function F is made up of two separate |
partss: the first which 1s a function of ﬂpand X alone, and !
the second which contains only Mp and /3 as variables, Diff-
erentiation of this new expression (Equation 26} according to
Equation (25) is more easily obtained than the explicit diff-
erentiation of Equation (23) discussed akbove,

It should be remembered that only one possibility of
fallure has thus far been considered for this two-span problem,
To solve a particular strﬁcture in question other modes would
also need to be examined to determine the one that would act-

ually develop.

2. Solution by Separation

Based on the preceeding discussion, 1t can be reasoned
that since for the problem under consideration the variables
separate into two groups (one having to do with the loading
and resistance of only the left hand portion, the other con-
cerned with the right hand part alone)} a solution might be
more readlily obtained by mentally dividing the structure into
two parts. A solution to the multiple span case could then be
realized by solving each of these separate parts in terms of
the loading parameters at the cut section and then in the
final stage equating these parameters, If this division is
made at the junction of the right hand rafter of the left
structure and the center column, the loading condition will be
as shown in Figure(l?%

For the left hand structure (Flgure 17a), the equation

for Mp will be of the form

My = (P, w, H, dimensions) — — — — — — {(27)
P 3 B
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It should be noted that the structure does not move 1n the vert-
ical direction at the cut section for the assumed virtual dis-
placement (first order movement). Therefore, V will not appear
in the solution. The equation for the right hand sub-structure
will be

M@ = g(H, w, /3 dimensions) —— — — — — — — (28)

Had the plastic strength of the right hand part differed from
that of the left, there would have been an additional term in
Bquation (28) relating these two.

As the structure deforms consistent with an assumed
virtual displacement, both M, and H do work. However, for the
two parts to be in equilibrium when the structure is "put to-
gether" 1t 1s necessary that the right hand structure be loaded
with the same amount of work that i1t transfers to the left hand
portion ags a result of its resistance to movement. Since it
is "work done'" that is important, the actual moment and force
that develop at the cut section are not of primary concern and
can bhe replaced by some hypothetical moment assumed to act
about the base of the structure®™. Furthermore, noting from
Figure(lB)that these two moments, @, and Qg, rotate through the
same angles during the virtual deformation; all that is re-
quired for the two works to be equal 1s that the two hypothet-
ical moment values be equal.

For further ease of solution it will be assumed that the
%It showld be polnted oub that such & procedure 1s true regard-

less of the division of individual terms. What essentially is
being done is to take one expression (the work equation for the
structure as a whole) and through the introduction of an addi-

tional parameter (Q) rewrite 1t as two parametric equations.
For example, if a function is given as

x+y+n+ V=0,
it can be rewritten as two equations by introducing the addi-
tional parameter, z., That is

X+ y+z=0

n +-l. » =0
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total amount of internal work done at the plastic hinge in the
rafter édjacent to the center column is done on the left hand
gtructure. This has the advantage that the right hand structure
will then be subjected to only the loading on the right hand
span, the resistance of thils span and the hypothetlcal moment

Q,; whereas, the left hand structure will be subjected to only
those things occurrring in its span and the hypothetical moment
Q. The strength of each of these structures could be determined
in terms of these "Q" moment parameters which could then be
equated to solve the problem in question.

If a structure and loading as shown in Figure (19) are now
asgumed, either of the two possibilities shown in Figure (18) can
be represented. For case (a) (left hand sub-structure), Q, would
be chosen equal to (P) (ak). For case (b), Qg would be equal to
zero., A general solutlon for the strength of this structure
which includesg the variable moment and loading terms and which
congliders all possible modes of failure will therefore afford a
means of solving the general multiple span design problem.

When using such a procedure as described above no possi-
bility of the dévelopment of a plastic hinge in the center column
is considered. For relatively large horizontal thrust, however,
it will be found that the moment at the top of this column will
exceed the Mp value, Fpr such a case, it is obvious that the
investigated mechanism is not the correct one and the corres-
ponding value of My is too small, The actual failure mode that
would develop would more than likely be the one where hinges
form at the ﬁops of the right hand and center columns, in the

right hand rafter of the left hand span adjacent to the center
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column and in the left hand rafter of the left hand span. Since
the solution of such a fallure pattern would result in a greater
Mp value for all of the members of the structure, the new design
would in almost all cases be less economical (in terms of least‘
total weight of structure) than that design based on the assump-
tion that the center column can supply whatever is needed. (Note
the relative length of the center column in comparison to the
total lengths of the remaining members of the gtructure)., From
economic congiderations, then, the fallure mode having a hinge
at the top of the center column will be excluded from consider-
ation. This does not, however, exclude the possibility of
-gselecting the slze of this "center type column'" such that a
hinge develops ét the same load which produces failure in the
remainder of the structure. In such a case the exact size of
this member would be determined from a moment diagrem for the
gstructure as a whole,

3. Development of Design Charts

To be able to solve all types of multiple span problems
by this method, 1t i1s necessary to ascertalin all of the various
possible sub-structures (or assemblages) that can occur. For
example; if a three span symmetrical gable frame were subjected
to only vertical loads as shown in Figure (20a), the two types
of sub-structure failures shown in Figure (20b) could occur.
(The exact location of the hinges is not critical at this
stage., What 1s Important to note is that for the center span
each of the columns spread an equal amount away from each other
during the fallure, The outside span, on the other hand, falls
as agssumed in the preceeding problem with both columns moving

in the same direction.)
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Had the structure under consideration been a four span
symmetrical frame as shown in Figure (20c), the center two spans
would have failed with their outslde columns spreading. Due to
symmetry, the center column would remain verticel., A fourth
type of failure condition results when a three span, unsymmet-
rical frame fails. For such a case the center two columns may
spread through different angles, Therefore, this condition must
also be investigated.

The five types of sub-structures and loadings that must be
congidered for the solution to pinned-base, gable frame problems
are therefore as shown in Figure (21).,. By selecting a value of
the left hand "Q-moment" in case (b) equal to the moment pro-
duced by the concentrated horizontal force of case (a), these
two problems reduce to one., The equations governing their
gsolution are tabulated in Appendix A as equations (1) through
() and (8) through (12). For cases (c), (d) and (e} of Figure
(21),‘it can be shown that each reduces to the'Same solution(13).
'Furthermore, it can be shown that in each case the moment to the
left, Q, must equal that to the right, Qg. The governing
equations are given as Equations (5), (6) and (7) of Appendix A,

As in the single span case, non—dimensibnal parameters
have been introduced to relate the overturning moments, Q, and
Qmp, to the vertical loads and span lengths. These have been
chosen according to the relationships |

Q= ACEwk®)
and |

| C}Rzz D( %‘V¢L?)‘
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It will be noted that the equations in Appendix A are in terms
of these parameters,

The resulting deslign curves of MPXWLg versus A versug D
for various values of b/a (0, 0.2, 0.4, 0.6, 0,8 and 1,0) are
given as Figures {(22) through (28, The corresponding values of
"OLM yersus these same parameters are shown in Figures (29) - {35)
Also ghown on these curves are the ranges of applicebllity of

each of the types of fallure,

IV, DI S CUSSIO0ON

The discussion will be divided into four parts: a general
consideration of the design charts for maltiple span structures,
the size of "center-type" columnsg, the question of safety and
the 1load factors for use in plastic deslign and the problem of
éoonomical deslgns.

1, The Design Curves (Figures 22-35)

It should first of all be noted that when D=A (Figures
22-27) the structures can "sway" with equal ease to the left or
to the rightb Therefore, hinges will develop symmetrically and
the solutiéns will equal those ghown in Figure {28) for the case
where the columns movs away from seach other, It should further
be observed that this condition (D=A) represents the smallest
Mp velue for the apan in guestion. No solubtions exlst below
these values unless tiles are used connecting the eaves which
prevent their spreading., (For such cases a "beam type" mech-

anism would control the design and the design values would be

for b/a = 0, ijwL% = 0,0156
b/a =0, Mp/wL% = 0,0625

These are the absolute lowest valuss of My possible,) Even for
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such a situation, certsin values of A<D and b/a can cause this
same condition to be rsallzed without the uss of ties, 8See, for
example, the lowest design point on Figure {27

For the major range of variables encountered in practice,
the mode of faillure 1s the one where hinges develop at the top
of the leeward colurn and 1in the windward rafter., It should be
noted, however, that in & muitipie span structure, this hinge at
the top of the leeward interior columns would actually develop in
the leeward rafter adjacent to the column in gquestion rather than
in the columm itself,

As noted eariier, Flgures @9%@5Dgive the location of the
plastic hinge in the rafter as a function of A,D and b/a, This
Information is useful in constructing the moment diagram for the
chosen solution,

2, Determination of the Slize of Interior Columns

The solution to the multiple span deslign problem as out-

that the interlior columns will be

)

e

lined in this report sassums:
chogen such that they provide the strength rnesded to keep the
structure in equilibrium, Thelr size will therefore be deter-
mined from the moment diagram. Since in all cases of design
using these charts the structure will be determinete at fallure,
this presents no difficulty. It 1s ?oasibleg however, to shorten
the amount of time reguired to determine the size of these mem-
bers by relating their meximum moment values to the A and D
parameters discussed earlier. |

As shown in Figure (36), if it 1s assumed that the top of
the columns move to the right in forming the mechanism, a plastic

hinge will in most practical cases develop in the leeward rafter
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adjacent to this column., If it 1s possible to determine the
moment in the windward rafter at this same section (MQ in Figure
36), then the moment required in the column will be

My = WM, o+ MQ (30)

where kMp is the fully plastic moment of the span to the left of
the one in question. See Figure(3@.for the assumed positive
directions, |

For the situation where hinges form in the leeward rafter
adjacent to the leeward column of the span in consideration (the
span shown bold in Figure 36) and in the windward rafter of this

span, it can be shown that

Ma | wlEy A-Dy | ——— (31

A,D, and Mp/wZLa refer to conditions occurring in the span in
question,

3, Factor of Safety

Sih@e'ﬁlastic design results in a structure that will
just sustain the imposed loading, there must be included in the
design load a certain margin of safety above the anticipated
working .value, Acoepting this philosophy, the next step is the
selection of a criterion for determining the numerical value of
this safety factor. |

If 1t is assumed that it 1is desiréble to have the load
factor of safety of a continuous structure equal to that of a
statically determinate one, and if it is further assumed that
an average wide-flange, simple beam designed according to the

present AISC Specificationglu) has an adequéte reserve in strength,
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then it can be shown that the load factors should be as

follows:(lsj
1. Load factor for Vertical Load only 1,88

2, Load Factor for Vertical Load, Wind,
Barthqueake, etc, 1.3

The design requiring the greater member size will be the one
governing.,

A'somewhat different appraoch to the general question of
safety can be based on the philosophy that a structure is no
better than the load analysis. Therefore, this factor should
play a major part in the determination of the factor of safety.
Furthermore, the ability to predict loads 1ls dependent on the
type of loading. The uncertainty in each of the loads making
up the total could also be taken into account.

While the guestion of safefty is Important, 1t 1is not
unique to plastic analysis., It 1s therefore considered that
further discussion in this paper 1s not warranted., For the
design examples that follow the load factors listed above will
be used,

l., Economical Designs

Many factors enter into the selection of an "economical
design", The criterion used in this paper will be "least weight".
As will be illustrated, such a design can be determined in a
gtralght-forward manner through use of the désign charts,

Since in plastic design the quantity mocst often en-
countered is the fully plastic moment value, Mpg it would be
desirable to have an expression relating thils property (or the
plastic modulus which is equal %o Mp/dy) and the unit weight of

the member, Two designs‘could then be compared by summing the

Mp values times the lengbhs of the various members.
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Unfortunately the plastic modulug not only taskes into
account the area of the section but also the moment of this
area, The relationship will therefore not be linesr. Assuming
that 1t will be one of a power, the plastic modulus valuesg for
rolled wide-flange ghapes have been plotted versus unlt weight
on a log-log scale in Figure (37)(16) 4 straight 1line on this
plot would correspond to an egquation of the form

W=(Cc2z? - = — — — - - - - - (32)
where W 1s the weight per unit length of the member, It is noted
that within a given nominal size of member a stralght line re-
lationship does hold. The corresponding n valueg are approxi-
mately 0,90 with C varying befween 5§ and 16 1bg/ft., of member.

If one equatiocn 1s to represent the entire range of member
sizes, n nmust lie between 0.5 and 0.9, Had all members been
geometrically similar 1t can be shown that a value of 0,67 would

be the value of ths exponentoﬁll)

As seen from the figure,

this is also a reasonable value for the entire fange of WF ghapes.
While the absolute difference between an exponent of 0,5

and say 1.0 is extremely large, the net effect on the lsoclation

of the more econonlical choice of member size 1s rather small,

In addition the assﬁmption of equal rafter sizes in a given span,

etc., will often over shadow the difference, Therefore a

one-to-one correspondence between weight and plastic modulus

(or Mp) will be agssumed in the remainder of this discussion.
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V. DESIGN EXAMPLES

l, Design Example No,1l

As a first design example consider the single-span, gable
frame loaded as shown in Figure (38, The b/a ratio for this
structure equals 9/15 = 0,6, Assuming that a load factor of
safety of at least 1.88 against vertical loads and at least 1..41
against combinations of vertical and wind loads is desired, two
geparate designs must be oénsideredo B

Yor the case of vertlcal load glone P equals zero. There-
fore the "A" loading parameter (Equation 10) i1s also equal to

zero, From the design curve of Figure (10) (for b/a = 0.6, A=0)

Mp = 0,0488% — — — — — . _ (33)

Wl ®
This gives as a required fully plastic moment value

M, = (0,0488) [ (1) (1.88) ] (40)®
= 147 ft. kips
= 176L inch kips - —— = — = — = (33a)
Assume now ‘that the structure is subjected to both vert-

ical and horizontal lcads. Tor this case

A = (2a) (P/wl)
= £0.75)(10.7) = g9.20 _ _
SRR 0,20 (34)
From Figure (10)
M
P = 0 0vho o
= 0.0742 (35)
or )
w, = (0.0742) [ (1) (1.21) | (40
= 167 ft. kips '
= 2004 inch kips — — — — — — — (35a)
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*These values were obtained from enlarged versions of the design
curves shown herein.
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Since the required Mp value for the case including wind
is greater than that for vertical loads alone, Equation (35a)
controls the design. The corresponding moment diagram is shown
in Figure(38h. The distance to the hinge in the rafter is ob-
tained from Figure (11)

2., Design Example No, 2

As a second example consider the two span gable frame
shown in Figure(}@@c Here as in Example Noal9 two ' loading cases
will be examined,

Bxcluding the horizontal force, the structure and loading
are symmetrical. The center column will therefore remain vert-
ical. Since D=0 (no external horizontal loads applied to the
outside columns) and since for this type of failure A = D, the

required value of M, determined from Figure (28) is

M
7 = 0,0488 @ — — — — — — — — — —  (36)

This 1s the same value as for the single span case (Degign Ex-
ample No,l). The required Mp value is therefore

Mp = 176L inch kips _—— — — — — — — (36a)
and the moment diagram is as shown in Figure {39b).

Assuming that the wind force could devélopdfrom either
the left or the right, the member sizes should be equal in each
span, The sub-structures and loadings are then as shown in
Figure (403,

For span (1), Aj will be determined from the expression

(P) (ebq) = & (5 wL?)
or
Ay = 020 — —— — — — — — —  (37)
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Since no external horizontal loads act on the leeward side of
gpan (2),
D=0 _——— — - — — — = — (37a)

The condition for a solution is that at the center column>

Dy (§ wL?) = Ay (§ wl®)
Since Ip = Lp, thils reduces to
Dy = A2 - — = - = — — — — — (38)

Consider span (1): Since b/a=0.6 and since A7 is known
to be equal to 0,20, the relation between Dy and Mp/wL® cen
be determined from the design curve for b/a=0.,6 (Figuré 25),
This relationship has been plotted as the solid line in the
left hand graph of Figure (LODb).

For the right hand span, it is known that b/a=0.6 and
that Do = 0, The relationship between Ap and M@/WLE therefore
corresponds to the case D = 0 of Figure (25, It is reproduced
as the right hand graph of Figure (4LOY),

The two conditions for solution as previously stated are
that the two My values must be equal and that Dy = Ap, Since
the coordinate axes of these two graphs (Figure 10b) are iden=-

tical, the graphs can be superimposed one on the other as shown

by the dashed line in the left hand graph., The solution is

therefore
§§g= 0.0575 ——— = = — = (39)
or

il

My = (0,0575) | (1) (L.41) | (L0)?
= 130 ft-kips ’ ‘ )
= 1560 inch~-kips — — — — — — (39a)
Since the larger value of required M? corresponds to
the case where wind is neglected, this condition controls
the design. None-the=less, Figure (LOc) is the moment dia-

gram for the case including wind,
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3, Degign Example No,3
The third design example 18 concerned with the two-span
unsymmetrical frame shown in Filgure (418, Three loading condi-
tions will need to ke investigated: vertical load alone as shown
in Pigure (41b), vertical load plus wind from the left as shown in
Figure (41c) and vertical load plus wind from the right as shown
in Figure (41d)
Case (a}: Vertical load alone (Figure L1b)
Since the Dfs are zero (assuming that the outside columns spread)
and since A will equal D for such failures; that is,
Aq = 0
Dp =0
Di= A7 and Ap= Dp (Failure type (e) of Figure 21);

the solutions as determined from Figure (28) are

span (1), b/a = 0.6, Mp = 0,0488
WL]_2

Mp ~ 9,028

2 b

]
l_.J
(@]

-

Using a load factor of 1.88, the corresponding required Mp values

My 1760 inch kips . 1.
P — = — — —  (LOa)
kM, 3480 inch kips

are

i1

il

Case (b): Vertical load plus wind from the left (Figure Llc}
For this loading case the structure must be divided into two sub-

assemblages. For span (1)

1!

Ay | L wh1 2)

= ‘P (alq)

or
Aj = 0,20 —— —— —— — — (41

For the right hand span
Do

i
O
|
|
|
|
|
|
|
|
|
=
£
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The condition for a solution is that at the center colurn

(D) (L wry® = (ap) (1 wpp®
or |

Ap = Dy (B/Lp)® =o0o.444 Dy — — — — — — —  (41p)
Since’solutions can exist for all value of Dy from zero to 0.20
(the value of Aq), i1t is helpful to set up the solution in tab-
ular form. Table I gives the solution for various selected

values of Dj.

TABLE I
b/a = 0.6 b/a = 1.0
- M 1 . N
Ay | Dy 2o || 42 [ D2 | o0 ME |
0. 20 0 0.0742 0 0 | 0.0428 2010 2610
0,05 0,0630 || 0.022 0.0451 || 1708 2710
10.10 0.0522 || 0.oLl 0. OL.75 1412 | 2890
0.15 0.0L06 || 0.067 0.0502 1100 3050
0. 20 0,0298 || 0.089 .0, 0528 806 | 3220

Case (c): Vertical load plus wind from the right (Figure L14d)
(ﬂdte: since the wind is from the right and since in the deriva-
tions it was assumed that the "AM parameter ls always on the
windward side of the span in questlon, the location of the moment
parameters "A" and "D" will be the opposite to that of Case (Db).)
Ao (l wLo®) = P (al,)

2
or

Lo (30082 - I
f2 7 it M el
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*A load factor of 1l.41 was used in calculating these values.
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For span (1) {(no horizontal load to the left of the span)

D =0 —_——— — — . (lh2a)

The condition for a gsolution is therefore

(D2) ( $uLo®) = (&) ( Fulq®)
or

Ay =Dy (Ly/Lq)® = 2,250 D, — — — — — — (L2c)

The solution for various selected values of D2 ig tabulated in

Table II.
TABLE IT
b/a = 0.6 b/a = 1.0

M kM 3% e

A7 D1 R AD D2 P Mp® kM

: ' WE, w2, 7 P
0 0 0,088 0.112 0 0, 0558 1320 3100
0.112 0, 0621 0.05 | 0.,0430 {} 1681 2620
0.225 0.0780 - 0,10 0.0305 2110 1860
0.252 0.0820 0.112] 0.0277 2220 1690

Figure (L2) is a plot showing the solution to these three
loading conditionss vertical load alone, wind from the left and
wind from the right. Since the structure must provide the great-
est Mp and correspond klMp values, the condition with vertical
load alone {(load factor = 1.88) governs. The required values
are therefore as given in Equation(uOg,

Suppose that case (Db) and (c) above had not been solved
and that it was desired to check to see if case (a) was adequate.
Since the ioad factor for combined wind and vertical loading is

l.hi, the value of Mp/Wle for the first span would be

e e B e e Bt T e D e G N DNt 0 TR G O o OF 61 m £D oo BT Do Gm o B0 DU e OB G0 06 o S D0 0RO G0 B R G o g B9 D oo on 6O S0 e oD en Dn an om £D Uo B O0 S

“A load factor of 1.41 was used in calculating these values.
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M
P = 1760 _
WL 2 T DLy (T600) 12y 0.0650

The corresponding value for the second span 1s

kM
o o 0,0571

wLo®
From Equation‘(ul) it is known that A7y = 0,20. The needed value
of D7 must therefore be 0,04 (from Figure 25). From EBquation
(41b), this means that Ap = (0.44lL)(0.040) = 0,0178 or entering
Figure (27) with this value of A and D = 65 it 1s seen that
kyMp/WLo® = 0.0L448. Since the member required by case (a) is
greater than this value, the case including wind will not be
critical.

With regard to Figure (l2) an observation can be made
that will prove beneficial in the next example, For each of the
cases Including the influence of wind, different sclutions were
obtained vy varying the "D" value of the windward span from
zero to a maximum value equal to the "A" value of that span.
Since the function is continuous, only the two end points
(D= 0 and D = A) need be consldered to determine the range of
influence. Furthermore, the relatlonship 1s almost linear,

i, Design Example No.hv

As a final design example, consider the three span un-
symmetrical structure loaded as shown in Figure (43, To illus=-
trate the procedure, only two cases will be examined., The first
of these will be the case of vertical load alone. Wind from the
left in combination with the vertical load will be.the second.
For a "real" problem wind from the right in combination with the

vertical load would also need to be considered,
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Cage (a): Vertical load alone.

For the case excluding the influence of wind, both columns of

the two outside spans will tend to move away from the center.

The design curves for each of the three spans will therefore be

as follows:
Span
Span

| Span

The known conditions are

D, =

D_’; =

(1), o/a = 0.6 -~ Figure (25)

(2), b/a = 1.0 =~ TFigure (28)

(3}, b/a = 0.8 -~ Figure(26)

O R @ |
0 }> —————————————— (43}

Since the two interior columns will tend to spread, (fallure

mechanism Ye" of Figure 21) it 1s also known that
Dy - —— - — - - — (43a)

‘At the two interior columns it is necessary that the

Ap =

following conditions be met:

!

which gives

A
and

A3
or

A3

(

i

i

L By 1 3

Dp (Lp/L1}® = 2,780 Dp — — — — — — o
-]-2=WL3?) = Do ( %WLEK?)

Dp(Lp/L3)® = 1.562 Dy — — — — — — (La)

The tabulated solution for various selected values of Dp is

shown in Table III., The values of Ay and A3 were determined

from a consideration of Equations (Lk) and (ila),




TABLE IIT

1.0 b/a = 0,6 b/a = 0,8

b/a = | Gpant 2y Span(3)
T e v i Ly JRTe
R - R .
wL2 wleyp © Wl ™ wl™

0 | 0.0428 0 | 0.0468 1,070 10,730

0,05 | 0.0358 | 0.139]0,06h& 0,895 1, B72
0410 | 0,0292 | 0,27810, 080 | ULt 0, 06L5 | 0, 7¢ | us v 2ti {1,032
0,15 | 0.0232 | 0, L17|0. 1105 | 0.23L | 0,07588 | 0,99: o, 980 1,212
0.20 | 0.0175 | 0.556{0,1lle | 0,312 | 0.0884 | 1,272 | 0,437 [1.415

0.22 | 0.0156 | 0,612 001550 0034l |1 0,0939 | 1,395 {0,390 |1,502

A plot of these values 1s given in Figure (il s would be ex~-
‘pected the function is continuocus with extremes corresponding to
the cages where (a) the center span is as small &s possible and
(b) the outside spans have their smallest My, values.,

Assuming that this loading condition {vertical load alone)
‘is the critical one for design;~ ﬁhe questipn iz immediately
raised as to what will be the better cholce of Mp values for the
~various members of the frams, As pointed oul sarlisr, this re-
-port will consider "least tobal weight of structure” as the
criterion,

From the discussion on Economical Desigr ol the preceding
séction, it is assumed that

W=0C (M) — - o — (k)

where W is the weight per unit length .of the menber in gquestion
and C is a constant, The total weignht of any glven beam is

“therefore - ' ,
WLy =C (Mp) Ly — — — — — — — — {45a)

where Li is the length of the considered member, Bince only
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relative comparisons are required, the C of Equation(l5a) could

just as well be tasken to the other side of the eguation, or

WLi = Weight Function =f = (My) Ly —— — — (L5b)

For a gtructure consisting of a number of members, the total

weight function would be

L = S’ (Mp) (Ly) — —— — — — — (L5c)
where n is equal to t;ginumber of}different member sizes within
the structure.

Neglecting for a moment the influence of the interior
columns, the weight function for the three span structure (Case a)

would be

£ =h.23 L (M) + 5.39 L (kqM,) + 5.30 L (kpl,) 06)

Dividing through by whk® to have the plastic moment vglues in

terms of the non~dimensional parameterg computed earlier

K, -
- nasle) s (ie) «so ()

Y

Figure (45) is a plot of this function versus klMp/ML?Q It should
be noted that for failure of the structure as a whole the defini-

tion of any one of the three M values asutomatically fixes the

p
other two. Therefore, a two-dimensional plot is sufficient.
There is also shown as a dashed line in this graph the
relationship between the welght function.and klMp including the
influence of the varying size of the interior columns. These
were determined from a consideration of Equations (30) and (31),

The sizes of the columns are tabulated in Table IV, As noted

from Figure (L5), the inclusion of the gize of these members
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does not change the selection of the "least-weight" design.

While no general rule concerning this condition can be formu-

lated, this

seems to be true for most practical structures.

The "least-weight" design (for this one loading condition)

would therefore be the oneﬁwhere

s

wL®

I

0.44h0

k1M
L2 - 1,070

wL®

kgM

=2 _

—® 0,730

TABIE IV
My Ry My koM, M/wL® M/wL?
wL® wL= wl® Colum(A) Column(B)
0,440 | 1,070 | 0.730. 0,630 0,340
0,591 | 0,895 | 0,872 0.929 0.617
0,795 ,730 | 1,032 1.186 0,947
0,995 .580 | 1.212 1.462 1.240
1,272 37 | 1.415 1.667 1.520
1.395 | .390 | 1,502 1.749 1.640 |
Case (b): Vertical load plus wind from the left.

Since for this condition of loading all spans tend to sway to

the right, the design curves governing the solution are as

- follows:

Span (1), b/a = 0.6 Figure (25)
Span (2), b/a = 1,0 Figure (27)
Span (3), b/a = 0.8 Figure (26)

mho
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The known conditions and the requirements for solving the
problem are:

a) Ay (HL1?) = P (L) or Ay =0.20 . . . o (47)

b) Ay (Fuln®) = Dy (SL,®) or Ay = 0,36 Dy © o = (18)

-

O) A3 (%WLBQ) = D2 (."é}i/\TLzzj or AB = 1056 D2 ° o ° (_LL?}

d) D3 =0 o 6 o o o o (50}

In setting up this type of a problem, it is recalled
that the solution will be a continuous function in the three
variables, M,, kM, and kpMy, Furthermore, if A is gilven
for any one particular span, D in that span can vary from a
value of zero to the full A value. The "least-weight" solu-
tion (for that one span in question) will correspond to the

case where A = D,

Since the total strﬁcture in question containg thres
spang, three limiting cases are apparent: (1) spans 1 and 2
as small as possible, with span 3 providing what is nseded
for equilibrium; (2) spans 1 and 3 as smali as possible,
with span 2Vmaking»up the difference; and (3) spans 2 and 3
small, with span 1 as large as need be, The solutions for

. these three cases are tabulated in Table V.
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TABIE V
1 2 3 Iy s | ¢
A I PO VO e S Y
1| 0.2 10,0298 | 0.2 | 0,072 |0,0330 | 0,072
2| 0.2 {0,0298 | 0,2 | 0,072 | 0,0508 | ©
3 0,2 {0,072 | © 0 0,0L28 | ©
7 8 9 10 11 12
A kgMp 5 Mp kll"fp kgl“’lﬁg‘
3 WLBE 3 wL= wL? wl,®
110,313 10.0588 | 0 | 0,268 |0.825 |0,940
2| 0 |o.0u55{ 0 |0,268 |1.,270 {0,728
31 0 |0,0455| O | 0,668 | 1,070 {0,728

These results (plotted as péints 1, 2, and 3) as wsll as
intermediate véluesp are shown in Pigure (16}, For a solution
to exlst which causes the structure to fail as a whole, the
design must fall within the region shown. As pointed out
earlier, the boundaries of this region are almost stralght
lines (one is a straight line). They each represent the
case where one of the spans ié maintaiged in its minimum_Mp
condition (i.e., with A = D). |

Proéeeding now to determine the particular values of
My, kpMy, and kplf, that result in a least total weight of
étruéture solution, the weight function neglecting the size
of the interior columns 1is

| o kg ko
JfL = MOEB(M? ) #+ 5,39 (MEEE) #+ 5,30( Mﬁg

wL® wL® wL® meam) T ési)

oy 2
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The contour lines of equal welght functlons ars shown 1o
Figure (LL7), and indicate that the least total wsight of strucs
ture results when spans 1 and 2 are held at their minimum
values,

A generalization regarding the sslection of the vare
ious member sizes that comprise the least toval waight of
structure solution can be made, Since the boundaries defin-

ing the reglion of permissible design sre for all practical

D

aae Lo

@
&

purposes straight lines, and sinze this iz alsc the
the weight function, the least weight zolution mast oceur at
one of the corners of the design reglon, For a thres-span

structure then, only three solutions need be examinsd., For

1, 2, and 3 minimumg spans 1, 2, and I wminimumg spans 1, 3

-~

and L minimum  and spans 2, 3, and L minimom,

5, Further Considerations Regarding Use Of The Design Curves

It should be reemphasized tha®% in plastic design super-
position does not hold, Each loading condition must be inves~
tigated separately, The actual selection of member gsizes will
be determined by the loading condition which imposes the most
severe requirement,

While the design examples shown In this report cover a
variety of situations, other types of prcblems could equally
well be solved., For eiamp169 in each of the cases 1llustrated,

the colurm heights were equal throughout the structure, This

is not a requirement of the method of solution, ALl that is
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needed to use the deslgn charts is that in sny one given span
the rafters must Jjoin to the columns at the same elevation,
Adjacent spans may have different columm heights., It should
be pointed out, however, that in all cases it has been assumed
that the size of the interior columns must be sufficient to
cause the rafters to participate in the failure mechanism.
Foftunately, for most practical structures, this situation
~ regults in greater economy (in terms of least weight).
Solutions simi;gr to the ones glven herein for the
pinned-base, gable frame problem have also been developed
for the fixed~base, gable frame and for the "lean-to" type
strﬁoture (Reference 13). Due to space limitation, these

are not included in this report.

7 Vi, SUMMARY
In this paper the following have been considered:

a., The assumptilons of the simple plastic theory and a
short description of the various methods whereby
golutions to problems in plastic analysis can be
obtained were first presented.

b, The mechanlism method was then used to solve the single-
gpan gable frame problem, and the results were given
in the form of design charts {(Figures 10 and 11).

¢c. This was followed by an attemptéd extension of the pro-
cedures used for the single~span case to the multiple-
span problem, The difficultles of using such an

approach were discussed.
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Next, a different approach to the plastic analysis and
deslign of multiple-span structures was presented. It
was based on the concept of dividing the structure
into sub-structures (single-gpan structures) for the
purposes of analysis;

The equations governing the solution of each of these
sub=structures were obtained and design charts were
presented.,

To aid in the determination of the "least-weight" de-
sign, the relationship between the fully plastic
moment value and the unit weight of rolled wide-
flange shapes was consildered,

Finally, four design problems, typical of those found
in practice, were solved to illustrate the methods

developed.,



205.56

VII, ACKNOWLEDGEMENTS

This paper 1s based on.a Ph,D, Dissertation
presented to the Graduate Faculty of ILehigh Unilver=-
sity(13)o The work has been carried out as part of
the ﬁroject WELDED CONTINUOUS FRAMES AND THEIR COM-
PONENTS being conducted under the general direction
of Lynn S, Beedle. This program is sponsored jointly
by the Welding Research Councill and thg Navy Depart-
ment, with funds furnished by the following: Amerlcan
Institute of Steel Construction, American Iron and
Steel Institute, Office of Naval Research, Bureau of
Ships and Bureau of Yards and Docks. The helpful
criticisms of members of the Welding Research Counw
c¢il, Lehigh Project Sub=committee (T. R. Higgins,
Chairman) are sincerely apprsciated; The work has
been dome at the Fritz Engineering Laboratory, of

which Professor Willlam J, Eney is Director.




205.56
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L, (Ly,Lp,L3)

M

My
Me

VIIT. NOMENCLATURE

non=dimensional parameter, relating the
height of a column to the span length

non-dimensional parameter, relating the
total rise of the rafter to the span length

function values

non-dimensional parameter, relating the fully
plastic moment values of two spans

distributed vertilcal load per unit length

distributed vertieél working load
per unit length

non=dimensional parameter, relating the hori-
zontal force acting on a structure (or the
hypothetical "overturning" moment of one
part of a structure on the adjacent part)
to the vertical loads. (See Equations 10
and 29), It is assumed that "A" results in
positive work being done as the structure
fails

constant

number of possible combinations of hinges
which result in failure of the structure

non~dimensional parameter, relating the hori-
zontal resisting force or hypothetical
"over~turning” moment acting on a gtructure
to 1ts vertical loading., It is assumed
that "D" results in negative work being
done as the structure fails

function values

concentrated horizontal reaction (see Fig.17)

length measurement., Can be totalbspan length
or fractional part of it

bending moment
fully plastic moment value

moment at the top of interior column
(see Fig.36)
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VIII. Nomenclature (cont'd,)

MR

Wext

Wint

moment in the windward rafter adjacent to
the windward column (see Fig.36)

number of possible plasfio hinges

concentrated load

concentrated working load

hypothetical "over-turning"” or resisting
moment assumed acting about the base
of a structure ’

vertical reaction (see Fig.17)

welght per unit lenéth of a structural member

external work associated with a virtual
displacement of an assured mechanism

internal work associagted with a virtual
displacement of an assured mechanism

number of redundancies

plastic modulus

non-dimensional paramebers, defining the
distance to the plastic hinge in the
rafter of a structure

non-dimensional parameters, re¢lating the
distributed horizontal load per unit
length to the distributed vertieal load
per unit length

virtual rotation

non~dimensional parameter, relating two
special virtual rotations (Equation 22)

curvature

welght function (see Equation L§)
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Fig. 32 - DESIGN CURVES FOR PINNED-BASE, GABLE FRAMES
LOCATION OF PLASTIC HINGE
(b/a = 0.6)
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Fig., 36 - DETERMINATION OF
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Fig. 39 - DESIGN EXAMPLE NO, 2, INDICATING:
(a) LOADING;  AND

(b) MOMENT DIAGRAM FOR SOLUTION =
NEGLECTING WIND FORCE
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Fig. 41 - DESIGN EXAMPLE NO. 3, INDICATING LOADING CONDITIONS
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