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S Y N 0 PSI S

Present day analysis and design of continuous structures

as defined by specifications and design codes are based on an

assumed elastic behavior of the structure o The criterion of

the design in most cases is the attainment of an allowable ex~

treme fiber stresso While a design that results from using

such a procedure will be safe iJ the actual degree o.f safety is

unknown and may vary between extreme limitso

Recently, a different type of analysis based on the

maximum carrying capaci ty 'of a structure as a whole has Hearne

of age". This new procedure known as "plastic analysis tt or

"plastic design tt gives a clearer insight into the actual strength

of structures and therefore promises a more econ,omic usage of

materials. It should also be noted that the procedure is

rational and has proven to be time savingo

After listing the basic assumptions of plastic analysis,

this paper presents a method whereby complex multiple span

frames can be readily designedo Several design examples are

carried out... The problem of economy in ma.in member is also

discu~sed and procedures are presented whereby the design of a

ttleast weight ft structure ca.n be approachedo
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I~ I N T ROD U C T ION

During the pa'st severa.l years much a'ttention has b'een

directed toward the method of structural analysis and design

known as Plastic Designo In essence y these procedures have as

their end objective the determination of the load at which a

structure becomes a mec.hanisrn through the development o.f ttyield"

(more often referred to as plastic) hinges at points of maximum

moment throughout the structure o This reduction to a mechanism

corresponds to the maximum carrying capacity of tl1.8 s'tructure

provided certain conditions are meto According to the simple

plastic theory, these are:~~

(a) The moment~curvature relationship for the

ma.terial and crosSr=sectio11 ~n ques'tion is

as shown in Figure (1) ~ that is 9 aE~ moment

approaches its full plastic value~ Mp »

curvature increases at an ever increasing

rate;

(b) The strength of the structure can be suff~

iciently defined by considering a first

order theory; that i8 9 equilibrium is

formulated in the undeformed'position;

(e) No instability will occur before the attain~

ment of the full plastic load;

(d) No influence of axial 'thrust or shear is

consi'dered;

{rThe degree to which ttpractical structures'll meet these require<=
ments and the methods of modification for including the in~
fluence or certain of these factors have been discussed in
several papers o See for example References 5 and 100



205.56 -2

(6) Continuity is assumed at connections; that

is, there is a 'known amount of maximum

moment that can be transyai tted 'through the

connection; and

,Cf) .All loads are increased proportionally (see

'Figure 2) 0

As shown in References (l} and (2) 9 the necessary and

su:Cficient oonditions f10r a plastic ana.lysis sol.ution are as

follows:

(a) The structure must be in equi]~ibrium9

(b) The moment at any section must be less

than or equal to the fully plastic moment 9

that iS J IMI ~ Mp .9 and

(0) A mechanism must be formed o

Several approa.ches or procedures could be used 'to arrive

at a solution that w~ll. sa.tisfy these condi'tionso The more

noteworthy a.mong these are (a) the Sta:tica,l Metl1od 9 (b) the

Mechanism Method, (c) the Me'thad of Inequalities, an.d (d), the

Moment Bal,ancing Method Q Consider ea.ch of these individuallyo

(al Statical Method(3) 9(4)

For continuous beams and certain other problems~ it is

POssibl'e to visualize from the outset the general pattern that

the ultimate carrying capa.ci ty moment diagram mus't 'takeo A

plastic analysis solution could therefore be obtained by ad~

jueting the magnitudes of the maximum moment values of this

diagram always keeping IMI S Mp until a sufficient number of

plastic hinges had been developed to reduce the structure to a

mechanism. This method is a simple and relatively fast means



of solving continuous beam problemso It c'an a.lso be effectively

used in the solution of certain' types of frame problems where

only a few redundants existo The solution to more complex prob~

lams by this method, however, becomes extremely coxnplicatedo

(b) ~echanism Method(5)~(6)

The mechanism method of solution approaches the problem

from an entirely dif'i:.erent point of view 0 Since the structure

will fail at its first opportunity, a systematic investigation

of each of the possible failure configurations and a determina-

tion o~ the corresponding critical loads will enable one to

select the lowest of these and thereby the correct solution o

Since a procedure or this type gives a upper limit (or bound)

to the true carrying capacity of the structure (5) 9 it is nec-

essary to determine a lower limit in order that one may be

certain of ,the correctness of the assumed answer o This is

accomplished by the establishment of the moment diagram (Plas

tic! ty che ok).' If the moment value nowhere ex ceeds Mp the

assumed sotution is the correct one, since each of the three

nErcessary conditiona will have been fulfilledo

. This type or procedure is very general and lends itself

readily to the solution of extremely complicated problems~ It

wiil be used in the development of the solution to the gable

frame problems that will be discussed -later Q

··ill Method of Inequalities ( 7)

Since it is known that a member can sustain a moment

equal to 'or less than its full plastic value~ a set of linear

inequalities could be written for each of the points of possible

plastic hinge formation within the structure o By combining and



eliminating these inequalities the correct solution oan be ob~

tainedo While this type o.f procedur~e is elega.rlt:l a. fJOlllp1.1ter

is ree ommended :for the solution of the more C otnplex pr oblems 0

(d) Moment Balancing(8),(9)

As in the case of elastic design a successive relaxation

of moment values could be carried out for plastic design taking

into account the plasticity condition, IMI ~ MPo For plastic

analysis or design by this method a much greater degree of free~

dam is allowed the designer than in the elast;ic caS6 0

In this report the me.chanism method will be used t 0 plas~

tically design single and multiple span ga..bIe ~rarrles 0 The re e3

sults will be given :in c·urve form and design exa'mples wil.1 be

carried out to illustrate their used

Sinoe the mechanism method assumes a possible fa:i.l.ure

configuration from the outset, one or the three necessary con~

ditions for a plastic analysi.s solution is automaticaJ..l.y ful~

filled if this method is usedo If in addition a virtual dis~

placement type oE procedure is employed to relate the external

loads to the internal strengths o:r the various 'members j then

equilibrium is also satis:ried6~~ By investigating ill of the

possible modes in whlc~ the structure may fai1 9 the third re~

roa:ining condition can be satis:fiedo As was pointed out earlier~

~; It should be· ·pointed but- -tliat"'such a. pi:ocedure assumes that
the structure and the app·lied loa.ds are in equilibrium at the
:instant the mechanism is forlned 6 Therefore, the irlcrease :i.n
internal wo~k associated with the virtual displacement will
equal the corresponding external work o Fur·therrrlore 9 the in~

crease in internal work will take place only at points of
plastic hinge .formation "since only at these points will in~

oreased rotations occur 1?



this can also be checked by computing for the assumed correct

solution the moment diagram of the structureo If it nowhere

exceeds the full plastic value s (that is 9 ~~ :%' M ,;; IVlp ) 9 then

the correct answer has been obtainedo

Consider the pinnedt=bas69 gable .frS1l16 ShOWIl in Figure

(3)0 The span length is "L tt
:; the height of the col'urrll1s ii3

naL tt and the total rise < o.f the r,afters is "bL f! Q There is a

uniformly distributed vertical load of tfw" Ibs/!.f't Q acting on

each of the rafters as well as a concentrated horizontal load P

acting at the eave o It is assumed that both the rafters and the

columns deliver a given Mp value in the presence of whatever

axial thrust may be acting. CIG) As shown in Reference (ll)~ such

an assumption will result in a minimum to'tal w6.ight of structure

.for a maj ori ty of the cases found in prac'tice 0

To ascertain the possible ~ailure configurations 9 it is

first of all necessary to locate the points or possible plastic

'hinge formationo Since these can occur only at points of zero

shear, at corners or where more than two members join, the

possible plastic hinge locations ~or this problem are as shown

,in Figure (4). They have been numbered (1) through (5) 0 It

should be noted that the exact locations of hinges (2) and (4)

have not been specifiedo These would be determined by mini=

mizing the resulting expression for critical load 9 or in the

case of design maximizing the required Mp value for the given

loadingo

Since for the case in question 9 onl,y two p~la,stic hinges

a.re needed to reduce the structure to a. mechan,ism,9 there a.re

ten (10) combinations o.f these five possible hinges tha't could
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result in failure o This follows from

(N)(N-I)(~-2)··-'" (N-R+f)

Rf
------------ (1)

where RON is the number of possible combinations of hinges 9 N

the number or' possible plastic hinges and R the number of hinges

required for ".failuretr(J For the problem in question

CS') (4)

(2 )
= 10

2-5; 3-4, 3-5 and 4-50
By determining the critical load corresponding to each

or these ten possible failure configurations 9 all possibilities

of failure will have been examined and the lowest crit'ical load

will be the correct solutiono It is possible for the problem

in question, however, to exclude certain of the combinations as

being virtually impossible from the outset o For example~ for

hinges to form at locations. (1) and (2) a part of the applied

~xterna1 load would have to do negative work; that is~ the

- structure would have to move against the load o S.ince the

structure will in general fail in as easy a manner as possible 9

it would seem more probable- that the external l.oads ShOll1d do

positive work during failure» and for the majority of single

span cases, this is found to be true 6

A somewhat different approach for determining the possible

failure mechanisms is that illustrated in Referen.ces (5) 9 (6) 1)
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If ' it is assumed that the structure will fail as whole~~ JJ then it

can be shown that there will be (N-X) indepen2~nt modes in which

the structure may fail. The condition can therefore be written

,Number ot: Independent I'v1echanisms :::: (N <= xl Q (I 0 0 0 Q 0 Q () .. () 0 (2)

As to what is termed independent~ full freedom of choice is left

to the individual. For example, for the problem in question~

there are five (5) points of possible plastic hinge formationo

The structure is one (1) time redundant., Therefore,

Number of Independent Mechanisms = (5 ~ 1) = 4

Four ,possiole independent mechanisms are shown in Figure (5).

rtis 'obvious that these are independent since in each case a

ttnewft hinge is invo:L vedo

To complete the solution of the problem it is necessary

to determine the critical load corresponding to each of these

assumed 1n~ependent mechanisms~ Furthermore, all o~ their comb

,incations must also be examined.. As an illustration of what is

""~e,~t by ~ combination, consider a failure configuration con-

:"s'"i"s"ting o,t ,a combination of the mechanisms shown in Figures 5(a)

and "5(b). If "the structure shown in ,Figure 5( a) is assumed to

n'swaytfto" the right and that shown in Figure 5(b) to the left,

one can conceive of a composite mechanism of these two assumed

independent cases which has hinges only at locations (1) and (2).

-~-------~-~----~--------------~--------~--~--~~~~----~----------"iTor the single span structure in question, if .failure occurs in
any manner'whatsoever, it will fail as whole o For other struc
ture,s, for example, a ~t-w:o-spa.n frame; it is possi"ble for a part
to fa11'and the remainder to be below its maximum carrying capa
0,1ty. It should be recognized that such a condi tion does not
repre.en~ the most efficient use of material.
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This then is a possible failure configuration that must be in~

-8

vestigated. It should be noted, however;J tha,t for such a failure

t~ occur the horizontal force P will have to do negative work.

~uch wi:J.l !a.lso be found to be the case for the other combinations

of the chosen independent modes. Therefore, an investigation of

only the four cases shown in Figure (5) should give the correct

solut;Lon. To be absolutely certain of the result, however, it

is advisable to plot the moment diagram' for the assumed solution.

If it nowhere exceeds Mp , then there is no question; all three of

the 'necessary conditions for a plastic analysis solution will

·have been rulfilledo

The question is immediately raised as to what happens if

more hinges develop than the minimum number required to produce

a mechanism. For example, consider the case where hinges form

at (1), (2) and (5). Since only two are required to reduce the

structure to a mechanism, the structure at failure is "over

det~~minatett. In considering the seriousness of this situation,

assume first of all that instead of having an Mp value at loca

tion (l')that there was a value of' lolMp • For such a case, it

-. is obvious that failure would be of the (b) type shown in Figure

(5), since a plastic hinge would not develop at (1). If, how

ever, 'location (2) had the increased strength, ~ailure would

have be~n of the (a) type. Since this line of reasoning holds

regardless of'/how small the increase in strength above the Mp

value; and since it is inconceivable to think that an infinit-

<esimal increase in member size at a given location can mater-

ially ch~ge the carrying capacity of the structure; the critical

~oads computed using either mechanisms (a) or (b) should give
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identical· '~ap.swe;rs. This is found to be the case~ ]furthermore,

when polo~ting the moment diagram, Mp values will be observed

at eac4 of the points (1) 9 (2) and (5) regardless of which

'assumption of failure was originally madeo

Proceeding then to determine the critical loads for each

of the chosenindep'endent mechanisnls shown in -Figure' (5), con

sider the mechanism shown in Figure (6)o If the columns are

assumed to Qe sUbj ected to a virtual rotation about their base

eq~a.l t~ ~'.t the hori~ontal force P will move through a. horizontal

distance ,(Q) (aL). The distributed vertical load, on the other

hand, will rema~n at a rixed vert~cal height (assume a first

order movement). It therefore does no work during failure o

Internally, 'each of the plastic hinges at the tops of the colunms

.rotates through a virtual angle Q. The work expression associated

with the assumed virtual displacement is therefore

or the critical load corresponding to this failure configuration

is
p = 2 Mp

-aL

Fo~ the solution of the mechanism shown in Figure {7), it

is desirable to use the concept of the Instantaneous Ce'nter of

Rotation to aid in the definition of the geometryc The reader

is referred to Lecture (6) of Reference (10) for a detailed dis-

cussiop of this procedurso

A~suming that the horizontal distance from the left hand

(windward) column to the plastic hinge in the left hand rafter

is o\L,~t can be shown that the vertical distance from the top
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of the right hahd column to the instantaneous center of rotation

of the rigid bar cqnnecting plastic hinges (2} and (5) is

L(: - a + 2 b)

If now the structure is subjected to a virtual displacement,

all a.ngles ma.y readily be determined from $imple geometrical

relationships 0 Assuming that eB == e,·, linkage (2)--(5) ·will

- - - - (4)

Since the top or the right hand colunm must move through the

same- horizontal distance as point (5) of linlcage (2) - (5).

Similarly,

----------- (5)

Since at plastic hinge (2) the member must rotate through both

the virtual angles QA and Q1.C.' and since at hinge (,5) it must

rotate through Qr.c. and QB

( 6)

an0.

-----------~~-- - (7)
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At each of these locations the full plastic. hinge value, Mp '

acts e Therefore 9 the total internal work associated with this

assumed virtual displaceme~t equals

ExternallY9 the loads must be considered' in parts q For

ex ample:1 .the horizontal .force P acts on the linka.ge (A) - (2) •

Since the instantaneous center of this linkage is at (A), the

horizontal distance through which the load moves during the

virtual disturbance equals the rotation at A, that is, gA' times

the vertical distance ~rom (A) to the loado That part of the

vertica.l load to the le,ft of hinge ( 2) also rotates about point

(A) 0 There.fore ;) its external work is computed as .§w{o<.L) 2 GA-t::..
-

CorrespoIldingly ~ the vertical load to the right of hinge ( 2)

rotates a.bout loCo:; since it 'acts on linkage (2)t.-(5), which

has its center of rotation at IQC~

The total virtual work 6xpressibn for this assumed

failure condition is therefore

[
L2 [ 2J 1 - 0( w 2 1 - eX. w~ 2. 0<

PtaL)G 2bJ+2 CO()G 1 2b~+-2·(1-o<)e[ 2.bJl -O<+-rx -O{+-O( l-o<-t-cx. a a a

:::: tvl p G [ 1 2b +
l-D('+-o(a

(8)

Noting tha't each of the external work terms contain a wL2 /2

eX,cept that for horizontal force, equation (8) can be
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= _1 [(1- 0<) ( A+ o() ]
4 1+.e0(

a
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providing the pa.rameter nAn is chosen a.ccording to the equation

(10)

That is,

- - - - -- - - - - - - - - (lOa)

It will be noted that equation (9) is in terms o:f the

unlrnown distance o(.L to the plastic hinge in thele:ft :rafter.

Since ~ is an independent variable and since the structure

will fail at its first opportunity, the correct ~ distance

will be determined from the expressiori

aM
-[2. = 0do(

(11)

Equation (9) is of' the general form uu/vtl. Theref'ore,

the differentiation will be according to the formula

d (~) -

But since this expression will be set equal to zero,

v du ~ u dv = 0 - - - - - ~ - - - - - - - (12)

Performing this operation on Equation (9), the correct U eX tr

distance is then
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J

. for %. > 0

0(= [~A]2 , for %. = 0

- - - (13)

The mechanism shown in Figure (8) is a special case of

tlJa:t gl"Vel1 in. F,igure (7) JJ where eX is set equal to 1/2. Tl'l6

s()~lJJt~:i()_nj :forJ tJ:1is case is therefore

Me
vvl-.l2

S~im:Llarl~T.9 t;1J.8 ,fa11ure configuration shown in Figure (6) is a.

special case of Figure (7) with ~ =0 0 The resulting expression

for Mp /wL 2 would be

This corresponds to the solution given in Equation (3)0

Going through the same process for the mechanism shown

in Figure (9) as was done in the case of Figure (7), it is

,found tha't
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(16)

Wll.eI"Je
1 /1+ ~ [1 + AJ' -1]eX 1

=- --
9;'a. ,

for b--- > 0a
a.hd (1 7)

C><.I [ 1~ AJ for
b- = 0, a

f '1 J ')\" Li- D

TllJ3 problenl rl01N" is to determine which of equations (9),

(1,~~) or (J~6) requires (.for a given loading condition) the

lar~gest plast;ic -\lal.ue':~;o This will in general depend on the

value of b/a and A under consideration. By assuming various

vallles for 'tl1.8se parameters and solving each of the E?quations

for the corresponding Mp/wL 2 value» ranges of applicability for

each equation can be determin~do Carrying out such a proc6'dure

it is observed tllat only equation (9) and its special case,

equa:tion (15) 5) govern the solutions Q ,Plotting the r.esulting

values of b/a versus A versus Mp/wL 2 » the design curves shown

in Figure (10) are obtainedo Below the dashed line in this

.figure 9 Equatioll. (9) governs 0 Above the line}) Equation (1.5)

d~e.fines the solut:lon'Q The cor~esponding IX values are shown in

~~~~SirlceEqtla'tions (14) and (15) are special cases of Equations (9)
aJ:1d/o!~ (16) 9 only tl'l8s.e two equations need be considered.



It should' be noted that for a value of A=O; that is, no

hor:izOYlta,:l load, the structl-lre may Tfswayft 8ither to the right

-15

or to tIle le.ft w'i th equal ease o A~ a consequence J plastic

hinges "hrll]~ develop symmetrically at each of the locations (1) ,-

(2) 9 (4) and" (5) ~ To sl1.oW that such a failure mode will result

in the same value of Mp/wL ld ~ consider the failure mechanism shown

in Fi@J~re (12)0 Noting that the center part of the rafters; that

is SJ J~il1ka.ge (2) <= (LI_>; will move vertically downward, the instant

aneous cen,ter of :linkage (1)--(2) will be vertlcally above (1) at

a heigh't 8clual.; to the ,height of hinge (2) 4 A similar condition

wiJ.:l exist for li.nlrage (4)·... (5) 0 Going 'bhrough the process of

equa,t~trlg extel~n,a:l work to internal work as descl~ibed ea.rlier,

it wi:Ll be ,fou,nd that the equation governing thi's failure mech-

arli Sli'1 1s

This solution is the same as Equations (9), (14) and (16) for

the case where A = O~
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If the horizontal load acting on the structure in question

is distributed rather than concentrated, a conservative Mp pre~

diction (t9uitable for design) can be obtained by selecting an

effective value of P for the concent'rated load problem (Desj.gn

Cur've => Figu.re 10) 1AThich has an tf over- turnin.g U moment about the

base of the str'uc'ture equal to that of the d.istributed horizontal

load o (T4is will be true providing a hinge would not have dev~

eloped in the left hand column; a' condition which will not occur

for ·the Inaj ori'ty of practical cases o ) For the notation shown in

( 20)

But lor lIse in 'the des,ign curves or Figures (10) and (11), it is

not necessary to explicitly solve for Peff and then determine the

corresponding HA u valu60 This can be dOIle in on.6 opera.tion.

or
Peff (aL)

A

wL:-A
2

(21)

To show that such a prediction will be on the safe side,

consider Figure (14)~ Assuming that the location of the hinge

in the left rafter is the same as it was in the concentrated

load case (see Figure 7)~ the internal work at each of the

corresponding hinges will be identical o There~ore9 a qualita-

'tive compa~~ison of only the external work due to the two

assuraptioxlS of llorizon'tal f'orces will give a nleans of proving

the abO\T6 statemento By making the tfover ... turningtf moment of
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the Peff system the same as that of the distributed load case,

it'· is as sumed that there is a linear increase in virtual bori-

zonta,l deflection f~rom zero at the base of the le.ft hand column

to a maximum value at the upmost point of the raftero But as

seen in Figure (lL~) this is not true for the distributed case;

above the plastic hinge in the rafter the rate of virtual de

formation decreases Q Therefore, by making the overturning

moments equal~ more external work is introduced into the system

than will actually occur 6 (Note the heavily cross-hatched re

gion of deformation shown in Figure 14). Thus, a design based

on this assumption will be conservative o

111 0 M U L T I - SPA N, PIN NED - BAS E F RAM E S

10 Direct Procedure

Having solved the pinned-base, single-span, gable frame

problem for the assumptions listed; and having found that for

a maj or r J 8.nge ofl variables the mechanism that will control the

design is the one where hinges develop in the windward rafter

and at the top of the right hand column; a logical rirst at

tempt at a mechanism for the multi-span problem might be that

shown in Figure(15~ For the two-span problem shown the lengths

of span p heights of columns and total rise of rafters have been

chosen equal o Furthermore, the plastic strengths, Mp , or each

of the spans are also asssumed to be equal. It cannot be

assumed J however~ that the distances to the hinges in the wind

ward rafters will correspond o The resulting expression for Mp

will therefore contain the variables c:I..- a.nd f3; and since each

of these are independent, two separate differentiations (one of
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the form dO( ~ =0 and the other '2)(3 P-- =0) will be needed to
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solve "for ·the correct c< and;3 values o

The consistent virtual rotations as determined from a

considerertion of the instantaneous centers shown in Jt1igure (l6)

are as follow's ~

Where

1-0<
GA=Gf t-o(+~o<

a

eLC.1 - Gr[1 -fXC: ~ 0( ]

e --. G r (j J
I.C.2-- L1 -;6;- ~(3

f [l-;:~(3J

- --- - (22)

,Using the same notation as previously described (that is,
",.J'

2
PaL=! ~)$ the resulting expression for Mp/wL 2 is

2
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Needless to say~ the differentiation of this expression and

subsequent solu"tion for 0( and ;3 is somewhat involved o More

over!y even if an explicit solution of c< and t8 were· obtained,

it is questionable if such an equation as (23) could be used

in desiguo

Another possibility, however, exists o Assuming that the

loading and geometry of the frame are given, the variables in-

'vol ved are ex J) (3 and Mpo An i1l1plici t dif.ferent iatiOn ot:" the

work expression rather tl~an the_.expli~i~ o:p.<? Qonsidered above

may lead to an easier formulation of the Iso~utiono

As shown on page 138 o~ Reference (12); if a function

F ( M p ~ cAl (3 ) = 0 - ~ - - - - - - - - - - (24)

is g.iveu,· and if it is lmown that dMr-- ::::0 and ~Mp-- ::::0. then
~o( "d(3"

it carl be shown that

( 25)

~& - 0

Consider now~ for the problem in question, the work ex-

pression in the implicit form. That is,

l\fo'ting tl1.at all of the angles, and thus the work expressions,

for the left hand span are multiplied by l' Ii' can be wri tten

as

or dividing through by "1 (which is a: function of 13 alone)

( 26)
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This indicates that the function F is made up of two separate

parts: the first which is a function of Mpand 0< alone, and

the second which contains only Mp and /.3 as variables. Diff

erentiation of this new expression (Equation 26) according to

Equation (25) is more easily obtained than the explicit diff

erentiation of Equ8.tion (23) discussed a.bove o

It should be remembered that only one possibility of

failure has thus ~ar been considered for this two-span problemo

To solve a particular structure in question other modes would

also need to be examined to determine the one that would act-

ually develop4

2n S~~tion by Sepa~atio~

Based on the preceeding discussion, it can be reasoned

that since for the problem under consideration the variables

separate into two groups (one having to do with the loading

and resistance of only the left hand portion 9 the other con

cerned with the right hand part alone) a solution might be

more readily obtained by mentally dividing the structure into

two pa.rts<r A solution to the 'ffiul tiple span ca.se could then. be

realized by solving each of these separate parts in terms of

the loading parameters at the out section and then in the

final stage equating these parameters o If this division is

made at the junction of the right hand ra~ter of the left

structure and the center column, the loading condition will be

as shown in Figure (17)Q

For the left hand structure (Figure 17a), the equation

for Mp will be of the form

Mp ~ f{P, w, ~, H, dimensions) ( 27)
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- - - - - - - - ( 28 )

It should be noted that the structure does, not move in the vert-

ical direction at the cut section for the assumed virtual dis-

placement (first order movement). Therefore, V will not appear

in the solutiono The equation for the right hand BUb-structure

will be

Mp = g{H, w, (3, dimensions)

Had the plastic strength of the right hand part differed from

that of the left, there would have been an additional term in

Equation (.28) relating these two.

As the structure derorms consistent with an assumed

virtual displacement, both Mp and H do work o However" .for the

two lJarts to be in equilibriu111 when the structure is "put to-

get11er" it is necessary that ·the right l1.and struc.ture be loaded

with the same amount of work that it transfers to the left hand

portion as a result of its resistance to movement. Since it

is "work done tt that is important, the 'actua.l moment and force

tb.at develop at the cut section are not of primary concern and

can be replaced by some hypothetical moment assumed to act

about the base of the structure~io. Furtl'1ermore, noting from

Figure (18) that these two moments, ~ and QR' rotate through the

same angl~s during the virtual deformation; all that is re-

quired for the two works to be equal is that the two hypotl1.et-

ical moment values be equal.

For" further eas~ of solution it will be assumed that the
~-~--~----~-----~---~-------------------------~----~~--------~--
-;~It should be pointed out that such a procedure is true regard
less of the division of individual terms. What essentially is
be,ing done is to take one expression (the w6rk equation for the
structure as a whole) and through the introduction of an addi
tional parameter (Q) rewrite it as two parametric equations.
For example, i~ a function is given as

x+y+yt+V=O,
it can be rewritten as two eq~ations by introducing the addi
tional parameter, zo That is

x+y+z-O
Yl -+.,) _ l7. == n
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total amount of internal work done at the plastic hinge in the

rafter adjacent to the center column is done on the left hand

structureo This has the advantage that the right hand structure

will then be sUbjected to only the loading on the right hand

span, the resistance of this span and the hypothetical moment

Qt; whereas, the left hand struc~ure will be subjected to only

those things occurrring in its span and the hypothetical moment

QR- The strength of each of these structures could be determined

in terms of these "Q" moment parameters which could then be

equated to solve the problem in queation o

If a structure and loading as shown in ,Figure (19) are now

assulned, either of the two possi,bilities shown in Figure (18) can

be representedo For case (a) (left hand SUb-structure), ~ would

be chosen equal to (f) (aL-). For case (b), QR would be equal to

zero o A general solution for the strength of this structure

which includes the variable moment and loading terms and which

considers all possible modes of failure will therefore afford a

means of solving the general multiple span design problem6

When using such a procedure as described above no possi-

bility of the development of a plastic hi~ge in the center column

is considered. For relatively large horizontal thrust, however,

it will be found that- the moment at the top of this column will

exceed the MP value. For such a case, it is obvious that the

investigated mechanism is not the correct .one and the corres-

ponding value of Mp is too small. The actual failure mode that

would develop would more than likely be the one where hinges

form at the tops of the right hand and center columns, in the

right hand rafter of the left hand span adjacent to the center
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column and in the left hand rafter or the left hand span. Since

the solution of such a failure pattern would result in a greater

Mp value for all of the members of the structure, the new design

would in almost all cases be less economical (in terms or least

total weight of structure) than that design based on the assump-

tion that the center column can supplywhat'ever is needed•. (Note

the relative length of the center column in comparison to the

total lengths o~ the remaining members o~ the structure). From

economic considerations, then, the failure mode having a hinge

at the top of the center column will be excluded from consider

ation. This does not, however, exclude the possibility of

--selecting the size of' this Ucenter type column" such that a

hinge develops at the s'arne load which produces failure in the

remainder of the structure. In such a case the exact size of

this member would be determined from a moment dia.gram ror the

structure as a whole.

3. Development of Design Charts

To be able to solve all types of mUltiple span problems

by this method, it is necessary to ascertain all or the various

possible sub-structures (or assemblages) that can occur. For

exampie; if a three span symmetrical gable frame were subjected

to only vertical loads as shown in Figure (20a), the two types

of sub~structure failures shown in Figure (20b) could occur.

(The exact location of the hinges 1s not critical at this

stage. What is important to note is that for the center span

each of the columns spread an equal amount away from each other

during the failure. The outside span, on the other hand, fails

as assumed in the preceeding problem with b,oth columns moving

in the same direction.)
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Had the structure under consideration been a four span

symmetrical frame .~s shown in Figure (200), the center two spans

would have failed with their outside columns ~preadingo Due to

symmetry, the center column would remain vertical. A fourth

type of failure condi t:L'on results when a three span, unsymmet-

rical frame failsQ For such a case; the center two columns may

spread through different angles. Therefore, thi~ condition must

also be investigated.

The five types of sub-structures and loadings that must be

considered for the solution to pinned-base, gable frame problems

are there~ore as shown in Figure (2l).~ By selecting a value of

the left hand "Q-moIDent" in case (b). equal to the moment pro

duced by the concentrated horizontal force of case (a), these

two problems reduce to one. The equations governing their

solution are tabulated in Appendix A as equations (1) through

(4) and (8) through (12). For cases (e), (d) and (e) of Figure

(21),. it can be shown that each reduces to thesarne solution(13).

Furthermore, it can be shown that in each case the moment to the

left, ~, must equal that to the right, QR~ The governing

equ$tions are given as Equations (5), (6) and (7) of Appendix A.

As in the single span case, non-dimensiona~ parameters

have been'introduced to relate the overturning moments, ~, and

QR, to the vertical;loads and'span lengths. These have been

chosen accord~ng to the relationships

an~

. 1 L2
QL=- A (-2 w· )

QCR= D ( ~ w l!)-
---------~-- (29)



of 'tlle,se pararf1e'teI~S0

The resulting design. curves of' Mp/wL 2 ver'sus A versus D

are

rhe corresponding values of

Also ShC)"TNl1. on tl1.8se Gllr'Ves a,re t;118 ranges of applicability of

TIle discussiol1, will be d:i'v1ded into four parts ~ a general

cons:tderaj~ion ()f 'the design cl1.arts .:t'OXii m1.1~ltipl,e span structures:)

'the load :factors .for~ 118e in. pl.a,stic design al1d the problem of

economic a:1 de 8i gn,s 0

.1QT~~De~~~ (F:igure;s 22=<35)

r·t shou~ld f:irs't or a],l be norted t~hat whe11 D=A (Figures

22=>27) 'the s'tr1..1ctllres COOl Hs",ra-yH wi'th equal ease to the left or

to the right·o Therefore y hinges ltJill develop symrnetrically and

the solutions w'il,l eql~al those SIlo",r11 in .F,i.gL114 8 (28) ,for the case

whelr)6 the colllmns 1110\76 a1rls..y frJorn eac.h o'ther o It; SI10UJ..d further

be observed that this condition (D=A) represents the smallest

Mp ve~lue for t~l1.e spa.D. in quest;i,orl o bT(J soJ"utions exist below

these values unless ties are used connecting the eaves which

prevent their spreadingo (Fo:r stlcl'1 cases a Vtbeam type" mech=

anism 1i\(ould C011trol the des.igrl. B.nd ,t116 design values would be

for
b/a :> 0 D Mp /1iI1LK! ~- 00 0156

b/a =0 9 Mp /WL 2
- 0 0 0625

These a.re ·tl1.6 abso:lu'te low'est va,lues o:f IVIp possible o ) Even for
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such a situationJ) certain va:l'ues of A~~D 8,nd b,/'a can cause this

same condition to be realized 1I\Tit110l1t tl1.8 use o.f "ties o Sees; .for

example 9 the lowest des,ign poirlt oX1F'igu.re ~7l

For the major range of variables encountered in practice 9

the mode oS failur~ is the one where hinges develop at the top

of the leeward column and in the windward rafter o It should be

noted,9 however 9 'that in a mUJ.. tiple span structure.9 tl1is hinge at

the top of tl1.e l.eeward interior col.umrlr9 w'ould £tct'llally deyelop in

the leeward ra.fter e.dj aCel1.t ~to the colllmrl irl questi'on rather <than

in the column i"tsel,f1

o

As noted earJ.. ie!~.I) }i1.igures (29)'-~J,5) gi\Te the location of· the

plastic hinge in the rafter as a filnction of A9 D and b/ao This

information is use.ful in cons·tru,c·ting the lTIOment d.iagrara .for the

chosen sol'utiono

20 Deterrnina:tiorJ. of <the Size o.f InteritJr COl"Llnll1S
~ ~, h~ ~

The solution to the mUl't;ip:le span. des.igrl problem as out<=

lined in this report assumes that the interior C01UOO1S will be

chosen such that they provide the st~ength needed to keep the

structure in equilibriumo Their size will therefore be deter~

mined from the moment diagramo Since in all cases of design

using these charts the structure will be determinate at failures

this presents no difficultYo It is possibles however 9 to shorten

the amount D.f time required to de'termin.e the size D.f these mem=

bers by relating their maximUTIl moment values to the A and D

parameters discussed earliero

As shown in Figure (36)9 if it i,1S 8lss11med that the top of

the columns move to the righ"t ir! forming the rnechanisffi,9 a plastic

hinge will in most practical cases develop in the leeward rafter



adjacent to this columno If it is possible to determine the

moment in the windward rafter at this same section (MQ in Figure

36)~ then the moment required in the column will be

= + (30)

where kMp is the fu:lly plastic moment of tl1.e span to the left of

the one in questiono See Figure (36) for the assumed positive

directionso

For the situation where hinges form in the leeward rafter

adj acent to the leeward column of the sparl in consideration (the

span shown bold in Figure 36) and in the windward rafter of this

span~ it can be shown that

A,D, and Mp/wL 2 refer to conditions occurring in the span in

question o

30 Factor of Safety

Sirtbe plas·tic design results in a structure that will

just sustain the imposed loading,? tl1ere must be included in the

design load a certain margin or safety above the anticipated

working ,value o Accepting this philosophY9 the next step is the

selection of a criterion for determining the numerical value of

this safety factoro

If it is assumed that it is desirable to have the load

factor o~ safety of a continuous structure equal to that of a

statically determinate one $J and ,if ,i·t is further assumed tl~at

an average wide~flange3 simple beam designed according to the

present ,AlSC Specification{14} has an adequa'te reserve in strength,



then it can be shown that the load factors should be as

follows:: (15)

10 Load factor for Vertical Load only

2 0 Load -Factor for Ver·tical Load 9 W'ind p

Earthquake:; etc o

The design requiring the grea'ter member size will be the one

governing o
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A somewhat di~ferent appraoch to the general question of

sa.fety can be b,ased on 'the philoso'phy that a structure i@ no

better than the load analysis u Therefore 9 -this factor should

pI ay a maj or par't ~n the de·termination of the f actor of s ai~ety.

Furthermore~ the ability to predict loads is dependent on the

type of loading o The uncertainty in each of the loads making

up the total could also be taken into accQunt o

While the question of safety is ilnpo:rta~~t9 i't is not

unique to plastic analysis o It is 'there,fore considered that

further discussion in 'this paper is not warrantedo For the

design eX,amples that fol1o~r the loa.d fac'tors listed above will

4Q Economical Designs

Many factors enter into the selection of an "economical

designttQ The criterioIl used in this paper will be "least weight U
q

As will be illustrated p such a design can be determined in a

straight~forward manner through use of the design chartso

Since in plastic design 'the quanti'ty most often en=>

countered is the fully plastic moment valu6 J Mp9 it would be

desirable to have an expression relating this property (or the

plastic modulus which is equal to Mp/Oy ) and the unit weight of

the memberQ Two designs could then be compared by sUlnming the

Mp values times the lengths of the various members o
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Unfortunately 'the plast,ic raOd"lllus Y10't o.nl"y takes into

accoun't the area or the secti.ol'l but al,so 'the moment of this

areao The relationship wil.l ·there1~ore rJ,ot be linearo Assumil1.g

tha.t it vvill, be one of a power $I the plastic modulus 'val.ues .foX!

rolled wide-=f:lange shapes have been plotted \Ter~s~us unit weight

on a log-log scale in Figure (7), (16) A straight line on this

plot would corresporld 'to an equation of ~t;he i"orrn

W := C Zrl (32)

where W is tl1.8 w'eigh·t per urLi.t length of tIle 111ember o It is noted

that within a given nominal size of member a straight line re

lationsh.ip does holdo The corr·espondirlg n values are approxi-.

rnately O~ 90 wi tl'l C varyin,g bet1Areerl 5 aJ:1d 16 Ib s"/ft () of member o

If one equatJ.ioIl :is t,C) represent ·tll.e entirJ 8 range of member

sizes.9 n must l:ie be'tvl'eeXl 0 0 :5 and 0 0 9t) Ha.d al,:l members been

geometrically sirailar it can be sho"t\rn tllat a \Talue of 0 0 67 would

be the value of the exponento (11) As seen from the figure 9

this is a.lso a reasonable ·va.1.ue for the erlt.ire rarlge of WF shapes Q

While the absolute difference between an exponent of 0 6 5

'and say 1 0 0 is extremely large 9 the net effect on the isolation

of the more econonical choice of member size is rather small~

In addition the assumpt,j_oll of equal raf-ter sizes iri a given span,9

etc o , will often over shadow the differenc6 0 Therefore a

one.-to-=one corresponderlce between weight; arJ.d plastic modulus

(or Mp ) will be assumed in the remainder of this discussiono
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Va DES I G N E X AMP.. L, E S

10 Design ,Etc ample No o 1

As a first design example cons'ider the single<c> span $I gable

frame loaded as shown in Figure (38)0 The b,la ratio for this

structure equals 9/15 = 0 0 60 Assuming that a load factor of

safety of at least 1 0 88 against vertical loads and at least 1041

against combinations of vertical and wind loads is desired, two

separate designs must be consideredo

Jilor the case of vertical load alone P equals zero o There

fore the nAP loading parameter (Equation 10) is also equal to

zero o From the design curve o:f Figure (10) (for b/a = 0 0 6, A==O)

~ =Oo0488-l~------~ (33)
wL 2

This gives as a required fully plast'ic moment value

M
p

:::: (000488) [ (1) (1 088) ] (40)2

:= 147 .fto kips

= 1764 inch kips

Assume now ·that the structure is subjected to both vert-

ical and horizontal "loads o For this case

A --

FrOIn Figure (10)

Mp
wL 2

or

(2a) -( P/wL )

(0075)(1007) = 0 20
(100) (40) 0 -

:::: (0. 0742) [(1) (10 41) ] (40) 2

== 167 ft Q kips

== 2004 inch kips (35a)

-~~Th6se values were obtained from enlarged versions of the design
curves shown hereino
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(36)

(36a)

Since the required Mp value Ifor the case including wind

is greater than that for vertical loads alone~ Equation (35a)

controls the desiguo The corresponding moment diagram is shown

in Figure (38ijo The distance to the hinge in the rafter is ob~

tained from Figure (ll)Q

2 0 Design Example NO~f

As a 'second example consider the ~wo span gable frame

shown in Figure (398)0 Here as in Example NOol, two,'"loading cases

will be ex arnin®d u

Excluding the horizontal force, the structure and loading

are symmetricalo The center column will there'fore remain vert-

ical~ Since D=O (no external -horizontal loads applied to the

outside columns) and since for this type of failure A = D j the

required value of MP determined from Figure (28) is

:L
wL 2

This is the same value as for the single span case (Design Ex~

ample NOol)o The required M value is thereforep

Mp :::: 1764 inch kips - - - - - -

and the moment diagram is a.s shown in'_Figtire .' (39b) 0

--,

Assuming that the wind force could develop from either

the left or the right 9 the member sizes should be equal in each

span~ The sube=structures and loadings are then as shown in

For span (1) 9 Al will be determi-ned .from the expre ssion

(p) (8LI ) == Al (~ wL 2 )

'or
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Since no external horizontal loads act on the leeward side of

span (2) ~

- - - - - - - - - - - (37a)

The condition for a solution is that at the center column

D1 (~ wL2
) =A2 (~ wL2

)

- -

Since Ll ='L2, this ~educes to

Consider span (1) ~ Sin.ce b/a=Oo6 and since Al is lmown

to be equal to 0020, the relation between Dl and Mp/wL2 can

be determined from the design curve for b/a=Oo6 (Figure 25)0

This relationship has been plotted as the solid line in the

left hand graph of Figur~ (40b)o
..... ~

For the right hand span, i~ is known that b/a=Oo6 and

that D2 = 0 0 The relationship between A2 and MP/wL2 there~ore
-

corresponds to the case D=:O of Figure (2')1> It is reproduced

as the right hand graph of Figure (40t)0

The two conditions ~or solution as previously stated are

that the two Mp _va~ues mus~ be equa_~ and that Dl = A20 Since

the coordinate axes of these tw~ graphs (Figure 40b) are iden~

-- -
tical, the graphs oan be superimposed one on the other as shown

by the dashed line in the le~t hand graph o The solution is

therefore

Mp 000575wL2 -:::

or
Mp - (000575) [(1) (1.,41)] (40)2

- 130 ft~kips

- 1560 inch-kips (39a)
Sinoe the larg~r value or required MP corresponds to

the oase where wind is neglected, this condition controls

the design. None-theC:Etless, Figure' (400) is the moment dia...

gram for the ease including Windt'
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3.' Design Example No o 3

The third design example is concerned with the two~span

unsymmetrical frame shown in Figure (41a~ Three loading condi~

tions will need to b~ investigated: vertical load alone as shown

in Figure (41b)] vertical load plus wind from the left as shown in

Figure (41c) and vertical load plus wind from the right as shown

in Figure (41d~

Case (a): Vertical load alone (Figure 41b)
. ;

Since the D's are zero (assuming that the outside columns spread)

and since A will equal D for such failures; that is~

Al = 0

D2 = 0

Dl= Al and Az= D2 (Failure type (e) of Figure 21);

the solutions as deterrnined from Figure (28) are

- - - - - (40)

span (2), b/a = 1 0 0,

1 := 0 0 0488
wL12

k = 0 .. 0428
wL22

Using a load factor of 1 Q 88 9 the corresponding required Mp values

are
Mp -- 1760 inoh kips '}: _ _ _ _ _ _ _ _ (4Ga)

kMp = 3480 inch kips

Case (b): Vertical load plus wind from the left (Figure 41c)

For this loading case the structure must be divided into two sub

assemblage$o For span (1)

Al ,~ wLl 2) = P (aLl)

or
Al =: 00.20

For the right hand span

== 0 (41a)
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The condition for a solution is that at the center column

or
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Since solutions can exist for all value of Dl( from· zero to O. 20

(the value of A1 ), it is helpful to set up the solution in tab-

ular form. Table I gives the solution for various selected

TABLE I

b/a :::t, 0 •..6 b/a = 1.0

Al 'D ~ A2 D2
kIvlp

M ~~ kM ~~
1 wL1 2 wL2 2

P P

0.20 0 0.0742 0 0 0.0428 2010 2610

0.05 0 0 0630 0.022 0.0451 1705 2740

0.10 0.0522 0.044 0 9 0475 1412' , 2890

0.15 0.0406 0.067 O~O502 1100 3050

0.20 0 4 0298 0.089 ~ o. 0528 806 3220

Case (0): Vertical load plus wind from the right (Figure 41d)

{No,te: since the wind is from the right and since in the deriva.

tiona ~t was a.ssumed that the nAu parameter is always on the

windward si.de of the span in question, the location of the moment

parameters u_Au and tlDff will be the opposite to that of Case (b).)

A2 (~ wLlll
) = P ( aL2)

or

--~-~~-~----------------------~----~------~~--~~-~--~~----~-------
~'"A load .factor of 1.41 was used in calculating these values o



For span (I) (no horizontal load to the left of the span)

== 0

The condition for a solution is therefore

or
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<42a)

The solution for various selected ~alues or D2 is tabulated in

Tab:L6 II.

TABLE II

b/a == Od6 b/a :::: 100

Al Dl ~e- A2 D2 k fv1p. Mp~t' kM ~~

wI-: W~2
p

I

0 0 0$0488 0 9 112 0 0 0 0558 1320 3400

0.112 000621 0 0 05 00 0430 1681 2620

0.225 O~'O780 O~lO 0 0 0305 2110 1860

0.2.52 Oe0820 0.112 000277 2220 1690

Figure (42) is a plot showing the solution to these three

loading conditions: vertical load alone s wind from the left and

. wind from the righto Since the structure must provide the great~

est Mp and co~respond kMp values, the condition with vertical

load alone (load .factor:;: IG 88) governso The required values

are therefore as given in Equationt40a~
'.,;

Suppose that case (b) and (c) above had not been solved

and that it was desired to check to see if case (a) was, adequatec

'Since the load factor .for comb:t.ned wind and vertical- loa.ding is

1.41, the value of Mp/wL1
2 for the first span would be

*A load factor of 1041 was used in calculating these values o
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:£12 .-- (l)(l"t1f?J:'6Oo) (12)' := 0,,0650

The corresponding val,ue .for the secon.d span is

From Equation (41) it is known that Al = OQ20~ The needed value

of Dl must therefore be 0 0 04 (from Figure 25)0 From Equation

(41b), this means that A2 = (0.444) {Oa040} = 080178 or entering

Figure (27) with this value of A and D = 0 9 it is seen that

Since the member required by case (a) is
.I

greater than this value~ the case including wind will not be

critical.

With regard to Figu~e (42) an observation can be made

that will prove beneficial in the next ex amp1 eo For each of the

cases including the influence.of wind $ different solu·tions were

obtained by va.rying the nDn va.lue of the windward span from

zero to a maximum value equal to the ItAn value of that SpBnCJ

Since the function is continuous 9 only the two end poin'ts

(D =0 and D = A) need be considered to determine the range of

influence. Furthermore~ the relationship is almost linearo

l±..Desi gn Ex ample No.4

As a final design example, consider the three span un~

symmetrical structure loaded as shown in Figure (4]0 To illus~

tratethe procedure, only two cases will b.6 ex amined o The first

of thes-e will be the case of vertica.l· load alonee, Wind :from the

left in combination with the vertical load will be the secondo

For a -ureal n problem wind from the right in combination wi'th the

vertical load would also need to be considered¢
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Case (a): Vertical load alone.

For t~~ case excluding the influence of wind p both columns of

the two outside spans will tend to move away from the .center~

The design curves for each of the three spans will therefore be

as tollows:

Span (I), b/a = 0.6 Figure (25)

Span (2) , b/a ::: 1.0 Figure (28)

Span (3) , b/a = 0.8 Figure :(26)

- - - - - (43)-

Sinoe. the, two" interior columns will tend, to spread., ·;(fail1J.re

mechanism.,.,!te " of Figure 21) 1t is .also known. that

(43a)

·At the two interior columns it is necessary that the

following conditions be met:

~ (~ WL1
2

) = D2 (~WL2 2)

whioh gives

Al == D2 (L2!'Ll) 2 -- 2. 780 D2 - - - - - - '44-)

and

or
- - - - - - C44a)

The· tabulated solution for various selected values of D2 is

shown in Table III. The values of Al and A3 were determined

from a considera,tion of Equations (441 and (4480). It
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fJ.'ABLE III

i73R 'C1, :

b l . ..-.. 0 8/ a --.... ¢.

() Q 0)-+,,5 6 o0 4L~() 1'0 ()7 lJ ()o 7~30

Oo.O,5L~:; ()()5~;;'-.L· ()Q895 <",'f o 872

o~ 06l~5 () 0 .? ~~.~ l,~, (J () J .~'~ () .L.l) 032

OQ O"75ll () 0 9~}S ()() .~.~t~O :1 0 212

000884 10272 0 0 ~-,3 7' Io LI-15
" .

0 0 0939 10,39.5' 00 ,390' 10502

+---_=~~&,._, ..,-=~,"=-~""",-,,~,~..L«:~~_ .. """'"""~_

k2JVT~ 1"1 IflN£ J:;:~
liL] ~~ ~~t~j -;£2 -wL 2

~------...._"..,,~' '~q.~.....","~""~"",~""""",",,,,,,,,,,,,--~~1_l:Ii'l-..........-f

lil ~ A~
wI-Il·Wj .:,)

0 0 0 0413e, (J

00139 10 0 06~,~Jt:1 ()oO'lL!

00 278 ot)osn () C) :L ~.~; ()

0 0 417 0 0 11O.~): ()Q 2,3 Lj.

0 0 556 0 0 11+12 ' OQ.3:1 2

0 0 612 00 15$0 OQ344

b/~ :::: 1.0

"D2-
l{lME.
wL22 '

0 0.0428

O~O.5 . (). '0358

o.-~o 0.0292

O~15 0.0232

0.20 0.0175

0.22 0.0156

.A plot of these va.lues is given ill Ft,~gur~~ '(l-1~~,)Cl :'Ls -~,fo~ul,d tl6 eXtm

pected the function is contil'"lUQUS with extr"ernes ~:~o~rr~espol1d,ing to

t'he cases where 'a) the center span is as sma~ll EtS possib,le and

(b) the outside spans have their. smallest Hp vall:teso

AS$uming that this loading condition (v'er'tical' load alone)

is the critical one for designij" 't~he questio.rl is inrrned1ately

'raised ,as to what will be the better choice of M values ror the, 1)

various members of the frame 0 As pointed out earlier s this re~

.. port will consider "least total weight o.f s'truc'ture if as the

or~tepio~.

From the disc'u-ssi6x~.:011. Economical DesigxJ. oi'l tIle pre3ceding

sect1on, it is assumed' that

,and, C is a constanto

.. '->,-t-h~:re'.tdre

The total weight o,f 8J.1;f gi·verl baron is

WL i =0 'Mp~ Li- - - - - - - - (45a)

wher-e L:L'- i$ the lerlgth of the considered rnembel'·~o Sirlce orlly
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relative 'comparisons are required, the C of Equation (45a) could

just as well be taken to the other side of ' the equation 9 or

:: Weight Function:: f:: (~) Li ~ - - - (45b)

For a structure consisting of a numb~r or members 9 the total

weight function WOUld be

i=n
f :: ~

i=-l
where n is equal to the number of different member sizes within

the structureo

Neglecting for a moment the influence of the interior

~olumns, the weight function for the three span structure (Case a)

would be

Dividing through by wLo to have the plastic moment values in

terms of the non-dimensional parameter$ computed earlier

Figure(4~iS a plot of this function versus klMp/wL~o It should

be. noted that ~or railure of the structure as a whole the defini~

tiog.of'any one of the three Mp values ~utomatically fixes the

other two. Therefore, a two~dimensional plot is sufficient o

There is also shown as a dashed line in this graph the

relat10nship between the weight function and klMp including the

influence of the varying size of the interior columns 0 These

were determined from a consideration of Equations (30) and (31)~

Th~ sizes of the columns are tabulated in Table IV Q As noted

from Figure (45), the inclusion of the size of these members
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does not change the selection of the nleast-weight tt design o

While no general rule concerning this oondition can be formu~

lated, this seems to be 'true for most practical structures ..

~e l'1east"'weight tt design (for this one loading condition)

would there~ore be the one where

TABLE IV

M k1MP k2~ M/wL2 M/wL2

P
~ '~'WL2 wL2 Colunm(A) Column(B)wL

-

-

00440 10070 0 0 730 . 00630 00340

0.591 0 0 895 0 0 872 0 0 929 00647

0 0 795 0730 1 0 032 1 0 186 0 0 947

00995 0580 1 0 212 1046'2 10240

1.272 0437 10415 1.667 1 0 520

1~395 0390 1 0 502 10749 1 0 640
.-

Case (b); Vertical load plus wind from the lefto

Sinoe for this condition of loading all spans tend to sway to

the right, the design curves governing the solution are as

follows.:

Span ( 1) , b/a = 0.6 Figure (25)
-

Spa~ (2) , b/a .= 1 0 0 Figure (27)

Span ( 3)·, b/a = O~8 Figure (26)
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The known conditions arid the requi.rements :for solvirlg the

problem are g

a) Al (~L12) =: P (L) or Al """"" 0020 0 0 0 0 (L~7 )

b) A2 (~WL22) D1
(1 2) A2 0 0 36 Dl (48)= 2wLl or == 0 0 0

0) A3 (~L32) = D2 (~L22) or A3
t-~ 1 0 56 D2 0 0 0 (49)

d) D3 -= a 0 () 0 0 0 0 (50)

In sett ing up this type- of a Pl~ oblern~ it is recalled

that the solution will be a continuous function in the three

vari,ables, Mp , klM~ an?- k2Mpo Furthermore}) if A is given

for anyone particular span, D in that span can vary from a

value o.f zero to the fl111 A val.u6b Tb.e flleast-=weightfl solu~

tion (for that one span in question) will correspond to the

case where .A =: Do

Since the total structure in question contains three

span~, three limiting cases are apparent~ (1) spans 1 and 2

as small as possible 9 with span 3 providing what is needed

for equilibr-ium, (2) spans 1 and 3 as small as possible.9

with span 2 making up the d~fference, and (3) spans 2 and 3

sm~ll, with span 1 as large as need be o The solutions ror

:'·1;hese three cases are tabulated in Table V 0



1

2

3

1

2

3

1 2 3 4 5 6

Al
l~

Dl A2 ~~E D2~

wLl2 wL? .2
,b.,

--

002 0 0 0298 0 0 2 00072 0 0 0330 00072

0 0 2 000298 0 0 2 0 0 072 0 0 0':;08 0

002 0 0 0742 0 0 0 0 0428 0

7 8 9 10 11 12
--

A3
k2M.,E

D3 i .:rIMp ~g
wL3 2 wL2 wL 2

wL~

Ooll3 0 0 0588 0 00268 0 0 825 0 0 940

0 0 0 0455 0 0 0 268 1, 0 270 00728

0 000455 a 0 0 668 :1 0 07° 00728
- - =

These results (plotted as points 1 9 '2 9 and 3) a,s well as

intermedia'te values 9 are sho'W1l in Figure (46)0 For a solution

'to exist which causes the structure to rail as a whole, the

design must fall within the region ShOWllo As pointed out

earlier, the boundaries of this region are almost straight

lines (one is a. s'traight line) 0 They eaeh represent the

case where one of the span~ is maintained in its minimum MP
condition (i O eo 9 with A:= D)o

Proceeding now to- determine the particuJ~ar values of

MP, klMp , and k2Mp that result in a least total weight of

structure sGlution, the weight :C°unation neglectirlg the size

of the interior columns is



The contour lines of equal weight :fll.netions are shawn ill

ture results wherl spans 1 and 2 are b,eld a,t tl'leir tuinimllPl

va.lueso

A generalization r~_ge..rcting t:.l'1e selectio:tl of the var~

-ialls member sizes that c.omprise t116 le8"st total lA'fC:?Jigl1t ()f

structure solution can be madeo Since tIle bou,ndarJ:les defi.nC':t

purposes stra.. igl1.t lines,9 arld since thi.s is F.tlI8.Q tlle case for

the weight fune tior.!.9 the least~ 1;\f8 J..ght zol'ut; Ion 'illl18t; occn.:Q:' at

one of the cornerbs of the- desl,gn r)egioll o For 8. thre8c--'>J~pan

stru,cture theIl, only three sol,'[j,t:ioXJ,s rlE~ed be eXC1JnirlSdo For

a f our~span pr oblem~ f O'Ur CB.2ieS mJlst.: rbe irlv88t :l.gated~: 8F~aIlS

1,9 2,9 and 3 nlinimum~ spans ld9 2 9 arld 4 rnini.nlu.m 9 s:pariS }'.9 3,

and 4 minimu'm 8.11.d span.s 2}J 39 aIld 4 miYlirrrUffi o

5& Further Considerations Reg1.3J:·d.i:n,g Use Oj~ The De(~~ign Curves
~"':;l."':U"'-~~~~~~~~'I:n"~~~"""""-"'l.",.""""~~-.p:.t~~.~--.,~~~",,,u:n~e;;...":T""~

It ShOllld be xceempha.s:ized th.at in pl.a~t:;i(~ defS~:tgrl ~~cl:per~

pas it ion does riO! hold 0 Eac.h lO~td:i,rJ.g Co andi t ion 111l1st be inves~

tigated sepe~atelyo The aet'ual selectiorl of melnber sizes 'thrill

be de·termined by the loading condjJ~ion whicl1. Imposes the Dl0St

severe requirement o

While the design examples shaw~n in this report Gover a
-- --

va.riety of situations!1 other t'ypes of pr oblems c auld equal.1y

~43

well be solvedo For example» in each or the oases illustrate~

the column hei.ghts wel~e equal througllout the stru,ctt:tre 0 Th1.s

is not a requirement of the l11etrlod of solut,ion o All that; is



needed to use the design charts is that in anyone given span

the rafters must join to the columJ.'1s at the same eleva_ti--On o

Adjacent spans may have di.fferent C OlU'r1lIl heights 0 It should

be pointed out~ however~ that in all cases it has been assumed

that the size of the interior columns must be suffioient to

cause the rafters to participate in the failure mechanism o

Fortunately, for most practical structures, this situation

results in greater economy (in terms of least weight)o

Solutions similar to the ones given herein for the

pinned~base$ gable frame problem have also been developed

for the fixed~base;> gable frame and for the 1!leants!Sto ff type

structure (Re~~rence 13)0 Due to spaoe limitation9 these

are not included in this repor~o

VI 0 ? U M l\i A R_-X

In this paper the following have been consideredg

a. ,The assumptions of the simple plastio theory and a

short description o~ the various methods whereby

solutions to problems in pla.stic analysis oa.n be

obtained were first presentedo

b& The mechanism method'was then used to solve the single~

span gable frame problem9 and the results were given

in the form of design charts (Figures 10 and 11)0

Co This was followed by an attempted extension o~ the pro~

cedures used ~or the single~span case to the multiple~

span problem D The difficulties of using such an

approaep were discussedo



d. Next, a di:f~erent approach to the plastic analysis and

design of mUltiplet=span structures was presen'tedo It

was based on' the concept of dividing the structure

into sub~structures (single-span struotures) for the

purposes of analysis o

e. The equations governing the solution or each of these

sub--structures were obtained and design charts were

presentedo

f. To aid in the determination of the ttleastt;tweight ll de~

sign., the relationsh·ip between the .fully plastio

moment value and the unit weight of rolled wide~

flange shapes was consideredo

g. Finally, four design. problems, typical of those found

in praotice, were solved to illustrate the methods

developed o



VlI o ! C K l\T 0 W LED GEM E N T S

This paper is based on",a PhoD () Dissertation

presented to the Graduate Faculty of Lehigh Univer~

sity(13)o The work has been carried out as part or

the project WELDED CONTINUOUS FRAMES AND THEIR COM~

PONENTS being conduoted under the general direction

of Lynn So Beedle 0 This program is sponsored jointly

by the Welding Research Council and the N'avy Depart con

ment, with funds furnished by the following~ American

Institute of Steel Cons'bruetion, American Iron and
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VIlla N 0 MEN Q..1: A-l. U R E

a.

b

w

F,R,S

H

L,(L1,L2,L3)

M

non~dimensiohal parameter~ relating the
height of a column to the span length

non~dimensional parameter, relating the
total rise of the rafter to the span length

function values

non~dimensional parameter, relating the fully
plastic moment values o~ two spans

distributed vertical load per unit length

distributed vertical working load
per unit length

non~dimensionalparameter, relat~g the hori
zontal force acting on a .structure (or the
hypothetical '''overturning'' moment of one
part o~ a structure on tha- adjaeent part)
to tb.e vertical loads-o (See Equations 10
and 29)0 It is assumed that HAlt results in
positive work being done as the structure
fails

constant

number of possible combinations or hinges
which result in failUre of the structure

non~dimensional parameter, relating the hor1~

zontal re·sisting force or hypothetical
tf Qvereoturning" moment acting on a ~tructure

to its verti'ca.l loading o It is assumed
tha.t "D" results -in negative work being
done as the structure fails

function values

concentrated horizontal reaction (see Figo17),

length measurement o Can be total span length
'or fract,i_onal part of it

bending moment

fully plastic moment value

moment at the top of interior column
(see Fig o '36)
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VIII. Nomenclature (cont~do)

N

P

v

w

Wint

x
z

moment in the windward rafter adjacent to
the windward column (see Figo 36)

number of possible plastio hinges

concentrated load

concentrated working loa.d

hypothetical n·over-turningU or resisting
moment assumed acting about the base
or a structure

vertical reaction (see Fig o 17)

weight per unit length of a structural member

external work associated. with a virtual
displa.cement of an assured mechanism

internal work associated with a virtual
displacement of an assured mechanism

number of redundancies

pIa.st-ia modulus

. c/... '(o(l,O<2)} non-dimensional parameters, defining the
A ,- ~ distanoe to the plastic hinge in the
fJ rafter o~ a structure

y non-dimensional parameters, r@lating the
distributed horizontal load per unit
length to the distributed'verti~al load
per unit length

virtual rota.tion

non..... dimensional parameter, relating two
special virtual rotations (Equation 22)

curvature

weight ~unotion (see Equation 45)
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wL· q: 1+ .E.l>(

, a

0p( ~tt 1- ~ [ A(l+~) -~" -~] 000. 0 0 for ~ >0
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IX =t[~l+ ~I
a .

l)(1=2

wh.ere A= (2a) (4)
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, .. /.
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a

-.~" ....~ .1'
,','.'V', -.-- ---2
' '

\'

',* 0.0'00'0.0 .... 0·0.0 ....~ .. " ';"0'0 .. 0 0 0 .. 0 .. for ~ =0



. ~ .'

w

~2= k[ 0< '{~~1:- ~)J
()(. = ~[il-(~)('2 ..~D-1}1-1 ]ooooeooe1:0r ~>o

. t>< - i ,:.' ',- 2 -
• 1 •. + .•.. ' , .... b __

.. o ••• 4' 0 0' ,~ '. 'j) 0.'0 0 60 0 Q ~ 0' Ii) • Q (J 0 (l 0 () 0 0 for ~ -0. -,' ',' a·

NOTE~ DB will be equal to Do"7,~ w
, [[I, I ''I OICl

. "'(':~) .' ·:=TIl
.......' -b-.. ~, L~"""~
D wL "-, - ,11"'\W~
9~ '-"" ~
. 2 IXLl.- 2

L, '
. '

~2 = t{ ~(~:~:b( ). J.
a, '

.()(. =! [11-(~) ~ (2 ~ D-l) I -1J
·a '

b
I;) C) 0 ¢ 0 0 Q 0 for - >0. a

8.• ' .... w-
I II tlill []

I
, I

~2~'
.,A: 2

~,'" =- [", A,-DJ'La , -,.:-.w, -' ,l-I-

nr.laL



.'. W

IIIJD1lIO

M..... '. _1 ['. ~ (l-D ~.. ' ,~-b( )}'" .... :-.En - 'r.' . .' b' .
. ',' '+ 1+ - b<

a

':,,':

. (>{ '1, . for b =0=2', .o.,~-.~:OO'G..,o.Oit&,·oo,.-e.\oo_oooo.oC)oooooo' a

10.. '. W

I J II11III1 )
/'

~'~ == 1 ["(l_K}(A+·~·'-D.)-D(.f.)t><.J'
wL. -: .. ' '1+ ix. .

==t[~~~[A(l+ ~)-D(l-~)-lJI -lJ o 0 0 0 for b > 0
a

I

'" ,- [ l.L'A+D .J b =0
V" == 2 . "0,) * * .. * Q 0 0 0 * a Q T Q Q 0 4 0 0 0 " 0 0 " 0 c <> f i

----



li"ii w," ':. ,.... l1DIIIIlID'. "
'/,1·' '.

, '( ,'~'~. . .. ' ',. ~.

_,', ',' L-" .. ,....
.. ~ . \ I .,. ' .. , I

, ' -

-,-la-t . _', ,W .,'" .;., .
"'.' w;m;u:m:J': ..

. . - . ~...~

.'." . " .. ' .' ,,'

,,~.,.'..•:l·.·,. :A(1~al)"D-~1-2b<{A(1+2~}-D-l--& -2 ~2 { l+~~J
"'." .,.' i ·,2b 'b '

.' r -. - \',. ',' "~' " '",.2-1- ,t>C. (~) + (.--) "" "" .. ,' '. . . a . a
~',

',' \. \



205.56
~ ,

M

Mp-------- .

My' ~---

,,'

, I
, I ri
~ ~

, I
I I

¢

, ~1g. 1
MOMEN'I'~Ct)RVATURE RELATIONSHIP

ASSUMEp IN PLASTIC DESIGN

.W
II I 1ft 1''''1 II I I

j j 1

Figo 2
PROPORTIONAL LOADING

p

.b L .•1

bL

aL

. " Fig. 3
S;ING"LE SPAN RIGID FRAME

Figo 4'
LOCATION OF

POSSIBLE PLASTIC HINGES

__ Figo·5
FOUR ~SSUMED, ,"INDEPENDENT FAILURE 11ECHANISMS




















































	Lehigh University
	Lehigh Preserve
	1959

	Plastic design of pinned-base gable frames, Welding Research Council Bulletin Series, No. 48, (1959), Reprint No. 134 (59-3)
	R. L. Ketter
	Recommended Citation


	tmp.1394459047.pdf.R70cu

