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ABSTRACT

From consideration of the yielding process of struc=

tural steel it has been shown that the material becomes

anisoi:;ropic when strained into the strain~>hardening range.

Introducing appropriate moduli the problem may then be

treated as buckling of an orthotropic plate.

Buckling in the elastic range~ then~ is a particular

case of the orthotropic solution with the elastic moduli of

steel. The application of the integral equation to the

buckling of a stiffened plate simplifies the problem and

saves labor and time for computation. The single basic in~

tegral equation covers the whole domain of the plate. The
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stiffener reactions ~nter as transv~rse or twisting loads

but do not introduce new boundary conditions.

The required minimum bending rigidity of a stiffener

is obtained in both elastic and strain-hardening range.

The effect of torsional resistance of a stiffener on buckling

strength is investigated for the stiffener with a thin-walled

open cross-section.
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10 INTRODUCTION

101 Field of Application and Reasons for Study

Presently used specifications for ship structures

(for example, Rules of American Bureau of,Shipping~ Rul~s

of Nippon Kaiji Kyokai, Japan, and Rules of LloydUs Regi,ster

of Shipping, Great Britain), are based partl'Y' on conven=

tional elastic design and mostly on experiences obtained by

trial and error. Theoretical studies on ship structures

have been carried out especially on the buckling strength of

stiffened panels within the elastic range 0 Consequently the

specifications for such stiffened panels as deck or bottom

construction of the hull can safely be applied to structures

in which the design i,s based upon theoretical first yield as

the limiting conditiono However" the wide application of

welding caused new problems, such as the corrugation of the

bottom shell platingo This type of failure has' become ex=

termely common in ships having transversely framed bottom of'

welded construction since World War II. It has been experi=·

enced in almost every' shipbuilding countr'y of the world,

demanding changes in the specifications for welded panels as

well as a change in the type of construction from a trans=

verse to longitudinal stiffening systemo The use of long,i='

tudinal stiffeners, therefore, becomes more ~ld more impor=

tant for the s'imple reason to reduce the thickness of ship
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plating and still obtain sufficient material to resist the

required forceS Q The stiffeners are generally of Tee~.sJ;1ape.

No solutions of stiffened panels considering the torsional

and warping rigidity of such stiffeners are available.

Hence, there is no definite conclusion on the comparison

between the stiffeners with Tee-shaped cross-section and

inverted angle stiffeners Q

Considerable uncertainty seems to exist concerning

the computation of the appropriate cross··sectional proper~

ties such as area, moment of inertia, torsional rigidity and

warping rigidity. A study of these problems will be made by

investigating the interactions between stiffenel"s and plateSQ

A second problem of importance is the inelastic

buckling of such stiffened panelso Considerable experi=

mental data on the strength of ship plating is available ~

.especially from work done at the Taylor Model BasinQ

Frankland (1) studied simply supported plates un.der edge col1':lc~

pression. The results showed that ship plating of the usual

dimensions will buckle in the inelastic range where the in=

fluence of residual stresses is an important factoro Due to

the uncertainty of the distribution and magnitude of these

residual stresses a solution of the problem becomes practi=

cally pro'hibi ti ve. Therefore, a new approach to the design

of a stiffened panel is proposed in this dissertation.
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10 2 The ImEortance of the Plastic Design Method for
Stiffened Panel Design

The design of ship plating is presently based on

essentially empirical rules. The prescribed dimensions are

such that buckling will generally occur in the inelastic .

range. Therefore an elastic analysis of the buckling strength

of stiffened panel~ is inadequate for the determination of

the appropriate cross-sectional properties of stiffeners.

The buckling strength of stiffened panels in the

inelastic range depends considerably upon the magnitude and

distribution of the residual stresses due to welding. These

residual stresses depend on many factors such as plate thick-

ness, type of electrode, weldi.ng conditions, welding sequence,

magnitude of restraint and so ono There is no hope to control

all these factors sufficiently to produce a well defined

residual stress state required for a more rigorous analysis.

However~ yielding of steel wipes out these residual stresses

such that at the point of strain-hardening their i.nfluence

can be neglected. Theref.ore, it may be advantageous to

design the geometric properties of ship plating such that no

buckling will occur prior to the point of strain=hardening

of the material. In addition, such a design would allow

sufficiently large plastic deformations to take place. The

structure would be able to redistribute the internal forces

under extreme loading conditionso It is also expected that
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the welding distortions could be better controlled for

stiffened panels designed according to such a criterion.

Recently such an approach=-namely designing the plate ele-

ments of structural members such that no buckling will occur

prior to strain-hardening--has been found useful in formu-

lating rules controlling the geometric properties of wide

flange beams in plastically designed structures(2).

The stiffened panels can carry a considerable

amount of loads after buckling in the elastic range. This

post-buckling strength of thin plates is well known since

many investigators, such as von Karman, Marguerre and Wagner,

studied these problems. The linear buckling theory is no

longer useful to analyse the post,~buckling behavior of a

thin plate and the buckling st:rength cannot be used as a

design criterion for such structures. Since the problem is

too complicated to be treated mathematically, in general

several empirical formulae have been put forward based on

GALCIT and MIT tests(3). On the other hand, plastically

designed stiffened panels will fail almost at the point of

the buckling. There will be little reserved strength in the

post-buckling range because of the rapid decrease in tangent

moduli in the strain-hardening range. For such comparatively

thick plates as encountered in ship deck constructions, there-

fore, the linear buckling theory of the plate in the strain

hardening range based on the effective moduli of the material
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after yielding can furnish the appropriate design criterion

which predicts the ultimate strength of the panels. The

optimum panel design for a given compressive loading will be

obtained when instability of the plate occurs simultaneous+y

with the instability of the stiffeners. Therefore J if the

cross- sectional dimensions of a longitudinal stiffener are

chosen such that ~o local buckling of its web or flange will

occur prior to the point of strain-hardening J the whole panel

will fail simultaneously at the point of strain=hardening.

This condition satisfies the mimimum weight design in plastic

analysis. /

It is therefore proposed to use an approach based

on the "Plastic Design Method" in the investigation of the

inelastic buckling of longi tudinally and transversel"y

stiffened ship plates. Geometric properties will be derived

such that the panel will not buckle in any type o.f insta

bility such as primary or secondary (local or crippling)

buckling prior to the point of strain-hardening. A ship

designed under such an assumption would be able to sustain

considerable inelastic deformations without buckling and

hence be able to redistribute the forces by inelastic action.
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1.3 Approach to the Problem of Inelastic Instability

According to Timoshenko(4) a plate cannot sustain

any load above the yield point of the material ~ "Experiments

show that, when the compressive stress reaches the yield

point of the material, •.••. the plate buckles for any value

of the ratio b/h": Reference (4), p. 3850 Essentially the

same conclusions must be drawn from the equations for ine=

lastic buckling presented by Bleich(5). Both the column and

plate buckling equations •••• 0Equations (21) and (653) in

Reference (5) .••• ~ontain the factor 't" = Et/E. When the

yield stress is reached, the tangent modulus Et reduces to

zero and hence buckling seems to be unavoi.dable.

Recent investigations at Fritz Engineering

L b t L h o h U ° °t (2),(6) ° ·t· ta ora ory, e 19 nlverSl y are In OPPOSl lon 0

this statemento In the elastic range the material exhibits

homogeneous and isotropic behavior. At the yield~ng stress,

00' considerable straining takes place wI.thout. an increase

in stress so that the tangent modulus, Et, seems to reduce

to zero. However,. the mechanism of yielding is discontinuous,

taking place in small slip bands by a sudden jump of strain

from the proportional limit to strain=hardeningo The slip

bands form successively, starting at a weak point and then

spread out into the specimen(7). Therefore, during yielding

some of the material is still elastic while the yielded
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zones have reached the point of strain~hardeningo The

material within the coupon is therefore heterogeneous. Once

all material has been strain=hardened~ the stress starts to

increase again.

Again~ all of the material has identical ,physical

properties and hence is homogeneouso However~ slip produces

such changes that the material is no longer isotropic ~ 10 eo $

its properties are now direction dependent. If proper con=

sideration'is given to these physical facts the behavior of

c'ompression elements of structural steel in the yield and

straih';'hardening range can be explained and predicted.

Consid~ring the effective moduli of' the material

after yielding has taken place a solution based on the

theory of orthotropic plates has been developed by' Haaijer

oo;d Th{{rlimann(2) J (6) at Fritz Engineering Labora'tory J

Lehigh Universityo Tests on the buckling of an,gles J flanges

of WF beams$ etco are'in fair agreement with this theory.

It has been shown that for certain dimensions such elements

can be stressed into the strain=hardening range without

buckling.

L 4 Parameters Affecting General Instability o,f Stiffened
Plates

When a stiffened plate buckles the stiffener

undergoes bending about an axis parallel to the plane of the
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sheet and/or twisting around an axis in the plane' of the

sheet. The term "General Instability" means here a primary.

failure of a stiffened panel either in the strain=hardening

range or in the elastic rangeo It.is assumed that the

stiffener cross=~ection and the compressive stress are con=

stant throughout the lerrgth of a plate. Primary failure is

defined as any type of buckling in which thecross=sections

of stiffeners are translated, rotated, or trans+ated and

r:btated but not distorted in their own planes as far as the

stiffeners are concerned•

When a stiffener is atta,ched to a sheet, the great

stiffness of the sheet in its Olllrn. plane causes the axis of

rotation to lie in the plane of the sheeto Therefore the

torsional properties of a stiffener with thin~wal1ed open

cross-section such as Tee=shape or inverted angle must be

modified by the enforcement imposed by the plate o The

torsional resistance of a stiffener consists of two parts J

(a) St. Venant's Torsion (GtK)

(b) Warping Torsion (EtW)

where Gt is effective shear modulus, K'·is St o Venantus

torsion constant, Et is tangent modulus and W is the lIIrarping

constanto

The bending of a stiffener is resisted by the mem=

brane action of the shee'!:;o The condition of the continuity
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of stress along the intersection of stiffeners and plate

gives a certain amount of effective width of plate~ which

depends' on the side ratio d.:: alb of the plate and the

boundary conditions of the plate for membrane action.

The effective moduli of the material in the

strain~hardening range consist of three effective moduli

(~, Ey, Gt) and two coefficients of dilation (VX~ Yy)

in the x- and y=directionrespectively. These constants

depend on the type of steel and its history.

The cross=sections of stiffeners may generally

be classified as

(a) Solid

(b) Thin=v.ralled

(i) Opense~tion

(ii) Closed section

In this dissertation only thin=wal1ed open cross=

sections will be considered" how'ever, the results can be

easily modified by taking proper values for the torsional

rigidi ties for thin=walled closed cross'=sections. For

solid stiffeners with rectangular cross=section the tor=

sional rigidities are negligible. For thin=walled closed

cross= sec tions such as hat<~shaped stif.feners, the warping

rigidity can be neglected as compared to St. VenantUs

torsional rigidi ty.The combined type of cross~'seqtipnsj
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consisting of thin=walled open and closed cross=sections~

such as inverted Y=shaped stiffeners as in airplane

structures can also be obtained by taking their own section

properties 0

1.5 Historical Review of Inves:tigation on Buckling of
Stiffened Plates

A considerable number of references(8) are avail=

able on the buckling strength of a stiffened plate since

Timoshenko solved the problem by using his energy method in

1921(4). The concept of the required minimum bending

rigidity of the stiffener was also considered first by

Timoshenkoo -Barbre(9) ~ (10) investigated the effect of the

position of a -longitudinal stiffener by using the differ=

ential equation. The buckling strength of rectangu.lar plates

with boundary. conditions different from simply supported

edges have been studied by Melan.~Rendulic and Miles o The

effect of the torsional rigidity of the supporting elastic

flanges w'as discussed first by Chwalla(ll) ~ who showed the

considerable influence of this torsional rigidity upon the

critical stress of the plateo Windenburg(12) solved the

buckling of a panel, simply supported along one longitudinal

edge and elastically restrained by a flange resisting

lateral deflection and twist along the other edge. The

results apply to the stability of web plate of a Tee=shaped

stiffener.
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Zahorski(13) was first in suggesting that the

optimum panel stress for a given compressive-loading was

obtained when· instability of the plate occurred simulta~

neously with the instability of the stiffenerso The

crippling or local buckling of stiffener sections were

summarized in charts and tables by Becker(14) for elastic

buckling. The local buckling of wide flange shapes in the

strain-hardening range was studied by Haaijer and Th~rlimann(2)

and the geometric conditions of flange and web plates were

proposed in order to prevent local buckling of wide flange

shapes prior to the point of strain~>hardeningo

The flexural-torsional buckling of column with

thin-walled open cross-sections was initiated by Wagner(15) ,

followed by Kappus(16). The effect of an enforced axis of

rotation on the flexural-torsional buckling of columns with

symmetric thin-walled open cross<~section was stud.ied by

Lundquist(17). Goodier(18)~(19) clarified the scope of

Wagneris formula for torsional buckling and found a general

theory simpler than that of Kappuso Simple results were

derived for further problems of a bar attached to a flexible

sheet, and a bar with an enforced axis of rotation. The

basic differential equations for a stiffener with arbitrary

thin-walled open cross-section under axial compression

derived by Goodier will be used in this dissertation with

the modification for an enforced axis of rotation in order

to describe the behavior of a longitudinal stiffenero
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2. PRELIMINARY STUDIES FOR INTEGRAL EQUATION

ON BUCKLING STRENGTH OF AN ORTHOTROPIG PLATE

201 The Advantage in Application of Integral Equations
to the Stability of Stiffened Plates

Among different mathematical approaches to

engineering problems the integral equation is seldom used

compared to such methods as differential equation~ calculus

of variation~ etco The reason for this situation may be due

to the fact that many problems can be solved by means of

differential equations without any knowledge of integral

equations. Furthermore, mathematically the integral

equation seems to offer no definite advantages. However~

for some problems the method by integral equat:i.ons can save

much time and 1 abor as for ex ample ~ the buckling of stiffened

plates. The problem can be treated by solving the differ=

ential equation for each isolated panel, and connecting the

solutions by using the boundary conditions along the

stiffeners. However, the boundary conditions along the

stiffeners consist of

(a) Continuity of deflections of plate and stiffener,

(b) Cont~nuity of slopes of plate,

aWi =oWi+l

ay oy
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(c) Equilibrium of shear forces j

= {

c3W. . ~3W. }J. 0 J.
D - + (2 v) -----

i oy3 - ox~aY

Cd) Equilibrium of moments j

Ja alaw. Ia 2-,00 Wi a Wi +l OWi +l )= Di(~ + v J.)+ Di +l ( +Y
ay ox 2 ay2 ox 2

where

wi = Deflection of plate in i·, th bay

VlTis = Deflection of i-th stiffener

Eli, EWi, GKi, and Ai = Bending rigiditYj Warping

rigidity, Sto Venantus torsional rigidity and Area

of i-th stiffener respectively

Di = Bending rigidity of plate in i=th bay

Ri
2 = Ipi/Ai + d i

2

lpi = Polar moment of inertia of the stiffener

cross-section

di = Distance between centroid and enforced axis

of rotation

ax = Compressive stress in the direction of longi~

tudinal stiffeners (Figo 1)
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For transverse stiffeners, similar boundary conditions can

be formulated along each one of stiffeners excluding the

terms on the effect of axial compression Ox in conditions

(c) and (d) (Fig. 2). The solution of the differential

equation on buckling of plate,

with

together with the above boundary conditions becomes very

involvedo Therefore y most solutions were obtained by

neglecting the effect of torsional rigidity of the stiffenero

As seen from this ~xampley if the problem is piece=wise

continuous, the method by differential equation becomes

practically unmanageable. However, the method by integral

equation can treat the whole region of a stiffened plate

in one equation. It is not necessary to connect the indi=

vidual panel by continuity conditions. Moreover y the

solution by integral equation can satisfy all boundary con=·

ditions along the stiffeners automatically provided Greenvs

functions (or influence functions) for the deflection pro=

duced by a vertical load and a concentrated moment are known.

For the effect of a stiffener can be expressed by its ver~

tical reaction and its twisting resistanceo Therefore y the

exact solution of the buckling strength o.f longitudinally
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and transversely stiffened plates with stiffeners having an

arbitrary thin-walled open cross-section can be obtained in

a practical manner only by using the integral equation.

2.2 Green's Functions for Deflection of an Orthotropic
Plate-due to Unit Load and/or Concentrated Unit Moment

The differential equation of bending of an ortho-

tropic plate under transverse loads can be written in form

of Cartesian coordinates as follows(20)

(1)

•
where 'KX, Kxy ,and Ky are the rigidities of the orthotropic

plate. Green's function for deflection due to a unit load

corresponds to the soluti<;m of Equation (1) with the con

dition qdA=I, where dA is an infinitesimally small area of

the plate, surface, dA=dS.d~ (Fig. 3·~1). The load intensity

q is assumed constant over the small area dA. Therefore

q (x.y) in the Equation (1) is expressed as

q(x. y) = ;1>. for S :it
~ ~ S

~~
,(. +

2.- 2.

L
.:{~ -a ~ '2 +

c;{"l
- ~ Z2.J (2)

= 0 for entire plate surface except dA

For the plate with four edges simply supported the partially

distribut~d load q (x.y) can be expanded into a double
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Fourier series according to Navier's method

If (X, :J ) = I L
where

= ",4b rrt (X,'Q)~ "":..:i.~ "':~ '<-'(d'd
o 0

(4)

coefficient Amn yields

"

Substituting Equation (2) into Equation (4), the Fourier

I ..m7l5 ' -?»7Td!
~ -0:-~ -:z:o::

1111rd'g
2.::L

I /YJ 17' '2 I 'Yi 1l'd 'l
~-b-~ ~I:>

/j)714~

2b

where 1 = 1

since for a concentrated unit load limo qdA=lo
c>lA -0

Therefore
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The deflection w in Equation (1) can also be assumed as

00 00

.Aff ( x J a) .= L L
'WI=-l 1'1\=-1

( 6)

for the plate with four edges simply supported. Substi

tuting Equations (3), (5) and (6) into Equation (1), the

coefficient bmn yield

b

4
o..b

I

~

•

From Equations (6) and (7), therefor~, Green's function

for the deflection due to unit load is expressed as

where

(8)

Green's function for de'flection of an orthotropic

plate due to unit moment can be formulated by superimposing

two deflections wI and w2' where wI is the deflection of

plate under concentrated load P acting upwards at the point

C'S- ~ ) 'i) and w2 is the deflection due to P acting dmmwards
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at the point (s +,~ I ?z. ) as shown in Fig. 3-2. The moment

~ in x-direction is expressed by

Mx p. E = 1 (10)

From the definition of Green's function for a unit load the

deflections wl and w2 are written as

.' . E
P . ~ (X, ~ j S + T ) "Z ) (11)

By superposition of these two deflections and from Equations

(8), (9) and (10), the total deflection w (xoy) due to

moment ~ yields

where

-U-
e.-o

Therefore
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For unit moment M = 1x at the point ( s) '>z. )
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Similarly for unit moment in y-direction at the point (~,~),

where

00 00

~~-t) (x./o)· 9=>m'I"'l (S,l)~Cr ~ (x, d) S) 't) II A2'1"'1~
'Il\CI '1'\:1

• C>o 00

~ (x, 0) ~/ 't) =LI P""'''l (X/"O)' g:>""'M(~'"1.)'>z.

A. :'"
(14)'l ' I'M :OJ -n::.,

and

Therefore Greencs functions for deflection of an ortho-

tropic plate due to a unit load and/or unit moment in x-

and y-direction are defined by Equations (8), (12) and (13)

respectively.
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2.3 Effective Width of an Orthotropic Plate with Stiffeners
under Bending

At the instant of buckling of a plate in the

strain-hardening range, the plate has orthotropic properties

yharacterized by the effective moduli in the range of strain-

hardening. The stress-strain relations are given by the

incremental theory of plasticity with a modification of the

moduli as presented in Reference(2). Therefore, the effect

of an orthotropic plate on the bending rigidity of a

stiffener can be analysed by using the following assumptions

for infinitesimal deformations.

(a) Ordinary bending theory of beam for stiffeners.

(b) Transverse bending rigidity of plate neglected

as compared to rigidity of stiffener.

(c) Transverse stiffeners remain elastic, longitudinal

stiffeners are compressed into strain=hardening

range.

(d) Over the effective width, be' as shown in Fig. 4,

the stress increment a* is constant such that a

stiffener with an effective flange width be will

be equivalent to the actual stiffener if

~/2.

e... J( d. S-y) d.:x:..

- 0../2. (15)
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The incremental stress-strain relations are given

as follows (6) •

"

...JE -I-ol~ _ ~ -l~
0\. Y- E Y ~x

y. Ex

(16)

•

?

The equations of equilibrium for stress increments are

From Equation (17) the stress function ¢ is introduced such

that~

c1. Z:C y =
(18)

The compatibili ty condition for strain incr'ements is



=22

Substituting Equations (16) and (18) into Equation (19),

the differential equation for the stress function ¢ can be

expressed as

- 0
(20)

•

where

Dx
E"

I -' 'Ix Vy

Dy - E y

1- Yx Vy

2F - D x ( Yy ~) + V)( D yGrt-

Transverse Stiffener:

(21)

The bending moment acting on a transverse stiffener

can be expr~ssed by a general term of Fourier series as

M

The correspondin~ bending stress of stiffener 0y is given by

, IYl 7r'd-
~-

b

The condition of continuity for normal stress along a

stiffener is

d.. o-y ( "Plo..te)
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Hence day, stress increment of plate in y-direction, should

also vary as sine function$ therefore, the stress function

¢ in Equation (20) can be expressed as

X (x) ~ (22)

Substituting Equation (22) into Equation (20),

The solution of Equation (23) is given by

o
(23)

x =[ A~~(~:)1 t2
- ~~\ X

+ 8 ~k('\;)~ u'--r"x.]
~ [C ~~ (~:)r'l/+ t~\ x. ,

+ D~k ("';:)1 f+ 1',,)( ]
where

(24)

)

The boundary conditions for the plate are given as

.x.= 0 LA.. = 0

u.. = 0) 01.. 7:)(y =. 0
(2.5)

• where u is the incremental displacement in x=directiono
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,
From Equations (16), (22), (24) and (25) the integral

constants of integration follow:

AD = - Z W,. I
W2. I/f

b )2..
1Ylr'ff

Be =

BD = (26)

where

W,~

r-
I "

SUbstituting the stress increment day obtained from Equatio~s

(18), (22), (24), (26) and (27) into Equation (15), the final



result for the effective width for a transverse stiffener

can be expressed for n=l as

2. b w,
1T~/" "f

(
W, _ 0,. 1/J) f~ 6J, fA ~ w~0.-
W2. W, 2., A.

For structural steel, for exampl~ A=7 steel, the following

values are available(2)

D = 3,000 ksi
x

Dy 32,800
ksi=

Gt = 2,400 ksi

.)X Dy = YyDx = 8,100 ksi (29)

Therefore from Equation (29) the nondimensional parameters

in Equation (28) depend only on side ratio ~ of the plate,

that is,

w2o... = 1088560(
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W, = 0.8790070,2

W2 l./J = 0.114883W,

2.bW, 1

'"IT"'" '/J
=

7· 542438f2 0.112055- (30)

11

Equation (28) is plotted in Fig. 5 for various values of

the side ratio ~ = alb together with the elastic case. For

the case of an infinitely long strip with width b the

effective width be yields

be
b

1+ '4J
(31)

.

Substituting the values of Equation (29) into Equation (31)J

be = 0.14817
b
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~ongitudinal Stiffener:

Similarly the effective width be for a longitudinal

stiffener can be expressed as

where

(32)

F
Dy

f - ~¥~¥+~~~¥~¥-
~2 W, b~~ tVab + ~2." _W, b CtT()2.t;.}2.b

2. 2 2. 2

WI ~ C"; )J ~ ~ - 1'''

W 2 ~(:7r)~ r2 + t 2

)J... - ( I + 2. f / ~ ) ( }- 2 - 'F~) - ( a- ~ + 'F 4)

"

1Dl( D y' - y1 Dy

1D)( Dy' + VX Dy
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For the case of an infinitely wide strip with length a~

the effective width be yields

be._-
Q..

a.w,
7[2.

I + ifJ
0,500

•

The Equation (32) is plotted in Fig. 6 with the elastic case •
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30 STIFFENED PLATE WITH TRANSVERSE il,NDjOR

LONGITUDINAL STIFFENERS HAVING A SYMMETRIC

THIN-WALLED OPEN CROSS=SECTION·

301 Behavior of a Stiffener with Symmetric Thin-Walled
Open Cross-Section

30101 Longitudinal Stiffeners

The deformation of a centrally compressed bar

attached to a plate is consideredo l,f the bar is -symmetric

about an axis perpendicular to the plate passing through

the point of attachment;> it is convenient to formulate'the

equations of equilibrium of the bar by usi.t:lg centroidal

principal axes of the system as shown in Figo 70 Denoting

the components of displacements of the shear center,3 by 1Js

and -WS in yo~and :3 <~direction respectively 9 the coordinates

of shear center by o~ and g~ ~ the coordinates of the point

of attachment by I'Cf~ and z~ and the angle of rotation with

respect to the axis of connection by s=oL" (clockwise positiveL

the equation of equilibrium of a stiffener can be written

as(2l) (Reference, po 598 Equation (67) and (69»
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4L 2.L ~ ~

I.,Ld1> [ l L L 2Jd P L[ Lo\LJJS ld VS ]
E\w dX.q.- ~t-K-6';A("f"o) ,).X-"J.- DxA ~sellx..~-Esd:x:.~

+ fe y [ Vs + (~~ - ~~ ) 9' L J( t ~ - '2~ )

fe.j! [ W-s - ( ~ ~ - ~~) :r L ] ( ~ ~ - d~ )

..

where

+ o
(35)

•

..

r L
~ .- Moment o:f inertia o:f longitudinal sti:f:fener

about l ~ axis.

rL
-_ Moment of inertia of longitudinal sti:ffener

y

about y-axis including the e:ffective width

of plate.

Warping constant of longitudinal sti:f:fener

(Warping Torsion).

KL -_ Torsion constant :for longitudinal stif:fener

(St. Venant's Torsion~



•

AL
= Cross-sectional area of longitudinal stiffener

l 'L
1'1+ I ~ =' Polar moment of inertia with

effective width of plate for 1~.

Deflectional spring constants of elastic

•

medium in y- and ~~direction respectively.

~~ = Rotational spring constant of elastic medium.

• L. L
For the symmetric stlffener:; ~ s = <l A = O. The

displacement of the point A in y-direction is zero, that is,

o (36)

However:; the spring constant ky of the plate is infi.nitive

and the product kY·VA is finite and equal to horizontal

reaction Ho

For a Tee-stiffener

l
,where d w= the depth of web of longitudinal Tee~stiffenero

Therefore Equation (36) yields

d~. g:>L (37)



•
The displacement of the point A in ~direction is

(38)

Substituting these relations of Equations (37), (38) and

kyll"A = H into Equations (33), (34) and (3,5),

•

o (33 a )

(34a )

•

(3.'5a)

•

Eliminating the horizontal reaction H from Equations (33 a )

and (3.'5a),

where

L
A.s shown in Fig. 7, 1s has a negative value 0



=33

Therefore (~+ r ~) in Equation (33a) equals the

distance between the centroid and the enforced axis on the

plate, that is, l~. For a Tee-stiffener itself the warping

constant WL vanishes. Therefore from Equations (34a) and

2

0; AL d W"A
l( dx.2.

•

..

where I~.(~)2 is the warping constant WL ofTee~section

wi th an enforced axis of rotation.

and bf = Flange width of Tee-section

t f = Flange thickness of Tee-section

The warping constant of Tee-section with an enforced axis

of rotation, given by Equation (41), can also be derived

directly by the following geometric considerations: Denoting

the translation of the flange plate in y-direction by VFand

the angle of rotation in clockwise direction by ~ as shown

in Fig. 8, the benging moment Mp in flange plate is expressed

as
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where IF = Moment of inertia of the flange plate about

The shear force in the flange Vp is

•

and the warping moment Mw is given by

Since the translation of enforced point in y~direction is

zero, the translation of the flange ~F is given by

Therefore

Introducing the moment due to st. VenantUs torsion

MST = GK ~

The total twisting moment ~ is

da d3p + GK d~MT = ~ EI.F w ax 3 ax

Differentiating this expression with respect to x furnishes
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the distributed twisting moment along the stiffener

4

tM = - EI "d2 d ~ + GK d
2

S'
T F W dx4- d,x2 (42)

The first term represents the warping resistance. Intro-

ducing the warping constant W for a Tee-section with an

enforced axis of rotation

W I ~:a 1 b 3 t n lCl = I~. (nL ) 2= F" w = 12 f .f w '" w

Equation (42) checks with the previously derived Equation (41).

3.1.2 Transverse Stiffeners

Longitudinal compression of the plate does not

produce any transverse stresses. Hence a transverse

stiffener remains elastic, even after the plate has yielded.

Therefore, its vertical reaction kewA and rotational resist=

ance k r '~ can easily be derived by using the coordinate

system in Fig. 9.

•

!

where Ii = Moment of inertia of transverse stiffener

about x-axis including the effective width

of plate
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Ii = Moment of inertia of transverse stiffener

about ~ -axis

dT = Depth of web of transverse Tee-stiffener
w

g>T = Angle of rotation of transverse stiffener

about y-axis

T
K = Torsion constant of transverse stiffener

3.2 Integral Equation for Buckling of an Orthotropic Plate
with Symmetric Type of Stiffeners

According to the definition of Greenvs function

the deflection of a plate can be obtained by integrating the

product of Greenus function and the distributed loads over

the whole plateo If the distributed loads are expressed in

differential form as "a function of the deflection~ this leads

to a linear homogeneous integro-differential equation(22) in

the following form.

0-. b

4..lT(X,'d) = JJG-ex,'C; s,'1)·N [W'(S,'1)Jd.~,i~
o 0

where G is Green's function and N is a differential operator.

The same procedure can be applied to the case of

loading by moments. For the case under investigation the

distributed vertical reactions and twisting resistances of

the i-th longitudinal and j-th transverse stiffener are given

by Equations (40) and (43) respectively. The deflection of

a stiffener wA along the line of attachment must be equal to
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the deflection of the plate. Therefore

L ) aw (; 'l1 )s:'1. (x = "'1. )' £.t

for i-th longitudi.q.al stiff.ener in Equation (40), and

wAj (y) = w (Si' 'l. )

for j-th transverse stiffener in Equation (43). Then

Equation (40) yields

•

Similarly Equation (43) for the case of transverse stiffeners

follows:

..



•
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L
Now the twisting resistance kj"i <y i of i= th longitudinal

stiffener equals the resisting bending moment in y-direction

acting on the plate along the line of attachment. Therefore~

the contribution of twisting resistance of the i·· th longi tu=

dinal stiffener to the deflection of the plate is given by

..

o

The contribution of the bending resistance to the deflection

of plate is similarly~

0.-

lI W ' L - J( reH,.uJA,)' c. (X.,'ai S. 'Z,)d.S
o

The total influence of n longitudinal stiffeners upon the

deflection of'plate is

Do...

,(ff L t J( II!" .uTA' ) , G; (;(, "'a ] S, 'L ) d..S
o

o (46)
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Similarly from m transverse stiffeners
-/

""'- b

-/.JJ T - I rd.! ..uJA!) c;. (:(:-a; Sj,'U d.."1
d'-I Jo

+ I r
d::' 1 0

•

Considering the influence of the axial compression of the

plate toward its deflection the corresponding contribution

toward the deflection is

Gl b

JJ(fe.'.ur)~(:x, 1 ) S, "l ) ,,~ale
o 0

where

(48)

Nx

..

The total deflection of plate equals the sum of all these

individual contributionsa
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•

•

Substituting Equations (44), (45), (46), (47) and (48) into

Equation (49), the following linear homogeneous integro=

differential equation is obtainedo

JJJ (X., "0)

'»1 b 4-ZJ EI:~ ~;: (~~ ..n 4- (x, "6 ) 5~,?z..) c( 'Z
a=' 0



. "
-41

3.3 Solution of Integral Equation and its Secular Equation
for Eigenvalues

The linear homogeneous integro-differential

Equation (50) can be integrated by making use of the orthog

onality relations of Green's function in Equations (8), (9)

and (14). The deflection of the plate w in Equation (50)

can be assumed as

where

I l d..'ffIM, ~'"'~ (x) ~ )

"m=1 "r'l=I

(51)

•

•

This expression fulfills all boundary conditions of a simply

supported plate. According to the characteristic of the

normalized orthogonal function J Equation (50) yields the

following expressions by multiplying both sides of

Equation (50) with ~rs (xJy) and integrating over the whole

plate. The left side of Equation (50) becomes

0.. b CXl 00

JSI L 0(",,,, If""", ex,1) ~s ex, ~) dx da
o 0 11»=/ Nlllli
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The first term of the right side yields

,{l,ts~~ lX:~:~~l~'~1 ~y/,q) dXcla] Ii ~ d(

a. b 00 ClO

J f Nx LL('''',,'rr)2 Q(~~ 'f~~ (~'1)
o 0 '111 ... , 't\~\

../
•

•

L

•

Similar integrations can be carried out for the remaining

terms in Equation (50). The final result is given by
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4'Y11 0()

+ ~ (S71) \' EI T ~ --{''iT ~ ~ \' I ~ 77' !a
0- b ,L x~ fA. L ~,!s Avv-. 0...

a=1 O'=-I

2 ~ T ~

+ ~ (S: )(~ )L[ EIe' (d:~ re~:) + ~ K~ ]
J:'I 6

< CIX:i Y"~~ £ l o(}S ( ~7T ) 1'.C<l 'j r;:.' (52)

r'
Equation (52) furnishes an infinite number of simultaneous

linear homogeneous equations with respect to the coefficients

cAYs' where 1 = 1, 2, 3 0 0 0 0 00 and s = 1, 2, 3 ..•. ex> •

The determinant of these simultaneous linear homogeneous

equations is the secular equation for the eigenvalues of

buckling of the stiffened plate with longitudinal and

transverse stiffeners having symmetric thin-walled open

cross-sections •



I •

•'.
-44

4. BUCKLING. STRENGTH OF AN ORTHOTROPIC PLATE

WITH A SYMMETRIC TYPE OF STIFFENER TRANSVERSELY

PLACED ON A PLATE

As an introduction the buckling of a plate without

stiffeners is discussed. In this case all cross-sectional

L L Lconstants of stiffeners in Equation (52) such as !yi' I~i,A.i'

KL ITT d KT. d t T . 'E (52)l' x j' I~ j an J re uce 0 zero. herefore- quation

yields

where Ars 2 is given by Equation (9) as

For the elastic case, ~ = ~y = Ky' = DI and

E
D = 1 _ y 2

h 3
I = --~--- = Moment of inertia per unit width of

12
plate

The buckling stress ocr is defined by

•

Ocr
Nx=-
h
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Therefore

=

1
h

'IT 2

12

sli! r
(- 0\ + _}2
r 0<.

The smallest buckling stress is given by taking S = 1 for

any values of side ratio d., therefore,

acr (~+ .1:..)2
r d...

.../ ..

•

..

This is the buckling stress of a plate in the elastic range

determined by Bryan(4), r being the number of half waves in

the loading direction•

In the strain-hardening range the material pro-

perties are direction dependent. The bending rigidities of

an orthotropic plate Kx, Kxy ' and Ky in Equation (1) are

given by the following quantities(6).

ISc=
~I = DxI

1- YxYy

E I
Ky = y = DyI

l-YxYy

2 Kxy = YxDyI + YyDxI + 4GtI = 2 HI

I h 3
=-

12
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Therefore the eigenvalue Ar~ in Equation (9) yields

(54)

The smallest buckling stress in the strain-hardening range

occurs when r = S = 1 and

Ocr (55)

•

.,
•

where

2H = Y D + Y D + 4Gtx Y y x

The Equation (55) is identical with Equation (3.10) in

Reference (6) when the elastic restraint f = iJb along un
2Dy I

loaded edges is equal to zeroo

4.1 Convergence of a Secular Equation for Buckling in the
Elastic Range

If a plate has one transverse stiffener in the

middle of the plate, the elastic buckling stress can be

obtained from Equation (52) by sUbstituting the proper

indices for the stiffeners, i.eo, i = 0 and j = 1, ~j = ~'

and the elastic constants
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The smallest buckling stress is obtained by taking the number

of half waves in the transverse direction S = 1. Therefore

the Equation (52) yields

e>O

sin r2'lT I
~"I

,.J • ~7T
V\ql s~n 2""

O<}I· n-

where

'h Tr
. c..e-c --

Z

k = Buckling coefficient of stiffened plate

(56)

•

kr ,1 = Buckling coefficient of plate without stiffeners

in the mode of r and 1 = ( ~ + ~ )2, (j. r

cA = Side ratio of plate, Length = alb
Width

iBT = Bending rigidity coefficient of the transverse

stiffener including the effective width of plate
ElT

to the bending rigidity of plate =~
Dlb

~sT = Torsional rigidity coefficient of the transverse

stiffener to the bending rigidity of plate = GKT
Dlb

OwT = Warping rigidity coefficient of the transverse

stiffener to the bending rigidity of

plate = ElI ( dw
T)2

DIb b

The symmetric type of buckling with respect to the transverse
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stiffener, that is, r = 1, 3, 5, 00., is separated from the

antisymmetric type of buckling, r = 2,4, 6, ... , as can be

seen from Equation (56). Therefore, these two modes of

buckling, symmetric and antisymmetric, are independent of

each other. By gradually increasing "t-~, we finally arrive

at the condition where the plate buckles into the anti-

symmetric mode and the nodal line coincides with the stiffener

of the plate. At this stage an increase in the bending re

sistance of the stiffener will increase the buckling stress

of the plate no fUrther, but the torsional resistance becomes

.. effective. This limiting values of t ~ depends on the side

ratio of plate. However, if the side ratio ~ is greater

than {2', one transverse stiffener in the middle of plate is

no longer effective(4) except for its torsional resistance.

In the case of symmetric buckling Equation (56) yields

""= \

1
(2n-l).2

1

k - k(2n-l),l
= (57)

.'

where k(2n-l),1 = Buckling coefficient of plate without

stiffener in the mode of (2n-l) and 1 half waves in x- and

y-direction respectively.

k -[ (2n-l) + d J 2
(2n-l),1 - cj.. (2n-l)

If only the first term n=l in Equation (57) is considered,
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the buckling coefficient k in the first approximation yields

k = k II + 2 d.. o"T = (1 + 0\)2 + 2o((T
B ~ B

or E
T

(1+(j.2) 2+2 tB 0< 3

0('-

This is the same expression as Equation (229) in Reference (4).

For the antisymmetric mode of buckling in the longitudinal

direction, Equation (56) yields

(58)

00

L
"1\= I

.
•

• where

k2n 1 = Buckling coefficient of plate without,
stiffener in the mode of (2n) and 1

half waves in x~ and y-direction

respectively.

= [(2n ) + ~J :<3
ct (2n)

The convergence of Equations (57) and (58) with

respect to the numbers of half waves r taken into account--

that is, r = 2n-l, (n = 1, 2,3, ••• ) for Equation (57) and

r = 2n, (n = 1, 2, 3, ••. ) for Equation (58)--is rather

.. remarkable as shown in Fig. 10. For this figure the side
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ratios d. = 0.5 with "f ~ = 10 and d. = 1.0 with t ~ = 12.7

were chosen-;" for the case of the symmetric buckling mode and

a.. = 1.0 with o~ +'1T2~~ = 0.085~" and 1.0 for the anti-

symmetric buckling mode in order to examine the convergence

of the solution under extreme conditions. The buckling

coefficient k for each approximation and its error in com

parison to the 5th approximation which is supposed to be very

close to the accurate value are listed in Table 1. Since the

error in the 2nd approximation for k is less than one percent

ex cept for the case t- ~ + 'IT 2 cr-~ = 100 which corresponds to

an extremely large torsional resistance for an open cross-

section, the 2nd approximation gives adequate results for

practical design purpose o

4.2 Effect of Torsional Resistance of a Stiffener on
Buckling Strength in Elastic Range

Since the buckling coefficient k in Equation (58)

converges rapidly, the 2nd approximation obtained from two

terms in Equation (58) can be used for design purpose. Hence

- - - - - - - - - - - - - - - - - - - ~ - - - - - - -/- - -
-:" These values are obtained in Appendix 110 1 Equation (A-4)
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+- 1 - 16 {(~ + ex )2. (J# + 0( ) 2

t ~~ + 64 + 5 (). 2 + 64

.. ..

•

..

-.

Equation (59) is plotted in Figo 11 for values of the

torsional resistance coefficient ('6'; + 11" 2 "t~) and the side

ratio ~. The effect of the torsional resistance on buckling

coefficient k is approximately linear. In other words, k is

proportional to the torsional resistance for any value of ~ •

The difference in buckling strength due to the torsional

resistance is approximately 21% for cA =: 0.5', 25% for d =: 0.75

and 27% for ~=: loa at the value of torsional resistance

t T +'lT 2 t- T =:1s w 0



f

(

-52

4.3 Reguired Minimum Bending Rigidity of a Stiffener for
Elastic Buckling of Plate

The 2nd approximate solution of Equation (57) for

the symmetric mode of buckling is given by

+- 1 -

51 9 Tl±!
9 ~ (IX + d·) 2 (~+ eX) 2 + 40< 'IB (0< 2 + 10 + eX

..'.
•

•

'.

The buckling coefficient k in Equation (60) is plotted in

l"ig. 12 for various values of t-~ and rJ.. As seen from this

figure the buckling strength of a plate with a transverse

stiffener is not proportional to the bending rigidity of the

stiffener, but reaches a maximum value depending upon the

value of the side ratio rJ.... Al though the buckling coeffi

cient k in Fig. 12 increa~es with the bending rigidity t- ~
of the stiffener until it reaches the maximum value, the

buckling mode will change at specific value of a ~ from a

symmetric to an antisymmetric mode. Beyond this value the

bending rigidity of the stiffener has no further influence

on the buckling strength because the stiffener lies on the

nodal line of the buckled plate. Therefore this value

defines the required minimum bending rigidity of the

stiffener. According to this definition the required minimum
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4.3 Reguired Minimum Bending Rigidity of a Stiffener for
Elastic Buckling of Plate

The 2nd approximate solution of Equation (57) for

the symmetric mode of buckling is given by

k = ~ [~+ 18 +5"'" +10()(o'~]

1 -
91 (~ + d) 2 (~ + 0<) 2 + 40< t~ (~2 + 10 + d

"J J
( 60)

.. ..
(

•

The buckling coefficient k in Equation (60) is plotted in

:fl'ig. 12 for various values of t-~ and c\. As seen from this

figure the buckling strength of a plate with a transverse

stiffener is not proportional to the bending rigidity of the

stiffener, but reaches a maximum value depending upon the

value of the side ratio ex.. A1 though the buckling coeffi

cient k in Fig. 12 increa/?es with the bending rigidity "t ~

of the stiffener until it reaches the maximum value, the

buckling mode will change at specific value of a ~ from a

symmetric to an antisymmetric mode. Beyond this value the

bending rigidity of the stiffener has no further influence

on the buckling strength because the stiffener lies on the

nodal line of the buckled plate. Therefore this value

defines the required minimum bending rigidity of the

stiffener. According to this definition the required minimum
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bending rigidity is obtained by equating the buckling coef

ficient in Equation (59) and (60), or (57) and (58). The

result is shown in Fig. 11 for different values of torsional

resistance and side ratio ~. If the torsional resistance

of a stiffener is neglected, the maximum possible buckling

strength of plate corresponds to the minimum value of an

even mode in the loading direction. The required minimum

bending rigidity of the stiffener is obtained as shown in

Table 2 for each value of the side ratio ct by taking 2 or

3 terms in Equation (57) into &9count, where k is giv~n

by (~ + ~)2. The results are compared with the numerical

values by Timoshenko(4) and Frohlich(23). The values

obtained from the integral equation by using 3 terms in

Equation (57) give errors of less than 0.5% in comparison

to the value by Frohlich obtained from his solution in

closed form. The German speciFication on buckling of

structures (24) give the fOlloW~ng equation for the minimum

bending rigidity ("Mindeststeifigkeit").

t-=
l:t 0/..2

4 (al 2
- 4)

.(. . 1T 2 q(.,4

1T 0: (1 - 120\4_48)

This equation is based on the result by Frohlich. The values

of the required minimum bending rigidi ty t- ~ by Timoshenko

give larger errors than that by integral equation method.
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Especially, the value for ct = 1.0 is too high.

4.4 Convergence of a Secular Equation for Buckling in
Strain-Hardening Range

When a plate with a transverse stiffener in the

middle of the plate buckles in the strain-hardening range,

the bending rigidities of the strain-hardened plate are

given by

Kx y = HI

and the eigenvalue .i\rs sa is given by Equation (54). The

secular equation for this case is also given by Equation ~6).

It can be separated into Equations (57) and (58) for the

symmetric and antisymmetric mode of buckling respectively.

The differences from the elastic buckling are in the coeffi-

. t'k T T .,ATClen srI, tB' 't sand 0 w since the plate is compressed

into strain-hardening range. These coefficients are defined

as follows:

k ' 2n-l r z + 2A+)A-(
0<. )2-~ =(2n"'l) ,1 0( 2n-l

..
k ' = 2n

) 2 + 2A+r (
0< )2

2n,1 eX. 2n
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A. H= -Dx

r = 2?:L
Dx

t T EIT
= x._-

B DxIb

Q'-T = GKT-s DxIb.

'tT EIT dT ) 2
= i! ( W

w DXIb --:;-

Then the secular equations of the buckling coefficient k

are obtained by replacing the coefficients in Equations (57)

and (58) by the above coefficients.

For symmetric buckling,

C>O

I 1 1 1=
(2n-l)2 k - k(2n-l),1 2d.;tT

'Y) = I B

For antisymmetric buckling,

00

L 1 1 eX=
k-k2n 1 2 tT +7f 2 t T

ty)=l , s W (58a)

The buckling coefficientsk in Equations (57a) and (58a)

converge as rapidly as those in Equations (57) and (58).

This is shown in Fig. 13 and Table 3, where the coefficients
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for the orthotropy of the plate A and /'- for structural

steel (A-7 Steel)(2) were taken:

= 4·30

•,.'

•

4.5 Effect of Torsional Resistance of a Stiffener on
Buckling Strength in the Strain-Hardening Range

The buckling coefficient k for a transversely

stiffened plate in the strain-hardening range is given by

using the 2nd approximation of Equation (58a) as

[ T T] [1 320 64 OJ's + 7T 2 t-w )
k = 32 rJ fa + 64 ~ + 5;- r:i.. fa + eX • 1

The effect of the torsional resistance (0'-; + 7f 2 .t~) on the

buckling coefficient k in Equation (59a) is shown in Fig. 14

for the side ration ~= 0.5. Since the minimum value of

buckling coefficient k in the strain-hardening range is

obtained for the simply supported plate with no stiffener

at a side ratio c:J.. = ,1Dx \ (2) ~ a transverse stiffener placed
, Dy

in the middle of plates of structural steel (A-7) is no
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longer effective to prevent the buckling in the strain-

hardening range if the side ratio ~ is greater than 0.777.

4.6 Required Minimum Bending Rigidity of a Transvers~

Stiffener for Buckling of Plate in the Strain
Hardening Range

Equations (57a) and (59a) determine the required

minimum bending rigidity t~ of a transverse stiffener in

the strain-hardening range by equating the value k in these

two equations. The value ~~ is plotted in Fig. 14 for

~=·0.5. It is approximately proportional to the torsional

reistance as seen in the figure •
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5. BUCKLING STRENGTH OF AN ORTHOTROPIC PLATE

WITH A SYMMETRIC TYPE OF STIFFENER

LONGITUDINALLY PLACED ON A PLATE

5.1 Convergence of a Secular Equation for Buckling of
Longi tUdinally Stiffened Plate in the Elastic Range

In the previous chapters it has just been shown

that for a plate with a transverse stiffener, the buckling

mode in one half wave in the transverse or unloaded direction

always gives the smallest value of buckling strength. How-

ever, this is no long~r the case for a plate with a longi

tudinal stiffener. Therefore the fundamental buckling

coefficient of plate without stiffener must be derived from

a general mode with the number of half waves r and s in

x- and y-direction respectively, that is,

k = (.£+ C'2
cX

)2rs 0<. U r

This relation follows directly from the elastic buckling

stress of plate with no stiffener as given for instance in

Reference(4):

.. Ocr = 1 1r~Eh.3 . ~.(
h 12(1_y2) r 2



,
By proper rearrangement of the terms one obtains:

h lil
(-) .

b
r 2 0<)2

(ex + s - =r

Introducing the following non-dimensional parameters for

longitudinal stiffeners

t L ElL
= -..::x

B Dlb

t L GK
L

= -s Dlb

E
D = 1_'9 2

• '\

•
O"L

w

L L
= EI~ . ( dw )'-

Dlb b

L
S =!.. =

bh
Cross-sectional area of longrtudinal stiffener
Cross-sectional area of plate (width x thickness)

Equation (52) can be expressed for an elastic plate with one

longitudinal stiffener in the middle of the plate by substi

tuting i = 1, j = 0 and ~i = ~ into this equation:

P7T0< rp sin "7

•

( 61)
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Inspection of this equation shows that the symmetric mode

of buckling with respect to the longitudinal stiffener,

that is, s = 1, 3, 5 .... is separated from the anti-

symmetric type, s = 2, 4, 6 •.••

The secular equation for the symmetric type is

expressed in the form:

( 62)

c::;()

\ __1_= 1

L k - kr , (2n-l ) 2 ~~ ~ - 2 g k
'Y\ = I

For the antisymmetric mode the secular equation yields

'. 00

Il'1 =I
k - k r , (2n)

1 1
=

8 ."AL
s

r2. 2 ..A- L
o + Of!! 'IT a-w

The numbers of half waves in the x- or loading direction, r
in Equation (62) and r in Equation (63), must be determined

such that the buckling coefficient k becomes a minimum for

each case respectively.

If the torsional resistance of a longitudinal

stiffener can be neglected, then from Equation (63)

k = kr , (2n) since o~ = t-B = RL = o.
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The minimum buckling coefficient k is obtained for n = 1,

that is,

(64)

'.

The number of half waves r in x-direction is determined such

that k becomes a minimum for a given value of ~ in Equa-

tion (64). By equating

the ratios ~ for which a transition from r to (r + 1) takes

place can be determined. Upon substitution it follows:

hence:

The side ratios ~ are obtained by introducing values for

r:

( 65)

r = 1,

d =,g
2

2,

g
2

11,[20
I - )

2

6

This means that the number of half waves r in x-direction for

the antisymmetric mode in y-direction is determined for each
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,
range of side ratio rX. as follows:...

r = 1 for 0 < cJ.. < H
= 2

r = 2 for
[2' < rj {

n;
2 = 2

r = 3 for f&
~ c/.. ~

~12'

2 2

r = 4 for lIT
~ d ~

-120'
2 2

r = 5 for /~\ <: 0< ,( 13..9.:
2 2

~"i JJ2.' £ 1Jdl:.'r = 6 for ~ 01-
~

2 2

".
The number of half waves r in x-direction for the symmetric

mode in y-direction can be obtained from Equation (62) by

equating the buckling coefficient k in the mode of rand

(r + l). This process requires a trial and error solution

because the deformed shape of the plate involving bending of

the longitudinal stiffener is no longer a simple sine curve

in y-direction. It consists of a Fourier series involving

the odd half waves, s = 1, 3, 5 Therefore the buckling

..

coefficient k cannot be obtained in an explicit form in

terms of the side ratio ex , number of half waves i", stiffener

area coefficient d and stiffness coefficient t-~. As a

first approximation the first term in Equation (62) can be
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used to obtain a relation between ~ and r, then

k =

Therefore

r 2 Lkr,l + 2;a t B

1 + 2 t

(r+~)a
kCr+l),l + 2 d-

1 + 2 6'

(66)

-.

For ex ample, assuming value for -t-~, the critical side ra:ti as

cA for which the number of half waves r changes from 1 to 2

are as follows:

eX == 3.40 for ~~ = 16

eX = 3.58 for t~ = 20

d.. = 3.74 for t L - 24B -

If two or more terms are taken into account in Equation (62)

the critical side ratios ct can be determined more precisely.

Nevertheless Equation (66) gives a fair :appraximation in
I

spite of its simple form as a comparison with results

obtained by Barbr~(9) will show. According to his findings:

eX = 3·30 for t~ = 16 and s= 0•
...

t~ d=eX = 3·50 for = 20 and 0.05

•

d = 3·75 for t~ = 24 and J = 0.1
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Therefore Equation (66) is used to ~ind the numbers of half

waves r for the given (j."and t~.

The torsional resistance of the stiffener, pre-

viously neglected, has a certain influence upon the critical

side ratio ~ in the case of an antisymmetric transverse mode.

The maximum influence can be derived from the following con

sideration. The minimum buckling stress of a plate with

three edges simply supported and one unloaded edge fixed is

obtained at ~ = 0.79(25), whereas in the case of a plate

with four edges simply supported the minimum buckling stress
!,.-.

cA= 1(4).occurs at This tendency of (j., to decrease with
~

- increasing torsional resistance was also obtained by

Okuda (26) . He computed the case of a plate with three edges

simply supported and one unloaded edge elastically restrained,

the resisting moment being proportional to the edge rotation.

On the basis of these considerations it must be

concluded that the number of half waves r for a given value

of the side ratio ~ depends upon the magnitude of the tor-

sional rigidity of the longitudinal stiffener. However, the

influence of the torsional resistance of a stiffener with an

open cross-section upon the critical side ratio ~ is compara-

tively small compared to the fixed-end case. Therefore if

a value of d is chosen halfway between the limits for ~

established by Equation (65), neglecting the torsional
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resistance, the number of half waves r will be unchanged.

For example, a square plate has the value of d. = 1 in the

middle of two critical points r::f... = 1l and ,..J =f2' therefore
2 V\ 2'

r is given by 2.

The convergence of Equation (63) is shown in

Fig. 15 and Table 4 by using the following example:

0\ = 1, (r = 2)

.......;al C'(R
b

L )2 __
'If 0 0.0025-:'"

The convergence for the buckling coefficient k of a longi-

tudinally stiffened plate is slightly slower than that of

a transversely stiffened plate. However, it is sufficiently

fast such that the 2nd approximation gives an error of less

than 1 percent.

-;'" See Apprneix 11.1, Equations (A= 5) and (A- 6) •



-66

5.2 Effect of Torsional Resistance of a Longitudinal
Stiffener on Buckling Strength in the Elastic Range

A stiffener of rectangular shape has little tor-

sional resistance. Hence the buckling coefficient k for a

•

plate with a longitudinal rectangular stiffener is k = 16(10)

for d. = 1.0 if the bending rigidity of a stiffener is

greater than the required minimum stiffness. A stiffener of

Tee-shape whose proportions are chosen such that the local

instability in neither flange nor web plate will occur prior

to the point of strain-hardening has a certain amount of tor-

sional rigidity. Taking as an example,

'"L
s

+ r 2 7r 2 at- L = o. 292
U ()(2 w

= 0.0025

•

as previously used in Section 5.1, the buckling coefficient

k for the same plate, cA = 1, increases to k = 17.656 as

shown in Table 4, which was obtained by using 5 terms in

Equation (63). The increase amounts to 10.35 percent com-

pared to Barbre's value neglecting torsional resistance.

It is of interest to recall the increase of the

buckling coefficient k due to the torsional resistance of a

similar transverse stiffener. For ~ = 1.0 the corresponding

values are k = 6.25 with no torsional resistance, and
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k = 6.417 with t ~ + ?ria y- ~ = 0.085 as shown in Table 1.

The percentage of increase in k is 2.67 for this case,

where the total weight of the stiffener equals the one of

the longitudinal stiffener investigated above. This means

that the effect of the torsional resistance of a longitu

dinal stiffener is greater than that of a transverse

stiffener with equal cross-section. The reason can be found

in the fact that the warping resistance increases con

siderably when a stiffener has both positive and negative

twist along its span as shown in Fig. 16. However, in order

to obtain this increase in the buckling coefficient k the

required minimum bending rigidity of the stiffener must also

be raised to enforce a nodal line along its length. In the

above example, the required minimum bending rigidities of

the stiffeners for the case ~ = 1.0 are given as follows:

Transverse stiffener,

0' ~ = 1.191 with no torsional resistance

t ~ = -I. 294. with torsional resistance

Longitudinal stiffener,

o~ = 8.809 with no torsional resistance

t~ = 9.443 with torsional resistance
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5.3 Required Minimum Bending Rigidity of a Longitudinal
Stiffener for the Buckling of Plate in the Elastic
Range

As discussed in the previous Section 5.2 the re-

quired minimum bending rigidity of a longitudinal stiffener

depends upon the torsional resistance of the stiffener.

When the torsional resistance' is negligible as in the case

of a rectangular stiffener, the buckling coefficient k is

given by Equation (64). Substituting this value of k into

Equation (62) and using proper number of rand r for each

case of ~ , the required minimum bending rigidity of a

longitudinal stiffener is given for d = 0.1 in Fig. 17 and

Table 5 together with values from Barbr~(9), Bleich's

approximation and the German specification. Bleich's

approximation is given(5) by

t = 11.4 ex + (1.25 + 16 ~ ) (j., a - 5.4 (Cj

and the German specification(24) prescribe

rj2

t = "2 [16 (1 + 2 S) J ~ 1 + 2<f
2 - 2. + 2

'.

•

"The differences from Barbre's values are also tabulated in

percentage. Barbr~ obtained the solution in the closed

form starting from the differential equation and connecting

the solutions of the individual plate panels by introducing

the appropriate boundary conditions. As shown in Table 5
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the results using 5 terms in Equation (62) have errors of

less 1% -- less than 0.2% when d'> 1. The advantage of the

much simpler computation by means of the recurrence formula,
/

Equation (62), over the solution of Barbre!s transcendental

equation are evident, ~ince r, r, k, kr ,(2n-l)' ~ and S in

Equation (64) are all given and the value of the left hand

series of Equation (62) can be computed as accurately as

desired in a simple manner.

In order to compute the required minimum bending

rigidity of a longitudinal stiffener with Tee-shape, the

following torsional rigidities are used as an example.*

S' = 0.05

7T
2. 'V'l. L __

o-w 0.070

7(2. S( RL) Ii! = o. 0025
b ..

- - - ~ ~.- - - - -' ~ - - - - - - - - - - - - ~ - - - - - -
-)~ See Appendix 11.1, Equations (A-4) and (A- 6) .
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As discussed in the previous Section 5.1, the 2nd approxi

mation of Equation (63) gives an error less than 1%. There-

fore the buckling coefficient k can be expressed by using

2 terms in Equation (63),

k = (1 + 32.0) kr2 + (1 + 8.0.) kr 4 + 40(tJ)r [1 _
2 (1 + 40.0)

1 -

-.

i •

where

rO'I L r 2 L
\011'= t- s + 0'.2 1T 2 t- w

Using the above values for the torsional coefficients t-~,

"t~, and RL the buckling coefficient k of the antisymmetric

mode and the corresponding required minimum bending rigidity

of the longitudinal stiffener t~ can be obtained from Equa

tion (67) and (63) respectively for values of side ratio by

using the proper numbers for rand r. The results are shown

in Table 6 and in Fig. 17 as a dotted line, where the values

of Q'-~ with no torsional resistance of the stiffener are

taken from the result by Barbr~(9). As previously seen in

Table 6, the required increase in the bending rigidity t fu
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due to the torsional resistance of a stiffener seems to be

proportional to the value t-~ wi th no torsional resistance

except for the case of small values of d... In this example

the buckling strength of a plate increases by 11.4% with an

increase in the bending rigidity of the stiffener equal to

18% compared to the case with no torsional resistance.

5.4 Convergence of a Secular Equation for Buckling in the
Strain-Hardening Range

In the strain-hardening range the ef~ective width

be of a plate contributing to the bending rigidity of a

longitudinal stiffener is given by

be =b 0·392 for d- = 1

be
b = 0·468 for 0(=2

be
b = 0·486 for

For long plates, therefore,

~=4

0·4 < be
b

\.

such that be approaches the whole width, be = 0 5b b .,
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assymptotically. For these cases, the following values·::-

may be used.

L
6' = A.. = 0.1

bh

0.07

"•

and

,rrf -y\1.J = ~Et I~, ( ~)2 =Ow 0.18
Dxlb b

~

~~8(R~)2 = 0.026

Et I
L

= y
Ox Ib

Since the stiffener is compressed into the strain-hardening

range prior to buckl~pg, its moduli are the ones corre-

sponding to the beginning of strain-hardening.

The number of half waves r for the anti symmetric

mode in the transverse direction is obtained for this case

by modifying Equation (65):

,.
0< = Jr. (r + 1 )' 1

2 1/'-' (68 )

- - - - - - - - - - - - - - - ~ - ~ ~ ~ - - ~ - - - - - - -
* Appendix 11.2, Equation (A-7).
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where ~ = Dy/Dx = 10.93 for A-7 steel~ therefore

This means that the critical side ratio ~ decreases by 55%
compared to the elastic case, that is,

r :::: 1 for

r = 2 for

r = 3 for

r = 4 for

r = 5 for

r :::: 6 for

r = 7 for

r = 8 for

Oo389~ d. < 0.674

20 058 ~ 0< ~ 20333

t.

The number of half waves r for the sYmmetric mode in the

transverse direction rrmst be mod.ified similarly by the

strain-hardening moduli. The convergence of the secular

equation for buckling is nearly as fast as in the elastic

case.
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505 Effect ...2£.=Tor.§i,onal R~sista.'9:9~~~on.g,:L~:!dd:i.nal

Stiffene;: on BuckhingSt.~..~.!J£th ~n th~""§'E~,;i.!l=H~deni.:."tlB

Ran.ge

The increase in the buckling coefficien.t k due to

the torsional resistance of a 10ngi tudineJ. ~1t;i.f':fener' is given

in Table 7 by using the values of tOT's:tonal prope:rJties in.

Section 5040 The buckli.ng coeffici~3nt k is given b:,{ Equa"~

tion (67) with the plate coefficients krs and the st,if'f'ener

L Lcoefficients D"S9 tw~ and HI. cOIDlru..ted ,for the stn:"ain<~

hardening rangeo IJ'he buckling coef.ficient k with no tor~

sioIial resistance of a stiffener' is simply k r 2 of the 8t!"ain~

har'dened. plate w'i th the proper value of l' i~oJ:' (~ach s5,d.e

raU.. o 0<. 0 The increase :1.l'2 k for 'thIs example due to the

torsional l'e81s tanoe of the sti.ffener amounti:l from 8 to 13

percento

50 6 .B~g;u:b·ed ~nj.l~!i~~~~~l:"'1}__~CJl1&J:"-J.l_dl.g~!,
S~}£f'ener .for_1L~J.>.:g.g of.' a Stifl~~l~~~~

~~~n=Ji!l:~1~18,.P£..ll~u~

The l"'equ:Lred minirm;un bending :t>igid.l t·y 01: a longi~

tud:i.nal stif'fener ~n the strain~haI'dening ra..,':lge is obtained

by substituting the values at k In Table? into Equation (62)

with proper coefficients kr , (2:n=1) for the bu.ckling of' the

plate in the strain-harden.:i.ng ra:ngeo The values of' t~ for

the case with or 1r.ri thoui:; torslonal resi;~tance of the
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stiffener and their differences are also given in Table 7

and in Fig. 18. For the case in which the side ratio ex is

greater than 1. 8 the value of t ~ equals 46.8 without tor

sional resistance and 58.8 with torsional resistance. The

increase in the required bending rigidity is approximately

25 percent in this example •
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6. STIFFENED PLATE WITH TRANSVERSE AND/OR

LONGITUDINAL STIFFENERS HAVING AN UNSYMMETRIC

THIN-WALLED OPEN CROSS-SECTION

6.1 Behavior of a Stiffener with an Unsymmetric Thin
Walled Open Cross-Section

For any shape of thin-walled open cross-section

attached to a plate, the equation of equilibrium of a

stiffener can be written in the same form as in the previous

Section 3.1 if proper consideration is given to the mutual

interaction between plate and stiffener. This influence of

plate can be divided into two parts, one concerning the

bending and the other the twisting of the stiffener. If a

beam with an arbi trary cross~section is subj ected to 'trans·=·
.I

verse loads, the beam,is bent and twisted simultaneously,

unless the line of loading passes through the shear centero

In the case of a stiffener attached to the plate, the

stiffener 'is subjected to transverse loads passing through

the junction between the plate and the stiffener and

twisting moments due to a rotation of the plate along the

junction at the moment of buckling. Along the line of

junction with the plate the stiffener cannot deflect in the

plane of the plate but only in a transverse direction.' This

enforced axis causes twisting of the stiffener when it is

bent or the other way around, bending of the stiffener when

it is twisted. Therefore the bending and the twisting of
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the stiffener are no longer separable for such a stiffener

with an unsymmetric cross-section. Bending of such a

stiffener can therefore occur only if it is associated with

the twisting(27) producing warping deformations (Fig. 19.1).

In the case of an inverted angle stiffener, for example, the

axis of flange bending which causes warping, passes through

the junction at which the center of rotation of the stiffener

is located(28). Therefore the resistance to the lateral

movement of its centroid is provided by flange bending only.

Bending of a stiffener ahoutan axis parallel to

the plane of the plate causes stresses in the plate. This

influence can be considered by determining the effective

width of the plate as discussed in the previous Section 2 •.3.

The position of an axis parallel to the plate, then~ can

be obtained by considering this effective width as part of

the stiffener. The intersection of this axis with the

Z -axis considering the stiffener only as shown in Fig. 19.2

determines the position of the apparent centroid of the

cross-section. In Fig. 19.2 the effective width be appears

only in the computation of the moment of inertia about the

y-axis, and the moment of inertia about z-axis has no

effective width of plate. Thus I~ is given by



..

and

The inclination of the principal axes y, Z from the axes

y ,2: , which are parallel and perpendicular to the plane of
I

plate, is given by

tan 2 Q =
2 I .

Y't

6.1.1 Longitudinal Stiffeners

The centroidal principal axes y and ~ of the

cross-section of a longitudinal stiffener are chosen as

shown in Fig. 20. The spring constants ky and k z of an

elastic medium are also acting in the directions of the

principal axes y and l. The equation of equilibrium of a

longitudinal stiffener with respect to the centroidal prin=

cipal axes is given by(21)

•

=- 0 ( 69a)



Et I~ ~.";~ + ,J [~~. -~~~~~J T fe, [ WS - 3'\cr~ -a~ ~
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( 69b)

.'t.

•
L

+ fe.. . Cf
~

o
( 69c)

where subscript s refers to shear center and superscript L

pertains to longitudinal stiffener as in Section 3010 The

displacements Vs and Ws of the shear center can be expressed

by the displacements vA and wA of enforced point A as

follows

VA = Vs + yL (~~ -L)•. ZA

.. - LCL yX>wA = Ws - c:f ys = (7°)
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The transformation of the components of the displacement is

given by

where vA' the displacement of the point A in the direction

of the plane of plate, must be zero, and wA is the displace=

ment of the point A in the direction perpendicular to the

plate. Then Equation (71) yields

W = wA cos gA

From Equations (70) and (72), the displacement of the shear

center can be obtained in terms of. WA and g>L.

Therefore

Vs = wA sin G - S'L(~; ~L)
A

- G + S'L CY~ Y~)Ws = wA cos -
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The spring constants ky and k~ in the direction of the

principal axes are also transformed similarly:

k,~ = k ~ cos Q

because the spring constant in the direction of the plane

of plate is assumed to be infiniti vee

k = 00
Y

for v = 0A

~

•

•

However, the product of ky and vA is finite and equal to

the horizontal reaction H.

Therefore the last term in the Equation (69a), which repre=

sents the distributed load in the direction of the Yc=.axis"

acting from the plate to the stiffener along the connec'tion

between them, at th~ instant of the plate buckling" Can be

expressed by using Equations (73), (74) and (75) as

= - k I' wAS insa Q - H cos Q



•.

Similarly in Equation (69b)

Substituting Equati.ons (73) and (76) into Equation (69a) ~

o
( 78a)

From Equations (73), (77) and (69b)~

o

•

( 78b)
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Similarly Equation (69c) yields

+

o
(78c)

The horizontal force H and the vertical force k!!. wA can be

obtained from Equations (78a) and (78b). The twisting

L
moment k~.. ~ can also be determined by substituting these

forces H and k c' wA into Equation (78c).



.t..

For an inverted angle stiffener, (Fig. 1902)

y~ = (d~ - cX) sin Q

yX = l A sin Q

l ~ - - (d~ - ~ X) cos G

wL = 0 (Warping Constant)

Therefore

~.L _L = - dL sin gYs - YA w

-L
= lL = dL cos Qls =p. w

Substituting the values in Equation (79) into Equation (78)~

the final result yields

,.

( 80a)

(80b)



where

UKJ ~e . 6'XAL

e-&c}e -~"?e

-~•

l
I'P = Polar moment of inertia = r; + I~

For the case of symmetric stiffeners about the ~ =a.xis~

(81)

,.

8 = 0 and

therefore~

r = 0
y~
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..
B

L = 6:A
L

1 x·

CL = 01

nr = 0

AL = L (<iB)a2 Etlz

L _
Gt~ = OXAL (RL ) aB2 -

CL = 02

, .
• L

Then the force k z wA and the moment kS"S' yield
••

(j- 2-

J~~'WA
[ l-dWA l d WA- - Etly d;(4 + ~A dx..2.-

These are exactly the same expressions which were obtained

in the previous Section 301010

601.2 Transverse Stiffeners

The transverse stiffeners lie in the direction of

y-axis of the plate and no axial force acts on it. Therefore



.f.

,.
Equations (80a) and (80b) change into the form:

( 82a)

TfE. .~ -S -

where

(82b)

".
,.

:!'

.-

'.

Since the transverse stiffeners are subject to no axial

forces, therefore the moduli E and G remain always elastico

For the symmetric transverse stiffeners J G = 0 and 11~ = OJ

therefore

Cf = 0
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AT = EIT (d~):a2 z

BT - GKT
2 -

CT = 02

Then

These are also the same results as in the previous

Section 30102.

602 Integral Equation for Buckling of an OrthotropicPlate
with Unsymmetric·Type of Stiffeners

When the plate starts to buckle:; the distributed

resistance due to the i-th longitudinal stiffener is given

by Equations (80a) and (80b) as
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where

Therefore

I

.~.
•

'"
Similarly for the j=th transverse stiffener, from

Equation (82)

II:

Using Equations (84) and (85), the integral equation for

the buckling of a longitudinally and transversely stiffened

plate can be formulated as in Section 3.2 as follows:



'", .

~ b

= - If Nx ~~(S,"1.)'Gr(x.,a; ~,"1)ol~JZ
o 0

~ 0.. '2..- ~ J l oW ,~ BI \. a~~ (s''Z~}G(XJ~) s; ~t) of'S
L:\ 0

')'\ 0... 5

+ Lf CI~ a;~,/S:Zt}Cr(;qj$. -Zt)J:S
L'""\ 0

'VI. a.. 3

--j- L f D~L ;'S~'l ( s!Z L)(T-(~, a; 5 .~ 1 ) 015
l':. I c>

-90
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.-.
( 86)

where m and n are numbers of transverse and longitudinal

stiffeners respectively.

6.3 Solution of Integral Equation and Its Secular Equation
for Eigenvalue s

Equation (86) can be integrated by using the ortho~

gonali ty of the deflection wand Green us function G(X/Oi S,~) ~

-
Gs (X,d> ~,'i ) and G"'l (X,O>S.'7.) as one assumes the deflection

w as follows:

and



"

•
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The result of the integration of Equation (86) is obtained as

'Yl 00

~ (Y(A7r )4 L A~ ~ s:1~ L c\YP ~ ~:~~
l. =. I l' =. I
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(87)

'..

t,

t"

,The determinant of the coefficients o(rs in Equation' (87)

gives the secular equation for eigenvalues and the solution

of the determinant gives the buckling strength of the

stiffened plate with longitudinal and transverse stiffeners

having an inverted angle section.
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7. BUCKLING STRENGTE OF AN ORTHOTROPIC PLATE

WITH AN UNSYMMETRIC TYPE OF STIFFENER

TRANSVERSELY PLACED ON A PLATE

7.1 Convergence of a Secular Equation for Buckling in the
Elastic Range

For the elastic buckling of a stiffened plate with

one transverse stiffener in the middle of the plate 9 having

an unsymmetric cross-section~ for example an inverted angle

stiffener~ i = 0 and j = 1 in Equation (87), therefore

Equation (87) yields

[ Y"'TT 2. A ~ J,JN)( ( 0:::-) - I '-YS (Ay~

(88)

For the transversely stiffened plate the minimum buckling

stress can be obtained when the number of half waves in the



.,

.
•

~95

transverse direction S equals to 1. The critical stress

Ocr is expressed by using a non-dimensional coefficient of

buckling k as

The plate buckling coefficient krs with no stiffener is

expressed by

The following parameters are defined to simplify the ex~

pression of Equation (88)0

·T A~ Cb'Cl 2. e EI~
fBI DIb 'a \ 3 DIbC-ikJe~~e

.,.
\ T oJ?T 7r C I / ~2e .s..l£('7i W)'tB2.

--
D1 b2- z C-e>\J3e -~3e DIb b

T 2. AT dT2 I "T

tTl
1T 2- (rrr W) r#d T 2 I p \ < ~
DI b3 - ~ DIb Ie.co()2e+2:~2f3

T roi ~KT
0\.2. = DIb - Drb

~.

T

("d1) E [I~-ITJ~ze'C&c2eT '7i C-2.
f/ t T3 Dr b' b DIb 2J e

A

(89)
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where

E
D=~1-y

h 3

1=-
12

For a symmetric stiffener such as the Tee=shape, G = 0,

then

~96

EIT
x--

Dlb

t~ = 0
2

_ vi- T
-OB

y\ TT =(7rdTW)2.. EI~ = 2 ~ T
o 1 b Dlb en- iJ - W
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Using the abbreviation in Equation (89), the Equation (88)

yields

where

1

ClO

X= \ 1
~, k - k(2n),1

= (~ + fL)2
d. 2n

a·

For the Tee stiffener, 0'~2 == t1
3

:::: 0, therefore

Then

1
.2 d 0- T

B

0<

( 91a)
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These Equations (91a) and (91b) are identical to Equations

(57) and (58) respectively, in the previous Section 4.1.

The convergence of the buckling coefficient k in Equation (90)

is comparatively rapid as shown in Table 8 and Fig. 21. In

this ex ample the following values~:- are used.

e = o. )+19 radian ~ 24 degrees-

t~ = -1.023
2

T - 8t T - 0.06 7
1

-y4.. T - 0.0606o T
2

-

y\ T = 0.760o T3

cJ.-. = 1. 0 (square plate)

b/ = 100
h

~:- See Appendix 11.3J Equation (A=7).
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7.2 Comparison of the Buckling Strength to that of a Plate
with Tee Stiffener

The example in Section 7.1 is chosen such that the

area AT, the moment of inertia about an axis parallel to the

plate II and the side ratio 0< are the same as in the example

in Section 4.1. Therefore the buckling strength of a trans~

versely stiffened plate with an inverted angle stiffener can

be compared to that of a Tee stiffener with the same weight

of material. The buckling strength is given by

k = 6.417 for Tee stiffener (Fig. 10)

k = 6.383 for Angle stiffener (Table 8)

The difference in the buckling strength,k for the angle

stiffener is 005 percent of Tee stiffener. As it is shown

in Table 8, the error in the buckling coefficient k for the

2nd approximation is less than 1 percent, therefore the 2nd

approximation can be used to compute the value k for dif=

ferent side ratios eX as follows ~
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•

~100

In order to compare the efficiency of a transverse angle

stiffener to that of a Tee stiffener having the same cross=

sectional area and moment of inertia as the angle stiffener 9

the cross-sectional properties of the Tee stiffener are

,chosen to satisfy the required minimum bending rigidity for

the severest case of side ratio. If the side ratio d varies

from 0.5 to 1.0, the required minimum bending rigidity of

the Tee stiffener for ex = 0.5 is greater than that for r::J., >0.5

and satisfies the condition of the second mode of buckling

of plate for 0<. >0.5. Therefore the cross=sectional pro~

perties of Tee stiffener are given by

and

The corresponding cross=sectional properties of the angle

stiffener are



.'
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Using these values of section property the buckling coe.ffi=

cients k for the Tee and the angle stiffeners are given by

Equation (59) and (92) as shown in Table 9. The result

shows that the efficiency of the Tee stiffener is superior

to that of the angle stiffener for any value of side ratio

ct , however, the difference is comparatively small.

703 Convergence of a Secular Equation for Buckling in the
Strain=Hardening Range

The following values of cross=sectional properties

of a transverse angle s tiffener-;i- are used to ex amine the

convergence of the buckling coefficient k of a stiffened

plate in the strain,~hardening range Q

t T = ~ 2$
Bl U7c3e _ ~:Se

E (I~ + !~~ ~2.e)
Dl( I 6

I ~ ZB .. EI~( iTd.0)
2ci>Je-~3e Dxlb b

0,0211

~i- Appendix 11.4, Equation (A-9).
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T

( 1Tdw) E. [..L-1T_I T
] \ Z8UXJ2e=

- b Dxlb 2 P e ~

'rod.. 0 I

0.445= 25 30

, .
I

.'

•

where the coefficients of orthotropy A.. and /- for A=7 steel

are the same as in the previous section, that is,

A. H- D
x

=

Substituting these constants in Equation (90) with the

buckling coefficients of the plate itself in the strain=

hardening range, the convergence of k is shown in Table 10,

where

k (2n=1) ,1 ( 2;;1 ) 2 + 2 A+jt
0<.2

=
(2n=1) 2

k =
(2n)2

+ 2A.+7 0<2
(2n),1 0(2 (2n)2

7.4 Comparison of the Buckling Strength in the Strain=
Hardening Range to that of a Plate with a Tee Stiffener

The corresponding Tee stiffener with the same

cross=sectional area and moment of inertia about the strong
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axis as the inverted angle stiffener, whose cross=sectional

properties are given in the Section 7.3, is given by

oovtT_
o B - 15

The required minimum bending rigidity of a Tee

stiffener which leads a plate to the second mode of buckling

in the strain-hardening range 'for the side ratio d = 0.5

is given by 1009 as shown in Fig. 140 Therefore the corres

ponding Tee stiffener is strong enough to cause the second

mode of buckling of a p~ateo The buckling coefficient k

for this anti-symmetric buckling is given in Fig. 14 by

k = 25.48

Therefore the Tee stiffener in the strain~hardening range is

more effective than the iriverted angle stiffener as well as

in the elastic range 0

The buckling strength of a strain=hardened plate

with no stiffener is given by

and for the second mode of buckling
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where the buckling coefficient k of a strain-hardened plate·

with the transverse angle stiffener is

k = 25.12

This means that the angle stiffener increases the buckling

strength of the plate from k = 15033 to k = 25012; however~

it cannot keep its position as a nodal line of a buckled

plate, therefore the buckling strength may be less than

that of a plate itself in the second mode of buckling. This

is due to the characteristics of an angle stiffener in which

the bending deformation is always accompanied by the twisting

of the stiffener. The difference in the buckling coefficient

between k = 25.48 and k 21 = 25028 is due to the torsional

resistance of the Tee stiffener•
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8. BUCKLING STRENGTH OF AN ORTHOTROPIC PLATE

WITH AN UNSYMMETRIC TYPE OF STIFFENER

LONGITUDINALLY PLACED ON A PLATE

8.1 Convergence of a Secular. Equation for Buckling.in the
Elastic Range

When a plate has one longitudinal stiffener in the

middle of the plate, i = 1, j =.: 0 and ?i.= ~ in Equation (87L

Equation (87) yields

~ (Y'!f ,2. DL. I S'1r ~ _I ( 10 '17") 10 11+ b ~ J I AJ.N.. 2- L.J O'-Yp j;"" ~ 2.;

r=1

+ ~(yrr )if( srrr) Al S'TT ~ _I (~) l' '1T
b 0.. b :2 u-o 2 LJ t7'y~ b UXj 2-

r=-I

+ ~ ( y: ~( s:) B;~ s; r o<yP ( :r.;)~ tp;
}O=Oj

+~ (~ )4( s:J(.~(.bj ~ ~ Q\yP~ 1';
r-'::q
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where Ar, Br, ct, Dr, A~, B~, and c~ are given by Equa~

tion (81). The following non~dimensional parameters are

similarly defined as in the case of a transverse stiffenero

L A~ C-&o2.$ E [L +TI... t.::w.ze]f~, DI.b UJ-03&_~3e . DIb' I y -Yl:

If c..7
L L.

L I ~2..& .~I.P.( '11" d w )t 82J = _.
DI.b2.. .z c.~·<:;}e - ;4...."3e Dlb b

..

..

f
~.<.e-

Cf)03e _;4..3B

(3
~2.e-

c.eo3&_~3e

J
l

'lr ilA
6

(94)
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Using these notations in Equation (94), Equation (93) can

be expressed as

2- 00
Z -.r L I ern-

E
I lOrrr

cJ. 2. 0' 131 ~- cJ.Y-p ~,2, ...2.
~=I

I S'lT
00

I 'P rrr
-2FJ'k )UAA. - 6 r:::)vp ~-r21

P=-I

•

•

+ :L f d i. R. ~ ~ i eXyP ( ~) UXJ tr;
f=1
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Using the following abbreviations

=2
L 2rS kSrk ::: 2,L

~Bl -0<2

Trk
r 2 tg - 2 Fibk::: 2-
~2 2

Urk
r 2 t L .~+ 2 (L _ 2 S2S k::: 2-0(2 . T

l
T2

-2

t LVr ::: 2.!:.-
0(2 T

3

"0
1-L LsF!" :::

k - kr j (2nc.l)
'VI "'" \

00 (2n)2XL .- L/ r k - k r j (2n) (96)
"1\"'"

the secular equation of Equation (95) yields

./II:

'.

For the case of a symmetric stiffener j for example

stiffener j G = OJ then

-Y\L _ ",L
o B - 0 B

1

the Tee
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o

r = 1

-
f = 0

and

• Srk =
r 2

t~ = 2dk2 0.. 2

ijl..

Trk = 0

2
2 t~ = 2 S2 SkUrk = 2 E..... 1f2fL +

r::J..2 W

V .- 0r -

The Equation (97) yields

or

••

1
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and

There.fore

or

1 1
------=-~----
k - k r , (2n-1) 2r 2 -,(\ L 2 Sk

o\~oB - (98a)

- 1r 2 S(RL rak
b

(98b)

The Equations (98a) and (98b) are identical to Equations (62)

and (63 ) respectively in Sec'tion5o 1. The crossQ·sectional

properties are chosen~~, .for example J as

7\'--L = 11._ 0 532U Bl L-J

--A.L - 0.06901o T
l

-

0.03085

~~ Appendix 11.3J Equation (A-8) 0
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(f-L = 0·76222T
3

S = 0.055

.(j. = 1.0

For eX = 1.0, r = 1 and r = 2 where r is the number of half

waves in x=direction for the symmetric component of the

buckled shape in the y=direction and r is the number of

half waves in x=direction for the antis·ymmetric component

of the buckled shape in the y=direction. The convergence of

the buckling coefficient k for this example is shown in

Table 11. For the case of a longitudinally placed angle

stiffener, it is necessary to use six terms in Equ.ation (97)

in order to obtain the accuracy within 1% of the error.

8.2 Comparison of Buckling Strength to that of a Plate
with a Tee Stiffener

The buckling coefficient k in Table 4 and Table 11

give the comparison in the efficiency of the stiffenero The

stiffeners in both tables have the same area and the same

moment of inertia about their strong axiso From Table 4,

the bu.ckling coefficient k of a plate w'i th a longitudinal

Tee stiffener in the middle of the plate is given by
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and for a plate with a longitudinal angle stiffener in the

middle of the plate

k = 13.517

where the buckling coefficient k of plate alone is

k = 4.000

since the side ratio d = 10 Therefore the increase in

k due to a longitudinal stiffener is

ilk = 170656=4 =
4

314% for the Tee stiffener

ilk = 130517~4 = 238% for the Angle stiffener
4

The difference in the efficiency ilk is 76%0 On the other

hand~ the buckling coefficient of a plate with a transverse

stiffener is given by Section 702 as

k = 60 L~17 for the Tee stiffener

k = 60383 for the Angle stiffener

Then the increase in k due to a stiffener is

ilk = 60447~4 =6004% for the Tee stiffener

-. ilk 5905% for the Angle stiffener
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The difference in the efficiency lik is only 0.9'/0. F'rom

these computations it may be concluded that a longitudinal

stiffener'is tolerably effective to prevent the buckling of

a plate compared to a transverse stiffener, and the effi=

ciency of an inverted angle stiffener is considerably lower

than that of a Tee stiffener when the stiffener is subject

to axial loads as in a longitudinal stiffener. In other

words, the existence of axial load weakens the torsional

resistance of a stiffener with an unsymmetric open cross",

section as well as the bending resistance of the stiffener,

and its influence for an unsymmetric cross=section is con<~

siderably greater than that for a syrilmetric one.

8.3 Convergence of a Secular Equation .for Buckling in. the
Strain-Hardening Range

For the buckling of a plate in the strain~'

hardening range with a longitudinal angle stiffener in the

middle of the plate, the following values of the section

'properties are chosen-;~ as an. example;;

=

-x\ L - 20.119U B
l

-

-;~ Appendix 11.4, Equation (A=lO).
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t~l = 0.2836

t~2 = 0.1109'
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y\L _U T _.
3

0.8044

•
'"

For the side ratio ~ = O.8 j the numbers of half waves in

the loaded direction (x~direction) are given from Fig. 18

by

r = 1 and r = 3

The convergence of the buckling coefficient k in Equa~

tion (97) with the plate coefficient krj (2n,=1) and kr '
j
(2n)

in the strain~hardening range is shown in Table 12 j and it

is comparatively slower than that of the Tee st:Lffenero It

may be necessary to use at least four terms to get the

accuracy within the error of one percent.

8.4 Comparison of Buckling Strength in the Strain-Hardening
Range to that of:a Plate with a Tee'Stiffener

The examples of Tee stiffeners, in the previous

Section 5.4 and angle stiffeners in Section 803 have the
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same area 6 = 0.1 and the same moment of inertia about the

strong axis. The side ratio ex is equal to 0.8 for both

cases. Therefore the difference in the buckling coefficient

k gives the efficiency of these stiffene:rs in the strain-

hardening range •

. k = 67.144 for the Tee stiffener

k = 54.951 for the A.ngle stiffener

k = 14.639 for the plate alone

The increase in k due to a stiffener~ therefore~ is given by

6k

Lik

= 67.144-14.639 <._

14·639

= 54.951~14.639 _
14·639

358%

275%

for the Tee stiffener

for the Angle stiffener

The difference in the efficiency between the Tee and the

angle stiffeners is 83% of buckling strength of the plate

alone.

Therefore the Tee stiffener is considerabl"y·

effective in both the elastic and the strain=hardening range

compared to that of the inverted angle stiffener.



•

9 •

=116

NONDIMENSIONAL EXPRESSION OF PLATE CURVE

It is advantageous to use nondimensional expres-

•'",

sions for the buckling strength of a plate in order to

eliminate the variations in the yield stress of the material.

The behavior of piates which buckle in the intermediate range

between the proprtional limit (sum of applied and residual

stress equal to yield stress) and the strain=hardening range,

is governed by the magnitude and distribution of residual

stresses. No direct solution of this problem has yet been

developed, however, a reasonable transition curve was pro=

posed by Haaijer and Th~rlimann(2). It can therefore be

assumed that the similar expression may hold true for

stiffened plates.

The elastic buckling stress~ 6'e.9 of a perfectly

plane plate of isotropic material Tilri th no stiffener, sub=

jected to forces acting in its plane~ is given by

i<:'- := k ~
U e e

12

where ke = plate buckling coefficient in the elastic range.

The nondimensional expression .for this elastic buckling may

be

6'-e
()o
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where

00 = yield stress

(100)

The proportional limit may be .assumed to be equal to

60/2(2). Then the value of the nondimensional parameter

at the proportional limit 'Sp is given ';p:= .v2k~. At

the point of strain~hardening, the ratio of the buckling

stress 6'-cr to the yield stress 00 is unity, that is,

E)cr
S-o ..- 1

where k s := plate buckling coefficient in the strain=harden:ing

range. Therefore the value of C; at the point of strain=

hardening c;sis given by

For A= 7 steel,

Dx = 3,000 ksi

E'= 3 0 ,000 ksi

Y = 0·3



·.
..

•
"'

..

-118

The plate buckling coe££icient k s in the strain-hardening

range depends upon the boundary conditions and the side

ratioq. For a simply supported plate with the side ratio

cj,. = O. $, the value o£ the plate buckling coe££icient k s

is given by

There£ore

(;s - 1.181

From the de£inition o£ ~ in Equation (100) the corresponding

ratio b/h o£ the plate is given by

where the yield stress S-o is assumed as

6'-0 = 33ksi .

9.1 Plates 'with a Transverse Tee Sti££ener

For the caseo£ a plate with a transverse sti££ener

o£ the Tee-shape in the middle o£ the plate~ the same con=

sideration can be applied with proper modification to the

buckling coe££icient ko For example, £or ~ = 0.5 and
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t ~ + 1t 2 t ~ = 0.1 the required minimum bending rigidity in

the elastic range is given by 't ~ == 13 .20·~i- and the buckling

coefficient of the plate is

Therefore the value of S at the point of proportional limit

is given by

2; p = 6.076.

The buckling coefficient kin the strain=hardening range

wi th the required minimum bending rigidity t ~ I::: 110 08~H6-'

for tr; + 'It Ii! t~ = 001 and ex:=. 005 is k s lJ:: 250 68~~··~. There=

fore the point where strain=hardening starts is given by

2;s = 1.529

or

b == 44 for A=7 steel
h

902 Plates with a Longitudinal Tee Stiffener

In order to compare the efficiency of a longitu=

dinal stiffener with that of a transverse one~ the same side

ratio (j = 00 5 is chosen for a plate with a longitudinal Tee

~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ = ~

".,;- See Fig. 11
.~:-;'" See Fig. 14
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stiffener in the middle of the plate. The buckling coeffi~

cient k in the elastic range is given by

with the required minimum bending rigidity of the stiffener

t~ = 3.492~;' for S = 0.05, t~ = 0.015 and'7[2t'-~ = 00070.

Then

For the buckling .in the strain~hardening range, the required

..

•.

•

minimum bending rigidity is given by

for S = 0.1, t~ = 0.07 and '7(2 t& = 0.18.

The buckling coefficient k for this case is

Therefore

See Table 6
See Table 7
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or

b =h 72 for A-7 steel

"

..

The results of these computations are shown in Fig. 22 with

proper transition curves between the proportional limit and'

the strain-hardening range. The starting points of strain·,

hardening, therefore, can be summarized for A-7 steel as

blh = 34 for the plate alone

blh = 44 for the plate with a transverse stiffener

blh = 72 for the plate with a longitudinal stiffener

where each stiffener is of Tee·, shape ' and fulfills the con=

dition of the required minimum bending rigidity.

The test results on inelastic buckling of simply

supported plates(l) show that the buckling stress exceeds

yield stress approximately at

B = b ~ §::y' = 1.15
h E

which corresponds to

(Reference~ Fig. 3)

b =
h 34·7

" for A~7 steel.
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The side ratio ex of' the test specimen was chosen as

d. = 1

The theoretical value of' ks f'or ~ = 1 is given by

for simply supported plate with no stif'f'ener. For this case

the critical ratio b/h at which the strain~hardening starts

is als 0 given by

-::.- For o. 78 ~ ()( ~ 1. 35, the number of' half' waves in the loaded
direction r = 2 gives the smallest buckling stress •
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10. SUMMARY AND DISCUSSION

The results of the investigation presented in this

dissertation can be divided into two parts~ 1) the influence

of torsional resistance of the stiffeners with thin~walled

open cross-section, for example the Tee shape and the Angle

shape, on the buckling strength of stiffened plates and

2) to investigate certain geometric conditions of stiffened

panels which can be compressed beyond the yield point and

even into the strain-hardening range without buckling.

The application of integral equation to the

buckling strength of the stiffened panel simplifies the com<~

putation by the aid of Greenus function for the deflection

of the plates. The theory of an orthotropic plate can be

applied to investigate the buckling of stiffened panels in

the strain=hardening range with proper moduli of materials.

The findings are summarized in the following

numbered paragraphs.

1. Cases Solved

The buckling strength of stiffened plates are

studied in both the elastic and the strain=hardening range 9

considering the effect of St. Venantys and warping tosrional



..

-..
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rigidity of stiffeners for the following cases~

l~l Transverse stiffener with Tee shape

1.2 Longitudinal stiffener with Tee shape

1.3 Transverse stiffener with Angle shape

1.4 Longitudinal stiffener with Angle shape

2. Convergence of Eigenvalue

In both the elastic and the strain-hardening

range the convergence of eigenvalues in the secular equation

for the buckling of the longitudinally or transversely

stiffened plate is considerably rapid and only two or three

terms in the secular equation give fair result for design

purposes.

3. Required Minimum Bending Rigidity of Stiffener

The required minimum bending rigidity of the Tee

stiffener is obtained under the consideration of the tor·~

I
sional rigidity of the stiffener and compared to Barbreus

results which are obtained by neglecting the torsional

effects •
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4. Effect of Torsional Resistance

The torsional resistance of longitudinal stiffener

with a thin-walled open cross-section cannot be neglected in

the estimation of the buckling strength of the stiffened

plate since the torsional rigidity increases the critical
/

strength about 10 percent of Barbreus results.

5. Warping Torsion

The warping resistance is the main portion of the

torsional resistance of the stiffener and it increases in

proportion to 1/L2 where L is the length of half wave of

buckled shape, therefore the warping torsion of longi tu·"

dinal stiffener becomes an important factor in the buckling

of the stiffened plate in the strain-hardening range,

because the half wave length L in the strain=hardening range

is approximately half of that in the elastic range.

6. Shape of Stiffener

The symmetric stiffener, for example, the Tee

shape is more profitable than the unsymmetric stiffener,

like the angle stiffener, especially for the longitudinal

stiffener. The existance of axial compression considerably

reduces the torsional resistance of the unsymmetric



I
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stiffener as well as the bending resistance as compared to

those of the symmetric stiffener.

The results of this dissertation are used to

specify the proper geometric. conditions of the stiffened

plates such that each panel may develop large plastic de

formation without buckling and a consequent fall-off in

load. These requirements are essential for a successful

application of Plastic Design Methods to plate structures

like box girders of bridge construction or deck panels of

ship struc tures .
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Common. Notation·:
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Superscript

"
Subscript

"
"
"
"
"

L =

T =

B =
S =
W =

i =

j =

x =

Longitudinal stiffener

Transverse stiffener

Bending

St. Venant1s torsion

Warping torsion

i-th longitudinal stiffener

j-th transverse stiffener

x-axis

" y = y- ax is

" z = a-axis

-Notations:

A = Area of stiffener

a = Length of plate

b = Width of plate

be = Effective width of plate

bf = Width of flange plate of stiffener

c = be/b

D = E
1_»2

•
Dx

·Fx=
1- Yx Yy
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Dy = 7
1- YxY,)'

di = Distance between centroid and enforced axis
of rotation

~ = Depth of web plate of stiffener

E = Young's modulus

Et = Tangent modulus

Ex = Tangent modulus. in the x-direction

Ey = Tangent modulus in the y~dire c ti on

2F = Dx (Y -~) + Yx DyY Gt
G = Shear modulus

Gt = Effective shear modulus

G(X,~) ~,~) = Green's function for deflection of plate
under-unit load

Green's function for deflection of plate
under-unit couple in the x-direction

Green's function for deflection of plate
under-unit couple in the y=direction

•

•

2H = YxDy + YyDx +4Gt

H = Horizontal reaction of stiffener

h = Plate thickness

I = h 3

12

IT = IT + IT . tan 2 9e x x~

T' IT - T
Ie = Ix-e • tan 2 9i!
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I p = Polar moment of inertia of the cross-section
of the stiffener

Ix = Moment of inertia of stiffener cross-section
about the x-axis

I y = Moment of inertia of stiffener cross-section
about the y-axis

Ii!. = Moment of inertia of stiffener cross-section
about the l. -axis

K = St. Venant1s torsional constant

= Bending rigidities of orthotropic
plate

..

k

M

m

n

'5'(x ,y)

=

=

=

=

=

=

=

=

=

=

Buckling coefficient of stiffened plate

Buckling coefficient of plate in r- and s-mode

Spring constant of elastic medium in the
y-direction

Spring constant of elastic medium in the
1 -direction

Moment

Moment in the y-direction

Number of transverse stiffener

Edge compression of plate in the x-direction

Number of longitudinal stiffener

Distributed load on plate



j,

r, r

s

t'w

u

vr

v

'W

w

X.,Y,2

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
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Numbers of half waves of buckled plate in the
x-direction (symmetric and antisymmetric mode
in y-direction respectively)

Number of half waves of buckled plate in
y-direction

Thickness of the flange plate of the stiffener

Thickness of the web plate of the stiffener

Displacement of the plate in the x-direction

Displacement of the plate in the y-direction

Warping constant of the stiffener

Deflection of the plate

Deflection of the plate in the i-th panel

Deflection of the i-th stiffener

Coordinate system

Side ratio of plate

= cos 2 9 , -
~ =

sin 2 g

~ = Ratio of bending or torsional rigidity of the
stiffener to the plate
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f

EIT

O'~ = x in the elastic range• DIb

t~
EIT

x
in the strain-hardening rangeor = DxIb

t-T GKT GKT
= - ors DIb DxIb

T T
EI~ ~ 2

~T ~(~'r= or D Ib ("b)w DIb ,b x

L L

t~ = ~ or
EtIy

DIb DxIb

t~
GKL G KL't= orDIb DxIb

,0

t~ E~ (5)" EtI~ ( ~)2= orDIb b DxIb b"

t~l
~EITe ~EITe

= DIb or DxIb

t-~2
1 ~EIT .( ~ )= 2

-=:.E
DIb b

t11
= ( f)[ ~~ )" • E ( 1 IT sin2 2 G + T 1 G)DIb 2 p Ie cos 2 2

T( 7t:W)2. --L.( 1 IT
/

2 g)or sin2 2 g + IT cosla
DxIb 2 p e

t'T GKT GKT
= or

•
T2 Dlb Dxlb



•

-13 2

/'1t~) E (1 T )= ~ ~ . Dlb 2 I p - I~ sin 2 @·cos 2 @

- L L
L 1 ~ EIp (rrt dw. )

(f B
2

= 2 Dlb b or

I~ - I~) sin '2 @. cos 2 @

G0
= -

Dlb
or

Gt:rcL-
Dxlb

I~ ) sin 2 @. cos 2 @L (7rd~) E (1 Lt T
3

=T . 15Ib 2 I p

L

or ( ~:~). D:ib ( ~ ~ - I~) sin 2 @\ cos 2 @

where the first one of each coefficient ~ is used for the

elastic range and the last one for the strain-hardening

range.



s =

=

AL
bh

Strain in the x-direction
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Ey = Strain in the y-direction

c; =

C;p

~s

=

=

Value of c; at the proportional limit

Value of C; at the strain-hardening point

A =

.,.

~, t, = Coordinate system

~ = Angle between the principal axis of the stiffener
and the x- or y-axis

~ = coefficient of orthotropic plate
x

2-
7lrs = Eigenvalue of orthotropic plate

D
~ = ~ = coefficient of orthotropic plate

x

)) = Poisson t s ratio

)Ix = Dilation coefficient in the x-direction

Vy = Dilation coefficient in the y-direction

f =

=

=

=

=

Buckling stress of plate

Yield stress

Stress in the x-direction

Stress in the y-direction



= Tangent modulus coefficient
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~xy = Shearing stress

00

~ L 1 1=
(2n-;1) 2 k - k (2n-l) ,1'\1 :: ,

l 00

~y. = L 1
k - kr) (2n-l)

'\1,",'

q6 = Stress function

= Normalized orthogonal function

..

x 00

L 1= k - k 2n 1
'\'1:.1 ' ,

L' t>O

Xr= 'L (2n)2
k - klj{ 2n)IYI ~ 1
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13. APPENDICES

13.1 Section Properties of a Symmetric Stiffener in the
Elastic Range

The geometric proportions of WF sections are pro

posed by Haaijer and Th{irlimann(2) such that no local

buckling of the flanges and the web plates will occur prior

to strain-hardening. The recommendations are following:

where

(Reference Fig. 8)

•

bf = Width of Flange

t f = Thickness of Flange

dw = Depth of Web

t w = Thickness of Web

For the Tee stiffener the web plate is subject to axial

force and bending, furthermore high axial force accompanied

by bending moment may affect these ratios. Therefore, in

this dissertation the following ratios are used for the

numerical examples •

= 17
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dwl == 20t w

Therefore the section properties of a transverse Tee

stiffener are given by

t; == 25.55 m4 (~) (A-I)

(A- 2)

(A-3)

where

"t~ == 3.64 [ 1 7m( 1Om- ex)" (~) -16. 5m( 9m- ex) "(~)+2C (l+CX) fa

- t 2c - ~ (~)}. d " J

be == Effective width of plate

•

..

For example, for blh = 100, m = 1/2 and d/2~0.3 (c = 0.193),

the section properties in Equations (A-I), (A-2) and (A-3)

yield

o~ = 12·7

t-T == 0.015s
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(A-4)

•

For a longitudinal stiffener. the effective width of the

plate is related to the length of the plate a as

be = c a

or be = c rj.. b

Then c = 0.193 for alb ~ 513

Therefore for ct = 1, blh = 100 and m = 1/2 the values of

t~, t~ and rn:. 2 t Bare the same as those in the transverse

stiffener in Equation (A-4), however, the number of half

waves in the loaded direction r = 2 for ~ = 1. Therefore,

.•

The value of '7[2 Sr RL) 2 is obtained as follows:
\ b

~ = A
L

bh

(A-5)



Using the same values for ~ , b/h and m,

s = 0.05

(A- 6)

13.2 Section Properties ofa Symmetric Stiffener in the
Strain-Hardening Range

The coefficient c of the effective width of the

plate is assumed to be

Then

for ex > 1

for c:J... = 1, m = 1/2, and b/h = 50

Therefore

t~
E I L
=~ = 19.61

Dxlb

t~
= GtKL

= 0.07
Dxlb



cS'=1fu=0.1

'It.
2 (' ( RL) 2 __

() b 0.026

where

Dx = 3, OOOksi

for A-7 steel.

(A~ 7)

13.3 Section Properties of an Unsymmetric Stiffener in the
Elastic Range

Transverse Stiffener:

In order to compare the angle stiffener to the Tee

stiffener with the same area. and the same moment of inertia

about the strong axis, the angle stiffener is assumed to

have half width of flange bf and twice the thi·ckness of the

flange tf, that is,

bf (Angle)

tf (Angle)

1
= 2 bf (Tee)

= 2 t f (Tee)
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Tperefore the position of the neutral axis l I is equal to

each other and so are Ii, Ii and AT of the transverse

stiffener. The product moment inertia Il~ is given by

Then ~2 9 = 1.108

9 = 0.419rad = 24 degree

IT = IT + Ii~ tan 2 9 = 155.08h4e x

IT
/= IT - rIl tan 2 9 = - 23. 65h4e l

IT = IT + IT = 131. 4 2h4p x E.

Therefore

't- B
T = 13·876u 1

t T = 1.023B2

t T = 0.0687Tl

t T = 0.0606T2



f'or cJ.. = 1 and blh = 100.

Longitudinal Stif'f'ener~

(A=7)

..

The f'ollowing relations' between the Tee and the

angle stif'f'ener are assumed:

1bf' (Angle) =12' bf' (Tee)

t f (Angle) =.[2' tf' (Tee)

The web plates are of' the same proportion to .each othero

Then b f (Angle) I tf' (Angle) = 805

~.

G = 00580 = 33°13 v

tt = 140532
I

t~2 = -2·3297

tful = 0.06901

t~2 = 0003085

t L = 0076222T
3



.'
8 = 0.055

for 0<. = 1 and blh = 100.

13.4 Section Properties of an Unsymmetric Stiffen.er in
the Strain-Hardening Range

Transverse Stiffener~

..

The required proportions of the Tee stiffener is

given by

bf (Tee) = 30808h

t f (Tee) ,- O. 22Lj.h

d~ (Tee) = 2024h

t w (Tee) = 0.112h

bf/tf = 17

dw/t = 20
w



.,

The corresponding angle stiffener is

bf (Angle) .- 207h

t f (Angle) = 00J16h

bf/tf == 8•.5

The web plate is of the same proportion as the Tee shape.

"'" T _"°T 2

-AT . _
°T 3

000985

0.0271

0.8716

..

for· (j. == 005 and blh == 500

Longitudinal Stiffener~

(A~9 )



I

I •
tiL/ = 20 .
'"'W t w

Assume that

~ := 5hw

'tw = 0.25h

8 = 001 and ex:= 008

'<'\.L = 20.119o B1

t~ := =.1. 0590
2

t¥ =: 001109
2

The corresponding Tee stiffener satisfies the required

minimum bending rigidityo

(A=10)
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TABLE 1

CONVERGENCE OF BUCKLING COEFFICIENT k

FOR TRANSVERSELY STIFFENED PLATE WITH T=STIFFENER

SYMMETRIC TYPE

0{ "t~
Using Using Using Using Using

1 term 2 terms 3 terms 4 terms 5 terms

0 05 10 1602.50 1.5069.5 150646 150624 1.50620

Error in % 40036 0 0484 001'72 00031 ==

1 00 1207 290400 10 020.5 10 0185 10 0183 10 0180

Error in % 188079 00242 00045 0.020 ==

ANTISYMMETR Ie TYPE

cA tT~2tT Using Using Using Using Using
s w 1 term 2 terms 3 terms 4 terms .5 terms

1 0 0 0 0085 60420 60418 60417 ' 4""""? 6 041r'b 0 .L I
------_._--- ..-.'_._---. . ------.-- --_.- "-' .. '.. __ ." .-_._-_.- .__._-

" j! 5 , . '
,

;1',:",Error in % " 0.04'7 0 0016 0
.,J - 0

"•• '" •. of ".1

"" '. i
~==

1 0 0 100 8 0250 709,22 70870 7 0827 70800

Error in % .50766 10.560 0 0888 00338 ==-



TABLE 2

REQUIRED MINIMUM BENDING RIGIDITY ~~

OF TRANSVERSE STIFFENER WITH NO TORSIONAL RESISTANCE
AND ERRORS IN COMPARISON ·TO FRBHLICH uS RESULTS

(Elastic Buckling)

0\,-
Using Using Timoshenko FrBhlioh2 terms 3 terms

005 12 064 12 072 12 060 12 0 75

0 06 7 018 7 023 7 018 7 024

007 4038 4041 4039 4042

0 08 2 079 2 081 2080 2 0 82

009 L81 L83 1 0 82 1 084

1 00 1017 1 019 1 026 L19

005 =0086% =0023% =1020%

0 0 6 =0 083 =0014 =,0 083

0 07 =0090 =0 023 =,0 068

0 08 =1007 =0035 =0071

0 .. 9 =L63 =0 054 =1 009

100 =1068 0 +5088 .



TABLE 3

BUCKLING COEFFICIENT k OF PLATE WITH TRANSVERSE T=STIFFENER

AND ERROR IN COMPARISON TO THE 5th APPROXIMATION

(Symmetric Mode = Strain-Hardening Range)

~ r T Using Using Using Using Using
B 1 term 2 terms 3 terms 4 terms 5 terms

250333 241 810 240768 240758 240756
005 10

20331% 00218% 00048% 0.008% c::>l'Ic;;:.."

TABLE 4

BUCKLING COEFFICIENT k OF PLATE WITH LONGITUDINAL T=STIFFENER

AND ERROR IN COMPARISON TO THE 5th APPROXIMATION

(Antisymmetric Mode = Elastic Range)

t L
s

RL.". Using Using Using Using Uaing
d. 2 rr2$(-)2

2,LyL 1 term 2 terms 3 terms 4 terms c;' termsb ..;;
rr cA2 w

170959 170792 170721 170681 170656
1 00 00292 000026

1070% 0077% 0037% 0014% --
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TABLE 5

COMPARISON OF REQUIRED MINIMUM BENDING RIGIDITY

OF LONGITUDINAL STIFFENER WITH NO TORSIONAL RESISTANCE

(S= 0.1, Elastic Range)

Method Bleich German Integral Barbre I
Spec o Eqo j

cf.. -----J
1

2 0594 2 0719 2.582 2.605 !
I

1/2
( =0 042~&) (~4.4%) (-0088%) !

<=> ~~ ~

i

! ;

I
I

40945 4.775 6 0267 6.284
,

I i

l/~ I :
( =21%) ( =24%) (-O.27%)~~i

I
I

8.850 80700 8.809 , 8.826
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TABLE 6 =152

..

•

EFFECT OF TORSIONAL RESISTANCE ON BUCKLING AND REQUIRED

MINIMUM BENDING RIGIDITY OF LONGITUDINAL T=STIFF'ENER
( S = 0.05, Elastic Range)

Item
Buckling Coefficient k Bending Rigidity ok

-
No With Increase I No I With Increase

cA Torsion Torsion % Torsion Torsion %
~_._~_ "., ___I.....

1/2 20405 30492 45

1 8.026 9.498 18

3/2
16 170825 1104 15.52 , 18 014 18

2 23042 27073 18

TABLE 7

EFFECT OF TORSIONAL RESISTANCE ON BUCKLING AND REQUIRED

MINIMUM BENDING RIGIDITY OF LONGITUDINAL T=STIFFETIER

Strain-Hardening Range)
.~- .

Buckling Coefficient k Bending Rigidity L
Item 'i'Bl·

/cX.
No With Increas.e No With Increase

Torsion Torsion % Torsion Torsion %

0 0 3 61 0235 650993 7073 30880 4 0881 25080
0.5 61 0333 69.368 13 010 8 0946 lL003 22 099
0 08 60 0902 67 0144 10.25 19 0245 22 0097 I 14082

LO 610333 690368 13 010. 27.678 33 0026 i 14032
I
i

L4 600870 650777 8 0 06 420265 48 0254 I 14 017

L6 60.902 670144 10 025 460589 560402 21 011

109 60 0 861 660616 9046 440660

I

570238 28016

2 02 60 0 853 66 0250 8087 310455 430031 I 36080
I
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TABLE 8
BUCKLING COEFFICIENT k OF TRANSVERSELy"STIFFENED PLATE WITH ANGLE STIFFENER

(Elasti~ Range)
~'

a'~1=13.876
-,_._-

T Using Using Using Using Using Using Using Using UsingO'B2==L023 '
0\ -1- 2' 3 4 ~ 6 7 8 9.,-

o-T: 000687 term terms terms terms terms terms terms terms terms
Tl

Q'T 0,0606_ T2=

-1J~3= 0 0760

k 310751 1 60340 6.383 6.376 60384 6.383 6.383 6.383 6.383
1 0 0 .. -!

%
I

Error == -0.67 0 -0.11 I +0.02 0 -0 0 0! I-

TABLE '7

BUCKLING COEFFICIENT k OFTRANSVERSE,LY STIFFENED PLATE
(Elastic Range)
"'-----'1"- .., ,--------'---

~.Side·

I
TYP~ 0.5 0.6 0.7 0.8 009 1.0of - 0<
Stiffener J-_

Tee 18 0 40 13.48 I 10053 I 8062 7033 6042

I
Angle 17024- 13 0 05 10025

I
8.41 7 016 6 027

No Stiffener ! 6 0 25 5014 4.53 i 4 0 20 4.04 4~00

IT

I--'
\n.
W
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TABLE 10

BUCKLING COEFFICIENT k OF TRANSVERSELY STIFFENED PLATE WITH ANGLE STIFFENER

(Strain=Hardening Range)

t~1 :::::: 170490

t~2 :;:;;: =10340 Using Using Using Using Using Using Using Using
cA 1 - 2 3 4 5 6 "7 8

t~l ::;;: 000985 Term Terms Terms Terms Terms Terms Terms Terms

t~2 := 008716

k 3208230 2501746 2501164 25 01185 25 01158 2501157 25 01157 2501157

005
Error in % === +0 0 234 +000028 91'000111 +0 0 0004 0 0 0
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TABLE 11

..

- .. ,.

•

BUCKLING COEFFICIENT k OF LONGITUDINALLY STIFFENED PLATE WITH ANGLE STIFFENERS

(6:= 00055" Elastic Range)

O'tl :: 140532

D'~2 ~- 2 03297
. -

Using Using Using Using Using Using Using Using Using
cA (fL 0006901 2 3 4 5 6 7 8 9 10~ I

T1 terms terms terms terms terms terms terms terms terms

0&2
~ 0003085

t L - 0076222I T3 ~~

k 140975 130844 130714 130661 130583 130569 130532 130517 130517
1 00

Error in % 10 08 2 0 4 104 101 0 05 004 0004 0 0

n
i-'
\..rl
\no
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TABLE 12

BUCKLING COEFFICIENT k OF LONGITUDINALLY STIFFENED PLATE WITH ANGLE STIFFENER

( d :;;;:- 001, Strain~Harderiing-Range)

.O'L
\

= 10 0202Bl

0'~2 :: 8.754
Using Using Using Using Using Using Using Using Using

et 0' L ---
= 2.874

--2 3 4 5 6 7 8 9 -- 10
Tl

-- -.
terms terms terms terms terms terms terms terms terms

t L 00111T2 =

0&3
:;;; 2.549

k 56.948 550409 550324 55.122 55 0075 55 0017 540988 540969 54.951

008

Error in % 3.63 0083 0.69 0031 0 023 0012 0007 0003 ~=
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