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10 II\fTRODUCTION

In Hefo 1 a general method of solution was developed for the

plastic design of rigid frame structures o The particular parts

o:f that re,por~t that had to c10 with single and multiple span,

pinned-t:J_8 gable frames were presented in a separate report (2)

which also included design curves and examples 0 This paper pre-

Bents the sanle ty_pe of inforrnatioYl for pinned=>base "lean.... to ff type

structures.,

The assumptions that will be made are the same as those

listed in the earlier paperso That is,

1. As moment approaches its fully plastic value, Mp , curva

ture increases indefinitely;

2(J }~quilibriurf1 carl be forn1u18~ted irl the ll11defornled position;

3 Q No instability occurs prior to the FL'h,ta,inment of the

fully plastic load;

4~ The il'lfl-uence of sll-ear and thrust is r1eglected;

50 There is a known amount of moment that can be trans~

nlitted through the connections;

60 All loads are increased proportionally, and

7~ Failure corresponds, to that condition where the structure

is reduced to a mechanism through the development of

yield (or plastic) hingeso

These aSS11mptioxlS eor)l~espond. 'to -those D1ade in ffsimple plastic

t116 ory" ~

As shown in Refo 3 and 4 the necessary and sufficient con~

ditions for a plastic solution, according to the simple plastic



the ory, are:

10 The structure must be in equilibrium;

2~ The moment at any section must be less than or equal to

the fully plastic moment value, (i.e., IMI~ Mp ); and

30 A mechanism must be formed~

Several -j" ,,"l"erent approaches or methods' of solu t:i,on may be used

which will ensure that these three conditions are meto The one

that will be 1'ollowed in this report is the l'1echanism Method (5, 6).

In essence, this type of solution assumes that all possible fail

ure configurations ~e examined and that the load corresponding to

each is determined o The maximum load that the structure can sus~

tain is then the one having the lowest critical load value o

110 DEVELOPMENT OF THE DESIC!N' CHARTS

1. Loading, Plastic Hinges and Mechanisms
, (

The basic structure to be considered

is the one shown in Figo 1. It may exist

either by itself or in co~binationwith

other pinned-base structures~ For the

single span frame, the assumption will be

made 'that each or the members can deliver

a resi~ting moment equal to Mpo When the

frame is connected to other structures;

that is, for multiple span frames; the

bI.J

aL

p

I... L ~I

'FIG. 11

interior columns will be chosen l~rge eno~gh to ensure development

of hinges in the raftero The size of these columns will be



determined from the moment diagram after the railure"e'ondlt:fonJ >·,

and corresponding load is ascertainedo

p

,
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~e loading to ~hich these structures may be Bubjected will

be ·either of the two general cases illustrated in Fig~ 2. In

Fig"._~ 2a it is aSS1-.1tllsd t4at an exte:rnalload is applied to one side

oik the structure (could be either Si-de:) while the opposite si9.e

is connected to an adj acen t spano Figure 2b is typic a~ of an in

terior span. Since adjacent structures can t'ransmit horizontal

and vertical .forc~s ...and bending moment at thei;r. points o.f con-o-l

" Iiec.tiqn.. t~ese ·effects must be c,ons-J:.4ered- when .ex amini~g the be-

havior or a:ny one spano However, since a. mechanism method of'

f;J'o:Lution wil.l be used in solving the problem the only quantity 01:

interes·t, as :r.ar as external load., to the span in question is con

cerned,. is the total work done by these fo~ces and moments as the

mechanism is £ormed. The total efrect o~ these inrluences could

therefore ,be replaced by hypothetical moments assumed to act

about the base of the struc ture as 1s shown by the dashed· moments



in Pigo 20 These ta,)'ould be chosen such that they liapply " the same

anlO1lrlt or external work to the span in questiono This procedure

is the s~e' as that used in Hef'o 1 and 20 Therein a more detailed

discussion of the method is givenQ

Fop a concentrated, external, horizontal load assumed to act

a.;t t,~he -, _'j:;er eave ff, as shown in Figo 2a, the corresponding

hypothetiCI'll moment 'Would be chosen equal to ~AWL2, where
p

.A := (2a) (wr;)o That is, 'the moments of the two systems about the

base would be made equal"

.0'.0 • coo o 0- 0 eo _ • 0 " (1).

This assumes that no hinge will occur in this colunm and such will

always be the case ror this loading4

w

When the structure is subjected to a uniformly distributed

horizontal load or the type shown in Fig. 3 a conservativesolutiron

can be obtained by again making the two momenta equal 0 This is

proven in Hero 1 and 20 That is,
111'111- 1111111

or

L ( a+b)
1

A = () (a+b) e 0 ~ 6 Q 0 (2)
~

{,

,;......iII@_L_.....~1
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Here again, it is assumed that the maximum moment in the wind

ward column must occur at the point o~ junction between the column

and the raftero

L

<:XL

aL

As was pointed out in the preceding section, when for a given

conillination of applied loads the ultimate loading is reached, a

sufficien .:.lumber of hinges will develop to reduce the structure

to a mecharlismo litor the structure and loading under consideration
......

(see Fig. 2) three locations of possible plastic hinge formation

exist: one at each of the junctions of the rafter and the columns,

and one within the rartero These (3L
bL

are shown in Fig~ 4~ The exact

location or hinge (2) in the

rafter will depend on the loading

and mechanism and will be chosen

by minimizing such that the

structure nfails" at its £irst

opportunityo IFIG. 41

For the structure in question it is in general necessary to

develop two hinges to reduce the system to one of one degree of

freedom. However, ~or certain combinations of the loading para

meters A and ,D, it is also possible that three hinges will be

developedo The hinge systems that must be examined are therefore

as shown in Fig. 5. For a given loading situation the mechanism

which requires the largest value of Mp will develop. This then

will be the criterion of selection or the critic~l mechanism.



1L.2

(b)

L

IFIG. 51

(c )

L
_....-~

The's oluticn cor~espondirig to failu:re modes (a) ,,~,~ and (c) of

Fig. 5' will be oarried out to illustra~e the mechanism method of

solution.

(A) ~reehanism (~),

With the three hinges forming

as shown in Fig. 6, the rafter fails

as it it were a beam of span length

.equal to L and oonsequently the
, . '.. wL 2

applioea hypothetical moments A a 0"

a .
und D~~o do not enter into the

solution. This assumes that the

oolumns remain vertical and, as

will be shown later, C~l occur

w
IIJIIIH IIJIIJ1JlI

1
2LQ

j-----~.......-..Q--......

1

(
. ) wL2

.... 1 1 -.' DT
-L -L
2 2

L

- ~ ~ - ~ - - - ~ - - ~ ~ - - - - ~ ~ - - - ~ - - - - - ~ ~ ~ - ~

*'It should be n~ted that for beam mechanism (a) of Fig. 5, the
structure actually has two degrees of: freedom. For this reason,
it does not necessarily cause the structure to away either to
the higher or lower side.
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only for certain particular comb~inations of the parameters A,

bD and-oa

In determining ~he critical' load that will result in this

failure configuration a vi~tual displacement me~hod will be usedo

It is assumed that the ra:fter is given a virtual rotation "Q" at

'the plaE1t'! (; 11inge (1) ~ Since hinge (2) is located in the center

of the SP'a.Li.,? the vertical proj eotlon of its movement during this

virtua.l diaturbance equals G(~) 0 From geometry, hinge (3) also

rotates thl~ough a virtual 'angle 'Q; whereas~ hinge (2) rotates

through an angle of 2Qo Equating the .internal and external work

associated with this virtual disturbance of the asaumeq mechanism

1 (Force) (Average Distance Moved) == l (~p) (Q)

WL(~) (~ LG) == Mp (Q + 20 + 40)

or

(B) Mechan~am (01

o Q 0 0 0 0 • 000 Q 0 0 • • 0 • 0 o (3)

.Assuming hinges at locations (2) and (3), the mechanism will

be that shown in F.igo 70 Bar (O~1~2) is constrained to rotation

about the base (O}o Bar (3~4) will rotate about point (4), and

Bar (2-3) will rotate about its instantaneous center(8), which



is denoted as loCo in the figure 0 This point is determined geo-

metrically in the same manner as .for a rfreal"

bL

aL

L

L(a+b)

systemo

Subjecting then, the right hand column to a virtual rotation

equal t"o Q about point (4), hinge (3) will move horizontally to

the right through a distance QL(a+b)~;~o For' this movement to be

possible Bar (2-3) must rotate about I.Oo through an angle equal

to

.a+b) C/t
Qr. Co == Q (-a (y::cz> • ....... • .... • .. 0 • .. 0 • .. • • (4)

..~," It should be noted that in simple plastic theory only first
order deformations are con~ideredo
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In like manner

$ 0 0 0 6 • 000 0 $ 0 0 0 • 0

-9

o 0 • (5)

The total rotation at each of the plastic hinges is then given by

the sum or the rotation at the two adjacent instantaneous centers (7).

pr

and

or

o • 0 0 • 0 000 • • . . • • 0 ( 6)

o c) 0 0 • 0 .. 0 0 • • • • • • • 0- (7)

For the s,tructure to be in equili-brium, the internal and ex

ternal work associated with this virtual displacement must be
wL)i

equalo The applied moment A~ (always assumed to do positive

work) rotate-s through the angle Goo Similarly, b~a (always

assumed to do negative work) rotates through the angle Q. The

external work is therefore



Internally, work is done at e'ach of' ~t;he de"eloped hinges,

therefore/)

. . [ a+b 1 a+ ol. b ~\4int :::: MpQ (--a) (y::o() + (a(l-O<}}J (9)

Equating these values or internal and external work (Eq 8 and

9) and simplifying gives

.:rP. = 1 [(l-~) i (1 - ~) (A+()() - D }-J
1.vL 2 2 . b.. • • • • • (1 0 )

.. 2 + a (1 + o()

Since it is the value of ~ which results in the greatest

value of Mp that is desired, the critical case will be determined

from the condition

o 0 0 0 • \) 0 0 \'II 0 c:) \'II 0 0 0 0 • • • 0 •. (11 )

Carrying out this operation, the rollowing is obtained:

b
for a > 0 0 • 0 e eo. • • • • • 0 0 • (,12)
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and

b
for - = 0a Cl

Cl c) I) 0

-11

o 0 • 0 (13)

failure ,'ju.ally occurring is there.fore comparatively remote.

The equations corresponding to each of the assumed failure

mechanisms are summarized in the Appendix and the corresponding

Design Curves are shown as Design Charts 1 thru 6.

30 Mechanisms that Result in a Sway to the Lower Side

The mechanisms that must be examined are those shown as (a),

(b) and (d) of Figo 5. It should be noted that Mechanisms (e)

would result in negative external work for this direction of

failure.

Equations correspond'ing to each of these assumed failure con-

figurations are given in the Appendixo The corresponding Design

Curves are shown as Design Charts 7 thru 12Q

40 Transition Between SwaX to the Higher Side and Sway to the
-Lower Side

Since the frame has a tendency to lean to the higher side

even under its own weight, it is desirable to determine the re~

lationship between A and D for which the transition between sway

to the higher versus swa.y to the lower side is imminent.
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It can be seen from the Design Curves of Mp / wL 2 (Design Charts

1 th1~u 6 and 7 thru 12) that the mechanisms which contain plastic

hinges in the rafters and at the top of the leeward columns are

the prevalent oneso R~calling that the solution which requires

the greatest Mp value is the one necessary for design, it is pos

s:l'bl,e to equ.ate the Mp/ wL 2 expres~ions .for cases (c) and (d) of

F1iga :5 lS1.:L,U. obtain the desired transi tion equations in terms of A;

D and b/ao If this equation can be solved for A (or D) in the

form

bA c f(D, i) · . . Co 0 (II 0 o 0 • • • • • • • • • • • (14)

then a set of ourves can be plotted from this expression which

will give the boundary between the ranges of application of the

two conditions. Actually, because of the cumbersomeness of the

expressions for ~ , these curves (given in Fig. 9) were defined

by a direct consideration of the Design Curves.

[[[[[[]]]]]]

( a)

-"1
v I

I
I
t
I
I

I ) IvI£tV.FTi:( J )ur- t
H_~ (b) - ~lZ

./
./

(j

I
1-
I

(

I
11.'11

IFIGo 81
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Physically, the problem is the following~ If moments are

acting at the base o~ the two columns, then keeping one constant

and increasing (or decreasing) the other, it should be possible

to have the frame sway from one side to the opposite (Fig. Ba and

80)0 There must therefore exist certain values of the moments

that will l~esult in a failure .. mode in which the columns remain

vertical ~nd for which hinges develop as shown in Fig. Sb. For

this situation a small change in either one o~ the moment values

(Mi or M2) will cause the structure to sway. In Fig. 9 are shown

the curves of A versus D for which this transition occurs. Above

each of the lines failure occurs by tilting to the higher side;

whereas, below the lines the structure tilts to the lower side.

It should be emphasized that in deriving the equations shown

in the Appendix it was assumed that the nondimensional loading

(moment) parameter HAu always did positive work during. the virtual

displacemento That is, when the frame tilts to the higher side,

frAn acts on the side of the shorter of the two columns. 'Wb.en the

structure til ts to the lower side, Hi\. ff is assumed to a.c t on the

side of the taller of the two columns 0 This'nptation and choice

of variables is consistent with that given in Refo 1 and 2.

5. Resign Curves for Single Span Structures

For ·a single span structure subjected to vertical load alone,

failure will always occur with the structure swaying to the higher

side o Furthermore, if this structure is to be SUbjected to ver

tical load plus the same wind from either side (note that D = 0),



-14

the case where the wind load is applied to the shorter side will

be qritical. From the p~eviausly defined Design Curves for mul

tiple span structures, it is therefore possible to present curves

£or the design of single span frameso These are shown as Design

Chart 130
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III. DESIGN EXAMPLES

Two design examples will be carried out to illustrate

the procedure 0

10 Mill Building

For first example, the three span symmetrical frame

loaded as shown in Figo 10 will be consideredo

w
IIIII1II11I t 111111111111111111111 fill' II (I,

~a = 1.00 £ = 0.33 b = 1.00a a

002wL

( 2)

L

L

O.2wL
>-.

(1)
kMp

L

L

£ "Ratios 0a 0;

Load Factors(8):

IFIGo 101

Spans (1) and (3 ) = 1.00

Span (2) = 0·33

Vertical L,oad only ::: 1. 88~~

Verti.cal Load plus Wind = 1·41":~

Design values for span (2); ieeo, the pinned-base, gable

~rame, were obtained from Ref. 2,

~ - - ~ - - ~ - ~ - ~ - ~ ~ ~ - - ~ ~ - ~ - - - - ~ - - - - ~ -
~} These values were chosen to be consistent with Ref. 1 and 2.

Values of 1.85 and 1.40 have been suggested as more desirab1e(9)
since they would not imply an accuracy of "three figures u.
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(A) With Vertical Load On~x

Consider first the structure subjected to vertical load

al one G The sub-structures that must be examined are those given

L

L

L

L

== 0

12 = 1.0a

w·

12. = 0.33a

12. =a

w
[[]]]IITJ]]

(2)

I Mp
I

I I (3)I I

2 ~2 s: -~
2

fk~ 9wL1 o AlwLl D wL 2 D wL2 A3
3 D wL3Dl- = 2- 2.-22 L =2L 2 2 L 2=4IJ 2 L =2L 3 2

~~4 Ie ;pel I_ 3 ~I

JFIG. 11[

The two outside columns and the rafters in the outside spans are

assumed to ha.ve 'fully plastic values equal to kMp while the
~~~

rafters in the center span have plastic values equal to Mp• As

to the size of the interior columns, tnese 'are presupposed to be

sufficiently large that hinges are forced to form in the rarters;

that iS j the size of these columns will be determined ~rom a

moment diagram after the failure configuration and corresponding

19ad have been ascertainedo
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Since the structure and loading are symmetrical about the

center line J the two interior columns will tend to spread equal

amounts and thus push the two side spans equally outward. For

the various sub~structures, the following are then known (due to

sylumetry, only half of the structure need be considered):

F01~ s parl (1) ; D = oJ (l 0 0 <:J 0 0 1$ 0 0 0- 0 0 0 .(15)

Fi01 ;.:f)-j,an (2) , the two base moments must be equal;

Between sp&ns (l) and (2)

or

Therefore J • • • 0 • & (16)

If Al is known, then corresponding values of Mp and kMp can

be deterruine d from the design charts. From Fig. 9 wi th D1 = 0,

Al must be greater than 00124 for the outside spans to tilt to

the lower sides o That 1s,

Q coo 000 00"0' 0000. o 0 (1 7)

Assuming values of A1 equal to or greater than 00124 will result

in possible designs for this given loading situa~iono Several

(Jf these are listed in Table I and each results in,_ a s,traight for-
Mp kl\1

ward determination of --~ and ~ valueso It should be noted
~J wL M

til t in Table I there has also been liste values of wJi and
kMp
-~ which include the load factor (lb88)$ For example, for the
wWL 2

firs't solution tabl.l.lated



or
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o () 0 f) 0 ~ 0 • • ltl • I) " 0 • • • 0 • (18)

TABLE I

l~Jvr '.',
"":d

't\.' '.1-1 1.

0 00 ()625 00124 "00031 000.517 0.250 o~8272 O~470 1·555
0 0.0702 0.20 oGOS Oa0506 0.2808 o. 809·2 0.528 1 ..520

..

0 0.0922 0·40 0.10 000472 0(13688 o. 7568 0.694 10423

0 O~1167 0060 0.15 000442 0·4668 007074 0.879 ,1·330

0 01t143 2 0080 0.20 0/)'·°412 005728 006595 10077 1.24°

+ These values determined rrom Rer. 2

... ··l
4 ~. ~
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(B) jfi~ .Both Winqe..&oad and Ver'tical Load Acting

-20

For the case where both vertical load and wind are assumed

aci~ing, the sub-structures and loading will be as shown in Figo 12.

Since the structure is sylnmetrical, only this one situation of

win~ loading need be considered.

ITilll1illD
.1l :=a' l() 0

002 wL

w

.£ :::: 0·33a

w

rrrrmm
12 == 1 0oa

L

(2)

0.2 wL J Mp
J

~ (1) I

kMp
I

2 ", -Pt
tr,- f-

wLl "- _I 2 ' ...... 2P)-l~ wL1 A wL22 Dl- 2:-2~ 2
L2=4LI LI=2L I ~... ,JlPZ

J:ilor span (1)

L

wL1:a
AI~ == (0. 2wL) (L)

or 1Al == O. 10] • • • · • • • • • (19)

B'etween spans (1) and (2)

wL ~ wL ~'Jl,,2+ =~+ + (O.2wL) (3L)

or I A2 == 0.25DI + 0.0751 0 • • • (20)
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Between spans (2) and (3)

wL2
2 WL3

2

D2~:: A3~

or ID2 = O. 25A31. . . . . . . ·(21)

For span (3)

I, D3 ::: 0 I · · · · · · 0 • • 0 (22)

Frorn 'tIle Design Charts for the "lean-=to" structures (Design

Charts 6a and 12a)9 it is noted that the smallest kMp value that

is possible occurs for a beam type ~ailureo Furthermore, for a

constant "A n (or ftD rt
) value and varying the o.ther moment para-

meter j the change in required fUlly plastic moment value is a con~

tinuous functiono This 8i tuation is also true" :for the pi"nned-basi 6

gable frame (where A = D gives the smallest value of Mp ) (2). For

this tfn1ill building" example; it is therefore possible to de.fine

two limiting cases; that is, a) where kMp has its smallest value,

and b) where Mp is as small as possible. These two situations

confine the range of possible solution.

a) Side spans smallest (kMp smallest)

From the governing design charts (Design Oharts 6a and 12a),

span (1)

000625 o & 0 0 0 0 0 0 ~ 0

span (3)

000" '" 0 0 •••
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span (2)

which gives (from the des ign eharts or Re.r'o 2)

Mp
wL /~' == o. 0763 • • • • · • • • • • • • (2.5)

Writing each of these in terms of the length parameter, L, and

introducing the load factor for combined wind and vertical loading

(load factor = 1041)

0·353 I
=: 1. 721 J

o • 0 • 0 0 • 0 0 0 0 (26)

"b) 2€?nter span smalles~ (Mp Sffi9.11est)

As was shown in Ref~ 2 j this requires that

A2 == D 2 } • • 0 0 0 0 • • • • • • • • • • • (7)

Hence

~~-+ o. 30 == ~l · 0 • • • 0 • • • • • • • • (28)

Furth~rmore~ the two outside spans must give equal values of kMp &



leJVIpFi)r tt18 eonditiorl A1 = Ool() a cur"ve of -2 versu.. s D1 CEln be
wLl'"

dr8.:wIl .B,S i~3 s:h01tv'rl b·y- trle solid C1J..rve of F'igQ 13 Q

()t) 1. C)~

1(1'11) I.:r 2
1(\}'Ul,

~!!E I<~

wL~~
..)

()

0·3 ... D
1

Noting from Eq 28 that D1 + 0.3 = A
3

, it is also possible to super

impose'on this diagram by displacing the coordinate system as

showri' :tn Figo 13 the sol'ution for the third spano This relation--

shill 11SS -been sho"'rn by t~he dasl1.ed line o

~rllle Eiolu:tic)l"l to this p:l:()b:lem (deter4mined by the intersection

of these two curves) lS

D1 ~ 0 0 O~37'

A3 - 00337

~-~
wLl~'a'

or

"1

~~ == 0.340 J
wL~

o (2 0 ., ~ p " "" '" (29)



For these values of A and D for the outside spans,

and

I
J • • • 0 • • • (30)

From RefG 2 the corresponding size of the center span rafters is

or 0·773 o • 0 • 0 • • • • 0 (31)

Including the load factor (1.41) in the determination of the sizes

of the various members which make up this structure', the design

values would be

kMp
(o. 3}+) (1. 41 ) 0·479- = =

,;L~Wv
• (32). . . . . . . .

.!L = (0.773) (1·41) = 1.090
w L 2

W

Between the two extreme conditions that were considered:

side spans as small as pas sible, .. 'and center span as small as pos

sible, a continuous function oJ: kMp / wL2 versus Mp / wL 2 can be de

fined. It could be defined by varying anyone of the moment para~

meters; ~or example, D1 •

In parts (A) and (B) of this first design exa~ple, two sets

of ffrequired n plastic mOl'nents were determinedD It is now necessary

to compare them and see which is actually the critical caS8 0
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Figttre 14~how$ the Mp ver:;ru.i kMp ·@urvea tOtl catJ,e A)," vert1e~,1

lQad onlY' I and ease B), vertieal load plu~ wind.

Vertieal l~ad only
(Load fieto~ ~ 1~B8'

Vertioal load plus wind
(Lo~d faeto~ ~ 1,41)

It o~~~~~~~~~~~~·"l~..:"....,..,.~....,._."-~....,, ,.~,..,...",--~......;,_.......~"j~"~~."..*.l~... __....,.~"..~;,....".",...,_~;",.-__ ~I,~~
O~3

The :st:ruetUJ-G in que~tion must p:r~rv1d~ the, $r~~t~~t Mpl.J;t;,d leMp

valu~, The~efQre the c~ee where vertie~l load alene 1a ~et1ng

will govern the design,

i

A~ is shown in Table I and FigUre 14, ther@ ~~~ m~ny P@~~

sible design solutiQn$ fQ~ a g:t Vtl~ ve:rtioal lo~d1ns,. Efi@h@~e

will result in a different chQice ot relative member ~11'.'
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Since economy of main member is usually desired, that particular

combination of Mp and kMp which results in the least total weight

of ma,terial will probably be the more desi:rable solution.

Assuming that a linear relationship exists between the fully

plastic moment value, Mp , and the unit weight, W; that is,

• • • 0 • 0 • • • • • • • • • • • • • • • (33)

• (35)

the total weight o~ the frame can be determined from~the relation-

ship

n n
TOTAL WEIGHT = 2. (WL i ) = C,L (MpiL i ) •••• (34)

1=1 1=1

Since it is only the relative total weight that is important in

determining the combination or member sizes that result in a

least weight solution,' a weight function in terms. of only Mpi and

L i can be used. n

i4 (WLi)
WEIGHT FUNCTION =?= C

Assuming that the interior columns will have the same fully plas

tic values, Mp , as the rafters in the interior span, the following

will~ be the weight function for this example:

In the nondimensional form, this would be
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The calculated results which correspond to the solutions tabulated'

in Table I are listed in Table II.

TABLE II

Mp

wL 2 wL 3

-',"" --"-=====lI=======I=======F=======I=::;::;======II

0025

002808

0.3688

Oo~_668

0.5728

008272

008092

o. 7568

067074

0.6595

10618

10893

20486

30147

3.862

80662

8·474
7~925

7·408

6.906

10.280

10·367

l,O·41l

10.555
10.768

The least weight solution is the one which results in the

smallest value or F/wL 3 and is therefore the first one listed in

the tableo The design values for Mp,and kMp which include the

load ractor of 1.88 are therefore

(E) P~asticity Check

and • • • • 0 .. 0 • • (38)

As was stated in the introduction, for a '''simple plastic

theory" solution to exist, it is neces~ary (and su.fficient) that

the following three conditions be met:

a) The structure must be in equilibrium,

b) IMI~ Mp , and

c) A mechanism must be .formedo
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In solving the preceding problem, mechanisms were assumed from

the out-set; thus condition three~was fulfilled. A virtual dis

placement procedure was used to determine the critical loads

corresponding to each o~ the assumed mechanisms. The first re~

~lirement is therefore also satisfied. As to the second necessary

condition~ all of the mechanisms that were considered possible

were examined and maximum required values of Mp were determined.

Therefore, this condition is also fulfilled providing that all

possible modes were considered. To be absolutely sure that this

was the case a moment diagram should be drawn. If it nowhere ex

ceeds the fully plastic moment or the section, then the solution

is the correct one. (This moment diagram would also be useful

in checking the lateral bracing of the main frame, a condition

that is not considered in this report.)

Since the structure is statically determinate at failure,

the moment diagram can be readily determinedo The moment diagram

corresponding to the least weight design is shown as Fig. 15a.

Figure 15b is the moment diagram for one of the designs where the

structure was subject to vertical load plus wind' (that case corre-

sponding to the smallest possible center span).
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O.98lVlp
( a)

0·455

Vertical Load Only
Leastvveight Solution

. 196Mp

(b)

0( =0. 440

Vertical Load Plus 'Wind Load'
Genter Span Smallest

lYlp
wL?a = 0.8272

kMp _
wL2 ...- 0.25°

kMp = O·3 02Mp

~-wL2 - 0·773

kMp
wL 2 = 0·340

O.44Mp
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2. "Saw-Tooth tr Building

-30

As the second design example consider the three span structure

shown in Fig. 16a. For this problem, three loading conditions

must be examined; A) Vertical load alone (Fig. 16b), B) Vertical

load plus wind from the left (Figo 160) and G) Vertical load plus

wind frolll the right (Fig. 16d).

a
b :=

a

(1)
MP

0.6 b = 0.6
a

0.6L

L

-0-

I I I I I I I I II ! I I II I I I I !Ii J I I II I I I II I I i I I! ! ! I ,. , ,,' , , ! I I ") I I I Ii' I

(b)
1-

(0)

IFIG. 161

(d)

A) Vertical Load Alone~sting

For the case of just vertical load acting, the sub-structureSi;'

and loadin03 that must be considered are those shown in Fig_ 17-



w '
(]J III1 J J I [I 11111 III II II

a
D wLi

1..........
2

b
- =a 0.6 b- = 0.6a.

O.6L

L

IFIG. 171

The known "outs.ide" conditions are

• • 0 • • • • • • • • • • • •

Sinoe the span lengths are equal, at ~he interior columns

.0000 • q • • • • • • • • • • • ·(4°)
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From -the Design Curve for ~ = o. 6 {Design Chart 4a}, it is

noted' that for spans .. (1) and (3) to have equal Mp values it is

required that (see Fig. 18)

• • • • • • • • • • • • • • • • • • • (41,)

Thus,

. ... .. • • • • • • • • ~ • • • • • (42)

Span (1), D1 = 0

Beam Failure

0.1 0.2 0.3
o

l
0.10

Mp

wL 2

0.05
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The resulting solution is then

Mp
~ = 0.0692,

1

or in terms or the length parameter, L,

-33·

0.2768 • • • • • • • • • • .. • • • • • •• (43)

B) Vertical Load Plus Wind from the Left

w
1IIIllllJID

~ = 0.6

w
IIII i IIIIIII

ba == 0.6

, (3)

" Mp
I~ " Mp

~
( - -b-J ( - - ~\
\ _/ "- I

""- ./ 2

D wL2 A wL2 " 2 wL3D wL3
2~ 2---- A3-

2 3 2 2 .

I~ L~2L·1
1
4 13=2L 1

IFIG. 191

Replacing the uniformly distributed horizontal load act~ng on

the left hand structure by its equivalent~~ concentrate-d load, PI'
wL1

2

and in turn replacing this by its moment Dl~ , the loading

- - - - - - - - - - - - ~ - - - - - - - - - - - - - - . - - - - -
~~ Equivalent meaning--having the same overturning moment about the

base of the structure·.
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parameter, D1 , becomes

or ID1 == 0 •3841 • . . . . . . • .4

Other knowxl eondi tiona are

r~== D2 1

r-A2 ==. D.1J

and IA3 c· 0 I
o .., 0 • • • • • • • • • • • • • • • • (45)

As 'to t,he dGt:el"lm1na.tion of to which side of the structure

sway wil~l OCC11r and thereby the designation of the "A"" and "D"

monle11 t tt;;l~nlS, .from Fig. 9 i t is note d that if spans (1) and (3)

sway to the left, then

This would require that tor the center span

• • • • • • • • • • • • (46)

However f'or

span (2) also sways to the~lett. Hence the tot~l structure must

sway to the left and the choice of the A and D variables will be

as shown in Figo 190 Tbe Design Curves shown as Design Chart 4a

will therefore be used for this designo
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Assuming various values of D3 , the following table 'of pos

sible solutions can be defined.

TABLE III

(1) ( 2) (3) -(4) (5) ( 6)

Mp
?

D
3

= A2
-A3 wL 2 D2(~A,1} D1 A1

0 0.076 0.0625 0.1,96 0.384 0.193

0.075 0.0626
,1- - - - -t

0·384
r-----,

0 L-0__~~Lt- J L~:.1_9~J
-'

0 0.'050 0.0648 0.126 0·384 ,·0. 208

0 0 0.0692 0 0·384 0.240

Values of Al as shown in column (6), are determ:i,.ned from a knowl

edge of Mp/ wL2 (column 3) and Dl (column 5).l Comparing columns

(4) and (6), it is noted that A1 = D2 for

rvIp
= 0.0626wL1 2

or in terms of the length parameter L,

t) • g •• I) • 0' • It. o •••

This then is the solution for this loading condition. Including

the load factor of 1.41

o 6 ~ ~ Q • • • • • • . . • • • • (48)
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C) Vertical Load Plus Wind from the Right

w
I I I I I I I'll I

b = 0.6
a

w
II I I I I I I I I II

ba == 0.6

w
II I II II II1II

ba = 0.6

I
I

-!~
.-/

.;
{- -
'--

D w13 A
2
w13 D w1 2

2 I... 1z=21 ..I 2 31 13=21 ....1

IFIG. 201

The known conditions are

or

Also,

IA3 == 0. 3841

ID] == A2 1

ID2 = Al I
ill " (I " " • • •••••••••• (49)

For this problem there is no question but ·~-'that the :frame will tilt

to the left. A table Si111ilar to that given as Table III can there-

fore be worked out for this loading condition. It is given as,

Table IV.
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TABLE IV

-37

(1) ( 2) (3) (4) (5) ( 6)

11'1 ?

A3
D
3

=: A2 WLiJ:I D2(~Al) Al Dl

00384 0.20 0.113 2 ( - ) 0.260 0

00384 0·30 001008 0.173 0.195 <, a

0·384
I

00309 0.1000 0.190 0.190 0

00384 0.'40 0.0902 0·425 0.136 0

,From this tabulation it is noted that Al = D2 = 0.190 for

MP = 0.1000. Thererore, the solution to the problem is
wL:LU

Mp
wL1la =: 0.1000

or

Mp
- - 0·4000wL 2 -

. . . • • • • 0 0 e • • • • 41 • .. ( 50)

Including the load factor of 1.41

• 0 0 • • • • • • • • • • • • • • • • (51)

D) Comparison of Solutions Including Load F1actors

In summary, the solutions to the design of this structure

for each of the condi tions of loading are as f'ollows:

IvIp
Case A) wwL~ =: 0·520 (Load Factor = 1.88)

Mp
0.353,Case B) ~-

w~~ -

Case C)
Mp

00564---- -Wv1'2 -

(Load Factor = 1.41,)

(Load Factor = 1.41)

• •••• 0 .(52)
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The critical condition of loading is the one that requires the

most of. the structure and is therefore case (0); vertical load

plus wind from the righto

E) Plasticity Check

As s~udirlg that the solution defined above (that is-,

Mp/ wL 2 = 0.564) is the correct soluti~n; the locations of the de

veloped plastic hinges in each of the rafters can be determined

rrom Desi~n Chart 4bo They are found to be equal to

CX l =0<2 =0<3 = 0.367 .0. ~ 0 • • • • . . . . . • (53)

The corresponding moment diagram is given in Fig. 21. Thus the

correctness of the solution 1s verifiedo

ITII11 I I I I I I I I I I CD I I I , I I .1 I I J I I I I I 11 tIl I I I I J 'i I , I J I f.

~ = 0·367<X2 =. 0·367,.<1 1 :: 0·367

Moment Diagram ror Critical Loa~ing

Design E:x ample * 2
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IV. SUMMARY

In this paper a method has been presented for the plastic

design of ttlean-to ff type rigid frames. Both single and multiple

span structures were considered and de"'sign charts were developed

to facilitate solution.

When designing such a structure, it is first necess~ry to

determine the direction in which the structure will sway at fail

ure. Figure 9 was presented to aid in this selection. Having

determined this, it is then possible to proceed with the design

in the same manner as in Ref. 2.

For each of the design.examples, a mill buildi~g and a

"saw-tooth" type rrnlltiple span frame, the full range of possible

design situations (i.e., relative member sizes) were considered.

That particular solution which corresponds to the least total

weight of structure was then determined.
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VI. NOMENCLATURE

a

b

k

i, n

w

H

Mp

p

v

w
" Wext

non~dimensional parameter, relating the height ot
the shorter column to the span length

non~dimensional parameter, relating the rise of
rafter to the span length

function value

non-dimensional parameter" relating the fully plastic
moment values of two spans,

numbers denoting members

distributed vertical load per unit length

anticipated distributed vertical load per unit length

non-dimensional parameter, relat"ing the horizontal
force acting on a structure (or the-hypothetical
"overturning tf moment of one part of a. structure
on the adjacent part) to the vertical loads. It
is assumed that nAn results in positive work
being done as the structure fails.

constant

non-dimensional parameter, relatin§ the horizontal
resisting force or hypothetical over-turningn

moment acting on a structure to its vertical
loadingo It is assumed that "D" results in
negative work being done as the structure fails.

horizontal reaction

·span le!}gth; length measurement

bending moment

fully plastic moment value

concentrated load

vertical reaction

weight per unit length o~ a structural member

external work associated with a virtual displacement
of an assumed mechanism
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VIo Nomenclature (contd)

internal work associated with a vil~tual displacement
of an assumed mechanism

non~dimensional parameters, defining the distance to
the plastic hinge in the rafter of a structure

rlon... dimensional pararneter, relating the distributed
horizontal load per unit length to the distributed
vertical load per unit length

virtual rotations

weight function

non~dimensional parameter, relating the horizontal
force or Ilypothetical f1over-turningn monlent acting
on a structure to its vertical loading
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VIII~ APPENDIX: SU:MMARY OF IIvTI?ORTANT EQUATIONS

w
( , II' I [ 1111

AWL~
.' 2

I 3bLI
I
I aL

-0-) wL 2 -

7
L

.~ = 2~~] b
• • • for a > 0

2.

o • • • 0 • • 0 • • .• ~ • ~ • • •

b
• for a = 0

w
111\llliLj

bL

aL

[A(l+~)-DJo .aw

2+8:
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A~
2

Mp _
wL-la - o. 0625

4·
w

I I I I I I II III

L

2 [L

c:J.. ~ 1- ~
b

· . . . . . . . for a > 0

b
• • • • • • • • • .~or a = 0
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IX. DESIGN CHARTS
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!Chart la[
.F;l:G. 22 - DESIGN CURVES FOR· PINNED-BASE, LEAN-TO

FRAMES SWAYING TO THE HIGHER SIDE .

. DETERMINATION OF MEMBER SIZE
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FIG. 23 ~ DESIGN CURVES FO~~PINNED-BASE, LEAN-TO
FRAME-SSWAYING TO THE HIGHER SIDE

DETERIVIINATION OF MEMBER SIZE
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FIG. 24 - DESIGN C·URVES FOR PINNEDOOgBASE, LEAN.-TO
FRAMES SWAYING TO THE HIGHER SIDE

DETERMINATION OF MEl~ER SIZE
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FIGQ 25 t=> DESIGN CURVES FOR P-INNED-BASE, LEAN--TO
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DETERMINATION OF MEMBER SIZE
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FIG~ 26 -. DESIGN CURVES FO~ PINNED~BASEJ LEAN-TO
FRAIvIES SWAYING 'TO THE HIGHER SIDE

DETERMINATION OF MEMBER SIZE
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FIG. 27 ~ DESIGN CURVES FOR PINNED~BASE, LEAN~TO

FRM/fES S'WAYING TO TIiE HIGHER SIDE
DETERlYIINATION OF ME:MBER SIZE
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!Chart 7a l
FIG. 28 ~ DESIGN CURVES FOR PINNED~BASE, LEAN~TO

FRAMES SWAYING TO THE LOWER SIDE

DETERMINATION OF 1'1EMBER SI'ZE
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FIGo 29 - DESIGN CURVES FOR PINNED~BASE, LEAN~TO

FRAMES ~SWAYING TO THE LOWER SIDE

DETEffiYIINATI. ON OF ME:MBER SIZE
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FIG. 31 ... DESIGN CURVES FOJR PINNED-BASE"LEAN-TO
FRAMES SWAYING TO THE LOWER SIDE

DETERMINATION OF :MEMBER SIZE
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FIGo 36 =- DESIGN CURVES FOR PII~NED=BASE, LEAN~TO

FRAMES S11fAYING TO THE HIGHER SIDE
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LOCATION OF PLASTIC HINGE



005
005

04

O<t4 00

00

ex
01

003 0

f
D

0.2 w
I I I I I I I I I I I

0.1

o
a

A
ICha:r't .7bl

FIGo 41 -= DESIGN CURVES FOR PINNED~BASE, LEAN-=TO
FJRAMES SWAYING TO THE LOWER SIDE
LOCATION OF PLASTIC HINGE



205~61 -68

0.1

o

w L

0.2

0.1

o
o

II I I I I I I I I I

- ~b1

I I I IaL
w1 2 ~C~~ ) w1 2

A'2 1--1 JYT

0·3
I • " A,

lChart '8bl

FIG~ 42 -- DESIGN CURVES FOR PINNED-.BASE, LEAN~TO
FRAMES SWAYING TO THE L OWER SIDE I, .

LOCATION OF PLASTIC HINGE

0.6



205061

0·4

o o

w
I; I I I I I I I I I I

=tbL
t aL

~W~~ (t~{-J)DW~2-L

IChart·9bl
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