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SYNOPSIS

Present day analysis and design or continuous

structures as dei:ined by speci.fications and design codes

are based on an assumed elastic behavior o.f the structure.

The criterion of the design in most cases is the attainment

of an allowable extreme fiber stress o While a design that

results from using such a procedure will be sare~ the actual

degree of safety is unknown and may vary between extreme

limits"

During the past several year,s a different type of

anal-y:sis' based on the ultimate strength of a structure as a

whole has been developedo This new procedure known as

ffplastic analysis" or "plastic design" gives a clearer in­

sight into the actual strength behavior of structures and

there~ore promises a more economic usage or materials o It

should also be noted that the procedure is, rational and has

proven to be extremely time savingo

After reviewing the basic assumptions of plastic

analysis p this diss'erta.tion presents a method whereby ex­

tremely complex .multiple span frames can be readily designe~ ~

Several examples are carried auto The problem of economy in

main member is also discussed and procedures are presented

whereby the design or a "least weight" structure can be

approached o



rIo INTRODUCTION
~

1 0 Historical Review

In 1917 in his inaugural address~to at the University

of Delft in Hollai:1d,Kist raised the question-s'hould design

be based on an arbitrary allowable stress value or, should

it rather be based on tne actual ultimate carrying capacity
, (1 ).~~~~

o;C' a structure Q , ,It was realized even then that struc-

tures possessed reserves in strengths beyond that predicted

.on the basis of initial yield of the most highly strained

ribera within the structure. Kazinczy(2) had in 1914 car­

ried out a series of· tests on indeterminate beams ahd had

verified that such· members possess a large reserv~ in

'strength beyond the elastic limito FUrther, he had observed

that at near ultimate loads what might be thought of as

tryield~hingesn developed at sections of maximum moment with­

in the girder o That is, the beam would rotate at these

sections while maintaining a relatively constant value o~

higl?- momento It is with the real·ization o.f thes'e' two con­

ceptsthat nplas'tic Analysis ft came into being~

The early developments of this method or structural

analysis were due primarily to the efforts of Gr~ning,

- " - ~ ~ - ~ - - ~ ~ - - - ~ - - - - ~ ~ ~ - - - - - -
":~ffLeidt een sterktebereekening, die vi tgaat van de even~

redigheid van kracht en vormerandering, tot een golde con­
structie van ijzeren bruggen en gebouwen?", Inaugural
Dissertation or N.C. Kist, Polytechnic Institute, Delft
(1917)

"~'"{~These numbers correspond to references tabulated at the
end of the report o They are listed in order or a.ppearance lt



Maier-L,iebni tz 9 Girkmann and Bleich in Europe o It should be

pointed aut, however- J that during this period. few ,if any

structures were designed using such an analysiS Q The con-

cern over the problem of variable repeat-ed loading and the

lack of full scale confirmator.y tests resul ted in .a feel of

insecurity on the part of the designer when using such a

procedure o

In 1936, however, the problem was revitalized. This

was due almost entirely to the efforts of JoFo Baker in Eng-

land who initiated a research investigation into the ulti-

mate strength behavior Oil steel structures first at Bristol

University and la.ter (1943) at Cambridge University. This

study.? which is still underway(3), has resulted in the :form­

ulation of a Plastic Design Specification (or as ~it is term~

ed in England, the "Collapse Method of Desigrl'(4)) 0 Many

structures have been designed using this procedure o

Several years after Baker's group started work in

England Van den Broek published his paper on "Limit Designtl(.5~

This work again focused the attention of the profession on

the question, what should be the basis for designo In 1946

a research investigation was started at Brown University by

Prager and his colleagues~ Their efforts were in general

directed toward the establishment of the mathematical laws

and proofs governing plastic analysiso This work has now

adv'anced to the stage where it is felt that at least theo­

retically plastic analysis solutions to extremely complex

problems can be obtained.
-3-



At the 'same time that this work at Brown was under­

. taken a study of the behavior of Welded Con'tinuous Frames

and Their Components was initiated at :Lehigh University•. A~.

large 'part o~ this work has also been concerned with the

general problem of plastic analysis and designQ Many fUll

size structures have been tested as part of this studyo

-4-



~2. Behavior .2! Structures Ab9~ ~ Elastic Limit

To understand the behavior of structures or struct~

ural components it is necessary that attention first or all

be directed toward a considerati.on ofth~' basic bending

stiffness relationships of structural members G In the

elastic range it is known that a linear' correspondence exists

between ,a.pplied bending momen·ts and resulting curvature~o

~e equation relating these quantities 1s

d :::: M!EI":r (1 )~ 0 060 000 0 0 0 0 • 0 0 o. GOO 0 0 0 0 .6& a •

w~ere ¢ is the rotation per unit length (toe. curvature),

M is the bending moment at the section in question, E is

Young's Modulus of Elasticity 8l1d I is the moment of in~

ertia of the cross-section about an axis perpendicular to

the plane of the applied bending moments o

In' deri·ving the relationship between moment and

curvature above the elastic limit 9 it is necessary that

certain as~umpt1ons be made. These are as follows:

1. Plane sections remain
cr~ --- ~ r----~--

plane; that iS j bending

strains a.re proportipna,l

to the distance from the

neutra1 'ax is " IFIGURE 11
{~See any standard text on Strength of Materials o

c=5~



2 a . The stres,sgnstr~!~n r"elationship is as shown in

Figure (1)0 (It is further assumed that the

behavior in tension is the s~e as that in

compression) 0

30 Equilibrium exists between appli~d loads and

moments and the resulting stress distribution

patterno That is,

P == SOdA
A

M== fOYdA
A

4. Deformations are small such tha't

tan¢ = ¢

Based on these assumptions. 1 t can be show"n (6),( 7) that the

moment-curvature relationship for a.wide flange type of

cross~section is in general as' shown in Figure 2b o

stress Distributions

r
-~

._~r ..·~.~
Mp --------------- -_.-

My ----­ ,
I
I
I
I
I

I
I

M

I \, (

~ \--91
I \
I \

M{b)M -I­
~

( a)

(b)

IFIGURE 21



It should be noted that as the moment is increased beyond

the initial yield moment~ MY9 curvature increases at an ever

increasing rate app~oach~ng Mp~ the full plastic moment

value~ asymptoticallYe This value of moment is approached

rapidly.

The magni tude o.f the full

~~astic moment is determined from

an integration or t~e stress dis~

tribution pattern spawn in Figure

3- Even though the value of' cur'v&-­

ture indicated by this diagram

could never pe realized J the error

in moment value resulting rrom the

assumption of this stress distribu-

tion vers,us a llmore realistj.. c" one

is extremely small.

IFIGURE 31

As in the elastic case where it is convenient to ex-

press the yield moment as Say (whe~e S is the section mod­

ulus of the section in question) 9 the full plastic moment

value Mp can be exp~essed as

Mp = Zcry I' .. ~ ? • " .. " " ~ ~," .. .. (3)

where Z is the plastic modulus. Plastic -modulutr:v',alues. ror

standard rolled shapes are tabulat~d in Appendix D of this

paper according to decending values or Z. The most econ-

omical (ieee least~weight) sections are at the head of

each grouping.



Having this relationship between moment and curva-

ture in mind 9 consider, now the behavior o~ a simply support­

ed beam loaded as shown in Figure 4a,

~

(0) Load-De~lection Curve

pu·' ------ ----- --..;..;...-
. ('

p

(a) Loading Condition

(b) Moment Diagram

IFIGURE 41

Moment diagrams corresponding to two values o~ the load P

are given in Figure 4b. In Figure 4c is shown a load versus

centerline derlection plot ~or the beama As the load is

increased fr-om zero there is first obs.erved a linear range

of P versus A &, This would correspond to the linear range

of M versus ¢ or Figure 2(b). As moment at the centerline

-8-



\.

section exceeds the value My~ however, the relative stiff­

ness (i.e. the increased moment associated with· a Unit in­

crease in curvature) is markedly reducede This results in

a re~atively weaker member ror an increase in load' and

thererore the beam deflect~ at a greater rate. ,As the load

P approaches its ma:ximum value Pu (which corresponds to Mp

at: the centerline section) the beam. reacts ,'to increa.ses in

loa4 as ir ,a hinge (Uplastic hinge U ) were located at its

point or mB.;Kimum moment (see Figure 5).

ru

Q)A 1~ AQ)

~
Mp Mp

~IL

.IFIGURE? I

It is therefore seen that railure" corresponds to 'the

de-velopment or a ,kinem,atic mechanism, real hinges being

located at sections. (Y and Q) and a plastic hinge at

section. ® «)

The. b-ehavior of: a redundant structure is 'quite

di'.f.ferent. Consider ~or eJtample the same beam but ~ith .one

end fixed (see Figure 6a).



p

L
p

'(a) Loading' Condftion

\
\ /'
y/

(b); Moment' Diagram
~

(c) Dia.grammatic~L''tj';ad'·Deflection
Curve

IcFIGUR~

As the load is increased from zero there is f1~st observed

the linear range or P versus ~ the same as in the case or
the. simple beamt:' Also!J as the load continue's to increase

yielding- occurs at the fixed end.., This, however 9 does not

re~ult in the failure of' the beamo In this case,after Mp

is reached at the fixed end, ·the beam respo:qds to further

inc~eases in load as i~ it were a simple beam subjected to

an end moment<) In other words 9 a redistribution of moments

-.lOc=



p

L

'(a) Loading' Condftion

\
\ ./
v""

(b)' Moment: Diagram

p

P-y' _

~

(c) Dia.grammatic '~LtYa.d" Deflection
Curve

I ,FIGURE}]

As the load is increased from zero there is first observed

the linear range o'r P versus 8 the same as in the case ot:

the.simple bearn t7 Also!} as the load continues to increa.se

yielding- occurs at the fixed end o This p however !I does not

re-sult in the failure o.f the bearno In this case,after Mp

is reached at the fixed end~ the beam respo~ds to further

inc~eases in load as if it were a simple beam subjected to

an end moment~ In other words 9 a redis,tribution of moments

tEJIOc:u



will be a.ssociated 1Arith an ine:t?eased load" Continuing t,o

increase the load still more initial yield occurs at the

cen"terline section and the load deflection curve again

changes slope o, As Mp is developed at this section the load

deflection curve becomes horizonta1~ or in other words the

maximum load is realized. Here again the condition of

failure is the development or a mechanism 9 a real hinge

existing at section G) and two plastic ones developing at

sections G) and ® 0

Other similar examples could be citedQ It is felt,

however, that these are sufficient to illustrate the basic

behavior<l

For completenesS J it should be pointed out that the

~ollowing assumptions common to simple plastic theory types

of solutions have been made:

1$ No instability will occur prior to the

attainment o~ the full plastic loado

2.. The influence o:f normal and shearing

forces on the plastic moment is neg~

lected.

3Q Deformations are small such that the

equilibrium equations can' be formulated

for the undeformed structure o

Other assumptions necessary ror a simple plastic

the"ory solution tha,t will "be made in the remainder o:r .

this paper are:



4~ Connec·tions are continuous· such that the

plas'tic moment Mp can be transmitted.

50 The loading is proportional (i.e G the

ratios between the various loads re~

mains constant during loading).

3. Necessary an~ Sufficient Conditi~ for ~ Plastic

Analysis Solution (3)

It is noted that in each case discussed in the pre-

ceding section ~ailure corresponded to the development o~ a

me chanism.' That is f) the structure could deform wi th a zero

increase in applied loads e Also observed was the condition

that the maximum moment to which -a member can be subjected

is its full plastic moment. Since a structure must at all

times be i.n equilibrium with the loading to which it is

subjected, this constitutes a third necessary condition

for the analysis. The conditions that must be fulrilled

then for the attainment of a plastic analysis solution are

according to the simple plastic theory as follows(3):

20 the structure must be in ~8uilibrium

with the applied loads 9

2 0 a Mechanism must be ~ormed» and

3$ ~owhere will the moment value exceed

the full plastic moment of the sect;ion

in que tioniee =Ap ! A f AE)o



~or comparison p in an elastic analysis solution the con-

ditions required a;re as taI.lows ~

1$ the structure must be in ~uilibriumwith

the applied loads j

2. there must be continllit~ at the joints, and

3·0' nowhere will the stress exceed the initial

yield stresse (0 ~ Oy)e

The correspondence between the necessary and sufficient

conditions or an elastic analysis and a plastic one is

therefore as shown in Table Ie (9)

\ ELASTIC ANALYSIS PLASTIC ANALYSIS

10 Equilibrium 1$ Equ.ilibrium

2. Continuity at 2~ Development of
Joints Mechanism

3: -'0y L a ~ + cry 3Q ...Mp
L M ~+ Mpt,:>;;:l

4- Method of Solution

.Several a.pproa.ches or procedures could be used to

arrive at a solution that will satisfy these conditions.

The more noteworthy among these are (a) the "Equilibrium"

Method, (b) the Mechanism Method,? (c) the Method of In-­

equalities ~ and (d) the Moment Balancing Method,

(a) tlEquilibrium Method 1t(4) I) (10)

For a continuous beam problem it is possible to

visualize from the outset the general pattern that the

-13-



ultimate strength moment diagram must take e A plastic

analysis solution could therefore be obtained by adjusting

the magnitudes of the maximum moment values o.f this diagram

always keeping M f Mp .until a sufficient number of plastic

hinges had been developed to reduce the structure to a

mechanismo This method is a simple and relatively rast

means of solving contin~uous beam problems. It can also be

effectively us·ed in the solution -of certain types of :frame

problems 1rtThere~, -only one or two redundants e.xist. The

solution to more complex problems by this method~ however,

becomes extremely complicatedQ

(b) Mechanism Meth6d(9)~(ll)

The mechanism method approaches the problem from an

entirely different point of view e Since the structure will

fail at its first opportunitYg a systematic investigation

of each of the possible failure configurations and a deter-

mination o~ the corresponding critical loads will enable

one to select the lowest or these and tbereby the correct

solution. Since a procedure of this type gives an upper
(11) .

bound to the carrying capacity of the structure !) ~ t is

necessary to determine a lower bound in order that one be

certain of the correctness of the assumed answer o This is

accomplished by the establishment of the moment diagram

(Plasticity check)G I~ it nowhere exceeds Mp the assumed

solution is the correct', on.e p each or the three necessary

conditions being fulfilled.



....

This type of procedure is very general and lends

itself readily to the solution of extremely complicated

problems o It will be used in the development of the solu~

tion to the multi~span problem to be discussed latero

(c) Method of' Inequalities (12)

Since it is known that a member can sustain a moment

equal to or less than its full plastic value~ a set o~

linear inequali-ties could be written for each of' the points

of possible plastic hinge formation within the structure e

By combining and eliminating these inequalities -the corre ct

solution can be obtained4 While this type of procedure is

elegant s a computer is recommended for the solution of the

more· complex problems.

(d) Moment Ba1encing(13) J (14)

As in the case o~ elastic design a successive relaxa-

tion or moment values could be carried out for plastic de­

sign taking into account the plasticity conditiono For

analysis or design by this method a much greater degre.e of

freedom is allowed the designer than in the elastic case o

t" (~

The mechanism m~thod will be used in the development

of the solution to the multi~span rigid frame problema It

will be discussed more in detail in -the fal'lowing sec'tione



·5-. !:iechanism Method 2f Soluti0a!!

Since the m~chan.ism method aBSUll1es a possible' railure

con.f:l·guration .from the outset f) on.e of the thl"ee necessary

conditions for a pl,as·tic analysis solution is automa.tically

fulfilJ..ed. If in addi:tion a virtual displ,acement type of

procedure is used to rel~ate t-;he eAternal loads to the in~

·ternal stiffuesses of the val~j~ous members:9 then equilibrium

is also satisfied1~G As l!\TaS pointed out earlier the only

remaining condition to be fulfilled is the plasticity one

( L L )1$8. ~Mp ~ M- ~ Mp 0

For illustration of the method of solution consider

the ~ixed base gable frame loaded as shown in Figure 7.

As in all solutions based on the simple plastic theory' loads

are a.ssumed. to be proportionalfi; the influence of shear and

normal ~orce are neglected~ deformations are small such

that equilibr'ium can. be formul.ated in the undeformed

positi0n,9 the connection.s are such tha:t .full moment trans.fer

can occur and the structure will not become unstable prior

to the attainment of the full pla.stic load.,

First of all, the locations of all points or possible

plastic hinge formation must be ascertainede Since no loads

~rlt should be pointed out that such a procedure assmnes that
the structure and the applied loads are in equilibrium at
the instant that a mechanism is formed.' Therefore, the in­
crease in internal work associated with the virtual dis­
placement must eq~al the corresponding external worko More-
over~ the increase in internal work will take place only at
points of plastic hinge formation since only at these
points will increased rotations occur.



are applied to the columns

along their lengths p shear

in these members will be

constant~ Therefore~

maximum moments can occur

only at the ends o This

gives four possible points

of plastic hinge formation o

Under each of the vertical

loads, P9:" shear can also be

equal to zero o These then

are also points of possible

tthiJ;lge" development o Since

~ ~
p p

@

®@M @ -rL
p ">- p ®t

CD Mp Mp ~ L

I, L{L ~I

I FIGUR1f1J

the structure abruptly changes shape at the peak of the

rafter's this presents another possibilityo The points 'of

possible plastic hinge formation then are as numbered CD
through, (j) in Figure 7.

The next step is to define all of the possible comb­

inations of these Uhinges" that result in failure configura...

tiona (1 0 6 Q mechanisms) 0 As an aid in determining these

failure forms~ a rule has been ~ormulated (see Hero 9 or 11)

for the definition o~ the number of independent condition

required to solve a given problemG These independent con­

ditions correspond to the independent failure mechanism

that must be sought" The rule states (11) that if' N represents

the number of possible plastic hinges and X the number or



redundancies of the structure 9

then (N..",X) independent me.£h--

anisms will be needed to solve

the probleme

For the problem under

consideration there are 7

points o~ possible plastic

hinge formation and the

structure is 3 times re~

dundant o Therefore

7 = n1.1lnber of possibl,e hinges

--3. =: redundancy

4 ~ number of independent

mechanisms

Obviously~ each of the rafters

could fail as a beam as shown

in Figures 8a and Bb o The roof

part of the structure could re~

(a) Beam

(b) Beam Mechanism
L~ , .

."."""

~ (2)
leD

(d) Gable Mechanism

J FIGURE 8 [

main rigid in itself and the whole could side sway as shown

in,Figure Bc o The fourth chosen independent type of failure

occurs when t;he left hand column remains vertical 'and the

raflters spread as ,shown in Figure 8d,9 (i o eo a ,gable mechanism) e

Not only must these failure configurations be in-

vestigated but also all combinations' of themo For e~ample,

beam mechanism (a) could be combined with gable mechanism~

(d) and result in a fl new " mechanism having plastic hinges



at locations ®» G) »CD and (J) 0

A maj ority o.f the. pos~,iblit··COll1bc=,

·;m.at10~~. uo -Sh9WD. inr) Figure 9 0

The ne~t step in the

solution of the problem by the

mechanism method is the deter~

minat1on9 in terms of ,the given

loadss> of t,he critical Mp value

corresponding to each mechanismo

Beam Mechanism (a)

As ·shown· in Figure 10»

if the link ® = Q) of the

rafter ®~,® is subjected to

a virtual rotation of Q about

point ®» then point G) will

move to the rig~t and down

through a vertical distance GL~

IFIGURE 9 t

Since the horizontal pro-

jection of the link Q) = ® is also L 9 the linkage G) - ®
will also rotate through a virtual angle Q with respect to

its original position~ The total change in angle or the

member at plastic hinge Q) is best determined from a con­

siderat-1on of Figure 10 (b) 9 As seen$) the member rotates,.

t,hrough an angle o:f g on each side. Theref'ore ~ the total

angle change equals 2GE/ Equating the internal and external



works associated with this

virtual derormation condi~

tion gives

Wint = Wext

MpG + Mp(2G) + MpG = P(GL)
'--y---I '--~ '--~

@@ @G) @@

or-

p

Mp = Eft ....... ".......... """ G .. • (4)

Be~ mechanism (b) or Figure 8

will resul t in the s-arne value

---

For the p'anel mechanism

(see Figure 11) it has been

assumed that a v~rtual rotation

Q o'ccurs in each of the colunms o

L

L

The corresponding angular re~

lationships are as showno There-

fore,
IFIGURE III

or
M =p

PL
4 • .• " 0 fI If) 0 .. 8._ Ql • • G .. e • -0 0 • - '0 0 -0 0 t!I a G • 0 0 f) 1) 0 0 0 G 4J • (.5)

Whereas the inter-relationship between the various

rotations at each of the plastic hinges within the structure

have been easy to determine thus far, this will not nec­

'essarily be the case for the remaining failure modes.

-20-



Consider the gable mechanism shown in Figure 12ao

L

L

p

projection of the movement of

point Qi) will be one-half

that at point @ or ~QL

as shown~ In so doing

If it is assumed that the right hand column rotates through

the virtual angle G, then point QD will move horizontally

to the right a distance of QL o Because or the symmetric

type of deformation pattern; that is, rafter ~-~ rotates

through the same angle as rafter

to QL. This requires

(s'ee Figure 12b) the move­

ment of point ~ has a

vertical project equal

that each of the rafters

rotate through angle's of

~ QL/2L or 9/2 wi th respect

" to th~ir 6riginal positions o

I~ 4L

IFIGURE 12 1

The total rotations at the various hinges are therefore as

i:ollows:

Hinge 2 o -0 0 00 () ., 0 0 G Q/2
Hinge 4 o.oo-oo-G-$o.Q/2 + 9/2 = Q

Hinge 6 f>G&00aeoof>G/2 + Q = 39/ 2

The distances traveled by each o~ the vertical .forces P in

the direction of the force are (L)(Q/2)o The critical load

is then
-21-



or

Mp (Q/2 + Q + 39/2 + Q) =P (L9/2) + P(LQ/2)

Mp :: ~ <> 0 0 0 <> 0 0 0 0 <> 0 0 <> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 ~ 0 0 <> 0 (6)

We will now solve this same problem 'by a slightly

di.f.ferent method, one that is usually referred to 'as the

INSTANTANEOUS CENTER method(9)(20)o (It should be pointed

out that we are not here talking about a change in the

mechanism method of solution as such-but rather- a change

in the method of (jefining the geometry associa.ted with any

chosen virtual deformation)o

Consider first the

s tructure ~r,om an over""" all

point or view o For the

failure mechanism being

investigated the left

hand column is assumed

to remain vertical o

Rafter 0-® will

thererore rotate about

point ~ as its center o

Likewise the right hm.ld

column ®- (J) is con­

strained to rotate about

its base, point CD 0 As

to the point

L

L

L

~22=

p

1-<0 III

IFIGURE 131

®
e



about which the rafter ® = ([) will rotate.9 end ® of the

rafter.must move in a direction perpe~dicular to member

@- @ .9 whereas end ® must move hori~onta1ly to the

right o With this information it can be shown that member

® - @rotates about loCo,\> its instantaneous center of ro­

tation o (The location or this point is £rom purely geo~

metrical cons'iderations) 0

If the base o~ the right hand column is again selected

as the starting point fr and the member ®- (1) is subj ected

to a virtual rotation of Q fJ then point @ will 'move to the

right through a dis~ance GL o In so doipg it requires that

end @ of the rafter @ - <0 must rotate about loC" (its

instantaneous center) through an angle GL/2L = 9/20 At the

same time point ® moves to its new location; which is Q/2

times the distance from ® to 10 Go below and to the right of

its original position.. Since the length of rafter ® - ®
is the same as the length @ = 10 CO .9 member ® - ® will

rotate through an angle of G/2 at plastic hinge ~®"

The total rotation at plastic hinge ® then is g/2;

at plastic hinge CID it LtV"ill be the sum o.f that occurring

at ® and at I o Co, i oeo g/2 + G/2 = g; and at plastic

hinge ® the sum o.f that at I oCo and a.t (j), pr in other

words 9/2 + Q = 39/20 These values are exactly the same as

the ones previously obtainedo The resulting solution ror Mp

in terms of P will therefore also be:the,'slUJ1e G

Using the instantaneous center method of defining the

geometric changes associated with a given virtual displacement,



consider now the solution to

oomposite mechanisms shown

in Figure 9$

Since ror the mech~

anism shown in Figure 14
the left hand column is

assumed to remain vertical,

the instantaneous center of ~I

2L

·L

IFIGURE .141

linkage Q) - ® is located

a distance of 2L vertically

above plastic hinge GUo
Assuming a virtual rotation

equal to Q at plastic hinge (]) ~ linkage Q) - ® rotates

about its instantaneous cehter ~ I~ Co , through an angle of

Q/2o For this to oc'cur linkage ®-Q) . is required to

rotate through an angle of' ~Qsince the distance from 10C.

to 3 is three times that from ® to Q) (note the

horizonta.l projections) 0 The total rotations at each 01:

.. the pla.stic hinges are therefore as follows:

Hinge ® • • e 0 G a _ 3Q/2
Hinge Q) C!) 0 () .00 0 3Q/ 2 + g/2 = 2Q

Hinge @ o 0- 4 f) G • • G/2 + G = 3G/2

Hinge (j) OCtQ.a.o Q

The solution to the problem is therefore,



Wint == Wext

Mp [3Q/ 2 + 29 + .3 Q/ 2 + GJ = ~(3Q~2) (L~ + ~2) (L),

Q) ®
or PL

M =p 3 .. .,. lit .. Ct •• I) • 1) II 0 " ., ,. e _ ~ • () ... () () 0 •• () •• ~ 'b 1(') •• (7)

.4LI...

p

For the me chani sm shown

in 'Figure 15 t1J,e$ I. C., ~;.ofr ,1.:\,Ukage

@ - @is located ZL/3 vert­

ically above poini~® . Assum­

ing then a rotation o~ Q at

hinge (j) the rotation at I~ c.

will equal ~Q while the

rotation at hinge ® equals

9/2 6 To obtain the solution

Wint :::: Wext
IFIGURE 15]

or

Mp (~+ ~/2 + .}Q/2 ,,+ ~Q/2 +~ +$=PLG/2 + PL(3G!2) .

@@ @@ @@ @(])

M = PL (8)p 3 •••• -&O .... (lt)OOO •••• G-OO()6~oo.e()Qe•••• .., ••••

Going through the -same process for the remaining

mechanisms, the solutions shown in Figure 16 are obtainedo

p
>

[FIGURE 16~

c=>25--



,

IFIGURE 1651

Assume now that ~l poss1ble failure modes have been

ezaminedG From the resulting equations (4) throu~h (11) it

is n'oted that equation (9) requ.j.res the greatest Mp va+ue~

and it is therefore assumed that this is the correct solu-,

tion~ To be certain that such is the case, a moment diagram

for the supposed solution must be drawue (see Figure ~7-:t-) 6

'Consi~ering the

right 'hand columns as a

~ree body and taking moments

about the top of the coluTl'U1 9

the horizontal reaction BH

is found to be

BH - 2 ~

~~It should be noted that the Mp moments, act to oppose the'
deformationo

~26~



I

. For' the c'oroplete st:ructure as a. free body (taking moments

about (A)

BV :::: 2" 71 ~
L

The remaining reactions are

therefore

AH :::: 0,,57 ~

and

The moment diagram is as

1.00M~ -

O.'SMp

O.1\~~

IFIGURE lS[

shown in Figure 18. (Note~

moments are plotted on the ten.sion side ofl the members) 0

Since the structure is in equilibrium with .the app-

lied loads, since a mechanism is formed and since nowhere

does the moment exceed the rUll plastic value; this is the

correct solution~

"~-$. Concentrated versus Q.istribut'ed ,.Loa~

In the preceding discussj.onthe problem was straight

£orward since it, was possible to ascertain at the start the

exact location of all possible plastic hinges o Such will

always be the case when the structure under consideration

is SUbjected to concentrated,loads e

Where distribute,d loads are involved, however.$ the

location or the plastic hinge must be written in generalized

rorm and a solution to Mp obtained in terms or the unknown

distance to the hinge o By differentiating this general



expression for Mp with respect to the unknown distance and

. setting it equal to zero the tr116 1.ocation o~ the hinge can

be determined o Such a procedure wj~ll be used in solving

the generalized mul tia.nspan problemo

For an approximation the uniformly distributed load

could be replaced by concentrated load 6 To ensure a sa~e

answer the criterion for selection of these equivalent loads

should be that the mornen"t diagrarn due to tIle concentrated

loads mus·t circums cribe that due to tIle uniformly distributed

ones o (This would require 'that the structure be subjected toat

l'east as sev.ere a moment conditi,on as tl1.at of "the uni.form load

case) t) Ta.ble 2 smnrnarizes se'rera...l equi.valent loads systems

that could be used o The derivation of these values is given

in Appendix A to this report o
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7~ ~~ <Fa£j;:..~~"?:~(8)

111. the der.i ~l8"t;:i()rl (>:f 'tl'J.8 f:Liulp1.e pl,a.si~,ic t11eory and

consequ.e~ltly ill t;he 801.1.1''t:CorjJ~~ rJr()e~~e:t1ted irt this paper several

impol"'tant, as SllTll1')tlcH.18 Virere rnEll1e~ It Vlras asisurned that

1,o rtOrnlt:t}, force does rliot In.flu.erlee the

1i~1 tirn8"te bendi!lg; rEt;gi.stal10e or a

member (10 e" i.ts Hp va.lue)>>

2f1 the in..fllleIlce c),f tsl1e 8,rj CI11 tIle f~u.1J.,

plel,st~lc m0111erlt may be d.isl"(!eg£t~~ded9

.36 no in~s't.abi:Lj.>ty OCCllrs p~~iOI~ to the

de\rel,(,pIUeJJ.t, of a rnf;'j eb,.al1:1sm Sr

L~o th,e 108,(1.3 al~'8 illCJ?eased I)l~Oportio~ClalJ~y;) ,

B.1J.d

50 flt:ijnl'Ul~"e v~rj-l1 rlo't (~c.Cll.r d116 to brit:;tl,e

Rega-rd t;h(~ fj~last} t~iNO o,f' "tl1.6se faC r CO!i)8.? a~ solution~ to a.

gi'\Tel1 probl,e,rn eould be ()btaixled 011 tIle aSS11rnptiol1. that the

member~s in. ql18 S.t:iC).Yl 'wil~l deveJ.-op a, eer~tELi11 MpQ After solv-.

irlg 'tl'le proble111 ~eor tb,e reqllired 'll10:t11811.t val'ue f) a member

would be selected that will deliver this required moment

,rallle while S11E3ta,irl.tng the shear' or thPf.1st o Me·thods for

hal1.dlirlg such problerns are di;s aus sed irl refel'"lence (8) b

I,ocal insta~bility CEU1 bepI)eVented by placing certain

restriction on the geometric proportions that a cross~section

may have if it is to be used in plastic design~ For lateral

b'uckling a 111ean[1 of defin,ixlg adequate lateraJ.. support is



adeqllateJuY l1axJ.dle t~11Ef pr;,oblem (),:f C,Oltulll1, inst~abillty() The

pO~·Lsibj.J~itjY of Buell a ,flai,ltlr'8 pl?ior tC) t:;he ;9,ttainlnent of the

Conce:r~rlin>g t~he pr(:)l)]..erl1 ()f pI~opor'tio:n.al :Loads fJ Symonds
"<"ll) ('15')

d N' 1 \ <-L... Ii- (1 ""~ l' h +] tan, ea... ~ a'tl'E1 ShC;"V\Tl1l.1 J,atl this provision is not as i

rest,ri ctl"r8 as 1I\yould (>e flrJ.t!i. c,tpated o For mast structures

ing the influene(9 o<l~ 'J8J:~l8JJle r~epeated load is oIlly slightly

below that pl~eclj~cted (J11 tl18 bEl.,sl,s of' simple plastic theoryo

Anot;her pO:1.!1t IAr1 tIl regaJ7d tJO ttLis prc,bl.elll is that the ratio

'1~:t:ticlrl wi.~lJD be ()f' :Les,~3er lmp()J:·tEir~l.c.eQ A..notl~er~ l)Osaibil,ity is

. used 1AThen t;x:te irlfl'LlenCe of ~\rind is inclllded in the analysis ~ .

..then it; j~s Q1J.:1..Jce p()ssible tha.t t,Ile des:1.grl will not be gov<=

erned by tl1.6 l,oading e011dJ_ tion th8\.t il'lcl,udes wind force even

wherl modified to il1.c]J.lde t118 infll:tence c)f variable repeated

loading$

To ensure a safe structure against brittle fracture,
, (},g.) ,

a,tte11,t,j~on 111llSt be g:lve:rl to desigp d_et,a.ils~" :The materiu



II@ PLASTIC DESJ:Gl\T O~Fl SIl\fGLE<=JSPA1\T GABLE FRMJIES
O~~~~.'~~~f~~~~(","~=>'U~~:uJ:"".....p.~~_~~. ""'=~~~~

In gerler~H~1,9 it CEtYl be rer.{soned from economic con~

siderai:;iC)11S t,;x1a:G the bet ter des:tgll is the one ·that~ req'uires

t;118 la.:rclger rl.unibe!"l of' members 1\r:ttl1.in the st,rlJ.cture to sustain

'the ultiIl1a·te load at their rnaziinum strengths e Such a design:;

he)1...relJer 9 IN'il1, YJ.ot J18Cess8.ril·y be practi.cal. o F'or e.:xarnple fJ a

p~Jrta:l f l ra1l1e subjec.ted to ver·tical l(.)ad.s and wind from tIle

J.. 6.ft cou~ld be d.esigl1ed, for Hl.east weight?l Ulldel') -this one

:loa~ding cond:i.t.ior1o. Tb,e 1~r;lr:td,~ hOW€lrer Jl could .for most

str1uctures jtlst fiS well have occur~r6d frora the right~ Had

th1~s 1)6.en ttJ.6 ease $) 'tb,e· previ.ously desj~gned s truct'llre would

have fttl1ecl at; t3.. rnu.ch lcywer ]"(),,Etd deperlcli.J:lg on. the l~atios of

i'ul1 plastic moment value being Mp" The columns are also

assumed to be equal o The structure then is symmetric insofar

as tIle rn,61uber sizes are cO!lcernedf} M()1~h43o'7/e:l'1l9 for the maj ority

of strrv~ctu~ces 61'lCOllrl'cered irl practioe it; can be shown that

the most economical ("least weight") solution will occur

whe11 the del,i'\T(1red plast;ic IDC)nleIlt value ,of' 'the col<l1mJ.1.s equal.

mader, The structtl.r~es t,') be j,11vestigated then are as shown

j~11 Figt1.re 19~ Bot}l tb.e pimled. base a:nd the rixed base

cases will be considered0
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"S ~= number of pas s:it)l~ p:Lasti c hinges

o.-~ 1 =-- rll.lmbe.l~ of r~ed'undants

4 _..
n11nlbel~ o~ lrldependeni; failure me charli sms
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[!IGURE 211
The chosen i.I:tdependent fail.ure forms are as, shown in Figure

21 ~·~6 In cases (a) and (b) the positions of the plastic

hin,ges are f"li)';ed e For (0) and (d)9 howeverfj it is necessary

that the correct d.. is'tarJ.ce to 'tIle

For the panel mechanism

shown i.n Figure 22 ~ 't11e P

.force slone d.oes e:xt;ern.aJn llTork e

The:re.fore$

Wint; := Wext .
jFIGURE EJ

or
Mp Q(l+l) = PQ(aL)

~ p(aL)
Mp --- ...-...-~ ., a 6 0 ., I) " ;& Q -() G 6 () C$l. e 1:'1 @ & 0 -e /) 0- (II 6- Q I;,J 0 4iI G l$I G Q 0 l) 0 0 0- '6 (12)

1~It shc)uld be noted that iftl'18 structur~e is to sway to the
right in failing then ·no oombination of these mechanisms
is geometr:ica].. l~:y~ possible l1 S110uld -the P .force be equal to
zero~ a panel meehan"i,sm 1110"\rerrlent (mechanislll a of' Figure 21)
could bt) ELSSl1.1Ued to tlle J_eft aTLd co!nbinations aT .failure
modes thereby obtainede



me Ch2l1J.:tsm Cb) of F:tgtll?e 2J..,

Since plastic hinges are

as su:rne d~ 't () f 0 rIll at~ Q) ancl

G) 5' part ® = Q) of: the

base o.f ~tlle l,eft. l'laXld. coluJtGJ,

''n"7h·411~ ' .... ar'··}.-· ® <= R\ J....... ,.)'T- a+:·OC'i.
\.It;! ,J.. r:" 1:'"' tJ' \2J' ~ ',,'" 'u' '-' hi

ur .,.
ITITllLLlllillD

l\.

[~lIGURE ciJ

f
l(n..t2b)

ab 011 t; t;}~e r:1, g11t,; llaJJ.d b 8.,8 e o.

The instantslJ.eous center of Pa1.~t (]).~ @ is therefore

L ((~t""'2b) \Tertical,J~CjT 8JJt)\l8 pJ~ast~ia 11.inge (2) (} Assmuing r!ow a

whiJ.. 8

an angle or

jF'IGUJ:tE 24/



To cOlnp11te' ·t118 exterIlal 1t\Tork o.f the uniformly applied

vertical load see Figure 24., Since member Q) = Q) remains

rigid during th.e deformati.on 9 ,the llni.form load 9n this part

-of the stl~cture C0111d be considered concentrated at its

centroid... A similar s1tuation exists f'or part Q) - ~.

Solution therefore will be as' follows~

Win,t := Wext

Mp9[1~ ~ +~ +lJ =PQ(aL)[j·;~l +}!~[~J Q[i;~l +

~ [L] g,[ 1J
2 Ij: l+~

which gi ,re s

Lz
PaL + W

M - _::...:.....:rc­
p - ?('2~')'- ; ~. ·a

11G~i ..tlilgthe &3,olut\~:lon in -'another :rorIn 9 · t,he' ove~turn1ng InQment ~

PaL, could be equated ·to a function of' wL 2
• For example,

wL 2 - ( 4)PaL = A =-:"'.-) $-<!tf)()&(t_<ao6096e-t>e-OOo-~GG6Qe~(fO$OG.O~O 1
C;,

Theref'ore

A =: 2a ~ ." !' ".,,"o o o .. (15)

Substituting equat~ion (14) in equation (13) and reducing

gives

wL 2
[ A oF l~JMp :: ~ 2 + b a

To further n.on~dimensionalize tJ:-aarlspose the wL 2 term to the

left or the equal sign,

~2 - *[~-:=i.yJH$P~oouHuHH .. "P"".;1(17)



Equati,on -(1 7) 'then defines the nonr=dimensiorlal quantity

Mp/wL 2 in terms of the rati.o of the total rise of the raf'ter

to the height of the column (i 0 6 0 b/a) and the load para~

rneter UAf' defir1ed. by ecraatiC?ll (15).,

Rewriting equation (12) (the solution to' the panel

mechani,sm.problem) in the same nAn parameter form

. M [ ].::£ - ~
wIJ 2

Lf-
0. 0 () 0 0 Q fI t+ 0 () () G .., It 0 0 '0: 0 & 0 0 0 0 () t) 0 0 Q 00 'I) e (18)

For the mechanism

o.L

cL

I.e,

[ilGURE 25]

bL P
-~iIB"""r

nl

From geometry it can

ShOwrl iE. Figure 2J~ c ( re=

drawn as Figv~re 25) the

distance cL 9 the vertical

distance above ® to the

instantaneous center of .

then be shown that the

h9rizon'tal distBl1ce to

plastic hinge @ equals

part @ ~ @9 (is glvli')n by

cL = L~-a + 2~
Consistent rotations at the various points within the

structure are therefore as follows:



G
B

=: Q

Q10 Co =e&=f+~~~~j

GA '- Q [l=~~~]
d.>

Q 0 6' () 0 ~. I) 0. 1& 0 ¢- <t 0. 0> Q 0 G 0 1& 0 (19 )

Tcrtal rotatiOY18 at the IJ:la>st~ic hinges equal

92 = Q I l:~~~]
- a

o 0 ttl 4) $ l1J () Q () e 0' 0 0 0 0 0 0 0 0 • (20)

The e~pression for equalization of 'internal and external

work there~ore is as lollows~

It will be T!oted that equation (21) is,. in. terms o:f the

This redl.1CeS to

~2 = * [(l=:iJA+()(~J 9

]" a b<.

where

A =: 2a [J_._u.]wL

6 G It " 00 t) t)'. ,. $ .0 0 6 & ,., e (21)

..-.. jo:-tl

Since lX is an il1.dependent variable



and since the -structure will .ra.~l at its .first opportunity"

the correct l>{. distance will be determine~ ~rom th~ e.x,press1on , '

Equation (21) is of the gene:ral form nu/~"G Therec:a'

, .rore D ',the di.rrerentiation will be

• , <t .'" " 0 ..... 0 ... " • " ...... II • '" ....... (23)

But since the 'expression is t'o equal. zer0.9

vdu ~ udv ::: 0

'The correct ~ distance is therefore'

1]' -1 ]

.for £ =. 0a

and

A sUbstitution of these values for ~in equation (21) w111

give' 'the solution to this me chanismQ

IFIGURE 26 1

ill 'i J, II , IJ J1,1 J1111 J1
1,C..

.Going 'through the

same pr~eess fo~ the

mechanism shown in Figure

26 9 ,1t is folind that _P__..-r-

,,~ _1 r~l=K+ A)J ' '
liL2 - 4. L 1+ Y J ~ <l~'~-" (25)

where,"

,f)( =T~l+ ~(l+A)1 -1] ... (26)

" :for £. >0 '-, a



and

~. rI~J .'0 .... .,." .... for 12.= 0 .... '0 ...... " ...... " co """ ...... " co co " .. co co co " (27)'," a

The' prtib'l'em now .is to determine which of equations

(17) »,(18) fJ (21) and (25} requires (for a given loading condi-­

tion) the largar plastic moment value 0 This will dep~nd on ­

the value of b/a. and ,A under considerationo By a.ssuming

various values of b/a and A and solving each of these equations­

.for the resulting Mp /WL 2
, ranges of a.pplicability for each

equation can be determined o If such a. ..procedure is car~1ed

- ).1
out it will be observed that only equations (18) and (~:)

govern the solution o. Plo'tting the resulting values of b/a
r-.l-1

v~rsus A verSUS Mp/wL2 the design curve shown in Figure ~2

is obtainedQ Below the dashed line the governing equation is
-.2-\ 0'-

equation C..~~) 0 Above this I1n.e equatiion (18) defines the

solutiono The corresponding ~valuea are shown in F~gu~@ 27a.

These s~e curves are given to a larger scale as

Design Charts 1.,...1 and I~la. at the end of the dissertationo

'Their u~e will be descvibed later ..

2. Fixed~Base Gaple~ Frwmes

For the ri~ed~base frame shown in Figure 28

7 = number of possible plastic hinges

~l ~ number of redundants

4 = number or independent mechanisms e
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The chosen independent mechanisms are those shown in Figure

290 These and their combina,tions would need to be investi-

gated to solve the problemo

w
11 III 11'111111 J 11111- 11111

_P~.,..~(g)Q)®(~ . (0
CD Cj)

j L~,-~~I-

i FIGURE 28}

bL

0111111111111 I1111.111111 II J IIII \ t! II jl IIIIIIIIII\U

( a)

j FIGURE 29]

Going ,through the same procedure of investigation of

all possible failure modes to determine the corresponding

critical Mp/wL 2 values~ a solution to this problem could be

obtained as in the pinned~base caS6 0 The important equations
'"h'"

~ ~'-

that would govern the solution are tabulated as equations
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The resulting solutions in graphical form are Figur~s

30 and 310 (Here aga.in it should be pain'ted out that design

curves for this case are given to a larger scale in the

section on Design Charts at the end of this report)o

In Figures 30 and 31 there is shown a cross~hatched

"cut-.of~tt lineo This line corresponds to equation 6 of

Appendix C and represents the minimum Mp/wL 2 value that can

occur o It will be noted that this equation is independent

or A value (that is, independent o~ horizontal force)o

30 The Problem of' Distr,ibuted Horizontal Loads

As mentioned earlier, if the horizontal load acting

on the structure is distributed rather than concentrated,' a

conservative answer can be obtained by selecting a P value

for the concentrated load problem having an tTover-turningU

moment about the base or the structure equal to that of the

distributed horizontal load (providing a hinge does not dev~

elop within the lef't hand column) 0 Consider .for e'xample the

two structures shown in Figure 32 0

p

~7

A~
( a)

IFIGURE 32}
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It. these' two structures are of eq-qal size ~d shape ~d it

the d:1stanees D( L are also equal then the rota:tions corres­

ponding to a virtual ~1spl8.cel11ent and therefore the intei-n8J. .

work will be the same for both structures'o Since tbe exe.'

tarnal work due to equal vertioal loading of both structures

will be equal, these forces oan be d1s~egarded in this

. d1scuss1ono

Assume now that the moment of P about the base of' the

column ("An in ,Figure 32a) is ohosen 'equal t,o' tha~ of the

distr:t,.buted load of system "~btl ,(see Figure 32b). The ex­

ternal work, done by the P force will be g~eate~ than that of

the distributed load of system fib" 0 This c,an be seen by .

realizing that if they were equal the work done by .the: ~~av11~

~rosB~hatched pOI'tion of the dlstI'1bute"dhor1zontQlload

shown in Flgure32b would need to be the same' whe'ther con..

s1der~d rotating about point A or po'1nt I oCo

I,C.

eI.C..~~

"'. .

e

] FIGURE 33]



In Figure 33 it has been assumed that the -virtual

rotation at 'the instantaneous center equals ~" The corres­

ponding rotation at A is therefore

QA := ~ (1,-~P<. ) 0

If h is now assumed as the total vertical distance from the

base o.f the structure to the instantaneous center I.C~ then

the vertical distances to the hinge in the left rafter will

be gi\Ten in terms of h and t;(. as shown.. For a distributed

load block 2e in height the extern.al work due to the con-

centrated force F equals

e _ .0 0 C) ~ t) 0 0:. • 0 0 • 0 0 ,.. ( 28 )1.0" r ]
Wext = F L(l= ~,) h-C!l \

if considered rotating about I.OG

Assuming the force block rotates about the base of the

column (1 0 8 0 about A)-~_

G Q t) C') " • (t 0 ••• (» • .. • .. ( 29 )

The question is p is the external work defined by equation

(29) greater than that of equation (28). If it is then

system f1 a n of Figure 32a is the more conservative system

(that 1s 9 it requires a greater value or Mp).

?

o .... 0, 0 () I) (\ •••• 0" •••••••••• (30)

F{ [~h+eJ [l;-J ~ F 1[(1- b() h~e J
ri+ : = 1)(·:h-/3 ~ y{= [>(..h=l

!:'. > 0
t>Z

.A. ) W I.C.
Wext ext

Therefore



and the concentrated load solution as assumed gives a con­

servative answer o This same qUalitative answer could have

been obtained by a consideration of the deformed structure a

I,C.

NO\E

. , (

IFIGURE 34t

For the correct solution for external work due to the dis­

tributed horizontal load block in question p the force would

be integrated over the deflection shown with vertical cross­

hatching (see Figure 34) 0 Assuming.? however ~ that rotation

and therefore the deflection through which this force moves

was determined from rotation about A, the additional de­

f~e'ction shown heavily crossechatched would have resulted•

Ob,viously this sys~tem results in a greater external worko

For the sake of completeness ~ the exact answer to·

this distributed horizontal load problem is given by

equations (31) and (32).. The s'lJruct\lre is as shown in

Figure 350



rFIGURE 35.1
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IlIa PLASTIC DESIGN OF MULTI~SPAN RIGID FRAMES

1. Dlrect" Procedure t..' ~\ll '

'.'- ~' .~

Having solved the pinned~base and fixed-base, single-'

sp·an, gabled: frame problem,9 and h'aving found that ':for a maj'or

range of variables the mechanism t·h'at will control the design

is the one where hinges develop in the windward rafter and,

at the top of the .right hand column, a logical first 'attempt

at,·',:8t, mech1mism £or':·:.trle- mu.-ltir=~spari -'problem might be tthat

s'hown in Figure 360

llill rl.II' 1111111111,1111111111111111111111

bL

t\L

~ I

I FIGURE 36 1

For t.he problem under consideration that part of the struc-

ture to the le~t of the center column is assumed to have a

plastic moment value equal to Mp whereas the r,ight hand part

was chosen as kMp~ Lengths o~ span, heights of columns and

total rise of rafters are chosen equal. It cannot be

assumed, however~ that the distances to the hinges in the

windward rafters will be equal.. The resulting e.xpressioJ::l,

ro~ M~ will thererore contain the variables ~and~ •



Since each of these variables are independent 9 two separate

di~~erentiations (one o~ the ~orm ~M! = 0 and the other

dMp = 0) will he needed to solve for the correct ~and ~
d~
values,

The consistent virtual rotations as determined rrom

,8. consideration o:.C theinstmntaneous centers are. .. showrtin •

Figure 370

bL'­

ell

·NOTE:

f-:=-·

L

]FIGUR@
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The total rotations at the various plastic hinse~ are there­

.fore as follows:,

Hinge G) :::Q.[ (1- a ) . J[. 1 . J
. .. ·1- P ::;Aj_ x f J

Hinge@=Q[ (1- &l, J'[1+ ~. J
.1 +ZZSl

Hinge Q) =Q[(1- (h~+.ill2.~J
, a .

Hinge @=Q [(1- fJ ~+¥f.>J
Equating the internal work and the e.xternal work,

Wint = We;xt

M Q r '1-~) J[ ·1 -=!+M.,r- (1-&) J.
p L 1 0 )++Jb j ( A+ ft>t j p (

G. + ~ J +kM Q [ 1_ J+kM GG+&] 1
[ . (1-b()+"", K J P (1- ~ j+2f~J P L (1-~ )+~~J

• • 0 4) 0 0, 0 C» ~'o 0 6 • 0 c> 0 • • ~ '(3,4) ,

(50) .'



Again replace the concentrated horizonta,l force P acting at

the eave by the nonc=dimensiona1. itA n parametric .fOrIna . The

.relationship ,assumed is ·the same as that previously used, iO,t?

A := 2a [w~]
For the. special case where k:,:;1 the, e~p~"~~}J..s.i.orl r9r inte',:r:.nal ~

"~"" ,...... '- .. -:-....

and external work equalization (equation 34) reduces to

Needless to say, the difrerentiation of this expression and

the subsequent solution for ~ and ~ is not readily obtained Q

Even if an explicit solution of ~ and~ were obtained,it is

questionable if such an equation as (35) could be used in

.designo

. Another possibi11 tJ7;" e.xi'sts however o "1.1 Since the'
., ~¥'

variables involved are /)(., ~ 8.l1.d Mp an implicit differentia­

tion of the work expression rather than the explicit one just

considered may lead to an easier solutionlle ,As shown in

Appendix B of this pa e T if ~d~ =0 then the corresponding

dif:ferentiation of the function value, F» with res'pe'ct t,o K

mus t also equal zero; that i.s

~F =. 0
a~

In similar manner

dF :: 0
21f..



and keeping the 1 parameter as derined in FigQre 37 the fol~

eeooi)eoo(38)

== 0

Dividing through by ~ , substituting in its value and re-

ducing the resulting ezpression gives

rpaL(l ... 1X. ) +li#2~ (1~1)( )_2Mp(1+~~)J [WL, 2/)... fl+J2.a L~
.:: n rl + ""2 ["./ -2kMp 1.1 =0

(1-. ~) + gQ ()( ,1-{),
- a ,-

This indicates that the function 'value is made up of two

sep's..r'ate parts:

F(K,~ ,Mp ) = R(~,Mp) + S( ~ ,Mp ) eoootGo ... e.oeo(40)

Differentiation or this new e~pression (equation 39) accord­

'ing to equations 36 is therefore more easily obtainedgthan

an y~plicit differentiation of Mpo

It should be remembered that only one possible failure

co-nfiguration has bee~ considered for ,the mul ti... span problem

thus faro To solve, a particular problem in question other

,modes would also need to be examined?to determine the one

that would actually developo

~52~,



2. Solution £X Separatio~

'Based on the preceding discussion it could be "reasoned'

that since for the problem under consideration the variables

separate into two groups (one having to do with the loading

" and resistance of only the left hand portion, the other with

only the righ·t hand part) a solution mj.ght be more readily

obtained by physically. dividing the structure into two partso

If this division is made at the junction of the right hand

rafter of the left structure and the center column,then the

loading'condition would be as shown in Fi~lre 38.

p
......

111111'111111111 1111111111111111

I·FIGURE 38 1

A solution to the multiple span case could be realized by

solving eac4 of 'these .separate parts in terms of the loading" ',;'

parameters at the cut section and then in the final stage

equating the 1:p~'W1e'te:rs~

For the left hand

part of the structure

(see Figure 39)9 the re-

sulting equation for Mp

would be of tb.6 form

,..Mp:=1"{.P:iW'!'j K,n ,di1mensiton:aL.... ;~ (41)

~53-
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Since the structure does

not move in the V direction

at the cut section,this ~orce

will not enter the solution.

The equation for the

right hand structure is

From a virtual displacement

'consideration it is seen that

as the structure fails the

external work due to the H

force on each of these parts

will be equal since the de-

IFIGURE 40 1

flec'tions are equalo

Assuming that the method of solution is the one

shown in Figure 38 (i.e. the separation of the structure

into two parts as shown) it is now' necessary to write the

equ~t1ons corresponding to e.xpressio:q. (41) and' (42) 6 Look-

"ing at (42) for a moment, it is ~een that the 4erived

equation for the strength of the right hand sub-structure

would contain an expression involving the sti~rness o~ the

I,eft hand part q Since it would be more desirable to hav"e

the resulting solution a function of the stiffness of that"

part of the structure in question only, consider the con-

ditions that prevail as the struc'ture ~ails•

.-54-



As the structure deforms according to the assumed

virtual displacement the only quantity of interest at the

cut section is the" work done$ Therefore,why not consider

a sub~division o~ the structure according to that shown in

Figure 41?

111111111111lJI] J IIII [II! 111I1II

@ bL
o.L

j FIGURE 41 1

Here a hypothetical momen~ Q has been introducedo The

reason is that since each of these QUs rotate through the

same angle in each sub~structure there will be work equal~

ization at the divided section if the QVs are equal Q It

shou"ld be remembered~ however, that statically this Q d"o~s

"not necessarily tell the full storYe It could be composed

of just a moment j just a horizontal thrust having a moment

't about the base of' the structure equal to Q or any com­

bination o~ these o

It should also be noted that in Figure 41 the total

internal work at plas~ic hinge ® 1s assumed to act 'in the

left hand sub~structure. This is as justifiable an assump~

tion as that shown in Figure 38. It h~s the advantage,

however, or keeping all loads and moments resisting these

-55-



loads in the left structure together o The r.ight sub.-

struct'ure is· there~ore sU'bj"ec~ed to only the load w and the ..

elL moment.

If a gen'eral structure and loading as shown in F'igure

42 is now assumed,either of the two cases shown in Figure 41
can be represented~

III ( I ( 1111111111

QL ( ) QR

IFIGURE 42 ]

For case (a) (the lert hand SUb~structure),~would be
chosen equal to PaL$ For case (b) j' iQR would equal zero o

From ~;1\Gb~ij~-:t4e.~ation of
"":" ' "i.." ., ..j,. •• ~ ~

,th8' ihst:antatleous'~ \Celt.lt~r (see
, (, '. .

Figure 43), it is found that

the following rotational

relationships exist o ~ (Note:

these are the S~e as given

in equation 19.)

Q& =. Q

Gl • O•=G [ (1- : )+~O(.J

et. l

] FIGURE 431

~56-



Therefore,

. Win t = W6J{ t

M Q r 1 + 1+ ~()( -J :::: wL
2

b( 2g

P LCl~D()+2~ ~ (1-1)()+ ~ i>Z 2

+ W~2 (I-IX) 2 g [. eX 2b J+QrJ Q [
(1=0[>(.) + aLX

[ (1=~) ~~P(J

(~~:;+ ¥~J
() 0 G & 0 0 0 0 (:I 0 () 0 0 0 0 '" Q 0 0 000:) 0 0 0 () () ¢ 0 Q 0 0 0 (41.~)

Introducing the nondimension.al form for the QU 8 9

wL 2

~ = A 2
GOO CI 0 0 (I l!) 0 0 '0 0 l) 0 Q () 0 0 0 () () 0 0 0 () 0 l) II') Q 0 0 0 0 Q 0 0 0 0 (45)

the following expression is obtained:

~ __ 1 [(l-bd (A+ ()( =D)-D(.?i)~ ]
wL

2 4 1 + ~ 0<.

where 1 r11 b I

IX = ~ L~ 1~~ [A(I+;) -D (1=~) =IJ
~or b ;> 0

a

000000000000000000 (46)

-I ] 0 0 0 0 0 00 00 0 0 0 (47)

and b
ooooooo~ooofor a = 0 o e 0 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 () (48)

Here again it should be pointed out that only one

possible type or Eailure configuration has been investigated o

other possible modes, must also be e.:xarnined o The equat'ions



trlat would result .for such a str~ucture are 'tabulated in

Appendix C as equations 8 through 130

Assume for illustration that the structure an~loading

to be investigated is tha:t shown in Fi,gul~e 440

w

L/4

L/4

Lj-

I' I I I I I I I I I [II I II I II II I II I II I I III IITIffTl

....~..........,
/, ",

/ kl~ip j~ ..
p= wL

1+

j FIGURE 49
The b/a value for this structllre equals 1 0 0 0 , The corres=>

ponding design curves ob'tained b'y sol,rirlg eque..tions 8 through

. w

hrrL111111'llllllld

12 (Appendix C) are given a.s Figure 45 (where MP <9 A and Dare

plotted) and Figure 46 (where ~9 the distance to the plastic

hinge, is determined)o

If this multi~span frame is now divided into two parts

as' shown in Figure 47
w· I

i1IIlll11111111111ld

[FIGURE 47[
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0.5
Ac::=0o 04
Dc::=0

\. 0.4

0.2

o

Al=Oo 125

Dl=Oo 04

\XI

,A

I FIGURE 46 1

FOR ALL "Dv s n

)

the left hand moment, ~, must equal the moment of the applied

horizontal force P about the base of the structures;:that is,

wL 2 _
Al 2 - p(aL)

~60-



A wL 2 = P ( aL) = wL (L)
1 2 ~ ~

or
Al = 0 C) 125 II •• ct • Q (I <1 •••••• $ • () • 0 0 0' & 0 0- flo do e ,() .. 0 • " 0 0 l) •• (49)

Since QR2 = 0, D2 = 0
JI

For eacl1. part t11en, the following ezists:

Part 1 Part 2

( a) b/a = 1.0 ( a) b/a :::: 1.0

(b) Al = 0.125 (b) A2 = ( ?)

( c) D1 = ( ?) ( c) D2 = 0

( d) Mp /wL 2
:= ( ?) ( d) Mp /wL 2

::: ( ?)

It is noted that in each case two unknowns are present; , one d-e-

fining the size of the member, the other the restraining or

loading moments at the center column. Ero~Figure L~ the curves

shown in Figure 48 could be plotted

0.05

~
wL 2

oG O~,~

; ; I

0005

0.05

0.10

IFIGURE 48 1
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Since the Q values at the cut section o~ each of these must be

equal in order that the work cancels when the structure is "put

together"

or
A2 = Dl () $ 0 CI II) G It l') .. • 0' " 0 q • 'I) • 0 • .. I) (1) 0 Q (t • I') 0 0' • • • 0 0 0 • 0 • 0' (50 )

These curves could thererore be plotted on the same ordinate

and abscissa and their intersection would give the correct

value of' A2 (or Dl) and Mp /wL 2
o This is shown in Figure 49$

~
wL 2

0.05

CASE ®

O~0471

CASE CD

IFIGURE 49J

Having found the required Mp/wL 2 value, the nezt step

would be ~o plot the corresponding moment diagram. From Figure

46 the location of the plastic hinges are found to be as shown

in Figure 50.

-62-
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The moment diagram is given in Figure 51 where-moments are

plotted on the tension side o.f the m'embers.•

00 66Mp 0.S6Mp

loOOMR
~~I/~/ \ \

O.42Mp

\, Since the structure is in equilibrium with the .~pplied loads,

since a mechanism, forms and since nowhere is the ,fu-l'l plastic

moment' of the section exceeded - this is the correct solution.



,j,It will r be l1ote_d ,,-from" FiguJ?,e, 51" that the 'max~m':mon\en t

to.which the center column is subjected is O.4W1p • Should

this be the only loading condition under consideration a

smaller member could be used: one that when modified to sus~

tain the axial thrust would deliver Oo4~pQ

Had the horizontal force been substantially greater

than that considered» it would have been found that the

moment at the top of the center column would be in excess or
Mpo In fact$ it might have been as high as 2Mp & For such a

case (a~suming that the center column bas a moment capacity

of only Mp ) it is obvious that the investigated mechanism is

not the correct one and the corresponding value of Mp is too

small. The actual failure mode

would more than likely be the

one "shown in Figure 520 Since

the solution of such a failure

pattern would result in a

greater Mp value for all the

members of the structure, the

new design would in almost all

cases be leSB economical (in

I I I II I I I I I I I I I I II I II I

terms of "least weight U) than

that design based on the assumption that the center column

could eupply whatever was needed. (Note the relative length

of the center column to the remainder of the structure o )

From economic considerations then the typ,e of failure shown

-64~



in Figure 52 should be excluded~ and the exact size of these

It center type colunms 'f be determined .from a. moment diagram

Q$suming a more general failure configura'tiono

30 Development of Desigg Charts

To be able to solve all types of multiple span problems

by this method it is necessary that all of the various possible

sub ua structures (or assembl ages) be ascertained o For example ~

if a three span symmetrical p

pinned base, gable frame

(see Figure 53a) were sub-

jected to only vertical

loads then the two types or

sub-structure failure shown

in Figure 53b could occur e

For the center span each or

I I I I I! , II i I I I II I

~
( a)

11:
. I

~~nt'l- (' I
I - , \1 - ~ 1

,. ~I-o-

(b)

IFIGURE 53f

the ffcolumnsn would spread

equal amounts 0 The outside

spans w'ould fail as assumed

ia the precedi~g problem

( see Figure 41b) 0

Had the structure

!FIGURE 541
four span syrmnetrical frame

as shown in Figure 54a, the center two spans would have

under consideration been" a

f'ailed with their outside ~olunm.s" spreading o Due to the

symmetry, the center column would remain verticalo A fourth

-6$-.



. \

type of failure condition results when a three span» un~

symmetrical ~rame fa11s o For such a case the center two

columns may spread through different angles o Therefore j

this condition must also be investigatedo

The five types of sub~structures and loadings that

must be considered for the solution to pinned base j gable

frame problems are therefore as shown in Figure 550

1IIIIII1111 ! I j IIJI1ID III IIILJ I i Ic!.

[FIGURE 55J

'\I.j*.

L--·

By selecting a value or the left hand YlQ moment" in case (b)

equal to the moment produced by the concentrated horizontal

force of case (a)~ these two problems reduce to one~ The

equations governing their solution are tabulated in Appendix

. C as equations (1) through (4') and (11) through· (13) 0 The

resulting design charts for various values or b/a (O~O.2,Oe4,

Oe6,Oo8, and 1 0 0) are given at the end of this report as

Charts III-l through III~6 and III-la through 1II-6a~

For cases (c),(d) ~ and (e) it cah be shown that each

reduces to the same solution~ (See equations (8)9(9) and

(10) of Appendix Co) While the proof of this is straight

forward for (0) and (d)9 case (e) presents an added problemo



Consider the railure mode and structure shown ,in

Figure 560

Ir it is assumed t~at

the 1e,ft hand column rotates

to the left through an angle

equal ~ then the right hand

column would rotate through

an angle Q- b if G is chosen

as the virtual angle at B

when the left column remains

verticalit S.ince th~". structure.

is over determinate (that is,

OIII II I rmTrIJJITI]

IFIGURE 56 [

6L

Where

there are more hinges developed

than needed to produce. a mechanism), the total virtual

angle change at plastic hinge ® is not a function of ~ 'Q,

The internal work at hinges CD and(2) , however 9 will change"

(It should b~·noted,· however 9 that as one decreases the

other increases an equal ,amount thus keeping the internal

worl;r constant"o) Equating the internal and external wor~.

~or this cond~tion gives equation 51.

~",_l- [ v-'(1-1Jt) -Jjl: Dt-. 2f (Dv -D) ~f ]
L ~ - i:'" b "0 ., 0 0 0 () 0 (51)

w Lf- l+a:e<

D2= (wi:a) QR

DI;"= (£2) QL

The Dl parameter is used to define QL rather than A as

previously.



This has been done to try to achieve a uniformity throughout

the paper of always u.~titlg. "A V s It when the structure fails

!!!!!1 the "Q moment'·t and nD~ aU when negative work is done by

the Q moment.

Since it is required to have the ma:ximum value of' Mp

for all possible values of ~/g 9

~
''}l ~/Q) == 0

This gives

or
«) •• () ••• 0 0 q • s> • C) C, Q ... " (I 0 '* • CIt • tl 0 It ~ 0 " • 6 c; (52)

The solution to this case then is identical to cases (0) and

(d) of Figure 55 with the Q moments on each side being equal.

The solution to all three possibilities is graphically given

by Design Charts II-l and II-la at the end or the report.

For fixed base types of gabled frames the sub­

assemblages shown in Figure 57 must be solved".

"II I' , , III r, II f I' IIII III I r IIIIII

The solution to 57(a) is given by.Design Chart 1-2 and 1-2ao

57(b) is considered in charts IV~l through IV-6 and IV-la

through IV-6a.
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57(0) is identical to 55(0), (d) and (e). Its solution is

therefore shown in Charts II~l and II~la.

For lean-to types of struc'tures, the configurations,

as shown in Figure 58 must be consideredo

IIIII I ;11 1lJ 111'1"111]

J FIGURE 58 1
Design chaI'ts V-l and V-la through V-6 and 'V~6a, and VI-l

and VI-la t~ough VI-6 and VI~6a give the soluti~ns to these

types of problems o The e'quations on which these charts are

based are given as equations 16 through 20 of Appendi~ C.



'.

Since plastic d:esign ,r:esUl ts in a structure that. will

.. just sustain the imposed load.iog at the st;ructures' ul timate~ ,

strength, there must be included in the, desj.gn :load .a' certain

mB::rgin of safety above the ant'! tipated workihg value o This

margi~ would then truly be a ~oad factor or safety since it

wou1,c1,~:,,1n¢l,j._cate the amount of overload the structure could

, ~s~stain prior- to collapse 9 Accepting this philosophy~, the

next step is the selection of a ori terion for deterrnin'ing

the numerical value of this safety factoro

If it i'8 assumed tha.t it is desirable to have, the

load factor of safety of a continuous structure equal to

that of a statically determinate one 9 and if it is further

assumed that a simple beam designed according to the present
, ' , (16)

AlSe Speci.fication has an adequ"atereserve in strength,
(17)

then the load factor of safety would be computed as rollows.

Consider the simple beam shown j.n Figure 590 :1f it i·s

assumed that the allowable bending stress is 20 $1,000 psi (AlSO

Specirications-~Section 150)'.? and that the yield stress is

33,000 psi (minimum allowable b~ ASTM for A~7 type steels),

then My, the initial yield moment, is 1065 times greater

than the working moment, MW~ It then follows that Py » the

initial yield load.? is 10 65 times greater than PW'j} the

working load. Since the rull plastic moment equals ZOy and



the initial yield moment

.equals Say $

<::2 :::: Za ::::: Z :::: f
My SOy S

where f is termed the

shape f.actor of' the

section o Values of Uf~f

for rolled symmetrical

shapes are given in

Appendix D of this report e

The average uf" value of

these is 1 0 14 w'ith a high

of 1 0 23 for the 5114075

IFIGURE 59]

and a low 'of 1 0 11 for several different sections o

Assuming the average case:

Since a one~to~one relationship ezists between the loads and

the centerline moment values, the load facto~ of safety, F,

is then 10 88 Q

Assuming the minimum uf" value:

Mp = loll My = (1 0 65) (1011) (Mw) = 1081 Mw

The AlSO specifies another allowable stress value

when stresses are caused by wind~ earthquake 9 etco in co~b­

ination with "real tt 10'ads~. For these cases the allowable

stress is increased by 33 1/3%0 The corresponding load.

factors or safety are therefore as shown in Table 30



I TABLE 3 I
AVERAGE MINIMUM
SECTION SECTION

Fincluding wind~
1041 1036earthquake» etc~

F
excluding wind,9

1~88 1 0 81e ar'bhquake SJ etc o 1

A somewhat different approach to the general problem

of sa~ety can be based on the philosophy that a structure

is no better than the load analYBis~ Therefore» this factor

'should playa major part in the determination of the· .factor

of safety of any given structure. Furthermore 9 the ability

to predict loads is dependent on the.type of loading& For

ex arnple , the maximum load to which a water tank may be

sUbjected can be computed with a high degree of certaintY4

The. live load for a warehouse, however~ is not too well

defined~ The uncertainty in each of the loads making up

the total could be taken into account separatelyo

While the question of safety is important it is not

unique to plastic analysis~ It is thererore felt that fur-

ther disoussion in this pap~~ is not warranted.

2 0 Economical Designs

As specified earlier many factors enter into the

selection of an tteconomical designU not the least of which



· is the avaiJ.·a.bility of a certail1 desired shapea In this

paper 1tleast weight" of main member is chosen as the criteriono

Since in a.plastic design the section property ,most

often encountered.is the full plastic moment p · Mp; it would be

desirable to have an e.xpress·ion relating this property and

the weight/unit lengths or the member e Two designs could

then be, co~,pared by knowing Mp values ~ leng,ths of the vario1.;ls

elements 1J etco

Unfortunately the plastic modulus (which is di-rectly,

related to the full plastic moment) not only takes into

account the area o~ the section but also the moment of

i'orm

w = cz 0 0 50

gives a fair average through all the wide~flange sections&

The' most economical (that is the large:st Z for the smallest

W) is approximately

W = CZO$3 0

I

For anyone given depth of WF ".s'ecti'on the equation

W = CZOo 90

is a comparatively go,od. ~verage value o
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It ~a 1nterestingto nf'te that Heyman(18) has used a value ot
W:=CZOo67 .

While the difference between an exponent 01.' a-a,. 005

versus 10 0 18 ·e~tremely .large.p the net effect on- the isolation

of the more economioal choice of member sizes 18 rather smallo

In addition the 8.!lsumpt1on of equal. r,afteIt sizes in a g1~en .

span, etco , will otten over shadow the ditterence o There~

'tore g a onea>~o~one correspondence between we-1ght and plastic·

modulus (or Mp) will be assumed in the remainder of this

d1scuss1ono

30 Initial Choice £! Members

As in the elastic case» design t~e Call be saved. by a

judicious first choice ot rel~t1ve m~mber sizes throughout

the atructure o It w1·11 be shown l-ater.9 however 9 that this

is not absolutely essential whe~ using the plastio des1~

chartse



Vft DESIGN EXAMPLES

.1"6 Pesign: Example~

As a first design

exampl,e consider the single,

,span gable fr~e loaded as

'shown .in Figure 62$ Since'

pia is equal to 705/15 or

OG.5,9 the, 'solution .from

Design Ch_artI~l is

M 'itra = 0.. 0505 .. 0. 0 ...... (53) .

Therefore g

Mp w{ 0.. 0505)wL lii

= (O.0505}(lo88)(1)(40)2

\\t/H ~ U\at.~IJJo i.~

Illlill.

IFIGURE 62 [
.;

A
r~-----"""""-J .....------"
Factor of Safety

= '1520 0, fto kips

= 1825 inch kips

The required plastic modUlus then equals

Z =~ v h822 = 5503 in3

0y, 33.

From Appendix D.9 'the mos't economical section is th~ 16WF36

6 · 3,supplying 38,.9 iIi ()

" Design EXample la

Assume now that th~s ~ame structure is 't'o be sub~

jected to a combin~tion of v~rt1cal and horizontal loads as

shown- in '~igure 636 Here again the b/a value is 0 0 5. The

~77q>



"AU parame,ter is given as

",:

A = (2a) (P/wL )

- (0075) (1007/40);::;00 20

From Des ign Chart I=-l it is

found that

Mp/wL la
;::; 000762 Gooooo(54)

This gi~es fo~ a moment value

Mp :: (0 0 0762) (1041) (1) (-'1600)
r: . -A---."- _

'Load Factor of Safety "

(including influence of wind)

'= 1.72 ft o kips

= 2060 inokips

.The required Z value is therefore'

1FIGURE 631

Z :::: Mp/Oy :::: 2060/33 :::: 6204 in3

and the most economical section supplying this value is the

16WF36 (~63b9 1na)~

This example illustra·tes one of the argu.ments· ~a'gainst

talking about a most economical deslgno It will be noted that

both loadings resulted in the same section~ however, the

required- Z values were quite different o

To hel,p eliminate some of the confus1o~ that resul ts

from s1tuations of this' type the __.~sns~elrs for t-he remaini"ng

ex~ples.will be l~ft in required Mp form~

2 0 Design E.xarnple No o 2

As a.second eA~ple consider the two span rectangular

portal frame of Figure 64ao Dividing the structure. into two

~78~
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[FIGURE 64 r

SkI
I (a)
~I;:~L ~I..

111 ',111111 I
I i-a:

CD~) t
(b)

for A = 0 --- D .Il1Ust

Chart III-l it is seen that

sUb~assemblages as shown

1l?- Figure 64b a solution

can be obtained by' using

Design Chart III~l ror

zontal forces acting on

the structure, the "AU for

this part equals zero. From

both parts.

Considering part (1) ,

since there are no hori-

also equal zero and the failure will be of the "beam type" ~

The ;same condi tion holds .for the e.g) part of' the structureq,

'The solution is therefore given by the two rollowing

equations

M.::.E 2 = O~ 0625wL1
• 0 Cl " C) f> 4t c. ell .. e fJ Q $ 0 • I) ••• 0 ~ Q; ., • (55)

SUbs,tituting "into equ~at-i:ons 55 the values

t'erms o.f L

(I p q .. () 9 • () • 4 ... fiJ I) (') ( 56)

and

"Sto= (0.,0625)(25) = 1.,562

This gives for a value of relative members sizes

'. /I • $ 1& 1& 0 I) 0 • Q • 0 0 •• G • " • 0 11 a " • 4) ., • ,. 0 ••• ( 57)
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It should be noted that this value of k is equal to

the ratio of the squares o~ the span lengthso Such will

always be the case for unirormly loaded (vertical loading)

rectan-gular portal frames or continuous beamse

The moment diagram corresponding to the ultimate

carrying capacity is as sholvn in Figure 65.,

Z,l&~

tooMp .',

IFIGURE 65 [

From this diagram it is seen that the plastic moment or the

center column must equal 1078 Mp •

3.' .Design Example No!..l

The third design example is a three span symmetrical

gabled frame subjected to a uniform load of w Ibs/rt and a

concentrated horizontal load o~ wL/4 at the windward eave o

(see .Figure 66) ..

1I II II I I I I II I II I I I I J III I I I t I I r

wL

l~4
"';Ia ~Mf>

L)':4-

1- L 1- L ~. L -I-
IFIGURE 661

~80e-
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1 FIGURE 67 1

Equating the moment o~ the horizontal force, wL/4g to .A1W~2!2,

the value of Al equals

~ = 0.125

o I) 0 t) 0 0. Q' 0' Q 0 () 0 6 0, 0 (I 0 -0 0 0 I) 0 0: (59) ,
2

D' wL22

For equilibrium at the cut sections

Dl W~2 = A2 ~2

These give

and

~~ _~~ ~ .
. .

Selecting equ'al values. o.f Mp/WL..2 (and th~refore Mp

values) for spans <y andQ)........ enter Design Chart 111... 6 .

(b/a=l.O) and read o:f:f suitable D
1

and A
3

vaJ..ues~ With

these values reente~ .this same design chartis wl,th the values

of A2and D2 and read off the corresponding kMp/WL 2 for the

center spanc A table of the ..t;Qll'owing type is de's~:rableG



ITABLE 41

M kMp
~2 Dl=A2 A3=D2 wL 2 k

000446 00050 0 0 016 0.,0442 0.991

0 0 0435 0.0905 0.006 000527 1 0 212
I

0.0440 0 0 06'35 0 0 011 0 0 0494· 1~123

For each of these three solutions one must now compute the

moment diagram to select the size of the center columns 0

With this information, it is then possible to plot a curve

of the summa.tion of the (Mp/wL2)i with respect to the various

lengths and plot these against k values o Such a curve is

shown in Fi gure 68.

0.15

0.10

k

[FIGURE 68l
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From Figure 68 it i,s noted that total weight of this struoture

(as measured by Ll (Mp /wL 2
) iLi) is only slightly affected by a

change in k value~ .

40 Design Example No o 4

As a fourth design example consider the three span

@

L .~

) FIGURE. 69 1

CD
;,~lL·i

.. .... C"'lllI!

o;TouSL...

unsymmetrical gable frame or Figu.re 69~ us
J I J I I 1 I , I I I I I I I I II I 1,1 I I I II III II I I II III , 1111 I I I [

~~1.0

Dividing the structure into three parts

II J I I I II II I t III1I IIII1 I1IIII1111 1111111111111111111

: FIGURE 70 r

Al = 00350

Dl = 4A2

A3 = 10 778 D2

o 0 0 0 0 0 0 0 () 0 0 0 () 0 0 6 (I 0 01' 0 ( 61 )



By preparing a table o:C the following type and by solving

for selected values or D1 versus A39 solution to the problem

is found o

I TABLE 5l
1 2 3 4 5 6 7 8 9 10 11

A:t M D1 ~ A2 D2
k2Mp ~ M M

~12 A3 k~:a k3 .:.::E:a
wL32 wL2 2 wL 2 " wL ..

'-'

Plotting a curve of k2 =vs- k3 for various values of

Mp/wL2 , the solutions shown in Figure 71 are obtainedu

For the structure to fail as one complete unit the values of

k2 and k3 must be such that they fall within the triangular

areao furthermore, since each o~ these three lines de.fining

the permissible region represent a case Where one of the

parts of' the structure becomes "over-determinate", thei-r in­

tersections represent the points o~ most probable "least

weight n.. This can be seen by realizing that the Mp/wL 2 is a

minimum for that sub~structure when it becomes uover--determinatet'o

Therefore two su.b~assemblage minimums will give 'a minimum .for

the tota.l structure" For 'the ca.se in question the "least

weight" design is as shown.
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50 Design Example NOo$

As a final design, e:xample, solutions to the m1-11c=type

building shown in Figure 72 will be obtai~edo

, 1IOIIlIOIIJ]]lj1111111111111 jill il lAS'

L,t

L
I

L
-ge~p

I_ L2,,2.L ..I.........-'l I_-:,'4_L_~~ L2~2L_I_

FIGURE 72 I
Because of symmetry, only one half of the structure need qe

CD
"Again by using a

tabular form and noting

that

considered o Solution to the tu-

G) part is given by Design

Chart II-J., whereas part ®
1s given by Design Chart

VI-6.

solutions can be obtained jFIGURE 73 [

(see Table 6)~·.9 .



ITABLE 6(

~ D1 A2
kMp ~ kMp k

wL12 wL12 wL 2 wL 2

0 0 0537 0 a 000625 00859 0 0 250 0 0 291

Oc0506 0005 0020 0 0 0702 0 0 810 0 0 281 00347

0.0474 0010 0040 0 0 0923 0 0 758 OQ369 o~487

0.0443 0 0 15 0.60 001167 0 0 709 00467 0 0 659

-0 4 0414 04)20 0 0 80 0 0 1431 0.662 00572 '0 0 864

Mp/wL 2 versus k value s ar~ shown in Figure 74.

It should be pointed out that for each of the de~igns

carried out in this section it is ,necessary to check for

t1,Additional Considera.tions"(9) a.s discussed in section 6 of

the INTRODUCTION·, of this dissertationo
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Vl o SU:MMARY

After reviewing the assumptions of the simple

plastic theory and discussing the various methods whereby a

solution to problems in plastic analysis can be obtained 9

there is presented in this ·dissertation a method whereby

plastic analysis solutions to the single or multiple span

rigid frames can be obtainedo The solution is based on the

concept of dividing the structure into sUb~assemblages and

solving each of these separately in terms of the boundary

conditions at the cut sections o By equating the unknown

values at these boundaries a solution to the problem in

question can be obtained o

To facilitate the solution of other problems there

is presented design curves which give in graphical rorm the

solution to the various sub~assemblage problems 0

The problem of "least weight" design was also dis~

cussed and a method was presented whereby such a design can

be approached o

By solving six typical structures 9 it was shown that

the methods presented in this dissertation are usable o

Furthermore$ they result in a large saving in design time o



A=

c =
D=

E=

F=

=

L :::

~:::

p =
p =u

p =w

p =y

Q=

w=

VII., NOMENCLATURE

non~dimensional parameter relating the horiz9ntal
force acting on a structure,(or the nover turning"
moment of one part of a structure on the adjacent
part) to the vertical loading~ It is assumed that
nA" :results in positive work being done as the
structure failso

constant

non~dimensiona~ parameter relating the horizontal
resisting 'force or uovert=turning" moment acting
on a structure to its vertical loading. It is
assumed that "D" results in negative work being
done as the structure failso .

Young V s modulus of elasticity

function value
load factor of safety

length measurement. Can be total span length~ or
a fractional part of it&

bending moment

'full plastic moment of a cross~section

bending moment corresponding to working loads

bending mom~nt corresponding to initial yield loads

concentrated loads

concentrated load corresponding to maximum carrying
capacity 'o~ a structure

concentrated load corresponding to working stress
within structure

concentrated load corresponding to initial yield
within structure

hypothetical "over~turningU or resisting moment
assumed acting about the base of a structure

weight per unit length o~ a structural member



Wint = internal work associated with a virtuEU displacement
of an assumed mechanism~

Wext = external work associated with a virtual displ~cement

of an assumed mechanism

a

b

k

t

w

w

~

,E

-- non-dimensional parameter relating the height or a
c'olumn to the span length'l

- non-dimensional parameter relating the total rise
of a rafter to the span lengtho

- flange width

= depth of section

= shape factor = z/s

= runction values

= total ~vertical distance f~om the base or a structure
. , to the instantaneous center ,( I Q Co) of one of its

linkages (which result from the formation of plastic
h1.nges)

= ratio or the full plastic moment values of two spans

= non~d1mensional parameter der1ning the distance from
a support to the placement of a concentrated load
such that it is·equivalent'to a uniformly dis~ributed

loado (Appendi~ A)

= flange thickness

= web thickness

= distributed horizontal load per unit length

= non~dimensional parameter defining the distance to
the",.location of the plastic hinge in the rafter of
a s'tructure

= ratio or the applied horizontal load per root to the
applied vertical load per ~oot

== special virtual rota'bion (see page 67)

- strain,



Ey - strain corresponding to the first attainment of the
yield stress level

a = normal stress

cry ........ yield stress level

Q = virtual rotation

~ := special virtual rotation (see page 44~ .figure 33)

¢ = curvature
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APPENDIX AQ DETERMINATION OF EQUIVALENT SYSTEM
OF CONCENTRATED LOADS TO,REPLACE
UNIFORMLY DISTRIBUTED LOADS--

In choosing the equivalent system» the necessary con~

di tion 'is that the moment diagram resulting from the concen-

trated loads circumscribe the moment diagram due to the dis~

tribu ted loads o

Figure A~l (a) shows a

simple beam loaded with a uni~

formly distributed load o~ w

lbs/fto Its moment diagram is

as given 1n Figure A-l(b) with

-- wL w:x
2 r JM.x - 2 .x - 2 0 0 0 Q 0 0 Q lAUZf1

and

= wL 2 r; ;l
Ms -g 0000000000000 ~=~

w
DJIIIIJIO]]J]]

wL Jw~ ( a)
2

H'
(b)

Moment Di a.gr am

jFIGURE A=ll

The slope o:f the moment dia.gram at each end equals

dMx _ wL r 11-cr:x - Shear == 2 0 0 0 0 <) <) <) 0 <) <) <) <) 0 0 0 0 0 0 <) 0 0 0 0 LA-3J

1o. EQUIVALENT CONCENTRATED LOAD AT MID~SPAN

Assuming a concentrated load at mid~span, the slope

o~ the moment diagr~ at the ends will equal the shear or



1·2 Po Equating this to

Equation A~3

P wL=2 2"

p

p p
2 ~----=------O:~2

P = wL [A-LiJ

IFIGURE A-2l

From the moment ·diagram of Figure A-2 it is observed that

the distributed load .moment diagram· is circumscribed.

2 Q EQU'IV.ALENT CONCENTRATED LOADS

As shown in Figure A-3

two unknowns are involved j.n p p

L

.lFIGURE A-31
\

p

For the end slopes o~

Since the moments 'must also e'qual at the centerline

equal

P =~ u , [A-5J

the moment diagrams to be

points of load application,

mL.

section
PmL == ~2

the ends of the beam to the

this problem: the equivalent

load P and the distant from



A-3

or m = ~ [A-~

3~ CONCENTRATED LOADS

It has been' assumed

that each of the three loads

are equal o Furthermore f) the

loads are placed symmetric

about the centerline of the

bearn.

As seen fro~ Figure A-4
two unknowns are to be evalu....

ated, P and IDo It is also

noted that the two conditions

controlling the determination

p p

J.p
2

( a)

(b)

of these quantities are

l~ the slopes at the ends' of the

bea,mf3 must be e,qua.l; and

IFIGURE A-41

2. the magnitudes of' the moment· values must he equal at

the points within the beam where the slopes are also

equfll.

Using the rirst condition

P = wL fA 6:13 0:. Q & .. • • • • .. 9 • • .'. • D G G 0 eli • • 0 0' • 1& • • II) Q • • • • e L: - :J

or

~P = wL
2 ~.



.A-4
To determine xr~ the distance from the ends of the beam to

the sections where the slopes of the two moment. diagrams

.are equal,

SHEAR = ~p= w~ - WX,

which gives

X t = p ••••• - Q ••• -, e - • Q ••• " • Qi e _ .... 0- • G ...... 0 0. • " •• TA- 71
W ", ~ J. -, ,

Equating the moment values at' this location, it is found

that

---.

But since from Equation A-6

p
w

L=-mL2 ',_

p = 1. wL
3

{i

m = ~ •• .,........ 0 • • .. • • • • .. .[A- 8J
~~ CONCENTRATED LOADS

Using the same pro­

cedure 'for the case of 4 equal

concentrated loads as shown in

Figure A-5, it is found that

p = ~ ' <> [A-9]
l r j

m = 'tr ' and 6 ••••••• 0 ... LA-1C2.I

1n='4.

p p p p

JFIGURE A-51
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APPENDIX, B IMPLICIT DIFFERENTIATION. OF ..

.FUNCTION OF THREE :'VARIABLES"~~~'

Assuming that the three variables Mp ; .t>< and ~ are

related according to the 'function

and further assume that ()t. and ~ are the primary variables

(Mp being an implicit function of ()L. and ~ ), the total .

diff'erent·ial of Mp can be expressed as

• 0 • 0 4 0 0 • .0$ 0 .0.

In like manner the total differential of the function value

itsel~ is given by the expression

SUbstituting Equation B-2 in Equation B-3

~ F· clct. + ~ d~ .+ cl F ["dMp d 0( + d Mp d~ :::0
O~ d~ dMPd lX d ~ J

Rearranging Terms

~;;: + ~~. ;:pJd~ +[~ + ~~p • ~~pJ d0 =0 ~-~

But since t)( and ~ are the assumed independent vwiables

Equation B-4 mus t hold for all value s of ~ and ~ •

_ _ _ _ _ _. _ _ _ _ -. _ _ _ -. ... - -- - - - -- - - - -' - - ..
~~or further information on implioit dif~erentiation see

any text on Higher Mathematics; for example, ttHigher
Mathematics for Engineers, and Physicist.s" by I. S. and
E. S. Sokolnikoff, Mc'Gr,s:w-Hill Book' Company, New York,
1951 (page 138).

..99-



·Th~.re~ore ,

) F '"d-F ~Mp =
~ + dM:P • dot.. 0

~F . ~F ~Mp
~ + aMp. ~~. =0

Transposing

• ~ •• • LO ~ 0 ••• ~ •.•••••

, 0 • • «) • • 4" .. Q ,,'.. Q,' tt. • • • ,0 ., •

B·-2.

For the probl'.eins considered: in this paper it" is known, ~:hat

}.M
E

_
0dot. -

¢M
~= 0

Therefore,

~F 0---- -
&01.

6F"
O'=

d~

• ~ • e _ ••• ~'_ •• ~ •••••'. ~'••••• :

.4 •••• ~ ••••,~ •••••••' ••• ,_ .'••

-lOOr.>



APPENDIX C: SUMMARY OF IMPORTANT EQVATIONS C~l

ww
IIIII1111 J I

1.

p IbL,
~aL or

"t
I

, I '

~la = f.. [iJ--tX)(A+()l.) ] where A = (2a)(L)
wL 4- 1 + b t>(' wL

a

0( = .. ~ (~1 -~ [~c(;l+~)-lJ I_,~ ~,.]_ •• for ~ >0
{)( = [12~ ,-. 0 •••••••••••••••••••• for ~ = 0

p

w
IIIII11I I'll

~bL

--i aL or

w
III I III IIII

~,' _ 1 [()( (1- bl-- )~ ., where A = (2a) (wr,p) .
wL:<I - 1j: 1 + b ~

a

tV _--.L. r11 + b r - l~ .... 0 •••••••• :for ba ,.. 0
V\ - b L a

a

...' •••• "'" 0 0. e • 0 .. • for b = 0
(' a

oclOl~



,'.

APpENDIX ,0 . 0-2

. 3,'•..
.,:. ,w, '

.1 , ,l III I I I I I

; Lj

=t="PL
,

~aL

w
,'·111 I1III1 II

(1 ....

I

~('
, 2~

w w
II I 111111·11

or

IbL
-laL

~I;

p

~2 =0. 0156 for ba >0, MP2 =0. 062 for b =0
~ ~ a

w
11.,1 ! t II1I1I

or

w
111-11111111

. ,,~ ,

. ,

~ = 1 [(0SA X)] where A = (2a) (J....)
wL 2 . ~ 2+ ~ ( b-1 ) W.lJa,

2 [~ 1 A b b) 21J b ~. IX = (1-$) 1- 2 + ~ + a: -A.- , (a .t t " a 0'
. a

CQ102<:>o>



APPENDIX C 0-3

•

p

w
III II III J I ,

~bL
~aL or

w
I \ II III I III

WL:a~
A2
where A =(2a}(~)

. b
••••••••••••• for~? 0

b
~ ••••••••• tt tt 6 • 0 • 0 • 0 r or, a :::: 0

w

p

w
IIIIII f II (I

I. L ~I

II I , J I I f j I ,

~:a = [~J where A == (2a)' (£)

-103.- R



APPENDIX C 0-4

-4L
TeL

[

2b
~:a = 1 ~(l-a D-t>i.) J
wL 4. 1+ b b(

a

1
()(. = '2

w
II III II Illl-LbL

~eL

~2 = 1 [t>( (1-~ D- (>( ~
wL 4. 1 + b b(

a

1 hi b b· I ...J b
if = ~ L1-; 2; D-l -1 · r ; '/ a

1 b
~ = ~ ••• ~o •••••••• OG.ooo ••• o_~.for; =0

-lo4~



" APPENDIX C 0-5

NOTE: D t will be equal to Do

. l~ b b \ ] "bt>( =, b
a

l-(a}' (2a D-l) -1, &.o,.._t<;>r a ilO
~

t/.. = ~o.\ .. o. 'I •• 6 0 0 0." .. 6 .. 6 .... 6' .. 0 ,,,0 6 •...for ~ =0

L

~. =1 ,[( I-IX) (A +bt. -D) -D(~)D(j
wL fa 4: 1 + 6 t>< . ,

a

1 [1J b [ bb JJ J . b
0( = T ~ I-a A(I+a:)-D(I-a)-1 -~r·for ii/O

~ = [l-~+DJ .l! .... hO& ...... n .... "l! •• for ~ =0



APPENDIX C

-L
bL

"IaL

0-6

13.

1()( = -:2

w
1III1I11111

~bL

AWL
2

2 ~ -i)nWL2 =:J aL

1~'EL~~I 2

~ ='[!r.J2]wL 2 '+

Q»lo6~
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APPENDIX C

1111~11111

'ri"/' - ~ .

AW~2~f I _.: ) D~2

~L\--

=!bL
-laL

w
1IIIIIIIIIl

15.



APPENDIX C ,

w

C-8

wL 2
(9

Il1tLltlli

~bL

- ) DwL 2 i aL

2,

'17,.
w

~2 = 1 [A(l-l-i) -D ]
wL 2 2+B.

a

~2 = 0.0625

-108-
R



APP~DIX C . 0-9

=t:'
~2~ __ - -) nWL2 ~

2 ,~- --1' ,2

~
,,' .,..'-~

~2 = i ,trl-~) tA-D(l+i)+ 0(1J
,wL' 2 l 2+~(:L-K)

" " 2 '[1 ! b [ b,l I ]II<.. .,'~ +;:~ 1+J A-D (1+aJ +~ -1 •••••• for ~ 0

tJ,=.[,1-A
2
",,'+,.,D,'] , \," .p, Q 0V\. . • ,•• 0 It •• J.. or a =

20. w
'1111 "11,1 ~ !I'

"",'

-109- R,



APPENDIX D

PLASTIC MODULUS TABLE

d

PLASTIC
MODULUS f SECTION AREA bit d/w

125$b'O 1"0,14 36 WF 3qo 88~17 ,,9091 38 Q 9
1167 0 0 1013 36 WF 280 82 0,32 10 0 57 4~lo 2
10760,0 10.13 36 WF 260 76056 11050 42 0 9
1008 0 0 1013 36 WF 2J-l-5 72 0 03 12 0 23 4500

942 0 7 1.0,1:3 36 WF 230 67'0 73 13 0 08 460 9
918~2 1~,13 33 WF 240 70tJS2 11 0 33 40 0 4
86903 1~23 14 WF L~26 1250·25 5050 10 0 0

836 0 2 1013 33 WF 220 64073 12 0 L~O 42 0 9
803Q 0 1 0 22 14 WF 398 116.0 98 5084 10 0 3

75404 1013 33 WF 200 . 58 0 79 13070 46 0 2

767 I) 2 . 1016 36 WF 194 57~11 9 0 62 4704
73309 1013 30 WF 210 61~,78 11e49 39 0 2

71609 1015 36 WF 182 53~,54 10 0 23 50 0 1
6730 7 1~21 14 WF 370 108078 60 20 10 0 8
659Q6 1013 30 WF 190 55090 12.0 69 42 0 4-
666 Q 7 1 0 15 36 WF 170 49'0 ·98 10 0 93 530.2

62303 1015 36 WF 160 47:009 110 7'6 55'01
611 0 5 IG19 l~. WF 314 92 0 30 7011 12~1

593 0 0 1('j13 30 WF 172 50Q65 14 0 07 45 0 6
59202 1 6 201. '14 WF 320 94012 7098 809

579 0 8 lQ15 36 WF 150 44016 Jq2 0 74 5703
558 0 3 loIS" 33 WEt .152 4~-o 71 10 0 96 52 0,8
55609 1013 27 WF 177 .52 0 10 11 0 84 3707
55106 1018 14 WF 287 84937 7e71 12 0 8

'<=llO~



APPENDIX D

PLASTIC
MODULUS t SECTION AREA . bit d/w
~5:'

~

iol'$51)82 33 WF 141 41051 120 02 ,5.501
50403 1~14 '27 wF 160 - 47 ~,o4 13004 41 0 2
502/) 4 1018 14 WFt 264 77e63 8 0 27 1307

466 0 0 1015 33 \elF 130 .380 26 13046 51 G l
, 46405 1 0 17 14 WF 246 72 0 33 8080 1404

46307 1012 24 WF 160 47004 12 0 41 37'~ 7
452 0 0. 1 0 12 24 WF145· 42 0 68 14032 440,8
44504 1017 14 WF 237 69 0 69 9010 140 8
436'& 7 1 0 15 30 WF 132 38 G 83 10055 4903
427~2 1016 14 WF 228 67 0 06 9040 15~3
41600 1012 24 WF lL~5 42 0 62 13()78 40 0.3
408 0 0- 1015 14 WF 219 64036 9'075 1$1)8

40704 1015 30 WF 124 36045 11,031 52.0
391 .7 1016 14 WF 211 ' 62 0 07' 10 0.11 16e1

3r17 0 6 1015 30 WF 116 34013 12Q 35,' 53~ 2
37306 1015 14WF 202 59$39 -10 0 48 16.8
369 0 2 1$1,2 24 WF 130 38 0 21 1·.5~,56 42<t9
357 0 0 1()13 21 WF 142 It-Ie) 76 llG99 32 0 '6
355 0 1 101.5. 14 WF 193 56073 lqQ92 17~4

34505 1016 30 WF 108 31~77 '13~ 79 54G4
342e 8 loIS 27 W'F 114 33053 110'48 4709
33705 1 0 14 14 \iF 184 54 0 07 11Q36 18.,3
336 0 6 1013 21.~ WF 120 35 0 29 13 e OO 4307
32143 1014 14 W'F 176 51073 11091 18 0 6
317.8 llt12 21 WF 127 37034 13 0 26 3601
31105 1 0 18 12 WF 190 55e 86 7030 13~ 6
307.7 1612 24 WF 110 32 0 36 14~O8 4704

304.4 1.14 27 WF 102 30001 12,,11 52.3
3020 9 ·1013 14 WF 167 49 0 09 12 0 50 1904
298<tO 1619 24 I 120 35013 7,,30 30 4 1

, 28603 1 0 13 14 WF 158 46047 13,,10 2065
278&0 1611 21 WF 112 3 2 e 93 150 03 3908

27803 1012 24 WP 100 29043 15048 51&3

277e7 1~14 27 "wp 94 26091 13037 5409
273~ 0 le17 24 I 10509 30~98 70 15 38~4
270G2 1013 14 WF 150 44 0 08 13075 2184'
259 0 2 1<»17 12 WF 161 47(t38 ,8042 1503
254 0 8 1e12 14 WF 142 41 0 85 14058 21 e 7

c=>11.1=- '



APPENDIX D
"

~~..............

PLASTIC
MODULtTS f SECTION AREA bit' d/w;

25300 ,1'015 24: WF 94 27~ 63 10 0 39. 470.1
·24709 1.13 1,8 V(F l'lL~ 33051 11&94 31~1'
2420 7 161.2 l~~ WF 13,6 39698 1:3 b 87 22t)3
238$8 1 0 21 24 I 100 . 29 0 25 8 .~~ ')

32~1Ai ~,c.

22qo5' J.o1·2 lE\ WF 105 3° 0 ,86 120 94 339 1
226,Q 3 1 01$ 21 WF 96 28 0 21 9.67 36 0 8,
225~9 1~,;.L2 '14 ~ 127 37633 ,14072 2L~tJO

·'·224~·O 1 0 14 .24 14F 8L~' 24.71 11 0 68 '5J-~ 3
220 6 5 :l$14 .24" I 90 26&30 8e:l8 38&5
210.9 lGl1 1'4 W1i1 IJD9 34099 156 62 2$04
209,,7 1 4 15 12 WF 133 39611 J.. OI) 00 17--7
206 0 0 1~~12 18 WF 9,6 28 0 22 14&14 3505
203 8 0 . 1017' 24'! 7909 2~3'G33 ' 8~,O4 48 tJ O

200.1 1~l4; " ~4 WF" 76 22f),~37 ,1.3017 5403
196~O ,1,,11 'lL~ WF" 111' . 32 0 65 16~,.75 26 0 6
1926 ,,0 , '10,20 ,20 I 95, ;, 2'7&,74 ~7 e 86 25(00
191 6 6 i$14 21 WF 82' 2L~()10 11'027 41~8
18604 1~14 12' WF 120 350 ~31, 11o~4 180S
1860 '0 14 12 16 "IF 9,6 ,28()22 13$18 30 0 5
181~O 1$11 14WF 10..3 30e26 17093· 28 0 8
177.6 . 1.()14 18 "wp 8~ 24\197 9'1170· 340 8
17703 1 0 18 20 I 8;5 240 80 7070 30a 6,

172,,1' 1(t14 41 WF 7~3 21.,46 11 0 21 460 7
169 8 0 Ib12 16 WF 88 250,87 14647 3'2(t,1
1660 6 :l~ J.. l 14 ~ 95 27 e' 94 190'45' .3'0.4
1'6304 1 413 1'2 WF 106 31~19 J..2~40 20.8
160.5 1.13' 18 WF 77 22 e 62 lO&r57 38~2

'159& 8 ' 1$14 .21 WF 68 20()O2 J~2e. 07 ,,49 Q 1
151 0 8 1013 12 WF 99 29&09 13'¢f 2Lt '22 0 0
15105 ' 1

0
20 20 I 75 21,.90 8 b lO' ,·,1,& 2 '

151,&3 1.10 14 WF 8'7 25~56 21~,O8,: 33:~3
,'~47~'5 10:1,7 10 WF 112 32.96 '6:,."3:,5· ':L561
145~5 1.14 16 WF' '78 2~o92' g e 8'1 3°,~9
1450:4- '';l'l·,:'l]. 14 WF' 84 24.71 ·15& 45 3J.tl4.
144~7 1,~'13 18 w:F '"(0 .20 0 56 11&65 41 .. 1
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, APPENDIX P

, PLASTIC
, MODULUS t' SECTION 'AREA bit . d/w--

14401 ' 1~14 21 'WF 62 .18 0 23 13~40 5205
1400 2 1$12 12 WF 92 2 l l e 06 :l~.o 2,0 2.3'$ 2 "
13703 1()17 20 I ,6504 ' 19Q 08 '. 709~ 40 0 0
134() 0 loll 14' WF 78 22 0 ,94 16071 ~209

'. 13J.~ 8 1 0 ,13 18,. WF 64 18~80 '12 0 70 403
.131G6 ' 1014 16 \iF' 71 20$86 100 75 33-$3

1300 1.. 1016 10 WF 100 29,,4~ 9& 25' 166 2
129~1 1 0 12 12 WF 85 2469 159 21 25e3
~.25()6 1~12 14 WF' 74 ' 21~~ 76 120 86' 31 0 '5

'123"08 1.()21 18 :r ' 70 20&46 9,0 0.5 250,3,
\ . ..

,'1220 6 . ,1014' 18 WF 60 ~17'Q 64 ~ 10 G B7 4369
119&3 1011 12 WF 79 23G 22 ' 16o~l" 2663

. 11709 1'013 16 WF '64 ' '18t)'80 1,:1 0 90 36 0 1
'1140 8 l&l~ 14 WF 68 '20 0 00 ·13'098 33.6
11404 1015 :10 WF 89 ,26~ ~19 .10 0 30 ~7~-7

, 11106 10.14 18 WF 5.5 16,019 11'096 46 6 5'
'lOBol loll, J_2 WE' 72, 21016 ,17'0 94, 28 0 5
'106 Q,2, 11)13 16 WF ,58 17 0 04. 13612 39 0 0

" '1,03.5 1017 ,18 ,I ,5407 1$094 86 68 39 0 1
..

lO2g~4 loll 14 WF 61 17<t94 15Q55' 36 0 8

100.8 1 0 13 18 WF ~o 14071 13016 50 0 3'~

'9767 . J~E)13 10 WF 17 22 0 67 '11t>75 19~9
970 0 1.1)10 12 'WIt' 65 19 s lJ~ 19 0 80 31~1

92 6 7 ' lQ15 16WF $0 14070 11 G 26 420 8
'90$'7 1 0 13 ' 1.0 WF 72 21,018 124 59 20'.,6
870·'1 1(\12" 14 WF 53 15e59 12 0 25' 37a7

, 8,6(\5 1<111' J.. 2 'WF 58 17 0 06 1.50,62 34'00
'82:8 ,.

1.012 10 WF 66 ,1.991+1 J~3.,53 22~7
-

82.0 '0 1 0 13 16' WF 45 130,24 123 50 46ft 6'
',78.51 11)12 . 14 WF 1.,.8 14~oll J·30 54 40 0 7 -
78 0 16 loll 12 WF 53 150$9 17036 35b O
76$5 1 0 19 15 I 50 'lL~Q 59 9 0 0,7 ~7t)3
7501' 1 0 21 10 W1it 60 17 0 66 14075 2407
72.. 7 1013 1.6 WF ~.O 11077 13092, 52 0 1
72,()'5'7' lG'12 12 WF 50 14. 7'1 128 60 "32.9
70 0 1 1016 8 WE' 67 ,19&70 8$88 1507
·698 65· 1.11 ' 14, WF 43 120 65 1501.5 44&4
68()'6 1&'1,6 15 I 420 9 12 0 49 80 84 360 6,
61.0. 1,1(\11 10 WF 54 15988 J~6o 23 27&5
,64$ 88' 1 0 12 12 WF 45 13&24 13~96 3509"



APPENDIX D ·D~S·

. ,

~.

,PLi\ST'IC
MODULUS ;f SECT'ION' AREA . '.b/t d/w ., ,

. 636'9
.,

1 0 1}+ 16 WF ,:16 ,,100-59 160 34 53'0.0
, 61049 1 0 13 '14 WF 38, llG17 13 0 21 4501,

60 0 65 ' If)2'l, 12 I .50 l~~o 57 " 8(\,31' 1705 "
'60 0 3 '1~t)11 l() WF 49, 140 L~O 170'92 29,() 4
5909 lel,5 8'WF .58 +7 0 06 J.O~ 18 17'02

,570',6 1,el1 12 WF ,40 , l:le '77 ,15050 ,,4°,0,6
54095 ' , ,1 9'12,' 10 WF 45 13 0 24, 12,,98 28 q 9"

""':"

':,5405 1.12 1-4, 'w" 3~~. 10 0 00 14690 48 0 8
"52,0,45 1'0:1.7 1'2 I 40Q8 11 4 84 ,7097 26t)l',

t1642 1 0 12 12 WF 36 ' J.0059 120 16 40~1.
9 0 0 1013 8WF '48. 140 11 11 0 88 210'0

4701 . 1013 14,WF. 30 80 81 17Q.58 - 5,1&3
46'095 loll 10 WF 39 ,ll(t~.8 1$013 31~3'
44~37 ' 1617 '12 I 35 10e20 9033 ~8. 0,

,,43<t'96 ' 'J.. ~~,12' ',1,2WF 31 9612 140 03 45()6
41058 ' "1~16' 12 I 31 6 8 9 0 26 , 9~ 19 34()3
3909 1&12' , 8 ,WF 40- 11a76 '14047' 22<"1 6 '
38 e '8 J.~ 11 10 'WF '33 9071 . l8 G 3,9 3304

37097 1.11 12 WF 2~r 7r,97 16.25, 49t)8'
35.16, 1 0 20 10 I 35 100 22, 1060~ 1,6 8 8

: 34'0 70 1.12 8 WF 35 10 6 30 160 2 25 0 8
34q70 1.13 10 WF 29 8 G 5,3 11060 ' 35~4
32.8 1014 8 M 3403 104 09 18 0 26 21q~

, ,30~>4, ~'~ 11 8 WF 31 9012 18 0 48' 27&
-

7035 40.,029~9 1012 10 WF 25· 13& 1+0

290'35 '1.16 12 B 22 ,60'47 90"5° 47~3
28 4 Q4 .1~15 10 I 25.4 76,3'8 9649 32,'3
270':+' 'l~'12 8, WF ' 2e '8 0 23, 1~-613 28~'3

24~78 1 0 16 '12 B 19 · 50'62 llo50' 5'0'07','
2401 1(t,12, '10 WF 21 6.19 1,66 91 41,~3
23.4-2 . 1~'12 8 M 24 70 06 17l\33 33.3
23.1, loll 8WF 24 7_06 16$33 326 4
21 e 5'6 1.15- - 10 B 1'9 50 61 10e 20" 4J.'q 0

20 0 61 1[\,18 ' 12 B J.6 9 .5 ,4 6 86 14()87 52(92,
19~ l,5 1.20 8 I' 23 60 71 9 G 81 18~1

19&1 11)12' 8 WF· 20 5688 13t)94 32.8"
190 03 1413 6 WF 25 7ft3? 13033 ,1999
lB o ,63 1 6 15 ' 10 B ' 17 4$98 12'019 42 6 2'

"'17,.,-,86, 1.~14 6 M 25 7035 110 88,' . 19'02
, 17'046' 1015 8 M '20' "5 0 88 17~12 22 0 9



." .APPENDIX D D-6 '.'

PLASTIC
MODULUS ~ SECTION AR'EA o/Jc ' , d/w

17$39 1~18' 12B 14 4014 17'.72 5966
,16434 1415 8 I 1804 503'4 904·1 29$ 6
15.97. lQ16 10 B 15 4o~~o 14.87 4365
15,8 101'2 8WF 17 .5&00 1700,5 34,.8
1.5.70 1.12 8 M 17 5.00 ].60 77 3Ro 3
150'°4 lQ12 6WF 20 5.90 16.40' ~' (to
14056 . 1$14 6M . 20 5.88 1.5.83' 24 0 0 -
14Q37 1 8 20 7 I 20 5tJ 83 9~85 '1.5. 6

14q 21 1018 12 Jl~"-11'.'8 3q45 12.25 '68.6
13~'59 1&15 8 B J~5 4.~·3 . ] .. 2 0 79 33.1

120 13 1.0 16 ,lOBIJ.o5 3.lI39 19<>36 54a8
11094 J-015 7 I 15.J 4·$~-3 9.33 28.0
11.61 1&12 6 B 16 4072 9.98 24~O..
11.35 1.15 8 B 13 3.83 1.5.75 ·3L~. 8
11.35 '1..14 5 WF 18~.5 5045 '11.96 1903
11.29 . J_.12 6 WF' IlJo5 44t43 9~33 28 0 0
11'. 06 . ·1.16 5, M 18 0 9' 5.56 llo42 ].6 0 0
10.49 . : 1()21 6 I 11_ 25 5.02 9.93 12.9

91'62 14\1.3- 5WF 16 4.70 J..3.89. 20.8

9.23 1.'18 10 JR 9 2 0 64 140 ~30 64·.5
8.85 1.14 '8 B 10 2 G 95 19031 1+6<f5
8.36 1 0 15 6 I 12.5 3.61 9«t28 26.1
8.Z5 1.14- 6 B 12 3<453 14034 26~1

7.37 10.23 5'! 14~. 75 4&29 10.07 10 0 1
6~ 29 1015 4"WF 13 3.82 11"'77 lL~. 9
6.11 11)17 4M 13 3Q8~ 10.67 ·16~ 0

5.70 1e12 6 B 8.5 2 8 50 20.30 3403
$~,57 1.16 ;; I 10 2 0 87 9.20 23'tt8

5,,·44 1.16 8 JR 6q 5 1~92 _12~ 13 59(1'3

4.03 lc~5 7 JR 5~5 ' 1061 11~O5· 55 0 6'
4.02 . J~() 22 ' 4 'r 9.5 2 0 76 9.54 12.3,
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