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SYNOPSIS

Present day analysis and design of confinuous
structures as defined by specifications and design codes
are based on an assumed elastic behavior of the structure.
The criterion of the design in most cases 1s the attalinment
of an allowable extreme fiber stress, Whille a design that
results from nsing such a procedure will be safe, the actual
degree of gafety is unknown and may vary between extreme
limits.

During the past several years a different type of
analysis based on the ultimate strength of a structure as a
whole has been developed, This new procedure known as
"plastic analysis" or "plastic design" gives a clearer in-
sight into the actual strength behavior of structures and
therefore promises & more economic usage of materials, It
should also be noted that the procedure is rational and has
proven to be extremely time saving,

After reviewing the basic assumptions of plastic

analysils, thils dissertation presents a method whereby ex-

tremely complex multiple span frames can be readily designed. .

Several examples are carried out, The problem of economy in
main member 1ls also discussed and procedures are presented
whereby the design of a "least weight" structure can be

approached,



I, INTRODUGTION

1. Historical Review | | |
| - In 1917 in his inaugural address™ at.the University
of Delft in Holland,Kist'raised the question-—should design
| be Based on‘an arbitrary allowable stress value or should
it rather be based on the actual ultimate carrying capacity

(1)WW. It was realized even then that struc-

of a structure.
‘tures posseséed reservés in strengths beyond that predicted
on the basis of initial yield of the most highly stfained
fibers within the structure. .Kazinczy(z) had‘in 191l car-
ried out a series of tests on indeterminate beams and had
verified that such members possess a large reserve in
strength beyond the elastic 1limit, Further, he had observed
that at near.ultimate loads what might be thought of as
"yield~hinges" developed at sections of maximum momént with-
in the girder. That is, the beam would rotate at these
sections while maintaining a relatively constant value of
high moment. It 1s with the realization of thesé'two con-
6epts that "Plastic Analysis" came into being,

The early developments of this method of structural
analysis were due primarily to the efforts of Grining,

e e ma @ w pmp  em @w  ©0 A om o G Om  sm pm e o e Gw @0 bm wm om e me  em G e

*'Leidt een sterktebereekening, die vitgaat van de even-
redigheid van kracht en vormerandering, tot een golde con-
structie van ijzeren bruggen en gebouwen?", Inaugural
?isseytation of N,C., Kist, Polytechnic Institute, Delft

1917

**These numbers correspond to references tabulated at the

end of the report, They are listed in order of appearance,



R EXI

Maier-Liebnitz, Girkmann and Blelch in Europe, It should be

pointed out, however, that dufing this period few if any

structures were designed using such an analysis. The con-

cern over the problem of variable repeated loading and the

lack of full scale confirmatory tests resulted in a feel of
insecurity on the part of the designer when using such a

procedure,

In 1936, however, the problem was revitalized. This
was due almost entirely to the efforts of J.F, Baker in Eng-
land who initiated a research investigation into tﬂe ulti-
mate strength behavior of steel structures first at Bristol
University and later (1943) at Cambridge Universiﬁy. This
study, which is still underway(3), has resulted in the form-
ulation of a Plastic Design Specification (or as it is term-
ed in England, the 'Collapse Method of Desigr{’(m)c Many
structures have been designed using this procedure.

Several years after Baker's group started work in
England Van den Broek published his paper on "Limit Design"(sl
This work again focused the attention of the pfofession on
the question, what should be the basis for design. In 1946
a research investigation was started at Brown University by
Prager and his colleagues, Their efforts were in general
directed toward the establishment of the mathematical laws
and proofs governing plastic analysis. This ﬁork has now
advanced to the stage where it is felt that at least theo-
retically plastic analysis solutions to extremely écmplex

problems can be obtained,

_3...



At the same time that this work at Brown was under-
“taken a study of the behavior of Welded Continuous Frames
and Their Components was initilated at Lehigh University. A
large part of this work has also been concerned with the
»general problem of plastic analysis and design, Many full

size structures have been tested as part of this study,



2, Behavior of Structures Above the Elastic Limit

To understand the behavior of structures or struct-
ural components it is'necessary that attentioh first of all
be directed toward a consideration of the basic bending
stiffness relationships of structural members, In the
elastic range 1t 1s known that a linear correspondence exists
between applied bending mpments and resulting curvatures,
The equation relating these quantlties is

B = M/ET®  .iievanononnecassnneocasanas(l)
where @ is the rotation per unit length (i.e. curvature),
M is the bending moment at the section in question, E is
Young's Modulus of Elasticity and I is the moment of in-
értia'of the cross-section about an axis perpendicular to
| the plane of thé applied bending moments,

In deriving the relationship between moment and
curvature above the elastlic limit, 1t is necessary that
certein assumptions be made., These are as follows:

1. Plane sections remain

0‘ I
: F]
plane; that is, bending

c
strains are proportional

M = = ———

to the distance from the e

e om e  mm  em  om D bm bw o e o0 om  Gm  cn me M3 oM om  em &3 0 Ow  Gn e e me  em e oo

#See any standard text on Strength of Materials,
| -G

neutral axils,



2°_The streSSwstraén relationship is as shown in
Figure (1). (It is further assumed that the
behavior in tension is the same ag that in
compression).

3, Equilibrium exlsts between applied loads and
momenté and the resulting stress distribution
pattern, That is,

p = [caa
A

60000000000000'0000'0(2)

M= AfoydA

Ly, Deformations are small such that
tang = ¢
Based on these assumptlons it can be shown(éh(Y) that the
moment-curvature relationship for a wide flange type of

cross-gection is in general as shown in Figure 2b,

, i
{
Py

DI S
() T L &L F

Stress Distributions
(a)

gy

FIGURE 2

.




It should be noted that as the moment is increased‘beydnd‘

the initial yield moment, My, curvature increases at an ever

increasing rate approaching Mp, the full plastic moment
value, asymptotically. This value of moment is approached
rapidly,

. The magnitude of the full

plastic moment is determined from

.
an integration of the stress dis- Eggﬁ
tribution pattern shown in Figure = = j>@p
3. Even though the value of curva- éféé

ture indicated by this diagram
could never be realized, the error

FIGURE 3

in moment value resulting from the
agssumption of this stress distribu~
tion versus a "more realistilc" one
is extremely small,

As In the elastic case where it 1s convenient to ex-
press the yield moment as S0y (where S is the section mod-~
ulus of the section in question), the full‘plastic moment
value Mp can be expressed as

My, = 20y saesscpsonceancocasancsasnan(3)
where Z is the plastic modulus. Plastic modulus. values for
standard rolled shapes are tabulated in Appendix D of this
paper accérding to decending values of Z, The most econ-
omical (i.e. least-weight) sections are at the head of

each grouping.



Having this relationéhip between moment and curva-

ture in mind, consider now the

behavior of a simply support- .

ed beam loaded as shown in Figure la,

P
L R R
A\\\§ _—’/ﬂ l A 4 ! .
| T ‘T_‘ Py-¢-—~-— :
213 P P
L S
>
(a) Loading Condition
. ‘QP T 1
X 4 l M
N | M
AN
Vo =+
A
(b) Moment Diagram (e¢) Load-Deflection Curve
FIGURE L

Moment diagrams corresponding to two values of the load P

are given in Figure LD,

centerline deflection plot for the beam,

In Figure lc is shown a load versus

As the load is

increased from zero there is first observed a linear range

of P versus A.

of M versus @ of Figure 2(b).

-8

This would correspond to the linear range

As moment at the centerline




section exceeds the value My, however, the relative stiff-
ness (i.e, the increased moment associated with a unit in-
crease in curvature) is markedly reduced, This results in
a relatively weaker member for an increase in load and
ﬁherefore the beam deflects at a greater rate. As the load
P approaches its maximum value 131 (which corresponds t;) Mp
at the centerline section) the beam reacts to increases in
load as if a hinge ("plastic hinge") were located at its

point of mazimum moment (see Figure 5),

FIGURE &5

It is therefore seen that failure corresponds to the
development of a kinematic mechanism; real hinges being
located at sections (I) and (3 and a plastic hinge at
section C)o |

The behavior pf'a redundant structure is quite
different, Cénsider.for example the same beam but with one

end fixed (see Figure 6a}).



n A

(b) Moment Diagram (¢) Diagrammatic¢ Tioad Deflection

<

Curve

FIGURE 6

As the load 1s 1lncreased from zero there is first observed
the linear range of P versus A the same as in the case of
the simple beam, Also, as the load continues to increase
jielding-occurs at the fixed end, This, however, does not
resuit in the failure of the beam. In this case,after My
is reached at the fixed end, the beam réspoqu to further
incneases in load as if it were a simple beam subjected to

an end moment, In other words, a redistribution of moments

=10=
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(a) Loéding Condition

| a—

l T“\\ v P P.
N1/
. \\ ' = 1;
\\ P P
v’ 1 , A |
(b) Moment Diagram (¢) Diagrammatic¢ Toad Deflection
Curve

FIGURE 6

As the load is increased from zero there l1s first observed
the linear range of P versus A the same as in the case of
the simple beam, Also, as the load continues to increase
jielding<occurs at the fixed end, This, however, does not
result in the failure of the beam. In this case,after My
is reached at the fixed end, the beam responds to further
incneases in load as if it were a simple beam subjected to

an end moment, In other words, a redistribution of moments



will be associated with an increased load. Continuing to
increase the load still more initial yield occurs at the
centerline section and the load deflection curve again
changes slope., As Mp is developed at this section the load
deflection curve becomes horizontal, or‘in other words the
maximum load is realized. Here again the condition of
failure is the development of a mechanism, a real hinge
existing at section (:) and two plastic ones developing at
sections @ and ®° |

Other similar examples could be cited, It is felt,
however, that these are sufficient to illustrate the basic
behavior,

For completeness, 1t should be pointed out that the
following assumptions common to simple plastic theory types
of solutions have been made: »

1. No instability will occur prior to the

attainment of the full plastic ioad°

2., The influence of normal and shearing

forces on the plastic moment is neg-
lected.

3. Deformations are small such that the

equilibrium equations can be formulated
for the undeformed structure.

Other assumptions necessary for a simple plastic
theory solution that will be made in the remainder of
this paper are:

w1




li. Connections are continuous such that the
plastic moment Mp can be transmitted.

5. The loading is proportional (i,e, the
ratios between the various loads re-

mains constant during loading).

3. Necessary and Sufficient Conditions for a Plastic

(3)

Analysis Solutilon

It is noted that in each case discussed in the pre-
ceding section failure corresponded to the development of a
mechanism. That is, the structure could deform with a zero
increase in applied loads, Also observed was the condition
that the mazximum moment to which a member can be subjected
is its full plastic moment, Since a structure must at all
timeg be in equilibrium with the loading to which it is
sub jected, this constitutes a third necessary condition
for the analysis, The conditions that must be fulfilled
then for the attainment of a plastic analysis solution are
according to the simple plastic theory as follows(B):

1l. the structure must be In equilibrium

with the applied loads,

2, a Mechanism must be formed, and

3. nowhere will the moment value exceed
the full plastic moment of the section

in question (i.e, =My £ M & Mp).

] De



For comparison, in an elastic analysis golution the con-
ditions required are as follows:

1. the structure must be in equilibrium with

the applied J_oads‘9

2. there must be continuity at the joints; and

3, nowhere will the stregs exceed the initial

yield stress. (0 < ay),

The correspondence between the necessary and sufficient
conditions of an elastic analyéis and a plastic one is
(9)

therefore as shown in Table 1,

TABLE 1

ELASTIC ANALYSIS

PLASTIC ANALYSIS

l. Equilibrium

2, Continuity at
Joints

l. Equilibrium

2, Development of
Mechanism
3. =M

L A
p EM £+ My

. Method of Solution

Several approaches or procedures could be used to
~arrive at a solution that will satisfy these conditions,
The more noteworthy among these are (a) the "Equilibrium"
Method, (b) the Mechanism Method, (c¢) the Method of In-
equalities, and (d) the Moment Balancing Method,
(a) "Equilibrium Method" (4) , (10)
For a contlinuous beam problem it is possible to

visualize from the outset the general pattern that the
~13=



ultimate strength moment diagram must take, A plastic
analysis solutlon could therefore be obtained by adjusting
the magnitudes of the maximum moment values of this diagram
always. keeping M £ Mp.until a sufficient number of plastic
“hinges had beeh developed to reduce the structure to a
mechanism, This method is a simple and relatively fast
meang of solving continuous beam problems, It can also be
effectively used in the solution of certaln types of frame
problems where only one or two redundants exist. The
solution to more complex problems by this method, however,
becomes extremely complicated.
(b) Mechanlsm Methdd(g)’(ll)
The mechanism method appréaches the problem from an
entirely different point of view, Since the structure will
fail at its first opportunity, a systematic investigation
of each of the possible fallure configurations and a deter-
mination of the corresponding critical loads will enable
one to gelect the lowest of these and thereby the correct
solution, Since a procedure of thils type gives an upper
bound to the carrying capacity of the structure(ll), it is
necessary to determine a lower bound in order that one be
certain of the correctness of the agsumed answer, This is
accomplished by the establishment of the moméht diagram
(Plasticity check), If 1t nowhere exceeds Mp the asgsumed

solution is the correct one, each of the three necessary

conditions being fulfilled,

1l



This type of procedure is very general and lends
itself readily to the solution of extremely complicated
prcbiemsa It will be usged in the developﬁent of the solu-
tion to the multi-span problem to be discussed later,

(¢) Method of Inequalities(12)

Since 1t is known that a member can sustain a moment
equal to or less than its full plastic value, a set of
linear inequallties could be written for each of the points
of possible plastic hinge formation within the structure,

By combining and eliminating these inequalities the correct
solution can be obtained, While this type of procedure is
elegant, a cbmputer is recommended for the solution of the
more complex problems,

(d) Moment Balancing(lB)’(lu)

As in the case of elastic design a successive relaxa-
tion of moment values could be carried out for plastic de-~
sign taking into account the plasticity condition, For
analysis or design by this method a much greater degree of

freedom 1s allowed the designer than in the elastic case,

The mechanism method will be used in the development
of the solution to the multi-span rigid frame problem, It

will be discussed more in detall in the following section,

w15




5. Mechanism Method of Solution

Since the mechanism ﬁethod assumes a possible.failuré‘
configuratioﬁ from the outset, one of the tﬁrée necessary
conditions for a plastic analysis solution 1s automatically
fulfilled. If in addition a virtual displacement type of
procedure is used to relate the eéternal loads to the ine-
ternal stiffnesses of the varlous members, then equilibrium
is also satisfled®, As was polnted out earlier the only
remaining condition to be fulfilled i1s the plasticibty one
(l.e. =My & M 5 Mp).

For illustration of the method of solution consider
the fixed base gable frame loaded as shown in Figure 7,

As in all solutions based on the simple plastic theory loads
are assumed to be proportional, the influence of shear and
normal force are neglected, deformations are small such
that equilibriﬁm.can be formulated in the undeformed
pogitien, the comnections are such that full moment transfer
can occur and the structure will not become unstable prior
to the attalimment of the full plastic load,

First of all, the locations of all points of possible
plastic hinge formation must be ascertained. Since no loads

m ew e ot B8 e3 G® &2 2t em  Gm oo G0 @0 os  ©O oo ©3  tm  tm 6o &9 0o ©3  es  om o e e ome

¥It should be pointed out that such a procedure assumes that
the structure and the applied loads are in equilibrium at
the instant that a mechanism is formed, Therefore, the in-
creage in Internal work assoclated with the virtual dis-
placement must equal the corresponding external work, More-
over, the increase in internal work will take place only at
points of plastic hinge formation since only at these
points will increased rotations occur,

-1 bm



are applled to the columns

‘along their lengths, shear L L
in these members will be ‘ '
constant, Therefore, P P

maximum moments can occur C) C) Y
' L
b (:L///Tf//\xﬂg\\\\‘c)

only at the ends, This L=

. M

gives four possible points Mp P
C:%w F;:)
of plastic hinge formation.,

Under each of the vertical ot LT,

loads, F, shear can also be

equal to zero, These then

are also points of possible | FIGURE 7l

"hinge" development., Since

the structure abruptly changes shape at the peak of the
rafters this presenté another possibility. The points of
possible plastic hinge formation then are as numbered ()
through (7) in Figure 7.

The next step is to define all of the possible comb-
inations of these "hinges" that result in failure configura-
tions (i.,e., mechanisms), As an aid in determining these
‘failure forms, a rule has been formulated (see Ref, 9 or 11)
for the definition of the number of indépendent condition
required to solve a glven problem. These independent con-
ditions correspond to the independent failure mechanism

(ll)that if N represents

that must be sought, The rule states
the number of possible plastic hinges and X the number of

.17




redundancies of the structure,

then (N-X) independent mech-

anisms will be needed to solve
the problemnm,

| For the problem under
consideration there are 7
points of possible plastic
hinge formation and the
structure is 3 times re-

dundant, Therefore

]

7 number of possible hinges

- 3 = redundancy

Li = number of independent

mechanisms
Obviously, each of the rafters
could fail as a beam as shown
in Figures 8a and 8b, The roof

part of the structure could re-

(d) Gable Mechanlsm

[ FIGURE 8]

main rigid in itself and the whole could side sway as shown

in Figure 8¢, The fourth chosen independent type of failure

occurs when the left hand column remeins vertical and the

rafters spread as shown in Figure 8d, (i.e, a geble mechanism).

Not only rmst these fallure configurations be in-

vestigated but also all combinations of them., For example,

beam mechanism (&) could be combined with gable mechanism.

(d) and result in a "new" mechanism having plastic hinges

=1 8=



at. locations @ s @ s @a.nd@,
A majority of thg possible cowmb-
-imatiang\ar@’shgwm in, Figure 9,
| The ne#t sﬁep in the
solution of the problem bj the
mechanism method is the deter-
mination, in terms of the given
léadsyof the critical My value

corresponding to each mechanism,

Beam Mechanism (a)

As shown in Figure 10,
if the 1ink @- () of the
 rafter CD=4:> is subjected to

a virtual rotation of @ about

point (@), then point(3) will

FIGURE 9

move to the right and down
through a vertical distance ©L, Since the horizontal pro-
jection of the link (3)-(l) is also L, the linkage @«-@
will also rotate through a virtual angle 8 with respect to
its original position. The total change in angle of the
member at plastic hinge (3) 1s best determined from a con-
sideration of Figure 10(b)., As seen, the member rotates.
through an angle of © on each side, Therefore, the total

angle change equals 20, Equating the internal and external

«19=




works associated with this
virtual deformation condi-

tion giveé
Wing = YWoxt

Mpe + Mp(29) + Mp@ = P(6L)

[ e —t N

e@ e e®

or
_ PL <
Mp-—'Ia-oeooa.Qcooeooo(“—) /y/}e

=946

Beam mechanism (b) of Figure 8 © (b)
will result in the same value [FIGURE 10

‘OfMa

P ) oL (P - P
For the panel mechanism *ﬂ:r* 1 l

(see Figure 11) 1t has been

agsumed that a virtual rotation
oY
© occurs in each of the columns,

The corresponding angular re-~

lationships are as shown, There-

FIGURE 11
fore,
Wint = Wext
Mpg + Mpg + M@@ + Mpe = P(LO)
or
= PL L) 8 639 06 6 00000 © 8008 0Q0 [.]
Mp -'E @9 00600800 Q o o 0 0000(5)

Whereas the inter-relationshlp between the various
rotations at each of the plastic hinges within the structure
have been easy to determine thus far, this will not nec-
essarily be the case for the remaining failure modes,

-20-



Congider the gable mechanism shown in Figure 12a,
If it is assumed that the right hand column rotates through
the virtual angle 0, then point <:> will move horizontally
to the right a distance of 6L, Because of the symmetric
type of deformation pattern; that is, rafter <:>=(:> rotates
through the same angle as rafter <§>=(:>; the horizontal

projecfion of the movement of (kb,<:> |
point (:) will be one-half f;::/l; BL
— ket
that at point (6) or L6L
c 6eL 6L
as shown, In so doing "H"Z" — ,e—
(see Figure 12b) the move- p
ment of point (L) has a
vertical project equal

tb L. This requires

that each of the rafters 4L, l

rotate through angles of ' ’
_OL/2L or ©/2 with respect

" to their original positions,

FIGURE 12

The total rotations at the various hinges are therefore as
follows:

HINge 2 sevoocsssss®d/2

Hinge L ceoocoeecs®/2 + 0/2 =86

Hinge 6 coeccocoee®/2 + 0 = 30/2

Hinge 7 csocecccoaoc®
The distances traveled by each of the vertical forces P in
the direction of the force are (L)(©/2)., The critical load

is then
-2 -



Wint = Wext
Mp(e/2 + 6 + 30/2 + @) =P (L9/2) + P(Le/2)

or Mpz—ﬂ oooooooooooooooooooooooooooooooohaooo(6)

We will now solve this same probiem:by a slightly
different method, one that is usually referred to as the

INSTANTANEOUS CENTER method %’ (Z0)

« (It should be pointed
out that we are not here talking about a change in the
hechanism method of solution as such but rather. a change
in the method of defining the geometry associated with any
chosen virtual deformation).

Consider first the
structure from an over-all
point of view, For the
failure mechanism belng

investigated the left

hand column 1s assumed

— |

to remain vertical, I

Rafter (:)_(:) will al

therefore rotate about ¥

— —

point (:) as its center,

Likewise the right hand

column (:>~<:> is cone-

strained to rotate about

its base, point <:>° As | FIGURE 13 |

to the point

22




“about which the rafter ()=~ @) will rotate, end () of the
rafter must move in‘ a direction perpendiéular to mémber
@-® ., whereas end (@) must move horizontally to the
right, With this information. it can be shown that member
@m@rotates about I.,C., its instantaneous center of ro-
tation. (The location of this point is from purely geo-
metrical considerations). ‘

If the base of the right hand column 1s again selected
as the starting point, and the member @~® is subjected
to a virtual rotation of ©, then point @ will move to the
right through a distance @L. In so doing it requires that
end (& of the rafter () - @) must rotate about I.C, (its
instanteaneous center) through an angle OL/2L = ©/2, At the
same time point @ moves to its new location; which is /2
times the distance from @ to I.C, below and to the right of
its original position. Since the length of rafter @-@
is the same as the length @m I.C., member @«-@ will
rotate through an angle of /2 at plastic hinge \‘v®o

The total rotation at plastic hinge (@) then is 6/2;
at plastic hinge @ 1t will be the sum of that occurring
at @ and at I,.C., i.e. 6/2 + 9/2 = 0; and at plastic
hinge (®) the sum of that at I,C, and at (D, or in other
words /2 + © = 30/2, These values are exactly the same as
the ones previously obtained, The resulting solution for Mp
in terms of P will therefore also be the same.

Using the instantaneous center method of defining the
geometric changes assoclated with a given virtual displacement,
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consider now the solution to L 5 L

composite mechanisms shown P I.C.
. _ _ -

in Figure 9,

8ince for the mech-

anism shown in Figure 1l

iﬁgjmﬂﬂ
S

&)

9

the left hand column is

assumed to remain vertical, LLL

the instantaneous center of

linkage (3)- (®) is located

a distance of &L vertically

FIGURE 1l |

above plastic hinge @.

Assuming a virtual rotation

equal to @ at plastic hinge (7), linkage (3) - ()) rotates
about its instantaneous center, I.C., through an angle of
9/2, For this to occur linkage @=® is required to
rotate through an angle of %Q since the distance from I,C,
to 3 is three times that from (@) to (3) (note the
horizontal projections). The total rotations at each of

the plastic hinges are therefore as follows:

Hinge @ secesss 30/2

Hing'e Q) cecese. 368/2+ 0/2 = 20
Hinge (&) coecen. 8/2 + 6 = 30/2
Hinge (7) ccoeoeo O

The solution to the problem is therefore,

-2y~



Wintzwext
My, [39/2 + 20 + 39/2 + é] = P(30/2) (L) + P(6/2)(L)
. N Y@ v “ V@ ./
or PL
Mp"‘ 3 ccoeaoqaooaeooaeoooa-oooooooa.oao‘o(7)

For the mechanism shown

L L
in Figure 15 the,I.C, of linkage l

® - @ is located 2L/3 vert-

ically above point(§)., Assum-

ing then a rotation of @ at QL
3
hinge (7) the rotation at I.C. L
will equal %@ while the
rotation at hinge @equals
/2, To obtain the solution
_ N FIGURE 15
Wing = Wext |
M, (e/2 + 9/2 + 36/2 + 30/2 + @ + 0)=PL9/2 + PL(30/2)
p (8/2+ 9/2+ 30/2 + 30/ LO)=PLe/ (36/2)
| e® e® e® e®
or ~
PL

Mp - 3 oooooooooooooooo.ooooeooooaoooooo,oo.in(8)

Going through the same process for the remaining

mechenisms, the solutions shown in Figure 16 are obtained,

o

M= gh PL aueveseesd9)

| FIGURE 164
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5’5% oogoeoo-ouoo(lo)

= ‘3" PL ooooeocoao(ll)

[FIGURE 160

Assume now that a8ll possible failure modes have been
ekamineda From the resulting equations (4) through (11) it
is noted that equation (9) requires the greatest M, value.
and it is therefore assumed that this 1s the correct solu-.
tion., To be certain that such is the case, a moment diagram
for the supposed solution must be drawn, (see Figure 17%),

‘Consildering the |
right ‘hand columns as a
free body and taking moments
about the top of the column,

the horigzontal reaction BH

is found to be

N Ut
By gz_f

s om b® om ow em & oo en e o o oo oo G Gn  Gn om0 Gm  om &R O3 O3 om o3 @3 e W e e

%It should be noted that the Mp moments act to oppose the
deformation, ¢
=26~



For the complete structure as a free body (taking méments
about (A)

- M
‘BV = 2,71 m£

The remaining reactions are
therefore

AH = 0057 P-,I-E

and

Ay = 2.43 Tp
: FIGURE 18

The moment diagram 1s as

shown in Figure 18, (Notes

moments are plotted bn the tension side of the members),
Since the structure is in equilibrium with the app-
lied loads, since a mechanlsm 1s formed and since nowhere

does the moment exceed the full plastic value; this is the

correct solution,

% Concentrated versus Distributed Loads

In the precéding discussion the problem was straight
forward since it was possible to ascertain at the start the
~exact location of ail possible plastic hinges. Such will
always be the case when the structure under consideration
is subjected to concentrated loads,

Where distributed loads are involved, however, the
location of the plastlic hinge must be Written in generalized
formn and a solution to My obtalned in ﬁerms of the unknown

distance to the hinge., By differentiating this general

27w




expression for Mp with respect to the unknown distance énd
~setting it egual to zero the true location of the hinge can
be determined, Such a proéedure will be used in solviﬁg
the generalized multi-span problem,

For an approximation the uniformly distributed load
could be replaced by concentrated load, To ensure a safe
answer the criterion for selection of these equivalent loads
should be that the moment diagram due to the concentrated
loads must circumscribe that due to the uniformly distributed
ones, (This would require that the structure bé subjected toat
least as severe & moment condition as that of the uniform load
case), Table 2 summarlzes several equivalent loads systems
that could be used, The derivation of these values is given

in Appendix A to this report,
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EQUIVALENT CONCENTRATED LOADS

[T28LE 2]

LOADING DIAGRAM | MOMENT DIAGRAM | " igag "
”ll”?l”ll”l! A/WT/HT\\\R
T giiliillin

*P ' P = wL
o A
o |
PP o
Av!j V. j&&? R P = % wL
PP [P .
B T
'}P ‘lP #P {P, /"‘—'\\ N
Lol S | P =l
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To Modifying Faatwr&ia)

In the derivation of the simple plastic theory and
congequently in the solutions presented in this paper éeVeral
importent agsumptions were made, It was assumed that

1. normal force does not Influence the

wltimate bending resistance of a
member (l,e, its M, value),
2, the influence of shear on the full
plastic moment may be disregarded,
3. no instability occurs prior to the
development of & mechanlsm,
L, the loads are increased proportionally,
and
5, failure will not occur due to brittle
fracture,
Regard the first two of fthese factors, a solution to a
glven prcblem could be obtained on the assumption that the
members in guestion will develop a certeain Mpo After solv-
ing the problem for the required moment value, & member
would be selected that will delilver this required moment
value while gustaining the shear or thrust, Methods for
handling such prdblems are discussed in reference (8},

Locel instability can be prevented by placing certain

restriction on the geometric proporticns that a cross-section

may heave 1f it I1s to be used in plastic design. For lateral

buckling a means of defining adeguate lateral support is

w3 0e




needed, Further research work ig required to be able %o
adeguately handle the problem of column instability, The
possgibility of such a failure prior to the attainment of the
full plastic load gast at this time. be avoided,

Concerning the problem of proportional loads, Symonds

- ( 1.5
and Nealklilg(“B’

have ghown that this provision is not as,
restrictive ag would be anticipated, For most gtructures
and loadings found in prectice the true maximum leoad includ-
ing the influence ol varisble repsated load 1s only slightly
below that predicted on the basis of simple plastic theory,
Another point with regard to this problem 1s that the ratio
of live load to dead lead for a given structure is important.
If this ratio 1s small, the influence of the live load var-
dabion will be of lesssr importance, Anobher possibility is
that 11 wiﬁd 1s respwnﬂible foyr the wvarilation in load, and
if it is asgsumed that smaller factors of safety are to be
~used when the influence of wind is included in the analysis,
then it is quite possible that the design will not be\govm
erned by the loading conditlion theat includes wind force even

wheni modified to include the influence of wvariable repeated

loading,
To easure & safe structure against brittle fracture,
attention must be given to degign detailggigj The material

and, type of Tabricablon shoald also be consldered,
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IT. PLASTIC DESIGN OF SINGLE-SPAN GABLE FRAMES

In general, 1t can be reasonsd from economic cone-
gi&eraﬁimns that the better design iz the one that requires
the larvger rnumber of members within the struotufe to sustain
fhe ultimate load at thelr maxlmum strengths. Such a design,
however, will not necessarily be practical., For example, a
portal frame gubjected to verticsl loads and wind from the
left could be designed for "least welght? under this one
loading condition, The wind, however, could for most
structures just as well have occcurrsd from the right., Had
this been the case, the previously designed structure would
have ailed at a much lower load depending on the ratios of
the horlzontal to vertlcal leoad, the helght to span, etc.

For the gakbled frames considered in this section 1t
is agsumed that the rafters are of egual shtrength,. their
full plastic moment value being Mp° The columns are also
assumed to be egual., The structure then ls symmetric insofar
a8 the member sizes are concerned, Moreowver,for the majority
of strictures encountered in practice it can be shown that
the most Qconomieal ("Least welght") solution will occur
when the delivered plastic moment value of the columns equal
that of the rafter, Therefore, such =zn ssgumphbion is also
made, The struchtures to be Investigated then are és shown
in Figure 19, Both the pinned base and the fixed base

cases will be considered,



The loading to which

thege gtructuares will bs K,/”"‘\.\ B
o “'\

P T R - T - B T I
subjecbed ig as showo In

Figore 203 s o aniilorm verle

>
teal loed of w lha/ft and | L -]

g concentrated horisonbal or

Joad P acting &b the eave, , '

L P, :
. : e ‘,:V"{;ﬂ %\\ b}'_‘
For most proeblswms Ghe M M

horizontal foree will

be concentratsd, Lbg wi

be shown later, hwwever,

if the P fovee 1s chogsn e P

auwch that its

moment about the bass of the structorse iz The same as thatb

Load then 4 conservabives answer

produced by

The concentrated Load problems,

will be ebbalned by &

1o Pirned-Base Gable

Gonsldering et

the planned=tags structurs

LU T T

{see Plgave 20) snd fol-
lowing the procedure oube ,//.;\\

' e N ©) Bl
. . - - V) B (1))
lined in the prewvious section ”" i’ (i [_) " @ ¥

B _y

?

on the mechanism method, %‘gﬁ

-
; N g I o dnd 5 I
there are 5 points of posgible I >

plagtle hinge formaebtions in

| FIGURE 20|

B & B S-SR SR S ST, S SURNN
thig one=tims-statically-

redundant atructure., Therefore
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5 = number of possible plastic hinges
- 1 = number of redundants

i = number of independent failure mechanisms

\

D:::LUI:I SARARRRALE] [T '
T TNy S —r
Y I’/\? T

| FIGURE 21|

The chosen independent failure forms are as shown in Figure

21%, In cases (a) and (b) the positions of the plastic |
hinges are fixed, For {c} and (d), however, it is necessary
that the correct disbtance to the hinge also be determined,

W
For the panel mechanism AN NN

shown in Figure 22, the P

force alone does external work,

Therefore,

Wint = Wext

FIGURE 22
M, @(1+1) = Po(al)
or
P(aL
Mp = M"g'éf”")" &&&c«saeaa«»eeaaanaaoaacoeevoveaaﬁeomaooe(12)

e we o em Ga o aw = @n em op om e @ we  on ta ow . ) @ em en @y e ow om oa om

*It should be noted that if the structure is to sway to the
right in failing then no combinatlion of these mechanisms
ls geometrically possible, Should the P force be equal to
zero, a panel mechanism movement (mechanism a of Figure 21)
could be assumed to the left and combinatlons of failure
modes thereby obtalned. -
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The solution to
mechenism (b} of Flgure 21

is asg shown In Figure 23,

4]
fde

ince plestic hinges are

and

agsuned to form at

, part (&)~ (@) of the P /\

gtructure rotates
bage of the left hand column
while part (B)-(§) votates
sbout the right hand base

The instantaneous center of part

L{a+2b) vertically above plastic h:mge@o

~virvtual rvotatlon O equsl to @,

rotationg at other points in the

@Ioco = O [8?*&*5”54.4] . Q

. Ao \ QE
QA = 3{*‘““"’,’3’6‘] [%:]

nacasarsn

Plestic hinge (3) will therefore

oo st

Wwhile

L .
e @[Hg;g * ] L.
a .
o S
y = 9 1+ 9%

about the ® O,

LT
B 1c.

L(o-+2b)

L

Towo
L.
® 5 9[5"‘_3 *

|FIGURE 23

(_Bj)ﬂ@ is therefore

Agsuming now a

the correzponding virtual

abructure are ags follows:

L]
IFER

rotate through an angle of

bk

(T T7TT]

eA:__

N
ST
’ T

| FIGURE 2l |




To compute the external wérk of the uniformly applied
. veftical load sée Figure 2l ., Since member (T) - C) remains
rigid during the defOPmation, the uniform load on this part
of the structure could be considered concentrated at its
centroid. A similar situation exists for part A -06.

Solution therefore will be aS’fdllows:'

Wint = Wext

2 L B 1 whlnlal 2 7«
M0 2 + 1+éh'+i =PO(al) 306 +55I 2 76
a a a

&
WL L} o] 4
2|k 1+22

a

which gives
Pal, + EWLR

o 1)
- G990 HHO00IOBNDIENBEEBOSH NN

M
P b
2(2+3)
Rewriting the solution in amother form, the over-turning moment,
PalL,could be eguated to a function of wL®, For example,

)

WL ? )
Pa‘[‘::A""""" QQOQQOQQQﬂﬂooe.oooﬂﬂﬂQQQQOOQOQ.°°°(1L.')

Therefore

A."-“- ?..a %}ﬁ eoeoaeeoap»eeaeqeuaooooaoonoqeoe(15)

Substituting equation (14) in equation (13) and reducing

whL® | A+ 1/2 |
Mp:-”"ll [mé’é"]ouooooeoooooeoooeev_ocoone(16)

To further non-dimensionalize transpose the wL® term to the

gives

left of the equal sign,

M
Iv\'%a = .~ [A+ j-é-—]ooaoo@ooooscoeoeoonooqoog7(17)
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Bguablon (17) then defines the non-dimensional quantity
Mp/WwL? in terms of the ratio of the total rise of the rafter
to the height of the column (i,e, b/a) and the load para-
neter "A" défined, by equation (15). |

| Rewriting equation (12) (the solution to the panel

me chanism problem) in the seme "A" parameter form

""E‘a 3[11%] oooonee»oooeooooaoeoooaooooooooe(18)

For the mechanism
shown in Figure 2lc (re- ; -
o —/ j\
drawn as Figure 25) the W T 6
[

horizontal distamce to

plastic hinge @ equals

KL, From geometry it can

then be shown that the

distance cL, the vertical e | L(-od
_ ; S DA >
distance above@to the - L :
instantaneous center of |
FIGURE 25

part @) =-(), 4s givsn by

8,

Consistent fotations at the various points within the

atructure are therefore as follows:

“3 7=,




op = ©

8] :e' % ]
IoCe lmb(+ %5@&“ > ooaoaaoooooooooo@ooo(lg)

~ 1o-e ]
T+ SRX
a) e

9y

e

Total rotations at the plastic hinges equal

o) =y =

1
05 = 0 | —Sompem

> DOQQGOQOOOO‘OOOOOOOO.(20)

O = 0 | =B
5 RERPEEIY

Nt

The expression for equalizatién of internal and external

work therefore isg asg followss

wint = wext
M Q 1y, L+ K PaL@ | ki |+ eid 1 =%
. = = 1 . L
P L x-a»%-ilx 1= p<+%31>k I =14 e -o<+-§-

This reduces to

M - B ol
W%B-: % (1 %<A* ) 9 aeooood.oeoeooee(al)

1+ FK

where

= 2 E;“
A 28 [ WL]
It will be noted that equation (21) is in terms of the

unknown distance XL. Since W ig an ihde‘%endent variable

=38




and since the structure will fail at its first opportunity,
the correct W distance will be determined from the ‘expression

,_?-I.Enm@

6006669aooaaaoo‘eoeom‘oonoooooonaooo(22)

Equation (21} is of the general form "u/v", There-
fore, the differentiation will be

d(E) = vduvc» udv

. Q“oﬂ.oooooooaoooooaooovoooo(23)
\ .

But since the expression is to equal zero,
vdu ~ udv = 0

The correct MW distance is therefore

K = —-B-—WL- [A(1~r-—) - 1] ] ﬁ
for % > 0 _ - o
and Y coscsocessceas (2l)
K= [dsh |
. [ 2‘] for % = 0 J '

A substitution of these values for & in equation (21) will
glve the solution to this me chanism,

Going through the W
[T
same process for the , TLC, |
mechanism shown in Figure 1 '7___ '
26, it is found that P ) - _J‘LL'
; | | » al
1 |K(L-X+ A) - r
o i o b e ‘o--a(ag) o
s EI: 1+ gX% J” o LO-w ) ®L
where ' ' L ! o
K = T[VM =(1+4) - ] oo (26)
b FIGURE 26
for ~ )0

=39~



and

D(;["J:—Z"AF] 0*<9,0;o»¢9°for %: O 00'009QOQ§OOOQQO.QOGOOOOOOOD'(27)‘

The’problem now is to determine which of equations
(17),(18)3(21} and (25) requires (for a given loading condi=-
tion) the larger plastic moment value, This will depénd on
the value of b/a and A under consideration. By assumingv
various values of b/a and A and solving each of these equations
for the resulting Mp/WLa, ranées of applicability for each
equation can be determined. If such a procedure is carried
out it will be observed that only equations (18) and Qé%)
govern the solution. Plotting the resulting values of b/a
versus A versus MP/WLE the design curve shown in Figure ;Z%;
is obtained, Below the dashed line the governing equation is
equation Qé%jo Above this line equation (18) defines the
solution, The corregsponding (X values are shown in Figure 278,

These same curves are given to a larger scale as

Degign Charts I-1 and I-la at the end of the dissertation,

Their use will be described later,

2. Fixed-Base Gabled PFrames

For the fixed-base frame shown in Figure 28
7

-3 = number of redundants

il

number of possible plastic hinges

i = number of independent mechanisms.,

<10~
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The chosen independent mechanisms are those shown in PFigure
29, Thegse and thelr combinations would need to be investi-

gated to solve the problem,

W
LT e oy

bL

FIGURE 28

oo [ Oy

FIGURE 29

Going through the same procedure of investigation of
all possible fallure modes to determine the corresponding

critical Mp/w‘La values,; a solution to this problem could be

obtained as in the pinned-base case, The important equations

that would governufhe solution are tabulated as equations

(LL)S(S)s(é) and (7) of Appendix C,

mulm
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The resulting solutions in graphical form are Figures
30 and 31, (Here again it should be pointed out that design
curves for this case are given to a larger scale in the
section on Design Charts at the end of this report).

In Figures 30 and 31 there is shown a cross-hatched
"eut=off" 1line, This line corresponds to equation 6 of
Appendix C and represents the minimum Mp/wZL2 value that can
occur, It will be noted that this equation i1s independent

of A value (that is, independent of horizontal force),

3. The Problem of Distributed Horizontal Loads

As mentioned earlier, 1f the horizontal load acting
on the structure is distributed rather than concentrated, a
congervative answer can be obtalned by selecting a P value
for the concentrated load problem having an "over-turning"
moment about the base of the structure equal to that of the
distributed horizontal load (providing a hinge does not dev-
elop within the left hand column). Consider for example the

two structures shown in Figure 32,

L]
Wl

I.C. I.C.

FIGURE 32
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Ir tﬁese'two structures are of equal size and shape and if
the distances KL are also equal then the rotations corres-
‘pbnding to a virtual displacemeht and therefore the'intérnal'
work will be the same for both structures. Since the ox-
ternal work due to equal vertiegl loading of both structures
will be equal, these forces can be disrégérded in this |
~discussion, o o

Assume now that the moment of P about the base of the
'. co1umn ("A" in Figure 32a) is chosen’equal to that of the
| distributed load of system "b" (see Figure 32b). Thé:aj; |
ternal work done by the P force wiil be greater tﬁan that of
the distributed load of system "b", This can be seen by
reélizing that if they were equal the work'done by theiheavily .
cross-hatched portion of the distributed horizontal losd
shown in Figure 32b would need to be the same whether con-

sidered rotating about point A or point I.C.

- [FIGURE 33

-




In Figure 33 it has been assumed that the virtual
rotation at the instantaneous center equals f o The corres-

ponding rotation at A is therefore

0y =§ (355,

If h is now assumed as the total vertical distance from the
base of the structure to the instantaneous center I,C., then
the vertical distances to the hinge in the left rafter will
be given in terms of h and W as shown. For a distributed
load block Ze 1n height the external work due to the con-

centrated force F equals

I.C.

wext = F [(l""b‘)h"’@}i .o-aeeqooqcoooooo(28)

1f considered rotating about I.C,
Agsuming the force block rotates about the base of the

column (i,e. about A).

A .
- 1- .
Wext = F[:Mh“f“ e:‘z':.—;__jl 09000.000.000000(29)

The question 1s, is the external work defined by equation
(29) greater then that of equation (28), If it is then
system "a" of Figure 32a 1s the more conservative system

(that i1s, 1t requires a greater value of Mp);

A 5 I.C.
Wext = Wext

Fﬁ[uh+{][i§?4 2 F?[}lfg) haei]

/
& . Xheb 2 He Rhed
" S
e
% > 0
Therefore I o
wext > wext 0...OOOOQQ...O‘....IO....(30—)
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equations (31) and (32). The structure is as shown in

and the concentrated load solution as assumed gives a con-
servative answer, This same qualitative answer could have

been obtained by a consideration of the deformed structure,

1.C.

-

[FIGURE 31|

For the correct solution for external work dué to the dis-~
tributed horizontal load block in question, the force would
be integrated over the deflection shown with vertical cross-
hatching (see Figure 34)., Assuming, however, that rotation
and therefore the deflectlion through which this force moves
was determined from rotation about A, the additional de-
flecﬁion shown heavily cross-hatched would have resulted.
Obviously this system results in a greater external work.
For the sake of completeness, the exact answer to .

this distributed horizontal load problem is given by

Figure 35,
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A

ﬂpzz % [x(l~x)+'('p‘€7§'y {(l x)(1+z‘g)+ o«(ﬁ) (3- u“)}:'

wL b
(1 + EK)
EEEEEEEEEXEK] 5 060060200908 000 (31)
h ;
1 o[, afarsh +3®57'
T [ﬁ‘a[l D) ® +ha (D)

.‘00.000,.'0.‘.0‘.0.0.(32)
where ‘

AE'-%2=.{.§VE.LE.(a+b)B
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IIT., PLASTIC DESIGN OF MULTI-SPAN RIGID.FRAMES

1. Direct Procedure e

Having solved the pinned-base and fixed-base, single-

span, gabled frame problem, and having found that for a major
range of variables the mechanism that will control the design

is the one wheré hinges develop in the windward rafter and

at the top of the right hand columnsa logical first‘attémpt .

at’ & méchanism for the multi~-span problem might be mhat"
shown in Filgure 36,
R

O O O O O O I

FIGURE 36

For the problem under consideration that part of the struc-
ture to the left ofbthe center column is assumed to have a

‘ plastic moment value equal to Mp wheréas the right hand part
Was chosen as kMp; Lengths of span, heights of columns and
total rise of rafters are chosen equal. It cannot be
assumed, however, that the distances to the hinges in the

‘ windward rafters will be equal, The resulting expression

for My will therefore:contain the variables M.and.ﬁ .
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Since each of these varilables are independent, two separate

differentiations (one of the form %%f = 0 and the other

_ %gﬁ = 0) will be needed to solve for the correct d.andlb
values,

The consistent virtual rotations as determined from
a consideration of the instantaneous centers are shown in

Figure 37,
« .
. _rj{ [.(!—u) +’§o<]

o

L AT T T T T T AT T

9“[ 0-(:)%%4] '

NOTE:

- (-0
= [ (-@y+ 22

| FIGURE 37
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The total rotations at the various plastic hinges‘ are there-

fore as followss:

| (z-R) [ 1
Hi =0 .
inge (D)= | (- )P || (- BB
Hinge @:Q } (A=) | -i_'.
T L@ p)+ERA | (k) +ERK |

1
Hinge@ze‘_(l_ (b,)+§é.b./5_

—

1

Hinge @-—-Q (1- )+"?a—,b/5

e eoonosl(33)

/

Equating the internal work and the external work

Wint = Wext
(=) ]

- M, @ :
P [(14&)%%-

1+ s i
(1-w)+2Ry |

1 +M. 0
[(1~NJ+ 'aab'“]

_(a-h) }
1~[&)+’2ab‘

1 R ‘
M..0 kM,© l+——&—-23— ‘
" P [(l~/5 )+ (5_l+ P I: (1-p)+s J

ool a-p) I (a-x)

,P&LQ_(l- /5)+-aéb-/a_{<1_ o) +ERot | 2
[ (a-x) ] LwL® 1o 29[
(1-w )+ | 2 (1-e07

wL® ()2 (1-P) wL? (1. )Eel: _A :] |
R g[ (:1.~(5)+%2/’>]+7 f) (1-p)+2B3 |

oooooooeeeoo.oooooa(Bu)

1 458% () 2

(1- s )45




Again replace the concentrated horizontal force P acting at
the eave by the non-dimensional "A" parametric form, The -

relationship assumed is the same as that previously used, i.e.

P
A= 2a [ﬁf]
For the special case where k=1 the expresgion for internal .

and external work equalization (equation 3L) reduces to

Mo _1 [wbﬁzm2o<.(5 - PP ot PRt prPr Ak b + QRPN+ A-Ap- An-Axp ]
wL® " f 2_/5+L%9>a m%%’-oz(& =o<+%/5+2(%) A .

» cossssssnscas(35)
Needless to say, the differentiation of this expression and
the subsequent solution for W and(s is not readily obtained.
Even if an explicit solution of P and/B'were obtalned,it is
questionable if such an equation as (35) could be used in |
design,

Another possibility exists however, ., Since the
varisbles involved are w, f end M, en implicit differentia-
tion of the work expression rather than the explicit one just
congidered may lead to an easler solution.. As shown in
Appendix B of this paper if %%E =0 then the corresponding
differentiation of the function value,F, with respect to X
must also equal zero; that is

dF

= 0
0N
InSimilaP mannexr caaooooaoooeoooeooooooo(36)
OF
2. = 0
of
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Rewriting the internal and extermal work expressions

(Eg.3l4) in the form |
Wint”wextzo ooooooooooooooooopoen(37)

and keeping the ¥ parameter as defined in Figure 37 the fol-

lowing equation results:

— 2
g [P ) o) “2”%{1"%&}} N
L (1-w) + 22

&

- Wl 2 2 + 2
Z7(p- p -2 {2 a(*ﬁg] .

(1-p) + =2

ueeeoooo(38)

Dividing through by T', substituting in its value and re-
ducing the resulting expression gives
Wl ? b
[P@(l-x) +5 7 (L2 ) w-2Mp(l+ao<)]+ [%2/5 mZkD’Ip{l*‘%ng 0
‘ . 2D v -
(1-w) + 2« 1-p
0000000000900.(39)

This indicates that the function value ig made up of two
separate partss:

F(X, 5 M) = R(KMp) + 801 ,Mp) cooaeacanasana(LiO)

Differentiation of this new expression (equation 39) accord-
ing.to equations 36 is therefore more easily obtalnedthan
an explicit differentiation of Mp.

It should be remembered that only one possible failure
configuration has been considered for the multi-span problem
thus far, To solve a particular problem in question other
modes would also need to be examined,to determine the one
that would actually develop.
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2. Solution by Separation

‘Based on the preceding discussion it.cbuld be reasoned '
that since for the problem under consideration the variables
separate into two gfoups (one having to do with the loading |
. and resistance of only the left hand portion, the other with
only the right hand part) a solution might be more readily
obtained by physiéallj dividing the structure into two parts.
If this division 1s made at the junction of the right hand
rafter of the left structure and the center columm,then the

loading condition would be as shown in Figure 38.

IHNNERNNNNNNEED - OO IIrITTTn
@ | v |
P Oy TN @
- @Y - (b) —
FIGURE 38

A solution to the multiple span case could be realized by
solving each of these separate parts in terms of the loading -

paremeters at the cut section and then in the final stage

W
BTN NENNEE NN

equating the:pﬁrameters§

For the left hand

M
part of the structure '\\P H
&

(see Figure 39), the re-

sulting equation for Mp

wouid be of the form

| FIGURE 39]

“Mﬁ=ﬂlpgw§qu;dam@nsiomé)ozi(hl)
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Since the structure does
not move in the V direction

at the cut section,this force

wlll not enter the solution.

The equation for the
right hand structure 1is
Mp=g(H,w, B Lk, ddmesnsionsds . . (12)
From a virtual diSplacemént

‘consglderation it is seen that

as the struéture fails the

external work due to the H FIGURE 4O

force on each of‘these parts
will be equal since the de-
flections are equal,

| Assuming that the method of solution is the one
shown in Figure 38 (1,8, the separation of the structure
into two parts as shown) it is now necessary to write the
equations corresponding to expression (41) and (42). Look-
inpg at (42) for a moment, it 1s seen that the derived
equation for the strength of the right hand sub-structure
would contalin an expression involving the stiffness of the
left hand part, Since it would be more desirable to have
the resulting solution a function of the stiffness of that
part of the structure in question only, consider the con-

ditions that prevail as the structure fails.,

~Sl-



As the structure deforms according to the.aésumed'
virtual displacement the only quantity of interest at the .
cut section is the work done, Therefore,why not consider
a sub-division of the structure according to that shown in

Figure 417

[T IR

FIGURE L1

Here a hypothetical moment Q has been introduced, The
reason is that since each of these Q's rotate through the
same angle in each sub-structure there will be work equal-
ization at the divided section if the Q's are equal, It
should be remembered, however, that statically this Q does
‘'not necessarily tell the full story. It could be composed
of just a moment, just a horizontal thrust having a moment
Q about the base of the structure equal to Q or any com-
bination of these,

It should also be noted that in Figure 4l the total
internal work at plastié hinge(:)is assumed to act in the
left hand sub~-structure, This is as justifiable an assump-
tion as that shown in Figure 38. It has the advantage,

hbwever, of keeping all loads and moments resisting these
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loads in the left structure together., The right sub-
structure is therefore subjected to only the load w end the
Qr, moment. |

If a general structure and loading as shown in Figufé
L2 is now assﬁﬁéd,either of the two cases shown in Figure L1

can be represented,

NN NRRNNENEN

o C Y 0e

FIGURE L2

For case (a) (the left hand Sub=struc£ure),QL would be
chosen equal to Pal,, For éase (b), Qﬁ‘wéuld equal zero,
From~@&90n§iggnahion of
the instentaneous: center (see
Figure L3), it is found that
the following rotational B A

relationships exist, (Notes

W
T TATIT

these are the same as given

4 OWA =
in equation |9.) A f\@ _é’!—
Og = © b (_J,_ on Ot oL

- i
X QLN L < Q.
o1 o =0 x4
LG5 | (1-w )+=Ru | L J
0p = 0 | —21=XK |
| (1- b4)+%bMJ FIGURE L3
_ L _
Q8. = @ >
1 | (1= M)+ 52K _

@2=g B 1«}&8'2“ P _o;,-qooeonooooooooooooooooooo‘(‘L]-B):'v..
_(l-oL)+%Po( :
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Therefore,

Winﬁ = Wext

1+ gh 3 |
Mp‘;[ ot 25 }“%“ag 1'”0(2&)]
(1=D()+—Eb( (l-x)+ _é_% (1-0d) +_é__p<

WL® (150 2 i 0 e ]
+ = (1-007e [(1au) " %qu +Q, [ oo ——u

”QR@ l] 000006000000000000000000000000000(m")

Introducing the nondimensional form for the Q's,

_ o, WLE )
U= A2
?, 000600O90Q.O0Qo000000000000000000000000(L"S)
Qn, = D wL®
R 2

J

the following expression 1s obtained:s

- - X
.%223:' Clb(} <A+D(-bD) D(T) oooooooeoooooooooe(ué)
wL Ll- 1 + ED( .
where
= t [IVI“% [A(1+%) =D 1““-) “‘l:l :l 0600060000060 (Ll-?)
&

b :

| fOI’E > 0

and 1-A+D b
K=[ 2 }QOOOOOOOOOOI’OPE::0000000000005000000(&8)

Solving these equations for various values of Z, A and
D and plotting the results in the form of curves, solutions
to design problems are readily obtained.

Here again 1t should be pointed out that only one
possible type of failﬁre configuration has been investigated,

Other possible modes must also be examined. The equations
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that would result for such a structure are tabulated in
Appendix C as equations 8 through 13,
"Assume for illustration that the structure and loading

to be investigated i1s that shown in Figure L.

W
P D L L I

L/L
L/

FIGURE Ll

The b/a value for this structure equals 1.0, . The corres-
ponding design curves obtained by solving equations 8 through
12 (Appendix C) are given as Figure L5 (where Mp,A and D are
plotted) and Figure L6 (where X, the distance to the plastic
hinge, is determined).

If this multi-~span frame is now divided into two parts

as shown in Figure L7

W 7 W
LTIl IR

FIGURE L7
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FIGURE U5
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0.2 |-

0.1 Lgﬁ}

FIGURE L6

the left hand moment, Q, must equal the moment of the applied
horizontal force P about the base of the structures; that is,
]
Ay 2 = p(an)

-60=




a MLZ = p(a) = WL (L)

2 L L

or
A1=00125 uono.noooo.oooooo.oooaooonooo‘zooeoogoo(14-9)

Since Qgp = 0, Dy, = 0

For each part then, the following exists:

(a) b/a = 1.0 _j (a) b/a = 1.0
(b) A7 = 0.125 (v) Ap = (2)
(¢) Dy = (?) (¢) D2 =0

(@) Mp/wL® = (?) (a) Mp/wL® = (?)

It is noted that in each case two unknowns are presentgkone de-
fining the size of the member, the other the restraining or

loading moments at the center column. From Figure L5 the curves

shown in Figure 8 could be plotted

FOR PART Q)

FIGURE L8|
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Since the Q values at the cut section of each of these must be

equal in order that the work cancels when the structure is "put

together"
Qr, = @R

AZ = Dl opaooaooaoo-nocececcaeoaaoouoocooooooco’(so)

or

These curves could therefore be plotted on the same ordinate

and abscissa and their intersection would give the correct

value of Ap (or Dj) and Mp/wL®. This is shown in Figure L49.

B
v}

A?_ and Dy

FIGURE L9 |

Having found the required Mp/wL® value, the next step
would be to plot the corresponding momént diagram. From Figure
6 the location of the plastic hinges are found to be as shown
in Figure 50.
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FIGURE 50|

The moment diagram is given in Figure 51 where moments are

plotfed on the tension side of the members,

FIGURE 51|

i Since the structure 1ls in equilibrium with the .applied loads,
since a mechanism forms and since nowhere is the full plastic

moment of the section exceeded - this is the correct solution,



to which the center column is subjected is 0.LBM. Should
this be the only loading condition under consideration a
smaller member could be used: one that when modified to sus-
tain the axial thrust would deliver oougmpa

Had the horizontal force been suﬁstantially greater
than that considered, i1t would have been found that the
moment at the top of the center column would be in excess of
Mp. In.fact, it might have been as high as 2M,., For such a
case (assuming that the center column has a moment capacity
of only Mp) it is obvious that the investigated mechanism is
not the correct one and the corresponding value of Mp is too
small, The actual failure mode

would more than likely be the

one shown in Figure 52. Since ERNNERRRNERNRNENRRN

the solution of such a fallure

pattern would result in a

greater My value for all the

members of the structure, the FIGURE 52

new design would in almost all

cases be less economical (in

terms of "least weight") than

that design based on the assumption that the center column
could supply whatever was needed., (Note the relatlve length
of the center column to the remainder of the structure,)

From economic considerations then the type of failure shown

~6ly-




in Figure 52 should be excluded, and the exact size of these
"ecenter type columns" be determined from a moment diagram
agsuming a more general failure configuration.

3. Development of Design Charts

To be able to solve all types of multiple span problems
by this method 1t is necessary that all of the various possible
sub-gstructures (or assemblages) be ascertained. For example,

if a three span symmetrical,

[T T T T 1T

pinned base, gable frame r/«TIfN\r/\tL
O -0

(see Figure 53a) were sub-

jected to only vertical | 'ﬁ
N
loads then the two types of Tﬁ}\ : ™
- —\Ib-yl-g-l
sub-structure failure shown :
()
in Figure 53b could occur.
’ FIGURE 53
For the center span each of
LA T eI T Ty T TTTTd

the "columns" would spread lj»tlfﬂjl/ﬂtrf\tL
The outside ,

equal amounts,
. (a)
- spans would fail as assumed ,
in the preceding problem ' v,ahgéj\\v
(see Figure L1Db). A o L4
b
Had the structure

under consideration been a

[ FIGURE 51 |

four span symmetrical frame
as shown in Figure 5la, the center two spans would have
failed with their outside columns spreading, Due to the

symmetry, the center columm would remain vertical. A fourth
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type of failure condition results when a three span, un-
symmetrical frame fails, For such a case the center two
columns may spread through different angles. Therefore,
this condition must also be investigated,

| The five types of sub-structures and loadings that
must be considered for the solution to pinned base, gable

frame problems are therefore as shown in Figure 55,

W ur W W w-
| L] IERERENERA S it |||I||i| llllllllTﬂ L IrT
f/a\" m)m<m (f/\
@[z L. ’ (2_
FIGURE 55

By selecting a value of the left hand "Q moment" in case (b)
equal to the moment pr§duced by the concentrated horizontal
force of case (a), these two problems reduce to one., The
equations governing theif solution are tabulated in Appendix
- C as equations (1) through (L4) and (11) through (13)., The
resulting design charts for various values of b/a (0,0.2,0.L,
0,6,0.8, and 1.0) are given at the end of this report as
Charts III-1 through III-6 and III-la through III-éa,

For cases (c¢),(d), and (e) it can be shown that each
reduces to the same solution. (See equations (8),(9) and
(le of Appendix C.,) While the proof of this is straight
forward for (c) and (d), case (e) presents an added problem,

bbb



Consider the failure mode and structure shown in
Figure 56,
If it is assumed that

the left hand column rotates

(I

to the left through an angle
equal 9 then the right hand
column would rotate through
an angle 6~y if © 1s chosen
as the virtual angle at B

when the left column remains

vertical, Since the structure.

FIGURE 56

is over determinate (that is,

there are more hinges developed

than needed to produce a mechanism), the total virtual
angle change at plastic hinge(:)is not a function of § .
The internal wofk at hinges(:)andCD s, however, will change,
(It should be noted, however, that as one decreases the
other increases an equal amount thus keeping the internal
work constaht}) Equating the internal and external worxi

for this condition gives equation 5L,

Mp 1~ &(1w$)~${%£;D+%§ (Dy=D) %?
LB= b caooooo(Sl)
W, 1+ 2x ‘
where P
- De= (WQ)QR
Dp= (2

The Dj parameter is used to define Q rather than A as

previously.
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This has been done to try to achieve a uniformity throughout
the paper of always using "A's" when the structure fails.
with the "Q moment" and "Dig" when negative work is done by
the Q moment, » _

Since it isrequiredto have the maximum value of M

p
for all possible values of S/Q

%%‘735)"’0

This gives
2b -D) =
= (Dy~D)

or
D'zD 0000..0009090000OGGOQOODQOOQQOO.QO(52)

The solution to this case then is identical to cases (c) and

(d) of Figure 55 with the Q moments on each side being.equal.

The solution to all three possibilitles is graphically given

by Design Charts II-1 and II-la at the end of the report.
For fixed base types of gabled frames the sub-

assemblages shown in Figure 57 must be solved.

EENREEEEAN] FENEENEERN T
QLC' o )éa 0o 4355@
FIGURE 57

The solution to 57(a) is given by Design Chart I-2 and I-2a,
57(b) is considered in charts IV-1 through IV-6 and IV-la
through IV-ba, |
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57(c) is identical to 55(c), (d) and (e)., Its solution is
therefore shown in Charts II-1 and II~la,
For lean-to types of structures, the cdnfigurations,

as shown in Figure 58 must be considered,

OIIom [

(b) '%
|2

FIGURE 58

Deaign charts V-1 and V-la through V-6 and V-6éa, and VI-1
and VI-la through VI-6 and VI-6a give the solutions to these
types of problems. The equations on which these charts are

based are given as equations 16 through 20 of Appendix C,
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TV, DISCUSSION

nlo Factor of Safety

| Since plastic design results in a structure that will
just sustain the imposed loading at the structures ultimate.
strength, there must be included in the design load a*certain
 margin of safety above the antitipated working valﬁe; This
mergin would then truly be a load factor of safety since it
woulinndicate the amount of overload the etrueture could
jsuspain prior to collapseo Accepting this philoeophy,_the-’
next step is the selection of a criterion fof determining
the numerical value of.this safety factor,

If it is agsumed that it is desirable to have the
load factor of safety of a confinuous strueture eqﬁal to
that of a statically determinate one, and if 1t is further

agsumed that a simple beam designed according to the present

AiSC‘Specification(l6) has an adequate reserve in strength,

then the load factor of safety would be computed as followé%7)
Consider the simple beam shown in Figure 59, If it is
assumed that the allowable bending stress is 20,000 psi (AISC
Specifications—~8ection lSc), and that the yield stress 1is
33,000 psi (minimum allowable by ASTM for A-7 type steels),
then My, the initial yield momeﬁt, is 1,65 times greater

than the working moment, M. It then follows that P, the

'y'?
initial yield load, is 1.65 times greater than Py, the

working load., Since the full plastic moment equals Zoy and
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the initial yield moment
equals Scys : P

ME Z0y A
_-1:.‘:‘-' mf
My = Soy S Y

where f is termed the mn

shape factor of the

section, Values of "f¥

for rolled symmetrical ,//\\\

shapes are given in %ur

Appendix D of this report. MOMENT DI\RGRANS

The average "f" value of

these is 1,1l with a high ~ [FIGURE 59
of 1.23 for the 5I1L.75

and a low of 1,11 for sevéral différent sections,
Assuming the éverage cases

Mp = 1.1h My = (1,65) (1.14)My = 1,68 My
Since a oneutOnoﬁe relationship exists between the loads and
fhe centerline moment values, the load factor of safety, F,
is then 1.88,
Assuming the minimum "f" values

Mp = 1.11 My = (1.65)(1.11) (My) = 1.81 My

The AISC specifies another allowable stress value

when stresses are caused by wind, earthquake, etc, in comb-
ination with "real" loads., For these cases the allowable
stress is increased by 33 1/3%. The corresponding load

factors of safety are therefore as shown in Table 3,
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TABLE 3

AVERAGE MINTMOM,
SECTION SECTTION
Finecluding wind,
earthquake, etc, 1o41 1.36
FeXcluding wind '
earthquake, etc, 1,88 1.81

A somewhat different approach to the general problem
of safety can be based on the philosophy that a structure
is no better than the locad analysis., Therefore, this factor
‘should play a major part in.the determinétion of the factor
of safety of any given structure., Furthermore, the ability
to predict loads is dependent on the type of loading. For
example, the maximum load to which a watef tank may be
subjected can be computed with a high degree of certainty.
The live load for a warehouse, howe#erg is nof too well
defined, The uncertainty in each of the loads making up
the total could be taken into account separately, |

While the question of safety is impqrtant it is not
unique to plastlic analysis, It is therefore felt that fur-

ther discussion in this paper is not warranted.

2, Economical Designs
As specified earlier many factors enter into the

selection of an "economical design" not the least of which
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~is the avallability of a certain desired shape. In this
paper "least weight" of main member is chosen as the criterion.
Since in a plastic design the sectilon property most

often encountered 1s the full plastic moment, M it would be

p?
desirable to have an expression relating this property and
the weight/unit lengths of the member. Two designscould
then be_compared by knowing Mp values, lengths of the various
elements, etc. '
Unfortunately the plastic modulus (which is directly
related to the full plastic moment) not only takes into
account the area of the section but alsc the moment of
this area, The relationship theréfore will not be 1inear,
Assuming fhat the relationship must‘be one of a power,the
'plastic'modulus values have been plétted versus unit weights
in Figures 60 (for WF sections) and 61 (for I Sections).
From Figure 60 it is noted that an equation of the

fofm |

W= CZ 0,50
| gives a fair average through all the wide-flange séctions,
The most economical (that is the largest Z for the smallest
W) is approximately

W = cz9.30
For any one given depth of’WF‘section the equation

W= 020.90

1s a comparatively good average value,

C=T73=
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15 13 ihtérostiﬁg.to note that,Héjmah(ls) has ﬁaed a value of
W= cz0-67

While the difference between an exponent of say 0;5
~versus 1,0 is extremely large, thé net éfrqct on the ;solation
_6r-the more economical choice of\member 8ilzes is rathér'shallo
In addition the assumption of equal rafter sizes in a given
span, ete,, will often over shadow the d1fferenceo There- B
‘rore,'a one-to-one Qorrespondence between weight and plastic
ﬁodnlué (or Mb) will be assﬁmed in the remainder of this
discussion,

3. Initial Choice of Members

As in the elastic case, design time can ﬂe saved by a
judicious first choice of relative member sizes throughout
the structure. It will be shown later, however, that this
1s not absolutely egsential whan‘using the plastic design

charts,
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V. DESIGN EXAMPLES

1. Design Exsmple No.l

As a first design

example consider the single -
| /44 = WorKinG LOAD
TIInnnme

‘gpan gable frame loaded as

shown in Figure 62, Since
b/a is equal to 7.5/15 or
0.5, the solution from

Design Chart I-1 is

2o = 0,0505 ou.ens.(53) Lo
Therefores " |
My = (0,0505)uL? |  I'FievRE ez
= (0.0505) (1.,88) (1) (40) ? —
N |

ﬁFactor of Safeﬁ&w

Nl

152,0 ft.kips

]

1825 inch kips
The required plastic modulus then equals
z =Yp= __33-.325= 55,3 1in®

oy
From Appendix D, the most economical section is the 16WF36
- supplying 63.9 in%,

- Design EXQMple lg

Agsume now that thls same structure is to be sub-
jected to a combination of vertical and horizontal loads as

shown in Figure 63, Here again the b/a value is 0,5, The
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S WAM parameﬁer is given as
(Za)(P/WL) | | wrel k|
= (0,75)( (10, r/uo) 0.20 IO T

From Design Chart I-1 it is

: - . _._%Ll'

Mp/WL? = 0,0762 o000 {5L)

This gives for a moment value Y A v

p =(0.0762) (1. ul) 1)(1600) L=4o'

MLoad Factor of Safety
(including influence of wind)

FIGURE 63

= 172 ft. kips
| = 2060 in.kips
'VThe required Z value is therefore
Z = Mp/oy = 2060/33 = 62,4 in®
and the most economical section supplying this value 1s the
16WF36 (2=63.9 1n®).

This example illustrates oné ofvthe.arguméntS'hgainst
talking about a most economical design, It wili be noted that
e both loadings resulted in the same section, however, the
- required 2 values were qulte different.
To help eliminate some of the confusion that results
from situétions of this type the;answdrs for the remaining
examples will be left in required Mp form,

2, Design Example No, 2

As a. second example consider the two span rectangular
. portal frame of Figure 6La., Dividing the structure into two .
=78~




sub-assemblages as shown

in Figure 64b a solution

can be obtained by using iHIHHlﬁ%ﬂlHHlHHH
Design Chart III-1 for -«L W 1 F | T |
both parts. (a)

Considering part (@), IL oL I Lp=SL J
since there are no hori- _—

zontal forces acting on
. -£+><:L@—J~

the structure, the "A" for (b)

this part equals zero. From

Chart III-1 it is seen that FIGURE 6l

for A= 0-—D mst
also equal zero and the failure will be of the "beam type'.
The same condition holds for the @ part of the structure.

The solution is therefore gliven by the two following

equations
Mp 2 = 0,0625
le
.QQQOQQOQOOSDOOQD...0.90.(55
- :
—P, -
WL22 0, 0625

Substituting into equations 55 the values of Ty mnA T; in

[

terms of L

TR = (0,0625)(9) = 0.563 b euuiiniinniss.(56)

and

_kg%a.z (0,0625) (25) = 1.562

This gives for a value of relative members sizes
k= 2078 0.0000900.00.0.QO.Q.QQQDQO0000000(57)
79



It should be noted that this value of k is equal to
the ratio of the squares of the span lengths, Such will
always be the case for uniformly loaded (vertical loading)
rectangular portal frames or continuous beams.

The moment diagram corresponding to the ultimate

carrying capacity is as shown in Figure 65.

FIGURE 65

From this diagram it is seen that the plastic moment of the

center column must equal 1,78 Mpo

3. Design Example No,3

The third design example 1s a three gpan symmetrical
gabled frame subjected to a uniform load of w 1lbs/ft and a
concentrated horizontal load of wL/l4 at the windward eave,
(see Figure 66).

Na
L T e e I P T LT g

FIGURE 66
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2 _
N O 0%
FIGURE 67

Equating the moment of the horizomtal force, wL/L, to AjwL®/2,
the value of A equals "

Al = 0.125 ngoeoooooooooooooionoooooood(SB)

For equilibrium at the cut sections

2 R
Dlﬂé =A2H-I-:'2-

2
' 2 B oaoooéocqooooaooooeoooo(59)‘
wL® - whL
P2 =3 = 437
These give
A2 = Dl vm‘.&ﬁhooo0000000000000000;00.‘(60)
and | -
ng A3

| Selecting equal values of Mp/mp? (and thereforevMp”
values) for spans @ end(3) — enter Design Chart III-6
(b/8=1.0) and read off suiltable Dl end A, values. With
 these values reenter this same design charts with the velues
of Ap and Dp and read off the cgrresponAing kMp/WL® for the

center span, A table of the following type is desirable.
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[TABLE L]

M : kM; B

2 D1=4p A3=Dp —ﬁga k |
0.0Ll6 | 0,050 0,016 0.0lL2 0.991
0.,0435 0.0905 0.006 - 0.0527 10212
0., 04110 0,0635 0,011 0.0L9l 1.123

For each of these three solutions one must now compute the
moment diagram to select the size of the center columns,

With thls information, it is then possible to plot a curve

of the summation of the (MP/WLz)i with respect to the various
lengths and plot these against k values., Such a curve 1s

shown in Figure 68.

M
B2 L1 L

Oolo p—

IFIGURE 68]
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From Figure 68 it is noted that total weilght of this structure
(as measured by 2(Mp/wL®);Li) is only slightly affected by a
change in k value,

L., Design Example NO°4

As a fourth design example cdnsider the three span

unsymmetrical gable frame of Figure 69, e
o ImllnlllllmHLIHHIIIHIIIIHHHIIIHIH
1 “\0
| 0 b
o Beon 0200
070wL
——— e U
—
L
(LAl | L=l | Lg=BL |
T 1 ™ >
FIGURE 69
Dividing the structure into three parts
wy W - W
[INENNRAREN AN ANNRAN NN NN AN DR
O‘lOwL. 0
P
FIGURE 70
A1=On350
D1=L,-A2 > 0000000600000006000‘6(61)
Az = 1.778 Dp
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By preparing a table of the following type and by solving

for selected values of D, versus AB“ solution to the problem

1
is found.
TABLE 5
1 2 3 L 5 6 7 8 9 10 11
M D k.M A D kpM M Kk M Kk M
12 13
k2 k3

Plotting a curve of kp =Vs=- k3 for various values of
Mp/wLa, the solutions shown in Figure 71 are obtained.
For the structure to fall as one complete unit the values.of
k, and k3 must be such that they fall within the triangular
area., Furthermore, since each of these three lines defining
the permissible region represent a case where one of the
parts of the structure becomes "over-determinate", their in~-
tersections represent the points of most probable "least
weight", This can be seen by realizing that the Mp/wL® is a
minimum for that sub-structure when 1t becomes "over-déterminate",
Therefore two sub-assemblage minimums will give a minimum fom
the total structure, For the case in question the "least |

welght" design is as shown,
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5., Design Example No,5

As_ a final design ei:ample,so‘lutions to the mill-type

building shown in Figure 72 will be obtained,

T OO o, W

/ I
Mg ___J%_
o L
‘ ‘ L
W —
kMP % 0 '
. —0— . - i, - —_—
| L=2L | L,=4L | Ly=2L |
I T ' B I
FIGURE 72
Because of symmetry, only one half of the structure need be
considered, Solution to the W I
[TTIT] “I
@part is given by Design
: W~
Chart II-1, whereas part () :\\\\\\\ I

- 1s given by Deéign Chart
VI-é6.

Again by using a
tabular form and noting
that

Az LDy,
solutions can be obtained

(see Table 6),
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TABLE 6

M kM M kM
P
e | D1 | R mhe | e i k
0.0537 0 0 0.0625 0,859 0,250 0,291

0.0506 0,05 | 0.20 | 0.,0702 0,810 0,281 0.347
o.o47l | 0.10 | 0.40 | 0.0923 0.758 04369 0.487
0.0443 0,15 | 0,60 0,1167 0. 709 0,467 0. 659

o.o41ly | 0.20 | 0,80 | 0.1431 | 0.662 0.572 | 0,864

Mp/viL2 versus k values are shown in Pigure 7l.

It should be pointed out that for each of the designs
carried out in this section it is necessary to check for
"Additional Considerations"(g) as discussed in section 6 of

the INTRODUCTION. of this dissertation,
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VI, SUMMARY

After reviewing the assumptions of the simple
plastic theory and discussing the various methods whereby a
solution to problems in plastic analysis can be obtalned,
there is presented in this dissertation a method whereby
plastic analysis solutions to the single or multiple span
- rigid frames can be obtalned. The solution is based on the
concept of dividing the structure into sub-assemblages and
solving each of these separately in terms of the boundary
conditions at the cut sections, By equating the unknown
values at these boundaries a solution to the problem in
question can be obtained,

To facilitate the solution of other problems there
is presented desigﬁ curves which give in graphical form the
solution to the various sub-assemblage problems.

The problem of "least weight" design was also diéw
cussed and a method was presented whereby such a design can
be approached,

By solving six typical structures, it was shown that
the methods presented in thls dissertation are usable,

Furthermore, they result in a large saving in design time,
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VII.  NOMENCLATURE

non-dimensional parameter relating the horizontal
force acting on a structure (or the "over turning"
moment of one part of a structure on the adjacent
part) to the vertlcal loading. It is assumed that
"A" results in positive work being done as the
structure fails,

constant

non-dimensional parameter relating the horizontal
resisting force or "over-turning" moment acting
on a structure to its vertical loading., It is
assumed that "D" results in negative work being
done ag the structure fails,

Young's modulus of elasticityv

function value
load factor of safety

length measurement, Can be total span length, or
a fractional part of 1it,.

bending moment
full plastic moment of & cross-section
bending moment corresponding to working loads

bending moment corresponding to initial yield loads

concentrated loads

concentrated load corresponding to maximum carrying
capaclty of a structure

concentrated load corresponding to working stress
within structure

concentrated load corresponding to initial yield
within structure

hypothetical "over~turning" or resisting moment
aggumed acting about the base of a structure

weight per unit length of a structural member
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men A

= internal work associated with a virtual displacement

f
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]

2

il

i

i

]

of an assumed mechanism.

external work assoclated with a virtual displacement
of an assumed mechanism -

non-dimensional parameter relating the height of a
column to the span length.

non-dimensional parameter relating the total rise
of a rafter to the span length.,

flange width
depth of section

shape factor = z/8

function wvalues

total .vertical distance from the base of a structure

" to the instantaneous center (I.C.,) of one of its

linkages (which result from the formation of plastic
hinges)

ratio of the full plastic moment values of two spans

non-dimensional parameter defining the distance from
a support to the placement of a concentrated load
such that it is equivalent to a uniformly distributed
load., (Appendix A)

flange thickness

web thickness

distributed horizontal load per unit length

non-dimensional parameter defining the distance to
the location of the plastic hinge in the rafter of
a structure ‘ '

ratio of the applied horizontal load per foot to the
applied vertical load per foot

special virtual rotation (see page 67)
strain
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strain corresponding to the first attainment of the
yield stress level

normal stress

yleld stress level

virtual rotation

special virtusl rotation (see page Ll, figure 33)

curvature
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A-1
APPENDIX A, DETERMINATION OF E%UIVALENT SYSTEM
. S OF CONCENTRATED LOADS TO REPLACE

UNIFORMLY DISTRIBUTED LOADS

In choosing the equivalent system; the necessary con-
dition is that the moment diagram resulting frém the concen-
trated loads circumscribe the moment diagram due to the dis-
tributed loads,

Figure A-~1 (a) shows a

gsimple beam loaded with a uni-

W
: I
formly distributed load of w ‘ A
1lbs/ft, Its moment diagram is o WL (a)
2 2

as given in Filgure A-1(b) with J
X .
WL _E{_a [ ] . *—-“
X _—E'x Zooooooo A“”l .
and My M
’ l HXMII%"I (b)

szoo . @ﬁ% |
s 78 : Moment Diagram

=
ii

=
i

FIGURE A-1|

The slope of the moment diagram at each end equals

dM WL
——-—-JE: Sheal"'——'—-? oooooooooooooooooooooooI:A“’_B]
dx -

l, EQUIVALENT CONCENTRATED LOAD AT MID-SPAN

Agsuming a concentrated load at mid-span, the slope

of the moment dlagram at the ends will equal the shear or

«95w



%P, Equating this to

Equation A-3
P _ wkL

2 2

or

P = wkL onaoooto.ony[AJH

[FIGURE A-2]

- From the moment diagram of Figure A~2 it 1s observed that

the distributed load moment diagram is circumscribed.

2, EQUIVALENT CONCENTRATED LQADS

As shown in Figure A-3

two unknowns are involved in ' P P
this problem: the equivalent L l (a)
paN .
load P and the distant from A ¥
1 P
the ends of the beam to the mL' mL
points of load application, L -
mL.
. -~ ‘\\
For the end slopes of b/ANhPmL N (b)

the moment diagrams to be

equal l ]
FIGURE A-3
— WL :
P—_ﬁu.oo‘oq"\o‘.ooooy[A”B] : ,

Since the moments must also equal at the centerline
section 2

Pl = ML

-8
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or m=%ooooooooboaoooo[A-6]

3, CONCENTRATED LOADS

It has been assumed ‘ P P P

that each of the three loads

are equal, Furthermore, the

loads are placed symmetric %P HL;*EL %P
about the centerline of the , <
beam,
As seen from Figure A=l l**ziﬂ
two unknowns are to be evalu- T - (b)
ated, P and m, It is also | ’
noted that the two conditlons
| controllingbthe determination
of these quantities are [FIGURE A-L]

1, the slopes at the ends of the
beams must be equal, and

2. the magnitudes of the moment values must be equal at
the poiﬁts within the beam where the slopes are also
equal,

Using the first condition

%P == E-IJZ- 9 " .",.{\*.Q_/.;ﬁ P
or
P:%0.oaooooonpooo'e:nnoeeoooeoa--on.oeoaI:A-é_]
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A=l
To determine Xx,, the distance from the ends of the beam to
the sections where the slopes of the two moment,diagrams

‘are equal,

= lp = WL _
SHEAR = §Py. 5 - WX, N
which gives
= P :
.X'"‘"T:T"ooo-ooco.’oo_ooa.o--Qo.fo.oooooooo.ooooo;.Q-[A"‘?] 7’4"..”.{
Equating the moment values at this location, 1t is found \
K7 . oy oewe b )
that ‘ I ooy VX
2 - L _— -—rﬂL ‘/»> \“i/ . ; ) '/‘z'\/*>l :
W .2 N ) ) : ' 2 . {'\ I
’ L ‘i EZ:_,_\" i
But since from Equation A-6 P = % wL o S
1 _ | ot
m= z QQQQQQ000"0.0‘.0!0...0.0&"0..0..0.".o[A"B] i .
L., CONCENTRATED LOADS e
Using the same pro- | ¥ F lP lP |
cedure for the case of [ equal 5 A 7}5 ,
? —
concentrated loads as shown in op TzP { '
—t ——
Figure A-5, it is found that il 0L,
L L “
P=w s a._ooooooo-oooo[A“gil . ™

m = ,amo.“.u.“.@dq

n:

ol |

[FIGURE A-5]
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Bl
APPENDIX B - IMPLICIT DIFFERENTIATION OF
FUNCTION OF THREE VARIABLES*

Assuming that the three variables My, X and (b are
related according to the function

F(Mpyoi‘ 2 ()> ) =0 s ogcoo-ro;ccao’»goocooa [B"'l]

and further assume that &« and/g are the primary variables
(Mp being an implicit function of oLand A ), the total
differential of Mp can be expressed as
'dezDTMf dot +§_1f.i2d(z [13-2]
In like manner the total differential of the function value
- dtself is given by the expression

_F D F ___ _
dF-"é—.;Ld.o(. + PJ "'ﬁ"‘ OQOGOCQ li_33:l
Substituting Equaticn B-2 in Equation B-3
}_E dot  + [5 + ____B F | 2Mp d +B—RM d/)b =0
O a(’; aMp QoL

Rearranging Terms } _
L, OF 3Mpl o 1dELE 3 -0 [B-
aoz TN, au]d“ ’{;(ngp R dG 0 [B-1

But since ™K and @ are the assumed independent varisables

Equation B~L must hold for all values of ©™X and ﬂ

- em  wm  wm  Em we. e oum Sw e 6w ey e e M) W By Cw  O% 6w pm oM m owm e mm we  om o om e

*For further 1nformatlon on implicit differentiation see
any text on Higher Mathematics; for example, "Higher
Mathematics for Engineers and Phy5101sts" by I.8, and

E.S. Sokolnikoff, McGraw-Hill Book Company, New York,
1951 (page 138).
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-\APPENDIX C: SUMMARY OF IMPORTANT EQUATiONS

S ¢-1

1.

W W
ARRRANNAEN [CTTITITTT]
P, = =3 | 4 PL B 2 F// S
o ! : al, or APLT i
i 3 C _
|
I\_an = %J: (l'Mg)(A"'M) where A = (2a) (=)
wL 1+.ab< :
= 1 i LIS b
.a aotd o n
D(:[-—:—% ooooo-.ooooo-oooooo.ooforp'= 0
2
2.
W W
ANNAENENEN ‘ [EENENNNENE
P ' P oL
—— \ —_— ]
. al, or : i
- . . wkL® (L '
— RS

%.Ea = %ilii—(—%)—} , where A = (2a)(%) '

+
1 BT . . b
O( —_"_-5""[1 + a ]-Jooonoon--ocofor a >O
a
O<=% on\beOoo.aoooacauuooeoeenfor“E: O

{
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~ APPENDIX C

;,/ X I W PPN
P 2, \\' ___J____bL r/ S
f—:%z = [—fﬂ ~where A = (2a) (%}:)
NENNERNERE] o

My b My b _
..Ea =0,0156 for 570, ;r%a =0, 0625 for < =0

W.
5’, | W W
P % RS TN
—'—>'|/ N e waaad e <[
: aL ! .
/|/ - or WLQ(
2

Mp o 1| {Lo) (Aese)
T [2+ M(-‘%‘Q—l)]
Ca-

3 Byel| b
X ‘(1:%25)[1'\/%*3* a A <E)”]~--z =0
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APPENDIX C -3
O
AERANRATAR
T2 = 4:“7
e
i | o't
L whereA 2a)—%
Mo, =i X
WL In 1+—2é12(><
o1 25 | b
M"“E[l"‘—g "1J ooo.-o.-occncfor a>o
a
_1 b _
b(""z' .oooonooc-oooocoo-oc-onou-oofor.a "‘O
& W W
RERNNRNNRS x
4
‘ aL
: WL
l l .
L ’ .
;%a = [-g-‘} where A = (2a)-: (ﬁ%)
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APPENDIX C
8.
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*—3;2§§§* "ibL
B
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2
ok
L
2b
Mp 1 | x(1-g D-&)
wL® I 1+ D
b ‘ b
M:-—%—Wl_(z)(zg])_l) "1}coootoforg>o
1 b —
K = 'é‘ ooooooo.ooaooo.-q“ooeocoforE "O
9. w w
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; 1 aL : /
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k-
L
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c-5

| 105_ [DIIﬂIID NOTE: D, will be equal toD.
N _fon
. \i ' -
172 N _ 2
al
L
My 1 X (1-§2D-x)
wL® ‘E 1+%o<
% =,-%—[\’1=(%)-(2% D-1) - } veessfor 250
a 2
‘ = ll OQOOOQ..OQQOQOQ.OBOQ.QO0.00QfOrplz
b( 2 . ” a
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y al,
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wL® E 1+%o< ,
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a
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APPENDIX D

PLASTIC MODULUS TABLE

pt |
777
T_- e W
d
st
1*‘Wmvz%m
}
| b |
PLASTIC
MODULUS | SECTION AREA b/t a/w
1255,0 | 1.1k | 36 WF 300 88.17 | .9.91 | 38,9
1167,0 | 1,13 | 36 WF 280| 82,32 | 10.57 | L1.2
1076,0 | 1,13 | 36 WF 260| 76.56 | 11.50 | 42,9
1008,0 1 13| 36 WF 245| 72,03 | 12,23 | L45.0
oUu2,7 | 1.13 | 36 WF 230| 67,73 13,08 6,9
918.,2 | 1.13 | 33 WF 240| 70,52 | 11.33 | L4O.lL
869.3| 1,23 | 1l WF L26|125,25 5,50 | 10,0
836.,2 | 1,13 | 33 WF 220| 64,73 | 12,40 | L2.9
803,0 | 1,22 | 1l WP 398|116,98 5.8l | 10,3
75h. 4 | 1,13 | 33 WF 200| 58,79 | 13.70 | Lé6.2
767,21 1,16 | 36 WF 19| 57,11 9,62 | L7.L
733,9 | 1,13 | 30 WF 210| 61,78 | 11.49 | 39,2
716.9 | 1.15 | 36 WF 182| 53,54 | 10,23 | 50.1
673.7 | 1.21 | 1 WEF 370|108,78 6,20 | 10,8
659,6 | 1,13 | 30 WF 190| 55,90 | 12,69 | L2,lL
666,7 | 1,15 | 36 WF 170| L9.98 | 10.93 | 53.2
623,3 | 1,15 | 36 WF 160| L7509 | 11,76 | 55,1
611.5 | 1.19 | 14 WF 314| 92.30 7.11 | 12,1
593,0 | 1,13 | 30 WF 172| 50,65 | 14,07 | L45.6
592,2 | 1,20.{ 1l WF 320 9L.12 7.98 8.9
579.8 | 1,15 | 36 WF 150| 44,16 | 12,74 | 57.3
- 558,3 | 1.15 | 33 WF 152| LlL.71 | 10.96 | 52,8
556,9 | 1.13 | 27 WF 177| 52,10 | 11.84 | 377
551.6 | 1.18 | 14 wF 287 84.37 7.71 | 12.8
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| PLASTIC - N R

MODULUS SECTION AREA b/t

o '"ml
513.2 33 WF 141 || 41.51 | 12,02
50k 3 27 WF 160 || L7.04 | 13.04L

02,14 1 WP 264 || 77.63 8.27

66,0 33 WF 130 || 38.26 | 13.46
L6L.5 1 WF 246 || 72.33 8. 80
463.7 2L WF 160 |} L7.04 | 12.41
Ls2.0. 2L WF 145 | 42,68 14.32
hhs. i 14 WF 237 || 69.69 9.10
L36.7 30 WF 132 98083 10.55

- L27.2 14 WF 228 || 67.06 9,40
416,0 2 WF 145 || 42,62 | 13,78 .
408,0 | 1,15 || 14 WF 219 || 6L.36 9,75 | 15.8
Lo7.4 | 1.15 || 30 WF 124 || 36.45 | 11.31{ 52.0
391,7 | 1.16 || 14 WF 211 || 62.07 | 10.11 | 16.1
377.6 | 1,15 || 30 WF 116 || 34.13 | 12.35] 53.2
373,6 | 1.15 || 14 wF 202 || 59.39 | 10.48 | 16.8
369.2 | 1,12 || 24 WF 130 || 38.21 | 15.56| 42,9
357,0 | 1,13 || 21 wPF 1L2 || L1.76 | 11.99| 32.6
355.1 | 1.15 || 14 WF 193 || 56.73 | 10.92 | 17.4
345.5 | 1.16 || 30 wF 108 || 31.77 { 13.79 | BL.L
342.8 | 1,15 || 27 WF 114 || 33.53 | 11.48] 47.9
337.5 | l.14 || 14 WF 184 || 54.07 | 11.36| 18,3
336,6 | 1.13 || 2 WF 120 || 35,29 | 13.00 | 43.7
321.3 | 1.14 || 14 WF 176 || 51.73 | 11.91 ] 18.6
317.8 | 1.12 || 21 WF 127 || 37.3L | 13.26] 36,1
311.5 | 1,18 || 12 WF 190 || 55.86 7,301 13,6
307.7 | 1.12 || 24 WF 110 || 32.36 | 14.08 | L7.4
304,04 | 1.14 || 27 WP 102 || 30.01 | 12.11 | 52.3
302,9 | 1,13 || 14 WF 167 || 49.09 | 12.50| 19.4
298,0 | 1.19 || 24 I 120 || 35.13 7,30 | 30,1
286,3 | 1.13 || 14 WF 158 || L6.47 | 13.10| 20.5
278.0 | 1,11 || 21 WF 112 || 32.93 | 15,03} 39.8
278.,3 | 1.12 || 24 WF 100 || 29.43 | 15.48 | 51.3
277.7 | 1.2L || 27 WP 9l || 26,91 | 13.37] 54.9
273,0 | 1.17 || 24 I 105.9) 30.98 7.151 38,4
270,2 | 1.13 || 14 wr 150 || LL.O8 | 13.75] 21.4
259,2 | 1.17 || 12 wF 161 || L47.38 8.,4h2] 15,3
25,8 | 1.12 || 14 WF 142 || 41.85 | 14.58] 21.7
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« PLASTIC | ‘ S |
MODULUS i SECTION AREA b/t | d/w
- 253,0 | 1,15 || 24 WP 9l 27,63 | 10,39 | L7.1 |
247.9 | 1,13 || 18 WF Tl || 33,51 | 11.94 | 311 |
22,7 | 1s12 || 1h WF 136 || 39,98 | 13.87 | 22,3 |
238,8 | 1,21 | 24 I 100 || 29,25 | B.32]| 32,1
226,5 | 1,12 || 18 WF 105 | 30.86 | 12,94 | 33,1
226,3 | 1,15 || 21 wF 96 || 28,21 9,67 | 36,8
225,99 | lel2 || 1l WF 127 || 37.33 | 1h.72| 24.0
22110 | Lodl || 2L WR o 8L 2L, 71 | 1L.68| 51,3
220,5 | 1.1l |l 20 I 90 | 26.30 8,18 38,5
210,9 | 1.1l || 14 WF 119 | 34.99 | 15.62| 25.4
209.7 | 1,15 | 12 WF 133 | 39,11 | 10,00 17.7
206,0 | 1,12 || 18 WF 96 | 28,22 | 1lh.1L| 35.5
0 203.0 | L.17 | 24 T 79.9 | 23.33 | 8,04 48,0
200,1 | Ledl il a4 WF 76 | 22,37 | 13.17| 543
19640 | 1,11 || 1l WP 111 | 32,65 | 16,75 | 26.6
192,0 | 1,20 {| 20 T 95 |. 27,74 7,86 25,0 |
191.6 | .14 || 21 WF 82| 24,30 | 11.27| 41.8
186,01 | 1.1l || 12 WF 120 | 35,31 | 11.1l4]| 18,5
186,0 | 1,12 6 WE 96| 28,22 | 13,18 30.5
1810 | 1,12 || 14 WF 203 | 30.26 | 17.93| 28,8
177.6 | 1,1 8 WF 85| 2L.97 9.70| 34,8
C177.3 | 1,18 20 I 85 | 24.80 7. 70| 30,6 |.
172,1 | LelL || 2L WF 73 | 21,46 | 11,21 | Lb,7
169.0 | 1,12 || 16 wr 88 | 25,87 | 1h.U7| 3241
166.6 | 1411 || 1L WF 95 | 27.94 19 451 30,4
163,04 | 1413 || 12 WF 106 | 31,19 2,10 | 20,8
160,5 | 1,13 | 18 WF 77 | 22,62 10 571 38,2
159.8 | 1.1l || 22 WF 68 | 20,02 | 12,07 | 49.1
151,8 | 1.13 (| 12 WF 99| 29,09 13Q 2| 22,0
151,5 | 1.20| 20 I 75| 21.90 °1o 31,2
151.3 | 1,10 | 14 WF 87| 25.56 | 21,08 | 33.3
7.5 | L.17 | 10 WF 112 | 32.96 8.35 | 15.1
145, 1.1 || 16 wWF 78 | 22.92 | 9.81| 30,9
LB L | "Tell || 1y WE 8L | 2L.71 | 15.45 | 31.l.
Wh,7 | 1.13 || 18 WF 70 | 20,56 | 11.65| 4141
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| PLASTIC SR .
" MODULUS £ SECTION AREA | b/t | d/w
s R == _ ‘ ;
| ihler |01k | 21 WP &2 | 18,23 | 13,401 52,5
10,2 | 1,12 | 12 WF 92 | 27,06 | 1l.20] 23.2-
137.3 | 1,17 | 20 I 65,4 | 19.08 | 7.92] 40,0
13,0 | 1,11 | 1L WP 78 | 22,94 | 16,71 | 32,9
o 131.8 | 1.13 | 18 WF 64 | 18,80 | 12,70 iuo3
131.6 | 1.1l | 16 WF 71 ao 86 | 10.751 33.3
: 13001 1016 10 WF 100 L{,g 9 25 1602
129,1 | 1,12 | 12 WF 85 zua 15,21 | 25,3
- 125,6 | 1.12 | 1L wFR 74 | 21, 76 12, 86 31.5
123,8 |1.21 | 18 I 70 | 20, 146 9,05 | 25.3 |
) 12206 101}-‘- 18 WF 60 L7 6LL : 10087 L’-3a9 ,
119.3 | 1,11 | 12 WP 79 | 23,22 | 16,41 26,3
S 117.9 | 1.13 | 16 WF 6l | 18,80 | 11,90 | 36,1
14,8 |1.12 | 24 w8 68 | 20,00 | 13,98 | 33.6
114l | 1,15 | 10 WP 89 | 26,19 | 10,30 17,7
111.6 | 1,14 | 18 WF 55 | 16,19 | 11,96 46.5
108 :L 1911, 3.2 WF 72 81016 '17‘0 9Ll- 2805
106.2 | 1,13 | 16 WF 58 | 17,04 | 13,12 39,0
- 103.5 | 1,17 | 18 I Sh.7 | 15.94 8,68 | 39,1
102, | 1.11 | 1L WF 61 | 17.94 | 15.85 | 36,8
100.8 | 1,13 18 WP 50 | 1471 | 13,16 50,3
9707 ’ 1013 10 wWr 77 220 67 “J1Lle 75 1909
97,0 |1,10 | 12 WF 65 | 19,11 | 19,80 | 31,1
92,7 | 1,15 | 16 WF 50 | 14,70 | 131,26 | 42.8
90.7 |1.,13 | 10 WF 72 | 21.18 | 12.59 | 20.6
87.1 (1,12 | 14 WF 53 | 15,59 | 12,25 | 37.7
86,5 1,11 | 12 wF 5B | 17,06 | 15.62 | 34,0
82.8 [1.12 | 10 WF 66 | 19,41 | 13.53 | 22,7
8290 1013 16 WF 14.5 1302’-‘- 12 50 }4-606 .
78,51 | 1,12 | 14 WF L8 | 1l11 | 23,54 | 40.7
78,16 | 1,11 | 12 WF 53 | 15,59 17036 350
76,5 |1.19 | 15 I 50 | 14.59 2703
75.1 |1.21 | 10 WP 60 | 17.66 14075 2. 7
72.7 |1.13 | L6 WF 4O | 11.77 | 13.92 52,1 |
72, 57 1,12 | 12 WF 50 | 14,71 | 12,60 |'32.9
70.1 |1.16 8 WF 67 | 19,70 8,88 | 15.7
69,65 | 1,11 | 14 WF L3 | 12.65 15 15 i
68,6 | 1,16 | 15 I 42,9 | 12.49 8l | 36.6 |
67,0 1,11 | 10 WF 5L | 15.88 16 23 | 27.5 |.
6488 |1.12 | 12 WF L5 | 13.2L | 13,96 | 35,9




-/ APPENDIX D

Y
w

- | PLASTIC| . o - B ~
| MODULUS| f | SECTION || AREA } b/t a/w.

- 63.9 To2 || 16 WF 36 || 310,59 | 16,34 | 53.0 |

61,49 | 1,13 || 1L WF 38 || 11.17 | 13.21 | 45.1 |
60,65 | 1,21 | 12 I 50 || 1457 | 8.31]17.5 |
60,3 | 1.1 {| 10 WF Lo || 1L.4O0 | 17.92| 29.4 |
59.9 1,15 8 WF €8 | 17.06 | 10,18 | 17.2 |
576 o1l || 12 WF Lo || i1.77 | 15.50 | 40,6
5L,95 | 1,12 || 10 WP Lb || 13.24 | 12.98 | 28,9

I 5.)-{-05 ) 10 12 1“- W 31’. 100 OO l)-i-é 90 485 8
52,45 | 1,17 || 12 T 40,8 || 11.84 | 7.97| 26,1
ﬁloha 1.12 || 12 WP 36 || 10,59 | 12,16 L0.1.|

9,0 1,13 8 wP 48| 1L.,11 | 11.88] 21.0
7.1 1,13 | 14 WF. 30 8,81 | 17.58 | 51.3
46,95 | 1,11 || 10 WF 39 || 11.48 | 15,13 | 31.3 |
W37 | 2,17 '121 35| 10.20 | 9.33]| 28,0

43,96 | 1,12 | 12 WF 31 9.12 | 14,03 | 45.6

41,58 | 1.16) 12 I 31,8 9.26 | 9,19 | 34,3
39.9 1.12 || - 8 WF LO || 11.76 | 1h.L7| 22,6

: 3868 o 1@11 10 WF 3_3 90 71 18939 330“-
37,97 | 1.11 || 12 WF 27 7.97 | 16.25| 49,8
35,16 | 1,20 20 I 25 || 10,22 | 10,07 | 16.8

“3l,70 | 1.12 8 WF 35| 10.30 | 16,28| 25,8
34,70 | 1.13 | 10 WF 29 8.53 | 11,60 35.L
32,8 Todlp - 8 M 34,3 || 10,09 | 18,26 21,

! BOQL‘- lg 11 8 WE 31 90 12 18014.8 ‘ 270
29,58 | 1,12 | 10 WF 25| 7.35 | 13.40| 40,0
29,35 | d.16 | 12B 22 || 6,47 | 9,50 L4743
28,04 | 1.15 || 10 I 25,k T+38 9oL49 | 32,3
27,1 1,12 8 WP 28| 8.23 | 14.13] 28,3

C2h,78 | 1,16 12B 19 || 5,62 | 11.50| 50,7
2.1 1,12 || 10 WP 21 66419 | 16,91 | 41,3

123,42 | 1.12 8 M 24 T7.06 | 1733 | 3343

' 23.1 1.1 8 WF 2}4. ) 7906‘ 16@33 320’-‘» g
21,56 | 1,15 10 B 19 5.61 | 10,20 41,0
20,61 | 1,18 | 12 B 16,5 || L.B86 | 14,87| 52,2
19,15 | 1.20 81 23 6o 71 9,81 18.1

19,1 1,12 8 WF. 20 5,88 | 13,94 32,87

© 19,03 | 1,13 6 WP 25 737 | 13.33] 19,9
18,63 | 1,15 || 10 B 17 11,98 | 12.19| L2.2
179‘86 1~a ll-l- 6 M 25 ) 70 35 110 88 i 19=02
L7.46 | 1.15 8M 20 5,88 | 17.12| 22.9




- APPENDIX D

D-6
PLASTIC
MODULUS r SECTION AREA v/t | d/w
17.39 | 1.18 |12 B 1 o1l | 17.72 | 59.6
16,34 | 1.18 8 I 18,4 5. 3L 9,41 | 29.6
15.97 | 1,16 | 10 B 15 Lojo | 14.87 | 43.5
15,8 1,12 8 WF 17 5,00 | 17.05 | 34.8
{ 15,70 | 1.12 8 M 17 5,00 | 16.77 | 33.3
15,0 | 1.12 6 WF 20 || 5.90 | 16.40 | 2L,0
.56 | 1.14 6M 20 5,88 | 15.83 | 24,0 -
14.37 | 1.20 71 20 | 5.83 9.85 | 15.6
14,21 | 1.18 {12 JR-11.8| 3.45 | 12.25 | 68,6
13.59 | 1.15 8B 15 | L.43 | 12,79 | 33.1
12,13 | 1.16 || 10 B 11.5 3,39 | 19,36 | 54.8
11,94 | 1.15 7 I 15,3 o443 9.33 | 28,0
11.61 | 1.12 6B 16 L,72 9.98 | 24,0
11,35 | 1.15 8B 13 3,83 | 15.75| 34.8
11,35 | 1.1L 5 WF 18.5| 5,45 | 11.96] 19,3
11.29 | 1.12 6 WE 15.5 | L.U3 9,33 | 28,0
11.06 | 1.16 5 M 18,9 5.56 | 1L.42 | 16,0
10.49 | 1.21 6 I 17.25| B.02 9.93 | 12,9
9,62 | 1,13 || 5 WF 16 Lh.70 | 13.89 | 20.8
9.23 | 1.18 || 10 JR 9 2,6l | 14.30 | 6L.5
8,85 | 1.1k 8B 10 2,95 | 19.31 | 6.5
8.36 | 1.15 6 I 12,5 3. 61 9,28 | 26,1
8.25 | 1.1 6B 12 || 3.53 1. 34 | 26.1
7.37 | 1.23 5 I 1475 L.29 | 10.07| 10.1
6,29 | 1.15 L wF 13 3.82 | 11.77 | 1.9
6.1l | 117 LM 13 3,82 | 10.67| 16,0
5,70 | 1.12 6B 8.5 2.50 | 20,30 | 3.3
5¢57 1.16 5 I 10 2,87 9,20 | 23,8
5.4l | 1.16 8 JR 6,5 1,92 | 12,13 | 59.3
4,03 | 1.15 | 7 JR 5.5 | 1.61 | 11.05] 55,6
LL,02 | 1,22 L. I 9.5 2,76 9.5l | 12,3
3,46 | 1.15 L I 7.7 2,21 9,08 | 21.1
2,82 | 1.18 6 JR L.l 1,30 9.81 | 52,6
- 2,31 | 1.22 31 7.5 2.17 9,65 | 8,6
1.93 | Lol || 3 I 5.7 || 1.64 | 8.96| 17.6
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