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ABSTRACT 

A comparative study on the iterative solution of 

linear equations arising in the finite element analysis of 

structural problems is presented in this dissertation. Its ~ 

primary objective is to determine the most suitable of those 

solution procedures in which the storage advantages of 

iterative methods can be exploited. 

Part I of the dissertation contains a survey and 

classification of iterative and semi-iterative methods 

applicable to the solution of systems of equations with 

positive definite coefficient matrices. In addition, the 

survey includes various procedures for accelerating the con­

vergence of iterative methods. The computational details 

of the algorithms are presented and a description of their 

specific properties is given. In order to investigate the 

convergence behavior and the efficiency of the solution pro­

cedures, numerical tests are carried out. As a result of 

the comparative study, the number of potentially useful 

algorithms is reduced to a total of three. 

From additional numerical tests in Part II of the 

dissertation it is found that a particular version of the 

conjugate gradient method represents the most efficient 

solution procedure. Various means of improving its perfor­

mance, such as scaling transformations, starting procedures, 
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and algorithm modifications, are evaluated through numerical 

tests. The results indicate that a relatively simple diag­

onal scaling transformation allows an increase in its effi­

ciency whereas other procedures are found to be of little or 

no practical value. 

The dissertation also contains a survey of error 

prediction methods used for the termination of iterative 

solution processes. For the conjugate gradient method a 

new prediction procedure is proposed which provides compara­

tively accurate, conservative estimates of the relative 

error. 

In addition, the practical application of the 

conjugate gradient algorithm is investigated in various 

aspects. Numerical tests are performed in order to study 

the effects of initial guesses and roundoff errors as well 

as specific problems in the solution of large systems of 

equations. 

-2-
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1. INTRODUCTION 

1.1 Background 

The development of electronic digital computers 

has made it possible to solve rather complex problems in the 

field of science and engineering by means of numerical 

methods. Among these procedures the finite element method 

has become a very versatile tool for solving a wide range of 

practical problems of structural analysis. As in many other 

numerical methods the results of the analysis are obtained 

from a system of linear equations whose solution may in­

volve a rather large percentage of the total computational 

effort. 

In its most widely used stiffness formulation, the 

finite element method requires the solution of a large, 

sparse system of linear equations of the form (Ref. 93) 

Ku = f ( 1.1) 

where K is the global stiffness matrix of the discretized 

structure, u is the unknown displacement vector, and f rep­

resents the nodal point load vector. The various methods 

for solving such systems of equations can be categorized as: 

-3-



(1) direct methods, 

(2) iterative methods, 

(3) semi-iterative methods, and 

(4) Monte-Carlo methods. 

Except for roundoff errors, direct methods yield the exact 

solution of the equations after a finite, predictable num­

ber of numerical operations. Iterative methods, on the 

other hand, yield sequences of approximate solutions which 

approach the exact solution asymptotically. Semi-iterative 

methods could be considered as a particular type of direct 

methods since in the absence of roundoff errors the exact 

solution is obtained within a finite number of numerical 

operations whose maximum can be predicted. However, the 

computational scheme of these methods as well as their be­

havior in the presence of roundoff err~rs are very similar 

to those of certain iterative methods. Monte-Carlo methods, 

which yield only statistical estimates of the solution, have 

found little application in the field of structural analy­

sis and, therefore, are not discussed here. 

The main problems in the solution of large sparse 

systems of linear equations are related to the storage of 

the coefficient matrix K and the computational effort for 

the solution process. Direct methods, which all involve 

some type of transformation of the coefficient matrix, re­

quire only a limited amount of numerical operations. The 

-4-



disadvantage of these methods is that the transformed 

coefficient matrix contains more non-zero elements and, 

therefore, requires more storage than K in its original 

form. Both the storage requirements as well as the comput-

ing time are strongly affected by the ordering of the equa-

tions, i.e. by the sequence in which the nodal points are 

enumerated. Therefore, various researchers have developed 

elaborate computational schemes in order to keep the storage 

requirements, the number of data transfers, and the comput-

ing time to a minimum (Refs. 46, 55, 69, 80, 85). In com-

parison with direct methods, iterative and semi-iterative 

methods have the advantage that the storage of K is essen-

tially restricted to its non-zero elements and does not de-

pend on the enumeration scheme. For most of these methods 

the global stiffness matrix does not even have to be avail-

able in assembled form, although the latter approach usually 

requires additional numerical operations. The major disad-

vantage of iterative methods is that the required computa-

tional effort is not only unpredictable, but may be rather 
-

large, too, at least for some of the less efficient algo-

rithms. 

Aside from storage and computing time, other 

factors such as roundoff errors and the simultaneous treat-

ment of multiple load vectors may affect a decision on which 

type of solution method is to be preferred. For large prob-
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lems, however, this decision will always depend on the 

size of the system of equations in relation to the available 

computing facilities. The continued interest in the itera­

tive solution of linear equations indicates that the storage 

advantages of these methods are of considerable practical 

value for both small computers as well as large facilities 

used in time sharing mode (Refs. 28, 48, 61, 90). In order 

to take full advantage of the preferable aspects of itera­

tive methods it is necessary to know which of the numerous 

iterative algorithms is efficient enough to be useful for 

practical applications. Therefore, a main objective of this 

investigation is to determine such a suitable method for sys­

tems of linear equations arising from finite element analy­

sis. 

1.2 Previous Work 

The iterative solution of linear equations 

represents a problem of numerical analysis whose history 

goes back as far as the early nineteenth century and in 

which extensive research has been carried out (Ref. 7). The 

development of truly new iterative algorithms was essentially 

completed at the time when electronic digital computers came 

into practical use. Later contributions were made primar­

ily ~n the field of acceleration procedures (Chapter 4) and 

in the development of specialized algorithms applicable only 

-6-



to particular type of coefficient matrices. 

During the 1950's and early 1960's, when computers 

were used on an ever larger scale, the practical application 

of iterative methods was investigated extensively, resulting 

in a large number of publications in this field. The re­

search almost exclusively concentrated on systems of equa­

tions arising from finite difference approximations of par­

tial differential equations. The investigations dealt not 

only with convergence proofs, but also with the prediction 

of convergence rates and the determination of optimum accel­

eration factors. Since it is virtually impossible to give 

even a brief survey of these publications, reference is made 

to a number of books which summarize most of the research 

findings of this period. An extensive treatment of general 

iterative methods is given by Bodewig, Faddeev-Faddeeva, and 

Westlake (Refs. 7, 21, 84), whereas Forsythe-Wasow, Milne, 

and Varga (Refs. 25, 56, 82) deal with the iterative solu­

tion of finite difference equations. Throughout this study 

individual findings will be quoted mainly from these stan­

dard references rather than from less accessible original 

publications. 

Many of these investigations include limited 

comparative studies of iterative solution methods. Appar­

ently, however, only one major numerical investigation, 

covering most of the better known iterative methods, has 
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been published (Ref. 17). This study as well as many 

previous publications deal with systems of equations which. 

are of less general nature than those arising from finite 

element analysis (Appendix 1) • Therefore, only few results 

of these investigations are directly applicable to the iter­

ative solution of finite element equations. Within the last 

few years the solution of such more general problems has been 

investigated to a certain extent (Refs. 28, 61, 90), although 

no comparative studies have been published so far. 

1.3 Purpose and Scope of Investigation 

The subject of this investigation is the iterative 

solution of systems of n linear equations of the form 

Ku = f ( 1. 2) 

which arise in the stiffness formulation of the finite 

element method. A detailed description of the specific 

properties of these equations is given in Appendix 1. Since 

iterative methods are primarily used because of their poten­

tially smaller storage requirements, the study covers only 

those solution procedures which actually allow such storage 

saving~ · In the presentation and discussion of iterative 

algorithms it is assumed that the coefficient matrix K is 

symmetric and positive definite. No attention is paid to 
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specific problems which arise in connection with other types 

of coefficient matrices. 

The first part of the dissertation contains a 

classification, description, and comparative study of numer­

ous iterative, semi-iterative, and acceleration procedures. 

The majority of these algorithms are tested numerically in 

order to determine a suitable iterative solution method 

which should meet the following requirements: 

(1) The convergence of the solution method should 

be stable and rapid enough to be useful for 

practical applications. 

{2) Except for a limited number of additional 

vectors, the storage requirements of the 

algorithm should be essentially restricted 

to the non-zero elements of the original 

coefficient matrix. Moreover, the storage 

requirements should be independent of the 

ordering of the equations. 

(3) The algorithm may not involve unknown 

quantities such as eigenvalue bounds 

unless simple "a priori" estimates re­

quiring only a limited amount of numerical 

computations are available. 

{4) If the algorithm contains acceleration 

parameters, well-defined limits within 
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which convergence is guaranteed to 

occur, must be known for these quantities. 

In addition, certain information on the 

optimum range of these parameters should 

be available. 

The purpose of this comparative study is to reduce the total 

number of potentially useful algorithms to a minimum. 

The second part of the investigation contains 

additional numerical tests of these remaining methods in 

order to identify the most suitable solution procedure. 

Various means of improving the·performance of the selected 

method, such as scaling procedures and modifications of the 

basic algorithm, are investigated. Additional numerical 

tests are carried out in order to study the effects of ini­

tial guesses, roundoff errors, nodal point enumeration, and 

other factors of influence. The purpose of this second part 

is to guide the potential user in the practical application 

of iterative methods and to indicate possible effects on the 

behavior of the solution process. 

-10-



PART I. 

COMPARATIVE STUDY OF ITERATIVE 

SOLUTION METHODS 
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2. EXECUTION OF NUMERICAL TESTS 

2.1· Test Examples and Procedures 

A comparative study of the efficiency of iterative 

methods for solving finite element equations necessarily has 

to be carried out numerically since theoretical comparisons 

of rates of convergence are not possible for such general 

type matrices. The numerical tests of this first part of 

the investigation are performed with a total of six problems 

of linear elastic finite eleme~t analysis of plane stress 

problems. Simple CST-elements (Constant Strain Triangles) 

with two degrees of freedom per nodal point are used in the 

discretization of the sample structures (Ref. 93). The test 

examples themselves, as well as various properties of the 

corresponding stiffness matrices, are described in Appendix 

2. 

In order to keep the total computational effort 

within reasonable limits, relatively small size systems of 

equations are chosen. Despite their small size and therel­

atively simple element type, the coefficient matrices of the 

test examples exhibit all the properties of general finite 

element matrices (Appendix 1) . Since the performance of 

iterative methods is primarily affected by the condition 
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rather than the size of the system of equations, the test 

examples are believed to be general enough for comparison 

purposes. Any decisions on the suitability of a particular 

method are based on the assumption that a method which shows 

instabilities or fails to converge rapidly e'nough for these 

test examples, cannot be expected to perform satisfactorily 

for larger practical problems. 

All iterative solutions are started with zero 

initial guesses since better starting vectors are usually 

not available or difficult to generate. The numerical cal­

culations are carried out on a CDC 6400 computer with a word 

length of 60 and a mantissa length of 48 bits, which allow 

the representation of a single precision number by approxi­

mately 14 significant digits. 

2.2 Presentation: of Results 

Since the main objective of this first part of the 

investigation is to compare the efficiency of various itera­

tive methods, it is necessary to define an appropriate mea­

sure of their performance. In order to be generally applica­

ble, such a measure has to give reliable estimates of the 

amount of error reduction in relation to the required compu­

tational effort. 

-13-



All results on the performance of iterative 

methods are, therefore, presented in the form of m0 _1-values, 

which represent the number of iteration cycles necessary to 

reduce the relative error of the maximum nodal point dis­

placement to a value of 0.1%. A simple but realistic measure 

of the total computational effort for the solution process 

is obtained by multiplying these m-values by the number of 

matrix-vector products a particular iteration requires per 

iteration cycle (Appendix 3). For iterations which do not 

converge monotonically the m~values represent the number of 

iteration cycles after which the relative error does not ex­

ceed the specified value anymore. In cases where the m-

values are not actually reached because of slow convergence, 

approximate values are determined by extrapolation of avail­

able data. 

As most other convergence indicators, the m-

values are, to a certain degree, affected by irregularities 

of the iteration process, particularly for iterative solu­

tions which do not converge monotonically. Nevertheless, it 

is believed that these effects do not obscure those general 

trends which are the main concern of this investigation. It 

is realized that better, theoretically more meaningful mea~ 

sures, such as asymptotic rates of convergence (Section 3.2.1), 

are available for a number of iterative methods. However, 

for a comparative study such quantities are not suitable since 

-14-



they cannot be defined for certain types of solution 

methods. 

Because of space limitations the presentation of 

numerical results is restricted to a small number of repre­

sentative examples which constitute only a fraction of those 

results on which the observations and conclusions are based. 
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3 • ITERATIVE METHODS 

3.1 General Discussion 

3 .1.1 · Definitions and Classificat·ion 

Iterative solution methods can be defined as 

computational rules for operating on previous approximations 

uc in order to obtain improved approximations uc+l" In the 

absence of roundoff errors iterative methods yield the so­

lution vector u after an infinite number of iteration cycles, 

provided the solution process does not diverge. 

A general iterative algorithm for the solution of 

a system of linear equations 

Ku = f (3 .1) 

can be written in the form 

(3.2) 

The large number of iterative methods included in this 

general algorithm can be categorized on the basis of several 

different criteria (Refs. 17, 84). In this presentation 
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only two such criteria are used for classifying all the 

iterative methods under investigation: 

(a) linear/nonlinear iterations 

(b) stationary/nonstationary iterations. 

An iteration is said to be linear if the new approximation 

uc+l is a linear function of the previous approximations uc' 

uc_1 , ••• On the other hand, an iteration is called station­

ary if the cycle counter c ent~rs the algorithm only as a 

subscript for identifying previous approximations, but not 

as a variable or as the order of a polynomial. Specifically, 

the following types of algorithms are considered: 

(a) linear stationary algorithms 

(b) nonlinear stationary algorithms 

(c) linear nonstationary algorithms. 

The fourth possible combination is omitted since examples 

for nonlinear nonstationary algorithms are not found in the 

literature. Above classification is chosen since it allows 

an appropriate description of the nature of the algorithm 

and applies equally well to the classification of accelera­

tion procedures (Chapter 4). 

In order to describe the convergence behavior of 

iterative methods it is necessary to define suitable mea­

sures for the deviation between the exact and the approxi-

-17-



mate solution vectors. The following two vector quantities 

are commonly used for this purpose: 

e = u-u c c ·error vector 

(3.3) 
r = f-Ku = Ke residual vector c c c 

Since the exact solution vector u is the objective of the 

solution process, the error vector ec remains generally un­

known whereas the residual vector rc can be calculated for 

any approximate solution. For systems of linear equations 

arising from finite element analysis the elements of this 

residual vector can be interpreted as unbalanced forces of 

the nodal point equilibrium equations. The nature of the 

relationship between the error vector and the residual vee-

tor (Eq. 3.3) does not imply that small unbalanced forces 

necessarily correspond to small errors in the displacement 

vector. This fact makes a prediction of the error of the 

approximate solution on the basis of the residual vector 

rather difficult (cf. Chapter 8). 

The nature of an iterative algorithm is defined by 

its so-called iteration matrix Tc which relates the error 

vectors of two consecutive approximations. 

e = T e c c c-1 ( 3. 4) 
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The total reduction of the initial error e
0 

can be expressed 

as 

ec = T T 1 ... T2T1e · c c- . o = 
c 
IT T.e = M e 

. 1 ~ 0 c 0 
~= 

(3. 5) 

where M represents the so-called error (matrix) polynomial. c 

The solution process is guaranteed to converge if the largest 

eigenvalue. of M is less than 1.0 in absolute value. Aside c 

from this very general formulation it is usually possible to 

establish more practical, explicit convergence conditions 

for specific iterative algorithms. 

Based on the spectral radius I~ II . and the spectral c sr 

norm l~cll2 ·of the error polynomial it is possible to define 

the following rates of convergence 

logl~c 112 
average rate of Pc = c convergence 

log I ~c llsr. 
(3.6) 

as c+oo asymptotic rate of Poo = c convergence 

The use of latter quantity is restricted to iterations which 

show an asymptotic convergence behavior whereas the average 

rate of convergence is free of such limitations. Above 

quantities represent theoretical measures of the performance 
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of iterative algorithms and as such play a central role in 

the theory of iterative matrix methods (Refs. 82, 84}. How-

ever, their practical importance is limited sine~ the numer­

ical evaluation of these quantities is difficult. 

The convergence behavior of iterative solution methods 

is governed by the nature of the corresponding it~ration 

matrices. In describing this behavior two special types of 

convergence, namely geometrical and linear, can be distin­

guished (Ref. 84}. An iteration is said to converge geomet-

rically if two consecutive error vectors are related by a 

constant scalar factor, that is, if the iteration matrix T c 

can be written in the form 

T = TI c ( 3. 7} 

where T is a constant factor less than 1.0. On the other 

hand, an iteration is said to have linear convergence if the 

iteration matrix is of the form 

= TI+T c 
( 3. 8} 

where Tc is a matrix whose elements approach zero for c 

approaching infinity. Most iterative methods discussed here 

-20-:-



exhibit linear convergence whereas geometric convergence 

occurs only asymptotically for linearly converging itera-

tions. 

3.1.2 .Principles of Derivation 

In order to establish a unifying concept for the 

large number of iterative solution methods, various investi-

gators have suggested certain basic principles from which 

groups of such algorithms can be derived (Refs. 17, 42, 74, 

84). Apparently, however, there exists no single derivation 

scheme which is general enough to be applicable to all iter­

ative algorithms. The purpose of this section is to review 

some of the more important concepts of derivation and to give 

an indication of their limitations. 

The first derivation scheme to be discussed here 

is based on the minimization of so-called error functions 

(Ref. 84). Among various possible types of such functions 

the following low order Schwarz constants play a dominant 

role (Ref. 73). 

cf>l(uc) 
T 

= ecec 

¢2(uc) = e~Kec = T 
ecrc (3.9) 

¢3(uc) = eTKKe = rTr 
c c c c 
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Other objective functions for the minimization process (Refs. 

17, 23, 37, 73) have apparently found no practical applica­

tion in the derivation of iterative methods for the solution 

of linear equations. Above error functions satisfy the re-

lationships 

¢ (u ) > 0 c for arbitrary u , c 

only if uc = u, 
(3.10) 

provided the coefficient matrix K is nonsingular, and in 

case of ¢2, also positive definite. For systems of linear 

equations arising from structural analysis, error function 

¢2 is of particular importance since it is closely related 

to the total potential energy IT of the structure 

therefore 

T = e Ke c c 

1 T T = -2 u Ku -u f, c c c ( 3 .11) 

From the above expressions it can be shown that both functions 

assume their minimum for the same vector uc = u. However, the 

magnitude of error function ¢2 remains generally unknown, 

whereas the potential energy IT can be computed for any approx-

imate solution vector. 
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The derivation scheme is applicable to those 

iterative algorithms which can be presented in the form 

(3.12) 

where de is a so-called direction vector and Yc represents a 

scalar factor. The numerical value for y is determined in c 

such a way tnat the new approximation uc+l minimizes one of 

the three error functions 

(3.13) 

By carrying out the minimization process the following yc­

values are obtained (Ref. 84). 

rTK-ld 

<Pl: 
c c 

Yc = 
dTd 

c c 

rTd 
<P2: 

c c (3.14) Yc = 
dTKd 

c c 

rTKd 
<P3: 

c c 
Yc = 

dTKKd 
c c 

Any iterative algorithm of this kind is, therefore, completely 

defined by its direction vector and the selected error func-

tion. Typical choices for the direction vector de are rc' 

Krc' ei' and Kei' where ei is a vector which corresponds to 
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the i-th column of the identity matrix. A generalization of 

the above concept (Ref. 41) is based on the use of direction 

matrices rather than vectors and applies to certain block 

iterative methods (Section 3.2 and 3.3). The minimization 

of error functions allows the derivation of most linear and 

nonlinear iterations as well as accelerations; however, it 

does not apply to nonstationary algorithms. Essentially the 

same iterative methods can be obtained from the closely re­

lated principle of projection methods (Refs. 41, 42). 

A second important concept of derivation is based 

on the theory of orthogonal polynomials (Refs. 21, 74, 75). 

The derivation scheme involves again the·minimization of 

certain error measures, but unlike above, the minimization 

process is carried out over more than one iteration cycle. 

The results of this process are given as sets of y-like sca­

lar factors which usually contain the cycle counter c as a 

variable. Orthogonal polynomials are primarily used in the 

derivation of nonstationary iterations and accelerations, 

although they also apply to the derivation of semi-iterative 

solution methods. 

The analogy between iterative processes and 

certain time dependent phenomena, commonly described by 

parabolic or hyperbolic differential equations, forms the 

basis of a third concept of derivation. Depending on the 
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particular form of interpretation, this analogy can be 

applied to the derivation of iterative methods (Refs. 39, 82, 

87), to the derivation of accelerations and accelerated 

iterations (Refs. 9, 39, 60, 87) as well as to the estima­

tion of optimum acceleration factors (Refs. 18, 19, 32). 

The discussion of derivation concepts is restricted to these 

three major types, although several additional principles of 

more limited applicability are given in the literature. 

Among various types of iterative solution methods, 

common principles can be found, not only in their derivation, 

but also in the way in which iterative algorithms are modi­

fied. Two of the most widely used modification procedures 

are based on so-called Gauss transformations of systems of 

linear equations (Ref. 21). The first Gauss transformation 

consists of pre-multiplying the original matrix equation (Eq. 

3.1) by K and results in the following equivalent system 

Klul = fl 

where Kl = KK 
(3.15) 

ul = u 

fl = Kf 

A similar transformed system of equations is obtained by the 

second Gauss transformation 

-25-



K2u2 = f2 

where K2 = KK 

-1 (3.16) 
u2 = K u 

f2 = f 

The coefficient matrices of both transformed systems are 

necessarily positive definite, since for any nonsingular 

matrix A the matrix product ATA has this particular property 

(Ref. 21). The basic purpose of Gauss transformations is, 

therefore, to allow those iterative algorithms, which con-

verge only for positive defini~e coefficient matrices, to be 

applied to more general systems of equations. The transfor-

mations form the basis for re-formulating the original iter­

ative procedure in order to obtain a new algorithm which 

does not require the explicit formation of the matrix prod-

uct KK. Since the transformed coefficient matrix is more 

ill-conditioned than K itself, the above transformations are 

expected to have a detrimental effect on the performance of 

iterative methods (Ref. 84). 

Both Gauss transformations can be considered as 

special cases of the following general transformation 

where 
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(3.17) 

P1 ,P2 = transformation matrices 

This third modification procedure also includes so-called 

"preparations" of systems of equations (Ref. 21) as well as 

various scaling transformations (Section 7.2). 

It should be pointed out that these seemingly 

unrelated principles of deriving and modifying iterative al-

gorithms are not strictly independent since it is possible 

to arrive at the same algorithm by means'of different deri-

vation schemes. 

3. 2 Linear st·ationary Iterations 

3.2.1 classification 

Among all iterative solution methods, linear 

stationary iterations form not only the largest group of al-

gorithms, but also include some of the oldest, best known 

iterative methods. The particular nature of this type of 

iterations is reflected in the general operator 

(3.18) 
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in which the new approximation uc+l is a linear function of 

uc. All iterative methods discussed in this section are 

included in the following general algorithm 

(3.19) 

The matrices o1 and 02 represent so-called "splittings" of 

the coefficient matrix (Ref. 82) and define the nature of a 

particular algorithm. Since the new approximation uc+l has 

to be obtained explicitly, the matrix o1 must be of such a 

form that a simple recursive calculation of the elements of 

uc+l is possible. 

Throughout this discussion an alternative presen­

tation of the above algorithm is used which can be written 

as 

(3.20) 

where r represents the residual vector. In comparison with c 

the previous formulation, .the matrix S is related to o1 . 

simply by 
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(3.21) 

A main characteristic of linear stationary itera-

tions is that the corresponding iteration matrix T depends 

only on the particular splitting of the coefficient matrix 

and remains constant throughout the iteration process. The 

error polynomial Me (Section 3.1.1) can, therefore, be writ­

ten in the form 

e = M e = Tee c c 0 . 0 

whereas the iteration matrix itself can be expressed as 

T = I-SK 

(3.22) 

(3.23) 

Because T remains constant, the definitions of the average 

and asymptotic rates of convergence (Section 3.1.1} assume 

the following simpler form 

.logl~c 112 
PC = c 

(3.24) 

Poo = -log liT llsr 

A necessary and sufficient condition for the convergence of 

a linear stationary iteration is given by 
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II II = · _max I /.. · ( T) I < 1 T sr 1-l ... n 1 (3.25) 

where /... (T) represents the i-th eigenvalue of the correspond-
1 . 

ing iteration matrix. For most iterative methods of this 

type it is possible, however, to define more explicit con-

vergence criteria which depend only on the nature of the co-

efficient matrix K (Section 3.2.2). 

In order to categorize the large number of linear 

stationary iterations, a total of five basic groups of al-

gorithms will be described first. In defining the corre-

sponding S-matrices the following notation for splittings of 

the matrices K and KK is used: 

( 1) K = L+ D+ L T (3.26a) 

where D is a diagonal matrix containing the diagonal elements 
. T 

of K, whereas L and L are the corresponding lower and upper 

triangular matrices; 

(2) (3.26b) 

where n1 and L1 represent a similar splitting of the matrix 

KK; and 
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(3) (3.26c) 

where o2 is a quasi~diagonal matrix containing nb principle 

submatrices of K of (not necessarily constant) size ns' 

T whereas L2 and L2 are, again, the corresponding lower and 

upper triangular matrices. 

The first basic group of linear stationary itera-

tions, designated as Successive Approximation (Ref. 21), is 

defined by 

S = I 

= u +r c c 

(3.27) 

The algorithm represents the simplest, most fundamental type 

of iteration in the sense that all other basic groups can be 

reduced to this form by a general transformation of type 3 

(Section 3 .1. 2) • 

The second basic group, named after Jacobi, encom-

passes some of the most widely known iterative solution 

methods and is defined by 

(3.28) 

= u +D-1r 
c c 
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The iterations of the Jacobi group can be derived by minimiz­

ing error function ¢2 with e. as direction vector, where e. 
~ ~ 

corresponds to the i-th column of the identity matrix {Sec-

tion 3.1.2). During each iteration cycle c the index i as-

sumes all values from 1 to n in cyclic order. For the basic 

algorithm described here it is understood that the residual 

vector rc is re-calculated only at the end of a complete 

iteration cycle, not after each single component of uc+l is 

determined. The same special provisions, which represent a 

deviation from the usual minimization procedure, apply to 

the derivation of the remaining basic groups. 

The algorithm for a third basic group of iterations, 

attributed to de la Garza, can be written as 

(3.29) 

It is possible to derive the iterative methods of this group 

either by minimizing error function ¢3 with ei as direction 

vector or by applying the first Gauss transformation to the 

corresponding algorithms of the Jacobi group (Section 3.1.2). 

Similarly, a fourth group of iterations, named 

after Kaczmarz and defined by 
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S = KD-l 
1 

(3.30) 

can'be derived either by applying the second Gauss transfer-

mation to the corresponding methods of the Jacobi group or 

by minimizing error function ¢1 using Kei as direction vec­

tor. 

The fifth basic group, designated as Block Jacobi, 

represents a modification of the Jacobi group in the sense 

that the diagonal matrix D (Eq. 3.28) is replaced by a quasi-

diagonal matrix o2 which contains principal submatrices of K 

rather than single diagonal elements. 

(3.31) 

The iterative methods of this group can be derived from error 

function ¢2 by using direction matrices (rather than vectors) 

consisting of neighboring columns of the identity matrix. 

The algorithms of the Jacobi group could be considered as 

special cases of the corresponding block versions with block 

size n equal to one. s 

Although it is possible to apply similar block 

modifications to the de la Garza and Kaczmarz iterations 
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(Ref. 40), this possibility was not considered here. Addi-

tional iterative methods could also be derived either by ap-

plying Gauss transformations to the Successive Approximation 

group (Ref. 56) or by using other types of error functions 

and direction vectors for the minimization process. How-

ever, since none of these possible modifications have found 

practical applications, they are not included in this com-

parative study. 

The S- and T-matrices of the above five basic 

groups as well as their corresponding algorithms are summa-
/ 

rized in Table 1. Each of these iterative procedures can 

be subjected to a number of modifications whose nature is 

discussed in the following paragraphs. 

The basic algorithms, from here on designated as 

Versions A, belong to a group of iterative methods which are 

commonly described as total-step iterations (Ref. 82). Their 

main characteristic is that every element of the new approxi-

mation uc+l is computed solely on the basis of uc or its 

corresponding residual. This fact is illustrated by the al-

. gorithm for Version A of the Jacobi group, which is presented 

here in index as well as matrix notation 

= (u) ~+ (K~ [(f) . - ~· (K} .. (u).'?J 
~ . . ~ . 1 ~J J 

~~ J= 
(3.32a) 

i = 1 ... n 
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'· 
(3.32b) 

The behavior of total-step iterations is not affected by the 

sequence i~ which the individual equations are treated or by 

the particular form of nodal point enumeration. Consequent-

ly, the stiffness matrix K does not have to be available in 

assembled form since the residual vector rc can be computed 

on the basis of element stiffness matrices alone (Appendix 

3) • 

The first type of modification (Version B) involves 

the re-formulation of the basic computational procedures as 

so-called Seidel processes. The essential feature of the 

modified algorithms is that the elements of the new approx­

imate vector uc+l are calculated on the basis of the most 

recently available approximations. Iterative methods of 

this type are designated as single-step methods (Ref. 82) and 

can be found only among linear stationary iterations. The 

application of the Seidel process to Version A of the Jacobi 

group results in the following algorithm (Gauss-Seidel 

iteration) 

{u) ~:1 = (u) ~+(Kf ~f) . - i~l (K) .. (u) ~+l_ ~ (K) .. (u) ~~ (3. 33a) 
l. . . l. . 1 l.J J . . l.J J l.l. J= . J=l. 

i = 1 .•• n 
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= u +(D+L)-lr 
c c (3.33b) 

The nature of the above algorithm indicates that the conver-

gence behavior of single-step iterations depends on the se-

quence in which the individual equations are treated. In 

order to allow an efficient ~omputer implementation of such 

algorithms, the stiffness matrix K has to be available in 

assembled form. As far as their derivation from error func-

tions is concerned, single-step methods differ from total-

step iterations by the fact that the elements of the residual 

vector have to be re-calculated after each single step, not 

only after the/ completion of a·full iterative cycle (p.32). 

The comparatively minor modification, thus, has important 

consequences not only for the convergence and the derivation 

of the iterative algorithms, but even for the storage of the 

coefficient matrix. From Eq. 3.33 it can also be seen that 

the presentation of single-step iterations in matrix notation 

bears unfortunately no resemblance to the actual computa-

tional scheme (Eq. 3.33a). 

A second type of modification (Version C) is 

obtained by applying a so-called Aitken process to the basic 

iterative algorithms (Refs. 26, 84). The computational pro-

cedure essentially consists of two single-step iteration 

cycles, where the sequence in which the equations are treated 

is reversed during the second cycle. As an example, the 
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e-version of the Jacobi group (Aitken iteration) can be 

written as 

(u)~+~ = (u)7+(.Kl). [(f).-\~ 1 (K) .. (u)'?+~- ~ (K) .. (u)'?~· 
... . ~ . . ~ .. 1 ~J J . . ~J J 

~~ J= . J=~ 

i = 1. •• n 
(3.34a) 

c+ 1 . . 1 [ i c+! n c+ll = (u) · 2+ (K) (f) . - E (K) .. (u) . 2- E (K) .. (u) . 
~ ii ~ j=l ~J J j=i+l ~J J 1 

. . J 
i = n ••• 1 

T 
= u +(D+L)-l D(D+L)-lr 

c c (3.34b) 

The purpose of reversing the equation sequence is to obtain 

an iterative algorithm whose iteration matrix is guaranteed 

to have only real eigenvalues (p. 40). 

A total of three additional modifications (Versions 

D, E, and F) can be obtained by applying a linear stationary 

acceleration (Chapter 4) of the form 

(3.35) 

to any of the versions discussed so far. In the above 

expression I(uc) represents a linear stationary iteration of 

type A, B, or c, whereas w is a constant acceleration factor 

. greater than zero. Since this particular acceleration proce-
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dure is so closely related to iterative algorithms, it is 

justifiable to treat the acceleration not as a separate al-

gorithm (Section 4.2), but directly in context with the 

respective iterative methods. By applying the acceleration 

to the basic algorithm of the Jacobi group the following 

iterative method (extrapolated Jacobi iteration) results 

- c+l c 1 [ n c] (u). = (u) .+(K) (f).- E (K) .. (u). 
l. l. .. l. . 1 l.J J l.l. J= 

(u) <;+1 
l. 

{u) . = (u) . +w (u) . · - (u) . c+l C v- c+l CJ 
l. l. l. l. 

= (u) <?+w (Kf [<f) . - ~ (K) .. (u) <?] 
l. .. l. . 1 l.J J l.l. J= 

i = 1 ... n 

For single-step iterations it is understood that the 

(3.36a) 

(3.36b) 

(3.36c) 

acceleration is applied after each individual iteration step, 

not only at the end of a full iterative cycle. As an illus-

tration, the accelerated form of the Gauss-Seidel iteration, 

usually designated as overrelaxation method, can be derived 

in the following way 

~ 
· -1 · n ] c · 1 1 c+l c = (u) . + ) (f) . - E (K) •. (u) . ~ E (K) .. (u) . 

1 (K ii 1 j=l l.J J · j=i l.J J 
. . 

. (3.37a) 

( u) <;+ 1 = ( u) <? + w [ ( u ) <;+ 1- { u) <? ] i = 1. • • n 
l. 1 l. l. 
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= (u) <?+w (Kf [(f) . - i~l (K) .. (u) <:+l_ ~ (K) .. (u) c~ 
1 .. 1 . 1 1J J . . 1J J 11 J= J=1 

(3.37b) 

(3.37c) 

The accelerated form of the corresponding e-version is 

obtained in a similar manner. 

From Eq. 3.35 it can be seen that the acceleration 

is suppressed if the w-factor assumes a value of 1.0. The 

unaccelerated algorithm versions A, B, and c could, there-

fore, be considered as special,cases of the corresponding 

versions D, E, and F with w set to this particular value. 

The designation and basic features of the different 

types of modifications discussed above are explained sche­

matic~lly in Table 2. Table 3, on the other hand, contains 

the S-matrices of all linear stationary iterations as well 

as the commonly used names for some of the algorithms. In 

connection with Eq. 3.20, these s-matrices define the com-

putational details of all iterative algorithms under consid-

eration. 

In addition, the iteration matrices~or Versions 

D, E, and F of the five basic groups are listed in Table 4. 

By setting the acceleration factor w equal to 1.0, the T-

. matrices of the corresponding unaccelerated versions are ob-
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tained. Since the convergence behavior of iterative solu­

tion methods strongly depends on the nature of their itera­

tion matrices, it is important to know whether these matrices 

have real or complex eigenvalues. From Table 4 it can be 

seen that the T-rnatrices of Versions A, c, D, and F are 

either symmetric or their unsymmetric second part can be 

expressed as a product of symmetric and symmetric positive 

definite matrices. According to Theorems 11.3 and 11.14 of 

Ref. 21, in both cases the eigenvalues of the iteration rna­

trices are real. On the other hand, the T-rnatrices for 

Versions B and E have real eigenvalues only for sufficiently 

small acceleration factors, whereas higher w-values result 

in complex eigenvalues. 

· 3 • 2 • 2 Algorithms 

The computational characteristics of 30 linear 

stationary iterations are defined in Table 3 by means of so­

called S-rnatrices. In order to provide some additional in­

formation on these algorithms, certain theoretical as well 

as practical aspects of their application are summarized in 

this section. For greater clarity the discussion is given 

separately for each of the five basic algorithm groups. 
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( 1) succe:s:s ive Approximation (Refs • 56 , 7 3, 91) 

Most iterative algorithms of the Successive 

Approximation group have found practical application only in 

cases where they are derived from the corresponding versions 

of the Jacobi group (Ref. 17) by a general·· transformation of 

type 3 (Section 3.1.2). An exception is made by Version D 

which is frequently used in connection with various accelera­

tion procedures. One of the reasons for the limited impor­

tance of this group of iterations is that the unaccelerated 

Versions A, B, and C converge only if the largest eigen­

value of the coefficient matrix is in the order of 1. Since 

this condition is rarely satisfied for systems of equations 

arising from finite element analysis, the algorithms have to 

·beconsidered as not suitable. 

The iteration matrix for version D of the Succes­

sive Approximation group 

T = I-wK (3.38) 

is known to have real eigenvalues which are directly related 

to those of the coefficient matrix. 

(3.39) 
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Among all iterative solution methods, the above algorithm 

represents the only case for which such a simple relation­

ship between the eigenvalues of T and K can be established. 

From the general convergence criterion for linear stationary 

iterations (Eq. 3.25) it follows that the algorithm will con-

verge for w-values in the range 

or 

where 

O<w<A 2() 
max K 

O.<w'<2 

w' w = 

(3.40) 

The highest asymptotic rate of.convergence is obtained for 

wopt' which can be expressed in terms of the eigenvalues of 

the coefficient matrix (Ref. 73) 

w . opt = 2 
A (K)+A . (K) max · mJ.n 

(3.41) 

For w-values smaller than wopt' the dominant eigenvalue of T 

(i.e. the eigenvalue of largest absolute value) is positive, 

whereas it becomes negative for w>wopt• The fact that 

Amax(K) remains generally unknown does not impair the appli­

cability of the algorithm since relatively close upper bounds 

for this quantity can be easily calculated (Appendix 1). On 

the basis of such eigenvalue bounds it is possible to deter-

mine "safe" w-values for which convergence is guaranteed to 

-42-



occur. However, the optimum acceleration factor will usually 

lie outside this particular range of w-values. 

(2) Jacobi (Refs. 17, 21, 25, 82, 84) 

During the long history of their practical appli­

cation the algorithms of the Jacobi group have become 

probably the best understood iterative methods. Numerous 

investigations have been carried out in order to study various 

aspects of this particular group of iterations. The basic 

algorithm (Jacobi iteration) does not, in general, converge 

for the type of linear equations which are considered here. 

The reason is that these equations satisfy none of the various 

convergence conditions which have been established in con-

nection with certain forms of finite difference equations 

(Refs. 82, 84). However, convergence of the closely related 

Version D (extrapolated Jacobi iteration) can be achieved by 

selecting sufficiently small values of the acceleration fac-

tor. In particular, it is possible to determine "safe" w-

values on the basis of upper bounds for the spectral radius 

of the Jacobi A iteration matrix. The acceleration factor 

for Version D has a similar effect on the eigenvalues of the 

iteration matrix as for the corresponding version of the 

Successive Approximation group (p. 42) • Unlike the previous 

case, however, it is generally not possible to express these 

eigenvalues directly in terms of A. (K)-values. Only if all 
. 1 
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diagonal elements of the coefficient matrix are identical, 

will Versions A and D of the Jacobi group coincide with 

Successive Approximation Version D. 

For positive definite coefficient matrices the 

convergence of Version E of the Jacobi group (overrelaxa-

tion method) is guaranteed for any w-value in the range from 

0.0 to 2.0 (Ref. 84). This range also includes the corre-

spending unaccelerated Version B, commonly designated as 

Gauss-Seidel iteration. For low w~values the eigenvalues of 

the iteration matrix are real,_ whereas higher acceleration 

factors cause at least some of the eigenvalues to become com-
' 

plex. As in all single-step iterations, the eigenvalues of 

the iteration matrix are not only affected by the accelera-

tion factor, but also by the ordering of the equations. 

The highest asymptotic rate of convergence is 

obtained for wopt which is defined as the w-value for which 

the spectral radius of the iteration matrix assumes a mini-

mum. Apparently, this w-value coincides with the point at 

which the dominant eigenvalue of T becomes complex. A math­

ematical .Proof for this identity, however, can only be given 

for special types of coefficient matrices (Ref. 17). The 

optimum acceleration factor is usually greater than 1.0 and 

approaches the limiting value 2.0 for increasingly ill-condi-

tioned problems. 
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The numerical evaluation of w t has been the op 

subject of a large number of investigations. Aside from 

purely experimental determination, essentially three differ­

ent types of methods have been developed for this purpose. 

The first approach utilizes special properties of the coef-

ficient matrices, such as consistent orderings, diagonal 

dominance, and property A (Appendix 1), in order to establish 

a relationship between w t and the spectral radius of the op 

iteration matrix for Version A of the Jacobi group (Refs. 17, 

25, 82). Since linear equations arising from finite element 

analysis do not exhibit the above properties, the method has 

to be considered as not feasible. A second approach rests 

on the assumption that a lower bound for the smallest eigen-

value of the undiscretized elasticity problem can be estab-

lished by certain means. Based on this quantity it is possi-

ble to determine ,approximate values of wept which are appli­

cable for sufficiently small mesh spacings (Refs. 18, 33, 82). 

The fact that such eigenvalue bounds are difficult to find 

for all but the simplest problems, makes this method useless 

for practical purposes. The behavior of the approximate so-

lutions uc is used by a third group of empirical techniques 

in order to improve estimates of wept during the course of 

the iteration (Ref. 63). Unfortunately, these rather general 

methods are not applicable if acceleration procedures are ap-

plied to the iteration process. For the given type_ of linear 
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equations it, therefore, has to be concluded that suitable 

.methods for the determination of wopt are not available, at 

least not if overrelaxation is used in connection with ac-

celeration procedures. 

In a similar way as for Version E, .the convergence 

of Version F (extrapolated Aitken iteration) ·is guaranteed 

for w-values in the range from 0.0 to 2.0 (Refs. 26, 84). 

The eigenvalues of the corresponding iterationmatrix, how-

ever, remain real throughout the full range of acceleration 

factors. Therefore, the iteration process does not exhibit 

the irregular convergence behavior which is associated with 

complex dominant eigenvalues. Although methods for the de­

termination of wopt have also been developed for this par­

ticular itera on (Refs. 20, 54), their applicability is as 

limited as in the c e of overrelaxation. In-comparison 

with the remaining algorithms of the Jacobi group, Versions 

C and F require approximately twice as many numerical opera-

tions per iteration cycle (Appendix 3) • 

( 3 ) de la Garza (Refs • 21 , 4 2 , 8 4 ) 

In the discussion of basic groups it was shown that 

the.iterative methods of the de la Garza group can be derived 

from the corresponding Jacobi versions by a Gauss transfor-

· mation of the first kind (Section 3.1.2). In· other words, 
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the de la Garza iterations applied to the given system of 

equations (Eq. 3.1) are identical to the corresponding 

Jacobi algorithms applied to a similar transformed system of 

equations 

KKu = Kf (3.42) 

The discussion of theoretical aspects of the Jacobi versions, 

therefore, applies equally well to the algorithms of the de 

la Garza group. The only major difference arises from the 

fact that in the application of the de la Garza versions rna-

trix-vector products of the form KKu have to be formed instead - , 

of the usual Ku-products. The computational effort per iter-

ation cycle will, therefore, be approximately twice as large 

as that of the corresponding Jacobi versions (Appendix 3) • 

For the single-step versions of the de la Garza group cer-

tain computational problems arise in calculating the new it-

erate uc+l on the basis of the most recently available ap­

proximations. In order to avoid a drastic increase in the 

number of arithmetic operations, the intermediate elements 

of the residual vector have to be calculated recursively. 

In this way it is possible to reduce the computational ef-

fort to two matrix-vector products per iteration cycle. 

However, the recursive calculation necessarily increases the 

danger that roundoff errors may affect the solution process. 
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(4) Kaczmarz (Refs. 7, 42, 84) 

Since the iterative methods of the Kaczmarz group 

can be derived from the corresponding Jacobi versions by a 

second Gauss transformation, it can be concluded that the 

basic properties of the Jacobi, de la Garza, and Kaczmarz 

iterations are essentially the same. This correlation is 

illustrated by the fact that the iteration matrices for the 

de la Garza versions, TIII' are related to those of the 

Kaczmarz group, TIV' by the following similarity transforma­

tion 

(3.43) 

As the eigenvalues of a matrix remain unchanged under a 

similarity transformation, the asymptotic behavior and the 

asymptotic rate of convergence of both types of iterations 

will be identical (cf. Ref. 4). 

The iterative methods of the Kaczmarz group require 

a computational effort per iteration cycle which is about 

twice as large as that of the corresponding Jacobi versions 

(Appendix 3). However, for the single-step versions it is 

not necessary to rely on a recursive calculation of the 

residual vector as it is the case for the de la Garza ver-

sions. 
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(5} Block Jacobi (Refs. 17, 25, 82, 84} 

Because of the close relationship between both 

types of methods, the previous discussion of various aspects 

of the Jacobi iterations applies equally well to the corre-

sponding Block Jacobi versions. The main purpose of using 

these block modifications is to increase the rate of con-

vergence of the iterative solution process. The amount of 

improvement largely depends on the selected block size ns. 

Theoretically, n may assume any value from 1, in which case s 

the original Jacob~ versions result, to n, the total size of 

the system of equations. Various different choices for the 

block size ns have found practical application in the litera­

ture. For instance, the so-called "alternate component iter-

ation" (Ref. 61) is equivalent to block overrelaxation with 

ns equal to the total number of nodal points. Other special 

cases, such as one- or two-line overrelaxation (Refs. 81, 82), 

are frequently used for the solution of certain types of 

finite difference equations. If Version A or B of the Block 

Jacobi group are used with ns equal to n, a so-called "it­

erated direct method" for improving the solution of a system 

of equations, initially solved by direct methods, is ob-

tained (Ref. 84). Although the effects of the block size ns 

on the storage requirements and the computational effort per 

iteration cycle depend on the particular form of algorithm 

implementation, it nevertheless can be said that either one 
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or both of these requirements will generally increase for 

increasing values of n • s 

3~2.3 Numerical Tests 

In order to study.the performance of linear 

stationary solution methods, numerical tests were carried 

out with most of the iterative algorithms described in the 

previous section. The results of these tests as well as 

various observations on the convergence behavior are summa-

rized in the following discussion. 

Among the five basic groups of linear stationary 

iterations, the algorithms of the Block Jacobi group are 

used as the basis for the comparison with other iterative 

methods. In the numerical tests of these block iterations 

the coefficient matrix K is partitioned in such a way that 

each principal submatrix contains the stiffness components 

of a single nodal point. The selected block size, therefore, 

corresponds to the number of degrees of freed~m per nodal 

point, which is two for the given element type. This partie-

ular ns-value was chosen since it offers certain advantages 

as far as the algorithm implementation is concerned. At the 

same time, it represents the maximum value for which the 

storage requirements of the modified coefficient matrix o;1
K 

(Eq. 3.31) do not exceed those of the original K-matrix. The 

selected block size~ therefore, complies with the require-
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ments for suitable iterative solution methods stated in 

Section 1.3. 

(1) Block Jacobi 

Numerical tests with Version D of the Block Jacobi 

group (extrapolated Block Jacobi iteration) show that the 

iteration exhibits all the characteristics of a monotonic 

linear convergence. After an initially steeper decrease, the 

logarithm of the relative error E becomes a linear function c 

of the cycle counter c (Fig. 1), whereas the maximum element 

of the solution vector (u)~ax approaches its final value 

asymptotically without ever exceeding this quantity (Fig. 2). 

The behavior is characteristic of iterative processes which 

~re dominated by a real, positive eigenvalue of the iteration 

matrix. The rate of convergence, which is directly related 

to the slope of the log(Ec) vs. c curve, increases for in­

creasing values of the acceleration factor until it reaches 

its maximum for wept (Table 5). For the given type of linear 

equations it was found that the optimum acceleration factor 

is very close to the w-value for which the iteration diverges. 

The convergence behavior of the iteration process was, there­

fore, not investigated within this particular range of ac-

celeration factors. For most of the test examples, the so­

lution process starts to diverge for w-values smaller than 

1.0. An exception is made by example Al which satisfies one 
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of the convergence conditions for the Jacobi iteration 

(Appendix 2) • In this particular case divergence occurs 

for w-values slightly larger than 1.0. 

A similar behavior as that described for Version D 

can be observed for Version E of the Block Jacobi group 

(block overrelaxation method) provided the acceleration fac­

tor remains sufficiently small. Under this condition the 

iteration exhibits monotonic linear convergence, indicating 

that the dominant eigenvalue_ of the iteration matrix is real 

and positive. The similarity can be found in the behavior of 

both, the relative error £ (Fig. 3) as well as the maximum 
c . 

displacement (u)c whose variation with respect to c resem-. , max 

bles the deflection-time diagram of an overdamped vibration 

(Fig. 4). In comparison with the previous iteration, the 

only minor difference occurs in the form of initial irregu­

larities in the behavior of £ ·and (u)c which are caused c max 

by small complex eigenvalues of T. 

A drastically different nature of the iteration 

process can be observed if the acceleration factor exceeds 

a certain problem-dependent value, wopt' for which the dom­

inant eigenvalue of the iteration matrix becomes complex 

(p. 44). For this range of w-values the relative error £c 

undergoes irregular cyclic oscillations which occur in con-

stant cycle intervals c
0

• Similarly, the maximum element of 
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the solution vector oscillates about its final value and 

assumes the characteristics of a damped vibration. The 

nature of these oscillations does not only depend on the ac­

celeration factor, but also on the condition of the given 

system of equations. Short cycle intervals c
0 

and rather 

erratic oscillations are observed particularly for well-

conditioned problems and w-values in the neighborhood of 2.0. 

The transition between monotonic and oscillating convergence, 

which occurs within a relatively narrow range of w-values 

close to wopt' is illustrated in Fig. 5. For acceleration 

factors w>2.0 the solution process diverges, in which case 

the variation of (u)~ax with respect to c resembles a vibra­

tion with zero or negative damping. 

The above observations indicate that the convergence 

behavior of the solution process is strongly affected by the 

magnitude of the acceleration factor. A similar strong ef­

fect on the performance of the iteration is reflected in the 

convergence rates (Fig. 3 and 5) as well as the m0 . 1-values 

of the test examples (Table 7}. In general, the asymptotic 

rate of convergence increases until w reaches the optimum ac-

celeration factor. In the vicinity of this value the con-

vergence rate assumes a sharp maximum within a relatively 

narrow range of w-values. Unfortunately, this behavior is 

not accurately reflected in the results of Table 7 since m­

values are to a certain degree affected by oscillations and 
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irregularities in Ec. The optimum acceleration factors of 

the test examples were found to lie in the range from 1.58 

for example A2 up to 1.98 for example A3. Both the location 

of wopt as well as the magnitude of the attainable convergence 

rate, are influenced by the condition of the system of equa-

tions. The m0 . 1-values of Table 7 show that the block over­

relaxation method converges significantly faster than Version 

D of the Block Jacobi group. 

Following a suggestion by Sheldon (Ref. 71), a 

slightly modified form of the block overrelaxation method 

was also tested numerically. The iteration differs from the 

usual algorithm only in the fact that w is set equal to 1.0 

during the first iteration cycle. Contrary to Sheldon's con-

jectures it was found that the modification has a minor 

detrimental, if any, effect on the performance of the itera-

tion. 

Numerical tests with Version F of the Block 

Jacobi group (extrapolated Block Aitken iteration) indicate 

that the solution process retains the characteristics of 

monotonic linear convergence (p. 51) throughout the full 

range of admissible acceleration factors. Even for w-

values greater than w t' the relative error £ does not · op c 

exhibit any kind of oscillations or irregularities in its 

behavior. From the test examples it is found that the opti-

mum acceleration factor is greater than 1.0 and approaches . 
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this value for increasingly ill-conditioned problems 

(Table 6). In contrast to block overrelaxation, the rate 

of convergence of Version E changes only gradually in the 

vicinity of the optimum w-value. By comparing the m0 •1 -

values of Tables 6 and 7, it can be concluded that the Block 

Aitken iteration is less efficient than block overrelaxation, 

especially since the former method requires twice as many 

numerical operations per iteration cycle. However, the Block 

Aitken iteration converges generally faster than Version D of 

the Block Jacobi group (cf. Table 5). 

(2) Successive Approximation ' 

The same type of monotonic linear convergence that 

was alr'eady described in connection with Block Jacobi Ver­

sion D can also be observed for the corresponding version of 

the Successive Approximation group. For the given systems 

of equations, the optimum acceleration factors, defined by 

Eq. 3.41, nearly coincide with those w'-values for which the 

iteration diverges. In certain cases, however, convergence 

can be observed for acceleration factors beyond the theoreti-

cal limit of w' = 2.0 (example A6). This abnormal behavior 

occurs if the initial error vector e is orthogonal to those 
. 0 

eigenvectors of the coefficient matrix which correspond to 

the largest eigenvalues. 
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The performance of Version D of the Successive 

Approximation group is described in Table 8 for w-values in 

the range from 1/Amax(K) to 2/Amax(K). Since the numerical 

value for Amax(K) remains generally unknown, the practical 

application of the iteration is restricted to the following 

range of acceleration factors 

(3.44) 

In the above expression, bK represents an "a priori" upper 

bound for the maximum eigenvalue of the coefficient matrix 

(Appendix 1). The m0 _1-values of Table 8 clearly indicate 

that Version D of the Successive Approximation group is less 

efficient than the block overrelaxation method. At the 

same time, the iteration converges slower than other itera-

tive methods whose T-matrices have only real eigenvalues 

(Block Jacobi Versions D and F) • However, the difference in 

the performance of these methods are comparatively small. 

(3) Jacobi 

Numerical tests with Versions E and F of the 

Jacobi group show that the convergence behavior is very 

similar to that of the corresponding Block Jacobi versions. 

The previous discussion of various effects on the conver-

gence, therefore, applies equally well to this group of 
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iterative solution methods. The similarity between both 

types of algorithms is also reflected in the performance of 

the iterations {Tables 6 and 7). The test results indicate 

that the relatively small block size of the Block Jacobi 

methods allows only minor improvements in the convergence 

rates. For the E-versions, noticeable effects can be ob­

served only in the vicinity of the optimum acceleration fac­

tors {example A4). Greater differences in the performance 

of Jacobi and Block Jacobi iterations could be expected, if 

larger values of the block size were chosen. For test exam­

ple Al, which only involves nodal points with one degree of 

freedom, both types of iterations become virtually identical. 

{4) de la Garza 

The m0 •1-values of Table 9 indicate that Version 

D of the de la Garza group exhibits a slower convergence 

than any of the other iterative methods discussed so far. 

The difference becomes even more pronounced if it is taken 

into account that the algorithm requires two matrix-vector 

products per iteration cycle instead of the usual single 

product. Tne results clearly show that the Gauss transfor­

mation, by which the iteration is obtained from the corre­

sponding version of the Jacobi group, has a detrimental ef­

fect on the performance {Section 3.1.2). Because of the 

very slow convergence it is not possible to give an accurate 
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description of the convergence behavior. However, there are 

indications that the behavior resembles that of other D­

versions applied to very ill-conditioned problems. 

(5) Kaczmarz 

The fact that the eigenvalues of the iteration 

matrix for Version D of the Kaczmarz group (Cimmino itera­

tion) are identical to those of the corresponding de la Garza 

version (p. 48) is reflected in nearly identical m0 . 1-values 

for both iterations (Table 9). The slow convergence of the 

solution makes both methods unsuitable for practical applica­

tions. Numerical tests with Version E of the Kaczmarz group 

indicate a better performance for this iterative method, al­

though the results are not comparable with those for block 

overrelaxation. Since the iteration process is affected by 

initial irregularities within the tested range of iteration 

cycles, it is not possible to extrapolate m0 •1-values for the 

solution method. As in the previous case, the slow conver­

gence of the iteration does not allow definite conclusions to 

be drawn on the convergence behavior. 

From the results of this numerical investigation 

of linear stationary iterations, it is possible to draw a 

number of conclusions. The investigation clearly shows that 

Gauss transformations, by which the iterations of the de la 
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Garza and Kaczmarz group are obtained from the corresponding 

Jacobi versions, have a strong detrimental effect on the per­

formance. The numerical tests also indicate that block over­

relaxation represents the most efficient linear stationary 

iteration, although the correspondin<] "point" version is 

only slightly less efficient for the given block size. Among 

those iterative methods whose T-matrices are known to have 

real eigenvalues, the extrapolated Block Aitken iteration 

exhibits the fastest convergence. However, the differences 

with several other iterations, such as the D-versions of the 

Block Jacobi and Successive Approximation groups, are rela­

tively smal_l. It can also be concluded that the Gauss-Seidel 

iteration, either in point or block form, exhibits the best 

performance among the unaccelerated iteration versions. 

In view of these results, the following three 

linear stationary iterations were selected for additional 

numerical tests in connection with acceleration procedures 

(Chapter 4) : 

(a) Block overrelaxation, 

(b) Block Gauss-Seidel, and 

(c) Successive Approximation Version D . 

The iteration matrices for both, block overrelaxation and 

Block Gauss-Seidel iteration, are known to have complex 

eigenvalues (p. 44). Since most acceleration procedures are 
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based on the assumption that these eigenvalues are real, 

an additional method was included which satisfies the above 

requirement. Version D of the Successive Approximation group 

was selected since its algorithm is simpler than that of 

Block Jacobi Version F. At the same time, "safe" w-values 

for which convergence is guaranteed can be established more 

easily than in the case of Block Jacobi Version D. 

3.3 Nonlinear Stationary Iterations 

3.3.1 Algorithms 

The general operator for nonlinear stationary 

iterations (or gradient methods as they are frequently called) 

can be expressed in the following form 

(3.45) 

The main characteristic of this group of iterative methods 

is that the new approximate vector uc+l is obtained as a 

nonlinear function of the previous approximations. Among 

the large number of possible algorithms, the following basic 

iterations have found practical application in the litera­

ture 

(1) Steepest descent 

(2) Krasnoselskii 
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( 3) Householder (Ref. 41,42) 

( 4) Cauchy (Ref. 56,84) 

(5) Gastinel-Householder (Ref. 42) 

(6) Gastinel (Ref. 33,42) 

By comparing the computational forms of the above iterations 

(Table 10) with Eq. 3.12, it can be seen that the minimiza-

tion of error functions is applicable to the derivation of 

all six algorithms (Section 3.1.2). The specific error 

functions and direction vectors used in deriving the itera-

tions are, therefore, included in Table 10. As an alterna-

tive form of derivation, House~older's and Cauchy's methods 

could also be obtained by applying Gauss transformations to 

the algorithm of the steepest descent method. 

If the y-values of the first two algorithms are 

kept constant during the iteration process, both methods 

become identical to Version D ?f the Successive Approximation 

group (Section 3.2.2). Gastinel's method, or more precisely 

the idea of using the non-algebraic direction vector tc 

(t)~ = sign[(r)~] = 
~ ~ 

c (r) . 
~ 

I <r> ~I 

is closely related to a so-called "block relaxation" 

(3.46) 

suggested by Stiefel (Ref. 73). Except for the use of tc 

in their direction vectors, the Gastinel-type iterations 5 
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and 6 are identical to algorithms 1 and 3 of Table 10. Two 

additional iterations could be obtained by applying similar 

modifications to Krasnoselskii's and Cauchy's methods. How-

ever, this possibility was not considered in this investiga-

tion. 

In the application of most of the algorithms, a 

considerable amount of computational effort can be saved by 

making use of recursive relationships for the calculation of 

the new residual vector rc+l (Appendix 3). For the steepest 

descent method such recursions allow a 50% reduction in the 

required number of matrix-vector products per iteration cycle. 

rc+l = 

= u + c 

f-Kuc+l = 

rc+l = r c 

f-Ku c 

T r r c c 
T 

rcKrc 

T r r c c Kr (3.47) T c r Kr c c 

Krc 

However, in addition to somewhat higher storage requirements, 

the recursive evaluation of rc+l has the disadvantage that 

roundoff errors may affect the solution process. 

In order to increase the convergence rate of 

nonlinear stationary iterations, a number of investigators 

suggested various modifications of the basic algorithms dis-
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cussed so far. In the remainder of this section several of 

these modifications are presented and their relationship with 

other iterative methods is discussed. 

(1) Kantorovich's s-Step Gradient Method (Ref. 21) 

The computational scheme for Kantorovich's s-step 

gradient method can be expressed in the following form 

s . 1 
= u + E y.K~- rc 

c . 1 ~ 
~= 

(3.48a) 

where the y.-values are obtained by solving the following 
~ ' 

subsystem of s linear equations 

Ct • • 
~J 

= 

ai = 

etls 

Ct ss 

rTKi+j-lr 
c 

T i-1 
rcK rc 

= (3.48b) 

= Ct •• c J~ 

(3.48c) 
= etio 

The iteration can be derived from error function ~ 2 by using 

direction matrices, rather than vectors, for the minimization 
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/ . 

process (Section 3.1.2}. This fact indicates a conceptual 

similarity between-·s-step gradient methods and block modi­

fications of linear stationary iterations (Section 3.2.2}. 

For s = 1 the above algorithm becomes identical to that of 

the steepest descent method, whereas for s = n a direct so-

lution of the system of equations is obtained. Since the al-

gorithm requires the simultaneous storage of s vectors of 

the form Kirc, its application is restricted to rather small 

values of s<<n. 

In Ref. 21 it is shown that Kantorovich's method 

is identical to Version A of the conjugate gradient method, 

provided the solution process is restarted every s iteration 

cycles (Chapter 5} . Since the latter method yields identi-

cal results in recursive form and without practical restric-

tions on s, no advantage is gained by using the rather un-

economical algorithm of Kantorovich's method. 

(2) Khabaza's Method (Ref. 50) 

A second s-step gradient method, which could be 

considered as a "block version" of Krasnoselskii's itera-

tion, was qeveloped by Khabaza (Ref. 50}. The computational 

details of the algorithm differ from those given in Eq. 3.48 

only in the definition of the a- and B-coefficients. 
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a .. = r~Ki+jrc = a .. 
~J J~ 

r~Kirc 
(3.49) 

s. = = a. 
~ ~0 

As in the previous case, the iteration corresponds to a 

particular form of conjugate gradient method (Version B), 

restarted every s iteration cycles. The practical applica-

tion of Khabaza's method is, therefore, limited for the same 

reasons that were mentioned above. 

(3) Almost Optimum Steepest Descent Method (Ref. 24,72) 

The almost optimum'steepest descent method can be 

derived by applying a linear stationary acceleration (Section 

4.2) of the form 

(3.50) 
.. 

to the original steepest descent algorithm (Table 10). As a 

result the following computational form is obtained 

uc+l = u +wy r c c c 

T r r c c ( 3. 51) Yc = T 
rcKrc 

w = constant acceleration factor 
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The convergence of the iteration process is guaranteed for 

w-values in the range from 0.0 to 2.0. Naturaliy, the same· 

type of acceleration could also be applied to other nonlinear 

iterations (Ref. 56), although this possibility is not consid-

ered here. 

(4) Accelerated Steepest Descent Method (Ref. 24) 

In order to increase the rate of convergence of 

the steepest descent method, Forsythe and Motzkin suggested 

the following nonlinear stationary acceleration procedure 

(Section 4.3) 

uc+l = u +y (u -u ) c c c c-p 

T r (u -u ) c c c-p 
T (u -u ) K(u -u ) c c-p c c-p 

p = 2 

(3.52) 

If the acceleration is applied in intervals of two iteration 

cycles, the accelerated steepest descent method becomes iden-

tical to Kantorovich's 2-step gradient method and, therefore, 

identical to conjugate gradient Version A, restarted every 

two cycles. No direct correspondence to a conjugate gradi-

ent method can be established for any other cycle interval or 

value of p. 
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3.3.2 Numerical Tests 

The numerical investigation of basic nonlinear 

stationary iterations was restricted to the first 5 algo-

rithms listed in Table 10. Gastinel's method was not in-

eluded in this study since its efficiency, based on experi-

ence with method 5, appears to be doubtful. Nume'rical tests 

were also carried out with several modified nonlinear itera-

tions, although only the almost optimum steepest descent 

method is discussed at this point. S-step gradient methods 

are treated in context with semi-iterative solution methods 

(Chapter 5), whereas the application of Forsythe's accelera­

tion procedure is described in Section 4.3. As a summary of 

the numerical -results, various observations on the convergence 

behavior and the performance of the tested methods are de-

scribed in the following paragraphs. 

(1) Steepest Descent, Krasnoselskii, Householder, and Cauchy 
Iterations 

The convergence behavior of the above four 

iterations exhibits the same characteristics of monotonic 

linear-convergence that were observed for certain linear 

stationary algorithms (Section 3.2.3). During the initial 

phase of the solution process the relative error E de-c 

creases at a comparatively high, although gradually dimin-

ishing rate. For the remainder of the iteration, log(Ec) 
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vs. c becomes a linear relationship whose slope is directly 

related to the asymptotic rate of convergence. The y­

values of all iterations oscillate from cycle to cycle and 

approach different asymptotic values for even and odd cycle 

numbers. It was observed that these asymptotic values of y c 

are related to the eigenvalues of the coefficient matrix by 

the following expressions 

(3.53a) 

for the method of steepest descent and Krasnoselskii's 

iteration, whereas · 

(3.53b) 

in case of Householder's and Cauchy's methods. 

The results of Table 11 indicate that the method 

of steepest descent and Krasnoselskii's iteration have 

nearly identical rates of convergence. Similar observations 

can be made for Householder's and cauchy's iteration, al-

though both methods converge considerably slower than those 

of the first group. Since both, Householder's as well as 

Cauchy's iteration are derived from the method of steepest 

descent by means of Gauss transformations, it can be con-
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eluded that these transformations have an identical detrimen-

tal effect on the rate of convergence. A comparison with 

Successive Approximation Version D indicates that for w' = 

2.0 the iteration converges at practically the same rate as 

the method of steepest descent or Krasnoselskii's iteration 

(Tables 8 and 11) . 

(2) Gastinel-Householder Method 

The behavior of the Gastinel-Householder iteration 

differs from that of the previous methods in so far as the 

convergence is only approxima~ely linear. The relative error 

£ does not decrease strictly monotonically and exhibits c 

variations in its rate of reduction. Similarly, the yc-

values show a gradual, although irregular decrease during 

the iteration process. 

The convergence of the Gastinel-Householder 

iteration is usually slower than that of the method of 

steepest descent (Table 11). However, exceptions may occur 

for systems of equations, where the elements of the solution 

vector are of the same magnitude (example Al). 

-69-



(3) Almost Optimum Steepest Descent Method 

In comparison with the method of steepest descent, 

a drastic change in the nature of convergence can be ob-

served for w-values less than 1.0 (Fig. 6). Although the 

relative error Ec decreases monotonically, its variation 

with respect to c is characterized by sudden drops which 

occur at irregular cycle intervals. At the same time, the 

rate of error reduction becomes very irregular and does not 

approach any kind of asymptotic value. On the other hand, 

for acceleration factors greater than 1.0, the iteration re-

tains all the characteristics of monotonic linear convergence 

that were already observed for the original steepest descent 

method. 

The m0 •1-values of Table 12 indicate that for 

w-values smaller than 1.0 the iteration converges considera-

bly faster than its unaccelerated version. For the test 

examples a maximum amount of error reduction can be observed 

for acceleration factors in the vicinity of 0.90. However, 

due to the irregular nature of convergence a clearly defined 

optimum value does not exist. For w-values greater than 1.0 

the rate of convergence remains largely unaffected by the 
I 

magnitude of the acceleration factor. 

In summarizing the results of these tests it can 

be concluded that the almost optimum steepest descent method 
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is the fastest converging algorithm within this particular 

group of iterative methods. However, the iteration con-

verges noticeably slower than, for instance, block overre-

laxation with optimum or near optimum values of w (Table 7) • 

3.4 Linear Nonstationary Iterations 

3.4.1 Algorithms 

Nonstationary iterations are characterized by the 

fact that the cycle counter c is directly part of the algo-

rithm, either in form of a variable or as the order of a 

polynomial. Aside from the quantity c, the algorithm may 

also involve the cycle interval q after which the iteration 

process is restarted. The general operator for linear non-

stationary iterations can, therefore, be written in the form 

= I[K,f,u ,u 1 , ••• ,c,q] c c- (3.54) 

where uc+l is a linear function of the previous approxima­

tions. Included in this class of iterative solution proce-

dures are the following individual methods 

(1) Lanczos' method 

(2) Hypergeometric relaxation 

(3) Bellar's method. 
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In addition, several closely related algorithms are discussed 

among linear nonstationary accelerations (Section 4. 4) •. The 

C?mputational details of the above iterations as well as cer­

tain explanatory remarks are given in the remainder of this 

section. 

(1) Lanczos' Method (Ref. 21,51,84) 

For the purpose of generating suitable starting 

vectors for a certain type of conjugate gradient method, 

Lanczos developed the following iterative algorithm 

where 

g c 
( l+c) 2 

= Bg -g + c-1 c-2 bK ro 

= u +--4--::-
0 (c+2)2 gc 

c = 1 •••• (q-1) 

B = 2I -
4 

K 
bK 

(3.55a) 

(3.55b) 

In order to start the iteration process, the vector g has 

to be initialized as follows 
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(3.55c) 

A description of the procedure by which Lanczos' iteration 

can be derived from the theory of orthogonal polynomials is 

given in Ref. 21 and 51. The second reference also contains 

a modified version of Lanczos' method which essentially cor-

responds to a first Gauss transformation of the above algo-

rithm. 

As in the case of other nonstationary iterations, 

the solution process may be restarted after q iteration 

cycles by using uq as the new initial approximation. For 

q = 1 Lanczos' iteration becomes identical to Version D of 

the Successive Approximation group (Section 3.2.2). 

(2) Hypergeometric Relaxation (Ref. 74,75) 

The computational scheme for Stiefel's method of 

hypergeometric relaxation can be presented in the form 

where 

1 1 J.lc 
uc+l = uc + -- --b r + --(u -u 1) vc K c vc c c-

c = 1 •••• (q-1) 
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= .1 ~1- (ol-o2+1) (ol+o2+1) + 
11 c 4 l ( 2 c+ o 1 + o 2 + 1) 

- !.~1+ (ol-o2+1) (ol+o2+1) -
vc 4L (2c+o1+o 2+1) (3.56b) 

Aside from the cycle interval q, the algorithm involves two 

additional parameters, o1 and o2 , which are subject to the 

following conditions 

(3.56c) 

The derivation of the iterative method as well as a descrip-

tion of the effects of o1 and o2 on its convergence are given 

by Stiefel in Ref. 74. 

(3) Bellar's Method (Ref. 6,84) 

In order to improve the efficiency of Lanczos' 

iteration, Bellar suggested the following modification of 

the algorithm 

(3.57a) 
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where c = 1 •••• (q-1) 

J.lc = ( tiK ) 2c ( ~K ) 2c 1 + -- + 1 - --
bK bK 

(3.57b) 

At the start of the solution process, the vector g has to be 

initialized in the following form 

= 0, = 4 r 
bK o 

(3.57c) 

The main difference between both nonstationary iterations 

lies in the fact that Bellar's method involves a lower bound, 

aK' for the smallest eigenvalue of the coefficient matrix 

(Appendix 1) • 

3.4.2 Numerical Tests 

Numerical tests of linear nonstationary iterations 

were restricted to two of the three algorithms discussed in 

the previous section. Bellar's method was not included in 

this study since it involves a numerical quantity which is 
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not available in practice (p. 75) • The remaining itera-

tions were tested with two different upper bounds for the 

maximum eigenvalue of the coefficient matrix: bK = IIKII1 

and bK = Amax(K). These particular values were chosen since 

Gershgorin's estimate IIKII1 represents the least conservative 

"a priori" bound (Appendix 1), whereas A (K) constitutes max 

the limiting bK-value for which convergence is guaranteed. 

(1) Lanczos' Method 

If the iteration is performed without restart 

(i.e. for q ~ oo), the relative error Ec exhibits cyclic oscil­

lations which resemble a series of convex parabolas with 

gradually decreasing vertices (Fig. 7). The cycle interval 

of these oscillations, c
0

, remains constant throughout the 

iteration process. In contrast to observations with other 

iterative methods, the maximum displacement apparently never 

exceeds its final value when £ passes through a minimum. 
. c 

If the iteration is restarted in intervals of q 

cycles, a clearly visible change in behavior can be observed. 

Essentially, after each restart the log (Ec) vs. c relation­

ship assumes a form which is very similar to the initial 

branch of the curve (Fig. 7). The most rapid over-all con-

vergence is obtained if the iteration is restarted after 

q = c
0 

iteration cycles (Table 13). Since the increments 
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of the maximum displacement reverse their sign in the 

vicinity of c
0

, it is possible to determine this optimum 

value of q during the iteration process. However, even with 

this restarting procedure the over~all rate of convergence 

could not exceed the average rate of the first c
0 

iteration 

cycles. 

The numerical tests indicate that the iteration 

converges somewhat faster for bK = A (K) than for bK = max 

IIKII1 , although the amplitudes of the e:c-oscillations remain 

unchanged. The effect of the eigenvalue bound bK on the con­

vergence behavior could, there~ore, be described as that of 

scaling the c-axis of the log (e:c) vs. c relationship. 

Comparisions between m0 . 1-values for block over­

relaxation and Lanczos' method show that latter iteration is 

less efficient ev~n for optimum values of q (Tables 7 and 13). 

Therefore, the suggested restart procedure would not be ef-

fective enough to make Lanczos' method competitive with some 

of the faster converging linear stationary iterations. 

(2) Hypergeometric Relaxation 

The numerical investigation of an iterative method 

involving three independent parameters q, cr 1 , and cr 2 requires 

a considerable amount of computations if all effects on the 

convergence behavior should be adequately studied. The situa-
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tion is particularly complicated by the fact that the 

parameters o1 and o2 are of identical nature. Therefore, a 

rather strong interaction between the effects of these two 

quantities can be expected (Refs. 74, 75). However, in 

view of the poor performance of hypergeometric relaxation 

in preliminary tests for relatively few selected values of 

o1 , o2 , q, and bK, such an effort is not justifiable. The 

test results indicate that the rates of convergence of this 

method are generally low and cannot be compared with those 

of block overrelaxation (Table 7). For low values of o1 and 

high values of o2 the iteration may diverge, particularly if 

the iteration process is restarted. On the other hand, the 

convergence for the recommended "safe" values o1 = +0.5 and 

o2 = -0.5 is slow (Ref. 74). Although these tests give only 

an incomplete picture of the nature of convergence, they 

nevertheless illustrate the difficulties encountered in the 

application of hypergeometric relaxation. 

Summarizing the results of this section, it can be 

concluded that the investigated linear nonstationary itera­

tions do not represent efficient solution procedures. 
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4. ACCELERATION PROCEDURES 

4.1 General Discussion 

In a broad sense, acceleration procedures can be 

defined as algorithms for improving the average rate of 

convergence of iterative methods. The main difference be­

tween iterations and accelerations arises from the fact 

that the solution of a system of equations can be obtained 

either by iterations or accelerated iterations, but not by 

acceleration procedures alone~ Despite their different pur­

pose, both types of algorithms often have a similar compu­

tational form. Therefore, acceleration procedures can be 

classified as linear or nonlinear, stationary or nonsta­

tionary according to the same criteria that were defined 

for iterative methods (Section 3.1.1). The formalistic 

similarity between iterations and accelerations also ex­

tends to their derivation, since most of the basic princi­

ples discussed in Section 3.1.2 are applicable to both types 

of algorithms. 

Theoreticaily it is possible to apply any acceler­

. ation procedure to any iterative method, although only cer­

tain combinations are of practical importance. In many 

cases acceleration and iteration algorithms can be combined 
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in such a way that they form a computational unit. Combined 

algorithms of this type are discussed, for instance, among 

linear stationary iterations (Section 3.2). It is also pos­

sible to accelerate the convergence of an iteration by apply-

ing two (or even more) acceleration procedures simultaneous-

ly. Such combinations are normally restricted to cases where 

one of the accelerations is linear stationary. 

Usually an acceleration procedure involves a number 

of parameters whose numerical values have to be chosen in 

such a way that the over-all rate of convergence of the ac-

celerated iteration is ma.ximiz.ed. Only in exceptional cases 

are these parameters pre-set for computational reasons (cf. 

Section 4.3, Irons-Tuck acceleration). 

4.2 Linear Stationary Accelerations 

4.2.1 Algorithms 

Linear stationary acceleration procedures, which 

represent the simplest form of accelerations, can be symbol-

ized by the following general operator 

( 4 .1) 

where uc+l is a l~near function of the previous approxima­

tions. The parameter w represents a constant acceleration 
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factor which has to be specified prior to the beginning of 

the solution process. The linear stationary group of ac­

celerations includes only two algorithms which are of prac­

tical importance. As mentioned in Section 3.1.2, both ac­

celerations can be derived by considering the iterative 

solution process as a time dependent phenomenon, whose 

analysis is carried out by means of step-wise integration 

techniques (Refs. 9, 39, 87). 

(1) Algorithm I 

The most f!equently used type of linear stationary 

accelerations can be written in the form of 

(4.2) 

In the above expression, I(uc) represents any of the 

stationary iterative algorithms described in Sections 3.2 

and 3.3. For single-step versions of linear stationary 

iterations it is understood that the acceleration is ap­

plied after each individual iteration step, not only at the 

end of a full iterative cycle (p. 38). If the iteration 

I (uc) itself converges, that is, if the dominant eigenv,alue 

of the iteration matrix is less than 1.0 in absolute value, 

the accelerated iteration usually converges for w-values in 

the range from 0.0 to 2.0. Specific convergence conditions, 
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however, can only be established in context with a particular 

iterative algorithm. From Eq. 4.2 it can be seen that the 

acceleration is suppressed if w assumes the value of 1.0. 

The application of this algorithm to various 

linear and nonlinear stationary iterations is extensively 

described in Sections 3.2 and 3.3. Therefore, a separate 

discussion of the acceleration procedure is not given at 

this point. 

(2) Algorithm II (Faddeev I Acceleration) 

In Ref. 21 a large nUmber of linear station~ry 

acceleration procedures are described which all employ the 

following type of algorithm 

The various forms of this acceleration differ 

(a) in the definition of their objective, that 

is in the criterion used to establish the 

optimum value of w, 

(b) in the way wopt is related to the eigen­

values of the iteration matrix, and 

(c) in the starting procedure for the acceler­

ated iteration. 

-82-

(4.3) 



For the given .type of linear equations it is not possible 

to establish ~a priori" bounds for the eigenvalues of the 

iteration matrix. Therefore, w has to be considered as 

purely empirical parameter and any differences in the deri­

vation of its optimum value become immaterial. From pre­

vious experience it is known that the way in which a l~near­

ly accelerated iteration is started has no significant ef­

fect on its over-all convergence (p. 54). Therefore, it 

was considered adequate to adopt the simplest starting pro­

cedure for the present purpose. Its algorithm can be writ­

ten as 

u1 = I(u
0

) 

(4.4) 
u2 = I(u1)+w[I(u1)-u

0
] 

and is equivalent to suppressing the acceleration during 

the first cycle by setting w = 0. Two alternative proce­

dures are described in Ref. 21. Under conditions similar 

to those defined for Algorithm I, the accelerated iteration 

converges for any w-value in the range -1.0 <w <+ 1.0. 

However, specific convergence conditions can, again, be 

established only in context with a particular iterative 

method. As far as the storage requirements are concerned, 

the Faddeev I acceleration has the disadvantage of requir­

ing at least one additional vector in comparison with the 

previous algorithm. · 
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In order to illustrate the implementation of the 

acceleration procedure, a number of examples are given in 

the following paragraphs. The application of the Faddeev I 

acceleration to the iteration 

with 

I(u ) = c 

w = 

(Successive 
Approximation 
Version D) 

(~-lb;> 2 

(~+~)2 

0 < aK < A. . (K) m1.n 

( 4. Sa) 

( 4. Sb) 

leads to the following combined algorithm, attributed to 

Frankel (Ref. 17) 

(~-~)2 
---------=(u -u ) 
(~+~)2 c c-1 

(4.5c) 

Similarly, a particular version of the "Dynamic Relaxation" 

method (Ref. 39) 

0 c+l = ( ~: ~l>c-c~ -~})uc_l+rc] 
\) 

( 4. 6a) 

is obtained by applying the acceleration procedure to the 

iteration 
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I (uc) + 
v2 

r = u 
2].11 c c 

( :~ ].1}) ( 4. 6b) 
--. l--j • ,.· 

with w = 
(].11 + J.lv2) 

v2 

Various other forms of dynamic relaxation can be derived by 

using a (diagonal) matrix of acceleration factors instead of 

single w-values (Refs. 9, 11, 39). 

So far the discussion of linear stationary acceler-

ations covered only two basic types of algorithms. A third 

type, suggested by Abramov and. described in Ref. 21, could be 

considered a modification of the Faddeev I acceleration. The 

computational forms of both methods are identical except that 

during the execution of Abramov's acceleration, w does not 

remain constant b~t may assume two different values: w = 0 

(i.e. no acceleration) and w = 1.0. Since the sequence in 

which these w-values are to be chosen is arbitrary, th_e proce­

dure as such is of no particular practical value. However, 

following a suggestion by Faddeev (Ref. 21), an appropriate 

sequence could be established by computing separate new vee-

tors uc+l for both w-values and by chosing the one which 

gives the smaller length of the residual vector rc. The cal­

culation of these residuals represents, of course, a consid~ 

erable increase in the number of arithmetic operations. oe-

spite this addition~l computational effort it is very unlikely 
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that the procedure would yield average rates of convergence 

which are higher than those for the Faddeev I acceleration 

with optimum values of w. Abramov's acceleration procedure 

was, therefore, not included in the numerical tests. 

4.2.2 Numerical Tests 

The application of Algorithm I to various linear 

and nonlinear iterations was extensively described in direct 

context with these iterative methods (Section 3.2 and 3.3). 

Numerical te~ts of linear stationary accelerations were, 

therefore, restricted to Algorithm II in combination with 

the Block Gauss-Seidel method. This particular iteration was 

selected since it exhibits the fastest convergence of all 

unaccelerated iterative methods (p. 59). 

The numerical tests indicate that the nature of 

convergence of the accelerated iteration is identical to 

that of block overrelaxation whose algorithm represents a 

combination of Block Gauss-Seidel and Algorithm I (Section 

3.2). By comparing the m0 •1-values of both iterations 

(Tables 7 and 14) it can be concluded that not only the 

nature but also the rate of convergence is nearly the same, 

provided the following relationship between the w-values of 

Algorithms I and II is assumed 

( 4. 7) 
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Relatively minor differences in the performance of both 

methods occur only in the vicinity of the optimum accelera-

tion factors. The numerical results on the convergence of 

·the iterations thus concur with theoretical findings reported 

by various investigators (Refs. 9, 11, 82). Although it is 

unlikely that the accelerating effect of both algorithms will 

be the same for all iterative methods, it nevertheless can be 

concluded that the Faddeev I acceleration has no distinct ad-

vantage as far as its efficiency is concerned. Taking into 

account that Algorithm I requires less storage space (two 

vectors of size n in case of Block Gauss-Seidel), the Faddeev 
\ 

I acceleration has to be considered as less suitable. 

4.3 Nonlinear Stationary Accelerations 

4.3.1 Algorithms 

The general algorithm for nonlinear stationary 

acceleration procedures can be expressed as 

( 4. 8) 

where u represents a nonlinear function of the previous 
q 

approximations. Acceleration procedures of this type differ 

from the remaining algorithms in at least two aspects of 

their application. Whereas other accelerations are used in 
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alternating order with iterative methods, nonlinear sta­

tionary accelerations are normally applied in intervals of 

several iteration cycles. In addition, the algorithms 

usually involve approximate vectors uc which are computed 

several cycles before the acceleration is carried out. There­

fore, it becomes necessary to introduce an auxiliary notation 

for identifying these previous approximations and for speci­

fying the cycle interval in which the acceleration is repeated. 

The following three quantities, already contained in the 

general algorithm of Eq. 4.8, are used for this purpose: 

q = cycle length of the acceleration interval, 

equivalent to the total number of approxi­

mate vectors uc computed during a single 

acceleration interval, (q ~ 2), 

L = index of the last iterate of the accelera­

tion interval, equivalent to the total 

number of iteration cycles carried out 

during an acceleration interval, (L = 

q-1 ~ 1) ' 

· p = cycle interval for identifying previous 

approximations in relation to uL (p ~ 1). 

All three quantities could be considered part of a local 

cycle counter system which is independent of the global 

cycle counter c. 
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The nonlinear stationary group of acceleration 

procedures includes the following individual methods 

(1) Wilson 

(2) Forsythe 

(3) Aitken 

( 4) Ishibashi 

(5) Dyer I 

(6) Milne I 

(7) Modified Aitken 

(8) Irons-Tuck 

(9) Rashid 

(10) Dyer II 

(11) Milne II 

The computational details of these accelerations are given 

in Table 15. The remainder of this section contains a num­

ber of explanatory remarks on the nature and the derivation 

of each algorithm. 

(1) Wilson (Ref. 86) 

By rewriting the computational form of the accel­

eration procedure (Table 15) in the following way 
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with ( 4. 9) 

it is possible to show that the algorithm can be derived by 

minimizing error function ~ 2 with uL as direction vector 

(Section 3.1.2). A modification of the above acceleration 

with yL defined by 

(4.10) 

is obtained if error function ~ 3 is chosen for the minimi­

zation process. Of all nonlinear acceleration procedures, 

Wilson's algorithm represents the only case in which no more 

than one previous approximation is required. 

(2) Forsythe (Ref. 24,73) 

The original algorithm (with p = 2) was developed 

by Forsythe and Motzkin for the acceleration of the steepest 

descent method (Section 3.3.1), although a similar procedure, 

called "Pauschalkorrektur" (lump sum correction), was also 

suggested by Stiefel (Ref. 73). The algorithm can be de-

rived by minimizing error function ~ 2 with (uL-uL-p) as 

direction vector (Section 3.1.2). Therefore, Forsythe's 

acceleration procedure becomes identical to Wilson's algo-

rithm if the vector u is assumed to be zero. L-p 
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(3) Aitken (Ref. 26,60,84) 

Aitken's acceleration procedure is a method for 

determining the asymptotic limit of a geometrically converg-

ing scalar sequence. In_ applying this procedure to the solu­

tion of systems of linear equations, each element (u)~ of 

the solution vector is treated as an independent quantity. 

Since the convergence of the iterative methods to be acceler-

ated is not geometrical but linear, the extrapolated value 

(u)9 represents, at best, an improved approximation of the 
~ 

limiting value (u)i. A necessary, but not sufficient condi-

tion for such an improvement is satisfied if the dominant 
' 

eigenvalue of the iteration matrix is real. Certain general-
,._.· .. 

izations of Aitken's procedure are also applicable for com-

plex dominant eigenvalues (Refs. 23, 26, 70). However, such 

generalized algorithms are not suitable fo~ the given pur­

pose since they require an even larger number of intermediate 

vectors to be stored. 

A different type of generalization can be made by 

applying Aitken's procedure to a sequence of vectors rather 

than scalars. Essentially, the generalization consists of 

establishing a vector equivalent of the quotient which de-

fines the individual Yi -values of Aitken's acceleration. 
L 

Several possible forms of such vector ·extrapolation methods 

are listed in Table 15 as algorithms 4 through 8. All ac-
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celerations of this type are similar to Aitken's procedure 

in the sense that they become identical if uc is assumed to 

be a scalar quantity. 

(4) Ishibashi (Ref. 45) 

Ishibashi's acceleration procedure, which belongs 

to the group of vector extrapolation methods, is based on the 

assumption that all elements of the solution vector converge 

at approximately the same rate as an arbitrarily selected ele-

c ment (u)k. The method requires less storage than Aitken's 

acceleration since only the k-th element of the vector uL- 2p 

has to be stored. 

(5) Dyer I, Dyer II (Ref. 79) 

Both acceleration procedures were originally 

developed by Dyer for the purpose of accelerating the con-

vergence of Kaczmarz' iteration (Section 3.2.2). The first 

of the two algorithms represents a generalization of Aitken's 

acceleration and, therefore, is included in the group of vee-

tor extrapolation methods. In comparison with other non-

linear stationary accelerations, the Dyer II algorithm re­

quires a considerable amount of computational effort, total-

ling approximately two matrix-vector products per accelera-

tion interval (Appendix 3). 
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{6) Modified Aitken 

The modified Aitken procedure can be derived from 

Algorithm 3 by reformulating the Yi -values of Aitken's ac­
L 

celeration, using the following definition of the "inverse" 

of a vector {Ref. 89) 

{4.11) 

{7) Irons-Tuck {Ref. 43) 

Unlike other nonlinear stationary accelerations, 

the Irons-Tuck procedure involves no acceleration parameters 

and is applied in alternating sequence with iterative al­

gorithms. In order to start the solution process, the fol-

lowing initial values for y and u are suggested in Ref. 43 

y = 0 
0 

{ 4. 12) 

The starting procedure has the effect of suppressing the 

acceleration during the first interval. Since the length 

of the acceleration interval q is pre-set to a value of 2, 

the algorithm does not require the separate storage of all 

previous approximations uL-l' uL_ 2 , and uL_ 3 • 
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(8) Rashid (Ref. 61) 

Rashid's extrapolation procedure is a method for 

determining the (k+L)-th value of a geometrically converging 

scalar sequenc~. As in the case of Aitken's acceleration, 

each element (u)7 of the solution vector is treated as an 
1 

independent quantity. Both acceleration procedures become, 

therefore, mathematically identical if the parameter k ap-

proaches infinity. Since the convergence of the iterative 

methods to be accelerated is not geometrical but linear, the 

extrapolated value (u)9 represents, at best, an approxima-
1 

tion of the (k+L)-th iterate (u)~+L. 
. 1 

(9) Milne I, Milne II (Ref. 56) 

An approximate solution of a system of linear 

equations'can be improved by means of the following general 

procedure suggested by Milne (Ref. 56) 

u = q 

with y. = 
1 

a. 
1 

k 
1+ E a. 

j=l J 
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The coefficients ai are obtained from a least squares solu­

tion of an auxiliary system of equations defined by 

(4.13b) 

The resulting algorithm bears a strong formalistic resem-

blance to the computational scheme of s-step gradient methods 

(Section 3.3.1). In the derivation of Mil.ne's acceleration 

it is assumed that the eigenvalues of the iteration matrix 

are real. For k = n the new approx~mation uq coincides with 

the solution vector u, whereas the a.-values become identi-
1 

cal to the coefficients of the characteristic equation of 

the iteration matrix. Storage requirements make it neces-

sary, though, to restrict the parameter k to relatively 

small values. The Milne I acceleration, which belongs to the 

group of vector extrapolation methods, is obtained by setting 
' 

k equal to 1, whereas a k value of 2 leads to Algorithm 11 

of Table 15. 

A different form of Milne's acceleration procedure 

is obtained if the ai-values are determined directly by cal­

culating the low order coefficients of the characteristic 

equation of T (Ref.' 21). However, this alternative, which 

can only be applied to total-step versions of linear sta-
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tionary iterations (Section 3.2.1), was not considered in 

this investigation. 

The derivation of most nonlinear stationary 

acceleration procedures is _based on the assumption that the 

iterative methods to be accelerated exhibit geometrical or 

line~r convergence. Since the acceleration itself causes a 

disruption of the convergence process, the parameters p and 

q have to be chosen in such a way that sets of previous ap­

proximations ~' uL-p' uL- 2p are part of the same accelera­

tion interval and, thus, do not overlap. An exception is 

made by Algorithm 8 (Irons-Tuck acceleration) which was ex­

plicitly developed for overlapping sets of previous approxi­

mations. 

4.3.2 Numerical Tests 

All nonlinear stationary acceleration procedures 

discussed in the previous section were tested numerically in 

connection with block overrelaxation as well as Successive 

Approximation Version D (Section 3.2). In addition, Algo­

rithms 1 and 2 were also applied to the almost optimum steep­

est descent method (Section 3.3). The selection of block 

overrelaxation as a basic iterative method was based on the 

fact that the algorithm exhibits the fastest convergence of 

all linear stationary iterations (p. 59). It is realized 
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that the presence of complex eigenvalues of the iteration 

matrix may cause numerical instabilities since most acceler­

at~on procedures are only applicable to iterations with real 

Ai(T)-values. In order to eliminate this potential source of 

difficulties, the accelerations were also tested in combina­

tion with Successive Approximation Version D, whose iteration 

matrix is known to have only real eigenvalues. 

Because __ of the large number of acceleration 

procedures, it was necessary to keep the discussion on the 

convergence behavior and the performance of the accelerated 

iterations to a minimum. A r~latively detailed description 

is given only for two of the more promising methods (Wilson's 

and Forsythe's accelerations), whereas the discussion of the 

remaining algorithms is more or less restricted to brief 

comments on their suitability. The following first part of 

the presentation of test results covers the application of 

nonlinear stationary accelerations to block overrelaxation. 

(1) Wilson 

Within the range of w-values for which the basic 

iteration exhibits monotonic linear convergence, the appli­

cation of the acceleration procedure results in a sharp re­

duction of the relative error Ec. During intermediate iter-
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ations, however, the value of Ec usually increases, thus 

giving the log(Ec} vs. c relationship a saw-tooth-like ap­

pearance (Fig. 8, 9). For higher values of w, the conver­

gence of the accelerated iteration becomes irregular, partic­

ularly for well-conditioned systems of equations. As the 

relative error Ec decreases in magnitude, the yL-factor of 

Wilson's acceleration approaches a value of 1.0. 

The average rate of convergence of the solution 

process is a comparatively smooth and regular function of 

the acceleration parameters. From the m0 . 1-values of Table 

16 it can be concluded that th~ convergence rate increases 

for increasing values of w and q until a poorly defined 

maximum is reached. For higher values of the acceleration 

parameters the solution process converges at a lower rate 

which approaches that of the unaccelerated iteration. The 

range of w-q v.alues for which a maximum or near maximum rate 

of convergence occurs is relatively wide, thus offering a 

major advantage in comparison with block overrelaxation it­

self. For the test examples the optimum values were found 

to be in the neighborhood of w = 1.9 and q = 10. 

The results of Table 16 indicate that the acceler­

ated iteration converges significantly faster than block 

overrelaxation for corresponding values of the acceleration 

factor. Exceptions may occur for well-conditioned systems 
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of equations if w is close to its optimum value. The 

acceleration is particularly effective for ill-conditioned 

problems where even roughly estimated w-q values allow a 

faster convergence than that obtained by block overrelaxa­

tion under optimum conditions. Numerical tests also show 

that a possible modification of Wilson's acceleration proce­

dure (Eq~ 4.10) is considerably less efficient than the orig­

inal algorithm. 

(2) Forsythe 

As in the case of Wilson's acceleration the 

convergence behavior of the accelerated iteration is domi­

nated by the w-factor, while the effect of the parameters p 

and q is comparatively small. For low values of w the solu­

·tion process converges in a smooth and regular way, whereas 

higher acceleration factors cause a rather irregular form 

of convergence. In general, the average convergence rate of 

the accelerated iteration increases for increasing values of 

w as well as q and for decreasing values of p. The highest 

rate is usually obtained for p equal to 1, for comparatively 

high values of q, and for w-values which are smaller than 

the optimum value of the basic iteration. However, these 

generalizations describe only over-all trends and may not 

hold for certain w-p-q combinations. 
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For optimum values of the acceleration parameters 

the solution process converges rather fast, especially for 

well-conditioned systems of equations. Under these condi­

tions the convergence rate can be as high as or even higher 

than that of Wilson's acceleration. However, the optimum 

range of parameters is usually very narrow and even small 

deviations may cause a drastic decrease in the rate of con­

vergence. In this respect Forsythe's acceleration compares 

unfavorably with Wilson's algorithm, where a near maximum 

convergence is obtained for a considerably wider range of 

w-q values. 

(3) Aitken 

Numerical tests indicate that divergence or a 

very irregular form of convergence at a low average rate may 

occur for a wide range of w-values. This behavior can fre­

quently be observed after an initial period of smooth and 

regular convergence during which the acceleration is compara­

tively ineffective. Because of the numerical instabilities, 

the application of Aitken's acceleration to block overrelaxa­

tion cannot be considered suitable. 
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(4) Ishibashi 

For high values of w the accelerated iteration 

exhibits a very irregular, slow convergence which is char­

c acterized by frequent changes in the magnitude of (u)max· 

On the other hand, for low w-values the solution process may 

diverge, particularly for low values of q and high values of 

p. If convergence occurs for latter range of w-values, the 

average rate may be relatively high for optimum combinations 

of p and q. However, in view of the numerical instabilities, 

the combination of Ishibashi's acceleration procedure with 

block overrelaxation has to be. considered unsuitable. In all 

numerical tests the quantity (u)~, used for calculating the 

acceleration factor y, was assumed to be identical to the 

maximum nodal point displacement (u)c . max 

(5) Dyer I, Milne I, Modified Aitken 

The convergence of any of these three vector-

extrapolation methods shows a similar behavior as that ob-

served for Aitken's acceleration. A normally smooth and 

regular convergence occurs for low values of w, whereas 

higher w-values cause irregular oscillations during which 

(u)~ax may undergo frequent changes in sign and magnitude. 

Numerical instabilities of this type are most likely to 

occur for the Dyer I acceleration and may result in divergence 
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of the solution process. The average rate of convergence of 

any of these methods is a very irregular function of the 

parameters w, p, and q. The numerical tests indicate that 

the modified Aitken acceleration is not only the most stable 

but also the most efficient of these algorithms. However, 

with very few exceptions, all three acceleration procedures 

converge noticeably slower than Wilson's acceleration for 

corresponding values of w and q. 

(6) Irons-Tuck 

In a relatively large number of numerical tests 

it ~as observed that the convergence of the accelerated 

iteration stagnates at a certain point without probably ever 

regaining any measurable amount of error-reduction. This 

type of behavior may occur for any value of w and for any 

condition of the system of equations, but it is almost cer­

tain to occur for higher w-values. Although the average 

rate of convergence is a rather irregular function of the 

acceleration factor, its maximum seems to occur for w-values 

close to or below 1.0. Even if the convergence does not 

stagnate, Wilson's acceleration is considerably more effi­

cient than the Irons-Tuck acceleration in combination with 

block-overrelaxation. 
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(7) Rashid 

From the nature of Rashid's acceleration procedure 

(p. 94) it can .be concluded that a maximum rate of conver­

gen~e will be obtained for high values of k, low values of q, 

and for w-values close to wopt of the basic iteration. Nu­

merical tests indicate, however, that for these w-k-q values 
\ 

the accelerated iteration frequently diverges, whereas other, 

less optimum w-k-q combinations cause a rather slow conver-

gence. Therefore, Rashid's algorithm cannot be considered 

suitable for the acceleration of block overrelaxation. 

(8) Dyer II 

Although the accelerated iteration does not seem 

to diverge, its nature of convergence is very irregular, 

particularly for well-conditioned systems of equations. It 

may occur that the acceleration consistently has a detrimen-

tal effect on the convergence, such that the "accelerated" 

iteration actually converges slower than its unaccelerated 

form. Under certain conditions the method may converge to a 

"wrong" solution in the sense that the acceleration exactly 

off-sets the amount of error reduction achieved in the inter-

mediate iterations. In none of the test examples does the 

performance of the Dyer II acceleration come even close to 

that of Wilson's·acceleration for corresponding values of w 

and q. 
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(9) Mi.lne II 

The nature of convergence of the accelerated 

iteration is essentially the same as that described for the 

Milne, I algorithm (p. 101). In comparing these two methods, 

the Milne II acceleration procedure appears to be less sus­

ceptible to numerical instabilities and practically always 

exhibits a faster convergence for identical values of w, p, 

and q. However, the average rate is considerably lower than 

that obtained by Wilson's acceleration except for well-con­

ditioned problems and low values of w. 

The second part of the presentation of test 

results covers the application of nonlinear stationary ac­

celerations to Version D of the Successive Approximation 

group. From preliminary numerical tests it was found that 

the convergence behavior of the accelerated iterations is 

essentially the same as that described previously for low 

values of w. In particular, the same type of numerical in­

stabilities occur for certain accelerations (Aitken, Ishibashi, 

Rashid) , indicating that they are not caused by complex eigen­

values of the iteration matrix in the case of block overre­

laxation (p. 97). Wilson's and Forsythe's acceleration pro­

cedures are, again, found to be the most efficient algorithms·, 

although the average rates of convergence are significantly 

lower than those obtained in the previous case. 
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In view of the discouraging results of these 

initial tests, a detailed investigation of acceleration pro­

cedures applied to Successive Approximation Version D was 

not carried out. 

In a third group of numerical tests, Forsythe's 

and Wilson's acceleration procedures were studied in connec­

tion with the almost optimum steepest descent method. As 

mentioned in Section 3.3.1, Forsythe's acceleration (with 

p = 2 and q = 3) applied to the method of steepest descent 

(w = 1.0) is equivalent to Kantorovich's 2-step gradient 

method and, therefore, equiva~ent to a certain type of con­

jugate gradient algorithm. Numerical tests show that this 

particular combination of w-p-q values results in rates of 

convergence which are only insignificantly higher than those 

of the unaccelerated steepest descent method. For w = 1.0 

better results are obtained by selecting q-values greater 

than 3 and in some cases by choosing small, even p~values 

other than 2. A choice of odd p-values, however, has a det­

rimental effect on the rate of convergence. In particular, 

if p is set equal to 1, the acceleration procedure leaves 

the approximate solution vector uL unchanged (Ref. 24). 

If Forsythe's acceleration ·is applied to the 

almost optimum steepest descent method (i.e. for w < 1.0), 

the average rate of convergence becomes a very irregular 
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£"unction of the parameters w, p, and q. It occurs frequently 

that the accel~rated iteration converges slower than its un­

accelerated form, and rarely is the rate of convergence high­

er than that obtained for w = 1.0 and a proper choice of p-q 

values. 

Noticeably better results can be obtained by 

applying Wilson's acceleration to the almost optimum steepest 

descent method. The combined algorithm has the advantage 

that its average rate of convergence is a rather smooth and 

regular function of the parameters w and q. However, a com­

parison with results obtained by applying the same accelera­

tion to block overrelaxation indicates that the latter solu­

tion process is more efficient. 

In summarizing the results of these numerical 

tests it can be concluded that Wilson's acceleration in corn­

. bination with block overrelaxation offers a number of advan­

tages which, as a whole, make this procedure the only one 

suitable for general application: 

(a) Convergence occurs for any admissible value 

of the parameters w and q, 

(b) the accelerated iteration exhibits a com­

paratively fast convergence, and 

(c) the optimum range of w-q values is 

relatively wide. 

-106-



A more detailed study on the performance of the accelerated 

iteration is described in Part II of this investigation. 

4.4 Linear Nonstationary Accelerations 

4.4.1 Algorithms 

Nonstationary accelerations as well as iterations 

are characterized by the fact that the cycle counter c is 

directly part of the algorithm, either in the form of a 

variable or as the order of a polynomial. Aside from c, the 

algorithm may also contain the parameter q which represents 

the cycle interval for restarting the solution process. The 

general operator for linear nonstationary accelerations can, 

therefore, be written in the form 

(4.14) 

Included in this class of acceleration procedures are the 

following individual methods 

(1) First order Chebyshev acceleration, 

(2) Second order Chebyshev acceleration, 

(3) Stiefel's acceleration, and 

(4) Faddeev II acceleration. 
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Several closely related procedures are discussed in Section 

3.4 among linear nonstationary iterations. Basically, both 

types of algorithms differ only in so far as nonstationary 

accelerations could be applied to any suitable iterative 

method, whereas nonstationary iterations are based on a 

particular linear stationary algorithm. Attempts to reformu­

late latter methods as acceleration procedures were not 

made since this generalization would have presented certain 

notational difficulties. The derivation of linear nonsta­

tionary acceleration procedures from the theory of orthogo­

nal polynomials (Section 3.1.2) was investigated indepen­

dently by Faddeev and Stiefel '(Refs. 21, 74, 75). The 

computational details of the above algorithms as well as a 

number of explanations are given in the following paragraphs. 

(1) First Order Chebyshev Acceleration (Ref. 21,84) 

The first order Chebyshev acceleration, named 

after its connection, with Chebyshey polynomials, could be 

considered as a nonstationary counterpart of a certain 

linear stationary acceleration (Algorithm 1, Section 4.2). 

Its computational procedure can be written as 

(4.15a) 
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where c = 0,1, ... (q-1) 

2 

2~(a +b )+(a -b )cos(2c+l rr) 
T T T T 2q 

(4.15b) 
-1 < aT < A . (T) - m~n 

The convergence of the acceleration procedure is only 

guaranteed if the eigenvalues of the iteration matrix, 

Ai(T), are real. The algorithm represents the only case in 

which the cycle interval q must be specified in advance 

since the parameter is directly used in the determination of 

the yc-factors. After executing a total of q iteration cy­

cles, the algorithm may be restarted using uq as the new 

initial approximation. However, it is necessary to carry 

out the solution process in such a way that the total number 

of iteration cycles is an integer multiple of q. Otherwise 

no guarantee can be given that the resulting vector uc is a 

"good" approximation of the solution vector (Ref. 74). The 

sequence in which the quantities y are used is immaterial c 

since the vector uq' except for roundoff errors, is not af-

fected by this order. Under certain conditions the y -fac­e 

tors may become very large, causing a breakdown of the solu-

tion process due to error accumulation. 
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The application of the first order Chebyshev 

acceleration to Version A of the Successive_Approximation 

group (Section 3.2) 

I(u) = u +r c c c (4.16a) 

leads to the following accelerated iteration attributed to 

Richardson (Refs. 17, 84, 91) 

where c = 0,1, .. · •• (q-1) 

2 (4.16b) 

bK > A. (K) - max 

(2) Second Order Chebyshev Acceleration (Ref. 71,84) 

An alternative to the previous algorithm is given 

by the second order Chebyshev acceleration which offers a 

number of computational advantages while retaining the basic 

character of the original algorithm. Its computational pro-

cedure can be written in the form 
I 
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where c = 1 ' 2 ' • • • • ( q-1) 

Cc (a) 
Y c = cc+l (a) 

Chebyshev polynomial 
of the first kind 

-1 < aT < A . (T) mJ.n 

(4.17a) 

(4.17b) 

The second order Chebyshev acceleration has the advantage 

that numerical instabilities as described for Algorithm 1 

will not arise. In addition, the solution process may be 

stopped for any value of c since all intermediate vectors 

uc represent "good" approximations of the solution vector 

(Ref. 74). After executing a certain number of iteration cy­

cles, q, the algorithm may be restarted by using u as the q 

new initial approximation. The convergence of .the second 
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order Chebyshev acceleration is assured under the same 

conditions.mentioned for the previous algorithm. 

If the eigenvalues of the iteration matrix are 

contained in the range 

-S < Ai (T) < +S < 1 (4.18a) 

the algorithm can be rewritten in the following simpler 

form (Refs. 21, 39, 82) 

(4.18b) 

where 

c = 1,2, .... (q-l) 

Several other modifications of the second order Chebyshev 

acceleration are described, for instance, in Ref. 17 and 75. 

If the y -factors of Eq. 4 .• 18b are assumed to be constant c 

throughout the solution process, a degenerate form of 

Chebyshev acceleration (Refs. 39, 82) is obtained which 

corresponds to the Faddeev I algorithm of Section 4.2. 
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{3) Stiefel's Acceleration {Ref. 21,74) 

A second nonstationary counterpart of the Faddeev 

I acceleration is given by the following acceleration proce-

dure suggested by Stiefel 

where c = 0 ' 1 ' . . • . { q-1) (4.19) 

The above algorithm is guaranteed to converge if the eigen-

values of the iteration matrix are real and less than 1.0 in 

absolute value. As in the case of the second order Chebyshev 

acceleration, the solution process may be restarted after a 

certain number of iteration cycles, q, by using u as the new q 

initial approximation. 

(4) Faddeev II Acceleration (Ref. 21) 

Based on the same principles that were used in the 

derivation of Algorithm 3, Faddeev developed the following 

acceleration procedure 
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where 

(c+l) (2c+3) + 
= {c+2)2 I(uc) 

(c+l) 
( 2 c+ 1) ( c+ 2 ) 2 u c 

(2c+3)c2 
--~--~~--~2 uc-1 
(2c+l) (c+2) 

c = O,l, •••• (q-1) 

Because of the similar nature of both algorithms, the 

(4.20) 

remarks on the convergence and execution of Stiefel's ac-

celeration also apply to the above method. 

4.4.2 Numerical Tests 

Among the four nonstationary acceleration proce-

dures discussed in the previous section, the first two al-

gorithms (first and second order Chebyshev acceleration) can 

be applied only if non-trivial upper and lower bounds for the 

eigenvalues of the iteration matrix are known. Since these 

quantities are not available in practice, the investigation 

was restricted to Algorithms 3 and 4, which do not require 

knowledge of such bounds. Both acceleration procedures were 

tested in combination with block overrelaxation as well as 

Successive Approximation Version D. The reasons for select-

ing these particular iterations are identical to those dis-

cussed in connection with nonlinear stationary accelerations 

(Section 4.3.2). 
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Numerical tests with Algorithms 3 and 4 applied 

to block overrelaxation indicate that the solution process 

diverges except for low w-values in the vicinity of 1.0. 

The numerical instabilities can be attributed to the fact 

that the iteration matrix for block overrelaxation has com-

plex eigenvalues for higher acceleration factors. Since the 

"a priori" determination of safe w-values is not possible 

for the given type of linear equations, the application of 

nonstationary acceleration procedures to block overrelaxa-

tion has to be considered as unsuitable. 

Instabilities of the,solution process do not occur 

if the accelerations are used in connection with Successive 

Approximation Version D, whose iteration matrix has only 

real eigenvalues. The numerical tests with Algorithms 3 

and 4 indicate that the convergence behavior of the accel-

erated iterations is nearly identical to that of Lanczos' 

method described in Section 3.4.2. In ~11 cases the rela-

tive error E exhibits cyclic oscillations whose cycle in­c 

terval c
0 

is constant throughout the solution process. 

Moreover, the acceleration parameters w and q affect the 

convergence in a similar way as bK and q affect the course 

of Lanczos' iteration. The only major difference arises in 

the behavior of (u)~ax' which in the case of the two ac­

celeration procedures oscillates about its final value. 
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Therefore, a restarting procedure similar to that ~uggested 

for Lanczos' method cannot be applied to the accelerated 

iterations. 

The numerical tests indicate that Stiefel's 

acceleration procedure (Table 17) converges somewhat faster 

than the Faddeev II acceleration, although a clear assess-

ment of the performance can only be made if q is smaller 

than the oscillation interval For w = 1/A (K) the max 

rates of convergence obtained by Algorithm 3 are nearly 

identical to those of Lanczos' method with bK = Amax(K) 

(Table 13). However, in comparison with some of the more 

efficient linear stationary algorithms it has to be con-

eluded that the accelerated iterations do not converge at a 

sufficiently high rate. 
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5. SEMI-ITERATIVE METHODS 

5.1 Algorithms 

Among the various methods for solving systems of 

linear equations, semi-iterative methods (or conjugate 

gradient methods as they are frequently called) play a 

unique role in the sense that they combine features of 

direct as well as iterative solution procedures (Refs. 5, 

21, 38, 84). In the absence of roundoff errors, semi-iter­

ative algorithms yield the solution of a system of equations 

within a finite number of numerical operations and, there­

fore, exhibit one of the most important characteristics of 

direct methods. The solution process is ca~ried out in the 

form of procedural steps ("iteration cycles") whose maximum 

number corresponds to n, the size of the system of equa­

tions, or more precisely to nA.' the total number of inde­

pendent eigenvalues A.i(K) (Ref. 51). Theoretically, semi­

iterative methods can also be used for finding the inverse 

of a matrix and for treating multiple load vectors in a 

similar efficient way as direct solution procedures. 

However, fundamental differences between semi­

iterative and direct methods exist in various other aspects 

of their application. The computational scheme of conjugate 
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gradient methods strongly resembles that of nonlinear 

stationary iterations since it involves only matrix-vector 

products. The storage requirements of these methods are, 

therefore, essentially restricted to the non-zero elements 

of the coefficient matrix plus a certain number of addi­

tional vectors (p. 9) ~ Since conjugate gradient methods 

have similar characteristics as total-step iterations (p. 34), 

the global stiffness matrix does not necessarily have to be 

available in assembled form. As other iterative algorithms, 

conjugate gradient methods require an initial approximation 

u
0 

which is continuously improved during the course of the 

solution process. The accuracy of the solution vector, 

therefore, depends on the amount of computational effort. 

In the presence of roundoff errors, the solution of a sys­

tem of equations may not be obtained within n algorithm 

steps. In this case, the same computational process can be 

simply continued until a sufficient amount of error reduc­

tion is achieved. Depending on the load vector f and the 

initial approximation u
0

, it may also occur that the solu­

tion is obtained within less than nA cycles. 

Conjugate gradient methods can be derived from a 

minimization of error functions (Section 3.1.2) by using 

direction vectors which satisfy certain orthogonality con­

ditions. These vectors are determined recursively during 
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the course of the solution by means of a Gram-Schmidt 

orthogonalization process (Refs. 21, 38, 84). Since their 

derivation is based on identical principles, conjugate 

gradient algorithms belong to the larger group of conju-

gate directions methods, which also include most of the 

direct solution procedures. The specific nature of conju­

gate gradient methods is determined by the fact that the 

direction vectors are related to the residual vector rc. 

Direct methods, such as Gauss elimination, are obtained if 

the unit vectors e. are used as the basis of the orthogo-
~ . 

nalization procedure. The derivation of conjugate direc-

tion methods can be interpreted geometrically as a process 

of finding the center of an-n-dimensional ellipsoid cj>(uc) = 

const. by a successive reduction of the number of its di-

mensions (Refs. 21, 38, 84). 

As shown by Stiefel (Refs. 74, 75), conjugate 

gradient methods could also be derived from the theory of 

orthogonal polynomials by using a specific type of discon-

tinuous weight function for the minimization process. From 

this point of view, the derivation of conjugate gradient 

methods,resembles that of nonstationary iterations. 

The most commonly used conjugate gradient 

algorithm, designated as Version A, can be expressed in the 

following form (Refs. 5, 21, 38, 84) 
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uc+l = u +a v c c c 

rc+l = rc-acKvc (S.la) 

vc+l = r +8 v c+l c c 

rTr 
where c c 

ac = 
vTKv 

c c 

sc = 
rc!lrc+l 

(S.lb) r r_ 
c c 

vo = r = f-Ku 
0 0 

The algorithm could be derived by minimizing error function 

¢
2 

using K-orthogonal direction vectors vc. The method of 

derivation implies that error function ¢2 (uc) monotonically 

decreases during the solution process. Various properties 

of the above algorithm as well as numerous relationships 

between the vectors uc' r , and v are described in detail c c 

by Hestenes and Stiefel (Ref. 38). Since a recursive 

evaluation of the residual vector rc is used in the above 

expressions, the standard algorithm requires only one matrix-

vector product per iteration cycle (Appendix 3). If the 

approximate solution vector u approaches its exact value, . c 

the denominators of the coefficients a and 8 become zero. c c 

In the application of the algorithm it is, therefore, neces-

sary to test the possible occurence of this condition. 
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A second form of conjugate gradient method, 

designated as Version B, can be written in the form (Refs. 

17, 53, 74, 75) 

uc+l = u +a v c c c 

rc+l = r -a Kv (5.2a) c c c 

vc+l = r +l+8 v c c c 

rTKr 
where c c a = c T v KKv c c 

T 

Be 
rc+lKrc+l 

(5.2b) = 
rTKr 

c c 

vo = r = f-Ku 
0 0 

.Essentially, both computational procedures differ 

only in the definition of their a - and 8 -coefficients. c c 

The algorithm of Version B can be derived by using KK-orthog-

onal direction vectors vc for the minimization of error 

function ~ 3 • Consequently, the magnitude of 

(5.3) 

monotonically decreases during the course of the solution. 

Although the algorithm of Eq. 5.2 involves a recursive 
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evaluation of the residual vect6r r , the solution process c 

requires two matrix-vector products per iteration cycle. 

However, the computational effort can be reduced to one rna-

trix-vector product if a slightly modified form of the al-

gorithm is used, which requires the storage of two additional 

vectors (Ref. 53). As far as the termination of the solu-

tion process is concerned, similar remarks as those made for 

Version A apply to the above algorithm. In the original 

monograph on conjugate gradient methods (Ref. 38) it is 

implied, although not explicitly stated, that the following 

relationships exist between the approximate solution vectors 

A f . dB f 'B uc o Vers1on A an uc o Vers1on 

where 

= 1 ( A + 0 A uB) -y--- uc+l ~c Yc c 
c+l 

1 A = --- v 
Yc+l c+l 

Y = 1 
0 

The equations indicate that the residual vector rB of c 

{5.4) 

Version B can be calculated from numerical quantities of 

Version A alone (cf. Chapter 8). 
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Because of various orthogonality conditions, the 

standard algorithms of Eqs. 5.1 and 5.2 can be expressed in 

a large number of different ways. Several of these alter-

native formulations are given in Ref. 38 (cf. Section 7.2), 

whereas other possible modifications, involving a recursive 

evaluation of a - and 8 -like coefficients, are described c c 

in Refs. 17, 74, and 75. The main characteristic of these 

algorithm versions is that the sequence of approximate solu-

tion vectors uc' except for roundoff errors, is not affected 

by the modifications. 

However, different ~ets of approximate vectors 

are obtained if Gauss transformations are applied to the 

conjugate gradient algorithms (Refs. 21, 37) or if the 

minimization process is carried out with other types of 

error functions (Ref. 37). A similar change in the nature 

of the solution process may result if different metrics H 

are used in the H-orthogonalization of the direction vector 

vc (Ref. 37) and if the formulation of algorithms involves 

other orthogonality conditions (Refs. 8, 21, 51). The 

primary purpose of these modifications is to extend the ap-

plicability of semi-iterative solution meth9ds to systems of 

equations with more general coefficient matrices. Among the 

various possibilities, Gauss transformations represent the 

most commonly used form of generalization. However, based 
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on previous experience with these transformations (Sections 

3.2 and 3.3}, generalized conjugate gradient methods of this 

type were not included in the investigation. 

In Section 3.3.1 it was shown that s-step gradient 

methods, which can be considered as block modifications of 

nonlinear stationary iterations, are closely related to 

semi-iterative solution procedures. In essence, conjugate 

gradient algorithms, restarted every s iteration cycles, 

represent a recursive form of the computational schemes de­

scribed in Section 3.3. Specifically, the restarted fQrm of 

Version A is identical to Kantprovich's s-step gradient 

method, whereas Version B corresponds to Khabaza's algorithm. 

If s assumes a value of 1, conjugate gradient Version A be­

comes identical to the steepest descent method, whereas Ver­

sion B coincides with Krasnoselskii's iteration. In compari­

son with the computational procedures of Section 3.3.1, con­

jugate gradient methods have the advantage that their al­

gorithms are considerably less complicated and that the 

choice of s-values is not restricted by storage limitations. 

As long as the restarting parameter s is selected in such a 

way that the solution is not obtained with the first inter­

val of s cycles, conjugate gradient algorithms retain all 

the characteristics of iterative solution procedures. 
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5.2 Numerical Tests 

The fact that semi-iterative methods have the 

character of n-step algorithms is an indication that their 

convergence behavior is affected not only by the condition 

but also by the size of the systems of equations. It is, 

therefore, not possible to judge the performance of conju-

gate gradient methods by the relatively small size test 

examples which are used in this comparative study (Section 

2~1). In order to give a description of the general nature 

of their convergence, semi-iterative solution methods were, 

nevertheless, applied to the same systems of equations. It 

is realized, however, that general conclusions on the pref-

erability of iterative or semi-iterative methods cannot be 

drawn from these test examples, since their small size is 

likely to favor conjugate gradient methods. 

The numerical tests indicate that the condition of 

the systems of equations has a noticeable effect on the con-

vergence behavior of conjugate gradient methods. For ill-

conditioned problems (examples A3 and A4) it can be observed 

that after an initial period of relatively little error re-

duction, Ec decreases drastically if the cycle counter c ap­

proaches the value of n (Fig. 10). Within a relatively few 

cycles the maximum element of the approximate solution vec­

tor (u)c reaches its final value without exceeding this max 
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particular quantity. The solution process, therefore, does 

not exhibit any signs of linear convergence. Under certain 

conditions an abrupt reduction of the relative error £ may c 

also occur for c-values which are considerably smaller than 

n (example AS) . 

For well-conditioned systems of equations (exam-

ples A2 and A6), the relative error £c decreases in a less 

abrupt, although irregular form. For problems of this type 

a noticeable amount of error reduction can already. be ob-

served during the initial phase of the solution process. 

However, as in the previous case, the convergence behavior 

does not have the characteristics of linear convergence. 

The m0 . 1-values of Table 18 indicate that both 

conjugate gradient methods converge very rapidly for all 

test examples. With only one exception (example A3) the re-

quired number of cycles is less than or equal to the theoret-

ical maximum value of n. In other words, roundoff errors 

have an effect on the convergence only for the relatively 

ill-conditioned example A3. For well-conditioned systems 

of equations the total number of iteration cycles which are 

necessary to obtain a sufficiently good approximation of the 

solution vector is considerably smaller than n. In general, 

Version B of the conjugate gradient methods converges con-

sistently slower than Version A, although the differences 
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in the correspond~ng m0 _1-values are relatively small (Table 

18). In comparison with iterative solution methods, the 

test results clearly show that both conjugate gradient meth-

ods converge significantly faster than even the most effi-

cient iterative algorithm (Table 16). However, the rela-

tively small size of the test examples does not allow to 

draw general conclusions on the relative efficiency of both 

types of methods. Additional numerical tests with semi-

iterative solution procedures are, therefore, included in 

part II of this dissertation. 

A completely different type of convergence behavior 

can be observed if the conjugate gradient algorithms are 

used as s-step gradient methods, that is, if the solution 

process is restarted after a certain number of iteration cy-

cles. As long as the restarting interval s is smaller than 

the number of iteration cycles, c , for which the unre­con 

started solution process converges abruptly, s-step gradient 

methods retain the characteristics of linear convergence 

(Fig. 10) . This is illust~ated by the fact that the log-

arithm of the relative errors Es' E2s' EJs' •.• approaches 

a linear relationship with respect to c. Certain irregu-

larities occur if the parameter s approaches the value of 

c (Fig. 10), whereas virtually no differences between s-con 
step gradient and conjugate gradient methods exist for 

higher values of s. 
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The numerical tests with s-step gradient methods 

indicate that the rates of convergence of the solution pro­

cess are comparatively low, unless large restarting inter­

vals are chosen {Table 19). In particula~, 2-step gradient 

methods converge only twice as fast as the corresponding 

nonlinear stationary iterations {Table 11). However, for 

increasing values of the parameter s, the rates of conver­

gence rapidly increase until they become identical to those 

of conjugate gradient methods. The test results clearly 

illustrate that for the given systems of equations the re­

starting process does not have a beneficial effect on the 

performance of the solution procedures. 
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6. CONCLUSIONS 

From the results of the comparative study of 

various types of iterative and semi-iterative solution pro­

cedures it is possible to draw the following conclusions: 

(1) Among stationary iterations, the Block Gauss-Seidel 

method (Section 3.2) represents the most efficient un­

accelerated algorithm, whereas its linearly accelerated 

form, block overrelaxation (Section 3.2), exhibits the 

best over-all performance among linearly accelerated 

iterations. Because of the relatively small block 

size, only minor differences exist between the block 

and point versions of both iterative methods. Rates 

of convergence which are of the same magnitude as 

those of block overrelaxation can also be obtained by 

applying a different linear stationary acceleration 

(Faddeev I, Section 4.2) to the Block Gauss-Seidel 

method. However, the combined algorithm is less 

suitable since it requires the storage of additional 

vectors. 

(2) The most efficient iterative solution procedure is 

obtained by applying Wilson's acceleration to the 
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. block overrelaxation method. In comparison with other 

iterations the algorithm has the advantage that the 

optimum range of acceleration parameters is rela­

tively wide. For the test examples, near maximum 

rates of convergence were observed for w-q-values in 

the neighborhood of w = 1.90 and q = 10, although some­

what higher values can be expected for more ill-condi­

tioned problems. Unlike other nonlinear accelerations, 

Wilson's algorithm does not require the storage of pre­

vious approximations of the solution vector. The nu­

merical tests also indicate that the combination of 

nonlinear stationary acceleration procedures with 

iterative methods, whose T-matrices have only real 

eigenvalues, results in less efficient algorithms. 

(3) Among non-stationary solution procedures, only Lanczos' 

iteration (Section 3.4) is of c~rtain practical value 

since its optimum restarting interval qopt can be de­

termined in a relatively simple way. Under optimum 

conditions, the performance of the iteration is com­

parable to that of block overrelaxation, although the 

algorithm is less efficient than block overrelaxation 

in combination with Wilson's acceleration. 

(4) Numerical tests with linear and nonlinear stationary 

iterations indicate that the use of Gauss transforma-
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tions (Section 3.1.2) for the derivation of new 

iterative algorithms has a strongly detrimental ef­

fect on their performance. 

{5) For the given test examples, conjugate gradient 

methods (Chapter 5) converge significantly faster 

than any iterative solution procedure. However, due 

to the relatively small size of the systems of equa­

tions, a fair comparison of the performance of both 

types of methods is not possible. 

From the results of this comparative study it can, 

therefore, be concluded that the total number of potentially 

useful algorithms is reduced to three, namely block overre­

laxation in combination with Wilson's acceleration as well as 

two versions of the conjugate gradient method. In order to 

determine which of these algorithms exhibits the best over­

all performance, additional numerical tests are included in 

part II of this dissertation. 
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PART II 

APPLICATION OF ITERATIVE 

SOLUTION METHODS 
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7. SELECTION OF SOLUTION METHOD 

7.1 Additional Numerical Tests 

As a result of the first part of the investigation, 

the search for the most efficient iterative or semi-iterative 

method for solving systems of linear equations can be re­

stricted to the following three algorithms 

(1) conjugate gradient Version A, 

(2) conjugate gradient Version B, 

(3) block overrelaxation in combination with 

Wilson's acceleration. 

The objective of the additional numerical tests described in 

this section is to determine which one of the above three al­

gorithms represents the most suitable solution procedure. 

The comparative study is complicated by the fact that the 

conjugate gradient methods differ from the third algorithm 

in certain basic aspects of their nature. As described in 

Chapter 5, the rate of convergence of conjugate gradient 

methods is primarily affected by roundoff errors as well as 

by the size of the system of equations. The amount of er­

ror accumulation is, in turn, influenced by the word length 

of the computer and by the condition of the coefficient 
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matrix. Iterative methods, on the other hand, are charac-

terized by the fact that their performance does not depend on 

the value of n, whereas roundoff errors generally have only 

an insignificant effect on their convergence (p. 145). The 

spectral radius of the iteration matrix and, therefore, the 

rate of convergence are, above all, affected by the condition 

of the system of equations. Although various other factors 

may also play a role, the situation remains essentially un-

changed if nonlinear accelerations are applied to the itera-

tive process. Therefore, the convergence rates of all three 

solu~ion procedures are dominated by the P-condition number 

of the coefficient matrix, although fundamental differences 

exist in the way in which this parameter affects the perfor-

mance of iterative and semi-iterative methods. In order to 

facilitate on equitable comparison of the performance of 

both types of solution methods, the additional numerical 

tests of this section are carried out with two larger and 

relatively ill-conditioned systems of equations (Appendix 

2). Both test examples contain a parameter K which allows 

giving the coefficient matrices any arbitrary degree of ill-

conditioning. 

The numerical tests with conjugate gradient 

Version A indicate that the convergence behavior is very 

similar to that described in Chapter 5 for ill-conditioned 
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systems of equations. During an initial period whose length 

increases as more ill-conditioned the problem becomes, a 

relatively small amount of error reduction is achieved. 

The initial phase is followed by an abrupt decrease in the 

magnitude of the relative error £ within a small number of c 

iteration cycles (Fig. 11). A more gradual, but irregular 

form of convergence can only be observed for very ill-condi­

tioned problems (K ~ 10 3, Fig. 11). Because of the abrupt 

convergence, higher accuracies of the approximate solution 

vector are obtained with comparatively little computational 

effort. The m0 . 1-values of Table 20 illustrate that for a 

wide range of K-values the number of iteration cycles, re-

quired to achieve convergence, exceeds the theoretical limit 

of n. In other words, roundoff errors have a detrimental 

effect on the convergence for comparatively small values of 

the ~1-condition number (Appendix 2). The correlation be­

tween the rate of convergence and the condition of the coef-

ficient matrix is illustrated by the fact that both the m0 . 1-

values as well as the magnitude of log(P1) vary as an ap­

proximately linear function of log(K). Since nearly identi-
+a -a cal rates of convergence are obtained for K = 10 and K = 10 

of example Bl, it can be concluded that removable and non-

removable types of ill-conditioning have essentially the same 

effect on the convergence (Appendix 2). 
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By comparing the test results of both versions of 

the conjugate gradient method it can be observed that the 

solution procedures exhibit an identical convergence behav-

ior. Only minor differences arise in their performance, 

where Version B consistently shows somewhat higher m0 •1-

values (Table 20). The numerical results thus concur with 

theoretical findings reported in Ref. 38. In view of the 

similar nature of both algorithms, these differences are, 

nevertheless, sufficient to show that Version B of the conju-

gate gradient method offers no advantages in comparison with 

Version A. 

The numerical tests with block overrelaxation· in 

combination with Wilson'-s acceleration indicate that the 

convergence behavior of the solution process is essentially 

identical to that described in Section 4.3. From the re-

sults of Table 20 it can be seen that the applicability of 

the accelerated iteration is restricted to problems with 

moderate degrees of ill-conditioning. For higher condition 

numbers a sufficient amount of error reduction cannot be 

obtained within a reasonable number of iteration cycles, 

even if optimum w-q-values are chosen. The comparatively 

good performance of the iteration for systems of equations 

with removable ill-conditioning (example Bl, K < 1.0) indi-

cates that its rate of convergence is affected by the P1 

condition number of the scaled rather than the unsealed 
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coefficient matrix (Appendix 2). However, in contrast to 
1 

conjugate gradient methods the required number of iteration 

cycles increases as an exponential rather than a linear 

function of log(P1). By comparing the results of Table 20 

it can be seen that both versions of the conjugate gradient 

method converge faster than the accelerated block overre-

laxation method except for problems with removable ill-condi-

tioning. The differences are particularly large for higher 

values of K and, therefore, for more ill-conditioned syste~s 

of equations. A greater contrast could also be observed if 

m-values of higher accuracy were compared since the conju-

gate gradient methods converge rather abruptly whereas the 

accelerated iteration converges in an approximately linear 

fashion. 

As a result of these numerical tests it can be 

concluded that Version A of the conjugate gradient method 

represents the most efficient solution procedure. The test 

results show that the algorithm can be successfully applied 

to the solution of rather ill-conditioned systems of equa-

tions, although in this case the rate of convergence is af­

fected by roundoff errors. In comparison with the acceler-

ated block overrelaxation method, the conjugate gradient 

algorithm has the advantage that it does not require the 

selection of acceleration parameters. 
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7.2 Improvement of Performance 

From the numerical tests of the previous section 

it was found that the comparatively good performance of 

conjugate gradient methods is, nevertheless, impaired by the 

effect of roundoff errors. This deficiency of semi-itera-

tive methods, which was already observed in some of the 

earliest numerical studies (Refs. 38, 51, 73), has led to the 

development of various procedures for improving their perfor-

mance by reducing the amount of error accumulation. The pur-

pose of this section is to investigate several of such modi-

fications in order to allow an evaluation of their practical 

usefulness. 

(1) Algorithm Modifications 

The standard algorithm of conjugate gradient Version 

A is defined in Chapter 5 by the following expressions 

uc+l 

vc+l 

where 

= u +a v c c c 

= r -a Kv c c c 

= r +l+S v c c c 
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• T r r 
Be 

c+l c+l = T r r c c (7.ld) 

vo = r = f-Ku 
0 0 

Due to various orthogonality conditions among the vectors 

uc, vc' and rc' the above algorithm can be expressed in a 

large number of different ways. In Ref. 38 numerous such 

alternative presentations are suggested and their suscepti-

bility to roundoff errors is discussed. Several of these 

algorithms, here designated as coefficient modifications, 

differ from the standard algorithm only in the definition of 

ac- and Be-like scalar quantities. In order to present these 

modifications in a uniform notation, the computational scheme 

of Eq. 7.1 is rewritten in a slightly different form 

vc+l 

where 

= u +a v c c c 

rc+l = r -a Kv 
c c c 

1 = --(r +B v ) 
y c+l c c c+l 

1 v = r 
0 Yo 0 

r = f-Ku 
0 0 
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For a total of seven coefficient modifications the defini-

tions of the parameters ac' Sc' and yc+l are listed in Table 

21. 

A second group of algorithm versions differs from 

the previous modifications in so far as it involves the cor-

rection of vector rather than scalar quantities. The most 

commonly used vector correction (Modification 8) consists of 

replacing the recursively calculated residuals of the stan­

dard algorithm (Eq. 7-.lb) by the so-called "true" residuals 

(Ref. 17) 

(7.3) 

Another algorithm version (Modification 9) is obtained if 

the following direction vector v is used instead of Eq. 7.lc c 

(Ref. 38) 

vc+l = v -y v ( 7. 4) c+l c c 

T 

where 
vc+lKvc 

Yc = 
vTKv 

c c 

The simultaneous application of both vector corrections 

(Eqs. 7.3 and 7.4) finally leads to a tenth and last modifi-
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cation which is included in this study. 

' Numerical tests with these algorithm versions 

indicate that, except for Modification 2, the various al-

ternative formulations show no significant differences in 

comparison to the standard algorithm (Table 22). In partie-

ular, the additional computational effort which, for exam-

ple, is involved in the calculation of the true residuals 

(Modification 8) does not result in a better performance. 

In all numerical tests it was observed that Modification 2 

diverges after an initial period during which its behavior 

is essentially identical to that of the other algorithms. 

The breakdown of the solution p~ocess apparently occurs when 

the approximate solution vector uc comes in the vicinity of 

the correct solution. In view of the small differences in 

the performance of the remaining algorithms it can be con-

eluded that no advantage is gained by using alternative 

formulations of the conjugate gradien~ method. Because of 

its simplicity and its comparatively small computational 

effort the standard algorithm of conjugate gradient Version 

A is, therefore, retained throughout the remainder of this 

investigation. 
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(2) Starting Procedures 

c 

A different approach to the problem of improving 

the convergence of conjugate gradient algorithms involves 

the use of iterative methods for generating suitable start-

ing vectors of the solution process (Refs. 17, 51, 74, 75). 

By eliminating certain components of the initial error vee-

tor it is expected that the effect of roundoff errors on 

the convergence will be reduced. In order to investigate 

this possi~ility the following· numerical tests are carried 

out: Starting with zero initial guesses, a total of cs 

iteration cycles are performed with the following solution 

procedures 

(a) block overrelaxation (w = 1.95), 

(b) block overrelaxation in combination with 

Wilson's acceleration (w = 1.95, q = 20), 

and 

(c) conjugate gradient Version A. 

In a subsequent step the resulting approximation is used as 

a starting vector for Version A of the conjugate gradient 

method. The third starting,procedure differs from s-step 

gradient methods described in Chapter 5 in so far as only a 

single restart is performed. 
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The results of the numerical tests, carried out 

with several values of c , indicate that none of the start­s 

ing procedures has the desired effect on the convergence. 

In several cases the performance is detrimentally affected 

even if the computational effort for generating the starting 

vector is discounted. In other words, zero initial guesses 

represent better starting values in certain cases than those 

vectors generated by the above procedures. No essential 

differences can be observed if other values of the accelera-

tion parameters w and q are chosen. Summarizing the re-

sults of these tests it can be concluded that the starting 

procedures described above are 'not suitable for improving 

the performance of conjugate gradient Version A. 

(3) Double Precision Arithmetic 

Since the convergence of semi-iterative methods is 

primarily affected by roundoff errors, it can be expected 

that the use of higher precision arithmetic has a beneficial 

effect on their performance.· In order to investigate this 

effect the following two types of double precision implemen-

tation are tested numerically 

(a) double precision vectors, involving double 

precision arithmetic as well as double pre-

.cision storage of vector quantities; and 
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(b) double precision inner products, involving 

double precision accumulation of inner prod­

ucts whereas vector quantities are stored 

in single precision. 

For illustration purposes a third word length configuration 

is included as well which involves single precision accumula­

tion of inner products whereas vector quantities are stored 

in a smaller word length. The details of the implementation 

of the above three word length modifications are given in 

Table 23. 

The results of the numerical tests indicate that 

the computer word length has a considerable effect on the 

rate of convergence of conjugate gradient Version A (Table 

24). The use of double precision vectors (Modification 1) 

causes a noticeable reduction in the number of required 

iteration 9ycles, particularly for ill-conditioned prob­

lems. Even if double precision is used only in the accumu­

lation of inner products (Modification 2), the convergence 

is faster than in single precision, although the effect is 

smaller than in the previous case. However, for higher K­

values the use of double precision arithmetic in one form 

or another is not sufficient to achieve convergence within 

n iteration cycles. A reduction in the computer word length 

has, as expected, a detrimental effect which is particularly 
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strong for ill-conditioned problems whereas comparatively 

small differences can be observed for well-conditioned sys­

tems of equations. Although the use of double precision 

storage and arithmetic allows a reduction in the required 

number of iteration cycles, the advantage is not large 

enough to offset the longer execution time of double pre­

cision arithmetic. Consequently, its use cannot be recom­

mended for improving the performance of conjugate gradient 

methods. Exceptions may occur for computers which allow an 

accumulation of double precision inner products with rela­

tively little increase in execution time. Comparative 

numerical tests with the accelerated block overrelaxation 

method indicate that for the same type of word length con­

figurations virtually no effect on the m0 _1-values can be 

observed within the tested range of K-values. 

(4) Scaling Procedures 

The primary purpose of using scaling procedures 

is to improve the condition of a system of linear equations. 

Basically it is possible to distinguish between scaling 

procedures involving a multiplication by matrix polynomials 

(Refs. 7, 17) and so-called diagonal scaling transformations 

(Refs. 27, 28, 69). The first group of methods has the 

disadvantage that its use in connection with conjugate 
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gradient algorithms results in a substantial increase in 

the computational effort per iteration cycle. At the same 

time, the computational scheme of con~ugate gradient methods 

becomes considerably more complicated (Ref. 17, cgT-method). 

The investigation is, therefore, restricted to the second 

group of scaling procedures which transforms the original 

system of equations 

Ku = f 

into an equivalent system 

where 

D = diagonal scaling matrix. s 

(7.5a) 

(7.Sb) 

The above transformation does not affect the symmetric, 

positive definite character of the coefficient matrix and 

qoes not cause an increase in the storage requirements. 
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The numerical tests of this section include a total of 

four different scaling matrices Ds defined by the following 

expressions 

(A) (D ) . . - (K) .. - [ ]1/2 s 11 11 

(B) 

(C) (D ) . . = E I (K) .. ,_ 
[ 

n ] 1/2 
s 11 j=l 1] 

(D) (D ) .. = I~ (K) ~ ll/4 
s 11 b=l 1~ 

The quantity nnz.' which appears in the definition of 
1 

(7. 6) 

procedure B, represents the total number of non-zero ele-

ments in the i-th row or column of the coefficient matrix. 

The test results of Table 25 indicate that, with 

few exceptions (example Bl, procedure B), the scaling trans-

formations cause a substantial improvement in the perfor-

mance of the conjugate gradient method. The effect is par-

ticularly strong for example Bl, although a noticeable im-

provement can also be observed in the m0 •1-values of example 

B2. In both cases the reduction in the number of required 

iteration cycles is considerably larger than it could be 

expected from the change in the P 1-condition numbers (Appen­

dix 2). The test results clearly show that the largest de-
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crease in the computational effort is obtained for systems 

of equations with removable ill-conditioning (example Bl, 

K. < 1. 0) • In contrast to previous observations (p. 135) , 

the m0 •1-values of the test examples vary as an approximately 

linear function of log(P1 ) of the scaled rather than the 

original coefficient matrix. Except for procedure B, only 

minor differences arise in the performance of the remaining 

scaling transformations. Because of its simplicity, scaling 

procedure A is, therefore, selected as the most suitable 

transformation. If the same scaling procedures are applied 

to the accelerated block overrelaxation method, virtually 

no effect on its convergence can be observed. 

As a result of the numerical tests of this 

chapter it can be concluded that the conjugate gradient al­

gorithm defined by Eq. 7.1 represents the most efficient 

solution procedure. Its performance can be improved by ap­

plying the following scaling transformation to the original 

system of equations 

where 

(D ) . . = 0 for i ":J j s l.J 
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Various other means of improving the performance, such as 

algorithm modifications, starting procedures, and the use 

of double precision arithmetic, were found to be of little 

or no practical value. 
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8. ERROR PREDICTION 

Since iterative and semi-iterative methods yield 

sequences of approximate solution vectors it is necessary 

to define certain criteria for terminating the solution pro-

cess. In this respect iterative methods basically differ 

from direct methods where the problem of predicting the 

error of an approximate solution does not arise in this 

form. The definition of suitable termination and error 

prediction criteria is of great practical importance since 
-

an inadequate termination may either result in unnecessary 

computing time or, even worse, in unsatisfactory numerical 

solutions. The basic problem of error prediction could be 

described as estimating the magnitude of certain error mea-

sures based on numerical values, so-called error predictors, 

which can be easily computed during the course of the solu-

tion process. The properties of various quantities which 

can be used as a basis for either measuring or predicting 

the error of an approximate solution are described in the 

following paragraphs. 

In general, reliable error measures are only ob-

tained from numerical quantities which cannot be computed 

without prior knowledge of the solution. Among them, the 

error vector 

-150-



= u-u c ( 8 .1) 

represents the most natural choice since it gives a direct 

indication of the deviation between the correct and the ap-

proximate solution vector. In order to express its magni-

tude in the form of a scalar quantity, it is common practice 

to use norms of the errors vector, lie 11, rather than the c 

vector itself. During the course of any converging itera-

tion process, the magnitude of the error vector decreases 

and approaches zero as c approaches infinity. However, the 

particular manner in which this error reduction occurs de-

pends on the nature of the solution process and, in the case 

of linear stationary iterations, also on the eigenvalues 

of the iteration matrix (Section 3.2). For iterations 

whose T-matrices have real eigenvalues, a continuous, mono-

tonic decrease can be expected (Fig. 1), whereas cyclic 

oscillations may occur for iterations with complex A. (T)-
. 1 

values (Fig. 3). 

For the numerous iterative methods which can be 

derived from the minimization of error functions (Section 

3.1.2) an alternative form of error measure can be directly 

based on the particular ~-value which is minimized at each 

step of the solution process. The use of error functions 

has the advantage that even for iterations with oscillating 

convergence the corresponding ~-value decreases strictly 
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monotonically and approaches zero as c approaches infinity. 

Among the three error functions defined in Section 3.1.2, 

only ~ 3 can be computed directly, whereas ~l and the most 

commonly used error function ~ 2 remain generally unknown. 

Since error functions represent quadratic quantities, the 

error measure has to be based on their square root so as to 

allow a comparison with vector norms. 

In order to obtain problem-independent error 

indicators it is necessary to transform the above quantities 

into measures of the relative rather than the absolute er­

ror. This is most appropriately done(by expressing their 

magnitude in per cent of those initial values which corre­

spond to zero starting vectors. A different choice of ini­

tial values is less practical since the error measures would 

be affected by the initial guesses u
0

• 

In contrast to error indicators discussed so far, 

error predictors have to be based on numerical quantities 

which can be easily calculated during the course of the so­

lution process. Ideally, such error predictors should pro­

vide relatively close upper bounds for the above error 

measures. In addition, error predictors should decrease 

monotonic~lly since oscillations in their magnitude would 

impair the accuracy and the continuity of the prediction. 

In general, the following two vector quantities can be used 

as basis for the err.or prediction: 
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(1) residual vector 

(2) increment vector 

= f-Ku c = Kec 

From the above expressions it can be seen that the residual 

vector rc is closely related to the error vector ec. How­

ever, the nature of the relationship does not imply that a 

small magnitude of rc necessarily corresponds to small er­

rors in the approximate solution vector. The relative 

magnitude of both vector quantities depends on the eigen­

values of the coefficient matrix and on the specific nature 

of the error vector. Due to the latter effect the ratio of 

the two vector norms llr c 112 and, !lee 112 may vary within a 

range identical to that of the extreme eigenvalues of K 

(Eq. 8.6a). 

The increment vector w is, except for its sign, c 

identical to the difference between the corresponding 

error vectors 

(8.2) 

Large increments, therefore, indicate that the solution 

process has not reached a stage at which it could be ter-

minated. However, small values of we may simply be a sign 

of slow convergence rather than of sufficient error reduc-

tion. 

-153-



Both the residual vector r as well as the c 

increment vector w approach zero during the course of the c 

solution process. For iterations with monotonic linear 

convergence the decrease occurs in a smooth and regular 

form whereas oscillations in the magnitude of the predic-

tion quantities can be observed in case of iterations with 

oscillating convergence. For single-step methods, such as 

overrelaxation, the residual vector is not computed as 

part of the algorithm (Section 3.2.1). However, a closely 

related vector quantity, which exhibits a similar behavior 

as that of rc' is available for these iterations (Eq. 3.37b). 

Aside from the above two vector quantities, it is 

also possible to base the error prediction on the specific 

error function which is minimized at each step of the solu-

tion process. Since the numerical values of q, 1 and q, 2 can­

not be calculated without prior knowledge of the solution 

vector, the applicability of the approach is restricted to 

error function q, 3 • However, for iterations involving a 

minimization of q, 2 it is possible to calculate the cHange 

in the magnitude of the error function by means of the 

following expression 

( 8 0 3) 
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In the solution of elasticity problems, the change in error 

function ¢2 has an additional meaning since, except for a 

constant factor, it corresponds to the change in the total 

potential of the discretized structure (Section 3.1.2). As 

in the case of error measures, predictor quantities of this 

type have to be based on the square root of the ¢-values 

in order to be of the same nature as those derived from 

vector norms. 

Generally, it is difficult to establish a direct 

correlation between the percentagewise reduction of error 

measures and error predictors. Instead of estimating the 

relative error directly, simple numerical criteria for 

terminating the solution process are used in most practical 

applications. The basic aim of these termination proce­

dures is to detect the stage of the solution process at 

which a significant amount of error reduction can no longer 

be expected. The most commonly used procedures consist of 

specifying limiting values for certain norms of the residual 

vector rc or the increment vector we. In some cases, such 

criteria are also applied to the change in the total poten­

tial of the discretized structure (Refs. 27, 28). The 

above procedures have to be considered as inadequate for 

general application since the magnitude of appropriate 

limiting values strongly depends on the particular nature 

of the problem. The adequacy of the results can, therefore, 

-155-



only be judged from experience with previous solutions of 

similar problems. In addition, a premature termination may 

occur not only as a result of oscillations in the magni­

tude of rc and we' but also due to small values of we and 

~¢ 2 caused by slow convergence. Similar deficiencies are 

found for a termination procedure suggested by Ahamed (Ref. 

1) which is based on specifying a limiting value for the 

ratio of two energy-like quantities. If applied to elastic­

ity problems, these quantities correspond to the external 

and internal work of the.structure whereas their ratio is 

identical to the yc-factor of Wilson's acceleration (Section 

4.3.1). 

The different convergence behavior of conjugate 

gradient methods has led to the development of specific 

termination techniques for this group of solution proce­

dures (Refs. 5, 34, 90). One of these methods, suggested 

by Ginsburg (Ref. 34), is based on measuring the effect of 

roundoff errors by calculating the deviation between the 

"true" and the recursive residuals (Section 7.2). Although 

the procedure is suitable for terminating the solution pro­

cess at a time when a significant amount of error reduction 

cannot be achieved anymore, an error prediction at inter­

mediate stages is not possible with this method. 

Aside from termination procedures, various methods 

have also been developed for predicting the absolute error 
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of an approximate solution. Provided a close upper bound 

for the spectral radius of the iteration matrix is known, 

the magnitude of the absolute error can be estimated in a 

relatively simple way (Refs. 25, 63, 81, 84). The procedure 

has the disadvantage that the prediction itself, as well as 

the determination of I~ lls:t' can be successfully carried out 

only for relatively inefficient iterations with monotonic 

linear convergence (Section 3.2). A different approach, 

suggested by Stiefel (Ref. 73) is free of such restrictions, 

although it results in (not necessarily close) lower bounds 

for the length of the error vector. Conservative error 

estimates, which would be of considerably greater practical 

interest, can only be obtained if lower bounds for the mini­

mum eigenvalue of the coefficient·. matrix are known (Appendix 

1). A third prediction procedure suggested by Albrecht (Ref. 

2) allows the calculation of rigorous upper and lower bounds 

for the soiution and·for the error vector without prior 

knowledge of eigenvalues. Unfortunately, the application of 

the method is restricted to certain slowly converging linear 

stationary iterations. In addition, major computational 

problems arise in the determination of suitable starting vec­

tors (Ref. 68) and in the separation of positive and negative 

elements of the iteration matrix. Consequently, all three 

procedures have to be considered as unsuitable for practical 

applications. In any case, the prediction of the absolute 
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error has the disadvantage that the specification of suitable 

limit values depends on the particular nature of the problem. 

However, it would have been possible to modify the above 

procedures so as to allow an estimation of the relative 

error of the approximate solution. 

One of the few methods for directly predicting 

the percentagewise error reduction (Ref. 61) is based on a 

ratio of energy-like quantities, similar to that described 

in context with Ahamed's termination procedure (p. 156). 

The method only provides less useful lower bounds of the 

relative error, which may even,deteriorate into trivial es­

timates less than zero. A more pragmatic approach rests on 

the assumption that the error vector decreases at approxi­

mately the same rate as the prediction quantities, provided 

the error measures as well as the error predictors are non­

dimensionalized in a suitable way. Numerical tests of 

iterative methods with monotonic linear convergence indi­

cate that the procedure allows a comparatively accurate 

prediction of the relative error as long as initial irregu­

larities are properly taken into account. The success in 

using such error predictors results from the fact that 

practically all computable quantities decrease in a mono­

tonic, regular form for this type of iterations. The 

situation is different for iterative methods with oscillat­

ing convergence, where a gross underestimation of the re-
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maining error may occur due to oscillations in the magnitude 

of the prediction quantities. Because of their simple 

nature the same error predictior~ can also be applied to 

solution methods which do not exhibit linear·. convergence. 

In order to investigate various possibilities for 

estimating the relative error of approximate solutions ob-

tained from conjugate gradient Version A, a number of numeri-

cal tests were carried out. The investigation included a 

total of three different error measures E defined by the 

following expressions 

( 8. 4a) 

(8.4b) 

E ( cf>2 ) 1/2 
3 = 100 -

uTf 

T 1/2 

= 100 c::~) ( 8. 4d) 

In the definition of E1 , the quantity (u)k corresponds to 

the element of the solution vector whose absolute value has 

the largest magnitude. Therefore, El is identical to the 

relative error Ec used throughout the preceding numerical 

tests (Section 2~2). The error measure E2 is based on the 

euclidean length of the error vector whereas E3 indicates 

the reduction of error function cp 2 which forms the basis for 

the derivation of conjugate gradient Version A (Section 5.1). 
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From theory it is known that E2 and E3 decrease continu­

ously throughout the solution process (Ref. 38). However, 

a strictly monotonic type of convergence is not guaranteed 

in the case of error measure E1 • For reasons discussed pre­

viously, the denominators of all three error measures cor-

respond to those initial values obtained for zero starting 

vectors u
0 

(p. 152). 

Based on various computable vector quantities of 

the conjugate gradient algorithm, a total of five different 

error predictors were defined for the numerical tests 

llr c 112 
T. 1/2 

lJ!l = 100 = 100 ( rcrc) 
llf 112 fTf 

(8.5a) 

1P2 100 
llv c 112 

·= 100 
c~vc) 1/2 

= I If 112 fTf 
(8.5b) 

[(r~:0)3/2] 
· r Kr 

1JI3 100 c c 
= 

[(fTf)372 ] fTKf 

(8.5c) 

llvcll2 
T 1/2 

1 1 (v v ) 
1JI4 = 100 

llf 112 
= 100 

Yc :T: Yc 
(8.5d) 

llvclll 
~ I <v> ~I 

1 1 . 1 J. 
1Ps 100 100 J.= = I If Ill 

= 
Yc Yc n 

.2; j(f).l 
i=l J. 

(a.se) 

-160-



j 

The error predictor w1 measures the reduction of the 

euclidean length of the residual vector rc whereas w2 

represents a similar quantity applied to the direction vee-

tor vc. Independent of the solution procedure, the follow­

ing relationship between error measure E2 and error predic­

tor wl can be shown to exist 

(8.6a) 

where P represents the ratio of the extreme eigenvalues of 

the coefficient matrix (Appendix 1). In addition, error 

predictors wl and w2 are related by the following inequality 

(8.6b) 

which can be derived from the basic properties of the 

conjugate gradient algorithm (Ref. 38). The error predictor 

w3 is based on the same quantity used by Stiefel (Ref. 73) 

for the prediction of a lower bound of the absolute error 

(p. 157). Since the matrix-vector product Kr is not formed c 

as part of the standard algorithm of conjugate gradient 

Version A, the use of error predictor w3 requires additional 

computational effort or, if a recursive calculation of Kr c 

is used, additional vector storage. For none of these 
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three error predictors it can be guaranteed that their 

magnitude will decrease monotonically during the course of 

the ·solution process (Ref. 38). 

The use of error predictors ~4 and ~ 5 is based 

on certain specific properties of conjugate gradient al­

gorithms whose nature is briefly described -in what follows. 

As mentioned in Section 5.1, the residual vector for conju-

gate gradient Version B can be calculated from vector 

quantities of Version A by using the relationship 

where (8.7) 

Consequently, error function ¢~, which is minimized at each 

step of the Version B algorithm, can be expressed as 

( 8. 8) 

Error predictor ~ 4 , therefore, has the character of a 

monotonically decreasing error measure for Version B of the 

conjugate gradient method. From theory it is known that 
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the euclidean length of the error vector ec for Version A 

is smaller than that of the B-version (Ref. 38). 

(8. 9) 

Since both e~ as well as ~~ could be used as a basis for 

measuring the relative error in case of conjugate gradient 

Version B, it can be expected that error predictor ~4 re­

sults in conservative error estimates for Version A. How-

ever, it is not possible to conclude that ~ 4 represents ~ 

strictly conservative estimate. From the theoretical find-

ings of Ref. 38 it can also be· shown that 

(8.10) 

since 

Error predictor ~S is based on similar considerations as 

those described for ~ 4 . The only disparity arises in the 

use of a different norm of the vector v , for which a c 

strictly monotonic decrease can no longer be guaranteed. 

In order to make the error prediction independent of the 

initial approximations, all predictors are expressed in per 

cent of those initial values obtained for zero starting 

vectors. 
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From the numerical results of Table 26 and Fig. 

12 it can be seen that the error indicators £ 1 and £ 2 pro­

vide nearly identical measures of the error reduction, 

whereas E3 generally decreases at a somewhat lower rate. 

Therefore, the simple error indicator £ 1 , used throughout 

the previous numerical tests, is found to represent an ade­

quate measure of the relative error, at least for conjugate 

. gradient Version A. As predicted by the theory, error 

measures E2 and £ 3 decrease monotonically during the course 

of the solution process, whereas the magnitude of £
1 

may 

undergo minor oscillations in certain cases (Ref. 38). 

The behavior of the error predictors ~l' ~ 2 , and ~ 3 
is characterized by drastic variations in their numerical 

values (Fig. 12). ·The oscillations are particularly strong 

for ill-conditioned problems where the predicted relative 

error may exceed the actual value by several orders of magni­

tude. For well-conditioned systems of equations, however, 

the amplitude of the oscillations is usually smaller. In 

general, the lowest predictions are obtained on the basis 

~3 , whereas the numerical values of ~2 are consistently 

higher than those of the other estimates (Eq. 8.6b). Be­

cause of their strongly oscillatory behavior, all three 

error predictors have to be considered as unsuitable for 

practical applications. A meaningful error prediction on 

the basis of these quantities is only possible during the 
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final stage of the solution process if the ljJ-values assume 

a minimum in their oscillations. Since these minima occur 

in irregular cycle intervals, a continuous measure of the 

error reduction is not possible even at that stage. The 

numerical results also show that the additional computa­

tional effort (or additional vector storage) for predictor 

ljJ3 does not result in significantly better error estimates . 

. Because of the irregular behavior and the limited applica­

bility of these three error predictors, the corresponding 

m0 •1-values are not included in Table 26. 

In contrast to the .previous prediction quantities, 

error estimate. 1JJ 4 decreases monotonically during the course 

of the solution and allows a rather accurate, continuous 

prediction of the relative error (Fig. 13). Minor problems 

arise only during the initial phase of the solution process 

where ljJ 4 decre.ases more rapidly than the corresponding er­

ror measures, thus resulting in non-conservative error 

estimates. However, as soon as any noticeable amount of 

error reduction is achieved, 1JJ 4 assumes the character of a 

conservative error predictor. In a large number of numeri­

cal tests it was observed that the cross-over between the 

error measures E and predictor 1JJ 4 occurs for relative errors 

greater than 10 per cent. 
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In comparison to ~ 4 , error predictor ~5 provides 

slightly more accurate estimates during the initial phase 

of the solution process. However, the numerical values of 

~5 no longer decrease in a strictly monotonic form, although 

the magnitude of their oscillations is comparatively small. 

As illustrated by Fig. 13, both quantities allow a rather 

accurate, conservative error prediction, at least within 

the practical range of £-values. From the nearly identical 

results of Table 26 it can be concluded that both predic­

tors are equally suitable. Nevertheless, the use of error 

estimate ~5 is preferred since non-conservative predictions 

are less likely to occur than 'in case of ~ 4 • 
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9. EFFECTS ON THE SOLUTION PROCESS 

The primary purpose of this final part of the 

dissertation is to investigate various factors influencing A 

the convergence behavior and the efficiency of the conjugate 

gradient method. Particular attention is paid to those ef-

fects which have not been studied in the comparative numeri-

cal tests of Chapters 5 and 7. In addition, certain specif-

ic problems arising in the practical application of the con­

jugate gradient method are discussed. 

(1) Nodal Point Enumeration 

According to the criteria defined in Section 3.2.1, 

the conjugate gradient algorithm belongs to the group of 

total-step iterations. Theoretically, its convergence be­

havior is not affected by the nodal point enumeration or, 

more precisely, by the ordering of the equations (p. 34). 

However, the sequence in which the numerical operations are 

carried out may influence the amount of roundoff error ac­

cumulation (Ref. 64). Due to these roundoff errors it is 

possible that the convergenc~ of the solution process may be 

indirectly affected by the numbering sequence. 
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In order to study this effect, numerical tests 

were carried out with example Bl using a total of four dif-

ferent enumeration schemes: 

(a) Original numbering along horizontal rows of nodal 

points, 

' (b) "Best" numbering along vertical columns of nodal 

points, re·sulting in a minimum band width of the 

coefficient matrix, 

(c) Random numbering, and 

(d) "Worst" numbering in the sense that 'the sum of 

the (absolute) differences between the numbers of 

adjacent nodal points is a maximum or at least 

close to a maximum. 

The numerical results indicate that the m0 •1-values of the 

solution process are practically unaffected by the enumera-

tion sequence. This observation can even be made for ill-. 

conditioned problems where roundoff errors prevent a con-

vergence within n iteration cycles. The effect of the nodal 

point enumeration on the convergence of the conjugate gra-

dient method can, therefore, be neglected for practical 

purposes. As a result, the generation of input data for a 

finite element analysis is considerably simplified since no 

attention has to be paid to any form of optimum enumeration. 

In this respect, the conjugate gradient method compares 

favorably with direGt solution procedures where the band 
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width of the coefficient matrix (and, therefore, t4e nodal 

point enumeration) has a dominant effect on the storage re-

quirements and the execution time. 

(2) Initial Guesses 

As described in Chapter 2, all previous numerical 

tests were carried out with zero initial guesses in order to 

allow an unbiased comparison of the efficiency of various 

solution procedures. The purpose of this section is to in­

ves·tigate the specific effects of starting vectors on the 

convergence behavior and the performance of the conjugate 

gradient method. According to Ref. 38 the most suitable 

initial approximations are those for which the initial 

residual vector r
0 

is similar to the eigenvector correspond­

ing to the smallest eigenvalue of the coefficient matrix. 

Since the determination of such initial approximations is 

rather difficult under practical conditions, various alter-

natives were investigated in numerical tests. In particu-

lar, the following initial guesses u , most of them express­o 
ed as scalar multiples of the solution vector u, were in-

eluded 

(O) u 
0 

= 0 

(1) u = 0.10 u 
0 

(2) u = 0.50 u 
0 

(3) uo = 0.90 u 

(4) uo = 0.95 u 
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(5) uo = 10.0 u 
(6) u 

0 
= -1.0 u 

(7) u 
0 

= linear variation 

(8) u 
0 

= random variation 

For the cantilever problem of example Bl, a seventh type of 

initial approximation was defined by assuming a linear vari-

ation of the vertical displacements between zero at the sup-

port and (u)max at the cantilever tip. In addition, an 

eighth and last starting vector was obtained by choosing 

random values of the vertical displacements, scaled to a 

range between zero and (u) • In both cases, the corre-max 

sponding horizontal displacements were assumed to be zero. 

The numerical tests with these initial approxima-

tions ~ndicate that their effect is difficult to asses be-

cause its magnitude is influenced not only by the condition 

of the problem, but also by the required accuracy of the so-

lution. However, for ill-conditioned problems, where the 

influence of the starting vectors is more pronounced, the 

following general trends can be observed. Initial approxi-

mations of type 1 through 4 apparently have no significant 

beneficial or detrimental effect in comparison to zero ini-

tial guesses (Table 27) • Although the starting vector 4 

differs from the correct solution only by 5 per cent of its 

magnitude, a noticeable improvement in the convergence can-

·not be observed except during the initial phase of the so-
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lution process. The reverse effect occurs for starting 

vectors 5 and 6, where u differs from the correct solution 
0 

by a full order of magnitude or by its sign respectively. 

In·both cases an initial delay in the convergence occurs, 

whereas the differences in comparison to zero initial 

guesses nearly vanish in the later phase of the solution 

process. Starting vector 7, which simulates initial guesses 

as they could be realistically estimated under practical 

conditions, leads to a comparatively rapid initial decrease 

of the relative error. However, in the final stage of the 

solution, the error reduction occurs at a lower rate than 

that for u
0 

= 0. As illustrated by the results of Table 

27, randomly assigned initial approximations have a detri-

mental effect on the convergence and generally result in the 

highest m0 •1-values. 

From the numerical tests ·it can be concluded that 

the choice of initial guesses has a comparatively small ef-

feet on the performance of the conjugate gradient method, 

especially for well-conditioned systems of equations. Under 

normal conditions, the difficulties in estimating and as-

signing suitable approximations are likely to outweigh po-

tential savings in computational effort. Even if close ap-

proximations of the solution vector are available, as, for 

instance, in a step-wise analysis of nonlinear problems, a 

significant decrease in the required number of iteration 
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cycles cannot be expected. The results of the numerical 

tests, therefore, concur with previous findings on the 

suitability of starting procedures described in Section 7.2. 

(3) Load Vector 

The convergence behavior of iterative and semi­

iterative solution methods is primarily affected by the 

specific properties of the coefficient matrix K. Among 

various other factors, a dominant role is usually played by 

· the extreme eigenvalues of K and their corresponding eigen­

vectors. Under certain conditions, however, the convergence 

behavior may also depend on the load vector f or, if non­

zero initial guesses are chosen, on the initial residual 

vector r
0

• In the numerical tests of the first part of the 

dissertation, this influence can be assessed by comparing 

the results for test examples AS and A6 which employ identi­

cal structural discretizations but differ in their loading 

conditions (Appendix 2). Virtually all tested solution pro­

cedures show some form of disparity in the rates of conver­

gence for these two examples. The consistently faster con­

vergence in the case of example A6 can be explained by the 

orthogonality between the load vector f and the eigenvectors 

corresponding to several of the highest and lowest eigen­

values of the coefficient matrix. Therefore, the "effec­

tive" P-condition number of example A6 is smaller than the 

actual ratio of the. extreme eigenvalues (Appendix 2). Due 
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to specific properties of the test example, the above 

orthogonality conditions can be interpreted as a result of 

applying a symmetric ~oad to a symmetric structural configu-

ration. 

In order to illustrate the effect of the load 

vector f in additional numerical tests, the structural dis-

.cretization of example Bl is subjected to a uniformly dis-

tributed tip load applied under an angle a against the hori-

zontal axis. The numerical results indicate that for a = 0° 

(symmetric loading) as well as for a = 90° (anti-symmetric 

loading) the solution process converges noticeably faster 
' 

than under normal conditions, the improvement being the 

greatest for the symmetric loading case (Fig. 14). Excep~ 

for initial irregularities, virtually no differences in the 

rates of convergence can be observed for intermediate values 

of the load angle a. The corresponding m0 •1-values are 

practically identical to those obtained for the original 

loading condition of example Bl. 

It can, therefore, be concluded that the load 

vector may cause a significant change in the convergence be-

havior of the conjugate gradient method if certain orthog-

onality conditions exist between the vector f and the 

eigenvalues of the coefficient matrix. For symmetric struc­

tures, deviations from the normal behavior will occur if the 
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load vector corresponds to a strictly symmetric or anti­

symmetric loading case. 

(4) Finite Element Type 

Throughout this investigation, numerical tests 

were carried out with systems of equations arising in the 

finite element analysis of plane stress problems using so­

called CST-elements (Section 2.1). Supplementary tests in­

dicate that the convergence behavior of the solution proce­

dures remains essentially unchanged if the structural con­

figurations of example Al through A6 are used as discretiza­

tions of axi-symmetric problems. The similarity of the re­

sults can be explained by the fact that the general proper­

ties of finite element coefficient matrices are not affected 

by the element type (Appendix·!). However, certain numeri­

cal problems may arise with elements whose derivation in­

volves approximations on the basis of St.-Venant's principle 

(beam, plate, and shell elements) . Since the generalized 

load and displacement vectors of these elements contain 

several types of physical quantities, the numerical values 

of the stiffness components may differ considerably. The 

resulting systems of equations are frequently ill-condition­

ed because large deviations in the diagonal elements of the 

coefficient matrices correspond to high P-condition numbers. 

Numerical tests described in Ref. 27 indicate, however, that 
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the existing form of ill-conditioning is similar to the 

removable type discussed in context with example Bl (Appen­

dix 2). Therefore, simple diagonal scaling transformations 

described in Section 7.2 can be successfully used for im­

proving the condition of the coefficient matrices. 

(5) Singular Coefficient Matrices 

In general, systems of linear equations arising 

from finite element analysis are positive definite provided 

the numerical problem is properly formulated (Appendix 1) . 

Under certain conditions, however, it is possible that the 

coefficient matrices become singular or, more specifically, 

positive semi-definite. Situations of this type may arise, 

for instance, in the step-wise analysis of nonlinear elas­

ticity problems or in cases where the essential boundary 

conditions of a structural problem are not specified. The 

investigation of singular systems of equations was restrict­

ed to cases where the structure as a whole or parts of it 

may undergo rigid body motions. A solution for this type 

of problems exists only if the load vector f is in self­

equilibrium or if the external loads are transferred to the 

supports without causing unrestrained movements of the 

structure. As shown in Ref. 36 the physical interpretation 

of static equilibrium corresponds to the following orthog­

onality condition 
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where 

fT X= 0 

KX = 0 

( 9 .1) 

x= eigenvectors corresponding 

to zero eigenvalues of K 

Due to the presence of rigid body motions, the elements of 

the solution vector may be of arbitary magnitude whereas 

the deflected s?ape of the structure as well as its stresses 

are unique. 

Numerical tests with various structural problems 

of this type indicate that the conjugate gradient method can 

be successfully applied to the solution of singular systems 

of equations. It is necessary, however, to terminate the 

solution process as soon as a significant amount of error 

reduction can no longer be achieved. Under no conditions 

should the process be continued beyond a stage at which the 

denominator of the ac-coefficients (Eq. 7.ld) becomes less 

than or equal to zero. Otherwise, the accuracy of the nu­

merical results deteriorates due to a rapid growth of round­

off errors. In cases where the load vector·f does not sat~ 

isfy Eq. 9.1, it is not possible to obtain meaningful re­

sults since the solution process diverges. 
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(6) Roundoff Errors 

The effect of roundoff errors on the convergence 

behavior of the conjugate gradient method has been investi­

gated in numerical tests described in Chapter 7. The pur­

pose of the additional tests of this section is to illus­

trate their effect on the accuracy of the solution vector. 

At any stage of an iterative or semi-iterative 

solution process, the total error of an approximate solution 

uc is composed of "iteration" and roundoff errors. Itera­

tion errors represent that part of the total deviation be­

tween uc and u which is reduc~d at each step of the solution 

procedure. Roundoff errors, on the other hand, are caused 

by the fact that the numerical calculations are carried out 

with a finite number of binary digits. Their magnitude 

gradually increases during the course of the solution where­

as errors of the former type show the opposite behavior. 

In order to separate the effect of roundoff 

errors, the iteration process has to be continued until the 

solution procedure no longer allows a reduction of the 

iteration error. Generally it is difficult to determine 

this stage of the iteration process since changes in the 

last digits of the solution vector may continue for a large 

number of iteration cycles, especially for ill-conditioned 

problems. In actual numerical tests the criteria for ter- · 
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minating the solution process have to be chosen with great 

care since the magnitude of the remaining errors is strongly 

influenced by this choice. 

In order to investigate the effect of roundoff 

errors on the accuracy of the solution, a number of numeri­

cal tests were carried out using the conjugate gradient 

method as well as a direct solution procedure (Cholesky de­

composition). The basic aim of these tests is to provide a 

qualitative assessment of the effect rather than a detailed 

study of various influence factors. The numerical tests 

were performed with examples ~1 and B2 which may assume any 

arbitrary degree of ill-conditioning if appropriate values 

of the parameter K are specified (Appendix 2) • For both 

solution procedures the diagonal scaling transformation de­

fined by Eq. 7.7 is applied to the original system of equa­

tions. 

The test results essentially show that the 

conjugate gradient algorithm is capable of providing solu­

tions having the same accuracy as those obtained by 

Cholesky's method. In particular, the K-values for which a 

meaningful solution of the test examples can no longer be 

obtained because of roundoff errors were found to be identi­

cal for both methods. The numerical results also indicate 

that the attainable accuracy of the solution procedures 
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closely agrees with Rosanoff's relationship for estimating 

the error of the solution vector (Refs. 64,65,66) 

d = d.-log(P) r 1 
(9.2) 

In the above expression, d. and d represent the initial and 
1 r 

the remaining number of correct decimal digits whereas P 

corresponds to the condition number of the coefficient rna-

trix (Appendix .1) . 

Supplementary tests of the conjugate gradient 

method show that the effect of roundoff errors can be re-

duced by comparatively simple means such as restarting the 

solution process or by using higher precision arithmetic for 

the accumulation of inner products. On the other hand, the 

magnitude of the errors is increased if the conjugate gra-

dient algorithm is used without prior scaling transformation. 

A detailed study of these and various other effects was, 

however, not carried out within the scope of this disserta-

tion. 

(7) Large Systems of Equations 

In order to keep the total amount of computations 

within reasonable limits, the numerical tests of this inves-

tigation were carried out with relatively small, although 

not necessarily well-conditioned test.examples. It is the 
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purpose of this section to investigate the use of the 

conjugate gradient method for the solution of larger systems 

of equations as they arise in the practical application of 

the finite element method. Particular attention is paid to 

the effect of increasingly finer discretizations of a struc-

tural problem on the convergence behavior and the efficiency 

of the conjugate gradient algorithm. 

The total computational effort for the solution of 

a system of equations, z, is proportional to the size of the 

system, n, multiplied by the required number of iteration 

cycles, m. 

Z - n m (9.3) 

Since in the absence of roundoff errors the conjugate 

gradient method constitutes ann-step algorithm (Chapter 5), 

the theoretical limit for m coincides with the total number 

of equations. In order to describe the effect of succes-

sively finer discretizations of a basic structural problem, 

designated by the subscript 0, it is necessary to express 

the parameters z, n, and m as functions of g, the ratio of 

the corresponding mesh spacings h 

h 
g = 0 

h (9.4) 
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For two-dimensional elasticity problems which can be 

analyzed by means of CST-type elements, these relationships 

assume the following form 

2 ( 9. Sa) n ~ g n 
0 

< n 2 (9. Sb) m ~ g n 
0 

z 4 
zo (9. Sc) 1111 g 

The last expression, however, is only valid if the computer 

implementation of the solution'procedure, in particular its 

storage manipulations, remain independent of the actual size 

of the system. Otherwise, discontinuities will occur in the 

proportionality factors of Eq. 9.5c. The same growth rate 

4 of the total computational effort, g , incidentally applies 

to direct solution methods (Ref. 22). 

In order to investigate the discretization effect 

numerical tests were carried out with two examples whose 

basic structural configurations, C
0 

and D
0

, are described in 

Appendix 2. The successively finer discretizations were 

chosen in such a way that the mesh spacing ratio g corre­

sponds to integer powers of 2 

(9. 6) 
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The size of the resulting systems of equations, the m0 •1-

values of the conjugate gradient method as well as the total 

computational effort, measured by the corresponding central 

processor time (in seconds), is given in Table 28. There­

sults clearly indicate that the required number of iteration 

cycles increases at a lower rate than its theoretical limit 

n (Fig. 15). This observation is surprising in so far as it 

is known that a more accurate discretization of a structural 

problem has a detrimental effect on the condition of the 

corresponding stiffness matrix (Refs~ 29,30,49). Since the 

parameters m and n increase at different rates, it is not 

possible to express the value of m as a fixed percentage of 

the size of the system (cf. Ref. 90). However, it cancer­

tainly be concluded that the relationship 

m = n (9.7) 

represents an unrealistically pessimistic·estimate of the 

required number of iteration cycles. 

In order to investigate the rate of increase of 

the parameters n, m, and Z more closely, the following 

growth ratios for two consecutive discretizations are de­

fined 
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( 9. 8) 

Based on Eq. 9.5 the coefficients ak and Sk should assume a 

value of 4, whereas the magnitude of yk should approach 16 

for sufficiently high values of k. The numerical tests indi­

cate, however, that sk approaches 2 under the given condi­

tions whereas the coefficient yk assumes values in the 

neighborhood of 8 (Table 29). By generalizing these find­

ings to arbitrary mesh spacing ratios, the theoretical growth 

rates of Eq. 9.5 can be replaced by the following experimen­

tally observed rates 

2 n ::: g n 
0 

m ::: g m (9.9) 
0 

z ::: g3 zo 

As indicated by the last expression, the computational 

effort of the conjugate gradient method increases at a lower 

rate than that of direct solution procedures (Eq. 9.5c). 

According to Refs. 22 and 28, even greater differences in 

the growth rates can be expected for three-dimensional elas­

ticity problems although the behavior of the conjugate gra­

dient method is affected not only by the number of dimen-
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sions but also by the order of the governing differential 

equation. 
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10. SUMMARY AND CONCLUSIONS 

The application of iterative and semi-iterative 

methods for the solution of systems of linear equations with 

positive definite coefficient matrices is investigated in 

this dissertation. The study concentrates on systems of 

equations arising in the "assumed displacement" approach of 

the finite element method. However, the findings are equal­

ly applicable to other types of equations provided the coef­

ficient matrices _have essentially the same properties. The 

primary objective of the investigation is to determine the 

most suitable of those solution procedures in which the 

storage advantages of iterative methods can be exploited. 

In the first part of the dissertation a suryey 

and classification of iterative, semi-iterative, and ac­

celeration algorithms is presented. The discussion includes 

the computational details of the individual methods, their 

specific properties as.well as possible forms of their deri­

vation. With most of the solution procedures numerical 

tests are carried out in order to investigate their conver­

gence behavior and to allow a comparison of thei_r perfor­

mance. Various conclusions drawn from the results of the 

numerical study are summarized in Chapter 6. 
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Three of the most promising solution methods are 

subjected to additional tests in the second par~ of the in­

vest.igation. The numerical tests with larger and more ill­

conditioned systems of equations indicate that the follow-

ing version of the conjugate gradient method represents the 

most efficient solution procedure 

uc+l = u +ct v c c c 

rc+l = r -a Kv (10 .la) c c c 

vc+l = r +l+l3 v c c c 

T r r 
where c c 

etc = T 
VCKVC 

T 

13c = 
rc+lrc+l 

(lO.lb) 
rTr 

c c 

Yc = 1+13 y c-1 c-1 

vo = ro = f-Ku 
0 

y = 
0 

1 

In comparison to various iterative methods, the conjugate 

gradient algorithm has the advantage of not requiring the 

specification of acceleration.parameters. A numerical in-

vestigation of several alternative forms of the above solu-
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tion procedure shows that algorithm modifications have no 

beneficial effect on the performance. Similar conclusions 

can be drawn regarding the use of so-called "starting pro-

cedures" for generating suitable initial approximations u
0

• 

On the other hand, a decrease in the required number of 

iteration cycles is possible if the solution process is 

carried out in double precision. However, the reduction of 

the computational effort is likely to be off-set by the 

longer execution time of double precision arithmetic. The 

numerical investigation shows that diagonal scaling trans-

formations represent the only effective means of improving 

the performance of the conjugate gradient algorithm. The 

simplest of these procedures transforms the original system 

of equations 

K u = f 

into the following form 

where 

K u = f s s 

(D-1 K D~ 1 ) (Dsu) = (D-1 
s s 

(D ) .. = J (K) .. s 11 11 

(D ) .. · = 0 for i;-!j s 1] 
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f) 

(10.2b) 



In all numerical tests it was found that the above scaling 

transformation has a beneficial effect on the performance, 

although the magnitude of the improvement depends on the 

nature of the coefficient matrix. 

Various problems connected with the termination 

of iterative solution processes and the prediction of the 

relative error of approximate solutions are discussed in 

Chapter 8 of the dissertation. For the conjugate gradient 

method a new procedure is proposed which allows a compara-

tively accurate, conservative estimation of the relative 

error. Based on quantities c<;>ntained in Eq. 10.1, the sug­

gested error predictor can be ~xpressed as 

n 
E I (v)C::I 

1jJ = 100 1 i=l .l. 

Yc n 
L I (f) . I 

. 1 ]. J.= 

( 10. 3) ' 

In Chapter 9, various effects on the convergence 

behavior and the efficiency of the conjugate gradient method 

are examined. Numerical tests indicate that the ordering 

of the_equations and, therefore, the nodal point enumeration 

have practically no effect on the conv~rgence. Similarly, 

the choice of initial guesses u
0 

influences the required 

number of iteration cycles only to a limited extent. Under 

certain conditions, however, the convergenc~ behavior of the 
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solution procedure may be affected by the loading condition 

of the structural system. Test results also show that the 

conjugate gradient algorithm can be applied to the solution 

of certain singular systems of equations which arise, for · 

instance, if the essential boundary conditions of a struc­

tural problem are not specified. 

A numerical study of the effect of roundoff errors · 

on the solution of ill-conditioned equations indicates that 

the attainable accuracy of the conjugate gradient method is 

comparable to that of direct solution procedures. Rela­

tively large systems arising from successively finer dis­

cretizations of structural problems are investigated in the 

final section. The results show that the required computa­

tional effort increases at a comparatively low rate and 

that the conjugate gradient method can be successfully used 

for solving large systems of linear equations. 
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11. TABLES 
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I. Group Designation s T Basic 
No. .of .Group Algorithm 

I Successive I I-K uc+rc Approximation uc+l = 

II Jacobi -1 I-D-lK -1 D uc+l = u +D r c c 

III de la Garza D-lK I-Di
1

KK 
-1 

uc+l = uc+D1 Krc 1 

IV Kaczmarz KD-l I-Kni
1

K 
-1 

uc+l = uc+KD1 rc 1 

v Block Jacobi -1 I-D-lK -1 
02 uc+l = uc+D2 rc 2 

Table 1 

Linear Stationary Iterations - Basic Groups 

Unaccelerated Accelerated 
Iteration Type Versions Versions 

(w = 1.0) (w "t- 1.0) 

Total Step A D 
Basic Iterations Algorithm 

Seidel B E 
Single Process 

Step 
Iterations Aitken c F Process 

Table 2 

Designation of Algorithm Versions 
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I 
I-' 
\0 
N 
I 

Group 
No. 

I 

II 

III 

IV 

v 

Version A 

I 
Successive 

Approximation 

D-1 
Jacobi 

D-lK 
1 

de la Garza 

-1 
KDl 

D-1 
2 

Block Jacobi 

Version B 

(I+L)-l 

(D+L)-l 
Gauss-Seidel 

(Dl+Ll)-~ 

K(D1 +L1) -1 

Kaczmarz 

(D2+L2) -1 

Block Gauss-
Seidel 

S-Matrices 

Version C Version D Version E Version F 

T 
w(I-twL)-1 w(I-twL)-lT(2I-wD)(I-twL)-l (I+L)-l (2I-D)(I+L)-l wi 

(D+L)-lTD(D+L)-l wD -1 w(D-twL) -1 w(2-w)(D-twL)-lTD(D-twL)-l 
Aitken Extrapolated (Point-) Over- Extrapolated 

Jacobi relaxation Aitken 

-1T -1 
(Dl+Ll) Dl(Dl+Ll) K wDJ.~ -1 w(D1-twL1) K -1T -1 w(2-w)(D1-twL1) D1(D1+wL1) K 

-lT -1 
K(Dl+Ll) Dl(Dl+Ll) -i wKD1 wK(D1+wL1) -1 -1T -1 

w(2-w)K(D1-twL1) D1(D1+wL1) 
Cimmino 

-lT -1 
(D2+L2) D2(D2+L2) 

-1 
wD2 . 

. -1 
w(D2-twL2) 

-lT -1 w(2-w)(D2-twL2) D2(D2-twL2 ) 
Block Aitken Extrapolated Block Over- Extrapolated 

Block Jacobi relaxation Block Aitken 

Table 3 

Linear Stationary Iterations - S-Matrices 



Group Designation · Iterati.on Matrices T. 

No. of Group Version D Version E Version F 

-

Successive -1 -1T - - -1 -

I Approximation I-wK I-w(I+wL) K I-w(I+wL) (2I-wD) (I+wL) K 

-1 -1 T 
Jacobi -1 -1 II I-wD K I-w(D+wL) K I-w (2-w) (D+wL) D (D+wL) K 

I-wDi~K -1 T 
de la Garza -1 -1 

III I-w(D1-twL1 ) KK I-w(2-w) (D1+wL1 ) D1 (o1+wL1 ) KK 

-1 -1 T 
I -1 -1 

I-' IV Kaczmarz I-wKDl K I-wK(D1+wL1 ) K I-w(2-w)K(D1+wL1 } D1 (o1+wL1 ) K 
\0 
w 
I 

-1 -1 T -1 -1 
v Block Jacobi I-wD2 K I-w(D2+wL2 ) K I-w(2-w) (D2+wL2 ) o 2 (o2+wL 2 ) K 

Table 4 

Linear Stationary Iterations - Iteration Matrices 



w 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

.W Example Al .Example A4. Example A6 

0.1 (17,000) (140,000) (3,750) 
0.2 (12,000) (82,000) (2,400) 
0.3 (9,800) (59,500) (1,800) 
0.4 (8,350) (47,500) (1,400) 
0.5 (7,300) (39,500) (1,150) 
0.6 (6,400) (34,500) (990) 
0.7 (5,700) (30,500) (855) 
0.8 (5,100) (27,500) (750) 
0.9 (4,600) (25,000) (670) 
1.0 (4,150) Div. Div. 

Table 5 

m0 .1-Values·for Block Jacobi Version D 
(Extrapolated Block Jacobi Iteration) 

· · Example Al Example A4 Example A6 

Jacobi Block Jacobi Block Jacobi Block 
Version Jacobi Version Jacobi Version Jacobi 

F Version F Version F Version 
.F F F 

(1,200) (1,200) (9,700) (9,700) (185) (185) 
(1,050) (1,050) (9,600) (9,550) (170) (165) 

(905) (90 5) (9,800) (9,700) (155) (150) 
(820) (820) (10,500) (10,000) (150) (140) 
(765) (765) (11,500) (11,000) (150) (140) 
(755) (755) (13,000) (13,000) (165) (150) 
(805) ( 805) (16,000) (15,500) (190) (170) 
( 955) (955) (20,500) (19,500) (240) (215) 

(1,300) (1,300) (28,500) (27,500) (355) (310) 
(2,450) (2,450) (51,000) (48,500) (675) (595) 

Div. Div. Div. Div. Div. Div. 

Table 6 

m0 1-values for Jacobi and Block Jacobi Versions F . 
(Extrapolated Aitken and Block Aitken Iteration) 
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I 
...... 
1.0 
U1 
I 

w 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 

1. 86 
1. 87 
1.88 
1.89 
1. 90 
1. 91 
1.92 
1.93 
. 1 .. 9.4 

Example Al E.xample A4. Example 

Jacobi Block Jacobi Block Jacobi 
Version Jacobi Version Jacobi Version 

E Version w E Version w E 
E E 

(2,100) (2,100) 1.0 (11,000) (11,500) 1.0 292 
(1,700) (1,700 1.1 (9,300) (9,600 1.1 238 
(1,400) (1,400) 1.2 (7,750) (8,000) 1.2 194 
(1,150) (1,150) 1.3 (6,350) (6,600) 1.3 156 

. (900) (900) 1.4 (5,100) (5,300) 1.4 122 
(700) (700) 1.5 (4,000) (4,150) 1.5 94 
(520) (520) 1.6 (3,000) (3,100) 1.6 67 
(365) (365) 1.7 (2,100) (2,200) 1.7 41 
218 218 1.8 (1,250) (1,350) 1.8 33 

59 59 1.9 470 592 1.9 62 
Div. Div. 2.0 Div. Div. 2.0 Div. 

134 134 1.88 (635) (735) 1. 71 38 
120 120 1.89 (550) ( 660) 1.72 35 
104 104 1.90 470 592 1.73 31 

84 84 1.91 340 512 1.74 27 
59 59 1.92 380 430 1.75 23 
76 76 1.93 345 340 1.76 29 
85 85 1.94 445 200 1.77 29 
90 90 1.95 548 250 1.78 28 

.112 . 112 1.9.6 . 660. .312. 1.79 27 

Table 7 

m
0 1 -va1ues for Jacobi and Block Jacobi Versions E 

• (Overrelaxation and Block Overre1axation) 

A6 

Block 
Jacobi 
Version 

E 

294 
240 
194 
156 
124 

94 
67 
41 
34 
63 

Div. 

38 
34 
31 
26 
21 
30 
30 
29 
28 



w 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

.w' Example Al E.xample A4 Example A6 

1.0 (9,200) (57,500) (2,050) 
1.1 (8,500) (53,000) (1,850) 
1.2 (7,850) (49,500) (1,700) 
1.3 (7,300) (46,000) (1,600) 
1.4 (6,850) (43,500) (1,500) 
1.5 (6,400) (41,000) (1,400) 
1.6 (6,000) (39,000) (1, 300) 
1.7 (5,700) (37,000) (1,200) 
1.8 (5,350) (35,000) (1,150) 
1.9 (5,100) (33,500) (1,100) 
.2.0 ... (4' 850) (32,000) (1,050) 

Table 8 

m0 • 1-Values for Successive Approximation Version D 

Example Al Example A4 Example A6 

De la De la De la 
Garza Kaczmarz -- Garza Kaczmarz Garza 

Version Version Version Version .Version 
D D D D D 

(105,000) (105,000) (2,750,000) (2,700,000) (39,000) 
(88,000) (88,500) (2,200,000) (2,150,000) (32,500) 
(79,500) (80,000) (1,800,000) (1,750,000) (29,500) 
(73,500) (74,000) (1,550,000) (1,500,000) (27,500) 
(69,500) (69,500) (1,400,000) (1,350,000) (25, 500) 
(66,000) (66,500) Div. Div. Div. 

Div •. Div •. Div.- Div. Div. 

Table 9. 

m 
1
-values for de la Garza and Kaczmarz Versions D o. 
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Kaczmarz 
Version 

D 

(36,500) 
(30,500) 
(27,500) 
(26,000) 
(24,500) 

Div. 
Div. 



I 
....... 
1.0 
-...] 

I 

D.er.iv.ation 

No. Designation Computational Form Error Direc-
Func- bion 
tion Ve.c.tor. 

T 
Steepest r .r 

1 uc+l u +y r c c 
cp2 = Yc = r Descent c c c . T c r Kr c c 

T 

2 Krasnoselskii u +y r 
rc Krc 

cp3 r uc+l = Yc = c c c r TKKr c 
G c 

T r c rc 
3 Householder uc+l = u +y Kr Yc = cpl Krc c -c c T r KKr c c 

4 Cauchy uc+l u +y Kr 
rcTKKrc 

cp3 Krc = Yc = c c c r TKKKKr 
c c 

Gastinel-
r Tt 

5 u +y t c c 
cp2 t uc+l = Yc = Householder c c c t TKt c 

c c 

r Tt 
6 Gastinel u +y Kt c c 

cpl Kt uc+l = Yc = c c c t TKKt c 
c .c. 

Table 10 Computational Forms of Basic Nonlinear Stationary Iterations 



.Me.tho.d Example Al Example A4. E.xample A6 

Steepest (4,850) (34,500) 1,000 Descent 

Krasnoselskii (4,850) (33,000) 990 

Householder (255,000) (6,850,000) (120,000) 

Cauchy (255,000) (6,600,000) (120,000) 

Gastinel-
Hous.eholder (2,900) (97,000) (1,900) 

Table 11 

m0 _1-values for Basic Nonlinear Stationary Iterations 

.W. 

1.00 

0.95 

0.90 

0.85 

0.80 

0.70 

0.60 

0 .so 

Example Al Example A4 Example 

(4,850) (34,500) 1,000 

268 1,320 132 

236 995 104 

332 870 152 

436 800 116 

400 --- 148 

532 --- 184 

504 --- 180 

Table 12 

m
0 1-Values for Almost Optimum 

• Steepest Descent Method 
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I 
1--' 
\0 
\0 
I 

q 

5 

10 

20 

40 

100 

00 

fiopt 
F= c 

0 

Example 

bK = A max(K) 

(4,150) 

(2,400) 

(1,300) 

(665) 

196 

--

114 

Al Example A4 Example A6 

bK = II KIll b = A max(K) bK = II KIll Amax (K) = II KIll bK = bK K . 

(4,650) (28,000) (29,000) ( 890) (1,300) 

(2,700) (17,000) (18,000) (515) (760) 

(1,450) (9,500) (9,900) (270) (405) 

(745) (4,950) (5,200) 118 192 

256 (2,000) (2,050) 136 --

-- -- -- -- --

122 308 312 54 64 

· Table 13 

m0 . 1-Values for Lanczos' Method 



Example Al Example A4 Example A6 

w. mO.l w mO.l w mO.l 

0.1 (1,750) 0.1 (10,000) 0.1 240 
0.2 (1,400) 0.2 (8,300) 0.2 194 
0.3 (1,150) 0 .• 3 (6,700) 0.3 154 
0.4 (900) 0.4 (5,350) 0.4 120 
0.5 (695) 0.5 (4,150) 0.5 90 
0.6 (515) 0.6 (3,100) 0.6 60 
0.7 (355) 0.7 (2,200) 0.7 40 
0.8 200 0.8 (1,350) 0.8 59 
0.9 128 0.9 (585) 0.9 125 
1.0 . Div. 1.0 Div. 1.0 Div • 

0.83 154 0.91 (505) 0.65 43 
0.84 136 0.92 432 0.66 38 
0.85 114 0.93 342 0.67 33 
0.86 86 0.94 208 0.68 38 
0.87 108 0.95 248 0.69 40 
0.88 104 0.96 308 0.70 40 
0.89 122 0.97 456 0.71 39 

Table 14 

m0 1-Values for Faddeev I Acceleration 
• Applied to Block Gauss-Seidel 
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No. Designation 

1 Wilson 

2 Forsythe 

3 Aitken 

4 Ishibashi 

s Dyer I 

6 Milne I 

Modified 7 Aitken 

9 Rashid 

10 Dyer II 

11 Milne II 

Computational Form 

uq ,. YL'i.. 
fT'i.. 

YL '"ui:~ 

T· 

= 
rL('i..-'i..-1!) 

uq = 'i..+vLC'i..-'i..-p> YL 
c'i.. -'i.._p>'i'xc'i.. -'i..-p> 

L ~ L L-p] (u)i = (u)i-YiL (u)i-(u) 1 

(u)~-(u)~-p 
YiL = (u)~-2(u)Ltp+(u)Lt2p 

1 = l. .. n 

L L-p (u)lc.-(u) k 
uq = ~-yL('i..-'i_.-p) YL .= (u)~-2(u)Lkp+(u)Lk2p 

(u) = arbitarily selected element 
k of u 

uq = 'i..-yL('i..-'i..-p) 
- ('i..-'i..-2)T(~-'i..-(!) 

YL - ('i..-2'i..-p~-2p) ('i.,-'i_.-p) 

T( - ) 
<'i.. -'i..-2' 'i..-1! 'i..-2(! 

uq = 'i_.-vL<'i..-'i..-p) y = T > 
L ('i..-2'i..-p+'i.,_ 2p) ('i..-p-'i..-2p 

uq = 'i..-yL('i..-'i..-p) 
('i..-'i_.-2)T('i..-2'i..-2~-2(!) 

- T 
YL - {'i.. -2'i..-p +'i..-2p) ('i., -2'i..-p +'i..-2p) 

a.l 0.2 
YlL = 1-+a,l ia.2 Y2L = 1-+a,l ia.2 

where a.l and a.2 are obtained from 

r:~~ :~~n:~J = [~:~~~ 
l!tj = l!ji = ('i..-ip-'i..-ip-p)T('i..-jp-'i..-jp-p) 

i = 0,1,2 j = 0,1,2 

Table 15 
Computational Forms of Nonlinear Stationary Accelerations 
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Param-
eters 

q 

p,q 

p,q 

p,q 
(k) 

p,q 

p,q 

p,q 

(q=2) 

k,q 

p,q 

p,q 



' 

q-Values 

Example w 00 

2 5 10 20 40 (No Accel-
eration) 

1.20 106 96 100 140 200 (1,400) 

1.40 64 66 80 100 160 (900) 

Al 1.60 34 40 so 80 150 ( 520) 

1. 80 52 34 40 60 80 218 

1.95 106 84 100 110 104 132 

1. 20 528 348 320 340 400 (8,000) 

1. 40 356 236 220 240 280 (5,300) 

A.4 1.60 230 156 150 160 200 (3,100) 

1. 80 152 100 100 120 160 (1,350) 

1.95 285 196 180 180 160 250 

Table 16 

rn0 1-Values for Wilson's Acceleration Applied 
· to Block Overrelaxation 
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I 

"' 0 
w 
I 

Example 

Al 

A4 

A6 

q-Values 

.W .1 
10 20 40 100 00 (No Accel-: 

1/:>. (K) (2,400) (1,300) (635) (380) -max 

2/ IlK 111 (1,350) (710) (325) (405) -

2/:>. (K) (1,200) (635) 280 (355) -max 

1/:>.max(K) (17,000) (9,450) (4,900) (1,900) -

2/IIKII1 (9,100) (4, 950) (2,550) (915) -

2/:>. (K) (8,700) (4,700) (2,450) (865) -max 

1/:>.max(K) (505) (255) 108 -- -
2/IIKII1 

(370) 178 146 -- -
2/:>.max(K) (245) 112 174 -- -

Table 17 

m0 _1-values fo7 Stiefel'~ Ac~elerati~n Applied to 
success1ve Approx1mat1on Vers1on D 

eration) 

(9,200) 

(5,400) 

(4,850) 

(57,500) 

(33,500) 

(32,000) 

(2,050) 

(1,500) 

(1,050) 

r 



\ 
Example n Version A Version B 

-

Al 22 15 18 

A2 77 21 26 

A3 42 43 49 

A4 24 23 24 

AS 48 23 24 

A6 48 14 15 

Table 18 

m0 •1-values for Conjugate Gradient Methods 

Ver- Exam- s-Values 

sion ple 2 ·5 10 15 20 >25 -
Al (2,400) (850) 388 15 15 15 

A A4 (16,500) (6,600) (2,550) (1,300) 690 23 

A6 488 192 84 14 14 14 

Al (2,450) ( 865) 200 60 18 18 

B A4 (16,000) (6,600) (2,800) (1,800) 312 24 

A6 490 198 78 15 15 15 

Table 19 

m0 • 1-values for s-Step Gradient Methods 
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Example 

Bl 

B2 

Conjugate Conjugate 
K Gradient Gradient 

Version A Version B 

10-2 255 300 

10-l 138 159 

1 78 93 

lO+l 141 165 

10+2 264 330 

10+ 3 483 591 

10+ 4 699 900 

lO+S 963 >1000 

10-2 195 207 

lo:- 1 102 114 

1 57 63 

lO+l 216 228 

10+2 366 423 

10+ 3 525 549 

Table 20 

Comparison of m
0

_
1
-values 

*Note: w = 1.95, q = 20 
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Block Over-
relaxation/ 

Wilson's 
* Acceleration 

100 

140 

160 

220 

720 

>1000 

>1000 

>1000 

>1000 

128 

136 

>1000 

>1000 

>1000 



I 
N 
0 
~ 
I 

Modifi-
cation 

0 

1 

2 

3 

4 

5 

6 

7 

Clc 

rTr 
c c 

--v--
VCKVC 

rTv 
c c 

VTKV 
c c 

r~vc 
v~Kvc 

rTr 
c c 

VTKV 
c c 

r~rc 1 

v~Kvc 
. r c 

1 

v~Kvc 

l 

r~rc 
rTKr 

c c 

Be Yc+1 6c Remarks 

T 
rc+1rc+1 

1 1 Standard 
r~rc Version 

T 

- rc+1KVC 
1 1 

vTKv 
c c 

T 
rc+ 1Kvc 

1 1 -
v~Kvc 

T T 
rc+1rc+l-rc+1rc 

1 1 
rTr 

c c 

T T 
rc+lrc+l . 6 1 1-S 

vc-lKvc 
60 l = T c c-1 v~Kvc rcrc 

T T l rTr rc+lrc+l rc+lrc+l Yo = 0 0 

T T rTKr rc+1rc+l rc+lKrc+l 
sc l 0 0 

Yc T - Yo = 
r~r0 

T 
rcrc rc+1rc+l 

T 6cac+l rc+lrc+l 
l - 1 l T Yc Yo = 

r r ac 
c c 

Table 21 

Coefficients of Algorithm Modifications 



K-Values (Example Bl) 

Modification 
10 2 10 3 10 4 1 

0 78 264 483 699 

1 78 264 486 723 
2 Div. Div. Div. Div. 
3 78 264 483 726 
4 78 261 474 714 
5 78 261 474 684 
6 78 264 474 684 
7 78 267 468 696 

8 78 270 492 744 
9 78 264 483 726 

10 78 267 492 753 

Table 22 

m0 . 1-values for Algorithm Modifications 

Word Mantissa Size (in Bits) 

Length Designation Storage of Modifi- Storage of Vector Arithmetic cation K and f Quantities 

0 Single Precision 48 48 48 

1 Double Precision 
Vectors 48 96 96 

2 Double Precision 
Inner Products 48 48 96 

3 Reduced Preci-
sion Vectors 48 30 48 

Table 23 

Mantissa Size of Word Length Modifications 
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K-Values (Example Bl) 

Modification 
10 2 10 3 10 4 1 

0 78 264 483 699 

1 75 198 327 438 

2 78 249 432 600 

3 81 294 552 861 

Table 24 

m0 • 1-values for Word Length Modifications 

No Scaling Procedure 
Example K Scaling 

A B c D 

10-2 255 69 75 75 72 

Bl 1 78 75 81 75 75 

10+2 264 96 105 96 96 
10+4 699 120 129 120 120 

10-2 195 123 168 126 126 

B2 1 57 54 57 51 54 

10+ 2 366 240 366 249 246 
10+ 3 525 291 546 318 312 

Table 25 

m
0

• 1-values for Scaling Procedures 
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Error Measures Error Predictors 
Example K 

El E2 E3 ljJ4 Ws 

1 78 78 93 99 102 

Bl 10 2 264 267 315 351 354 

10 4 699 723 834 904 908 

1 57 60 66 69 72 

B2 101 216 216 222 228 228 

102 366 366 390 426 426 

Table 26 

m0 • 1-values of Error Measures and Error Predictors 

K-Values 
Initial 

(Example Bl) 

Guesses 
1 10 2 10 4 

0 78 264 699 

1 78 264 696 

2 78 258 708 

3 78 255 693 

4 75 252 678 

5 87 288 762 

6 81 273 735 

7 93 318 771 

8 99 342 849 

Table 27 

m
0

• 1-values for Initial Guesses 
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Example k 
ho 

mO.l zo.1 h n 

0 1 19 9 0.072 

c 1 2 71 21 0.485 

2 4 271 46 3.44 

3 8 lOSS 98 27.22 

0 1 10 9 0.045 

1 2 33 21 0.240 

D 2 4 115 51 1. 73 

3 8 423 110 12.37 

4 16 1615 223 97.07 

Table 28 

Convergence of Large Systems of Equations 

Example k ak sk yk 

1 3.74 2.33 6.74 

c 2 3.82 2.19 7.09 

3 3.89 2.13 7.91 

1 3.30 2.33 5.33 

D 
2 3.48 2.43 7.21 

3 3.68 2.16 7.15 

4 3.82 2.03 7.85 

Table 29 

Effect of Successively Finer Discretizations 
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Example Description Structural System 

Thick-walled cyl- ,,,~ 

m~''' l Al inder under in- 8 ternal pressure ~"~~~ Ill: ~ ~ Ill: 'II: '-= 

~ 
Concentrated load 

I / / "" A2 on half-space 
I / / , 

/ / 
~ 

r ,· 

, 
~ , ,,,,, ,,,,, 

I I I I I I I I I J 
Simply supported 

;~ i A3 beam with uniform 
lateral load I I 

~I 
/L---------_.J 

Cantilever with " L'ILlLl. Jt A4 / 

lateral tip load 
,I I 

I 
~-- ------ __ _, 

00 1: 
AS Cantilever with 

lateral tip load 

00 I ~ A6 Cantilever with 
axial tip load 

Table A.l 
Test Examples Al through A6 
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Example n n n e p 

Al 22 20 22 

A2 77 72 49 

A3 42 32 27 

A4 24 16 18 

AS 48 32 27 

A6 48 32 27 

Bl 146 120 77 

B2 152 128 81 

co 19 16 15 

cl 71 64 45 

c2 271 2 56 153 

c3 lOSS 1024 561 

Do 10 6 8 

Dl 33 24 21 

D2 115 96 65 

D3 423 384 225 

D4 1615 1536 833 

Table A.2 

Numerical Characteristics of Test Examples 
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Example A max(K} A • (K} P(K} pl (K} m1.n 

Al 3.16·10 4 2.25·10 1 1.41·10 3 1.74·10 3 

A2 8.09•10 4 5.40·10 2 1.50·10 2 2.62·10 2 

A3 9.40·10 4 1.13·10° 8.30·10 4 1.61·10 5 

A4 3.90•10 4 3.86·10° 1.01•10 4 1.65·10 4 

AS 5.55·10 4 5.12·10° 1.09·10 4 2.56"10 4 

A6 5.55·10 4 5.12·10° 1.09·10 4 2.56·10 4 

Table A.3 

Extreme Eigenvalues and Condition Numbers 
of Examples Al through A6 

Example Bl Example B2 

K . p 1 (K} Pl(Ks} pl (K} Pl(Ks} 

10- 4 1.07•10 8 8.78·10 3 -- --
10- 3 1.08•10 7 8.90·10 3 -- --
10- 2 1.15·10 6 9.65·10 3 5.01·10 5 1.48·10 5 

10- 1 1.74·10 5 1.55·10 4 7.85·10 3 2.66·10 3 

0 10 .. 6~26•10 4 5.49·10 4 3.54·10 3 3.10·10 3 

10+ 1 4.44•10 5 3.85·10 5 2.28·10 6 1.85•10 6 

10+ 2 4.11·10 6 3.53·10 6 3.14•10 8 2.48·10 8 

10+ 3 4.07•10 7 3.48·10 7 3.12•10 10 2.46•10 10 

10+ 4 4.06·10 8 3.47•10 8 3.11•10 12 2.45•10 12 

10+ 5 4.06·10 9 3.47•10 9 -- --

Table A.4 

Condition Numbers of Examples Bl and B2 

-213-



Designation Version A/D Version B/E Version C/F of Group 

Successive 1 1 2 Approximation 

Jacobi 1 1 2 

de la Garza 2 2* 4* 

Kaczmarz 2 2 4 

Block Jacobi 1 1 2 

*Use of recursive relationships necessary 

Table A.S 

Computational Effort of Linear Stationary 
Iterations (Matrix-Vector Products per Iteration Cycle) 
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D 

K 

K s 

L 

14. NOMENCLATURE 

Matrices 

diagonal matrix containing the diagonal elements 

of K 

diagonal matrix containing the diagonal elements 

of (KK) 

quasi-diagonal matrix containing principal subma-

trices of K 

diagonal scaling transformation matrix 

identity matrix 

global stiffness matrix of the discretized struc-

ture, coefficient matrix of the system of linear 

equations 

coefficient matrix after scaling transformation 

lower triangular matrix containing the correspond-

ing elements of K 

lower triangular matrix containing the correspond-

ing elements of (KK) 

lower triangular matrix containing the correspond-

ing elements of (K-D2) 

error matrix-polynomial defining the total reduc-

tion of the initial error vector 
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s 

T 

e. 
1 

f 

u 

matrix defining the computational characteristics 

of linear stationary iterations 

iteration matrix for linear stationary iterations 

general iteration matrix relating two consecutive 

error vectors e = T e c c c-1 

Vectors 

error vector defined as the difference between the 

correct and the approximate solution vector e = c 

u-u c 

vector corresponding to the i-th column of the 

identity matrix 

nodal point load vector 

load vector after scaling transformation 

residual vector containing the unbalanced nodal 

point forces rc = f-Kuc 

direction vector of Gastinel-type nonlinear sta­

tionary iterations, defined by (t)7 = sign[(r)7] 
1 1 

nodal point displacement vector, solution vector 

of the system of linear equations 

approximate solution vector after c iteration 

cycles 

solution vector after scaling transformation 

K- or KK-orthogonal direction vector of conjugate 

gradient algorithms 
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a 

b 

c 

g 

h 

(K) .. 
1) 

m 

n 

p 

increment vector defined by we = uc+l-uc 

Scalars 

lower bound for the minimum eigenvalue of a matrix 

upper bound for the maximum eigenvalue of a matrix 

iteration cycle counter 

cycle interval of oscillations 

c-th order Chebyshev polynomial of the first kind 

modulus of elasticity 

ratio of mesh spacing parameters 

mesh spacing parameter 

element in the i-th row and j-th column of K 

general measure for the required number of itera-

tion cycles 

number of iteration cycles necessary to reduce the 

relative· error of the maximum nodal point dis-

placement to a value below 0.1% 

total number of degrees of freedom of the discre-

tized structure, size of the system of linear 

equations 

total number of elements 

total number of nodal points 

block size of linear stationary block iterations 

cycle interval for identifying previous approxima-

tions of the solution vector 
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p 

(u)i 

(u)~ax 

z 

a,a,y 

condition number of a matrix defined by P(K) = 

"max(K)/Amin(K) 

upper bound for the P-condition number 

·cycle interval for restarting nonstationary solu-

tion procedures, length of the acceleration inter-

val of nonlinear stationary accelerations 

optimum value of the parameter q 

parameter of s-s~ep gradient methods 

i-th element of the vector u c 

approximate value of the maximum nodal point dis-

placement after c iteration cycles 

measure of the total computational effort for 

solving a system of linear equations 

scalar quantities 

£,£1 ••• £ 3 measures of the relative error of an approximate 

solution 

K 

/.. 
' 1 

relative error of the maximum nodal point dis-

placement after c iteration cycles 

parameter governing the condition of test examples 

Bl and B2 

i-th eigenvalue of a matrix 

minimum eigenvalue of a matrix 

maximum eigenvalue of a matrix 

total potential energy of the discretized structure 

average rate of convergence 
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asymptotic rate of convergence 

parameters of the hypergeometric relaxation method 

~,~ 1 ••• ~ 3 error functions 

1J!,1J!1 •.. 1J! 5 quantities for predicting· the relative error of an 

approximate solution 

w' 

A [ ] 

c 

I [ ] 

L 

(co.nstant) acceleration factor of linear stationary 

accelerations 

optimum acceleration factor 
\ 

modified accelJ{ation factor for Successive Approxi­

mation Version D, defined by w' = w·bK 

Miscellaneous Symbols 

general operator for acceleration algorithms 

subscript for identifying the value of a matrix, 

vector, or scalar quantity after c iteration cycles 

general operator for iteration algorithms 

subscript for identifying the last iterate of an 

acceleration interval. 

II II matrix or vector norms (Holder norms) defined by 

n 
IlK Ill 

max 
I: I (K) .. I = j=l. .. n i=l l.J 

. max vI A. (KTK) I I~ 11 2 = spectral norm 1.=l •.. n 1. 

n 
~~ lloo 

max I: I (K) .. I = i=l •.• n j=l l.J 
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n 
~ I <u> . I 

. 1 l. J.= 

llu 112 = - /. ~ [ (u) i] 2 euclidean length v J.=l 

max 
i=l ••• n 

for symmetric matrices: 111<111 = IIKII.X) 

spectral radius of a matrix, equivalent to the 

eigenvalue of largest (absolute) magnitude 

IIKI~r = i=~~~.n l~i<K> I 
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15. APPENDICES 

Appendix I 

Properties of Finite Element Stiffness Matrices 

Global stiffness matrices arising in the stiffness formula­

tion (or more precisely in the "assumed displacement" ap­

proach) of the finite element method exhibit certain general 

properties which are described in the following paragraphs. 

The primary purpose of this compilation of properties is to 

define the precise nature of the systems of equations whose 

iterative solution is investigated in this dissertation. 

At the same time, various general characteristics of the 

stiffness matrix K are described which may affect the ap­

plicability of a particular solution procedure. 

(1) K is real, square, and symmetric. The symmetry of 

the stiffness matrix can be directly established on 

the basis of Betti-Maxwell's reciprocal theorem 

(Ref. 93), assuming that the load and displacement 

vectors associated with K are ordered in an identi-

cal manner. 

(2) K is positive definite. By definition, a real, 

symmetric matrix is said to be positive definite if 
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the quadratic form uTKu assumes values greater than 

zero for any arbitrary non-zero vector u (Refs. 21, 

84). As the strain energy of the discretized struc-

ture, being a positive quantity for any non-zero 

displacement, differs from.the above quadratic form 

only by a constant factor (Section 3.1.2, Ref. 93), 

the global stiffness matrix necessarily is positive 

definite. This particular property of K implies 

that the eigenvalues A. (K) are real and positive, 
~ 

that all diagonal elements (K)ii are greater than 

zero, and that the stiffness matrix is nonsingular. 

In establishing the positive definite character of K 

it is assumed that the 11 essential 11 displacement 

boundary conditions, preventing rigid body motions 

of the structure, are specified. Otherwise, the 

global stiffness matrix remains semi-definite and, 

therefore, singular (cf. Chapter 9). 

(3) K is generally a large, sparse matrix. The total 

size of the stiffness matrix depends on the number 

of nodal points as well as on the number of degrees 

of freedom per individual node. To a certain ex-

tent, the size of K is also affected by the displace-

ment boundary conditions. The average number of non-

zero elements in a row or column of K is essentially 

defined by the finite element type, whereas displace-
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ment boundary conditions, ·the element mesh configu­

ration, and the size of K have ·only a secondary ef­

fect on this number. 

The population pattern of the stiffness matrix, 

i.e. the pattern in which the non-zero elements of K 

appear, is influenced by the nodal point enumeration, 

by the geometry of the structure, and by the way in 

which the components of the associated load and dis­

placement vectors are arranged. For structural prob­

lems with regular, "chain"-like geometry it is pos­

sible to order the equations in such a way that the 

non-zero elements appear within a comparatively nar­

row band along the main diagonal. The band-struc­

ture of the coefficient matrix is extensively used 

for the purpose of reducing the storage requirements 

as well as the computational effort of direct solu­

tion procedures (Chapter 1) . Storage requirements 

of iterative methods, however, are largely indepen­

dent of the population pattern. For structures with 

irregular geometry and for less systematic enumera­

tion schemes the band-character of the global stiff­

ness matrix will be less pronounced. A similar 

situation occurs if the input data for various parts 

of the structure are generated independently or if 

subsequent modifications of the finite element mesh 
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• are performed without complete renumeration of all 

nodal points. 

(4) K is generally irreducible. Under normal conditions 

it is not possible to transform K into a block tri­

angular or (since K is symmetric) quasi-diagonal 

matrix by simultaneous row and column permutations 

(Ref. 82). Transformations of this type can only be 

carried out if the global stiffness matrix comprises 

two or more completely independent structural sys­

tems whose solution can be obtained by solving an 

equivalent number of lower order subsystems. 

In addition to the above main characteristics of finite 

element stiffness matrices, the discussion also contains 

several properties normally found only in systems of equa­

tions arising from finite difference approximations of cer­

tain elliptic partial differential equations~ Their spe­

cial characteristics can be utilized in the determination 

of optimum acceleration factors, in the derivation of con­

vergence conditions as well as in the efficient organiza­

tion of iterative solution processes (Section 3.2). 

The additional properties are included in this compi­

lation in order to indicate that they cannot be exploited 

in connection with finite element coefficient matrices. 
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(5) K is generally not diagonally dominant since the 

elements of the stiffness matrix normally do not 

satisfy the relationship (Ref. 82) 

(K) . . > 
l.l. t 

j=l 
j~i 

I<K) .. I. i=l .•• n 
l.J 

(I .1) 

(6) K is generally not a Stieltjes matrix, that is, its 

off-diagonal elements are not necessarily less than 

or equal to zero (Ref. 82). 

(7) K generally does not satisfy "property A" and, in a 

more general sense, is not a consistently ordered p-

cyclic matrix. These properties, whose precise na-

ture is defined, for instance, in Refs. 17, 25, 82, 

and 84, form the basis for determining optimum ac-

celeration factors for various overrelaxation meth-

ods (Section 3.2). As shown in Ref. 17, it is pos~ 

sible to transform any system of equations in such a 

way that the coefficient matrix assumes "block prop-

erty A." For the given type of matrices this possi-

bility is of little practical value since the trans-

formation may cause a considerable increase in the 

storage requirements. 

The numerical characteristics of a system of 

equations are largely defined by the eigenvalues of the 

coefficient matrix, .in particular by the values of Amin(K) 
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and A (K). Both quantities play an important role not max 

only in the application of various iterative methods, but 

also in describing the condition of the coefficient matrix. 

The iterative determinatiGn of the extreme eigenvalues can-

not be considered as practical since the required computa-

tional effort is likely to be of the same magnitude as that 

for actually solving the system of equations. It is, 

therefore, common practice to use simple 11 a priori 11 bounds 

of these quantities whose determination should require a 

minimum of numerical computations. In the remainder of 

this section various methods for establishing such bounds 

are reviewed as far as they apply to general finite element 

stiffness matrices. 

A relatively close upper bound for the maximum 

eigenvalue of the stiffness matrix can be established on 

the basis of Gershgorin's theorem (Refs. 7,21,82,84) 

Amax (K) . < IlK Ill = IlK lloo = max 
i=l ..• n 

n 
L: 

j=l 
I (K) .. I 

1] 
(I. 2) 

Provided K is sufficiently large, the numerical value pre-

dieted by Eq. !.2 is smaller and, therefore, more accurate 

than Schur's estimate (Refs. 7,21,84) 

[ 
n n 2] 1/2 

< L: L: (K) .. 
i=l j=l 1

] 

(I.3) 
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as well as the trace of the stiffness matrix 

A {K) < max 

n 
L: Ai{K) = 

i=l 

n 
L: 

i=l 
{K) .. 

l.l. 
{I. 4) 

A simple lower bound for A {K) is, on the other hand, max 

given by 

max 
i=l .•. n {K) .. 

l.l. 
{I.5) 

Computational experience indicates that the estimates of 

Eqs. I.2 and I.5 are relatively close since their numerical 

values usually differ by a factor less than 10 {Ref. 49). 

Utilizing the same idea as in Eq. I.5, a simple 

upper bound for the minimum eigenvalue of the stiffness rna-

trix is obtained from 

Arnin{K) < i=l ... n 
min {K) .. 

l.l. 
{I.6) 

The relationship provides reasonably close estimates only 

under exceptional conditions, for instance, if large dif-

ferences in the stiffness properties of the structure and, 

therefore, in the magnitude of the diagonal elements {K)ii 

exist {Appendix 2, examples Bl and C). In general, how-

ever, the bound will be of little practical value. 
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In order to define the limits of the entire range 

of Ai(K)-values, it is of considerably greater importance 

to establish "a priori" lower bounds of the minimum eigen-

value. Gershgorin's theorem (Refs. 7,21,81,84) cannot be 

used for this purpose since the relationship 

t I (K) i ·I ] 
. 1 J J= 

min [ A • (K) > (K) -m1n i=l ... n ii (I. 7) 

j;ii 

results in trivial bounds less than zero as K is general~y 

not a diagonally dominant matrix (p.253). Attempts to 

base a lower bound for A . (K) on the smallest eigenvalue m1n 

of the undiscretized structure (Refs. 29,30,49) have to be 

considered unsuitable as well since the particular quantity 

is unavailable for all but the simplest structural systems. 

The fact that the eigenvalues of the coefficient matrix and 

those of its inverse are related by (Refs. 21,84) 

(I. 8) 

allows the establishment of the following eigenvalue bound 

max 
i=l. .. n 

1 
n 1 
~ I (K- ) .. I 

j=l 1] 

(I.9) 

Since the inverse of the coefficient matrix remains general-

ly unknown, Eq. I.9 is, however, only of theoretical inter-

est (Appendix 2) • 
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Summarizing the various possibilities, it has to 

be concluded that useful "a priori" bounds for the minimum 

eigenvalue of the stiffness matrix are not available in 

practice. However, a relatively close "a posteriori" 

bound of this quantity can be obtained provided the solu-

tion vector u is known 

(I.lO) 

The numerical value predicted by Eq. I.lO represents a 

comparatively accurate estimate of Amin(K) if the deflected 

shape of the structure resembles its lowest vibrational 

eigenmode. A similarity between the solution vector u and 

the eigenvector corresponding to Amin(K) is usually found 

for structural systems primarily subjected to bending (Ap-

pendix 2, examples A3, A4, AS, Bl, B2). In cases where 

both vectors are orthogonal, however, Eq. I.lO may result 

in relatively coarse approximations (cf. Chapter 9). 

The convergence behavior of iterative solution 

procedures as well as the accumulation of roundoff errors 

is primarily affected by the condition of the given system 

of equations. Generally it is difficult to define appro-

priate criteria by which the condition of a matrix could be 

accurately described in the form of a single numerical 

quantity. Various investigations indicate, however, that 
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the P-condition number defined by 

p (K) 
~\nax (K) 

= = A . (K) mJ.n 
(I .11) 

represents a suitable measure of the relevant numerical 

characteristics .(Refs. 7,21,64,84). Since the determina-

tion of the extreme eigenvalues requires a considerable 

amount of computational effort, Eq. I.ll is frequently re-

placed by simpler, equally suitable expressions such as 

(Ref. 64) 

(I .12) 

The absence of practically useful lower bounds for A . (K) mJ.n 

makes it impossible to establish rigorous "a priori" bounds 

for the P-condition number of finite element stiffness rna-

trices. "A posteriori" estimates, however, can be obtained 

by combining the eigenvalue bounds of Eqs. I.2 and I.lO 

p (K) ::: (I .13) 

The accuracy of the predicted P-condition number is affected 

by the same uncertainties discussed in connection with Eq. 

I.lO. 
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Appendix .II 

Test Examples 

The specific properties of various test examples 

used in the numerical investigation of iterative and semi-

iterative solution procedures are described in this section. 

Table A.l contains a schematical representation of six exam-

ples, Al through A6, employed in the comparative tests of 

the first part of the dissertation. Three main parameters 

of the corresponding finite element discretizations, namely 

the total number of degrees of freedom, n, the number of 

elements, n , as well as the number of nodal points, n , are e p 

listed in Table A.2. By comparing the structural configura-

tions A4 and AS it can be seen that both examples represent 

discretizations of the same structural system. In the case 

of example A4, however, the symmetric and anti-symmetric 

properties of the problem are utilized for the purpose of 

reducing the size of the corresponding stiffness matrix. It 

can also be observed that examples AS and A6 involve identi-

cal structural discretizations but differ in their loading 

conditions (cf. Chapter 9). The systems of equations aris­

ing from these test examples exhibit all properties of gen-

eral finite element stiffness matrices described in Appendix 

1. The only excepti'on occurs in example Al whose K-matrix 
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satisfies the condition of diagonal dominance (cf. Section 

3.2.3). 

The extreme eigenvalues of the coefficient matrices 

as well as their P-condition numbers (Eq. I.ll) are listed 

in Table A.3. In order to allow a comparison between the P­

values and their corresponding upper bounds defined by Eq. 

I.l2, Table A.3 also contains the P1-condition numbers of 

the test examples. In the process of describing the·conver­

gence behavior and the performance of various iterative 

methods, a distinction is sometimes made between well- and 

ill-conditioned problems. In general, such a classification 

cannot be based on absolute standards, for instance, in the 

form of limiting P-values. However, it is comparatively 

simple to define the condition of a problem in relation to 

that of other structural systems. For the test examples of 

the first part of the dissertation it is understood that 

examples A2 and A6 represent well-conditioned problems, 

whereas the "bending-type" structural systems A3, A4, and AS 

are, relatively speaking, ill-conditioned. This behavior is 

reflected in the magnitude of the condition numbers except 

in the case of example A6 where certain orthogonality condi­

tions of the load vector have an effect (cf. Chapter 9). 

The majority of the numerical tests in the second 

part of the dissertation are carried out with two examples 
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whose structural discretizations are illustrated in Figs. A.l 

and A.2. The numerical characteristics of the corresponding 

finite element discretizations are listed in Table A.2. Both 
' 

test examples contain a parameter K which allows giving the 

resulting systems of equations any arbitrary degree of ill-

conditioning. In the case of example Bl the ill-conditioning 

is caused by differences in the material properties of two 

structural subregions. The condition of example B2, however, 

is governed by the geometry of the over-all structure as well 

as by the side length ratio of the individual elements. 

In Table A.4 the P1-condition numbers of the global 

stiffness matrices are listed for various values of K. In 

the case of example Bl, the logarithm of P1 {K) varies at more 

or less the same rate as the absolute value of log{K), where-

as the rate is approximately twice as high for test example 

B2. Table A.4 also contains the condition numbers of the Ks­

matrices obtained by applying the scaling transformation of 

Eq. 7.7 to the original systems of equations. In most cases 

the transformation has no significant effect on the magnitude 

of the P1-values. However, for K less than 1.0, major dif­

ferences in the condition numbers can be observed in the case 

of example Bl. For decreasing values of the parameter, the 

magnitude of P1 {K) varies as an inverse function of K, where­

as P1 {Ks) rapidly approaches an asymptotic value. For this 

behavior, designated as removable or artificial ill-condition-
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ing, the following physical interpretation can be given. As 

K approaches zero, the cantilever problem of example Bl be­

comes similar to a structural system in which the borderline 

between the two subregions assumes the character of a fixed 

support (Fig. A.l). Consequently, the structural configura­

tion approaches that of a less ill-conditioned cantilever 

problem with smaller span length. The condition of the un­

sealed coefficient matrix, however, remains directly affected 

by the ratio of the E-moduli. Various forms of removable 

ill-conditioning arising in other types of structural sys­

tems are discussed, for instance, in Refs. 27, 30, 49, 65, 

and 66. 

In order ~o investigate the effect of successively 

finer discretizations on the c~nvergence of the conjugate 

gradient method, numerical tests were carried out with two 

additional examples whose basic structural configurations, 

C
0 

and D
0

, are illustrated in Figs. A.3 and A.4. Table A.2 

contains the numerical characteristics of the basic as well 

as the increasingly finer discretizations obtained by suc­

cessively halving the mesh spacing h. Convergence problems 

encountered in the analysis of a structural system similar 

to that of example C are discussed by Rashid in Ref. 60. 
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APPENDIX III 

Computational Effort 

Throughout this investigation the performance of 

various iterative and semi-iterative solution procedures was 

measured in the form of m0 •1-values representing the number 

of iteration cycles necessary to obtain a certain specified 
I 

accuracy of the solution vector (Section 2.2). In order to 

allow a direct comparison of the efficiency, it is necessary 

to define a suitable index of the required computational ef-

fort per iteration cycle. Among various possible forms of 

such indicators, the total number of matrix-vector products 

per cycle was selected in this study. It is realized that 

the quantity represents only an approximate measure since 

the computational effort for vector-vector and scalar-vector 

operations is not taken into account. As these operations 

constitute only a relatively small percentage of the total 

effort, the measure can, n~vertheless, be considered suffi-

ciently accurate for comparison purposes. 

In the following paragraphs the number of matrix-

vector products is given for various types of solution pro-

cedures described in Chapters 3, 4, and 5. The individual 

values define the minimum computational effort which is re-
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quired if the algorithms are used in their most efficient 

formulations. In order to arrive at these minimum values 

it is frequently necessary to rely on recursive relationships 

for calculating certain intermediate vector quantities. In 

practice this approach may not be suitable, however, since 

the use of recursive relationships increases the effect of 

roundoff errors on the attainable accuracy of the solution 

procedures. 

The computational effort of linear stationary 

iterations, expressed in terms of matrix-vector products per 

iteration cycle, is summarized in Table A.S. It can be ob­

served that Versions A, B, D, and E of a particular algo­

rithm group require an identical number_of multiplications, 

whereas the value is twice as high in the case of Versions 

C and F. For the single-step iterations of the de la Garza 

group it is necessary, however, to use recursive relation­

ships in order to arrive at these values {Section 3.2.2). 

Within the group of nonlinear stationary iterations, 

the computational effort per iteration cycle amounts to the 

following number of matrix-vector multiplications 

St~epest Descent, Almost Optimum 

Steepest Descent, Krasnoselskii, 

Gastinel-Householder 
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Householder, Cauchy, Gastinel 2 

Except for Householder's and Gastinel's iterations, the values 

are based on the assumption that certain' vector quantities are 

computed recursively (Section 3.3.1). The three algorithms 

included in the linear nonstationary group of iterations (Sec­

tion 3.4). require only one matrix-vector product per cycle 

and do not involve recursive calculations. 

Since most acceleration procedures are based on 

vector-vector and scalar-vector operations, their computa­

tional effort is generally smaller than that of iterative al­

gorithms. The only exceptions occur among nonlinear sta­

tionary accelerations where the following matrix-vector mul­

tiplications arise 

Wilson 1 

Forsythe, Dyer II 2 

Other < 1 

By using various recursive relationships, the computational 

effort for the two conjugate gradient versions can be re­

duced to a single matrix-vector product per iteration cycle 

(Chapter 5) • The same value applies to s-step gradient 

methods provided they are carried out in the form of re-

started conjugate gradient algorithms. 
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The computational effort for a matrix-vector 

product itself depends not only on the size of the system of 

equations, but also on a large variety of other factors. 

Among the most important of them are the characteristics of 
\ 

\ 
the computing equipment, in particular the\~ize and access 

time of the storage devices as well as the execution time of 

arithmetic operations. A similar important role is played 

by the finite element type which influences the average num-

ber of non-zero elements per row or column of the coefficient 

matrix and determines the number of degrees of freedom per 

nodal point. The computational effort is also affected by 

the,specific form of algorithm implementation. Major dif-

ferences may arise depending on whether emphasis is placed 

on program flexibility or maximum efficiency in a specific 

case. Except for single-step versions of linear stationary 

iterations (Section 3.2.1}, additional implementation options 

arise from the fact that the coefficient matrix may be used 

in assembled or unassembled form. Although it is possible to 

save a considerable amount of storage by performing the rna-

trix-vector multiplications on the basis of element stiffness 

matrices alone (Refs. 28, 90}, the corresponding computa-

tional effort necessarily increases. A similar trade-off 

between required storage space and required computational 

effort exists in using recursive relationships for calculat­

ing certain intermediate vector quantities. The large 
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variety of influence factors is an indication that a more 

accurate, yet generally applicable definition of the com­

putational effort per iteration cycle is not feasible. 
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