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ABSTRACT

Exper.imental data using an accelerated method of

fatigue testing is presented. This method introduced

by Prot, calls for testing of specimens under a con-

stantly increasing fluctuating or alternating stress

as opposed to conventional' methods using a constant

stress amplitude. The test specimens were butt-

welded joints of A373 steel. T~sting was done in an

Amsler High Fr~quency Vibrophore.

i

\
\
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Accelerated Fatigue Tests of Butt-Welded Joints

,1. INTRODUCTION

-1-

• In 1947, Marcel Prot (1)* proposed a new technique for

an accelerated determination of the Endurance Limit of
,

Materials. Although many short-cuts in fatigue testing have

been previously proposed, the Prot method has aroused suffi-

cient interest in technical and scientific circles to be

submitted to experimental verification. This program has

been organized to investigate the applicability of the

method to the testing of butt-welded connections of ASTM

A-373 steel.

The conventional approach to fatigue testing involves

the determination of the Endurance Limit from a Wohler or

S-N diagram. This method, although universally accepted,

has many inherent disadvantages. Generally, to obtain an

accurate curve a great many tests must be run, all of which

are subject to normal scatter. The statistical confidence

limits are sometimes difficult and, for some materials,even

impossible to establish. Another difficulty is to set a

limit or life to the number of cycles which, at a given

stress level, will determine the Endurance Limit.

j, To overcome these disadvantages ,:. attempts _h~ve been

made to relate the endurance limit to some of the statical

* Refers to list of references.

".
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•

...

p~op~rties(5) by a special testing technique and to use this

as a measure of the endurance limit. The results obtained

were not conclusive and found little verification. ,

other investigators utilized electrical and magnetic

properties (5) of the material to detect the stress level ·of

the Endurance Limit. Changes in the damping capacity and

the Modulus of Elasticity(5) have also been studied with

considerable success. Some studies have been made on the

use of X-rays(5) to determine surface phenomena as related

to fatigue life.

Attempts have also been made to reduce testing time by

assuming the shape of the S-N curve as a means of extra-

polating results, but the necessity of the test results con­

forming to the assumed mathematical curve limits the value

of the method. The Prot method is based on such an assumption.

The total testing time can also be decreased by in­

creasing testing speed. The Amsler High Frequency Vibro.­

phore, which has been used for the tests reported in this

paper provides such a possibility. However, there may be

serious questions of temperature rise and damping at the

.higher frequencies for some materials.

The use of more than one machine in a given program

will also shorten the total time, but the compilation of
/

results obtained on different machines introduces many

new problems.
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2. BASTS OF THE PROT METHOD

-3-\ '

Many investigators have done extensive work on damage

considerations in fatigue. (13) (14) They have approached

the field from the physical testing point of view, generally

staying clear of the complicated theories of crystal and

molecular slippage and cleavage. Based mainly on test data,

Miner(lO) estimated the cumulative damage by the follo~ing
, n
formula Z N = 1 - Eq. 4 from Ref. 10 - where N is the number

of stress cycles to failure at Stress S, and n is the number

of cycles less than N at Stress S. This is to say that "the

damage done in any cycle at a stress level is a constant for

any cycle. Other investigators (11) (12)(13)(14) have determined

different relationships.

Prot proposed that the fatigue test should be run at a,
"-

progressively increasing, fluctuating or alternating stress

as opposed to a constant stress amplitUde used in the con­

vention~l method, the evident advantage of such a progressive

loading being that, in all cases, each specimen will fail.

As the load ~s increased linearly, there will be a constant

increase of stress amplitude with each cycle, sayocpsi/cycle.

The square root of oc is then plotted against the failure

stress, SIlC By fitting a straight line through the test

points as shown in Fig. 1, the intercept of this line with

the $oc ordinate at oc ~ 0 is then taken as the value of

stress at the endurance limit, SEe (
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Endurance Limit.

proportional to the amount of stress

and itruptured molecules per cycle

The above is based on certain theoretical considerations

outlined by Prot in the original paper. (1)

Assumptions .•• (1) The material has an Endurance Limit.

(2) The S-N diagram has the form of a hyperbola,

asymptotic to the vertical axis and the

it can be expressed as the number of

the Endurance Limit.

(3) The mechanism of failure is manifested by

Figure 2 is used to illustrate the derivation of the

the propagation of microscopic cracks and

equations used by Prot. Curve Cl is the ordinary S-N curve

represented by (S-SE) N = K.{~ Curve C2 is similar to Cl

of displaced to the right. If Dl is taken as the damage ar~a

required to produce failure of a specimen under a constant

stress amplitude, S representing the value of the maximum

stress, Dl = (S-SE) N

Similarly D2 is taken as the damage area.required to

produce failure of the specimen ~t stress S~= S under a

constant stress increase of oC per .cycle.

D
2

= 1 (S-S ) d
2 E

For definition of symbols used, see Nomenclature, page 19.
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From Minervs hypothesis, equal damage must be done for

failure, Dl = D2

2N = d

In Fig. 2, from triangle 8E, A, 8m;

8E - 8moC = --=::.-~
x

therefore

8 - 8N = m~

ce oC

(1)

d = N - xoc

From Eq. 1

= 8 - 8m - 8E + 8m
OC

8 - 8E=---=
oC

2N or
8 - 8E2OC= -_--:=!

N

From assumption 2, (8 - 8E) N = K (2)

Let K' = 12K' (3)

The above relation yields a straight line if S is

plotted against ;foe'.
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Henry(2) has developed a somewhat more generalized

-6-

expression similar to Protts. He made use of an empirical

formula by Weibull for the representation of the S-N curve

and applied Minerls CIO ) hypothesis of cumulative damage.

See F;1.g. 3.

Forming Miner's
St.e n = 1sum ~-oN

S~ n =~ ~
Soc n See. n (4)Now L N + 1> = 0 + E = 1N N

0 0 SE SE

but or n = 1 6S
OC

Therefore (5)

) ) -1From Eq. (2 N = K (S - SE

or since the hyperbolic curve Cl can vary according to the

material, a more general equation can be written,

From Eq. 5
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If instead of a step' by step stress increase 6S, a

continuous increase dS is used, the above summation must be

changed to the following integral

1
KoC

Soc:
1

SE = [(m + 1) KOCJ m+I

= 1

(6)

should then be written in

where m can be determined for any material by plotting con-

ventional fatigue data on a graph (Fig. 4). Equation (6)
\

coincides with Eq. 0), developed by Prot, if m = 1 .

. Pr.evious experimental work(3) (4)(5) (6)(7)(9) using the

Prot method has shown that a fairly accurate determination

of the Endurance Limit SE can be made. However, it has been

demonstrated that a straight line does not always evolve

using an exponent of 1/2 for oC • Using a best fit method,

the exponents of~have been determined to be from 0.178 f~r

aluminum to 0.717 for l4B50 steel. This would appear to bear

out Henry's conclusion that the exponent should depend on the

material properties. In fact fairly close agreement to a

best fit line on the Prot plot can be obtained from the

exponent derived by plotting conventional fatigue data on

log-log paper as in Fig. 4.

<Equation (J), S = SE + Kbc~
the more general form S
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Previous investigators have studied the Prot method

using high strength steels, ingot iron and aluminum, and

all these materials gave good agreement with the theory.

With th~_exception of work done by Enomoto(9) of Japan on

structural steels, little has been done to determine what

happens to mild steel with a relatively low yield point.

It was, therefore, decided to test the Prot method on butt­

welded specimens of A-373 steel in order to determine its

applicability to material like structural steel.

The University of Illinois has accumulated considerable

data for welded connections of A-7 steels. Some of these

results are shown in Figs. 5 and 6 in form of a Weibull

plot. Comparison would show fair agreement of the slope

of these straight lines with the slopes of data, on plain

steel specimens, obtained in the course of previous Prot

investigatio~s.(6)

3. TEST SPECIMENS, APPARATUS, AND PROCEDURE

All test specimens were cut from a single 3/8" plate

purchased from the Sparrows Point plant of Bethlehem Steel

Company., The physical and chemical properties of the ASTM

A373-54T steel plate are given with other information in

Tables 1 and 2. The location of the specimen in relation

to the original plate is illustrated in Fig. 7. Fatigue

specimens were cut out of plates A to H, plate I was used

for specimens to determine static properties. Plates A, B,
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C, D, E and G were cut, beveled and butt-welded as shown

in the welding detail, given in Fig. 7. Plates F and H

were not welded but cut into plain fatigue specimens.

The welding was performed in the following manner. The

individual plates were clamped down flat and the pass was

made into the root with a. 5132 il DH-6, AWS Class E60l4 Elec­

trode at 190 amps. A second pass was made with a 3/16" rod

of the same class at 250 amps to complete the weld. The

plate was then turned over, reclamped and the root grounq. to

a depth of 1/8". The root was then rewelded with a 3/16"

rod at 250 amps. Bend tests were made'and no cracks were

apparent. Complete X-rays were taken to insure uniformity

and quality of welding. All welding was done at the

Bethlehem Foundry and Machine Company using one welder to

ensure uniformity. The test specimens were machined out

of the individual plates by the machine shop in Fritz

Engineering Laboratory, type S and X as shown in Fig. 7

and conventional tensile specimens.

Prior to testing, all sharp corners of the ,specimens

were removed and machined surfaces smoothed and polished

with coarse and fine emory cloth. This operation removed

machine marks and work hardened material and facilitated

'observation of cracks. Mill scale and weld reinforcements

were left on to simulate actual practice. Two types of

specimens were cut as shown in Fig. 7. Specimen type S

was found to be of inferior design due to i,ts long throat
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which elongated excessively at yield point stresses. Type

X, on the other hand, overcame this tendency but had, of

course, larger stress concentration.

All tests were performed on an Amsler High Frequency

Vibrophore.(21) This apparatus is a new alternating push­

pull type fatigue testing machine operating at high testing

speeds. (See diagram Fig. 8 including operating data.) The

machine operates on the resonance principle, the frequency

always coincides with the natural frequency of the vibrating

elements, namely the driving mass, the specimen, the dyna­

mometer, and the counter mass (see Fig. 9). The system is

maintained at resonance by a driving magnet, controlled by

a feed-back system. The load amplitude is measured by the

reflection of a beam of light from a mirror attached to the

dynamometer onto a load scale. The magnitude of the load

is maintained by means of a photo-cell controlling this

optical-electrical feed-back system.

A programming device is also provided with the machine

whereby the load can be varied arbitrarily upward or down­

ward in steps. The device runs independently of the oper­

ation of the testing machine. A drum rotating at a constant

speed has electrical contacts on its surface. If a pointer

attached to the photo-cell slide makes contact, an electric

drive adjusts the load amplitude according to the given

setting of the drum contact.
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In general, the Prot method calls for a linearlyin=

creasing stress amplitude with time. Two possible programs

were tried, (a) in finite steps, and (b) with constant

increase per cycle, illustrated in Fig. lOa and lOb respec-

tively. The step program has a disadvantage in that load

and cycle corrections must be made depending upon the level

and position of the step during which failure occurred.

The linear program was selected in order to avoid such

corrections. However, it must be pointed out that the

linear program used actually represents extremely small

steps due to the operation of the programming device.

Variations in the rate of loading are accomplished by

variation in the program drum speed, all tests being run

at approximately the same loading frequency (see Table 3).

Alignment of the specimen in the gripping heads of the

machine was done by eye as recommended by the manufacturer
/

of the machine. The machine has a characteristic to show

misalignment very markedly by lateral vibrations, absence

of such vibrations giving a good indication of proper

alignment. Load and cycle readings were taken at timed

intervals during the progress of a test to determine

accurately the values of oC Fluctuations in line voltage

have a negligible effect on the performance of the testing

machine.
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It was planned to run three series of tests with mean

tensile stresses of 0 psi, 7500 psi, and 15,000 psi respec­

ively, Fig. 11. At each mean stress level both conventional

and Prot technique test data was to be obtained. However,

certain difficulties were encountered and only the 0 psi and

7500 psi mean stress series were run. The 15,000 psi mean

stress series could not be run as there were insufficient

damage cycles prior to the specimen elongating excessively

at the yield point.

In determining the straight line as plotted on the S~

vs. oCr diagram, the method of least squares was used;

the equation of the straight line being~

To obtain the be~t fit for any value of r, the constants,

SE and K' may be determined from the following formulas:

= ~(oC r) 2 .~SI)( - ~(OCr) (L«:r. So)

ml:{OC r ) 2 - a:OC!,)2

K' = m~rS~ - Loer
~SOl

mL(oC~)2 -l~OCr)J 2

A similar procedure was used to determine the value of m

from the plot on log-log paper of the conventional fatigue

data. This method was not entirely satisfactory, as will

be discussed later •

•
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4. TEST RESULTS

-13-

Static tensile and hardness properties are given in

Table 2. Data as shown are average values obtained from

three unwelded tensile coupons and two welded test speci­

mens. All fractures of welded tensile specimens occurred

outside the weld. X-ray pictures were taken of all welds to

ensure quality and uniformity. Examination of the pic,tures

showed no faults in the welds such that it was not necessary

to discard any specimens.

The endurance limit is defined as the highest stress

level within the elastic range at which a sufficient number

of cycles could be taken without apparent failure. The

specimen is said to have failed when it cracked sufficiently

through to cause the Vibrophore to cease operations. This

was normally at the appearance of a crack on the polished

edge for both convent'ional and Prot testing methods.

Test I - Zero Mean Stress

A series of seven type S specimens were run to determine

the conventional Endurance Limit. The results are tabulated

(Table 4) and plotted as shown on Fig. 12, in a normal S-N

curve. An Endurance Limit of 22,300 psi was determined.

The data also was plotted using Weibull's assumption as

shown in Fig. 13.
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A second series of nine type·S specimens were run using

the Prot technique. Groups of three specimens were run at

each of three values of 'OC. These results are tabulated

(Table 5) and plotted on Fig. 14. A straight line was

passed through the test points to determine an Endurance

Limit of 20,300 psi. Low values ofee were used in order to

force a fatigue failure prior to excessive plastic defor­

mation. Excessive elongation of the specimen would exceed

the limits of the testing machine and change the character

of the test.

A third series of six type X specimens were run using

the Prot technique. The change in design of specimen was

made so that acts of higher values could be used. The

change in specimen reduced the .length of the test section

such that its overall elongation was reduced. Hence,

larger values of ~ could be used producing failure stress

beyond yield point. This group was run at four values of

oc , results are shown in Table 6 and Fig. 15.

Test II - 7500 psi Mean stress

A first series of six type S specimens were run to

determine the Endurance Limit by conventional method. The

results as tabulated (Table 7) and plotted on Fig. 16

indicate an Endurance Limit of 24,200 psi. Again the da,ta

is also represented on a Weibull plot as shown in Fig. 17.
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The second series of nine type S specimens were run

using the Prot method. Three specimens were tested at each

of three values of OC. Again low values ofOC were used due

to the design of the specimens. These results are tabulated

(Table 8) and plotted (Fig. 18), yielding an Endurance Limit

of 23,000 psi.

Testing of a third series was attempted using a 15,000

psi mean stress level with little success, since the stress

level was too high to allow sufficient damage cycles prior

to yielding. If yielding of the cross section of the speci-

men was reached the load did not increase further, actually,

the load dropped from the upper yield point to the lower

yield point. The specimen then started to heat rapidly due

to plastic work followed shortly by a fracture.

5. DISCUSSION OF TEST RESULTS

,It is noted that the present tests gave higher Endurance

Limits for butt-welded connections than earlier tests at

other institutions. (18) This may show an improvement in

welding technique or in the quality of welding rods. The

back grinding and rewelding of the root may have improved

the Endurance Limito A normal amount of scatter was en-

countered in the conveptional approach, but the result seems

to fall within expected limits. The log=log plot of the

data from both series of tests show very close agreement in

the slopes of the best fit lines, Figs. 13 & 17.~epre­

sentative earlier data{18) show similar slopes, (Figs. 5 & 6).
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In testing the type S specimen using the Prot technique,

a larger amount of scatter was encountered in both series.

This may be due to the greater sensitivity of the approach to

variations in physical-properties of the specimens. In both

the zero psi and 7500 psi mean stress series, the Endurance

Limit fell about 1000 psi below that arrived at by the con-

ventional method. However, the scatter of results of either

method, conventional or Prot method, is of the same order

of magnitude.

It is seen that the type X specimens gave results

higher than the conventional Endurance Limit. Although the

specimen had a higher stress concentration factor, the rapid

increase in cross section provides local restraint to the

damaged zone. This in turn could account for the higher

Endurance Limit. However, this speculation certainly needs

further investigation.

The results presented are far from conclusive" Type S

specimens have shown themselves to be of inferior design.

A shorter specimen of say 8" length is indicated, with a

reduced section of small length. Also, results close to

the yield stress must be discarded as they are not indicative

of an elastic fracture. The effect of coaxing has not been

investigated.

The statistical approach using the method of Least
,

Squares was attempted using the formulation previously in-

dicated. The best fit straight line in the zero mean stress
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series gave meaningless results, since the scatter was too'

great. In the 7500 psi mean stress series better agreement

was found. On the whole, the method of Least Squares to

find a bes,t fit line may be too precise for evaluating a

restricted number of test points.

U~ing Weibull!s ass~ption for the S-N curve, a value
" (

of the exponent of OC was determined. In both series, an

attempt was made to replot Fig. 14 and 18 using~r as

abscissa instead of ~ 0 A higher value of the EndUrance

Limit resulted due to a shift of the test points to the

left., Insufficient data is available to draw any conclusion.

.,

6. CONCLUSIONS AND RECOMMENDATIONS

The results as presented, though not conclusive, give

some evidence that the method will work. They also show

that for mild steel the Prot method saves little time since

it is limited to low values of OC. This does not rule out

the method, as it may be used to make a good estimate of

the Endurance Limit if low values ofOC are used. The stress

at fracture could then be used as a starting point for the

conventional determination of the Endurance Limit.

The effect of coaxing on the results· of Prot tests is

uncertain. Its influence could be studied as follows: a

series of tests are run using some mean stress Sm and

several values 'of ~ to determine an Endurance Limit SE' then
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a second series of tests are run using the same mean stress

and ee' s, but introducing one change. Instead of starting

with a very small or zero fluctuating stress around 8m the

test is started with an amplitude 8E = 8m around a mean

stress 8m as shown in Fig. 19. Failure would then have to

occur at either

1. indicating coaxing,

2. indicating no coaxing or,

3. indicating a lack of damage cycles.

This procedure would seem to point up any effect that coaxing

may have on the Endurance Limit.

A greater number of tests should be run such that the

data can be treated statistically, this in turn would yield

more conclusive results. A change in the geometric shape

of the test specimen, as indicated previously, should lead

to less scatter in the results.
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7. NOMENCLATURE

OC' - constant stress increase per cycle (psi/cycle)

Cl - ordinarr S=N curve represented by (S-SE) N = K

C2 - a curve similar to Cl but displaced to the right

-19-

d - number of stress cycles, using constant stress
increase oc per cycle, between endurance limit SE
and failure stress ~ = S.

Dl - damage area required to produce failure of the specimen
under a constant stress amplitude, S representing the
value of the maximum stress

D2 - damage area required to produce failure of the specimen
at stress ~ = S using constant stress increase
(psi/cycle) .

K - a material constant: K = (S - SE)N, Eq. (2)

K
1

- a material constant: Ki = {2K'

m - a material constant, d~fined on page 6

n - number of stress cycles at stress S (0 <n( N)

N - number of stress cycles to failure at constant maximum
stress S

Noc - number·-of stress~cycles to failure .. at stress Soc'
using constant stress increase ~ per cycle

r - a material constant~ r = 1/(1 + m)

S - maximum stress producing failure at N cycles under
constant stress cycling

S~ - failure stress at Noc cycles using constant stress
increase oc. (psi/cycle)

6S - change in operating stress
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Nomenclature (contd.)

8E - stress at endurance limit

operatJng stress - maximum stress in any cycle~

8 = 8 + ocNo m

8m - mean stress level

-20-
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Heat' Specification I cr-. '"~lt Elong. Red. Chemical Analysis

No. y. 8" C Mn P Spsi psi '10 10
.ASTM

58J145 A373-54T 35~400 59~000 28.0 61. 6 0.17 0.65 00010 0.029

~~-~~~"=- '----= -l
, ......

Table 1 CHEMICAL AND PHYSICAL PROPERTIES OF
3/8" STEEL PLATE ASTM A-373-54T

(From Mill Report)

. '
Rockwell Hardness using "B"

Specimens. cry ~lt ,Elong. Red. scale with 1/16" ball

psi psi % % Plate, AOJ. Root or Weld
Weld Weld Average

\'lelded 37~100 58,100 16.5% 24.1% 59 n 81 79

Plain 31,900 56,300 31.6% 44.8% 58 -- -- --

'Table 2 PHYSICAL PROPERTIES OF SPECIMENS

Specimen Cross Section =
0.285 in2

Time for one Time for one
revolution of OC revolution of OC

Program drum., Speed (1) drum, Speed (2
Setting,

-seconds psi/cycle . seconds psi/cycle
--~

250 1645 0.1241 16,450 0.0124
200 1972 0.1035 19,720 0.0104
150 2659 0.0769 26,520 0.0077
100 4033 0.0506 . 40,330 0.0051

70 5685 '0.0359 ·56,850 0.0036_. -.L
Load variation - ° to 11,000 1bs.
pe',~ drum revo1uti'on

f
I

, Table. 3 RANGE OF PROGRAM FOR FROT METHOD
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Table 4 CONVENTIONAL DATA FOR ZERO MEAN STRESS SERIES

(TypeS Specimens)

- -- ..- -..__._-_ .........---
StresSlS =._~.~ ----].Specimen Cre.les t,o Farlure Failure

"~-"'-.-.. -. "-

Type S N psi psi
~-_.

D2 2,002 x 103 22,600 300
Gl 743.5 26,800 4,500
07-ll- 8,356 21,450
E-I0 691 24,030 1,730

I C-5 958 24,150 1,850
I B-1 445 26,900 4,6,00
L£-6 9,043.5 22,400 100

" No ailure S 2 00 si-;~ -

--
Specimen Failure Stress Soc OC ~

Type S psi psi/cycle ipsi!cycle

B9 28,000 .00895 .0945
A8 29,300 .00913 .095~
G4 24,100 .00883 .093
D5 . 29,250 .01138 .1066
D4 27,250 .01156 .1072
E9 27,560 .01142 .1069
A3 25,000 .01419 .1190
E8 27,850 .01382 .1175
A2 23,900 .01398 .1180

SE = 20,300 psi

Table 5 PROT METHOD DATA FOR ZERO MEAN STRESS SERIES

(Type S Specimens)

'.

Specimen Failure Stress Soc oC . ;re'
-,~.

Type X psi psi/cycle psi/cycle

D3 31,420 .01282 .113
B4 32,050 .0341 .1848
G5 36,950 .0344 01853
03

-'
35,250 .0764 .276

E1 38,850 .0772 .276
A10 41,800 .. 1231 .350 .

SE =,25,600 psi

- Table 6 ' PROT -METHOD DATA FOR ZERO .MEAN .STRESS SERIES
. -~'-.

. (Type X Specimens)
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..

Specl~en Cycles to Failure Fai1ur.e stress S S ~ S
E

Type S N psi psi

C10 612.5 x 10) 34,300 11,100
B2 304 34,300 11,100
Ell 733.5 29,700 5,500
G3 472.5 29,240 5,040
G9 3,517 24,520 320
D8 2,900 24,430 220

SE = 24,200 psi

Table 7 CONVENTIONAL DATA FOR 7500 PSI MEAN STRESS SERIES

(Type S Specimens)

Specimen Failure Stress SOt ex:. --lOd,
Type S psi psi/cycle ~psi7cycle'

C9 38,200 .01492 .1220
B8 35,800 .01407 .1185
Dl 35,900 .0138.8 .1178
E3 31,810 000837 .0913
B7 33,900 .00852 .0922
GIO 30,200 .00850 .0920
E2 28,200 .00558 .0745
A9 30,500 .00549 .0738
D9 34,850 .00557 .0744

SE =23,000 psi

Table 8 . PROT METHOD DATA FOR 7500 PSI .MEAN STRESS SERIES

(Type S Spe:ci;mens)

"\
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Fig. 7 STEEL PLATE AND SPECIMEN DETAILS
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1 - Main moving mass
2 - Opposing mass
3 - Specimen
4 Dynamometer
5 Pre-load spring
6 - Optical projector
7 - Dynamo~eter scale
8 Diaphragm
9 - Photo-electric cell

10 -Impulse generator
11 - Driving magnet
12 - Amplifier
13 - Oscillating mirror

Diagram showing working principle
of the Vibrophore(2l)

Vibrophore Operating Data

mm
s'econd

watt
watt
in %

in. kg.
in. kg.

t'ons \ ±.5
tons 10

cycles per

Serial Number
'10HFP!L22

+0.6
60+300
, 200

700
±1.5
±~5
±5

1%
540
400
700

l~OO

mm.
mm.
kg
kg

about
about

metric
metric

High Frequency Vibrophore

Maximum alternating load
Maximum unilateral tensiie or

compressive load
Maximum elastic elongation on specimen
Range of ~r~quency

Maximum output of amplifier
Power input
Accuracy of dynamometers
Maximum error of dynamometer No. 1
Maximum error of dynamometer No. 2
~oad constancy at ~ 10% fluctuations of

the line voltage: . betteIl.',than
M~xirmlln distance between specimen holders
F~ee space between the columns
~otal weight without base block

'-'l.veight of base block

Fig. 8 VIBROPHORE WORKING PRINCIPLES
AND OPERATING INSTRUCTIONS
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Fig. 9 TWO MASS SYSTEM
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Fig. 20 VIBROPHORE WITH TEST SPECIMEN
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Fig. 21 PROGRAMMING DEVICE

Fig. 22 TYPE S AND X SPECIMENS
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Fig. 23 SPECIMENS WITH INITIAL FRACTURES
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Fig. 24 FRACTURED SPECIMENS
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