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ABSTRACT 

Fluidization systems in the coastal environment can be used to 

maintain a channel as an alternative to dredging. These systems consist of a 

water pumping system and a source pipe with perforations at or near a tidal 

inlet. Fluidization studies have been conducted at Lehigh University over 

the past several decades. Previous work has included laboratory pilot scale 

testing to gather pressure vs. location data and mathematical model studies 

using two-dimensional finite difference and finite element methods. This 

work evaluates the three-dimensional effects of fluidization using the finite 

difference model developed by McDonald and Harbaugh (1988) (herein after 

referred to as the "MODFLOW Model"). The flow is mostly two~dimensional, 

being uniform along the pipe except for variations close to the pipe caused by 

the fact that there are small holes (usually l/8" diameter) spaced 2 inches 

apart. 

The major conclusions of this study are: 

• a highly refined grid near the source pipe holes is required because this 

is where the greatest change in head occurs. This had already been 

determined in the 2-D studies and it was shown to be even more critical 

in the 3-D models. The greatest change in head occurs at the nodes 

adjacent to tll.e source perforation constant head nodes. The distance 

between nodes at these locations had to be reduced to extremely small 

dimensions to achieve an evenly spaced head distribution over the 

entire model. 
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• three-dimensional effects become negligible at locations further than 

about four centimeters away from the fluidization source pipe holes. A 

significant amount of head is lost in the immediate vicinity of the holes. 

• for a given pipe pressure, the overall difference in hydraulic head 

predicted using a 2-D (vertical profile) grid ranges from about four 

times the 3-D grid model near the source to about double the 3-D model 

at locations further away from the source pipe area, resulting in a lower 

flowrate for this pipe pressure. 

• for a given pipe pressure, the high losses near the source holes results 

in the hydraulic head in the 3-D model being a factor of 2-4 times less 

than the 2-D results far from the pipe, resulting in a much lower 

simulated flow rate. By setting a higher head at the pipe holes to 

overcome this loss, a head distribution can be selected that is the same 

for 2-D and 3-D simulations except for the region within four 

centimeters of the pipe. The resulting 3-D vertical gradient prediction 

is then virtually the same as the 2-D gradient prediction, resulting in 

the same velocity field, and the same incipient flow rate. 
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CHAPTER 1 - INTRODUCTION 

Fluidization is the upward flow of a fluid through a granular bed of 

particles at sufficient velocity to suspend the grains in the fluid. Fluidization 

occurs when there is sufficient fluid flow to exert an upward drag on the 

particles equal to their submerged weight. For fluidization to occur, the 

hydraulic gradient must be slightly greater than unity in the upward 

direction. 

Fluidization studies using fine sands have been conducted at Lehigh 

University over the last several decades examining pre-, incipient and post

fluidization. This work is a continuation of those studies using a three

dimensional finite difference ground water flow model (McDonald and 

Harbaugh,1988). The current work evaluates the construction of model 

matrices and layers (slices) to evaluate 3-D effects. These will be compared 

to 2-D studies conducted by Lindley and Lennon(1991) and 2-D finite 

element studies conducted by Kopaskie(1991). 

1.1 Incipient Fluidization 

The theory of fluidization is discussed by, among others, Bear (1972), 

Weisman et al (1988), Roberts et al (1986) and Kopaskie (1991). Fluidization 

can best be described as the upward flow of a fluid through a granular bed at 

sufficient velocity to suspend the grains in the fluid (Cleasby and Fan, 1981). 

Flow through orifices in a source pipe can fluidize a region in the media 

above the source pipe. Clifford (1989) identified five distinct processes: pre

fluidization, initiation of fluidization (incipient fluidization), full fluidization 

3 
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where a region of the sand bed above the source pipe is expanded, slurry 

removal from the fluidized region, and erosion of the remaining sand bed by 

the jets once the slurry is removed. This study is primarily concerned with 

the initiation of fluidization or incipient fluidization. The minimum vertical 

velocity, Vy, causing fluidization is determined from the upward flux rate 

given by Darcy's Law: 

Vy = Kyly 

Where 

Ky = hydraulic conductivity in the vertical direction 

Jy = the negative hydraulic gradient. 

The critical hydraulic gradient to produce incipient fluidization is 

generally considered to be unity (Bear, 1972). The hydraulic heads 

determined in this three-dimensional study will be used later to determine 

hydraulic gradients to show where incipient fluidization should occur in a 

physical model. This then would later be verified using an appropriate 

physical model. 

1.2 Finite Difference Simulation of Incipient Fluidization 

The finite difference model used here is the McDonald and Harbaugh 

(1988) modular groundwater flow model (MODFLOW Model). This model 

was developed based on the theoretical development presented in Chapter 2 

of the MODFLOW Model documentation. Equation 1 of McDonald and 

Harbaugh (1988) is the general partial differential equation describing 

ground water flow: 

4 
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where 

x, y, and z are Cartesian coordinates aligned along the major axes of 

hydraulic conductivity, Kxx, Kyy, Kzz; 

h is the potentiometric head (L); 

W is a volumetric flux per unit volume and represents sources and/or 

sinks of water (t-1); 

Ss is the specific storage of the porous material (L-1); and 

t is time (t). 

This equation is combined with Darcy's Law and the continuity equation to 

yield an equation for hydraulic head (Equation 26 of McDonald and 

Harbaugh, 1988).The development of finite differ.ence equations is described 

by many sources such as Freeze and Cherry (1979).The experimental 

conditions can be simulated by using these equations along with the 

appropriate boundary conditions. 

In this study, the numerical model is used to simulate conditions in a 

physical model that has been run to obtain actual pressure data. This 

physical model is located in the Imbt Hydraulics Laboratory at Lehigh 

University. Figure 1.1 is a .. side view of the physical model. The model is 

filled with fine sand and is 360 em. long by 102 em. deep by 30.5 em. wide. 

The width is narrow enough to consider this model as essentially a 2-

dimensional model, which is what has been done in previous studies. This 

study, however, does consider the 3-D effects. Figure 1.2 shows the third 

dimension of the model. This end view shows detail of the fluidization pipe 

5 
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which has 0.317 em. orifices spaced every 5.08 em along the width of the 

tank. A constant hydraulic head is supplied to these perforations to supply 

the fluidization force. In the 2-D studies, these orifices are essentially 

modeled as a "slot" along the width of the tank since there is no way of 

varying conditions along this third dimension, where as the 3-D model 

represents these holes spaced 2 inches apart. Figure 1.3 shows the data 

acquisition system of the physical model. The pressure readings obtained 

from this system give a way of validating the results obtained in the 2-D and 

3-D numerical studies. 

1.3 Scope of Study 

The scope of this work is to extend the basic 2-D MOD FLOW Model grid 

developed by Lindley and Lennon (1991) to three dimensions. The model 

was run on the Lehigh University Sun Unix computer system. The 2-D 

Model used a single, uniform, "vertical slice" to simulate the physical system. 

The third dimensiop, i.e. the width of the system, was modeled by adding 

another slice (or "layer" according to MODFLOW documentation) to the 

simulation. Subsequently, additional"slices" were added to form 3, 4, 5, 6, 

and 7 vertical slices (layers) successively to evaluate how the head variation 

changed as the model was divided into more layers. McDonald and 

Harbaugh (1988) intended the user to view these layers as "horizontal slabs". 

However, for this application, they are used as vertical slices. The term 

"layer" in the McDonald and Harbaugh MODFLOW documentation 

corresponds to the term "vertical slice" in this study. 

6 
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After a 5 vertical slice simulation was run, a grid sensitivity evaluation 

was made to determine how the layer spacing should be chosen to reduce the 

computational error. Two criteria are used to judge the computational error. 

The major criterion is to choose the grid spacing in all three directions to 

minimize the maximum change in head in any cell to an adjacent cell in the 

grid. The other criterion is to have a change in head evenly distributed over 

the nodes. Even though the grid resolution was chosen to be very fine near 

the source holes, the largest change in head occurs between nodes in the 

immediate vicinity of the source holes. Additional studies were completed 

with 6 and 7 vertical slices, first changing most of the slice thicknesses and 

then changing the row and column distribution in the horizontal and vertical 

directions. 

7 
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CHAPTER 2 -APPLICATION OF THE FINITE DIFFERENCE MODEL 

2.1 Description of Domain Being Simulated 

Figure 2.1 shows a definitional sketch of 2 dimensions (a vertical slice) of 

the physical model simulated by the MODFLOW model. This slice is a 

portion of the model that includes perforations supplying the constant 

hydraulic head that causes fluidization of the sand bed. In the 3-D 

numerical simulation, some of the slices contain these holes and some do not. 

Figure 2.2 is a top view of this model showing the third dimensional area 

being modeled. This particular view shows the dimensions for the 5-layer 

model run. The upper diagram in this figure shows the entire physical model 

with the portion that was modeled numerically in ·crosshatch. The lower plot . 

in this figure shows an exploded view of the crosshatch area. 

These two figures allow a discussion of the boundary conditions that are 

used in the simulations performed in this study. ·At the sand surface h is set 

to zero. On the impermeable side walls the gradient is zero (oh/ox=O), as is 

the case along the impermeable bottom (oh/oy=O). Since Darcy's Law is the 

product of gradient and hydraulic conductivity, a zero gradient results in an 

imper!neable boundary. Along the solid source pipe, ah/an, the head gradient 

in the normal direction, is also zero, representing an impermeable (no flow) 

boundary except for the orifices which have a boundary condition of specified 

head, simulating flow. There is also a symmetry boundary along the vertical 

plane that bisects the source pipe. In the 3-dimensional simulations done in 

this study, an additional no flow boundary is specified at the point of 

8 
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symmetry located on a vertical plane situated one half way between two 

source holes. 

2.2 Selection of a Model 

Table 2.1 summarizes the three modeling efforts applied to fluidization to 

date. MODFLOW is selected as the model to use for continuing study. Its 

versatility in modeling a range of sites, its acceptability and straightforward 

use make it the best choice of those considered. Its versatility should make 

MODFLOW a strong candidate for use in any future fluidization studies. 

2.3 Description of MODFLOW Model Components (Packages) 

The Modular 3-Dimensional Finite-Difference Groundwater Flow Model 

(MODFLOW), McDonald and Harbaugh, 1988, has the capability to simulate 

transient 1-, 2- and 3-dimensional groundwater flow in an inhomogeneous 

and anisotropic aquifer system of multiple layers. This model uses a 

rectangular, block centered, finite-difference calculation and allows for a 

variable grid. Layers can be defined as either confined or unconfined. 

The computer program is designed to operate through highly independent 

modules organized into "packages". These modules allow the user to 

incorporate stress from pumping or injection wells, areal recharge, flow

through river beds, drains, evapotranspiration and general head boundaries. 

Representation of special features such as vertical barriers can be affected 

in the MODFLOW code through mathematical manipulation of conductivities 

9 
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and grid dimensions through use of the equations described by Hansen 

(1991). 

Differences in the third dimension can be represented by changing 

properties in different layers( vertical slices). For example, alternating layers 

of clays and sands can be depicted by assigning different transmissivities to 

the different layers. In this fluidization simulation, the slices with 

perforations are represented by including a constant hydraulic head of 100 

em. 

The model output contains an extremely large number of data points. The 

69 row by 74 column by 7 vertical slice model contains 35,742 output points. 

In order to confine the data analysis to a manageable number of points, the 

UNIX operating system language was used to "cut" important rows or 

columns out of the output. UNIX programs and files were used or created to 

accomplish this. Lotus/Excel programs were used to plot results downloaded 

from the Lehigh SUN minicomputer system. 

2.4 Description of key MODFLOW Inputs for this study 

The computer package inputs used to run the MOD FLOW Models 

evaluated here are listed and described in Table 2.2. The MODFLOW Model 

documentation was used to specify input for this program. This 

documentation gives very specific instructions on how the input parameters 

must be specified. The key input packages used for each simulation are the 

".BAS" and the ".BCF" packages. The .BAS package is the "Basic" input file 

while the .BCF package is called the Block Centered Flow Program. 

10 
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.BAS Package Input 

The .BAS input includes the files used for input and output as well as a 

description of the matrices used. This study uses a 7 4 column by 64 row 

matrix in all cases. Initially, in the two slice model system, both slices 

contained a 100 em constant hydraulic head to simulate the head supplied by 

the source pipe. This was done to validate the 3-D model vs. the previous 2-D 

model study. After this comparison was verified, one slice was changed from 

the 100 em hydraulic head to impermeable where there was no perforation or 

orifice in the source pipe. _This more accurately portrays the actual physical 

model which had a hole spacing of 5.08 em (2"). The 2-D model was actually 

simulating the head from a slot along the pipe rather than 1/8" holes spaced 

every 2". All other hydraulic head values were determined by the model or 

were boundwies on either model edges or surface conditions. A separate 

input matrix must be added for each slice (layer). 

.BCF Package Input 

The .BCF input includes the spacing of the rows and columns as well as 
. . . '··: ~ · .. 

the hydraulic transmissivity and the hydraulic conductance between slices. 

Aside from the general matrix dimensions and initial bou:p.dary conditions 

which are input in the .BAS input, this file contains all critical spacing and 

hydraulic parameters. 

The key hydraulic parameters that are input are the transmissivity and 

conductance. Both are a function of the hydraulic conductivity, K. The K for 

the sand used in this model has been determined by others using several 

11 
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methods. The K value used in this study was 0.012 em/sec. The 

transmissivity is calculated as follows: 

T = K x thickness of layer(slice). 

A separate transmissivity is input for each slice in the model. 

The hydraulic conductance, C, is calculated according to: 

C= K 
Length between nodes of 2 layers(slices) 

Conductance is used to calculate the flow between layers and there will be 

one less conductance value than layers, i.e. the last layer does not have to 

conduct water between it and the edge of the model and therefore no 

conductance value is input for that layer. ' • 1 '. ' ~ j I ~ 

' . ·-1' ' 

.·· ... 

12 



I 
I 
I_ 

I
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER 3 - MODEL TRIAL DISCUSSION 

3.1 Summary of Simulations 

The starting point for the simulations used in this study was the one 

vertical slice model developed by Lindley and Lennon (1991). The side view 

of the model was shoVvn in Figure 2.1.. The single vertical slice model is 

homogeneous through the "z" direction (perpendicular to the page). Figure 

3.1 is a side view of the model showing the finite difference grid in the x-y 

plane. There is a very fine grid dimension around the source hole because 

this·is.where the greatest amount of change in head occurs over extremely 

small distances. Figure 3.2 is an enlarged view of the finite difference grid 

around the source hole. Figure 3.3 is a further enlargement of the grid in the 

source hole area. This grid is similar to that of Lindley and Lennon (1991), 

which was used in all model runs of 5 slices or less. Towards the end of this 

simulation study, the finite difference grid was modified to what is shown in 

these figures to obtain a more uniform change in head between nodes. The 

modifications made an even finer grid at the source hole boundaries. The 

differences between the two finite difference grids can be seen in Tables 3.1 

and 3.2, which show the column and row spacings, respectively. These 

spacings are input into the "block centered flow" or .BCF package. 

Two identical vertical slices were used to start the multi-layer study. The 

two identical slices were then changed to one slice with a constant head of 

100 em. representing the fluidization perforation and one slice with a 

constant head of zero to represent the solid pipe surface. Then a progression 

of simulations was completed adding one slice each run as shown in Figure 
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3.4. Simulation No. 1 contained two identical slices, both with the 100 em. 

constant head, which represents a. perforation (actually a slot in the 2-D case) 

across both slices. Simulation No.2 simulated the perforation in one slice 

with a hydraulic head of 100 em, and no perforation in the second slice, 

which was simulated with a no-flow node in the matrix. Simulation No. 3 

included one slice with the perforation and two slices without the perforation. 

The four slice run (Fig. 3.4, Simulation No. 4) included two slices with and 

two without the perforation, while the five slice run (Fig. 3.4, Simulation No. 

5) included two with the perforation and three without. Mter these 

simulations were completed, an evaluation of the change in head between 

slices was made and it was decided to add a sixth slice along with varying the 

thicknesses of the slices without the perforation (Figure 3.4, Simulation No. 

6). Then an additional six slice run was made, changing the spacing of the 

rows and columns in the .BCF file. This change in spacing of rows and 

columns was also done with the objective of obtaining a similar head change 

between successive rows and columns. A seventh slice was added to optimize 

the change in head between slices. A second seven slice run was completed 

to achieve a mar~ even change in head between successive slices. The 

dimensions of the slices in these 7 slice simulations are shown in Figure 3.4, 

Simulations 7a and 7b. Finally, a 2-D, 2 slice model was run with the "slot" 

size reduced to have equivalent area to the holes in the multi-slice runs. 

This run was used to compare the 2-D model results vs. the 3-D model. 

14 
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3.2 Discussion of Results 
. ·-· 

The results of these model runs are shown pictorially in Figures 3.5 

through 3.31. Figures 3.5 through 3.15 show cross sections along the length 

of the model using Row 38 which is opposite the center of the hole or 

perforation supplying the 100 em. constant hydraulic head. This row is 

considered the most useful row to show the variation in head with distance 

from the source. Figures 3.16 through 3.26 show the variation of head in a 

cross sectional view at Column 25. This column is also considered a key 

column to show the variation of head in three dimensions because the column 

crosses the source pipe in front of the hole. 

The results of running the two through five slice cases showed some 

inconsistencies in how head varied as an additional slice was added to the 

model. This could have been caused by the fact that as one slice was added, 

the thickness of other slices were changed, i.e., more than one change was 

made to the model with each progressive run. In addition, the change of 

heads between slices was not equal and it was decided to alter the 

distribution of thickness of the slices i~ the s~ slice runs. Also, there were 

large changes in head near the source as shown on data gaps in the Column 

25 cross sections that show the entire head profile from 0-100 em. It was 

decided to change the row and column spacings in the .BCF file. The revised 

vs. original .bcf column/row spacings are shown in Tables 3.1 and 3.2. These 

six slice runs are shown in Figures 3.11, 3:12, 3.22 and 3.23. There was a 

large improvement in the distribution of head with the new spacing between 

the rows along columns. This can be seen by comparing Figure 3.22 to 

Figure 3.23. All model plots were produced using Excel and where 
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comparisons are discussed they are in similar scales so that similarities and 

differences are clear. 

Further optimization was obtained by running 7 -slice simulations. Both 

7 -slice runs used the revised .BCF spacing for rows and columns. The slice 

thicknesses were adjusted as shown in Figure 3.4, Simulation No. 7a and 7b. 

The resulting head distributions are plotted in Figures 3.13 through 3.15 for 

Row 38 and Figures 3.24 through 3.26 for Column 25. 

The final 7-slice simulation shown in Figures 3.4-Simulation No. 7b, 3.14, 

3.15, 3.25, 3.25A and 3.26 was considered the optimum for this study. Figure 

3.27 is a "ribbon plot" of this 7 -slice mo<;Iel ~lP)-. Jhis figure gives an alternate 

view to show how the change in head is distributed over the 7 slices. 
!' :' • I 

Examination of this figure shows that the change in head }?etween slices is 

much more even in the middle slices. There wer~ ~the~ comp~ting factors 

that prevented obtaining a more even distribution at the slices near the 

edges. At the perforation, which was located in slices numbered 1 and 2, the 

change in head between slices was small. There w.as a large change between 

slices 2 and 3, which is where the transition from a slice with the constant 

head (perforation) meets a slice without the constant head. This large 

change ~as minimized in successive simulations by making these 2 slices ... 

smaller. In the final 7-slice simulation, the thickness· of slice 2 was only 0.04 

em. and slice 3 was only 0.02 em. The distance between nodes of adjacent 

finite difference cells located on these 2 slices was only 0.03 em. There was 

also a smaller change in head at the outer slices numbered 6 and 7. Despite 

this small change in head, the size of slice number 7 was not increased 

because it was already substantially wider than any other layer - 1.5 em. vs. 
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0.6 em. for slice 6, which is the next largest slice. It was felt that making this 

layer wider would compromise some of the model calculations, or, in other 

words, making this already large slice bigger would concentrate the 

calculations into a thickness that would be a very small percentage of the 

total thickness. 

Examination of the figures comparing the heads calculated using the 

initial two identical slices and those calculated in any of the models using 

one or more slices with no flow nodes shows that the two identical slice model 

results in a calculated head that is 2-4 times the results of the models with 

no flow slices. The identical sliGe model is really simulating a "slot" across 

the entire model thickness, rather than a perforation. To determine if the 
I' ( . 

ad~itional perforation area added by this simplified simtdation was what was 

causing the higher resulting heads, an additional ·2-slice simulation was run 

with a slot size reduced to the equivalent area of a> perforation. The results of 

this simulation, shown in Figures 3.28 through 3.31, show that the estimated 

head is still higher than simulations run with no flow slices. No additional 

study to determine the cause of this phenomenon· was completed. 

3.3 Vertical Gradient Calculations 
'~·! 

A key objective of this study was to calculate the vertical hydraulic 

gradient, J, and compare the 3-D results to the 2-D results determined 

previously by others. Figure 3.32 shows the results of the calculations in a 

plot of elevation vs. vertical gradient. The plots are shown at locations at the 

center of the source pipe (x=O), at the source hole (x=2.54), and at a point 9 
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em. away from the center of the source pipe. The calculated gradients are 

essentially the same for all slices and are very similar to the previous 2-D 

results. Apparently, while the 3-D calculations showed some difference in 

head between slices, the vertical gradient within any slice is very similar to 

the other slices because the calculation is based on a region above the region 

of significant 3-D effects. 

The calculations for determining J are shown in Table 3.3, an Excel 

spreadsheet. The key calculations are summarized as follows. The difference 

in head between any two nodes is simply the subtraction of the two heads 

calculated by the MOD Model at those two points. The distance between two 

nodes is the distance between the center points of those two nodes. After 

these 11raw11 gradients are calculated, a factor is developed to multiply all 

gradients so that the overall average gradient is 1.02, which is the necessary 

gradient for fluidization according to theory. This factor was determined by 

calculating the average gradient for the 15 cells located above the pipe at a 

distance of approximately 9 em. from the pipe. Column 62 in the matrix is 

located about 9 em. from the pipe. After this average 11raw11 gradient was 

calculated, it was divided into 1.02 to determine the correction factor. The 

factor determined by these calculations was 3.89. All 11 raw11 gradients were 

multiplied by this factor. The gradients calculated with the hydraulic heads 

from the MODFLOW model would have been the same as these adjusted 

gradients if the initial constant head used for the source pipe was 389 em. 

rather than lOOcm. 

Table 3.4 shows calculated gradients (J) at 11 key11 locations. The locations 

considered important for comparison were at the source pipe center line, at 
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the source perforation, and at a point 9 em. away from the pipe center. The 

multi-layer calculations are identical directly over the pipe and at 9 em away 

from the pipe, so that only one value is shown. Calculated gradients at the 

source perforation are shown for the first, third and seventh slices. The 

gradients at the source pipe center line, the source hole and at 9 em. away 

from the pipe center are plotted on Figure 3.32. While there is some 

difference in the values calculated at the source hole for the three slices, it is 

not visible on the scale plotted in Figure 3.32. Finite element calculations 

(Kopaskie 1991) are shown for comparison. A comparison with the finite 

element calculations using a larger scale is shown in Figure 3.33. The 

gradients calculated using the two methods for a 9 em distance from the pipe 

are similar. Lennon et al (1991) provide comparisons to experimental data. 

3.4 Hydraulic Head Predictions 

The MOD FLOW predicted hydraulic head is shown in Figure 3.34. The 

water flow is perpendicular to the lines of equivalent hydraulic head. Near 

the source hole, the flow is generally upward, although there is some 

horizontal and downward flow component. The hydraulic head plots are 

similar to the two dimensional studies, even though the calculated head is 

lower than the head calculated in the 2-D studies. 
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CHAPTER 4- CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

The first key conclusion from this work is that the three-dimensional 

effects disappear after about four centimeters distance from the perforation. 

This fact is important because it can be used to evaluate what weaknesses 

there are in two-dimensional models run which are more widely available 

and are easier to input and run than a three-dimensional model. The second 

major conclusion is that the overall head predicted by the three-dimensional 

model varies from about one fourth the single layer model near the source to 

about one half the single layer model at locations further away from the 

source. This factor is also important when comparing 2-D models to real 

three-dimensional effects. In addition, it was found to be important to review 

the spacing of layers, rows and columns to try and get an equal change in 

head between each layer. This was not always possible. The key area of 

change is the location where the perforation meets the solid pipe and there 

are several layers focused in this area to simulate the head change around 

these perforations. 

4.2 Recommendations for Future Work 

The following is a list of suggested tasks that would enable further 

verification of the mathematical models being used to predict fluidization. 

These further verification studies would help to make the models more 

valuable as predictive design tool in the development of fluidization systems. 
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For the physical model, test the validity of the 3-D model studied herein 

by placing multiple pressure probes along the thickness of the model at 

points close to the source pipe. For the MODFLOW numerical model, vary 

the "Strongly Implicit Procedure" (SIP) parameters to assure that the 

solutions determined here are accurate. The closure criteria resulted in 

errors ranging from 0.5% for the two slice simulations up to 8.75% for the 

seven slice runs. While these errors are high, the results obtained as the 

number of layers was increased appear consistent. Using additional 

iterations should eliminate this problem. A refinement of the grid should be 

conducted by adding additional layers. 
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TABLE 2.1 
COMPARISON OF THIS STUDY VS. PREVIOUS 

INVESTIGATIONS 
APPLICATION OF CONSIDERED MODELS 

FEM 2-D 3-D 
KOPASKIE l\IODFLO\V lYIODFLO\V 
(1991) LINDLEY (THIS · 

(1991) INVES-
TIGATION) 

PUBUC NO YES YES 
DOMAIN 

IRREGULAR YES YES YES 
GRID 

DIMENSION 2-D 2-D 3-D 
SIIYIULA TED 

CAPAPBLE NO YES YES 
OF TRANS-
lENT 

Sll\'IULA- s s s 
TIO_N 
STEADY OR 
TRANSIENT 

FEl\'1- FINITE ELEIYIENT l\IETHOD 

23 

FUTURE 
SUGGES-
TIONS 

YES 

YES 

3-D 

YES 

T 
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TABLE 2.2 -LIST OF PACKA.GES 

PACKt...GE NAi'>.fE 

Basic 

Block ce:1te~ed Dow 

Output 

Well 

Recharge 

River 

:C·;a pot:-anspiration 

Ge:1e:-al-Head Boundaries 

Strongly Impiicit 
Procedure 

Slice-Successive 
Overrdaxa tion 

ABBREv"'I.ATIO~ 

BAS 

BCF 

OUT 
(includd in B . .!..S) 

\VEL 

RCH 

RIV 

E¥1 

G:--3 

SIP 

SOR 

24 

PACKt...GE DESCRIPTION 

Handles those tasks that are a part 
of the model as a whole. Among 
those tasks are specification of 
boundaries, determination of time, 
ste? length, establishme:~t of 
initial conditions and printing of 
resu Its. 

ulculates te;-;n.s of finite differ
ence equations which represe:~t 
flow within the porous medium; 
specifically, Dow from cell to 
cell and flow into storage. Cell 
dimensions, layer transmissivity 
and conductance between laye:-s are 
spe::ilied in this package. 

Input to control the amount 
and format of program output. 

Adds terms re?resenting well flo·.:r 
to the finite-difference equations. 

Adds terms representing areally 
distributed recharge to the finite 
difference equations. 

Adds terms representing flow to 
or from rive:; or other surface .,.a ter 
bodies to the finite difference equations. 

Adds terms representing flow to 
drains to tb:: finite-difference 
equations. 

Adds te;-;ns representing IT to tbe 
finite-diffe~e:~ce equations. 

Adds tem.s representing general 
bead boundaries to the finite
difference equations. 

Iteratively solves the system of 
finite-diiT::rence equations using 
the Strongly Implicit Procedure. 

Iteratively solves the systems of 
finite-difference equations using 
slice-successive overrc:laxa tion. 
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TABLE 3.1 

COMPARISON OF REVISED VS ORIGINAL .BCF COLUMN SPACINGS 

I I 
I 1 I I 

Row No. I Revised .BCF Original .BCF 
IDROW, em. !Depth, em. DROW, em. Depth, em. 

I I I 
1 I 1.0675 I 1.0675 I 1.0675 I 1.0675 
2 I 4 I 5.0675 4 I 5.0675 
3 I 4 I 9.0675 I 4 I 9.0675 
4 I 3.9 I 12.9675 3.9 I 12.9675 
5 I 3.5 I 16.4075 I 3.5 I 16.4675 
6 I 3.5 I 19.9675 I 3.5 19.9675 
7 I 3.1 I 23.0675 I 3.1 23.0675 
8 I 3 26.0675 3 26.0675 
9 2.6 28.6675 2.5 I 28.5675 
10 2.3 30.9675 2.3 I 30.8675 
11 2.1 I 33.0675 2.1 I 32.9675 
12 I 1.75 I 34.8175 1.75 I 34.7175 
13 1.6 I 36.4175 1.6 36.3175 
14 I 1.35 37.7675 1.35 I 37.6675 
15 I 1.1 I 38.8675 1.1 I 38.7675 
16 I 0.8 I 39.6675 I 0.8 I 39.5675 
17 I 0.6 I 40.2675 0.6 I 40.1675 
18 I 0.3908 I 40.6583 0.3 I 40.4675 
19 I 0.3 I 40.9583 I 0.3 _I 40.7675 
20 I 0.3 I 41.2583 0.3 I 41.0675 
21 I 0.17 - J 41.4283 0.17 I 41.2375 
22 I 0.11 I 41.5383 0.11 I 41.3475 
23 I 0.09 I 41.6283 I 0.11 I 41.4575 
24 I 0.07 I 41.6983 0.08 I 41.5375 
25 I 0.05 I 41.7483 0.08 I 41.6175 
26 I 0.025 I 41.n33 I 0.07 I 41.6875 
27 I 0.015 I 41.7883 0.05 I 41.7375 
28 I 0.0008 I 41.7891 I 0.025 I 41.7625 
29 I 0.0005 I 41.7896 0.025 I 41.7875 
30 I 0.0003 I 41.7899 0.025 I 41.8125 
31 I 0.0001 I 41.79 0.025 I 41.8375 
32 I 0.0001 I 41.7901 I 0.025 I 41.8625 
33 I 0.0003 I 41.7904 I 0.025 I 41.8875 
34 I 0.0011 I 41.7915 I 0.025 I 41.9125 
35 I 0.01 I 41.8015 0.025 I 41.9375 
36 I 0.0289 I 41.8304 I 0.025 I 41.9625 
37 I 0.0789 I 41.9093 I 0.025 I 41.9875 
38 I 0.0789 I 41.9882 I 0.025 I 42.0125 
39 I 0.0789 I 42.0671 I 0.025 I 42.0375 
40 I 0.0289 I 42.096 I 0.025 I 42.0625 
41 I 0.01 I 42.106 I 0.025 I 42.0875 
42 I 0.0011 I 42.1071 I 0.025 I 42.1125 
43 I 0.0003 I 42.1074 I 0.025 I 42.1375 
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TABLE 3.1 

COMPARISON OF REVISED VS ORIGINAL .BCF COLUMN SPACINGS 

I 
I 

Row No. Revised .BCF Original .BCF 
DROW, em. Depth, em. DROW, em. Depth, em. 
I 

44 I 0.0001 42.1075 0.025 42.1625 
45 I 0.0001 42.1076 0.025 42.1875 
46 I 0.0003 42.1079 0.025 42.2125 
47 I 0.0005 I 42.1084 0.025 42.2375 
48 I 0.0008 42.1092 0.025 42.2625 
49 0.015 I 42.1242 0.05 42.3125 
50 0.025 42.1492 0.05 42.3625 
51 0.05 I 42.1992 0.08 42.4425 
52 0.07 42.2692 0.08 42.5225 
53 0.09 I 42.3592 0.08 42.6025 
54 0.11 42.4692 0.11 42.7125 
55 I 0.11 42.5792 0.11 42.8225 
56 0.25 42.8292 0.25 43.0725 
57 I 0.25 I 43.0792 0.25 43.3225 
58 I 0.35 43.4292 0.35 43.6725 
59 0.6 44.0292 0.6 44.2725 
60 0.7708 I 44.8 0.6 44.8725 
61 1.25 I 46.05 1.25 46.1225 
62 1.65 47.7 1.65 47.7725 
63 2.1 49.8 2.1 49.8725 
64 2.7 52.5 2.7 52.5725 
65 I 3.7725 56.2725 3.7 56.2725 
66 5.05 61.3225 5.05 61.3225 
67 7.55 68.8725 7.55 68.8725 
68 14.45 I 83.3225 14.45 83.3225 
69 18.6775 I 102 18.6775 102 

26 



I 
I 
I. 
1-
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

TA3LE 3.2 

COMPARISON OF REVlScu VS ORIGINAL .BCf ROW S?ACINGS 
I I I I 
I I I I 
I Revised .SCf I Original .ac;: 

Column No. IDCOL, em. IDis:anee, em. IDCOL, em. IDis:anee, em. 
1 I 0.3529 I 0.3529 I 0.3529 I 0.3529 
2 I 0.3529 I 0.7053 I 0.3529 I 0.7053 
3 I 0.3529 I 1.0537 I 0.3529 I 1.0587 
4 I 0.3155 I 1.3742 I 0.3 I 1.3587 
5 I 0.21 I 1.5342 I 0.21 I 1.5587 
6 I 0.17 I 1.7542 I 0.17 I 1.7387 
7 I 0.14 I 1.E942 I 0.14 I 1.8787 
8 I 0.1 I 1.9942 I 0.1 I 1.9787 
9 I 0.09 I 2.0842 I 0.09 I 2.0687 
10 I 0.09 I 2.1742 I 0.09 I 2.1587 
11 I 0.06 I ·2.2342 I 0.05 I 2.2187 
12 I 0.04 I 2.2742 I 0.04 I 2.2587 
13 I 0.04 I 2.3142 I 0.04 I 2.2987 
14 I 0.025 I 2.3392 I 0.025 I 2.3237 
15 I 0.025 I 2.3642 I 0.025 I 2.3487 
16 I 0.025 I 2.3892 I 0.025 I 2.3737 
17 I 0.0175 I 2.4057 I 0.0175 I 2.3912 
18 I 0.0175 I 2.4242 I 0.0175 I 2.4087 
19 I 0.0175 I 2.4417 I 0.0175 I 2.4262 
20 I 0.0175 I 2.4592 I 0.0175 I 2.4437 
21 I 0.0175 I 2.f,767 I 0.0175 I 2.4612 
22 I 0.0175 I 2.4942 I 0.0175 I 2.4787 
23 I 0.0175 I 2.5117 I 0.0175 I 2.4962 
24 I 0.0175 I 2.5292 I 0.0175 I 2.5137 
25 I 0.002 I 2.5312 I 0.0175 I 2.5312 
25 I 0.002 I 2.5332 I 0.0029 I 2.5341 
27 I 0.0029 I 2.5351 I 0.0029 I 2.537 
23 I 0.0029 I. 2.539 I 0.0029 I 2.5399 
29 I 0.0029 I . 2.5419 I 0.0029 I 2.5428 
30 I 0.0029 I 2.544-3 I 0.0029 I 2.5457 
31 I 0.003 I 2.5478 I 0.003 I 2.5487 
32 I 0.0044 I 2.5522 I 0.0044 I 2.5531 
33 I 0.0044 I 2.5556 I 0.0044 I 2.5575 
~-~ .. I 0.0067 I 2.5553 I 0.0067 I 2.5562 
..,-
~::~ I 0.0087 I 2.574 I 0.0087 I 2.57 49 
36 I 0.0088 I 2.5328 I 0.0088 I 2.5837 
37 I 0.0175 I 2.6003 I 0.0175 I 2.6012 
38 I 0.0175 I 2.5178 I 0.0175 I 2.6187 
39 I 0.0175 I 2.5253 I 0.0175 I 2.6362 

40 I 0.0175 I 2.6528 I 0.0175 I 2.6537 

41 I 0.0175 I 2.6703 I 0.0175 I 2.6712 
42 I 0.0175 I 2.6878 I 0.0175 I 2.6887 

43 I 0.0184 I 2.7062 I 0.0175 I 2.7062 

44 I 0.025 I 2.7312 I 0.025 I 2.7312 
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TABLE 3.2 

COMPARISON OF REVISED VS ORIGINAL .BCF ROW SPACINGS 

I 
I 

Revised .BCF Original .BCF 
Column No. DCOL, em. Distance, em. DCOL, em. Distance, em. 

45 0.025 2.7562 0.025 2.7562 
46 0.025 2.7812 0.025 2.7812 
47 0.04 2.8212 0.04 2.8212 
48 0.04 I 2.8612 0.04 2.8612 
49 0.06 2.9212 0.06 2.9212 
50 0.09 3.0112 0.09 3.0112 
51 0.09 3.1012 0.09 3.1012 
52 0.1 3.2012 0.1 3.2012 
53 0.14 3.3412 0.14 3.3412 
54 0.17 3.5112 0.17 3.5112 
55 0.21 3.7212 0.21 3.7212 
56 0.3 4.0212 0.3 4.0212 
57 0.35 4.3712 0.35 4.3712 
58 0.5 4.8712 0.5 4.8712 
59 0.6574 5.5286 0.6574 5.5286 
60 0.85 6.3786 0.85 6.3786 
61 1 7.3786 1 7.3786 
62 1.4 8.7786 1.4 8.7786 
63 1.6426 10.4212 1.6426 10.4212 
64 2.2 12.6212 2.2 12.6212 
65 2.75 I 15.3712 2.75 15.3712 
66 3.25 18.6212 3.25 18.6212 
67 4.6 23.2212 4.6 23.2212 
68 I 5.9 29.1212 5.9 29.1212 
69 7.5 I 36.6212 7.5 36.6212 
70 I 10 46.6212 10 46.6212 
71 I 15.3 I 61.9212 15.3 61.9212 
72 I 23.7 I 85.6212 23.7 85.6212 
73 I 56.5 142.1212 56.5 142.1212 
74 1 37.8788 180 37.8788 180 
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ROW 
NO. 

TABLE 3.3 

I I !VERTICAL GRADIENT CALCULATIONS I I 
I I I I I I 
I I COLUMN 62 HEADS FOR EACH LAYER I 

IBOTIOM I APPROX 9 CM FROM SOURCE PIPE CENTER I 
!DEPTH I======== I I I I I 
ICM ISUCE 1 lh1-h2 I delta z IJ I I IJ*3.89 

11 1.06751 Oj I I I I I 
21 5.06751 0.48 -0.481 2.533751 0.1894431 I I 0.73705 

31 9.06751 1.241 -0.761 41 0.191 I I 0.739219 

41 12.96751 2.011 -0.771 3.951 0.194937 SUM OF 15 J'S 0.758426 
5 16.46751 2.761 -0.751 3.71 0.202703 ABOVE PIPE 0.788641 

61 19.96751 3.51 -0.741 3.51 0.211429 0.82259 

71 23.06751 4.251 -0.751 3.31 0.227273, 
' I 0.884233 

81 26.06751 4.991 . -0.741 3.051 0.2426231 I I I o.943955 

91 28.66751 5.71 -0.721 2.81 0.2571431 I I 1.000447 

101 30.96751 6.41 -0.691 2.451 0.2816331 I 1.095728 
111 33.06751 7.06 -0.661 2.21 0.31 I I 1.167188 
121 34.81751 7.681 -0.621 1.9251 0.3220781 I I 1.253085 
131 36.41751 8.241 -0.561 1.675J 0.3343281 I I 1.300747 
14 37.76751 8.74 -0.51 1.4751 0.3389831 I I 1.318857 
151 38.86751 9.151 -0.411 1.2251 0.3346941 3.932531 0.2621691 1.286082 
161 39.66751 9.441 -0.291 0.951 0.3052631 \. I ./ I 1.187665 
17 40.26751 9.63 -0.191 0.71 0.271429ldivided by 15= 1.056027 
18 40.65831 9.741 -0.111 0.4954\ 0.2220431 0.863886 
19 40.95831 9.811 -0.071 0.3454\ 0.2026641 I I 0.788488 

201 41.2583\ 9.861 -0.05\ 0.3\ 0.166667\ 1 3.890625 0.648438 

211 41.42831 9.891 -0.031 0.235j 0.127661 I I I 0.496676 

221 41.53831 9.9 -0.011 0.141 0.0714291 I I I 0.277902 

231 41.62831 9.91 -0.011 0.11 0.11 1.02/0.262169= 0.389063 

24 41.69831 9.92 -0.011 0.08\ 0.1251 (FACTOR TO MAKE 0.486328 

251 41.74831 9.921 Ol 0.061 Ol J ADEQUATE FOR 0 

261 41.77331 9.921 ol 0.03751 Ol FLUIDIZATION 0 

271 41.78831 9.931 -0.011 0.021 0.51 1.945314 

281 41.78911 9.93 Oj 0.0079\ Ol I 0 

29j 41.78961 9.931 OJ 0.000651 Ol I 0 

30\ 41.78991 9.931 Ol 0.00041 Ol I I 0 

311 41.791 9.931 Ol 0.00021 Ol I I 0 

321 41.79011 9.931 Ol 0.00011 Ol I I 0 

331 41.79041 9.93 Ol 0.00021 Ol I I 0 

341 41.79151 9.931 Ol 0.00071 Ol I I 0 

351 41.8015\ 9.931 Ol 0.005551 Ol I I 0 

361 41.8304\ 9.931 Ol 0.019451 Ol I I 0 

371 41.90931 9.931 Ol 0.05391 Ol I I 0 

381 41.98821 9.94 -0.011 0.07891 0.1267431 I I 0.493109 

39j 42.06711 9.941 Ol 0.07891 Ol I I 0 

401 42.0961 9.94 Ol 0.05391 Ol I I 0 

411 42.1061 9.95 -0.011 0.019451 0.5141391 I I 2.o0o322 

421 42.10711 9.95 Ol 0.005551 Ol I I 0 

431 42.10741 9.951 Ol 0.00071 Oi I I 0 
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1::.ow 
I NO. 

I 
I 
I 

TABLE 3.3 

IV:::i=\TlCAL G?.ADI::I'IT CALCULA 110NS 
I I I 
I COLUMN 62 H:::.!_OS FOr\ ::ACH LA Y::::1 

IBQ,,OM I IA???.OX sCM r?.O!..l sour:.c= ?iP= c=H, -=1 - - - -· 
ID:::::,H 1=======:::; . I I I I 
ICM ISUC:: 1 11-.1.:-.2 ICe~2 z IJ I I 

441 <;2.10751 9.951 Ol 0.00021 Ol I 
<;51 <;2.10751 9.951 Ol 0.00011 Ol I 
4-SI 42.10791 9.951 Ol 0.00021 Ol I 
471 .;2.10o4l 9.951 Ol 0.00041 Ol I 
4<!1 <;2.10921 9.951 Ol 0.000~51 01 I 
491 42.12421 9.951 Ol 0.00791 Ol I 
SOl 42.1 'iS21 9.951 Ol 0.021 Ol I 
511 42.19921 9.951 Ol 0.03751 Ol I 
521 42.25921 9.951 Ol 0.051 Ol I 
531 42.~S21 9.951 Ol 0.081 Ol I 
541 42.4-SZI 9.951 -O.Oil 0.11 0.11 I 
551 42.57921 9.951 Ol 0.111 Ol I 
sol 42.22921 9.951 Ol 0.181 Ol I 
571 t.3.0792l 9.951 0.011 0.251 -0.041 I 
sal 43.42921 9.941 0.011 0.31 -0.033331 I 
591 44.02921 9.91 0.041 0.4751 -0.084211 I 
601 44.81 9.821 O.OBI 0.52541 -0.116721 I 
511 40.051 9.651 0.171 1.01041 -0.163251 I 
621 47.71 9.351 0.31 1.451 -0.20591 I 
631 49.31 8.941 0.411 1.5751 -0.218671 I 
641 52.51 8.441 0.51 2AI -0.20E33I I 
651 56.27251 7.841 0.51 3.235251 -0.12541 I 
651 61.32251 7.1 al 0.551 ~ . .;·, i25l -0.149521 I 
671 68.87251 6.471 0.711 6.31 -0.11271 I 
sal E3.3225l 5.::.51 0.821 111 -0.074551 I 
691 1021 5.11 0.551 i 5.553751 -0.033211 I 

30 

I 
IJ•3.59 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0.329053 
I 0 
I 0 

I ·0.1 5553 

I -o. ·,2959 

I -0.32763 

I -0.45411 
I ·0.55~6 

I -0.80495 

I -O.E5075 

I -0.81055 

I -0.72132 

I -0.552i 1 

I -0.43847 

I -0.29003 

I -O.i29i9j 
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lAB~ 3.4 

I \V::.:=.11C!-.L G?.ADI::.NTS AT Y2r' LOCA liONS I 
I I I I I I 
I I I I I I 

Y, c:n. I=========~ J@:::=2.54 em. I=========~J@ X=9c:n IJ@x=Ocm 
[relative to I I I I I I 
pipe center] \Slice 1 \Slice 3 \Slice 4 \Slice 7 I [c.JI siices are eaual] 
40.148~251 0.7~2284161 0.7522841510.752.2841610.752234161 0.7370510.752284151 

35.251251 0.7682751 0.7682751 0.7682751 0.7682751 0.7392191 0.768275 
32.90525! 0.75784811 o.76784B1I 0.78784811 0.78784C1I 0.7584251 0.7578481 
29.08i25l 0.620054051 0.620054051 0.820054051 0.320054051 0.708641 I 0.53056757 

I 25.48i25l 0.878022571 0.67802!:571 0.878022571 0.578022571 0.822591 0.87802257 
22.081251 0.94303031 0.94303031 0.94303031 0.9430303! 0.8842331 0.95481818 
18.90625\1.03308197\1.033021S7\1.03308197\1.03308197I 0. 9439551 1.04 583507 
15.931251 U5310714\1.15310714\1.15310714\1.15310714l 1.00044711.18089265 
13.355251 13.35525\1.2860815311.286081631 13.320711.3019591811.28608163 
11.03125l1.~990909l1.44990909l1.44990909l1.45759091l 1.167188\1.48527273 
8.96875l1.67724675l1.67724675l1.67724575l1.65703896l 1.2530851 1.697 45455 
7.16o75I1.83 •• 13~311.SS113433I1.88.113~11.88113433I 1.3007 471 1.88113433 
5.59375l2.21532203l2.21532203l2.21532203l1.95159322l 1.3188571 1.9t79561 
4.24375I2.54-%'J816I2.54040815I2.541J4D816I2.85795918I 1.302i69l1.90530512 
3.155251 4.0947368414.0947368414.0947368413.275789471 1.18766510.81894737 
2.33125I7.2242E571I7.22422571I7.22422571I4.~571429I 1.0560271 5490.45714 
1.i3355I11.1183609I11.77wsosl11.77636o914.7i13t,.437l 0.8638861 0 
1.313.15I22..5246091I21.3SS3757I21.3983787I5.63115229I 0.7884581 0 

0.990451 38.91 37.60333331 36.30656671 6.483333331 0.6484381 0 

o.722.S5I7S.45::.3191I72.8340~25I71.17o7234l4.96595745l 0.4966761 0 
0.53545l1~.425714l127.814285l119.~72571l5.5571~286l 0.2779021 0 

0.4 '15451 22.1.731 186.721 167.271 3.891 0.3890631 0 
0.325451 ~7.351 335.51251 291.751 4.86251 0.4863281 0 

0.255451 609.43.33331 427.91 330.651 Ol Ol 0 

0.20571 14COAI892.105667I518.556667I10.3733333I Ol 0 

0.111951 121157.3\ 12.3510.751 184-372.251 1913331 ·1.9453141 0 

0.1641 Ol Ol Ol Ol Ol 0 

0.1597251 Ol Ol Ol Ol Oi 0 

0.1::.921 Ol Ol Ol Ol Ol 0 

0.'!5891 Ol Ol Ol Ol Ol 0 

0.155751 -3~9711001 Ol ol O! Ol 0 

0.15561 0\ Ol Ol Ol Ol 0 

0.153151 Ol Ol Ol Ol Ol 0 

0.1550251 Ol Oi Ol Ol Oi 0 

0.1425251 Ol Ol Ol Ol Oi Ol 
0.105251 Ol Ol Ol Ol Ol 0 

0.039451 Ol Ol Ol Ol 0.4931091 0 

-0.039451 Ol Ol Ol Ol Ol 0 

-0.105651 Ol Ol Ol Ol Oi 0 

-0.1425251 Oi Ol Ol Ol 2.0003221 0 
r--: 

Ol 0\ Ol Ol 0 -0.1550251 Ol 
-0.153i 51 Ol Ol Oj Ol Ol 0 

-0.15861 01 Ol O! Ol ol 0 
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TABLE 3.4 

!VERTICAL GRADIENTS AT KEY LOCATIONS 

Y, em. =========, J@x=2.54 em. ========= J@ x=9cm J@x=Ocm 
[relative to I I 
pipe center] Slice 1 Slice 3 !Slice 4 Slice 7 [all slices are equal] 

-0.15875 34971100 Oi 0 0 0 0 
-0.1589 0 0 0 0 0 0 
-0.1592 Ol Ol 0 0 0 0 

-0.159725 Ol Oi 0 0 0 0 
-0.164 0 0 0 0 0 0 

-0.17795 -180982.25 -183394.05 -184775 -191388 0 0 
-0.2067 -1255.1733 -798.74667 -466.8 0 0 0 

-0.25545 -810.41667 -557.56667 -421.41667 -6.4833333 0 0 
-0.32545 -3891 -296.6125 -257.7125 0 0 0 
-0.41545 -233.4 -194.5 -175.05 -3.89 0.389063 0 
-0.52045 -152.06364 -130.84545 -123.77273 -3.5363636 0 0 
-0.66545 -95.088889 -88.605556 -86.444444 -4.3222222 0 0 
-0.88045 -48.2361 -46.68 -43.568 -4.668 -0.15563 0 
-1.15545 -27.23 -25.933333 -25.933333 -5.1866667 -0.12969 0 
-1.54295 -15.56 -14.741053 -14.741053 -5.7326316 -0.32763 0 
-2.12315 -7.3781733 -7.37817331 -7.3781733 -3.9728626 -0.45411 -5603.4389 
-2.97105 -4.23495651 -4.2349565 -4.2349565 -3.0799683 -0.6546 -0.7699921 
-4.20125 -2.4144828 -2.4144828 -2.4144828 -2.1462069 -0.80496 -1.6096552 
-5.86375 -1.6597333 -1.6597333 -1.6597333 -1.6597333 -0.85075 -1.6597333 
-8.00125 -1.2804583 -1.28045831 -1.2804583 -1.2804583 -0.81055 -1.2966667 

-10.819375 -1.0337273 -1.0337273 -1.0337273 -1.0337273 -0.72132 -1.0697876 

-14.643125 -0.75837911 -0.7583791 -0.7583791 -0.7583791 -0.58211 -0.7760159 

-19.99875 -0.5248413 -0.5248413 -0.5248413 -0.5248413 -0.43847 -0.5310159 
-28.64875 -0.32180911 -0.3218091 -0.3218091 -0.3218091 -0.29003 -0.3288818 

-42.4306251 -0.14091011 -0.14091011 -0.1409101 -0.1409101 -0.12919 -0.1409101 
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Fluidization 

Pipe 

1-Beam Supports Steel Base Plate 

Figure 1.1 -Sketch of Two-Dimensional Fluidization Tank 
Figure from Clifford (1989) 
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Figure 1 .2 - Fluidization Pipe Details. 

Figure from Clifford (1989) 
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Overflow ' --
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• • • • • • • • • Supply Line 
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• • • • • • • • •- Pressure Taps 

• • • • • • • • • 

-
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-
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Analog 
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PC 

Figure 1.3 -Schematic of Data Acquisition System 
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Water h=O 

SY.mmetry Boundary 
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~180em 
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Sketch of Experimental Tank Dimensions 
and Boundary Conditions 

Figure 2.1 
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~----------------180cm ----------------~ 

Exploded View 
Slices 1 thru 5 are MOD Model layers. Not to scale. 

Figure 2.2 
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FIGURE 3.3 
FINITE DIFFERENCE GRID- SIDE VIEW 

FURTHER ENLARGED AT SOURCE ORIFICE 



I 
I Model Run Slice Resolution 
I. 
1-

Run# Slice thickness in em 
0.16 2.38 

I 1 1><1 l 
0.16 2.38 

I 2 1><1 
I 

0.16 1.19 1.19 

3 1><1 I 
I .08 .08 1.19 1.19 

4 [X [X] l 
I .08 .08 0. 7933 0.7933 0.7933 

I 
5 [X[X] l 

.08 .08. 12 .26 '1.0 '1.0 

I 6 lXc><J I I 
. '12 .04.04 .08 .16 .6 '1.5 

I ?a lXlXJ I I 

I .12 .04.02 .06 .12 .68 1.5 

7b e><t><J I I I 
I 
I 1><1 Slice simulated with perforation (constant 

head of 100 em at source pipe locations) 

I Slice without perforation (constant 
head of zero at source pipe locations) 

I Figure 3.4 

I 
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TWO-IDENTICAL SLICE MOD MODEL- FULL TANK 
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X - Distance from Pipe Center Line Along Row 38, em. 

FIGURE 3.5 
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