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ABSTRACT 

From the theory of flow through porous media, the 

governing equation for hydraulic head is developed for flow 

emanating from small holes in a pipe buried in fine sand in the 

coastal environment. The head distribution in the domain is 

obtained from the two-dimensional finite element method and 

validated with experimental results. The theoretical critical 

hydraulic gradient is used to predict the incipient 

fluidization flow rate conditions for the available 

experimental data as well as for selected field situations. 

Numerous simulations for a wide range of expected conditions 

are then incorporated into practical fluidization system design 

charts. 
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1.0 INTRODUCTION 

1.1 Traditional Applications of Fluidization 

One-dimensional fluidization has been applied to a wide 

variety of traditional applications in areas such as heat 

transfer, petroleum refining, petrochemical processing, coal 

conversion, ore roasting, coking, aluminum production, and 

production of a variety of chemical compounds (Wen and Yu, 

1966; Roberts et al., 1986). Intentional one-dimensional 

fluidization often results from a well-distributed source of 

upflowing fluid under a bed of solid particles confined by 

lateral boundaries. As fluid flows upward, head loss occurs 

through the bed as a result of viscous and inertial effects. 

For one-dimensional problems the superficial velocity (specific 

discharge), v, is the upward volumetric flow rate divided by 

the total cross-sectional area of the fluidized domain. The 

minimum V causing fluidization is Vi' occurring when the upward 

drag equals the submerged weight of the particles. 

Extensive work on one-dimensional fluidization has allowed 

the development of the theoretical minimum fluidization 

velocity, v. (Wen and Yu, 1966). Additional research has 
1 

improved the application to design of such processes as rapid 

sand filter backwashing (Amirtharajah, 1970; Amirtharajah and 
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Cleasby, 1972; and Cleasby and Fan, 1981). 

For Reynolds numbers, R, less than 3 the head loss through 

the fixed bed is a linear function of the flow rate, 

v = KJ 

where K is the hydraulic conductivity (coefficient of 

permeability) and J is the hydraulic gradient. Here 

(1.1) 

R = pVdeq/~, deq =grain diameter of a sphere of equal volume,~ 

= dynamic viscosity of water. Camp (1964) has reported 

strictly laminar flow through filters up to R = 6. A number of 

predictive equations are available for nonlinear flow, 

including Irmay's (1958) analysis summarized.in Appendix 1. 

Applications of fluidization to unbounded domains in the 

coastal environment are presented in references such as Weisman 

and Collins (1979) and Parks et al. (1983). Descriptions of 

two-dimensional laboratory experiments are available in Kelley 

(1977), Roberts et al. (1986), and more recently by Clifford 

(1989). These experiments include pre-, incipient and 

post-fluidization data. Weisman et al. (1988) summarized 

Roberts et al.'s (1986) experiments, with emphasis on the 

processes occurring after fluidization. 
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1.2 Application to the coastal Environment 

The present application considers a source pipe buried in 

or near a tidal inlet for the purpose of maintaining a channel 

as an alternative to dredging or to aid in sand bypassing. The 

formation of both fluidized and unfluidized regions creates a 

complicated geometry, with a portion of the flow entering the 

unfluidized zone. In a one-dimensional problem, the specific 

discharge (superficial velocity), V, and head gradient, J, are 

constant in the domain. However, in the present application 

the flow diverges from holes in a source pipe with largest 

gradient nearest the holes. 

For grain sizes tidal found near inlets (generally less 

than 0.5 mm according to Bruun and Gerritsen, 1959) and the 

fluidization system described here, 'Reynolds numbers typically 

do not exceed 1 except in the immediate vicinity of the source 

pipe. Unlike many applications of fluidization, Darcy's law 

can be used, i.e. inertia and turbulence.can be ignored up to 

and including incipient fluidization. 

The objective of the present study is to predict Qi' the 

superficial fluid flow rate required to initiate fluidization 

of a bed of fine sand for a pipe buried in the coastal 

environment. The theory of flow through porous media is used 

to determine h, the hydraulic head distribution. The governing 
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differential equation and boundary conditions for h are 

approximated numerically using the finite element method (FEM) . 

The model is validated with Roberts et al.'s (1986) 

experimental data and an alternate numerical method. Once 

validated, the FEM is used to analyze conditions not analyzed 

experimentally. Numerous simulations for a wide range of 

expected conditions are then incorporated into practical 

fluidization system design charts. 
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2.0 RANGE OF VALIDITY OF DARCY'S LAW 

Darcy's Law (Eq. 1.1) is valid if the Darcy velocity, v, 

is linearly related to the hydraulic gradient, J. Bear (1972) 

and Davidson et al. (1985) present numerous equations that can 

be applied to pre- and incipient fluidization when Darcy's Law 

is not valid. Many equations can be expressed in Forchheimer's 

empirical form. 

J = AV + BV
2 

( 2. 1) 

where A and Bare coefficients to be determined (Bear, 1972). 

The second term in Eq. 2.1 is negligible compared to the first 

for low Reynolds numbers, resulting in Darcy's Law with A = 1/K 

where K is the hydraulic conductivity. Irmay's (1958) 

one-dimensional equation is used to calculate A and B in Eq. 

2.1 for various grain sizes as described in Appendix 1. Figure 

2.1 shows the variation of hydraulic gradient with the Reynolds 

number for selected grain sizes. Incipient fluidization is 

limited by J = 1.02 (top of Fig. 2.1) as discussed in the next 

section. Smaller grain sizes have lower values of maximum J 

and R at the incipient condition. For sand grain sizes 

normally found near tidal inlets (0.2 mm to 0.5 mm according to 

Bruun and Gerritsen, 1959) the Reynolds number is less than 1 

as shown in Fig. 2.1. 
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2.1 Experimental Data of Roberts et al. (1986) 

Roberts et al. (1986) obtained head data for a number of 

prefluidization flow rates for each of two bed depths. Flow 

emanated from perforations in a source pipe of diameter D 

buried a depth db as shown in Fig. 2.2. Fine sand was chosen 

because it has the size, shape, and consistency of material 

found in the coastal environment, especially in or near tidal 

inlets. The sand had·a specific gravity of 2.67, compacted 

porosity of 39%, d50 = 0.15 mm ,and d90 = 0.21 mm. The line 

labeled 0.15 mm in Fig. 2.1 corresponds to the,d50 of Roberts 

etal. (1986). 

For low flow rates, the bed remained unfluidized. As the 

flow rate was slowly increased in discrete increments, a local 

boil (spout) on the sand surface occurred above the pipe. A 

slight increase in flow rate resulted in enlarged boils that 

coalesced until the bed above the supply pipe was, fluidized 

along its entire length •. The transition from an unfluidized to 

a completely fluidized bed was observed to be a rather unstable 

phenomena. Couderc (1985) suggests that fluidization occurs 

over a range of velocities accounting for different particle 

sizes. The particle distribution is fairly narrow for Roberts 

et al.'s (1986) sand, resulting in a narrow range of required 

flow rate to fluidize different sand grain sizes in the bed. 
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Up to incipient fluidization, almost half of the flow is 

into areas that won't fluidize even at much higher flow rates. 

Because of this "leakage", the flow rate required to initiate 

fluidization is greater than the one-dimensional analog, i.e. a 

domain bounded directly below and close to the sides of the 

source pipe that restricts flow to be essentially upward. 

Unlike one-dimensional theory, the diverging flow of 

Roberts et al.'s (1986) test apparatus created a situation 

whereby the gradient varied throughout the bed. An analysis 

Roberts et al.'s (1986) data indicates that the average 

critical gradients were 1.06 and 1.10 for the 25.4 em and 42 

qm bed,depths, respectively. Table 2.1 presents the 

distribution of gradient in,a vertical line almost directly 

above the source pipe for the 42 em bed depth at approximately 

incipient flow. The average critical gradient from just above 

the pipe to the surface of the sand was calculated by dividing 

the change in head by the distance between the taps, i.e. the 

weighted average of the entries in Column 4 of Table 2.1. A 

simple one-dimensional force-balance theory (Peck et al., 1974) 

predicts ic = ( Ps - pw)/ Pw' = 1.02 for this sand. 

The gradient of 1.25 reported by Roberts et al. (1986) is 

based on the gradient in the lower 22 em of the 42 em bed. 

This value is obtained by a weighted average of the last 3 

entries in Column 4 of Table 2.1. If the upper 33 em of the bed 
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is used to calculate the gradient (above tap 29), the gradient 

is 0.98, below the theoretical gradient. 

The Reynolds number was computed at the tap locations for 

Roberts et al.'s (1986) experimental data, using deq = d50 . 

The highest calculated Reynolds numbers was 0.05 for the tap 

closest to the pipe; at most locations the Reynolds number was 

on the order of 10-3 or 10-4 . Additional experiments are being 

conducted to determine gradients, velocities and Reynolds 

numbers closer to the source pipe. 

Roberts et al. (1986) experimentally determined the 

horizontal hydraulic conductivity to be K = 0.018 cmjs in a 

two-dimensional flow model· with virtually horizontal flow over 

a four foot distance between vertical reservoirs. K was to be 

0.008 cmjsec when compacted using a constant head permeameter. 

The first value may be more reflective of the horizontal value, 

whereas the second may be appropriate for the vertical 

hydraulic conductivity. The harmonic mean, square root of 

(KxKy)' is 0.012 cmjs, in good agreement with the predicted 

value of 0.0125 obtained by Irmay's Equation (Appendix 1). 
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3.0 FINITE-ELEMENT ANALYSIS OF PRE- AND INCIPIENT FLUIDIZATION 

3.1 INTRODUCTION 

The finite element method (FEM) was used to analyze two­

dimensional pre- and incipient fluidization behavior. The 

theoretical considerations of the finite element method are 

discussed here in Section 3. The user's manual provided in 

Appendix 2 summarizes additional details of the actual 

algorithms used in the model. 

The finite element method was chosen as the numerical 

method to simulate pre- and incipient fluidization behavior. 

Representation of the source holes would be difficult with the 

finite difference method, even if a variable grid were 

employed. Other techniques such as the boundary element method 

(BEM) are easier to.apply to isotropic, homogeneous media than 

the FEM. The FEM was chosen for the analyses here because it 

is more powerful; only minor changes are needed to account for 

anisotropic, nonhomogeneous, nonlinear flow. 

Lennon (1986) used two-dimensional finite element method 

(FEM) results to validate boundary element method (BEM) results 

for a problem of variable pressures on a completely impermeable 

pipe buried in the sand. The present application is very 
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similar to the Lennon (1986) case except for a difference in 

boundary conditions. The use of two separate models minimizes 

the possibility of errors in the model andjor the data set, and 

well as providing an estimate of the approximation of accuracy 

of the techniques. 

3.2 VALIDATION WITH THE BOUNDARY ELEMENT METHOD 

Figure 3.1 presents the validation of the finite element 

model (FEM) with the boundary element model (BEM) for a test 

case (Simulation 1). The predicted head distributions vary 

slightly because the boundary element method solves the 

governing differential equation exactly in the domain whereas 

the FEM approximates the governing equations. Also, a slight 

difference in handling the source hole configuration leads to 

slight differences. Similar minor differences were observed by 

Lennon (1986). 

No change to these codes are required when Darcy's Law is 

valid; changes were restricted type of boundary conditions 

combined with a new computational grid refined in the vicinity 

of the the source pipe. A postprocessing routine was added 

that calculated the flow rate factor (Qi/Kdb)' the average 

vertical gradient above the bed, and an improved hydraulic head 

contouring routine. ·A separate nonlinear flow version of the 
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program is being developed that uses Eq. 2.1 in place of 

Darcy's Law for cases where inertia terms are important. The 

results were carried out using a FORTRAN F77 compiler on a UNIX 

workstation driven by a 16 Mhz Motorola 68020 chip. Finite 

element run times were on the order of 3 minutes for each 

simulation using a 1055 element, 584 node grid. 

3.3 THEORETICAL FORMULATION 

For sandy soils where fluidization does not occur and 

inertia terms are negligible, Darcy's Law can be used. If the 

Reynolds number is high enough, Eq. 1.1 is used in place of 

Darcy's Law; however for the results and formulation presented 

here, Darcy's Law was assumed to be valid. Assuming that the 

flow rate is increased slowly allows the ~ystem to be analyzed 

as a steady flow problem. 

Combining Darcy's Law with the continuity equation results 

in the equation governing the hydraulic head distribution in 

the domain, 

L(h) - a (K ~) + -0- (K ~) = 0 
- "'x x " o oX 3y y 3y 

{ 3 .1) 



I 
I 
I 
I· 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
~I 

I 
I 
I 
I 

for steady state conditions. The associatedpoundary 

conditions are h = 0 on the soil surface, and 3hj3n = 0 on the 

source pipe, impermeable bottom, and impermeable side walls as 

shown in Fig. 2.2. 

3.4 FINITE ELEMENT METHOD 

The finite element technique is similar to that used by 

Liu and Lennon (1978) and Lennon (1986). The governing 

equation (Eq. 3.1) is transformed into integral form using the 

method weighed residuals. The solution domain is divided into 

triangular finite elements (see Fig. 3.1) and the head is· 

approximated within each element by 

h = {N}T {h} (3.2} 
e 

where {N} is a vector of three linearly independent basis 

functions defined over each element and {h J is a vector of the 

approximate pressure at each node (corner of the triangular 
.. 

element). Because his only an approximation to h(x,z), then 
A 

L(h} = r = 0 where r is a residual associated with the 

solution. Using the Galerkin method, the weighed average of 

the residuals over the whole domain is set to zero. Global 
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equations are formed that can be written as [K]{h} = {R} where 

[K] is a known coefficient matrix, {h} is the matrix of 

approximate head values at every node in the domain, and {R} is 

a known right hand side that includes the information 

associated with the boundary conditions (Liu and Lennon, 1978). 

The solution for {h} is obtained by a standard equation solving 

routine (Liu and Lennon, 1978). 

The finite element method as used in this report is 

essentially the same procedure presented earlier by Liu and 

Lennon (1978). 

3.5 Validation Simulations 

Figure 3.2 presents the validation of the finite element 

model (FEM) with Roberts et al.'s (1986) Test 2 head data for a 

flow rate of 0.0344 1/s-m (10.45 ccjs), about 40 percent of the 

incipient flow rate. The FEM contours were obtained using an 

isotropic value of K = 0.012 cmjs. The finite element grid was 

obtained by rescaling the 1055 element shown in Fig. 3.3. The 

predicted head distribution generally agrees within 1 em of 

head at the observed points. The experimental head value just 

to the right of the pipe at (x,y) = (9.6 em, 1.6 em) may still 

be within the zone where the three-dimensional nature of the 

jets has not completely spread over the experimental tank width 
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of 30.48 em. The validation of the model using these data is 

adequately demonstrated using this value of K. 

Additional simulations were conducted for other values of 

hydraulic conductivity. Figures 3.4 through 3.8 were conducted 

with values of K of: 

Figure Kx, cmjs Ky' cmjs 
Number 

3.4 0.014 0.012 

3.5 0.016 0.012 

3.6 0.018 0.012 

3.7 0.018 0.008 

3.8 0.02 0.01 

For a slightly higher flow rate and Ky = 0.008 cmjs, Figs. 3.9 

and 3.10 show the match using Kx = 0.018 and 0.02 cmjs, 

respectively. The isotropic conditions simulation (Fig. 3.2) 

appears to reproduce the observed contours the best. 
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3.6 Prediotive-simu'lations 

A deeper burial depth will require a larger incipient 

fluidization flow rate because the flow distances are greater 

and the gradient is approximately the same. In addition, the 

required flow rate should increase linearly-with an increase in 

hydraulic conductivity. The theoretical gradient of 1.02 is 

used in the predictive calculations over the upper 95% of the 

burial depth. 

The first simulation was conducted using the grid shown in 

Fig. 3.11 for a unit pipe diameter .(0 = 1 unit). The other 

geometrical quantities appearing are the burial depth db/0 = 20 

and the distances to the impervious boundaries Xd/0 = 100, Yd/0 

= 60 (see Fig. 2.2). For the case of o =1ft (0.305 m), the 

hydraulic head contours obtained with the FEM are shown in Fig. 

3.12. 

The maximum hydraulic head, hmax' at the hole in the pipe 

was calculated to be 40.35 ft (12.3 m); the value of hmaxldb is 

about 2. If the the theoretical one-dimensional critical 

hydraulic gradient (1.02) is multiplied by the depth of burial 

alone, a value of about half this number is obtained. This 

difference occurs because the flow has significant horizontal 

components, tending to spread out. The soil that eventually 

fluidizes feels the effects of the highly concentrated flow, 
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but it is diffused by lower surrounding values of head. 

Inspection Fig. 3.12 shows that about half of the 40.35 ft of 

head loss occurs in the immediate vicinity of the pipe, i.e. 

the 20 ft contour is very close to the pipe. 

Simulations were run for depths db = 5 to 40 ft, domain 

widths from Xd = 50 to 3000 ft, and domain depths Yd = 20 to 

240 ft. The largest domain size provides a good approximation 

of an infinite domain. The design chart for eighth-inch 

diameter holes is provided in Fig. 3.13a, showing variation of 

flow rate factor (Qi/Kdb) versus db for isotropic conditions; 

graphs for an anisotropic value of Kx/Ky ~ ~o.is presented in 

Figure 3.13b. 

Although larger domains require larger.flow rates, the 
' 

gradient above the pipe only varies slightly; hm'ax/db is about 

2 where hmax is the head at the source pipe holes. Additional 
' i . ~ • 

simulations .. are being ,.conducted to determine the importance of 

possible non-linear flow in the immediate vicinity of .the 

source pipe. Table 3.1 summarizes the range o~ hmax/db for 

the simulations run here. 
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4.0 CONCLUSIONS 

The main conclusions of this investigation were: 

1. The required incipient fluidization flow rate can be 

obtained from numerical simulation of flow through 

porous media. 

2. The finite element model· was- valida-ted with Roberts et al. 

(1986) hydraulic·head and gradient data. · 

~ • J • 

3. Predic:tl,ive· :simulations provide estimates of the required 

flow rates needed· to initiate fluidization in situations 

impractical to verify in the laboratory.· · · 

4. Figures 3.13a and 3.13b are useful charts for the design 

flow·rate for fluidization systems in the coastal 

environment for isotropic conditions and a 10:1 

anisotropicvvalue•. of ho~izontal to,.ve~rtic::al. hydraulic 

conductivity. 

. ' 
. - ' 

5. The head loss is about twice the burial depth at incipient 

conditions, about ·twice that predicted by one-dimensional 

theory. 

The design charts provided in this report do not take into 
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account possible design considerations such as algae fouling, 

clogging of fluidization :holes:,. ·FI.c:ml·inear flow~ ;-oel!'""tir·ree-· ... · 

dimensional effects that conflict with the assumptions of the 

problems (such a variable distribution of pressure inside the 

fluidization pipe), and variations in the properties of the 

porous medium. 

> ' ' \ ~· · r- . - · . .: · · : l 

··l'i···. 
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5.0 FUTURE WORK 

Additional experimental data are being obtained to define 

the nearfield head distribution in the vicinity of the source 

pipe, and a three-dimensional numerical model willrbe validated 

with those data. A nonlinear flow model is being developed to 

assess the nonlinear flow effects in the vicinity of the source 

pipe. The nonlinear flow model will be validated with 

supplementary experimental data to be obtained in the future. 

'· ' ..... 

' . ~. . ' .. · .. " 
~ .• ~ .: ~ I-": -' ~ ' ',f ~ • ;. . ; . '.'t 
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APPENDIX 1. IRMAY 1 S EQUATION EXPRESSED IN FORCHHEIMER 1 S FORM 

Al.l INTRODUCTION 

Numerous 1-D equations are available to predict v., the 
1 

superficial fluid velocity required to initiate fluidization of 

a porous bed. However, in unbounded domains, the formation of 

both fluidized and unfluidized regions creates a. more 

complicated problem. 2-D fluidization experiments reported by 

Roberts et al. (1986) provide a database of information on flow 

rates and· hydraulic heads before and after incipient 

fluidization.· The· 1-0 theoretical Vi compares, favorably with 

the 2-D experimental·· data. 

Many nonlinear equations are available to predict 

incipient fluidization. Irmay's equation predicts 2-0 behavior 

adequately for many purposes if the key parameters are 

correctly determined. These key parameters include the 

porosity, sphericity, and equivalent grain diameter. The 

higher the sphericity (~),the less angular the grains and the 

lower the fixed bed porosity. Additional information on 

sphericity and other parameters are available in Cleasby and 

Fan (1981) and Fan (1978). 

Many traditional applications of 1-D fluidization are 
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summarized in ·re·f·erences such as Weisman et al. (1988). 

Intentional 1-D fluidization often results from a well­

distributed source of upflowing fluid under a bed of solid 

particles confined by lateral boundaries. As. fluid flows 

upward, head loss occurs through the bed as a result of viscous 

and inertial effects. The superficial velocity, V, is the 

upward volumetric flow rate divided by the total 

cross-sectional area of the fluidized domain.- For Reynolds 

numbers, R, less than 3 the head loss through the fixed bed is 

a linear function of the flow rate, where R ~ Vd /~ , d = eq eq 

grain diameter of a sphere of equal volume, ~ = kinematic 

viscosity ·of· water. Camp (1964) has reported strictly laminar 

flow through filters.up toR= 6. The minimum V causing 

fluidization is Vi' occurring when the upward· drag equals the 

submerged weight of the particles. 

Al. 2 EXPERIMENTAL· DATA OF ROBERTS ET AL. (1986) .. 

Weisman et al. (1988) summarize Roberts et al.'s (1986) 

experiments, with emphasis on the processes occurring after 

fluidization. Flow emanates from perforations in a source pipe 

buried in sand. Fine sand was chosen because it has the size, 

shape, and consistency of material found in the coastal 

environment. The sand has a specific gravity of 2.67, 

compacted porosity of 39%, d50 = 0.15 mm ,and d90 = 0.21 mm. 
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Because of the uniformity of the sand, estimates of K based on 

d 50 will not differ too much from estimates based on other 

sizes. The sphericity was assumed to be 0.8. Only a slight 

bed expansion occurred prior to incipient fluidization. Based 

upon these values, K was estimated to be 0.0125 cmjs, in good 

agreement with the values obtained by Roberts et al. (1986). 

For low flow rates, the b~d remains unfluidized. As the flow 

rate is slowly increased in discrete increments, a local boil 

on the sand surface occurs above the pipe. A_slight increase 

in flow rate results in· enlarged·boils that, coalesce until the 

bed above· the supply pipe is f1u•idized alongt its entire length. 

The transition from an unfluidized to a comp:letely·fluidized 

bed is .. a rathe-r unstable phenomena.. If the ·flow rate· is high 

enough, 2-D fluidization occurs as shown in Figure A.1. 

Prior to incipient fluidization, almost half of the flow is 

into areas that won't fluidize even at much higher flow rates. 

Because of this "leakage", the flow rate required to .. initiate 

fluidization is expected to be greater than· if the, domain was 

bounded below and close to the sides of the source pipe. 

Head data were obtained just prior to incipient 

fluidization, and were used to estimate incipient conditions, 

including the critical hydraulic gradient, i
0

• For burial 

depths of 25.4 and 42 em, i
0 

= 1.06 and 1.25, Qi = 0.090 and 

0.135 ljs-m, and Vi = 0.039 and 0.048 cmjs, respectively. 
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APPENDIX 2. USER'S MANUAL: FINITE ELEMENT ANALYSIS OF 

INCIPIENT FLUIDIZATION 
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USER'S MANUAL: FINITE ELEMENT ANALYSIS OF INCIPIENT FLUIDIZATION 
(PROGRAM FEF) 

INTRODUCTION 

A programmer's manual is presented for a finite element 

analysis package. The first program segment is a preprocessor 

that reads, prints, and scans the data, and generates required 

data. Data files are created which are used in the analysis 

(second) program segment which produces the required solution. 

Three types of finite elements may be used, 3-noded linear 

triangular elements, Q-8 elements, and 6-noded quadratic 

triangular elements. The third program segment for linear 

triangular elements includes a post processor to display the 

results. The program is coded in FORTRAN 77~ 

1. PREPROCESSOR: PROGRAM PREP 

1.1 Introduction 

To save effort in preparing input data for the analysis, 

the preprocessor provides options for data generation. The 

region to be analyzed should be sketched and coordinate axes 

defined. The location of the coordinate origin is arbitrary. 

The finite element region is divided into a mesh of elements 

with nodal points numbered in a numerical sequence starting 

with 1. In order to obtain a minimum bandwidth (which saves 

computation time when solving the system of equations), the 

nodal points should be numbered in the "shorter" direction, 

i.e. the one which has less elements. The overall goal is to 

minimize the maximum difference between any two node numbers 

in any element. A list of the required input is presented in 

the user's manual. 
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1.2 Description of Preprocessor Program (Program PREP) 

The coefficients in the governing equation are read in 

as constant values or variables. The preprocessor generates 

missing data for both elements and nodes. The first element 

in a row of elements is defined by its node numbers. 

Subsequent elements in the row have node number incremented 

by a specified number, often 1. 

If node locationss are spaced equally apart, only the 

first and last node's (x,y) coordinates are specified; the 

coordinates in between are generated by linear interpolation. 

Sample input, output and generated file listings are 

available for the authors on IBM PC compatible disk files. 
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1.3 Preprocessor 

Record Type 1 - An 80 character title (one record only) 

Record Type 2 - Coefficients for Cases with lower order derivative 
terms 

AA,BB,CC - Constant values of coefficients A, B, and c in Eq. 1 
(see Section 2.3) 

DD - Coefficient of h term in Eq. 1 

Record Type 3 - (one record only) 
NORDER Element type (only one type of element may be used in 

any grid). 
1 for 3~noded linear triangular element. 
2 for Q-8 (8-noded quadratic) element. 

NELEMC 

NNPC 

NPSI 

NPCV 

KK 

I WRITE 

I CASE 

IP 

NPIN 

IBC 

Record Type 4 
NPSIA(I) 

3 for 6-noded quadratic triangular element. 
- The number of elements for which nodal numbers will be 

supplied and used to generate nodal numbers for the 
remaining elements. 

- The number of nodal points at which coordinates will be 
supplied so that coordinates of the remaining nodes can 
be generated. 

- Number of nodes on the boundary of D. Set = 0 for 
NORDER = 1 or 3. 

- If Q-8 elements are used, some midside nodes may fall 
on curved sides and their coordinates must be supplied 
to implement the generation option. NPCV is the total 
number of midside nodes on curved sides. 

- Flag used to control supression of debug print 
statements. 

- Flag directing creation of record-image output files 
and debug prints (Analysis Program). 
-1- write global stiffness matrices on file 2 

o- write global stiffness matrices on file 2 
o- write solution on printers 

.ne.o- write solution on file 3 
- Case being analyzed: Not used as of 1985. Set equal 

to 4 for consistency with past and future versions of 
program 

- Number of quadrature points per Q-8 element set equal 
to zero if NORDER .ne.2. 

- Number of nodes where h is to be specified. If IBC = 
-1, h at all boundary nodes are set equal to zero. 

- Number of nodes for boundary condition for type hi = 
hj. Input appears in pairs, both node i and node j. 

- Boundary Definition (As many records as needed) 
- (I= 1, NPSI). The node numbers of the boundary 

points, in counterclockwise order. If NPSI = o (for 
NORDER= 1 or 3), Record Type 4 is omitted. 
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Record Type 5 

NPIN(I), 
PIN(I) 

Record Type 6 

NBC(I) 

Record Type 7 
NOD(I,J) 

NMIS 

NINC 

Record Type 8 
I 
X(I) 
Y(I) 
NPMIS 

NINC 

Record Type 9 
I 
X(I) 
Y(I) 

- Boundary Condition, h specified (As many records as 
needed). 

- (I = 1, NPIN) Node number where h is specified and 
value of h, respectively. If NPIN = -1, Record Type 5 
is omitted. 

-Boundary Condition, h. =h .• (As many records as 
needed). ~ J 

- (I = 1, IBC) For the head gradient = 0 on boundary, 
reduced to hi =_h., where node i is on boundary, and 
node j is in inward normal direction, input occurs 
in pairs, node i first, then node j. omit if IBC = o. 

-Element definitiont&As many records as needed). 
Nodal numbers of I element in counterclockwise 
direction, J = 1, NPE, where NPE = 3 for linear 
triangles, NPE = 8 for Q-8.elements, NPE = 6 for 
quadratic triangles. · 

- Number of successive elements whose nodal numbers are 
not provided and hence are generated. 

- The numerical difference in nodal numbers 
first generated and the present element. 
set equal to zero if the generation is to 
the shorter direction. 

between the 
Its value is 
take place in 

-nodal Coordinate Data (As many records as needed). 
- The node number 
- The x-coordinate of node I 
- The y-coordinate of node I 
- = 1 if there is at least one node omitted between the 

present and the succeeding nodal coordinate data 
record, and hence generation is to be used. Otherwise 
set equal to zero. 

- The numerical difference between the succeeding and 
present node number. Set equal to zero if the 
generation is to take place in the shorter direction. 

- Mid-side node records (Only if Q-8 elements used) 
- The mid-side node number 
- The x-coordinate of node I 
- The y-coordinate of node I 

Record Type 10- The nodal points (x,y) are defined by the records in 
in Record Type 8 or 9. Record type 10 consists of 
(x,y) points which may or may not correspond to a 
nodal point. Whenever a point (x,y) from Record Type 
10 is found to coincide with a grid point (x,y) from 
Record Type 8 or 9, the values of A, B, and c on 
Record Type 10 supersede the values of A, B, and c 

XE,YE 
AE,BE,CE 

on Record Type 8 or 9. 
- (x,y) coordinates of Record Type 10 points 
- Coefficients A,B, and c in Eq. 1 at (x,y) 



I 
I 
I 
I 
I 
I· 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1.4 Preprocessor Output 

The output file echos the input data, and generates the input data 
file to the analysis program (see next section). The general 
quantities in the output consist of: 

TITLE - so character title 
NOD(,J) - element definition data 
X(I), Y(I), AA(I), BB(I), CC(I) -nodal data I= 1, NNP 
NPSIA(I) - boundary node numbers 
NHBW = NCOL - half-bandwidth 

A preprocessor output file and generated file for Program FEF are 
available from the authors on an IBM PC compatible disk file. 
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2. ANALYSIS PROGRAM: PROGRAM FEF 

2.1 Introduction 

The entire input file, including Record Types 1 and 2, is created 

by the preprocessor output. If not constant, the values of A, B and c 

must be entered through Record Type 10 of the Preprocessor Input. The 

governing equation is: 

where: 

D 

= hydraulic conductivity in the x-direction 

= hydraulic conductivity in the y-direction 

(1) 

= functional coefficients (currently equal to zero) 

= non-coefficient is used for solving Helmholtz-type 
problems, read in analysis program but not in pre­
processor. 

= flowrate of an internal sinks located at node i 
(currently read in analysis program but not in pre­
processor) 
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Method of Weighted Residuals 
With¢ representing h, the hydraulic head, 

Using 

f W L{¢) dA • 0 
D 

<P ,. {N} {¢} in each element e 

W • {N} in each element 

(1) 

(2) 

(3) 

Then interchange of integration & summation (assuming error to be small) 
is 

m 
E I {N} L(~) dA- 0 (4) 

e•l Ae 

Using l.t if 11 11 L(<P) .K 
xx ax2 

+K 
yy ()y2 

+ A(x,y) ax + B(x,y) ay 

n 
+ C(x,y) + D¢ + E pi O(x-xi' y-yi) 

i•l 
(5) 

in Eq. (4) yields 

n 
+I {N} [C]dA +I t {N} Pi 6(x-xi,y-yi)dA • 0 (6) 

Ae Ae i•l 

Using theorem if-'K andK are constant in an element 
XX yy 

-K I 
XX A 

e 

a{N} 11 dA -K I a{N} 11 d.A + t{N}(K, 11 + K 11)dl. 
ax ax yy ay ay xx ax yy ay A . -e 

+ f ( {N}A .ll. + {N} B ~ + {N} D+)dA + I {N} [C]dA 
· ax oy A 

Ae e 

m n 
+ E I t 

e•l A i•l e 

(7) 



I 
I Using ~ = {N}T {<j>} yields 

(8) e 

I [K] {<j>} = {R} 
(9) 

I where 
m 

[K] = E [ k] 

I e=l 

[ { 
T 

[ k] = f (-.K a{N} a{N} )dA 

I A XX ax ax 
e 

a{'N} T 
+ f (-l< a{N} )dA 

I A YY ay ay 
e 

I T T 
+ f ( {N}A a {N} + {N} B a{N} )dA 

A ax ay 
e 

I + f {N}D {N}T 

J (10) 

I 
A e 

m 
{R} = r {r} + {S} 

I e=l 

{S} {-t {N} (i{ ~ aq, 
di I 

= +K -) 
XX dX YY ay 

{r} = -r {N} C dA 

I A 
e 

n 

I· -f r {N} Pi o(x-xi,y-yi)dA (11) 
A i=l e 

I 
I 
I 
I 
I 
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2.3 Details of assembly 

Now for K , K , and D constant in an element and expressing XX yy 

A= {N}T{A}, B = {N}T{B}, C • {N}T{C} then Eq. 10 becomes 

for linear triangular elements 

[K] • [ -K 
XX 

- K ClNi ClNJ 
[! dAl YY ay ay [f dA] 
Ae Ae 

Using the notation 

Ni 

r 
A e 

.. 
Nl 

N2 

N3 

1 - 2A 
e 

.aN
3
tax 

a1 + b1x + e
1

y 811 + 821x + 8 31Y 

a 2 + b 2x + e2y 1 
812 + B22x + 8 32Y - 2Ae 

a 3 + b
3
x + e

3
y 813 + 8 23x + B

33
y 

= 

= 

(12) 

(13) 

(14) 

(15) 

(16) 
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Then 

K 
XX 

--

(17) 
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2.4 The Dp term 

Looking only at the D~ term entry to kij 

f N1N1 dA 

: 
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o r 
A e 

II Proceed term by term i,j ~ 1,2 or 3 
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I 
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111 
I 

I 

D 
~ 

4
A 2 (ai f (aj + bjx + cjy) dA + bi f (aj + bjx + cjy) x dA 

e 

® 
,,--. . ., 

+~ +6)t_;)> A 

© ~ @& 

Redefining each circled quantity by the quantity in the hexagon 
below it results in: 
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By definition A7ij • A7ji 

So previous line can be written as 

D --2Ae 

D --2Ae 
D --2Ae 
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2.s .. The C(x,y) term 

I Ni C(x,y)dA 

= I Ni Nj Cj dA 

• c1 I Ni N1 dA + c2 I Ni N2 dA + c3 I Ni N
3 

dA 
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2.6 SamEle Problem - 1 element 

c3 ~ 3 

(o,•) 

(o, o) (I,O) 

c,."" . Ca & C) 

8ll '"' Xj ~ - yj ~ a (1) (1) - 0•0 • 1 

812 = ~ Yi - Yk xi '"' 0 

813 • xiyj - yixj • 0 

821 - -1 

822 - 1 

823 - 0 

831 - -1 

832 - 0 

s33 • 1 

a (1}[4} + (0}(0) + (0)(3} • 3 

i e e e 
c2 • 821 c1 + 822 c2 + 823 c3 

- (-1)(4) + (1)(0) + (0)(3) - -3 

i · e e 
cl., • B31cl + B32 c; + B33 c; 

- (-1)(4) + (1)(0) + (1)(3) - 0 

X = 0 i Y a 0 
i 

X "" 1 j Y a 0 
j 

~,.. 0 yk ,.. 1 

1 
{0 + 1 (1-0) 1 A•- + 0} - -2 2 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2.7 Analysis Input 

Record Type 1 - An SO-character field for titles on input, output, 
and files {one record only). 

Record Type 2 - Coefficients and scaling factors (one record only) 
as of July 19S3, XSCALE, YSCALE, TXX, TYY are 
entered interactively. 

XSCALE - Scaling factor for x coordinates 
YSCALE - Scaling factor for y coordinates 
TXX,TYY,DD - Coefficients K , K , and D in Eq. 1. If any of 

these are vari~!es ~ifferent values for elements), 
enter - 99999 for that quantity. 

Record Tyge 3 -
NELEM 
NNP 
NCOL 

NPSI 
NPIN 
IBC 

KK 

I WRITE 

I CASE 
NORDER, 

IP 

Record Tyge 4 -
NPSIA{I) 

Record Tyge 5 -

NPINA(I), 
PIN{I) 

Record Tyge 6 -

NBC(I) 

Record Tyge 7 -

NOD(I,J) 

{one Record only) 
Total number of elements 
Total number of nodes 
{number of upper codiagonals) + 1 {also equal to half 
bandwidth, NBHW) 
Number of nodes on boundary 
Number of nodes where h is specified 
Number of nodes for boundary conditions of the type 
hi= h .• Input appears in pairs, both node i and 
node j~ 
Flag used to control supression of debug print 
statements. 
Flag for directing creation of SO-character record 
{see Preprocessor Input) 
Case being analyzed {see Preprocessor Input) 
Type of element being analyzed {see Preprocessor 
Input) 
Number of quadrature points per Q-S elements. Set 
equal to zero if NORDER .ne. 2. 

Boundary Definition {As many records as needed) 
(i = 1, npsi). The node numbers of the boundary 
points, in counterclockwise order. Enter only if Q-8 
elements are used (NORDER= 2). 

Boundary Condition, h specified {As many records as 
needed). 
(I = 1, NPIN) Node number where h is specified, and 
value of h, respectively. Do not enter if NPIN = o. 

Boundary Condition, hi = hj (As many records as 
needed). 
(I= 1, IBC) For condition h. =h., where node i is on 
the boundary, and node j is at any location; input 
occurs in pairs, node i first then node j. Do not 
enter if IBC = o. 

Element data for NELEM element (As many records as 
needed). 
nodal numbers of Ith element in counterclockwise 
direction, J = 1, NPE, where NPE - 3 for linear 
triangles, NPE = s for Q-S elements, NPE = 6 for 
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Record Type 8 -

X(I) 
Y(I) 
AA(I) 
BB(I) 
CC(I) 

Record Type 9 -

TXX(I),I=1, -
NELEM 

TYY(I),I=1, -
NELEM 

DD(I),I=1, 
NELEM 

Record Type 10 
FACDEL 

nodal Coordinate Data for NNP nodes (As many 
records as needed) 
The x-coordinate of node I 
The y-coordinate of node I 
Coefficient (A in Eq. 1) 
Coefficient (B in Eq. 1) 
Forcing function term (C in Eq. 1) at X(I), Y(I). 

TXX, TYY, and DO Data (As many records as 
needed). 
If TXX = -99,999 enter values of Kxx in Eq. 1 for 
each element. 
If TYY = -99,999 enter values of Kyy in Eq. 1 for 
each element. 
If D = -99,999 enter values of D in Eq. 1 for each 
element. 

- scaling Factor for Pumpage. One record 
- Scaling Factor for P. in Eq. 1. For pumping wells, 

FACDEL = -1; currently Record types 10 and 11 are not 
read, but can be reactivated within Program FEF. 

Record Type 11 - Pumping Wells. One record for each well. 
IDEL - Node number where node is located 
QPUMP - Pumping rate of well, (Pi in Eq. 1) 
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--
2.8 Analysis Output 

output 

Files 

The main output includes: the element definition data (if 
IWRITE ~ 0); the nodal coordinates (x,y), the solution hat 
the node and the partial derivatives·of h, (if IWRITE = O). 
File 2: Global stiffness matrix if !WRITE = -1, and element 
stiffness matrices (if !WRITE= 0). 
File 3: Solution is written on file 3 if IWRITE .ne. o 
(solution is not printed). 

Example output files are available from the authors on IBM PC 
compatible disks. 
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3. POST PROCESSOR 

The post-processor interpolates the pressure field within an 

element using a linear interpolation scheme. If a contour passes 

through an element, a straight line segment from (x1 , y1 ) to (x2 , 

y 2) will occur. Figure 1 shows such a contour line for h = 10 

passes through an element with hi= 7, hj = 5, and hk = 13.5. 
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Figure 1. 
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APPENDIX 5. NOTATION 

The following symbols are used in this paper: 

a = coefficient in Irmay's (1958) Equation 

A = coefficient in Forchheimer's Equation 

b = coefficient in Irmay's (1958) Equation 

B = coefficient in Forchheimer's Equation 

d = equivalent sand grain diameter (mm) 

D = diameter of fluidization source pipe (m) 

db = depth of burial of fluidization source pipe 

d 50 = equivalent sand grain diameter exceeded by 50% of sand 

grains (by weight) (mm) 

d 90 = equivalent sand grain diameter exceeded by 90% of sand 

grains (by weight) (mm) 

g = gravitational acceleration (9.81 mjs) 

K = hydraulic conductivity (cmjs) 

Kx = hydraulic conductivity in x (horizontal) direction (cmjs) 

Ky = hydraulic conductivity in y (vertical) direction (cmjs) 

n = porosity of porous medium 

Q. =minimum fluidization flow rate,per unit width (ccjsjcm 
1 

or 1/s-m) 

R = Reynolds number 

Rv = ratio of inertia term to Darcy term in Eq. 2 
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V or q = Specific discharge; also superficial velocity for 

one-dimensional problems and Darcy velocity if 

Darcy's Law is valid (cmjs) 

v. =Minimum fluidization superficial velocity (cmjs) 
1 

~ = kinematic viscosity of water (gjcmjs) 

p = fluid density (gjcc) 

p
8 

=density of porous medium (gjcc) 

w = sphericity of sand grains 

xb = horizontal (x) distance to impermeable side boundaries 

Yb = vertical distance from the centerline of the source pipe 

to the impermeable boundary below the source pipe 
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Table 2.1. Variation of gradient above source pipe for Roberts 
et al.'s (1986) incipient fluidization condition, 
42 em bed. 

Elevation Average 
Interval Gradient 

Head at Between Between 
measuring Measuring Measuring 

Measuring Location, Location, Location, 
Location em em em 

Top of 0 
Sand 

32.1 to 42 0.87 

Tap 74 3.38 

24.5 to 32.1 0.93 

Tap 59 6.17 

16.8 to 24.5 0.93 

Tap 44 8.96 

9.2 to 16.8 1. 21 

Tap 29 12.6 

1. 6 to 9. 2 1. 64 

Tap 14 17.5 

o to 1. 6 

Pipe 

Weighted 
Average 1.10 

11 - 11 indicates data not available. 
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Table 3.1. Variation of hmax/db for the simulated conditions. 

Isotropic K /K = 
X X 10:1 

Depth, Small Large Small Large 
ft Domain* Domain** Domain* Domain** 

5 2.47 2.50 2.16 2.24 

10 2.20 2.26 1.91 2.09 

20 1. 96 2.06 1.62 1.95 

40 1. 69 1.87 1. 37 1. 80 

* xd = 50 ft, yd = 20 ft. 

** xd = 3000 ft. yd = 240 ft. 
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Figure 2.2 Definition sketch of a source pipe buried a depth 
db in a fine sand prior to incipient fluidization. 



-------------------

0 

-7.33 

-14.67 

CIJ 
Q) 

,..c: 
(.) -22.00 
!:::: 

·M 

::>., 

-29.33 

-36.67 

-44 
0 9 

Figure 3.1 

18 27 36 45 54 63 

x, inches 

Comparison of finite element and boundary element 
results for a hypothetical problem of a 26 inch 
burial depth; contours are fraction of maximum 
value. 

."\ FEM 

' ·., BEM 



-------------------

24 • • • • 
. 4 .3 .3 .3 

• 
14 1.0 

4 
• 2.7 

s -6 
u • 
~ 2.8 

:>.. -16 

-26 

-36 

-46 
0 20 

Figure 3.2 

• • • .3 .2 . 1 

• • .9 .7 

• • • 1.4 1.1 1.0 

• • 1.6 1.0 

100 120 140 

x, ern 

Comparison of Roberts et al.'s (1986) Test 2 
obse:ved head data (to tenths of em) with 
pred1cted contours of hydraulic head (em) using 
the finite element method for a flow rate of 
0.0344 1/s-m, Kx = 0.012 cmjs, Ky = 0.012 cmjs. 

160 180 



-------------------

20 40 60 

160 180 
x, em 

Figure 3.3 



-------------------

100 
x, em 

120 140 

Figure 3.4 Comparison of Roberts et al.'s (1986) Test 2 
obse:ved head data (to tenths of em) with 
pred1cted contours of hydraulic head (em) using 
the finite element method for a flow rate of 
0.0344 1/s-m, Kx = 0.014 cmjs, Ky = 0.012 cm;s. 

160 180 



-------------------

24 • • ... ~3 

14 

4 

e -6 
0 

>; -16 

-26 

-36 

-46 
0 

• • • • • .3 .3 .3 .2 .1 

• • • 1.0 .9 .7 

• • • 1 • .( 1.1 1.0 

• • 1.6 1.0 

• • • 3.4 2.8 2.3 

2 

60 80 100 120 140 
x, em 

Figure 3.5 Comparison of Roberts et al.'s (1986) Test 2 
observed head data (to tenths of em) with 
predicted contours of hydraulic head (em) using 
the finite element method for a flow rate of 
0.0344 1/s-m, K = 0.016 cmjs, K = 0.012 cmjs. 

X y 

160 180 



- - - - - - - - - - - -- - - - - - - -

s 
(J 

4 

~ -16 

-26 

-36 

:~. 

'· 

.8 .7 . ·· .. 
1.8 . 1~',;.).1 
• •· "·. • ;-;or····· 1.0 .. 

2. 7 -· :.8 ;;l.8 1.0 
• • 

2.8 2.3 
• • 

40 

Figure· 3.6 

• 

60 80 100 120 140 
. x. em 

Comparison of Roberts et al.'s (1986) Test 2 
observed head data (to tenths of em) with 
predicted contours of hydraulic head (em) using 
the finite element method for a flow rate of 
0.0344 1/s-m, Kx = 0.018 cmjs, Ky = 0.012 cm;s. 

160 180 



-------------------

0 20 40 60 80 100 120 140 160 180 
24"7 

J. 

1-4 
7. 1.21 

• 
4 2.14 1.86 • • 

s 3.70 2.21 
u • • • 
:>-. ·16 

·26 

·36 

·46 
80 0 20 40 60 100 120 140 160 180 

x, em 

Figure 3.7 Comparison of Roberts et al.'s (1986) Test 2 
observed head data (to hundredths of em) with 
predicted contours of hydraulic head (em) using 
the finite element method for a flow rate of 
0.0344 1/s-m, K = 0.018 cmjs, Ky = 0.008 cmjs. 

X 



-------------------

s 
(.) 

0 
24"7'~~~~~-M~~~~~~~~-r-r~r.-.-.-,,~~~~~~~~~~--~ 

1.01 
• 

14 
1.43 1.211 
• • 

4 2.50 1.211 
• • 

3.01 2.14 2.21 
• • • 

~ ·16 

·26 

·36 

20 40 

Figure 3.8 

60 80 100 120 140 
x, em 

Comparison of Roberts et al.'s (1986) Test 2 
observed head data (to hundredths of ern) with 
predicted contours of hydraulic head (ern) using 
the finite element method for a flow-rate of 
10.45 ccjs (0.0344 ljs-rn), K = 0.02 crnjs, K = X y 
0.01 cmjs. 

160 180 



-------------------

14 

4 

3.81 • 

~ ·16 

·26 

·36 

·46 
0 

Figure 3.9 

2.21 • 

140 

. x, em 

Comparison of Roberts et al.'s (1986) Test 2 
obse:ved head data (to hundredths of em) with 
pred1cted contours of hydraulic head (em) using 
the finite element method for a flow rate of 
12.47 ccjs, Kx = 0.018 cm;s, Ky = 0.008 cm;s. 

160 180 



-------------------

s 
u 
~ 

;:.., 

0 
2 4'·D~=r!:r"h~....,.....,..¥rlh-~h-rr.-r-,--r-.:r=-r~~~:,_~~~~.--~~--r-~ 

4 

-16 

.-26 

-36 

-46 
0 

4 

80 100 120 140 
x, em 

Figure 3.10 Comparison of Roberts et al.'s (1986) Test 2 
observed head data (to hundredths of em) with 
predicted contours of hydraulic head (em) using 
the finite element method for a flow rate of 
12.47 ccjs, K = 0.02 cmjs, K = 0.008 cmjs. 

X y 

160 180 



-------------------
10 

-30 

-40 

. -50 

40 50 60 70 80 90 
x/D 

Figure 3.11 Computational finite element grid used in the 
calculation of numerical results for design chart 
using 1055 elements and 584 nodes. 

100 



-------------------
\ 

10 10 

0 

-10 -10 

-20 -20 

-30 -30 

-40 -40 

-50 -50 

-SQOL-~~10--~~~~~~~~5~0~-6~0~~~~~~~~~100 60 

x/D 
Figure 3.12 Predicted hydraulic head contours for a 1 ft 

(0.305 m) diameter pipe buried 20 ft (6.10 m) in a 
domain with Xd = 100 ft (30.5 m) and Yd = 60 ft 
( 18. 3 m) • 



- - - - -3.5 

3.0 

.0 
'1:j 
:::..:: 
~ 
a 

.. 2.5 
c:t: 
0 
f-4 
u 
< 
~ 

~ 2.0 
f-4 
< 
11:: 

~ 
0 
~ 
~ 1.5 

1.0 

1 

- -- - - - - - - - -

Figure 3.13a 

4 6 

10 

db' ft 

t~=s~~~~~:~tfi~~ ;:~;r~pi~ con(ditions providing 
depth of burial d f ac o~ Qi/Kdb) versus ' b' or var1ous domain sizes. 

- - -

a 
100 



- - - -3.0 

2.5 

2.0 

1.5 

·1.0 
''I' 

0.5 

1 

- - - - - .. - - - - - - -
-----------,------------r---r--,--r-~--~--------------r------,------------r----r- 1 -, 

I I I I I I · 1 
I I I I I I 
I I I I I 1 
I I I I I I 
I I I I I 
I I I I I 
I I I I 
I I I I 
I I I 
I I I 
I I 
I I I I I I I 

-----------1-------~----~--- --1 -----------·------1----4---4---~--~-·-1-1 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I 
I I I I I I I 
I 'I I I I I 
I , . I I I I I 
1
1 

..• 1
1 

I I I I 
I I I I I 

I , .. I I I DOM.UN SIZE 
: .:·:: I I I : :(X.,Y4: 
I .:~~~~ I I I I I I I 

------.,.---- .J- -·- -,;:..:;,:.:.L.-- r-L--- L-..: .J-- .L- ---- -1- __ -1- __ L _ -'- _ .&. _ .J _ J . . .. . ... ;·:;<: ,I : : : 

·· ·;·, "•:·: 
1 30o•z•o: 

· .• •.• 'I I I 
: ' , r I j I I 

·( •· ,• · I I I I 
I I I I I 

: : I 120~2·0: 
·;i · I I I 

·,I I. I I I 
•. I I I I 'I: .. ,.,._.. .. ,.I I -----------,--- ... -.... ·--- -- -r--- r-.,.,- -r -~- -~- -• ...,-:--- -- ~----Aj"""'IM.. r---- r -,-, 

' ' . ··. I I ·I I I 

I I -f .. I 200~20 
: : • .: 

1 

1 200_,.0 
'I I I : 
r " I I . 
I I I'.\' 

.' \. 

I I I '' 
I I I'. 

•· I . I 
I • I~ . • I ·.· I: 

----- _:_--- - 1 -: ~-~:~f=-~---.: .. i.~ ~ f:~;:- 1 - -r- -1-:+.1f{f:·--- ~- ~--- ~ y-.-:----
···::: t·: ·· It ;;• I 

I' .··:1:·;:· ·I 
t'. . ;t I· 
I , ·I"; I" 
I·, :1 I 
i' I • I 
I" t.' I 

. I· I·:' ::1. 

. I' i' I 

1 1 ,' ... ,, 
I I I 

6 8 2 

I 

100~0 

100*0 

I" 
I 
I 
I 
I 
I 

4 6 

-

4 2 
100 1.P 

DEPTH OF BURIAL, FT TO PIPE CENTERLINE 
Figure 3.13b Design chart for K /K = 10 providing the 

required flow ratexfa~tor (Q.jKdb) versus depth 
of burial, db, for various dOmain sizes. 

-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1.50 

1.25 

.., 1.00 

..: 
z 0.75 
1.&1 

~ 0.50 t:J 

0.25 

0.00 
0 10 • a. cc/s 

DOSS TAP 1 61RUAY TAP 1 0085 TAP 6 

Figure Al.2 Comparison of gradient J using Irmay's equation 
and Roberts et al. (1986) observed data. 



-------------------

Expanded Bed Depth 

-..... 
Leakaae' Acroa 

laterface 

Flulcllzeci/U aflulcllu4 
Realoa laterface 

Figure Al.l Fluidized region above a source pipe for two flow 
rates showing various physical processes (after 
Weisman et al., 1988) 


	Lehigh University
	Lehigh Preserve
	1989

	Fluidization of granular media in unbounded two-dimensional domains: numerical calculations of incipient conditions, 70p (no date but assume 1989)
	Gerard P. Lennon
	F. Tom Chang
	Recommended Citation


	tmp.1350423203.pdf.bdP6M

