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Abstract 

A sediment deposition model is developed for application to Great Sound, 

New Jersey. A determination of the average annual accumulation rate is of 

primary interest. The settling tank concept is u~ed for the model, employing a 

plug flow approach to the tidal hydrodynamics. Assumptions inherent in this 

modeling technique include no mixing between plugs, a uniform vertical velocity 

profile, and simplified geometry. 

Model inputs were based on hydrodynamic and sediment data obtained for 

Great Sound by other investigators, including initial flow volume in the Sound 

at mean low water, the inflow hydrograph and tidal range, the sediment sizes, · 

concentrations and settling velocities, and a frequency versus concentration 

relationship. 

The model simulates a single tidal cycle in Great Sound for spring, neap 

and mean tidal conditions at various sediment concentrations. Three tests were 

run to define the sediment deposition characteristics of the Sound. The first 

test defined the relative impact of spring, neap and mean tidal events on the 

deposition. Deposition during mean tide equals the average of the spring and 

neap tide deposition. Concentration hydrographs for ebb flow were determined. 

The second test determined the average annual sediment accumulation rate in 

Great Sound to be 8.9 mm/yr. Model predictions compare favorably with 

predictions of other researchers. Finally, the distribution of the average annual 

accumulation across Great Sound is defined. In the third test, the relative 

influence of storm conditions versus predominant fair weather conditions was 

established. Only 8 storm days are required to match a year of fair weather 

deposition. 
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1.1 Background 

Chapter 1 
Introduction 

The southern New Jersey coast is an area thriving in recreational and 

commercial activity. The wetlands area, landward of coastal barrier islands, 

provides the ingredients necessary to support a variety of wildlife. Specifically, 

finfish, shellfish, and bird life t.hrive here. Boaters, fishermen and naturalists all 

find the wetland-sound areas to be exciting, yet relaxing places of recreation. 

The wetlands region includes Great Sound, which is located landward of Seven 

Mile Beach where the resort cities, Avalon and Stone Harbor, are located 

(Figure 1-1). Great Sound has been the subject of extensive research by a 

variety of scientists and engmeers, including geologists, biologists, 

environmentalists and hydrologists. 

The Intracoastal Waterway, which supports seasonally heavy volumes of 

recreational boat traffic, traverses the Sound near its eastern edge. The 

Intracoastal Waterway must be maintained against excess sediment build-up by 

periodic dredging. Coastal sediment originating m ocean waters is transported 

through inlets and channels during flood tide. It eventually arrives in the 

Sound where low flow velocities create a depositional environment. The effects 

of sediment deposition in the region are significant in several ways. Deposition 

m the channel as it traverses the Sound is costly to dredge and can be 

hazardous to navigation. Excessive sediment deposition in the Sound may alter 

the state of shellfish life and therefore influence the ecosystem of the wetlands. 

Finally, the relative effects of sea level rise versus accumulating sediment may 
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also affect the long term stability of the landforms. 

Previous field research provides an invaluable databank from which 

pertinent hydrodynamic and sediment data can be obtained for the analysis of 

sediment deposition. Schuepfer (1985) supplemented hydrodynamic field data 

taken in the Sound with a numerical model called HYDTID developed by Masch 

et a!. (1977). The two-dimensional hydrodynamic model was used to predict 

flows and tidal heights for various tidal conditions in Great Sound. The model 

was calibrated against the field data for spring and neap tide events, and 

verified by simulating a mean tide eyent. Schuepfer's results include flow rate 

and water surface elevation hydrographs and tidal prisms. 

Carney (1982) analyzed fine-grained sediment aggregation processes in 

Great Channel by collecting near-bottom and surface suspended samples. 

Settling velocity fractionation and an electronic size analysis were performed to 

better investigate sediment aggregation. The results of Carney's work includes 

particle size fractions, settling velocities, volumetric distribution of the size 

fractions, fraction densities and a concentration hydrograph. Griffiths (1986), in 

a study concurrent to this one, has also taken data to generate concentration 

hydrographs for fair weather and post storm conditions in the Sound. Griffiths' 

study is an attempt to show the dominant paths of sediment influx into Great 

Sound. 

Kelley ( 1975) took stable lead, Pb, profiles of the bottom sediment in 

Great Sound. Based on these profiles, annual accumulation rates were estimated 

at between 5 and 10 mm/yr. Thorbjarnarson et a!. (1984) used a lead isotope, 

Pb-210, geochronology to evaluate sediment accumulation rates in the western 

half of the Sound. Fifteen cores were taken, and a steady-state equation was 

3 



Great 

Sound 

Seven Mile Beocl'a 

Atlantic 0 c • a n 

Figure 1-1: Map of the Study Area Landward of Seven Mile Beach Including 
Great Sound and its Main Feeder Channels Great Channel and 

Ingram Thorofare, after Schuepfer, 1985 
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used to evaluate the profiles. Sediment gram s1ze data were determined from 

the cores, and maximum annual sediment accumulation rates predicted for the 

Sound. The study concluded that between 1 and 5 mm of sediment 

accumulates in the western half of Great Sound annually. 

Another researcher, Faas (1984), has studied accumulation m sediment trap 

structures in Great Sound and other nearby tidal basins. 

1.2 Objectives 

Considering the impact of sediment deposition on Great Sound and the 

surrounding region (high dredge costs, navigation hazards and potential altering 

of the ecosystem and landforms), the need for a sediment deposition analysis of 

the Sound is evident. The abundance of hydrodynamic and sediment data 

available presents the opportunity to construct a sediment deposition model of 

the Sound. The purpose of this model is to define the sediment deposition m 

the Sound over space and time, while also determining which factors, such as 

spring tides, storm conditions, and average day conditions have the most 

influence on annual deposition. 

Specific objectives for a sediment deposition model of the Sound are: 

1. Adapt and test the utility of a settling tank model when applied to 
a tidal basin which considers basic hydrodynamic, sediment and 
meteorological characteristics, but does not include such factors as 
dispersion and resuspension. 

2. Utilize available field data, including fluid and sediment inflows, tidal 
range, sediment particle characteristics and frequency of occurrence of 
varymg meteorological conditions, as input data to the model. 

3. Predict the annual sediment accumulation rate in the Sound and 
compare the model results with accumulation rate assessments 
determined by Pb profile testing of bottom sediments. 

4. Analyze the distribution of sediment as a function of time m the 
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tidal cycle and position across the Sound. 

5. Determine the relative affect of fair weather versus storm weather 
conditions. 

6. Determine ebb flow concentration hydrographs. 

7. Compare the rate of sediment deposition with current sea level nse 
predictions. 

1.3 Overview of Sediment Deposition Modeling in the Coastal 

Environment 

The result of this study is a model which analyzes sediment deposition m 

Great Sound. The model is purposely generalized to enhance its capabilities m 

other regions and perhaps for other problems. Previous researchers have both 

monitored and modeled sediment deposition in coastal regions and some are 

reviewed here. 

Evans and Collins {1974} monitored the transportation and deposition of 

suspended sediment in a large embayment on England's east coast known as the 

Wash. One of the results of the study revealed that by determining the 

sediment flux over a single tidal cycle, useful data on sediment transport over 

much larger periods of time could be accurately calculated. These calculations 

were based on the average suspended sediment concentration as recorded at 

various times throughout the tidal cycle. 

Wang (1985) applied the theory of turbulent jets in predicting the 

development of the Atchafalaya River Delta on the Gulf Coast. The pnmary 

factor influencing the pattern of sediment deposition was the inertial force of 

river effluent and associated turbulent diffusion. In the analysis, assumptions 

similar to those made for sediment deposition basins were evident. These 
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assumptions included: shallow receiving waters, a uniform velocity profile, and 

well-mixed conditions at the mouth. Also, the river-bay system was 

approximated by simple geometry. A numerical integration technique was used 

for obtaining analytical solutions. 

Similar studies were also conducted by McAnally et al. (1984) on the 

Columbia River mouth, and Cole and Miles (1983) on the motion of cohesive 

sediment in the Thames in England. 

Maa et al. (1985) modeled shoaling of fine, cohesive sediment in a Florida 

marina using a lumped parameter model solving the one-dimensional convective-

dispersion equation assuming uniform concentration and a simple harmonic tidal 

variation. For a basin in which the water level variation due to the 

astronomical tide IS the principle driving mechanism for circulation, the rate of 

shoaling was found to depend on the following factors: 

1. Range and period of the tide 

2. Basin depth 

3. Suspended sediment concentration outside the basin which defines the 
input sediment concentration 

4. Sediment settling velocity 

5. Density of basin deposit 

Concerning suspended sediment concentration, the study by Maa et al. 

(1985) showed that during storm conditions sediment loads tend to increase by 

up to two orders of magnitude over fair weather conditions. A concentration 

histogram was also developed by Maa et al. (1985) which describes the 

concentration-frequency relationship derived from measurements over a 265 day 

period. 
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1.4 Scope of This Study 

The studies by Wang (1985), McAnally et al. (1985) and Cole and Miles 

( 1983) use comprehensive finite difference schemes to describe the motion of 

sediment entering an estuary, while Evans and Collins (1974) and Maa et al. 

(1985) present extensive field data but use simple mass balance equations to 

describe sediment flux. Unlike the previous analyses, the present study applies 

the settling tank concept in modeling sediment deposition within Great Sound. 

Although future research will attempt to incorporate sediment deposition 

modeling within a two-dimensional hydrodynamic model for the Sound, the 

lumped settling tank modeling technique using one-dimensional hydrodynamics is 

appropriate in this initial phase of analysis for two basic reasons. First, based 

on limited input data and a very small depth, a three-dimensional approach is 

not presently justified. Second, the settling tank concept aptly. describes a basin 

like Great Sound, which is of small areal extent with uniform bathymetry and 

low flow velocities. As previously stated, a basin like Great Sound presents an 

opportunity to evaluate a settling tank model's performance in the coastal 

environment. A plug flow approach to the hydrodynamics of the Sound is 

incorporated into the settling tank representation. Available field data from 

previous researchers are utilized by the resulting model as input data. 

The physical characteristics of the Sound are described completely m the 

following section, including geographic, bathymetric, hydrodynamic and sediment 

characteristics. As a background to the model, the basic settling tank concept 

is developed. The adaptation of the settling tank concept to the Sound is then 

presented, with consideration given to tidal basins, tidal hydrodynamics and 

diffusion and dispersion processes. An analysis of fluid and sediment motion 
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occurring within each plug of flow concludes the development of the sediment 

deposition model. Finally, the model testing and results are presented and 

discusse9 in light of the results of previous researchers. Applicable conclusions 

and future considerations are also examined to complete the study. 

This study does not consider the effects of resuspension, dispersion and 

circulating flow. 
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Chapter 2 

Physical Characteristics of the Channel
Sound System 

2.1 Geography and Topography 

Great Sound is pictured in Figure 2-1. The Sound is of small areal 

extent, covering approximately 4.65 km2• Two channels feed Great Sound, 

Ingram Thorofare from the northeast and Great Channel from the southeast. 

The Intracoastal Waterway, which traverses the Sound to the east, connects the 

two channels at an average depth of 3 meters. The bottom of the Sound is 

generally uniform, and the Sound has an average depth of 0.5 meters at mean 

low water (ML W). Dredge spoils located near the edge of the Intracoastal 

Waterway are the only exception to the otherwise uniform bottom. The Sound 

is surrounded by marshland which is innundated during spring tides. There IS 

virtually no fresh water surface drainage from the mainland into the Sound. 

2.2 Hydrodynamic Characteristics 

Fluid motion in the Sound is dominated by the astronomical tide which 

floods the Sound through Ingram Thorofare and Great Channel. Tidal ranges 

at Reuben's Wharf (see Figure 2-1 for location) are shown for spring and neap 

tides in Figures 2-2 and 2-3. For all spring tide data 0.00 hours corresponds to 

0.00 hours May 24, 1983, and for all neap tide data 0.00 hours corresponds to 

0.00 hours June 1, 1983, as recorded by Schuepfer (1985). Typically, the spring 

tidal range is 1.5 meters and the neap range 1.0 meters. The mean tidal range, 

averaging 1.25 meters, is shown in Figure 2-4. Tidal prisms for Great Channel 

and Ingram Thorofare have been calculated using the HYDTID model by 

10 



------Iaube• /6...., 
Wba~f 

¢1; 
GlUt I 
SOURD I ' Model ,, 

Area AI 1t 
I~~ 

A 15 1:§ 

'~/ I:J ,,, 
I~ -All 1/ 

1 .. 

7 
11 

•Griffith's Data Collection~~ 
e Carney's Data Collection , ~ 

AI Grizzle's Data Collection 

(] Schuepfer's Data Collection 

Stuqeoa 
bland 

. /~ 
~( 
22 
0 

Figure 2-1: Map of Great Sound, New Jersey, Including the Intracoastal 
Waterway and Data Col~ction Sites 

)) 



Schuepfer (1985). Field data used for model calibration was collected at Ingram 

Thorofare Bridge and Great Channel Bridge. Summing the tidal inflows 

through the contributing channels yields the total tidal prism entering the 

Sound and wetlands region during flood tide. The total mean tidal prism is 

2.06 x 107 m3• As previously stated in Section 2.1, the total area occupied by 

Great Sound is approximately 4.65 km2• Incorporating Schuepfer's (1985) tidal 

data, it has been determined that 30% of the total mean tidal prism occupies 

Great Sound at slack high water. For the mean tidal condition then, the tidal 

pnsm for the Sound is 5.77 x 106 m3• At MLW, a volume of 2.3 x 106 m3 

remains in the Sound. Therefore, for a mean tide, the total volume in the 

Sound at slack high water is 8.07 x 106 m3• 

Figures 2-5, 2-6 and 2-7 show the flow rate versus time for Ingram 

Thorofare and Great Channel for spring, neap and mean tidal conditions taken 

from Schuepfer (1985). Field data are shown along with the HYDTID output 

as verification of the spring and neap tide flow conditions. An average lag time 

of one hour can be observed between the two channels. Ingram Thorofare 

floods first, and Great Channel follows subsequently. The flood which enters 

through Great Channel has a one hour delay because of the weaker driving 

head in the channel (Schuepfer, 1985). These two channels dominate the 

incoming flood to the Sound. Cresse Thorofare, also pictured in Figure 2-1, 

provides negligible flow into the Sound relative to Ingram Thorofare and Great 

Channel. 

Since the two channels flow in opposite directions within the lntracostal 

Waterway throughout the flood, a nodal point (where net flow is zero) exists 

between them. Based on hourly flow maps from the HYDTID model 
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(Schuepfer, 1985), the nodal point begins between Gull and Sturgeon Islands 

(Figure 2-1) and gradually moves north along the Intracoastal Waterway as flow 

through Great Channel increases. Thus, initially, Ingram Thorofare dominates 

the flow. through the Intracoastal Waterway in the nodal point region, but 

Great Channel contributes approximately equal flow discharge a few hours into 

the flood. Thus, on the flood, the Intracoastal Waterway is comparable to a 

line source of flow which spills over into Great Sound. 

Flow velocities in the Sound have been recorded by Grizzle (1985) at the 

sites shown in Figure 2-1, and calculated throughout the Sound from the 

HYDTID model by Schuepfer (1985). Both researchers found maximum 

velocities to occur at peak flood, and typically reach 0.35 m/s independent of 

the tidal condition. At slack high and low tide the velocity is zero. This 

relatively low velocity range in the Sound contrasts with recorded velocities in 

the contributing channels of over 1 mfs. An example of a velocity profile from 

Great Sound, recorded by Grizzle (1985) at site #3 in Figure 2-1, is shown in 

Figure 2-8. This profile demonstrates the uniformity of the velocity over much 

of the depth under fair weather conditions. 

Grizzle (1985) also determined shear velocities, U., 10 the Sound at all of 

his data collection sites. Table 2-1 shows the shear velocities with 

corresponding flow velocities for the various locations 10 the Sound given in 

Figure 2-1 at various times in the tidal cycle. The flow velocity range 

corresponds to var1ous times in the tidal cycle, with near zero velocities 

occurring at slack low and slack high tide, and peak velocities in the range of 

0.35 m/s occurring at peak flood. 
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NEAP TIDE SPRING TIDE 

STATION u*(cm/s) u(cm/s) u*(cm/s) u(cm/s) 

GST 1 1.29 7,5 0.55 7.4 
0.87 =7.5 1.47 12.4 

GST 2 0.59 7.1 1.47 10.6 
0.81 5.9 - -

GS2 2.32 14.0 1.24 11.9 
1.09 6.8 1.54 11.9 

GSJ 0.55 3.9 0.60 5.9 
0.69 6.3 0.75 7.1 

GS 6 1.57 15~2 1.14 20.3 
2.23 30.8 1.63 30.0 

GS 7A 0.44 14.3 3.11 42.1 
1.63 24.0 3.05 41.1 

GS 9 - - 0.97 5.4 

GS 1JA -· - 1.26 8.3 

GS 13D 0.32 3.6 1.83 9.6 

GS 15 - - 0.57 5.8 

GS 17 0.53 7.9 0.56 7.4 
0.51 7.1 0.94 11.8 

GS 1!i 0.22 5.1 0.63 5.5 

- - 1.35 9.5 

GS 22 1.77 19.1 1.23 30.3 

1.58 25.7 1.05 39.5 

Table 2-1: Flow and Shear Velocities in Great Sound, after Grizzle, 
1985; dash indicates data not available 
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--- -~-- .............. 

FUCTIOM I !JUIVALDIT DIAMETER.* (ate: rona) 

1 <2.0 

2 2.()..2.8 

3 2.8-4.6 

4 4.6-7.8 

5 7.8-13.2 

6 13.2-22.1 

7 22.1-37.0 

8 37.o-62.5 

9 >62.5 

* Quartz Sphere, p • 2.65 kg/m3 

Dash indicates data not available 

AVDAGI PAJlTICLI 

SETTLING VELOCITY <-l•> DENSITY (JGa/•3) 

.0.002 1.67 

0.004 2.42 

0.008 2.45 

0.022 2.76 

0.0565 2.75 

0~166 2.57 

0.460 

1.26 

3.43 

Table 2-2: Particle Sizes, Settling Velocities and Average Densities, 
after Carney, 1982 
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2.3 Sediment Characteristics 

Suspended sediment is transported through Ingram Thorofare and Great 

Channel into Great Sound with each flood tide. To characterize the sediment 

transported through the channels, Carney (1982) took sediment samples in Great 

Channel at the location indicated in Figure 2-1. Instead of taking samples 

periodically through a single tidal cycle, Carney took one sample at the same 

time of day for 15 consecutive days. Since the tide shifts by approximately an 

hour each day, Carney was able to simulate a complete tidal cycle using this 

method. As a result, however, his concentration hydrograph represents a range 

of tidal and weather conditions. 

The sediment is made up of two types of aggregate particles, fecal pellets 

and flocculates, also known as organic-mineral aggregates or agglomerates. 

These are classified as cohesive particles. Only the inorganic fraction is 

considered m this study because organic matter is volatilized and does not 

contribute to the sediment accumulation. The inorganic portion of the 

flocculates consists of fine sand- to clay-size grains. Most flocculates observed 

by Carney were less than 60 microns in size. 

Carney defined the sediment size classification m terms of quartz grain 

equivalent diameters. The particle equivalent size range is from 2 to 64 

microns. Table 2-2 shows the equivalent particle sizes and settling velocities 

determined for each of the nine settling velocity fractions established in the 

analysis, along with the average densities for the first six fractions as presented 

by Carney. Note that the settling velocities vary by three orders of magnitude. 

The volumetric distribution of sediment for the nine size fractions is shown m 

Figure 2-9. Faas (1984) determined the bulk density of bottom sediments m 

24 



Great Sound to be 1.5 gjcc. 

Sediment concentrations m the Sound have been recorded by Carney 

(1982) and Griffith (1986) at locations shown in Figure 2-1. In fair weather, 

the average concentration over a tidal cycle is typically 10 mg/1. Figures 2-10 

and 2-11 show fair weather concentration hydrographs recorded by Carney and 

Griffith, respectively. As mentioned previously, Carney's data was recorded over 

15 days, one reading at a different time in the tidal cycle each day, while 

Griffi.th 's data was taken periodically through a single tidal cycle. As the 

figures show, the maximum concentrations are closely related to the maximum 

flood and ebb flows. 

The concentration also varies as a function of existing meteorological 

conditions. In storm conditions the concentration may vary by up to two 

orders of magnitude. Suspended sediment concentrations in the Chesapeake Bay 

were recorded during Hurricane Agnes which exceeded 100 times the fair 

weather concentrations (Schubel, 1975). No attempt has been made to record 

concentration data in Great Sound during such a storm event. Griffith (1986) 

measured the concentration profile in the Intracoastal Waterway the day after 

Hurricane Gloria passed through the region (September 28, 1985), as shown m 

Figure 2-12. The prevailing meteorological conditions that day would be 

classified as "fair weather". However, as Figure 2-12 shows, post-storm 

concentrations are an order of magnitude above normal fair weather 

concentrations. 

No frequency of occurrence curves are available for concentration data in 

the Sound. A concentration versus frequency diagram which may parallel 

concentration frequencies in the Sound is shown in Figure 2-13. The diagram 
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was established by Maa et al. (1985) based on 265 days of data recorded at a 

marina on Florida's east coast. 
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Chapter 3 
Development of the Model 

3.1 The Basic Settling Tank Concept 

The physical characteristics of Great Sound, including its small areal 

extent, protected location, uniform topography and low east-west flow velocities, 

are the basic characteristics found in a sediment deposition basin. These 

characteristics, along with the shallow depth and limited data mentioned in 

Section 1.4, encourage the use of a settling tank model to analyze sediment 

deposition in Great Sound, while evaluating the adaptability of such a model to 

the coastal environment. 

Thomas Camp (1946), m his paper on the design of settling tanks, defines 

an "ideal basin" as a hypothetical settling tank m which settling takes place in 

exactly the same manner as in a quiescent settling container of the same depth. 

In extending his analysis to regions of continuous flow, Camp defines the 

following characteristics for an "ideal continuous flow basin": 

1. The direction of flow is horizontal and the velocity constant m all 
parts of the settling zone. 

2. The concentration of suspended particles of each size is the same at 
all points in the vertical cross section at the inlet end of the settling 
zone. 

3. A particle is removed from suspension when it reaches the bottom of 
the settling zone. 

Four basic types of particle settling can occur m such a settling basin 

(Barfield et al., 1981 ). 

1. Discrete Particle - settling in low concentration solutions where 
particles tend to fall independent of one another. 
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2. Flocculant - settling in which dilute solutions of particles coalesce to 
form particles of larger mass and higher settling velocity. 

3. Hindered - particles are so concentrated that forces between particles 
hinder the settling of neighboring particles. 

4. Compression settling - particles are concentrated to the point of 
forming a structure requiring compression for further settling to take 
place. 

Tapp et al. (1981) have shown that all four types of settling can occur 

simultaneously in a settling tank. In the Sound, cohesive sediment particles 

exist in very low concentrations, and thus, settle as discrete particles. Many of 

these particles are flocculated, as previously described, but the flocculation 

process occurs prior to the entrance to the Sound, not in the Sound itself. 

Because of the very low concentrations existing in the Sound, hindered particle 

settling does not occur. Compression settling may occur at the bottom of the 

Sound, but its effects are incorporated m the bulk density. 

Figure 3-1 shows an ideal settling tank. The tank ts comprised of four 

zones according to function. · ( 1) An inlet zone where the suspensate 1s 

uniformly dispersed over the cross section of the tank. (2) The settling zone m 

which all the settling takes place. (3) An outlet zone in which the clarified 

liquid IS collected uniformly over the crOSS section of the tank. (4) A 

deposition zone where the sediment collects at the bottom. 

In the settling zone, the trajectory of settling particles IS defined by the 

vector sum of the particle settling velocity (V 
8

) and the horizontal fluid velocity 

(Ux) in which the particle is transported. In the ideal basin, the paths of all 

discretely settling particles will be straight lines, with all particles of the same 

settling velocity moving iri parallel paths. A particle starting at the surface of 

the inlet zone which settles precisely at the outfall defines the critical settling 
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velocity of the given basin, V In equation form, 
5cr 

v 
$cr H 

= (3.1) 
u% L 

The path of V a 1s shown in Figure 3-1. All particles of settling velocity V a > 
cr 

V will be deposited. · Particles of V a < V 
8 

will deposit at a rate equal to 
1cr cr 

the ratio of V
8
jV

5 
• That is, if the path of Va is traced back from the bottom 

cr 

of the outlet, its resulting depth at the inlet will determine the percentage of 

particles V 
5 

which are deposited. Thus, if at the inlet, V a is at fifty percent of 

the depth of the tank, then fifty percent of the particles V 
8 

will deposit, and 

the ratio V 
8
/V a = 0.5, as shown in Figure 3-1. 

cr 

To determine the efficiency of a settling tank for retaining sediment, the 

most common parameter is the trapping efficiency E, where 

E = (3.2) 

Here, E is the percent of mass that is trapped, and Min and Mout are the 

masses of sediment flowing in and out of the tank, respectively. Equation (3.2) 

is actually a modification of the mass balance equation which states that the 

mass in minus the mass out must equal the rate of change of mass in the 

system, which, in this case, is the trapped sediment. 

3.2 Extending the Settling Tank Concept to Unsteady Flow 

For unsteady flow conditions, Barfield et al. (1981) list the following 

factors which control sediment motion through a basin: 

1. Physical characteristics of the sediment 

2. Hydraulic characteristics of the basin 

3. The sediment concentration hydrograph 
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4. The inflow hydrograph 

5. The basin geometry 

6. The chemistry of the water and the sediment 

These parameters form the basis from which numerical models have been 

developed to analyze sediment deposition in settling basins where unsteady flow 

conditions exist. Two of these models are mentioned here. 

Ward, Haan and Barfield (1977) developed a conceptual model called 

DEPOSITS (Deposition Performance Of Sediments in Trap Structures) to 

simulate the performance of ponds m trapping sediment particles. The 

DEPOSITS model uses plug flow to route storm water and sediment through a 

settling basin. In plug flow, volumes (plugs) of fluid move through a settling 

basin without mixing with one another. Thus, flow is on a first in, first out 

basis. Stokes' Law is used to model the settling of sediment particles m the 

water column. Each plug is divided into four distinct horizontal layers. 

Because theoretical plug flow rarely occurs in real detention basins, factors are 

incorporated to approximate non-plug flow conditions. One factor is used to 

allow some of the dead storage in a pond to be excluded from the calculations. 

Another is used to simulate basin short circuiting by putting more sediment 

into each plug. Also, since Stokes' Law only applies to quiescent settling 

conditions, a factor is included to account for the effect of turbulence on 

reducing the particle settling velocity. Each of these factors are at best 

approximations and their use in the DEPOSITS model is cautioned by the 

model developers. 

Another model, developed by the EPA (1976), is used mostly in the 

analysis of surface mined sediment ponds. In the EPA model, the particle size 
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distribution is divided into fractions, with a settling velocity determined for each 

fraction. The critical settling velocity V
5 

is determined along with the 
cr 

trapping efficiency, E. An outflow particle s1ze distribution is calculated based 

on the fraction of particles removed. 

3.3 Adaptation of Camp's Settling Tank Concept to Great 

Sound 

3.3.1 Characteristics of Tidal Basins 

Two unique characteristics of tidal basins must be considered to modify 

Camp's (1946) settling tank model to the Sound. These characteristics are: 1) 

a single inlet/outlet for the flow and 2) an oscillating flow field due to the 

astronomical tide. 

Figure 3-2 profiles the settling tank model for Great Sound shown in plan 

v1ew in Figure 2-1. For such a single inlet/outlet system, instead of flow 

occurring as first m, first out (as for a sediment detention basin), it occurs as 

first in, last out. As flow passes through Great Channel and Ingram Thorofare, 

it approaches the nodal point in the Intracoastal Waterway previously described 

in Section 2-2. Flow then proceeds across the Sound from the Intracoastal 

Waterway. Thus, the Intracoastal Waterway is defined as the inlet and outlet 

of the settling tank model. 

The unsteady flow field imposed on Great Sound by the astronomical tide 

was analyzed by Schuepfer (1985) using the finite difference model HYDTID 

developed by Masch et al. (1977). The depth, velocity and direction of flow are 

variable in time and space and simulated as such in the HYDTID model. The 

flow rates at the Sound boundary determined previously in Section 2.2 are 
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entered as input data to the set.tling tank model, which simulates the tidal 

hydrodynamics with the '"plug flow" approach used in the DEPOSITS model 

(Ward et al. 1977). To justify the use of a plug flow model, an analysis of 

mixing by dispersion and diffusion processes preceeds the analysis of tidal 

hydrodynamics. 

3.3.2 Diffusion and Dispersion Processes 

To validate. the use of a plug flow model m which no diffusion or 

dispersion 'takes place, it must be shown that the role of diffusion and 

dispersion processes in the Sound 1s negligible. This is accomplished in the 

following paragraphs by showing that the dispersion terms in the one-

dimensional convective-diffusion equation are small enough to neglect. 

In the literature, diffusion is frequently used interchangeably with the term 

dispersion, causing an occasional difficulty with terminology. Holley ( 1969) 

suggests the following definition for diffusion: 

Diffusion - transport in a given direction at a point in the flow due to 
the difference between the true convection in that direction 
and the time average of convection in that direction. 

Fischer ( 1979) defines two kinds of diffusion, molecular diffusion and turbulent 

diffusion. Molecular diffusion occurs by random molecular motion. Turbulent 

diffusion describes the random motion of lumps of fluid, which is analogous to 

molecular diffusion, but with "eddy" diffusion coefficients. 

For dispersion, Holley ( 1969) suggests: 

Dispersion - transport in a given direction due to the difference between 
the true convection in that direction and the spatial average of 
the convection in that direction. 

Thus, convection here refers to transport by the temporally and spatially 
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averaged flow. It will be shown that, for the Sound, convection dominates. 

Fischer (1979) has shown that the effects of dispersion in the longitudinal 

direction are up to forty times the magnitude of turbulent mixing (diffusion). 

Thus, the effects of diffusion can be incorporated into the dispersion analysis. 

The basic dispersion equation for a quiescent fluid is described by the continuity 

equation which incorporates Fick's Law, 

ac a2c 
= D-ot ax2 (3.3) 

Here, C is the mass concentration of diffusing solute and D is the coefficient of 

proportionality, or the dispersion coefficient. D has the dimensions of length 

squared per time. 

In any body of water, the total rate of mass transport is the sum of the 

convective plus diffusive flux. The result is the two-dimensional convection-

dispersion equation which includes a sink term representing deposition. 

ac ac ac a2c a2c 
-+U-+V-=D-+D-+R at ax oy :t ax2 !I ay2 d 

(3.4) 

Here, U and V are the depth-averaged flow velocities m the x and y directions, 

Dx is the longitudinal dispersion coefficient, DY 1s the lateral dispersion 

coefficient and Rd is the rate of deposition. 

The relative effects of lateral and longitudinal dispersion are important 

considerations in the analysis. Because the Sound can be assumed to be a very 

wide channel with the inlet along the Intracoastal Waterway (Figure 2-1), the 

velocity is assumed uniform across the width. Thus, the transverse (y-

directional) flow is negligible, ac I oy is zero for an assumed line source across 

the flow and the effects of lateral dispersion are inconsequential. Based on this 

result, the one-dimensional convection-dispersion equation can be applied: 
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ac ac 
-+Uat ax (3.5) 

where D is now the longitudinal dispersion coefficient which may be scale and 

time dependent. 

For unidirectional flow, Fischer (1967) shows that the longitudinal 

dispersion coefficient is time dependent during an initial period, where the one-

dimensional equation is still not applicable. In tidal regions, however, the 

initial period occurs in the feeder channels and flow is well mixed as it reaches 

the Sound. Thus, the one-dimensional equation is applicable for conditions in 

the Sound. Also, in laboratory experiments on dispersion in an oscillating flow 

(e.g. tidal flows), Holley and Harleman (1965) have shown that the time 

dependence of the longitudinal dispersion coefficient may be neglected. 

Therefore, in an oscillating flow, the longitudinal dispersion coefficient, D, is 

assumed to depend only on x. 

The dispersion coefficient, D, was derived by Elder (1959) for flow m an 

infinitely wide channel as 

D = 5.9 d u. (3.6) 

where d is the flow depth, and U. is the shear velocity. However, experiments 

by Godfrey and Frederick (1970), and Fischer (1968,1975) show clearly that 

Elder's result does not apply to real streams. The range of values of D/dU. 

for wide channels varies from 8.6 to 7500, but is predominately in the range of 

150 to 500 (Fischer et al., 1979). Harleman et al. {1968) presents an equation 

for the dispersion coefficient in estuaries, where D depends primarily on the 

magnitude of the tidal velocity, as 

D = 7.15 n U R 516 
:z,t h 

(3.7) 
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where n is the Manning roughness coefficient, Rh is the hydraulic radius (m), 

U is the tidal velocity (m/s), and D has the units of m2 js. x,l 

By non-dimensionalizing the one-dimensional convective-dispersion equation 

(3.5), the relative effect of the dispersion term can be evaluated. The following 

terms m the equation are non-dimensionalized: 

C' 
t ' 
u 

X 

c;co 
= t/T 

u/Umaz 

x/L 

where C = mean concentration 
0 

where T = one diurnal cycle (12 hours, 25 minutes) 
where U maz = peak velocity 
where L = length of the sound 

Inserting these expressions into ~quation (3.5) yields: 

C
0
(a2C') 

= D--
L2(ax ' 2) 

Multiplying by T /C 
0 

yields: 

(3.8) . 

(3.9) 

where D' = DT/L2 and A' = UmazT/L. Thus, using Equation (3.7) for D, 

the resulting dimensionless dispersion coefficient, D ', is 

D' = 7.15 n U R 516 T/ L2 (3.10) z,t h 

The maximum value of the dimensionless dispersion coefficient, D' occurs 
ma~' 

when u = umaz' or 

D' = 7.15 n U R 516 TjL2 
maz maz h (3.11) 

The dimensionless coefficients, D' and A' are calculated for the mean tidal 

range in the Sound of Rh = 1.25 m. From the data presented m section 2.2, 

U maz = 0.35 m/ •; T = 43200 3•; L = 2200 m, and Manning's n 1s assumed to 
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have a maximum value of 0.03. Then, 

D' = 8.07x10- 4 
maz 

(3.12) 

and 

A' = 6.87 (3.13) 

The maximum dispersion coefficient is four orders of magnitude less than the 

coefficients of the other terms. Note that u' ranges from 0 to 1. At slack low 

or high tide, when u' = 0, the equation reduces to 

(3.14) 

which is the equation defining quiescent settling where the concentration change 

with time equals the sediment deposition. 

When u' = 1, flow velocity is maximum and Equation (3.9) becomes: 

ac- ac
at' + 6

'
87 ax' (3.15) 

If the relative concentration gradient with distance, aC' jax ', is small as 

expected, it can be stated that aC' ;ax' > a2C' ;ax ' 2• The validity of this 

assumption can be checked by working backward from the results generated by 

the model. Thus, based on the coefficents, the first term on the right hand 

side of Equation (3.15) is considered negligible compared to the other terms. 

The dimensional analysis shows, therefore, that for Great Sound the 

dispersion term in the one-dimensional equation is orders of magnitude smaller 

than all other terms including the convection term. This result supports the 

use of the plug flow modeling technique, which mathematically approximates the 

remaining equation 

(3.16) 
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In their calculations of sediment accumulation in a small Florida manna, Maa 

et al. ( 1985) also eliminated the dispersion term. 

3.3.3 Tidal Hydrodynamics as Implemented in the Model 

Plug Flow Modeling 

With the exception of storm wind conditions, the predominant force 

impacting hydrodynamics in the Sound is the astronomical tide. A sinusoidal 

forcing function is used to model this flow into and out of the Sound over each 

tidal cycle. The plug flow concept is applied to the sinusoidal inflow as follows. 

Plugs of fluid, which are considered to be discrete or non-m1xmg, are traced 

across the Sound during the flood, and back out during the ebb, at equal time 

intervals. Figure 3-3 is a sinusoidal flow versus time curve broken up into a 

histogram using equal time intervals of twenty minutes for flow entering and 

leaving the Sound. Each block of the histogram is the volume of a plug and, 

as the figure shows, the volume of fluid in the plugs is variable as a fuction of 

time. 

A finite volume of fluid exists in the Sound at slack ebb (ML W). This 

volume of fluid is considered to always be present in the Sound. As the tide 

rises, plugs of flow begin entering the Sound from the Intracoastal Waterway, 

pushing the original volume further into the Sound. Figure 3-4 shows the first 

plug of fluid entering the Sound over the first twenty minute interval as the 

flood tide begins. Figure 3-5 shows the change of position and geometry of 

plug 1 as a function of time. The increase and then decrease in velocity as 

peak flood approaches and wanes is seen in the increasing and then decreasing 

horizontal distance between plug positions over the flood. Because the volume 

of plug 1 remains constant as the depth increases, the width must. decrease with 
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time over the first half of the tidal cycle. 

Figure 3-6 shows the Sound at maximum high tide, when all the plugs of 

fluid have entered. The initial volume of fluid in the Sound at ML W 

(unhatched region) has been pushed to the back of the Sound by the plugs of 

fluid entering during the flood. Plug 1 is the small crosshatched region in 

contact with the initial volume. The plug volumes increase up to peak flow 

(plugs 9 and 10) and then decrease again until slack high tide is reached (plug 

18). During the ebb, the process reverses with the last plug to enter being the 

first to exit and so on. 

The number of plugs entering the Sound correspond to the number of time 

steps used over the flood. During the ebb, these same plugs leave the Sound. 

Thus, if N plugs enter the Sound, the total time in the Sound for plug 1 is 2N 

time steps. Plug 2 remains in the Sound for a total of 2N-2 time steps, etc. 

Finally, some part of the Ntb plug remams in the Sound for up to two time 

steps, which, in Figure 3-6, is the 18tb plug. 

3.3.4 Hydrodynamics Within Each Plug 

During an expanding or contracting flow (flood or ebb), surface water 

particles rise or fall with time by a finite height (dH), while bottom water 

particles remain on the bottom. A linear variation of this expansion or 

contraction is assumed between the free surface and the bottom. Figure 3-7 

shows the expansion in a plug over one time interval. Note that a water 

particle at mid-depth is always at mid-depth. To accurately monitor the 

relative vertical motion of sediment and water in this expanding flow, the plugs 

are divided into M layers. 

Dividing each plug into a finite number of horizontal layers results 10 a 
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model of M by N finite cells within the settling tank representing the Sound. 

The cell representation IS shown in Figure 3-8, where N is the number of plugs 

and M is the number of layers into which the plugs are divided. Each cell 

represents a finite "settling tank" of depth H/M, where Hi is the depth in the 

sound at the given time interval, i. 

The flow conditions in a plug over the ith time interval are shown 

schematically in Figure 3-9, including the change of width, depth, and velocity 

with time. The variables used for defining fluid particle motion within each 

plug are introduced as follows: 

Hi plug depth at time ti 
dHi increase in plug depth from time ti to ti+l 
dxi plug width at time ti 
V. = velocity at time t. 

I I 

The changing vertical position of the layers within each plug is shown in 

Figure 3-10. The figure describes the change in vertical position of the surface 

of the j (th) layer, P .. , and actual fluid particle rise in each layer, r. "+I' as a 
J,l J,l 

function of depth. 

The following equations can be written at each time interval to define the 

fluid particle motion based on Figures 3-9 and 3-10: 

1) The horizontal distance a fluid particle travels over the interval ti -

ti+l is defi.ned using the average velocity, 

(3.17) 

2) The initial vertical position of the surface of the jth layer relative to 

datum {the floor of the Sound), P .. , at time t. is 
J,l I 
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Figure 3-9: Definition Sketch of Flow Conditions in a Plug from Time 

ti to ti+l 
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H. X ( M- j+ 1) 
I 

P .. = M J,l 
(3.18) 

where j=1,M layers, j=1 being the top of the uppermost layer (the free surface 

of Figure 3-10). Thus, for the top layer, P
1

. = H. and for the bottom layer, 
,1 I 

PM.= LM .. ,I ,I 

3) . The vertical rise, rj,i+I' of each layer surface relative to its initial 

vertical position (P .. ), for j=1,M layers, is 
J,l 

(M- j+l) xdHi+I 

rj,i+l = M (3.19) 

4) The vertical position of a layer surface with respect to the bottom of 

the Sound at time ti+I is the sum of Equations (3.18) and (3.19) 

P .. 1 = P .. + r .. 
1 J,•+ ),1 J,l+ 

(3.20) 

From Equations (3.17) through (3.20) it is obvious that the magnitude of 

the nse of a layer surface, r .. +I' is dependent on the vertical position of the 
J,l 

layer in the flow field. As Figure 3-10 shows, over each time interval the rise 

in a layer surface varies linearly with depth such that the surface rise of the 

top layer (r I,i+I) is the actual tidal rise, dHi+l' while the surface nse of the 

bottom layer, rM,i+l' is only 1/M times the rise of the top layer, or dHi+ 1/M. 

Figure 3-10 also shows that, because H. is changing with each time step, the 
I 

layer height HJM is also changing. However, relative to one another, the 

layers are of equal height at any instant, such that L1 . = L2 . = L3 . = LM . = ,a ,t ,1 ,1 

HJM and LI,i+l = L2,i+1 = L3,i+I = LM,i+I = Hi+ 1/M. Therefore, the layer 

height Lj,i+l' can be written as Li+I since it is independent of the layer number, 

J· 
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3.3.5 Sediment Motion and Deposition 

Individual Sediment Particle Motion in a Steady Flow 

Consider a single plug of fluid entering an ideal settling tank in which 

flow is steady. Since the sediment at the inlet is assumed well mixed, each 

plug is assumed to contain uniformly distributed particles. Because of the 

Channel-Sound geometry (see Figure 3-2} this assumption is much better in 

Great Sound than in many settling tank problems where the depth at the inlet 

is not as low. If, for the present, we only consider one size of particle with 

settling velocity V s' then the trajectory of all sediment particles will be parallel. 

The sediment particle residing at the surface of the plug is traced through the 

tank. This surface particle will be the last to settle out of the plug. Because 

all particles of the same size have a parallel settling path, the percentage of the 

total vertical distance the surface particle has settled will define the percentage 

of particles of settling velocity V
5 

which have been deposited. For example, if 

the surface particle has settled through fifty percent of the plug vertically, then 

fifty percent of the particles of equal settling velocity will have been deposited. 

Sediment Deposition for Unsteady Flow 

Based on the calculation of hydrodynamic variables within each cell, the 

motion of individual sediment particles can be calculated for the "model Sound". 

It is assumed that there is no slippage of sediment particles in the flow and, 

therefore, the sediment particle horizontal velocity component is equal to the 

horizontal velocity component of the fluid. The vertical velocity component of 

sediment particles relative to the floor of the Sound is equal to the particle 

settling velocity, V
5

, minus the vertical velocity component of the fluid caused 

by the rising or falling tide. 
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As shown previously, all layer heights Li are equal, but change in time, 

increasing over the flood. As a result, the sediment deposition analysis is 

greatly simplified by considering individual layers as follows. Figure 3-11 shows 

that, relative to the final vertical position of the layer surface, P. "+l' particles 
J,l 

have settled an equal distance in every layer over the given time interval. The 

constant relative distance settled from each layer surface, SL , from t. to t.
1
+l' 

j,i+l I 

lS 

S · = V X dt 
L .. 1 I J,l+ 

(3.21) 

For each time interval then, the fraction of particles deposited from each 

layer is calculated in the same manner described previously for plugs in steady 

flow. 

where 

The fraction of particles leaving each layer, Nd , is given by: 
j,i+l 

s 
Lj,i+l 

N = (3.22) 11i,i+l Li+l 

S is the relative distance settled by the particle at the layer surface 
Lj,i+l 

at time i, and Li+l is the layer height. Thus, since the layer heights are all 

equal and particles settle an equal distance in each layer, the same percentage 

of sediment leaves each layer at each time step. Therefore, the fraction of 

particles leaving each layer, N 11 , can be written as Nd since it is not layer 
j,i+l i+l 

dependent. For some larger sediment particles, SL may be greater than 
j,i+l 

Li+l" That is, a particle may settle through more than one layer in a given 

time interval, and as a result, Nd > 1. 
i+l 

Descending down a plug vertically, the percent leaving layer 1 falls into 

layer 2, the percent leaving layer 2 falls into layer 3, etc. Note that actual 

deposition into the Sound from each plug is only occurring in the bottom (M'h) 

layer. Therefore, if Nd percent by volume deposits from each of a total of M 
i+l 
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layers, then the total percent by volume deposited from the entire plug during 

time ti to ti+ 1, (that which deposits through the Mth layer} is 

(3.23) 

Thus, the percent deposited from the plug is 1/M times the percent passing 

through each individual layer during a given time increment. 

Determination of the Total Deposition 

In the previous sections, sediment deposition has been determined for a 

single settling velocity fraction in a single plug of flow over a single time 

interval. This deposition is calculated as percent of total volume of sediment in 

the plug, Equation (3.23). To determine the total deposition of sediment over 

the entire tidal cycle, the deposition must be summed for each particle size 

fraction, for each time increment and for each plug of fluid· which enters the 

Sound. 

1) The total deposition from a plug over one time step ti to ti+1 (the sum 

over all size fractions, k1 = 1,n) is 

n 

LTd 
.11:1 =1 i+1,11:1 

(3.24) 

where n is the number of size fractions. 

2} The total deposition from a plug which has entered and exited the 

Sound (the sum over the number of time intervals the given plug remained in 

the Sound, k2 = l,t} 1s 

t 

ptot = L Ftotk (3.25) 
11:2=1 2 

where t is the number of time intervals the given plug remams m the Sound. 

3) The total deposition from the entire system over a tidal cycle (the sum 
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of the deposition from each plug entering the system, k3 
1 ,N) ts then 

N 

v = ~ p (3.26) 
p ~ totk 

k3=1 3 

where V is the cumulative volume by percent deposited from the system and N 
p 

1s the number of plugs which enter the Sound over the tidal cycle. 

Dividing the actual mass of sediment entering the Sound, Msed' by the 

bulk density of deposited sediment, Db yields the total volume of deposited 

sediment, V sed' should all the sediment deposit. 

v = 1ed (3.27) 

Multiplying the percent volume deposited, V P' by the total volume of available 

sediment yields the actual volume deposited, V d" 

·Vd=V xVd p •e 

The average depth of accumulation IS then 

d = ave 

where A5 is the area of the Sound. 

Sediment Distribution 

(3.28) 

(3.29) 

The distribution of sediment as a function of time and position can also 

be calculated by the model. Although an average depth of total accumulation 

is calculated using Equation (3.29), the actual distribution of sediment across 

the Sound is not uniform. Also, the volumetric distribution of the various size 

fractions changes with position. 

The sediment distribution is determined by dividing the Sound into finite 

intervals perpendicular to the flow direction, and then recording the deposition 

within each interval. By tracing the sediment deposited across an interval by 
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each plug and summing for all plugs which cross the interval, a distribution by 

position is determined. Figure 3-12 shows an example of three plugs passing 

across an interval in one time step. lf, over the time step, the starting point 

and ending point of the plug surround the interval, then the average deposition 

from the plug is recorded for that interval. For the case shown in Figure 3-12, 

the average depostion from plug B is recorded for the interval. The average 

deposition from A is recorded in the next interval, while the average deposition 

from C is recorded for the previous interval. Thus, the deposition by position 

can be determined to any. desired accuracy based on the width of the interval 

chosen. 

Since the concentration at x=O is a time variable, the rate of deposition 

as a function of time is also variable for a given interval. The deposition 

versus time curve for a given interval is determined in the same manner as for 

the positional distribution. Instead of distributing over intervals of length, the 

distribution is defined over intervals of time. 

3.4 Summary of the Model 

The basic settling tank concept provides the foundation for determining 

sediment deposition in Great Sound. Modification of the settling tank concept 

to unsteady flow is accomplished using a plug flow approach. By dividing the 

plugs into layers, the settling tank is viewed as a matrix of cells. Sediment 

deposition is then determined within each cell. The resulting deposition from 

each cell is accumulated to determine deposition by plug, and subsequently the 

total deposition from all pll.!gs over the tidal cycle. 

The basic simplifications and assumptions concerning the Sound, which are 

made to accomodate the use of a plug flow settling tank model, are summarized 
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here. The settling tank model assumes a uniform bathymetry across the Sound, 

and a simplified geometry (a rectangular tank of plan area equal to the Sound). 

Also, the incoming flood tide is modeled as a one-dimensional flow moving into 

the Sound from the Intracoastal Waterway. The sediment deposition analysis 

considers only an average horizontal velocity. Throughout the vertical section 

at the inlet, the sediment is assumed to be uniformly distributed. This 

assumption is based on the high level of mixing which occurs in the channels 

and at the edge of the Sound where the flow spills from the Intracoastal 

Waterway out into the Sound. 

Plug flow hydrodynamics assumes that no mixing occurs between plugs of 

fluid. This assumption is justified in an analysis of diffusion and dispersion 

processes which shows that the dispersion term in the one-dimensional 

convective-diffusion equation is negligible. Factors present in the DEPOSITS 

model mentioned previously which account for non-plug flow conditions are not 

applicable to Great Sound. The factors accounting for dead storage and basin 

short circuiting apply to cases where a finite width inlet feeds a wide basin. In 

the Sound, the inlet width equals the width of the basin. Also, the nature of 

turbulence in the Sound is such that the probability of hindering or enhancing 

particle settling is equally likely (Graf, 1971), and thus no factor considering 

turbulent effects is necessary. 

Another implication of the use of plug flow modeling concerns the initial 

volume of water existing in the Sound at slack low tide. As the flood occurs, 

this initial volume is assumed to move to the back of the Sound as plugs 

continually enter and "push" the preceeding flow further along. On this basis it 

is assumed the entering plugs never reach the back of the Sound because the 
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initial volume occupies that space. Thus, the model records no deposition m 

the back of the Sound. In reality, of course, sediment does reach the back of 

the Sound in small amounts not taken into account by the model. 

Finally, the model strictly considers deposition and does not account for 

the resuspension of deposited sediment by wind driven currents or waves. 

The model was run on a CDC Cyber 850 mainframe computer. The 

source code is presented in Appendix II. 
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Chapter 4 

Application To Great Sound 

4.1 Model Inputs Required 

The model calculates the sediment deposition in Great Sound based on 

specific planimetric, hydrodynamic and sediment input data previously obtained 

for the Sound. The model inputs are divided into two groups; those entered as 

constants and those which are time variable throughout the tidal cycle. Inputs 

which are constant throughout the tidal cycle include the number of sediment 

size fractions, the settling velocity of each fraction, the volumetric distribution 

of sediment within each fraction and the bulk density of the sediment. Other 

constant input data entered include the length and width of the Sound and the 

time increment used over a tidal cycle. Inputs which are time variable include 

the flow rate hydrograph, the sediment concentration hydrograph and the 

frequency of occurrence of the given concentration hydrograph over a year. 

The data used in the model testing have been presented previously m 

Chapter 2. The inputs which are constant include Carney's (1982) particle size 

fractions and settling velocities, Table 2-2, and the volumetric distribution of 

sediment, Figure 2-9. Also, the bulk density of the sediment, 1.5 gfcc, is used 

as determined by Faas (1984). Finally, the length and width parameters used 

for modeling the Sound are 2200x2200 meters. 

The time variable inputs used include the sprmg, neap and mean tide flow 

rate hydrographs and three concentration hydrographs. The flow rate 

hydrographs used are those developed by Schuepfer (1985) shown in Figures 2-5, 

2-6 and 2-7. They are input from slack low to slack low tide. The three 

64 



concentration hydrographs include those for fair weather conditions, pre/post 

storm conditions and storm conditions. These are explained in the following 

paragraphs. 

A fair weather concentration hydrograph was developed for the SIX hour 

flood portion of the tidal cycle from slack low to slack high tide. Using 

Griffiths' fair weather concentration hydrograph, Figure 2-11, recorded m the 

Intracoastal Waterway at the location shown in Figure 2-1, two-thirds of the 

necessary input data can be determined. The usable portion of Griffiths' data 

is taken from hour 8 through hour 12. The input concentration hydrograph 

was developed from Griffiths' data, as shown in Figure 4-1. Conditions from 

hour 6 through hour 8 were extrapolated from the existing slope of Griffiths' 

concentration hydrograph at hour 8. The resulting concentration hydrograph, 

Figure 4-1, has the same general shape as Griffiths' concentration hydrograph, 

with concentrations in the range of those obtained by Carney (Figure 2-10). 

Based on available data, Figure 4-1 is representative of a typical concentration 

hydrograph of the inorganic fraction entering Great Sound. 

A modification of the pre/post storm hydrograph determined by Griffiths 

(Figure 2-12) and a hypothetical storm hydrograph are also used in model 

simulations. The modified pre/post storm concentration hydrograph employs a 

curve similar in shape to the fair weather hydrograph, but for the pre/post 

storm concentration range. This concentration hydrograph represents all 

conditions which cause an increase in concentration above fair weather including 

high winds and precipitation events of lesser intensity than severe storms. The 

hypothetical storm concentration hydrograph results from increasing the modified 

pre/post storm hydrograph by one order of magnitude. This increase is based 
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on the concentration measurements taken in Chesapeake Bay during hurricane 

Agnes which exceeded 100 times the fair weather concentration range {Schubel, 

1975). The modified pre/post storm concentration hydrograph and hypothetical 

storm concentration hydrograph for the six hour input period (slack low to slack 

high tide) are shown in Figure 4-2. 

Because no concentration-frequency data in or near Great Sound is known 

to exist, the frequency of occurrence curve developed by Maa et al. {1985), 

shown in Figure 2-13, was adapted for use in the Sound. Instead of six 

concentration increments, three wet:e developed as shown m Figure 4-3, 

I d" h h . h d h correspon mg to t e t ree concentration y rograp s. The data were modified 

by applying the slope of Maa et al. 's original graph to the concentration range 

for the Sound and dividing it into three increments. By multiplying the 

frequency of occurrence times the number of tidal cycles occurring annually, the 

number of tidal cycles for each concentration hydrograph is determined. A 

greater amount of data exists for low concentration days (fair weather days) 

than for high concentration days (storm days). Therefore, the actual frequency 

of occurrence is assumed to be more reliable for fair weather conditions than for 

storm conditions. 

From the input data, the model determines the sediment deposition over a 

single tidal cycle. The model also calculates other variables for each time step 

and each plug. The flow depth, flow velocity, fluid volume and initial sediment 

volume are each calculated for all plugs along with the initial width of each 

plug as it enters the Sound. The cumulative flow volume in the Sound and the 

advance of each plug across the Sound are logged at each time interval 

throughout the tidal cycle. The concentration hydrograph is also determined on 
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the ebb, which can be compared to field data. 

4.2 Model Testing and Test Results 

Three main tests were conducted involving vanous aspects of the sediment 

deposition in Great Sound. In the first test the fair weather deposition 

occurring during spring, neap and mean tidal conditions was compared, and ebb 

flow concentration hydrographs were then generated for a mean tide under each 

of the three meteorological conditions defined. The fair weather ebb flow 

concentration hydrograph was compared to available field data. The second test 

determined the annual accumulation rate for Great Sound. The final test 

defined the impact of storms on the annual accumulation relative to the 

predominant fair weather conditions. 

Test I 

In the first part of this test, a companson was run between spring, neap 

and mean tidal influence on deposition in the Sound. Using the fair weather 

concentration profile over a hypothetical "fair weather year" the deposition 

caused by a spring, neap and mean tide was determined. For modeling 

purposes, a "year" consisted of 705 tidal cycles. The fair weather concentration 

hydrograph was used for each tidal condition because peak velocities are similar 

for each. The differences between tidal conditions are due mainly to the 

varying volumes of water. The second part of the test determined the ebb flow 

concentrations for each meteorological condition. 

The results of the first part, expressed as the accumulation that would 

occur over 705 fair weather tidal cycles, are as follows. For spring tide, the 

resulting average annual fair weather deposition rate was 3. 7 mm/yr, while for 

neap tide the result was 2.3 mm/yr. Thus, a spring tide deposits over 50 
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percent more sediment than is deposited during a neap tidal cycle. This result 

shows the controlling influence of the spring tide on sediment deposition in the 

Sound. The implications of such a variation between spring and neap tides is 

significant when considering storms. A storm that coincides with a spring tide 

is likely to have a much greater impact on the deposition than one which 

coincides with a neap tide. 

The resulting average annual fair weather deposition for mean tide was 3.1 

mm/yr. The average deposition from the spring and neap tides is 3.0 mm/yr. 

The mean tide is less than 5% higher than the spring and neap tide average 

and, for subsequent tests, the mean tide is used. 

The deposition profile for spring and neap tides for the hypothetical fair 

weather year are shown in Figure 4-4. Based on the plug flow modeling 

technique, the spring tide advances further into the Sound because of the 

increased tidal prism. Thus, the deposition curve extends further into the 

Sound for the sprmg tide thap the neap tide. As Figure 4-4 shows, the 

deposition curves follow a consistent path across the Sound relative to one 

another. 

Subtracting the percentage of total sediment depositing from each plug 

from the input sediment volume for each plug yields the ebb flow concentration 

hydrograph for the given tidal and meteorological condition. The ebb flow 

concentration hydrographs for fair weather, pre/post storm, and storm conditions 

are shown in Figures 4-5, 4-6, and 4-7, respectively. Because of the close 

agreement between spring, neap and mean tide ebb flow concentrations, only the 

mean tide concentrations are plotted on the ebb. The resulting fair weather 

ebb flow concentration hydrograph lies favorably within the range of the ebb 
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flow portion of Griffiths' fair weather hydrograph (hours 12 through 18) as 

shown in Figure 2-11. No field data exists for a companson with the model 

results generated for the pre/post storm and storm ebb hydrographs, but 

Griffiths may yet obtain these data. 

Tesi D 

A primary objective of the research was to determine an annual average 

sediment deposition rate in the Sound. To accomplish this, the second test was 

divided into three parts. Recalling the close agreement between the mean tide 

deposition and the spring and neap ti~e average deposition demonstrated in Test 

I, the mean tidal flow hydrograph was used in Test II for fair weather and 

pre/post storm conditions. To simulate storm conditions (storm surge), the 

spring tide flow hydrograph was used along with an initial depth in the Sound 

of 0. 7 m as opposed to 0.5 m for the mean tide. Each concentration 

hydrograph was run for a single tidal cycle, defining the three parts of the test. 

After running each concentration hydrograph, the resulting accumulation 

per tidal cycle was multiplied by the frequency of occurrence (number of tidal 

cycles per year) of the given concentration hydrograph to yield the total annual 

accumulation from each condition. The total annual accumulation was 

calculated by summing the results for these three conditions. 

In Test II the yearly sediment deposition rate for Great Sound is 

calculated as shown in Table 4-1. Column 2 shows the the concentration 

hydrograph used in each part of the test. In column 3, the sediment 

accumulation from each of the three profiles is shown for a single tidal cycle. 

Multiplying this accumulation by the frequency of occurrence, column 4, yields 

the yearly deposition from each concentration hydrograph as shown in column 5. 
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The resulting total yearly accumulation for Great Sound as calculated by the 

model is, therefore, 8.9 mm/yr. 

The resulting accumulation rate ts a probable maximum annual rate 

because of the high concentrations of the storm days incorporated m the 

calculation. One test of the model's validity IS to compare the results with a 

simple mass balance equation to determine the total sediment influx into the 

Sound. 

The mass balance for the Sound is shown in Table 4-2. Column 2 shows 

the average concentrations for the coqcentration hydrographs listed in column 1. 

Integrating these hydrographs over the tidal cycle (mean tide for fair and 

pre/post storm, spring tide for storm) yields the mass of sediment entering per 

tidal cycle from each hydrograph as shown in column 3. Dividing by the bulk 

density (1.5 gfcc), the resulting volume of sediment is determined for a single 

tidal cycle as shown in column 4. Using the frequency of occurrence (column 
·" 

5), the resulting volume from each concentration hydrograph over a year is 

calculated in column 6. The total volume accumulated is then 75830 m3• 

Dividing by the area of the Sound yields an accumulation of 15.7 mm/yr. This 

result means that enough sediment enters the Sound _each year to cause an 

accumulation of 15.7 mm if it all deposited. Thus, based on the result of the 

mass balance, the model simulates 57% of the entering sediment depositing in 

the Sound. This result does not consider particle resuspension and transport 

out of the Sound as previously stated, and, therefore, represents a probable 

maxtmum deposition for Great Sound. 

The sediment deposition distribution across the Sound was calculated as 

described previously in Section 3.3.5. Figure 4-8 shows the deposition profile of 
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ACcmmtATIOII I 
TEST COl!fC!RTIATIOll P!Jl nD&L FR!QtTENC! ACCUKDUTION 
S!CTIOR HYDIOCIAPII CYCLI(~ I CYCL!S/Tl P!Jl Y!AI. (llllll) 

PAll% I Fd.~ ·o.oo446 66 (462) 2.1. 

PAU II Pre/Poet 0.01799 32 (224) 4.0 
Stora 

PAJl% III Stora 0.17991 2 (14) 2.8 

TOTAL ACCUMDLATIOll • 8 • 9 llllll/yr 

Table 4-1: Yearly Sediment Deposition Rate for Great Sound 
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AVDAGI SIDIMDIT SEDIMIHT 
COICIII'rUTIOII MASS YO LUliE , .. ,,) 

10 

35 

350 

(a/cycle) (a3/cycle) 

6.78x107 45.2 

20.7x107 138.0 

257.5x107 1717 

75830 a3 
- 15.7 -Jy'f! 

4840000 • 2 

(5) (6) 

FRIQUIIICY 
or ANNUAL 
OCCUIUIICI VOLUHI 
(Z) (a3) 

66 20880 

32 30910 

2 24040 

Total • 75830 a3 

Table 4-2: Sediment Mass Balance for Great Sound 



Test II as displayed m Table 4-1, from the Intracoastal Waterway to the back 

of the Sound. The distribution IS skewed significantly toward the Intracoastal 

Waterway. The reason for such a distribution is shown more clearly in Figure 

4-9, where the breakdown of distribution by size fraction is shown. In general, 

larger particles dominate near the Intracoastal Waterway, while smaller particles 

dominate near the back of the Sound. In Figure 4-9, the area under the 

bottom curve defines the location and volume of deposition of the largest s1ze 

fraction, F 1. . The area between the bottom curve and the curve above it 

defines the location and volume of deposition for the second largest size fraction, 

F2, and so on. The top curve, therefore, defines the location and volume of 

the smallest fraction, F9, when considering the area between it and the next 

curve below it, while also defining the cumulative location and volume of 

sediment settled in the Sound from all of the fractions. The figure shows that 

the sediment from the three largest fractions has all deposited within the first 

600 meters of the Sound. It is also obvious. that the largest four fractions 

settle in less than half the tidal cycle. As a result, there is more sediment 

accumulation near the Intracoastal Waterway. The deposition from the smaller 

fractions, in contrast, is fairly uniform across the Sound, because these fractions 

do not deposit all of their sediment before the tidal cycle is complete. 

Test Ill 

The final test was run to determine the relative influence of infrequent 

major storm events on the yearly deposition. To determine this, the fair 

weather concentration profile was run for a "fair weather year" at the mean 

tide condition as in Test I. The storm concentration hydrograph was then run 

until it had produced the equivalent accumulation. Thus, the number of storm 
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condition tidal cycles required to produce an accumulation equivalent to a year 

of fair weather was determined. 

As calculated previously, the resulting deposition for a mean tide fair 

weather year was 3.12 mm/yr. The storm concentration profile was then run 

at storm conditions until an equivalent amount of sediment was deposited. The 

number of tidal cycles required was 16. Thus, with approximately 8 days of 

peak storm conditions, the fair weather deposition over an entire year IS 

matched. This result shows that deposition from major storm events can weigh 

equally with predominant fair weather conditions in controlling sediment 

deposition m the Sound. However, the actual frequency of storm events 

producing concentrations above 100 mg/1 in southern New Jersey is still 

unknown. 

4.3 Discussion of Accumulation Rates 

Kelley (1975) estimated accumulation rates m Great Sound to range from 

5 to 10 mm/yr based on profiles of stable Pb. in the bottom sediment of the 

Sound. A more detailed evaluation of sediment accumulation rates by 

Thornbjarnarson et al. (1984) determined a rate of long term average 

accumulation of between 1 and 5 mm/yr in the western half of the Sound using 

a lead isotope Pb-210 geochronology. The results obtained using the stable Pb 

profiles (Kelley) and Pb-210 profiles (Thornbjarnarson) are in the same range. 

Levy (1978), using a sediment trap, recorded sediment depths ranging from 5 to 

300 mm/yr in sediment trap structures located in neighboring Jenkins Sound. 

The sediment trap structures yield deceptively higher results because they trap 

re-suspended sediment and moving bedload along with the suspended sediment. 

The resulting average accumulation rate of 8.9 mm/yr generated by the 
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model, is in strong agreement with results of the Pb profiles from Kelley. Also, 

when considering the distribution shown in Figure 4-8, the average accumulation 

rate in the western half of the Sound agrees strongly with the results of 

Thornbjarnarson et al (1984). Recalling the sediment mass balance equation 

which calculated the maximum available sediment accumulation to be 15.7 

mm/yr, it is clear that the upper bound of the sediment trap structure results 

are out of range. 

The recent sea level trend at Sandy Hook, New Jersey has been 

determined by Hicks et al. (1983) based on tidal data collected continuously 

since 1933. Sandy Hook is located within 100 miles of Great Sound and, 

therefore, the trends presented are assumed representative of those occurring at 

Great Sound. The recent historic sea level rise is approximately 45 em per 

century, or 4.5 mm/yr. This result is a combination of both global and local 

effects. The average global effects account for 1.2 mmjyr, thus local effects 

contribute the remaining 3.3 mm/yr. Currently then, the calculated rate of 

annual accumulation, 8.9 mm/yr, is higher than the current sea level rise trend 

of 4.5 mm/yr. E'-:en with the rate of annual deposition perhaps increasing, it 

appears that the influence of sea level rise will have a greater impact on Great 

Sound than sediment deposition based on projections of increased rates of sea 

level rise in the future (see Hoffman et al., 1983). 
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Chapter 5 

Summary, Conclusions and 

Recommendations 

5.1 Summary 

A sediment deposition model was developed to determine the sediment 

deposition characteristics of Great Sound. The settling tank concept is applied 

in the analysis of sediment motion and deposition in the Sound. Incorporated 

into the settling tank scheme 1s a plug flow approach to the tidal 

hydrodynamics. The assumptions inherent in a plug flow settling tank model 

include no mixing of plugs and a uniform velocity profile. The necessary model · 

inputs, including sediment concentration hydrographs, sediment size distributions 

and volumetric distributions, were based on field data obtained for Great Sound 

by other researchers. The concentration frequency of occurrence was based on 

research by Maa et a!. (1985) in a Florida marina. Hydrodynamic inputs were 

based on results from the HYDTID model (Schuepfer, 1985).The model predicts 

the average annual sediment accumulation rate in the Sound. Also, the model 

defines the relative influence on sediment deposition caused by fair weather 

versus pre/post storm and storm conditions, and spring tide versus neap tide 

tidal ranges. Ebb flow concentration hydrographs are defined for each of the 

meteorological conditions considered. 

The model successfully predicts annual sediment accumulation rates in 

Great Sound as verified by its agreement with predictions based on Pb profiles. 

The resulting annual accuf!lulation rate predicted by the model 1s 8.9 mm/yr 

compared to 5-10 mm/yr as estimated by Kelley (1975) and 1-5 mm/yr in the 
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western half of the Sound as estimated by Thornbjarnarson et al. (1984). 

The model also allows comparison of the relative influence on sediment 

deposition caused by (a) fair weather, pre/post storm and storm conditions, and 

(b) spring tide versus neap tide tidal ranges. A comparision between the mean 

tide fair weather accumulation rate and accumulation under storm conditions 

determined the relative influence of storms on the annual accumulation rate. 

Only 16 storm condition tidal cycles (about 8 major storm days) are required to 

produce an accumulation equivalent to a year of fair weather deposition. A 

comparision between spring and mean tide accumulation rates determined the 

influence of the tidal condition on deposition. Deposition from a spring tide 

was found to be 1.5 times the deposition from a neap tide. Also, ebb flow 

concentration hydrographs were determined by the model which compared 

favorably with available data obtained by Griffiths (1985). 

5. 2 Conclusions 

Based on the results calculated by the model, the following can be 

concluded: 

1. The sediment deposition model developed for Great Sound accurately 
predicts the annual sediment accumulation rate· based on combined 
fair weather, pre/post storm and storm conditions. 

2. The model reasonably predicts the ebb flow concentration hydrograph 
for a fair weather condition, but no data are available for comparing 
the pre/post storm and storm ebb flow concentration hydrographs 
generated by the model. 

3. The model can be used to define the depth distribution of the annual 
accumulation across Great Sound and assess that distribution by 
sediment size fraction. 

4. The effects of storm conditions on the annual accumulation rate can 
be assessed by the model, as well as the relative impact of spring, 
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neap and mean tidal conditions. 

5. Results based on average conditions over a single tidal cycle can be 
effectively applied to the prediction of longer term (annual) 
accumulation rates. 

5.3 Recommendations for Future Work 

Further investigations should be performed to verify the results of this 

study. This modeling effort IS part of an ongoing interdisciplinary work 

benefiting geologists, biologists, ecologists and others concerned with back bay 

coastal processes. 

Additional sediment concentration data are necessary at the edge of the 

Intracoastal Waterway where the incoming flow spills over into Great Sound. 

This includes the need for sediment concentration hydrographs over a single 

tidal cycle during various meteorological conditions including major storms, and 

concentration frequency data from a location more localized to the study area. 

Concentration data from within Great Sound would provide a helpful check on 

model results as well. 

Finally, the model should be expanded to utilize the detailed hydrodynamic 

information available from the HYDTID model. Also, consideration of the 

effects of resuspension would improve the accuracy of the simulation of sediment 

deposition over a tidal cycle. 
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Appendix I 

Notation 

Area of the Sound 
Dimensionless Coefficient for the Convection Term 
Mass Concentration 
Mean Concentration 
Dimensionless Concentration 
Flow Depth 
Average Depth of Accumulation 
Increase in Fluid Depth Over Time dt. 

I 

Time Interval 
Distance Plug Travels Over dti, width of plug 
Dispersion Coefficient 
Bulk Density 
Longitudinal Coefficient 
Lateral Dispersion Coefficient 
Dimensionless Dispersion Coefficient 
Maximum Value of Dispersion Coefficient 
Efficiency of a Settling Tank 
Total Volume Deposited from the Entire Plug by all 

Fractions over 1 time step 
Depth of Water in the Sound 
Depth at Time i 
Layer Number 
Length of the Sound 
Layer Height at Time t. 

I 

Horizontal Flow Velocity 
Number of Layers 
Mass of Sediment Inflow 
Mass of Sediment Outflow 
Actual Mass of Sediment Entering Great Sound 
Manning Roughness 
Number of Plugs • 
Fraction of Particles Leaving Each Layer 
Initial Vertical Position of a Layer Surface 
Total Volume Deposited From the Entire Plug by all 

Fractions over the Tidal Cycle 
Flow Rate 
Vertical Rise of Each Layer Surface 

93 



u 
u 
U· 

umax 
u x,t 
u. 
v 

Rate of Deposition 
Hydraulic Radius 
Net Distance a Particle Settles 

Relative Distance Settled from each Layer Surface 

Dimensionless Time 
One Diurnal Cycle 
Total Volume Deposited from the Entire Plug of 1 

Size Fraction over 1 Time Step 
Velocity 
demensionless velocity 
Depth Averaged Flow Velocity 
Peak Flow Velocity 
Tidal Velocity 
Shear Velocity 
Depth Averaged Flow Velocity 
Actual Sediment Volume Deposited 
Velocity at Time t. 

I 

Cumulative Volume Deposited From the System 
Particle Settling Velocity 
Total Available Sediment Volume (Settled) 
Critical Settling Velocity of a Particle 
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PROGRAM TRI02 
* THIS PROGRAM CALCULATES THE VOLUMETRIC SEDIMENT DEPOSITION IN 
* GREAT SOUND FOR ANY NUMBER OF TIDAL CYCLES OF A GIVEN CHARACTERISTIC 
*TYPE OF TIDE (SPRING, NEAP, MEAN), UNDER GIVEN METEOROLOGICAL 
* CONDITIONS (FAIR WEATHER, PRE/POST STORM, STORM). THE RESULTS ARE 
* BASED ON SEDIMENT CHARACTERISTICS AS DETERMINED IN THE FIELD, AND 
* ON FLOW CONDITIONS AS OBSERVED IN THE FIELD AND CALCULATED BY HYDTID, 
* A 2-D FINITE DIFFERENCE HYDRODYNAMIC MODEL. 

* 
* THIS PROGRAM ALSO GENERATES THE DATA NECESSARY TO DEVELOP BOTH 
* HYDRODYNAMIC AND SEDIMENT DEPOSITION DELINEATIONS ACROSS THE SOUND A 
* A FUNCTION OF TIME AND POSITION. 

* 
* 
* 
* THE FOLLOWING ARE INPUT DATA 

* 
* INPUT 
* ===== 
* 
* CONC 
* DFRAC 
* H 
* QIN 
* vs 
* VFRAC 

* 
* 

UNITS 
===== 

MG/L 

M 
M**3/S 

M/S 

DESCRIPTION 
=========== 
SEDIMENT CONCENTRATION AT EACH TIME STEP 
DENSITY PERCENT OF A GIVEN SETTLING FRACTION 
AVERAGE FLOW DEPTH AT A GIVEN TIME 
FLOWRATE AT EACH TIME STEP 
SETTLING VELOCITY FRACTION 
VOLUME PERCENT OF A GIVEN SETTLING FRACTION 

* THE FOLLOWING ARE PARAMETERED CONSTANTS 

* 
* CONSTANT UNITS DESCRIPTION 
* ======== ===== =========== 
* 
* BDEN 
* DT 
* I TIME 
* LS 
* M, XM 
* NFRAC 
* ws 
* 
* 

s 

M 

M 

BULK DENSITY 
TIME INCREMENT 
NUMBER OF TIME STEPS OVER THE TIDAL CYCLE 
LENGTH OF THE SOUND 
NUMBER OF LAYERS (VERTICALLY) 
NUMBER OF SETTLING VELOCITY FRACTIONS 
WIDTH OF THE SOUND 

* THE FOLLOWING ARE HYDRODYNAMIC VARIABLES 

* 
* VARIABLE UNITS DESCRIPTION 
* ======== ===== =========== 
* 
* DH 
* DL 
* DLX 
* FVOL 
* H 
* HEND 
* LPOS 
* LWIDTH 
* PPOS 
* PVOL 
* 
* PWIDTH 
* QW 

M 
M 
M 

M**3 
M 
M 
M 
M 
M 

M 
M**3/S/M 

CHANGE IN DEPTH OVER EACH TIME INTERVAL 
BLOCK WIDTH AT A GIVEN TIME STEP 
BLOCK WIDTH AT FIRST TIME STEP 
VOLUME OF FLUID IN EACH BLOCK 
AVERAGE FLOW DEPTH OVER THE TIME INTERVAL 
FLOW DEPTH AT THE END OF A TIME INTERVAL 
HEIGHT OF TOP OF EACH LAYER AT PRESENT TIME 
WIDTH OF A LAYER AT THE PRESENT TIME 
HEIGHT OF THE TOP OF EACH LAYER AT THE PREVIOUS TIME 
PERCENT OF THE TOTAL TIDAL INFLOW CONTAINED IN 

EACH BLOCK 
LAYER WIDTH AT THE PREVIOUS TIME INCREMENT 
FLOWRATE PER UNIT WIDTH AT A GIVEN TIME 
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* SUML M TOTAL LENGTH TRAVELED BY A BLOCK INTO THE SOUND 
* SUMLX M INITIAL LENGTH OF BLOCK UPON ENTERING THE SOUND 
* SVOL M**3 CUMULATIVE TOTAL FLUID VOLUME WITH TIME 
* SVOLD M**3 CUMULATIVE INFLOW VOLUME WITH TIME 
* TIDEH M INCREASE IN TIDAL HEIGHT ABOVE MLW OVER THE TIDAL 
* VEL M/S FLOW VELOCITY AT A GIVEN TIME 
* VOLIN M**3 TOTAL VOLUME ENTERING THE SOUND DURING FLOOD 
* 

* * THE FOLLOWING ARE SEDIMENT DEPOSITION VARIABLES 

* 
* VARIABLE UNITS DESCRIPTION 
* ======== ===== =========== 

* PERCENT BY WEIGHT DEPOSITED FROM EACH BLOCK 
MG/KG SEDIMENT CONCENTRATION IN MG/KG 

CYC 

* BLTOT 
* C.ONKG 
* NETOUT 

* 
VOLUME PERCENT OF PARTICLES SETTLED FROM A LAYER OVER 

A TIME INCREMENT 
* NETSET 

* 
* NEWB 
* SEDBLK 
* SEDEP 

* 
* SEDFRC 

* 
* SEDIMT 

* 
* SEDOUT 

* 
* SEDTOT 

* 
* SEDVOL 
* SET 
* SFRSUM 

* 
* TOTOUT 

* 
* TOTSED 
* WTSED 
* WTTOT 

* 
* 

M NET CHANGE IN PARTICLE POSITION WITHIN A GIVEN LAYER 
OVER A TIME STEP 

BLOCK COUNTER 
M**3 CUMULATIVE VOLUME OF SEDIMENT SETTLED BY BLOCK 

MM AVERAGE DEPTH OF SEDIMENT SETTLED IN MM OVER A GIVEN 
NUMBER OF TIDAL CYCLES 

M**3 VOLUME OF SEDIMENT CONTAINED IN EACH FRACTION OF EACH 
BLOCK 

M**3 TOTAL VOLUME DEPOSITED IN THE SOUND OVER A GIVEN 
NUMBER OF TIDAL CYCLES 

M**3 VOLUME OF SEDIMENT SETTLED FROM EACH FRACTION OF EACH 
BLOCK AT EACH TIME STEP 

M**3 CUMULATIVE VOLUME SETTLED FROM EACH FRACTION WITHIN 
EACH BLOCK 

M**3 VOLUME OF SEDIMENT c~:TAINED IN EACH BLOCK AT X=O 
M DISTANCE PARTICLE SETTLES OVER ONE TIME INTERVAL 

M**3 CUMULATIVE SUM OF SEDTOT BY FRACTION WITHIN EACH 
BLOCK 

VOLUME PERCENT OF PARTICLES DEPOSITED FROM THE ENTIRE 
VERTICAL SECTION OVER ONE TIME STEP 

SUM OF TOTOUT OVER TIME 
WEIGHT PERCENT SETTLED OVER ONE TIME INCREMENT 
TOTAL WEIGHT PERCENT DEPOSITED IN THE SOUND 

INTEGER IN,OUT,M,NFRAC,ITIME,NEWB,IB,ISTART 
INTEGER OUTPLT,PLTDT2,INUM,OUTDAT,OUTA 

* 

* 

REAL XM,DT,VS(9) ,DFRAC(9),TOTSED(9),SET(9),VFRAC(9) 
REAL PWIDTH(lO),PPOS(lO),H(0:37),VEL(0:37),DL(37,37) ,DH(37) 
REAL LWIDTH(37,10),LPOS(37,10),NETSET(37,10) ,NETOUT(37) 
REAL TOTOUT(37) ,WTSED(9),WTTOT,XJ,BLTOT,TIDEH(0:37) 
REAL AS,LS,WS,QIN(0:37) ,QW(0:37) ,FVOL(0:37) ,DLX(0:37) ,SVOL(0:37) 
REAL SUMLX(0:37),CONKG(l9) ,HEND(37) ,SUML(37,37) 
REAL CONC(l9) ,SEDVOL(36),SEDFRC(l9,9),SEDOUT(l8,9,37) 
REAL SEDTOT(9),SFRSUM(O:lO),SEDBLK(O:l9),SEDIMT,SEDEP 

PARAMETER(IN=5,0UT=6,M=lO,XM=lO.,DT=l200.,NFRAC=9,ITIME=J6) 
PARAMETER(LS=2020.0,WS=2300.0,BDEN=l500.0,0UTPLT=3) 
PARAMETER(OUTDAT=4,0UTA=7) 

OPEN(UNIT=IN,FILE='STORM') 
OPEN(UNIT=OUT,FILE='STDATS') 
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* 

* 

OPEN(UNIT=OUTPLT,FILE='STPLTS') 
OPEN(UNIT=OUTDAT,FILE='STRECS') 
OPEN(UNIT=OUTA,FILE='STSEDS') 

REWIND (IN) 

* READ VELOCITY FRACTIONS (VS) AND CORRESPONDING WEIGHT 
* FRACTIONS (DFRAC) FROM DATA AND PRINT 
* 

* 

* 

* 

* 
* 

!MID = ITIME/2 
READ(IN,*) (VS(I) ,I=1,NFRAC) 
READ(IN,*) (VFRAC(I),I=1,NFRAC) 
READ(IN,*) (DFRAC(I),I=1,NFRAC) 
READ(IN,*) (CONC(I),I=1,IMID) 

AS = LS * WS 
WRITE(OUT,7) 

7 FORMAT(///,3X, 'THE FOLLOWING PARAMETERS DEFINE THE DEPOSITION', 
+ 1 MODEL OF GREAT SOUND',//) 

WRITE(OUT,11)AS,LS,WS,DT,ITIME,NFRAC,BDEN 
11 FORMAT(5X, 'THE MODEL AREA IS ',F10.1, 1 M**2',/, 

+5X, 'THE LENGTH OF THE SOUND IS ',F7.1, 1 M',/, 
+5X, 'THE WIDTH OF THE SOUND IS ',F7.1, 1 M',/, 
+5X, 'EACH TIME STEP IS ',F7.1, 1 SECONDS',/, 
+5X, 'THE NUMBER OF TIME STEPS IS ',!4,/, 
+5X, 'THE NUMBER OF SETTLING VELOCITY FRACTIONS IS ',!3,/, 
+5X, 'THE BULK DENSITY IS 1 ,F7.1, 1 MG/CC',////) 

WRITE(OUT,a) 
a FORMAT(3X, 'FNO. ',4X, 1 SET.VELOCITY',4X, 1 VFRAC',5X, 'DFRAC' ,/ 

DO 10 K=1,NFRAC 
WRITE(OUT,15)K,VS(K),VFRAC(K) ,DFRAC(K) 

15 FORMAT(5X,I2,5X,F9.7,5X,F5.2,5X,F5.2) 
10 CONTINUE 

WRITE(OUT,9) 
9 FORMAT(/,4X, 1 ITIME',5X,'QIN' ,10X,'QW 1 ,9X,'H',9X,'VEL',9X,'FVOL', 

+7X, • svoL', ax, • DLX • ,ax, • suMLX •, 7X, • coNc •, 7X, • SEDVOL') 

* READ IN INITIAL DEPTH (HPREV) AND VELOCITY (VPREV) FROM DATA 
* AT (ITIME=O) 
* 

* 

* 

!START = 0 
READ(IN,*)QIN(ISTART),H(ISTART) 
QW(ISTART) = QIN(ISTART)/WS 
FVOL(ISTART) = QW(ISTART)*DT 
TIDEH(ISTART) = FVOL(ISTART)/LS 
VEL(ISTART) = QW(ISTART)/H(ISTART) 
DLX(ISTART) = FVOL(ISTART)/H(ISTART) 
SVOL(ISTART) = H(ISTART)*LS 
SUMLX(ISTART) = DLX(ISTART) 

WRITE(OUT,17)ISTART,QIN(ISTART) ,QW(ISTART) ,H(ISTART) ,VEL(ISTART), 
+FVOL(ISTART) ,SVOL(ISTART) ,DLX(ISTART) ,SUMLX(ISTART) 

17 FORMAT(/5X,I2,5X,F7.2,5X,F6.3,5X,F6.4,5X,F6.4,5X,F6.1,5X,F6.1, 
+5X,F6.1,5X,F7.1) 

* CALCULATE CONDITIONS IN THE SOUND BASED ON THE QIN 
* 
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* 
* 

DO 555 !=1,ITIME 
ICON = !TIME - I 
READ(IN,*)QIN(I) 
QW(I) = QIN(I)/WS 
FVOL(I) = ABS(QW(I))*DT 
IF(I.LE.IMID)THEN 

CONKG(I) = CONC(I)/1000. 
SEDVOL(I) = (FVOL(I)*CONKG(I))/BDEN 

ELSE 
INUM=ITIME-!+1 
SEDVOL(I) = SEDVOL(INUM) 

END IF 
IF(QW(I) .GE.O.)THEN 

SVOL(I) = SVOL(I-1) + FVOL(I) 
ELSE 

SVOL(I) = SVOL(I-1) - FVOL(I) 
END IF 
H(I) = (SVOL(I) + SVOL(I-1))/(2.*LS) 
HEND(I) = SVOL(I)/LS 
TIDEH(I) = H(I) - H(ISTART) 
VEL(!) = ABS(QW(I))/H(I) 
SVOLD = SVOL(I-1) - SVOL(ISTART) 
IF(QW(I) .GE.O.)THEN 

DLX(I) = FVOL(I)/HEND(I) 
SUMLX(I) = DLX(I) + SVOLD/HEND(I) 

ELSE 
DLX(I) = FVOL(I)/HEND(I-1) 
SUMLX(I) = SUMLX(I-1) + (SUMLX(ICON+1)-SUMLX(ICON)) 

END IF 
WRITE(OUT,117)I,QIN(I),QW(I),H(I),VEL(I) ,FVOL(I) ,SVOL(I) ,DLX(I) 

+,SUMLX(I) ,CONC(I) ,SEDVOL(I) 
117 FORMAT(/,5X,I2,5X,F7.2,5X,F6.3,5X,F6.4,5X,F6.4,5X,F6.1,5X,F6.1, 

+5X,F6.1,5X,F7.1,7X,F5.1,7X,F6.4) 
555 CONTINUE 

VOLIN= SVOL(IMID)-SVOL(ISTART) 

* INITIALIZE TOTAL WEIGHT OF SEDIMENT (WTTOT=O) 

* 

* 

BLTOT=O.O 
NEWB=O 
IB=ITIME/2 
SEDBLK(ISTART) = 0.0 
DO 50 !!=1,!8 
WTTOT=O.O 
WRITE(OUT,91)II,IB 

91 FORMAT(/,1X,'RESULTS FOR BLOCK 1 ,!2, 1 OF 1 ,I2,/) 

*BEGIN OUTER LOOP OPERATING ON EACH SETTLING VELOCITY FRACTION 

* 

* 

SFRSUM(ISTART) = 0.0 
PRINT*,SFRSUM(ISTART) 
DO 100 IT=1,NFRAC 

WRITE(OUT,31)IT 
31 FORMAT(/,1X, 'RESULTS FOR SETTLING VELOCITY FRACTION 1 ,!1,/) 

WRITE(OUT,25) 
25 FORMAT(2X,'NETOUT(I) I ,2X, 'TOTOUT(I) ',2X,'TOTSED(IT) 1 ,3X, 

+ I DL(I) I, 5X, I SUML', 9X, I SEDOUT(II, IT, I) I, 7X, I SEDTOT(IT) I) 

* INITIALIZE TOTAL LENGTH TRAVELED BY THE PARTICLE (SUML) AND 
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* TOTAL VOLUME PERCENT OF PARTICLES PER FRACTION (TOTSED) 
* 

* 

TOTSED(IT)=O.O 
SUML(II,I) = 0.0 
SEDFRC(II,IT) = SEDVOL(II)*VFRAC(IT)/100. 

* CALCULATE THE DISTANCE SETTLED OVER THE TIME INTERVAL 
SET(IT)=VS(IT)*DT 

* 
* DETERMINE PRESENT WIDTH AND TOP POSITION OF EACH LAYER 

* 

DO 200 .J=1,M 
X.J=.J-1 
PWIDTH(.J)=H(ISTART)/XM 
PPOS(.J)=(XM-X.J)/XM * H(ISTART) 

200 CONTINUE 

* BEGIN LOOP TO CALCULATE CONDITIONS AT EACH TIME INCREMENT 
* OVER THE TIDAL CYCLE (!TIME) 
* DO 300 I=1+NEWB,ITIME-NEWB 
* 
* CALCULATE CHANGE IN DEPTH (DH) OVER THE NEW TIME INCREMENT 
* 

DH(I) = H(I) - H(I-1) 
* 
* BEGIN LOOP TO CALCULATE NEW CONDITIONS IN EACH LAYER, (LWIDTH,LPOS) 
* AND NET SETTLING OVER THE TIME INTERVAL (NETSET) 
* 

* 

DO 400 .J=1,M 
X.J=.J-1 
LWIDTH(I,.J)=H(I)/XM 
LPOS(I,.J)=(XM-X.J)/XM * H(I) 
NETSET(I,.J)=SET(IT)-(XM-X.J)/XM * DH(I) 

* FOR BOTTOM LAYER CALCULATE VOLUME PERCENT SETTLED OUT IN TIME DT 
* 

* 

IF(.J.EQ.M)THEN 
DIFF=PWIDTH(.J)-NETSET(I,.J) 
NETOUT(I)=(LWIDTH(I,.J)- DIFF)/LWIDTH(I,.J) 

END IF 

* DUMP PRESENT WIDTH INTO PREVIOUS WIDTH LOCATION FOR NEXT LOOP 
* 

* 
* 
* 

PWIDTH(.J)=LWIDTH(I,.J) 

400 CONTINUE 

TEMPL = (SVOL(II-1)*LS)/SVOL(I) 
IF(I.LE.IB)THEN 

DL(II,I) = FVOL(II)/HEND(I) 
SUML(II,I) = LS - TEMPL 

IF ( I I. EQ . 1) THEN 
WRITE(OUTPLT,311)SUML(II,I) ,DL(II,I),H(I) 

311 FORMAT(2X,3F9.4) 
END IF 

ELSE 
DL(II,I) = FVOL(II)/HEND(I-1) 
SUML(II,I) = SUML(II,IB) + (SUML(II,IB)-(LS-TEMPL)) 

END IF 
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* * DUMP PRESENT DEPTH AND VELOCITY TO PREVIOUS FOR NEXT LOOP 

* 
* * DETERMINE TOTAL VOLUME PERCENT SETTLED OUT OVER ENTIRE DEPTH 
* (TOTOUT) AND CUMULATIVE TO PRESENT (TOTSED) 

* 

* 

TOTOUT(I)=NETOUT(I)/XM 
SEDOUT(II,IT,I) = TOTOUT(I)*SEDFRC(II,IT) 
TOTSED(IT)=TOTSED(IT)+TOTOUT(I) 
SEDTOT(IT) = TOTSED(IT)*SEDFRC(II,IT) 

WRITE(OUTA,991)DL(II,I),SUML(II,I) ,SEDOUT(II,IT,I) ,TOTSED(IT) 
991 FORMAT(2X,2F11.4,F17.15,2X,F10.6) 

* CHECK IF ENTIRE VOLUME OF GIVEN FRACTION HAS SETTLED (TOTSED=1.0) 

* 

* 

IF(TOTSED(IT).GE.1.0)THEN 
TOTSED(IT)=1.0 
SEDTOT(IT) = SEDFRC(II,IT) 
WRITE(OUT,29)NETOUT(I),TOTOUT(I) ,TOTSED(IT), 

+ DL(II,I) ,SUML(II,I),SEDOUT(II,IT,I) ,SEDTOT(IT) 
29 FORMAT(3(2X,F9.5),2(2X,F9.4),2(2X,F9.7),/, 

+ 2X, 1 ALL PARTICLES IN THIS FRACTION HAVE SETTLED OUT') 
GO TO 99 

END IF 
WRITE(OUT,26)NETOUT(I) ,TOTOUT(I),TOTSED(IT) ,DL(II,I) ,SUML(II,I) 

+,SEDOUT(II,IT,I),SEDTOT(IT) 
26 FORMAT(2X,F9.5,2X,F9.5,2X,F9.5,2X,F9.4,2X,F9.4,2(2X,F19.15)) 

300 CONTINUE 

* CALCULATE THE WEIGHT PERCENT SETTLED FOR A GIVEN FRACTION (WTSED) 
* AND CUMULATIVE WEIGHT PERCENT SETTLED (WTTOT) 

* 

* 

* 

99 WTSED(IT)=TOTSED(IT) * DFRAC(IT) 
WTTOT=WTTOT+WTSED(IT) 
SFRSUM(IT) = SFRSUM(IT-1)+SEDTOT(IT) 
WRITE(OUT,33)WTSED(IT),WTTOT,SFRSUM(IT) 

33 FORMAT(/,20X, 1 WTSED(IT) = 1 ,F9.5,/,20X, 'WTTOTAL 
+/,20X, 'SETTLING FRACTION SUM= 1 ,F16.15) 

PRINT*,SEDTOT(IT) 
100 CONTINUE 

PVOL = FVOL(II)/VOLIN 
BLTOT = BLTOT + WTTOT*PVOL 
SEDBLK(II) = SEDBLK(II-1)+SFRSUM(NFRAC) 

1 ,F9.5, 

* PRINT THE TOTAL WEIGHT SETTLED OVER ONE TIDAL CYCLE 

* 
WRITE(OUT,20)II,WTTOT,II,BLTOT,II,SEDBLK(II) 

20 FORMAT(/,1X, 'TOTAL WEIGHT OF SEDIMENT DEPOSITED IN BLOCK 1 ,I2, 
+ 1 = 1 ,F10.3,/,1X, 1 SUM OVER 1 ,I2, 1 BLOCKS= 1 ,F10.3, 
+/,1X, 'TOTAL VOLUME SETTLED IN BLOCK 1 ,I2, 1 = 1 ,F16.15) 
.NEWB=NEWB+1 

50 CONTINUE 
SEDIMT = SEDBLK(IB)*WS 
WRITE(OUT,110)SEDBLK(IB) 

110 FORMAT(/,1X, 1 TOTAL VOLUME SETTLED PER UNIT WIDTH 1 ,F16.15) 
SEDEP = SEDIMT/AS*1000.0 
WRITE(OUT,112)SEDIMT,SEDEP 

112 FORMAT(/,1X, 'TOTAL VOLUME SETTLED= 1 ,F12.7,/, 
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+lX, 'DEPTH ACCUMULATION IN MM = ',F7.5) 
DO 601 JJ = l,IB 

DO 602 KK = l,JJ 
DO 603 KK2 = JJ,1,-1 

KK3 = KK + KK2 
JJ2 = JJ + 1 
IF(KK3.EQ.JJ2)THEN 

DL(KK2,KK) = FVOL(KK2)/HEND(JJ) 
WRITE(OUTDAT,55)DL(KK2,KK),H(JJ) ,KK2,KK 

55 FORMAT(2X,2F9.4,2I6) 
END IF 

603 CONTINUE 
602 CONTINUE 
601 CONTINUE 

#EOF 

STOP 
END 
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