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1. INTRODUCTION 

Two highway bridges have been monitored for the determination of (1) 

stresses and deflections developed during construction, and (2) stresses 

under traffic loads after completion. The primary purpose of this study 

was to use stress data based on measured strains to evaluate the adequacy 

of several commercially available finite element programs which are being 

used for the analysis and design of bridge superstructures. This report 

describes the study conducted on a steel plate girder bridge which carries 

the east bound traffic on the I-78 highway over the Delaware River near 

Easton, Pennsylvania. A separate report describes the study of the second 

bridge in this project, a prestressed concrete beam bridge across the 

Susquehanna River at Milton, Pennsylvania< 1>. 

The research reported herein was conducted by Lehigh University 

under the Pennsylvania Department of Transportation Research Project 86-

05. The tasks completed by Lehigh University included the field 

measurement of plate girder deflections and strains during the casting of 

the reinforced concrete deck slab, the measurement of strains under 

various vehicular loading conditions, the comparison of stresses based on 

measured strains with those obtained from four commercially available 

computer programs, and field observation of the behavior of the webs of 

the plate girders during construction as well as under traffic load. 

The computer program results were supplied by Modjeski and Masters, 

Inc. of Camp Hill, Pennsylvania, under a separate contract with the 

Pennsylvania Department of Transportation. The Lehigh University 

researchers had no direct interaction with the providers of the various 
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computer-based analysis and design programs. The specific tasks performed 

by Lehigh University on the I-78 Bridge are as follows: 

1. Measurement of the dead load stresses in the plate girders 

caused by the seq~ential casting of the reinforced concrete 

deck slab. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Measurement of the deflections of the plate girders caused by 

the sequential casting of the reinforced concrete deck slab. 

Measurement of lateral deflection of some web panels of the 

plate girders caused by formwork and the casting of reinforced 

concrete deck slab. 

Measurement of strains in girders and deck for determination 

of the structural response of the bridge superstructure to 

simulated AASHTO and PennDOT design vehicular loads. 

Measurement of strains in girders and deck for determination 

of the structural response of the bridge superstructure to 

normal in-service traffic loads. 

Comparison of the stresses based on field measurements with 

corresponding stress values obtained from four commercially 

available finite element computer programs. 

Evaluation of the fatigue life of the web panels. 

Evaluation and recommendation of supporting methods for the 

formwork for the overhanging portion of the deck slab, and 

development of design recommendations to ensure the 

appropriate behavior of web panels with respect to fatigue. 

- 2 -
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2. GENERAL DESCRIPTION OF THE STRUCTURE AND INSTRUMENTATION 

2.1 Description of the Brid~e 

The bridge under study is a seven-span structure near Easton, 

Pennsylvania. It carries the Interstate Highway I-78 across the Delaware 

River. The bridge has a total length of 1222 ft., and is divided into two 

separate, identical structures carrying the east-bound and west-bound 

traffic. All of the field study was conducted on the east-bound 

structure. The overall deck slab width, from outside to outside of the 

parapet wall, is 51 ft. 6 in. The span lengths are 100 ft., 169 ft., 228 

ft., 228 ft., 228 ft., 169 ft. and 100 ft. Fig. 2.1 shows the plan and 

elevation of the east bound structure. 

The main superstructure elements of this bridge consist of four 

welded plate girders, spaced at 14 ft. 3 in. center to center. The depth 

of the web plate (inside to inside of the flange plates) varies from 82 

inches in the end spans to 90 inches in the three longest spans. The web 

depth for the 169-ft. spans is tapered. 

Figure 2.2 shows the variation of the plate girder dimensions. As 

indicated, the flange plate size, the web plate thickness, and the grade 

of steel all change over the length of the bridge. Typically, the top 

flange plate of the steel girder is smaller than the bottom flange plate, 

since the top flange will eventually be completely encased in the concrete 

slab. 

Figure 2.3 shows a typical cross-section of the bridge. The deck 

slab is symmetrically placed over the four plate girders. However, the 36 

ft. wide vehicular roadway, comprising three operating traffic lanes, is 
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slightly shifted inward (towards the twin structure), leaving shoulder 

widths of 4-ft. and 8 ft. respectively. As a result, the fascia girders 

are expected to carry a relatively small portion of the truck loads. 

The plate girders were initially fabricated in segments of 100 ft. 

to 120 ft. lengths. These segments were then spliced in the field with 

high-strength bolts, and diaphragms were installed. Stay-in-place metal 

deck forms were then placed, shear stud connectors were attached to the 

top flange plates, deck reinforcing bars were placed, and the concrete 

deck slab was cast. By this method of construction, the entire dead load, 

including the self-weight of the girders and the concrete deck, is 

supported by the steel plate girders. The concrete deck is effective only 

for loads applied after the hardening of the deck slab. 

The placing of the concrete deck was done in segments symmetrically 

located with respect to the mid-span section of central span over a period 

of 20 days from Oct. 15 to Nov. 3, 1987. The positive moment regions were 

cast first, then the segments near the points of inflection in the longest 

spans. The negative moment regions over the interior piers were cast at 

last. This sequence of casting minimizes dead load stresses in the deck 

concrete. Figure 2.4 shows the sequence of slab casting. 

Two phenomena were observed during the construction of this bridge, 

and led to supplemental tasks in this study. These are listed as items 3, 

7 and 8 on page 2, Chapter 1. The metal deck formwork for the overhanging 

portion of the deck slab was supported by struts bearing against the web 

plate of the fascia girder, approximately 38 in. below the top flange. 

(See Fig. 2.5) The force in these struts caused the web plate to deflect 

inwards, resulting in a relatively large magnitude of out-of-flatness. 

- 4 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

This condition could be related to the separation of the metal deck 

formwork that was observed at , one location in the westbound 

structure. 

Large magnitudes of out-of-flatness (or bulges) were also observed 

on some web panels of the interior plate girders, although these panels 

were not subjected to thrusts from formwork struts. In addition, the 

magnitudes of these deflections were observed to change with time. It was 

suspected that many factors may contribute to these bulges, including the 

sequence of deck slab placement, the shrinkage of deck concrete, the 

fixity of the bridge bearings and the thermal fluctuations of the ambient 

condition. Under vehicular loads, these deflections, or bulges, exhibit 

lateral (horizontal) movements. There was concern that the stresses 

associated with these lateral movements may cause fatigue damage along the 

web panel boundaries. 

Fig. 2.6 shows the bridge structure under construction. The plate 

girders in spans 1 through 5 are in place. The metal deck forms have not 

yet been placed. 

2.2 Description of Instrumentation 

2.2.1 Strain Gages on Girder Flanges 

Flexural strains in the steel plate girders were monitored using 

l.t; in. long, temperature-compensated, electric resistance· strain gages 

mounted on the top and bottom flanges. The general layout of the strain 

gage locations is given in Fig. 2.7. Nine cross-sections, near quarter 

span points in spans 2,3 and 4, were instrumented. A total of 72 strain 

gages were used, all oriented in the longitudinal direction. At each 
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instrumented section of each plate girder, two gages were mounted on the 

upper surface of the top flange, and one gage on the upper surface of the 

bottom flange. The top flange gages were placed near the edges of the 

flange plate. The bottom flange gage was placed as close as convenient to 

the web plate. As a rule, the bottom flange gages on girders 1 and 2 were 

placed on the north side of the web, while those on girders 3 and 4 were 

on the south side. Tables 2.1 to 2.4 give the precise location of each 

gage. 

Each of the flange gages is identified by an alphanumeric code which 

describes the location of the gages. For example, gage 243TS is located 

in span l (from the west end of the structure), on girder number~ (from 

the south side), near the 3rd quarter point of the span (from the west end 

of the span, in this case pier 1), on the !QQ flange, and near the south 

edge. This code system is used throughout this report. 

2.2.2 Strain Gages on Concrete Deck Slab 

Twenty four strain gages were mounted on the concrete deck slab, 

along three transverse cross-sections at midspan of the spans 2 and 3, and 

directly above pier 2 (sections 2x2, 3x0, and 3x2). The locations of 

these cross sections, and those of the gages on each section, are depicted 

in Figures 2.7 and 2.8. 

The twenty four deck slab gages are arranged into twelve 90-degree 

rosettes, with individual gages placed in the longitudinal and transverse 

directions, respectively. Each gage is given an alphanumerical code to 

designate its location and direction. For example, the gage 342SL is 

located in span l, to the ~outh of girder No. ~. at the 2nd quarter span 
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point (midspan), and in the 1ongitudinal direction. 

In view of the unsatisfactory results regarding the deck slab strain 

gages on the Milton bridge <1>, a different procedure was adopted for the 

I-78 bridges. Polyester mold gages, with a gage length of 60 mm (approx. 

2~ in.)(total length approx. 5 in.) were used. (See Fig. 2.9). While 

these gages are originally designed for embedment inside of concrete, on 

this research project they were attached to the top surface of the deck 

slab using epoxy glue, which also provided protection against weather and 

traffic. The result was a resounding success. All but one of the twenty 

four gages functioned satisfactorily throughout the study period. 

2.2.3 Strain Gages on Plate Girder Yebs and Diaphragms 

During and after the construction of the bridge superstructure, 

several web panels of the plate girders were observed to deflect 

laterally. In a fascia girder (No. 1 or No. 4), the formwork of the 

overhanging portion of the deck slab was supported by struts which bore 

against the web plate approximately 34 in. below the top flange. The 

thrust in these struts under the weight of wet concrete clearly 

contributed to the lateral deflection of these web panels. In one case, 

near the third quarter point of span 7 of the west bound structure 

(approximately 25ft. from the East abutment), the metal deck slab form 

separated from the girder flange. Very likely, the lateral deflection of 

the web plate here was a contributing factor. Significant web deflections 

were also observed in the interior girders. Such lateral deflections 

caused concern regarding the behavior of the structure under traffic load 

and the potential of fatigue damage along the web panel boundaries. 
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In order to examine the stresses associated with the lateral 

deflection of the plate girder web panels caused by the weight of the 

concrete slab, and by traffic load, thirteen electric resistance strain 

gages were installed on the web plates at the midspan section of girder 4 

in span 2, and of girders 3 and 4 in span 4 (sections 242, 432, and 442). 

These gages are in the vertical direction and are placed within one inch 

of the top flange. The designation of each gage indicates the section 

location, and whether it is on the south (S) or north (N) face of the web 

plate. A listing of these gages is given in Table 2.5. Figures 2.10 and 

2.11, show detailed arrangements and location of these gages. 

Recent experience in plate girder bridge structures has shown that 

the differential deflections between adjacent girders could induce severe 

bending deformations and stresses in the web plates at the diaphragm 

connection regions. Under live load, the fluctuations of these stresses 

could cause fatigue cracks to develop. The structural design of the 

superstructure of the I-78 bridge over the Delaware River contains several 

unusual features, such as the small number of main girders and the larger 

spacings of the very flexible section design afforded by the computer 

analysis and design procedure. In order to assess the diaphragm action 

stressed in this bridge, eighteen strain gages were mounted on various 

diaphragm elements at two transverse sections of the superstructure. 

The two instrumented diaphragms are the third diaphra.gm in span 3 

from its west end (pier 2), and the second diaphragm in span 2 from its 

east end (pier 2). (See Figure 2.9). Gages were attached to the diagonal 

angles, stiffener connecting plates, web plate in the gap of the stiffener 
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cope area, and bottom flange of the plate girder. The bottom flange gages 

are on the upper surface of the flange plate, near its outer edges, and 

oriented in the longitudinal direction of the girder. All other diaphragm 

gages measured strains in the plane of the diaphragm (transverse to the 

girder direction). The alphanumeric designation of each gage reflect the 

member (Qiagonal, ~tiffener, Reb or ~ottom flange), the span (2 or 3), the 

nearest plate girder (3 or 4), and the gage's position relative to the 

girder (Iop or ~ottom, North or ~outh). The diaphragm gages are listed in 

Table 2.6. Their locations and arrangements are shown in Figures 2.10 and 

2.12. 

2.2.4 Instrumentation for Deflection Measurements 

One of the tasks in this research project was the determination of 

the vertical deflections of the plate girders caused by the weight of the 

concrete deck slab. The elevations of girders 3 and 4 were measured by an 

automatic level at each quarter span point for the west half of the bridge 

(from the west abutment to the midspan of span 4). These measurements 

were taken before and after each stage of the placement of concrete. In 

Figure 2.4, the deflection measurement sequence and its relationship with 

the deck casting sequence is given. A more detailed description of the 

deflection measurements is given in Chapter 3 of this report. 

In order to coordinate elevation readings before and after a target 

point has been concealed by concrete, a pedestal is attached to the top of 

the top flange of the plate girder. Each pedestal consisted of a No. 4 

reinforcing bar with a square base-plate. Each pedestal was cut to such 

a length that its top extended to about 1 in. (varying from 3/8 in. to 1-~ 

- 9 -
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in. of the top surface of the concrete slab. Figure 3.2 shows a typical 

pedestal attached to the top flange of a plate girder. 

2.2.5 Instruments for Strain Measurement 

For the measurement of girder strains during bridge construction, 

the primary concern was the steadiness of reference for static strains. 

Static strain indicators and switch boxes were located in a trailer under 

the bridge, and were permanently connected throughout the period of 

concrete placement (Oct. 15 to Nov. 3, 1987). The electrical resistances 

of the lead wires of the strain gages were recorded and incorporated into 

the evaluation of strains. Repeated reading of the strain indicators 

demonstrated that an accuracy of 2 micro inches per inch. was achieved at 

all times. 

For the measurement of strains due to vehicular loads, a high-

precision, analog, magnetic tape recorder was used. This recorder was 

capable of monitoring 21 gages simultaneously. The most important 

quantity to be determined was the time variation of strain at each gage as 

the test vehicle(s) moved at various speeds on the bridge. The magnetic 

tape recorder permitted continuous recording of strains. The recorded 

live load strains were plotted as strain-time diagrams, and separately 

analyzed by computer for live load stress evaluation. 

- 10 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

3. GIRDER DEFLECTIONS DUE TO PLACEMENT OF DECK SLAB 

3.1 Instrumentation and Procedure 

The deflections due to the placement of the deck slab concrete were 

measured by the standard levelling process. The level used was a Lietz Bl 

Automatic Level, and the standard level rod was graduated in intervals of 

0. 01 ft. All readings were taken to the nearest 0. 005 ft. . In the 

determination of deflections, elevations of two of the four girders, one 

exterior and one interior, were determined at 15 longitudinal locations: 

(1) at the midspan and quarterpoints of spans 1, 2, and 3, (2) at the 

midspan and West quarterpoint of span 4, (3) at piers 1, 2, and 3, and (4) 

at the West abutment. See Fig. 2.7. A three-digit notation was used to 

identify the 30 locations. The first digit signifies the span (1, 2, 3, 

or 4); the second indicates which of the two girders (3 or 4); and the 

third identifies the longitudinal quarter point (0, 1, 2, or 3) in that 

span. Thus, location 243 indicates span 2, girder 4, three- quarter 

point. Location 240 indicates the "zero" - quarter point of the same span 

and beam (which is actually at pier 1). 

The primary objective of this phase of this project was to determine 

the actual deflections of the two girders due to the weight of the deck 

slab, with the entire deck slab in place. However, the slab concrete was 

placed in 19 segments on 14 days, over a period of 20 days. Therefore, 13 

sets of deflections were determined, one after each of the days of slab 

placement (with one exception). The locations of the slab segments, the 

placement dates, and the dates and times when elevations were recorded are 

all shown in Fig. 3.1. 
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The first set of elevations was recorded on October 14 in the period 

4:15-6:00 p.m., with all slab forms in place. The second set was recorded 

in approximately the same time period on October 15, following the 

placement of slab segments 1 and 2W earlier that day. The only deviation 

from this procedure occurred after the placement of slab segment 7E on 

October 27. A heavy rain in the late afternoon on that day made it 

impossible to take the elevation readings that day. Therefore, the 

readings were resumed on October 28, after the placement of segment 7W. 

In taking the 14 sets of elevation readings over the 20-day period 

from start to finish of the placement of concrete for the entire bridge 

deck, it was necessary to take readings at two different levels at each of 

the 30 points. All of the initial readings (on day 0), were taken on the 

top surface of the girders. After the slab concrete was placed in 

segments 1 and 2W on day 1, readings were taken on the girders at all 

points except 332, 432, 342, and 442, which were inaccessible because of 

the fresh concrete at those locations. On day 5, segment 2E (in the 

eastern half of the bridge) was cast. Therefore, the readings (set no. 2) 

were taken on the girders at all points except 332, 432, 342, and 442, 

where they were taken on the top surface of the slab. As the placement of 

the slab segments proceeded from day-to-day, each of the other 26 points 

was eventually covered with slab concrete, and subsequent readings were 

taken on the top surface of the slab. 

The conversion of top-of-the-slab elevations to top-of-the-girder 

elevations was accomplished through the use of steel pedestals attached to 

the top of the girders prior to placement of any of the slab concrete. 

The pedestals were attached at 28 locations, all except the two abutment 

- 12 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

locations where elevations of the abutment were used (points 130 and 140). 

Each pedestal consisted of a No. 4 re-bar welded to a square base plate, 

then coated with an epoxy paint, and attached to the top of the girder 

with an epoxy glue. See Fig. 3.2. Each pedestal was fabricated to extend 

to within ~-inch of the top surface of the slab at its location. 

To convert the top-of-the-slab elevation to 

elevation at each point, the slab thickness was 

top-of-the-girder 

needed. The slab 

thickness was equal to the known length of the pedestal plus the actual 

clearance from the top of the pedestal to the top surface of the slab. To 

obtain the actual clearance at each point, a small prism of concrete 

directly above the top of each pedestal was chipped away and the clearance 

was measured directly. Of the 28 pedestals, only one 040) was not 

located. Two (142 and 330) were found to be slightly tilted. All of the 

others appeared to be intact. 

In order to provide a measurement of time-dependent and 

environmental effects, a set of elevations (Reading No. 14) was taken on 

12 August 1988, 283 days after the deck slab had been completed (3 

November 1987). The readings were taken in the period 3:20-5:00 p.m., 

which was in the same time interval used for all previous readings. 

3.2 Results 

A complete listing of all measured deflections, 14 sets of readings 

at 30 locations, is given in Tables 3.1 and 3. 2. The variation in 

measured deflection at each of the points over the 14 sets of readings is 

presented in Fig. 3.3-3.6. This information would enable a comparison of 

measured deflections with theoretical values at 13 stages of the placement 
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of the deck slab, and at a time approximately 9 months after the slab was 

completed. 

A comparison of measured deflections with theoretical values, at 

completion of the slab (Reading No. 13), is given in Fig. 3.7. A larger 

scale comparison is given in Figs. 3.8 and 3.9. Numerical values of the 

measured and theoretical deflections are given in Table 3.3. Since 

theoretical values at the intermediate stages were unavailable, (if 

computed at all), no other comparisons can be shown. 

3.3 Discussion 

The comparison of measured deflections with theoretical values is 

most vividly shown in Fig. 3.7. In spans 1 and 2 the measured values are 

reasonably close to the theoretical deflected shapes. Only three of the 

twelve measured values deviate from theoretical values by more than 0.1 

in. On the other hand, the deviations in spans 3 and 4 are considerably 

greater, ranging from 0.7 in. greater to 1.8 in. less than theoretical 

values. It can be seen that in span 3, all of the measured values are 

less than theoretical values, while the opposite occurs in span 4. It is 

also noted that there is a very good consistency between the deviations in 

girders 3 and 4. Interestingly, the measured deflections indicate that 

the actual deflections in span 3 are nearly the same as the deflections in 

spans 4, for both girders 3 and 4. 

Regarding the deflected shapes of spans 3 and 4, as shown in Fig. 

3.7, it appears that manipulation of the joint rotations at piers 2 and 3 

could bring the analytical values much closer to the measured values. 

That is, if the rotation at both piers 2 and 3 was less than shown (less 
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clockwise at pier 2 and less counter-clockwise at pier 3), the analytical 

values would be closer to the measured values. 

It is understood that in the analysis which yielded the theoretical 

values, the supports at piers 3 and 4 were considered to be hinged, while 

the supports were considered to be rollers at piers 1, 2, 5, and 6, and at 

the abutments. In span 4, the hinged end condition would produce 

horizontal restraint at the bottom surface at the ends of the girders, 

yielding additional negative moments at the ends of span 4, which would 

reduce the theoretical deflections. The flexibility of piers 3 and 4 

would allow horizontal movement of these hinges away from the centerline 

of the bridge, reduce the negative moments at the ends of the span, and 

result in actual deflections which are greater than the theoretical 

values. On the other hand, the horizontal movement of the pier 3 hinge to 

the left, together with some unaccounted- for restraint to horizontal 

movement at pier 2, would develop additional negative moments at both ends 

of span 3. Therefore, the actual deflections would be less than the 

theoretical values. 

Another factor which may account for some of the differences between 

the actual and theoretical values is that the 19 slab segments were placed 

on 14 different days, thereby altering the flexural stiffnesses of the 

girders from day-to-day. It is understood that the theoretical analysis 

was based on a one-time application of the weight of the entire slab. 

Therefore, some difference between actual and theoretical values would be 

expected, even if the supports behaved as assumed in the analysis. 
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4. 

4.1 

STRESSES IN GIRDERS AND WEB DEFLECTIONS DURING CONSTRUCTION 

Stresses in Girders 

4.1.1 Flange Stresses 

A. Measured Stresses 

The strains in the steel girder flanges and in a couple of web 

panels due to deck casting were measured after each stage of 

casting. Eighty strain gages were connected to strain recorders in 

this period. The results are listed in Appendix A. For each gage, 

the reading was first adjusted to account for the effect of the 

electrical resistance of the connecting cable to yield the strain 

values, which were then converted to stresses by simple 

multiplication by the modulus of elasticity (Es = 29,000 ksi). The 

strain correction factors for the gages are listed in App. A and the 

stresses at several flange gage locations are given in Tables 4.1 to 

4.3. 

The casting of the deck took twenty calendar days (from Oct. 

15 to Nov. 3, 1987) to complete, and the development of composite 

action between the deck concrete and the steel girders progressed as 

the concrete gained strength. As a result, the effective cross-

sectional properties changed with time during this period. In 

particular, the centroidal axis of the effective girder section 

shifted from that of the bare girder (slightly lower than mid-

height) to a position significantly higher. For example, at the 

cross section 432, assuming the effective deck width specified by 

the AASHTO Specifications<2> is applicable, the centroidal axis 
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shifted from about two-fifth the depth from the bottom to about 

four-fifth the depth. These positions are depicted in Fig. 4.1. 

At this cross-section, before the casting of concrete deck, 

under the action of the weight of the steel girder, deck formwork 

and slab reinforcing steel, there existed longitudinal stresses in 

the flanges. These stresses could not be detected by the strain 

gages. The computed values from the four computer programs are all 

essentially identical and are shown in Fig. 4. 2 as "initial" 

stresses (also refer to section 4.1.1 E, p.4.11). The strain gage 

readings before and after the casting of deck segments 1 and 2W on 

day 1 indicate incremental stresses in the top and bottom flanges, 

as shown in Fig. 4.2 for day 1. These are combined with the initial 

stresses to produce the cumulative stresses at the end of day 1. 

Similar incremental and cumulative stresses at several subsequent 

days are illustrated in Fig. 4.2. It is clear that the neutral axis 

of the composite section moved considerably with the progress of 

deck casting. At several stages, the entire girder was under 

compression. It should be pointed out that dependent upon the 

presence or absence of any longitudinal restraining force in the 

girder, the neutral axis does not necessarily coincide with the 

centroidal axis. 

To examine the variation of stresses in the girder flanges at 

different locations of the bridge during concrete deck casting, the 

stresses converted from measured strains are plotted in Figs. 4.3, 

4.4 and 4.5 for girder 3 in spans 3 and 4. Figure 4.3 shows the 

change of "measured" stresses in the cross section at the middle of 
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span 3, 332. The placement of concrete on day 1 at middle of span 

4 and span 3, directly over this cross section, induced about 5.7 

ksi tension in the bottom flange and about 8.5 ksi compression in 

the top flange of the steel girder. Relatively minor changes took 

place in days 5.6 and 7 (see Fig. 2.4 for casting sequences). When 

concrete slab was casted on days 8 and 9 in the middle of the 

adjacent spans 2 and 4, the tensile stress in the bottom flange (at 

332B) decreased noticeably. On day 10, when segment 6W in span 3 

and near the cross section was cast, the tensile stress in the 

bottom flange increased by about 6.8 Ksi. The change of stress was 

much less in the top flange in days 8, 9 and 10. After day 10 

(casting of segment 6W) both flanges experienced only minor stress 

changes. 

The change of flange stresses in cross section 432 at the 

middle of span 4, as shown in Fig. 4.4, was more pronounced during 

the stages of deck concrete casting. Several factors could possibly 

contributing to these results, including that (1) the span is the 

middle of the three longest spans of 228 ft., and (2) the span has 

"fixed" (non-expansion) bearings at both ends. The casting of 40 

feet of deck directly above the cross section (segement 1) on day 1 

caused a 4.7 ksi tension stress in the bottom flange and a 9.1 ksi 

compressive stress in the top flange of the plate girder. On day 9, 

the placement of two 33 foot segments of the deck near the cross 

section (segments 5E and 5W) induced an incremental tensile stress 

of nearly 9.0 ksi in the bottom flange while the compressive stress 

in the top flange only increased by about 1.6 ksi. In fact, after 
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the casting of concrete in the middle of this span and the adjacent 

spans in Days 1 and 5, the top flange compressive stress changed 

within a relatively narrow range, while the bottom flange stress 

fluctuated much more severely with each casting. 

Over pier 2 at the western end of span 3, in the region of 

negative bending, the top flange of cross section 330 was subjected 

to increasingly more compression during the deck casting stages. 

The magnitudes of the "measured" stresses in the flanges of this 

cross section are shown in Fig. 4.5. The casting of deck segments 

4W and 6W in adjacent regions on days 8 and 10, generated negative 

bending moments in the section, and caused the stresses in the 

flanges to increase. The placement of deck segment 8W directly 

above the pier and this cross section, on day 16, further increased 

the stresses. The measured deadload stress due to the completed 

deck is 11.3 ksi in the top flange and 11.9 ksi in the bottom 

flange. 

Comparison of the stress variations in Figs. 4.3, 4.4 and 4.5 

indicates that the stress generated by the concrete deck is about 

the same in the top and bottom flanges of cross section 330 over a 

pier, somewhat higher in the top flange than in the bottom flange of 

cross section 332 at the middle of span 3, and substantially higher 

in the top flange of cross section 432 at the middle of span 4. 

This phenomenon will be discussed later. 

B. Comparison with Computed Values 

The measured variation of flange stresses are compared with 
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the corresponding computed values provided for this study. The 

computer programs used are STRESS, CURVBURG, DESCUS, and BSDI. The 

material properties and the deck casting sequence were incorporated 

into the computer analyses. Several computer runs, with a variation 

of parameter values were made by the contracting agency, Majeski and 

Masters<3>. The results of computation utilized for comparison in 

this report are based on the following assumptions. (1) The steel 

girder component plates have the specified minimum yield strength of 

the respective material (ASTM A588, A572, Gr 50, and A36), (2) The 

deck concrete has a 28 day strength of f'c = 4,500 psi. (3) Full 

composite behavior of cross sections is achieved before the next 

stage of deck casting. (4) The modulus of elasticity of concrete 

during the deck-casting period is taken to be that corresponding to 

the 28-day strength. (In one set of computations, this modulus was 

reduced by 20%, with negligible effects). In general, the stresses 

comouted by the programs using two-dimensional (2D) structural 

models (STRESS, CURVBRG and DESCUS) agree very well with one 

another. Those generated by the three-dimensional model of BSDI 

also agree well, although some stress values in some cross sections 

were different from the 2D results. 

Figures 4.6 to 4.11 are examples of the comparison among the 

computed stresses, and between the computed and measured values. 

The stresses in the top and bottom flanges of cross section 332 are 

shown in Figs. 4.6 and 4.7, respectively. For the top flange, all 

computed stresses are in good agreement with each other, while the 

measured values are much higher after Day 1. The maximum deviation 
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is about 5.0 ksi from the measured value of 14.6 ksi. For the 

tensile bottom flange, the BSDI values are slightly higher than the 

2D values while the measured values are lower. 

In cross section 432 at the middle of span 4, the difference 

among the measured, 2D and BSDI values are quite drastic, as is 

depicted by the curves in Figs. 4. 8 and 4. 9. The computations 

severely underestimated the compressive stresses in the top flange, 

and overestimate the tension in the bottom flange. The maximum 

deviation is about 10 ksi from the measured value of 18 ksi in the 

compression (top) flange, and 9.7 ksi from the measured value of 

-1.0 ksi in the tension (bottom) flange. Since the fixed (hinged) 

bearing conditions at both ends of span 4 have been incorporated 

into the computer structural models, some other factors must have 

contributed to the stresses in the flanges. 

The stresses in the top and bottom flange of the girder cross 

section 330, in the negative moment region over pier 2, agree better 

than the two cross sections in the adjacent positive moment regions. 

Figure 4.10 shows that there is only minor difference among the 

computed and measured tensile stresses in the top flange. The 

measured compressive stresses in the bottom flange are slightly 

lower than the computed values. (Fig. 4.11) 

c. Results of Analysis Incorporating Shrinkage 

One of the factors which could have a pronounced effect on the 

stresses in the girders during construction, is the shrinkage of the 
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concrete deck. In order to examine the influence of this factor, a 

three dimensional finite element model of the bridge was 

established. <4> The stresses in the flanges of the girders were 

first computed ignoring the shrinkage of concrete (LU) for 

comparison with the available computed values, and then including 

the shrinkage (LUSH). Some results are summarized here. 

Figures 4.12 to 4.19 show the computed stress variation in the 

flanges of cross sections 342, 332, 330, and 430 without considering 

shrinkage in the computation. These cross sections are at the 

middle of a fascia girder and of an interior girder in span 3, at 

one end of an interior girder over a pier in span 3, and at the 

middle of an interior girder in span 4. Because the results of the 

three two-dimensional (20) programs are nearly identical, and even 

the 3-D program BSDI gives very similar results, only results from 

one of the 20 program (STRESS) are chosen for comparison. Also 

included in the figures for comparison are the stresses from the 

measured strains. 

From the curves of Figs. 4.12 to 4.19, it is clear that, 

without incorporating the shrinkage of concrete, the three-dimension 

finite element model (LU) provides computed flange stresses which 

are generally in good agreement with the 20 values. There are some 

deviation in the computed top flange stresses in cross sections 332 

and 432, and in the bottom flange at 432. Without detailed 

information on the forces at the fixed bearings of span 4, the 

general agreement between the 20 and LU values is considered 

satisfactory for the utilization of the LU model for shrinkage 
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effects. 

The results of analysis which incorporates the effects of 

concrete shrinkage are presented in Figs. 4. 20 to 4. 25. (These 

figures are directly corresponding to Figs. 4.14 to 4.19, which do 

not include shrinkage effects). For cross section 332, the 

consideration of shrinkage reduced the deviation of computed top 

flange stresses from the measured values. For cross section 330 

over a pier, in the negative moment region where the concrete slab 

was casted on day 16, little difference is expected between the LU 

and LUSH values. That this is so is depicted in Figs. 4.22 and 

4.23. There is some deviation between the measured and computed 

compressive stresses in the bottom flange. (This deviation is, in 

essence, incurred from day 1). 

In the flanges of cross section 432 at middle of span 4, 

incorporation of shrinkage in the computation of stresses leads to 

a better correlation between the computed and measured compressive 

stresses in the top flange. However, little improvement is gained 

regarding the tensile stresses in the bottom flange. Other factors, 

such as thermal effects and pier flexibility, could account for some 

of the duration of this specific span. 

Overall, incorporating the effect of concrete shrinkage when 

the period of casting the continuous deck of a long rnultispan bridge 

is more than a few days, appears to improve the structural model. 

D. Cross Sectional Stress Profiles and Neutral Axes 

As it has been pointed out earlier, the cross sectional 
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properties of the girders changed as the concrete of the deck 

developed its strength. The centroidal axis of a girder cross 

section, therefore, shifted from the position of the bare steel 

girder to that of the composite girder. However, the width of the 

deck slab which effectively participated with the steel girder 

cannot be accurately estimated by the simple rules for "effective 

width" provided by the AASHTO design specifications. C2>. 

Furthermore, the gradual development of concrete strength and the 

continuity of the deck make it very difficult to determine the 

effective cross section of the composite section. On the other 

hand, the measured stresses in the steel girder flanges provide an 

direct indication of the approximate location of the neutral axis, 

so far as the stresses are within the proportional limit. 

The profile of cross sectional stresses at location 332 on 

days 1, 9 and 20 of deck casting are plotted in Fig. 4.26, assuming 

a linear variation of stress between the top and the bottom flange. 

The segment of concrete deck in this region was casted on day 1 (see 

Fig. 2. 4). The incremental stresses on day 1, therefore, were 

carried by the bare girder. The good agreement between the location 

of zero stress and the computed centroidal axis of the bare girder 

attests to this condition. Between day 8 and day 9, the concrete 

had already developed most of its strength. The neutral axis of the 

cross section should be at the upper part of the web. The stress 

profile in fig. 4.26 does seem to indicate so, although the 

magnitudes of incremental stresses are small due to the deck segment 

SE and SW in the adjacent span. Very small incremental stresses 
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were introduced in cross section 332 when concrete was placed in the 

region over pier 3 at the end of the span on day 20. 

Figure 4.27 for cross section 432 at the middle of span 4, 

shows again the same phenomenon of the neutral axis shifting toward 

the top flange. On day 1, the bare girder carried the bending 

moment induced by the wet concrete directly above. The computed 

centroidal axis agrees well with the neutral axis indicated by the 

stress profile. Between day 8 and day 9, when two other segments of 

deck were placed in the span and near the cross section, the 

composite girder carried the induced moment and the neutral axis was 

near the deck. The bottom flange had a higher increase of stress. 

On day 20, when concrete was casted over pier 3 at the west end of 

the span, the bending moment induced at the middle of the span was 

very small. The presence of compessive stress over the whole depth 

indicates that some axial force had been generated. 

Location 330 over pier 2 had its concrete deck cast on day 

16. The steel girder alone carried all bending moment of the cross 

section up to that time. The cross section is relatively stocky and 

the incremental stresses due to each casting are not high. 

Therefore, the profiles of incremental stresses do not provide very 

reliable indications of the location of the neutral axis. Figure 

4. 5, which shows the variation of flange stresses in this cross 

section, shows that the position of the neutral axis did not move 

very much. 
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E. Cumulative Stresses 

While Figs. 4.26 to 4.28 present the profiles of the measured 

incremental stresses in the cross sections for the examination of 

the progressive change of neutral axis location, comparison of the 

computed and measured stress values is more revealing by using the 

accumulated stresses induced by the deck segments. Figure 4. 29 

shows the cumulative stress profiles for cross section 432. As 

before, only the values from one of the computer programs are 

plotted (2D), and the results of analysis with shrinkage effects are 

also shown (LUSH). When the bare girder carried all the weight of 

the wet concrete deck above, on day 1, all the computed values agree 

well with the measured values. On day 9, when the concrete deck had 

already gained most of its strength and the shrinkage effects were 

in progress in different concrete deck segments, the analytical 

results incorporating shrinkage provide a very good estimate. The 

2D computed results, which ignores shrinkage, are different from the 

measured ones, by about 3 ksi in both flanges. On day 20, the 

casting of deck was complete. The computed stress profiles are 

substantially different from the measured results. As discussed 

earlier, a more refined analysis incorporating pier flexibility and 

thermal effects might improve the computed results, but it is beyond 

the scope of this study. 

To examine the total dead load stresses at each cross section, 

the initial stresses due to the weight of the steel girders, deck 

reinforcing bars, and formwork must also be included. These initial 

stresses are quite consistent among the four computer programs 
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utilized for this project. By using the same set of initial 

stresses, the profiles of total accumulated dead load stresses at 

days 1, 9 and 20 of cross sections 332, 432 and 330 are constructed 

in Figs. 4.30, 4.31 and 4.32, respectively. 

From comparing Fig. 4.31 and Fig. 4.29, it can be seen that 

the difference in values between the computed and measured stresses 

is the same for each day, but the proportion of difference is lower 

when the total dead weight of the steel girders, rebars, formwork 

and the concrete deck are all included. The maximum difference is 

in the bottom flange. 

In examining the total stresses from measurement, again it 

shows that cross section 432 was subjected to "unusual" stress 

distribution when compared with other cross sections. Almost the 

entire cross section was in compression at the completion of the 

deck concrete placement, as well as during many other stages of deck 

casting. This is depicted in Fig. 4.2. This "unusual" stress 

distribution could have lead to the relatively large magnitude of 

web deflection at location 432, which was discovered after the 

completion of the bridge. 

4.1.2 Web Stresses Perpendicular to Top Flange 

Two strain gages were installed on the web at location 242, 

just below the top flange, for the measurement of vertical strains due to 

placement of deck concrete. These are gages 242WS1 and 242WS2 on the 

inside surface of the fascia girder. (See Fig. 2 .lla). It was not 

possible to attach strain gages on the outside face of the web without 
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very extensive rigging. 

The stresses, converted from the measured strains without 

incorporating Poisson's effect, are plotted in Fig. 4.33. Strain gage 242 

WS2 at the centerline of the panel had stresses higher than those in gage 

242WS1, and neither changed much after day 8. Relatively large changes 

occurred on day 1 and day 8, when concrete deck segments were casted in 

span 3 and directly above the cross section, respectively (see Fig. 2.4). 

Because the strain gages are on only one side of the web plate, it is not 

possible to determine whether the web plate was subjected to lateral 

deflection and plate bending stresses. 

Figure 4.34 shows the variation of stresses at the sides of the top. 

flange. The shifting from tension to compression on day 8, due to the 

casting of deck segment in the region, was accompanied by the reversal of 

differential bending stress between the two sides of the flange. This 

implies that the top flange shifted from deflecting inward to deflecting 

outward, that is, north and away from the bridge. The minor change in web 

stresses in the vertical direction, combined with the Poisson's effect 

from the average compressive flange stress of 15 ksi, suggests that the 

web plate lateral bending was minor. This will be further examined later. 

4.2 Lateral Deflection of Yeb Panels 

While the vertical deflections of the bridge girders were readily 

measured by using a level, and the stresses in the bridge components by 

strain gages, the measurement of lateral deflection of girder web panels 

was not easily achievable. This was because of (1) the difficulty in 
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accessing the locations where large web deflections are expected, and (2) 

the difficulty in establishing a stable reference line. With great 

effort, vertical reference lines were fastened to the top and bottom 

flanges of an exterior girder in two regions near the midspan section of 

the first and second spans (sections 142 and 242) before the placement of 

the deck concrete. Within each region three reference lines were 

established as shown in Fig. 4. 35. Lines A and C were opposite the 

diagonal struts of supporting brackets for the formwork of the deck 

overhang. Line B was half way in between. 

The web panel at region 142 has no transverse stiffeners between 

diaphragms, which are 25 ft. apart. Because of the large lateral 

deflection of the web and the separating of the metal deck form at the 

corresponding location of the west bound bridge (W742), the web panel at 

spans 1 and 7 of the eastbound bridge, including panel 142, were braced 

laterally during construction, by placing wooden beams between adjacent 

girders. Measurements of the web profiles were made by offset from the 

reference lines before and after casting of the concrete deck directly 

above and also after the removal of the deck overhang formwork, the 

supporting bracket and the wooden bracing beams. The largest magnitude of 

deflections occurred at line B. The web profiles at line B are sketched 

in Fig. 4. 36. Before the casting of the concrete deck, with the deck 

formwork and the web bracing in place, the web panel 142 showed a double 

curvature lateral deflection (out-of-flatness). The placement of deck 

concrete caused the web to deflect further inward, in spite of the 

presence of the wooden bracings between adjacent girders. The removal of 

the deck overhang formwork, the supporting bracket and the wooden bracing 
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members resulted in a very small decrease of lateral deflection in the 

upper portion of the web, and a small increase in the lower portion. The 

web deflection shape is essentially of single curvature. The maximum 

residual out-of-flatness is at mid-depth and is about 0.34 in. 

In the second span, at the region 242, the transverse intermediate 

stiffeners between the cross diaphragms are spaced at 100 in. The 

corresponding web profiles before and after casting of the concrete deck 

directly above, and after removal of the overhang supporting bracket are 

also presented in Fig. 4. 36. Here no wooden bracing of the web was 

applied and no unexpected event occurred. This web panel had an initial 

lateral deflection of about 0.32 in. (before casting of slab concrete but 

with all formwork in place). The placing of the concrete deck caused an 

increase of the lateral deflection to about 0.8 in. After the removal of 

formwork and props, the residual permanent deflection was about 0.6 in. 

Obviously, bracing of the web plate by the wooden beams in panel 142 

had a strong influence on the final out-of-flatness when compared with 

that of panel 242, even when the web panel length of 142 is three times 

that of 242. 

For further comparison, the final out-of-flatness of the 

corresponding web panels in the west bound bridge were also measured. The 

profile of web panel W742, where metal deck form separation occurred and 

wooden column shoring and horizontal bracing were used, is shown in Fig. 

4.37. The web profile of the corresponding location of the other exterior 

girder, W712, where no shoring was made, is also shown for comparison. It 

is interesting to observe the following. 
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1. 

2. 

The out-of-flatness of all four web panels of these exterior 

girders are inward. No doubt this is caused by the thrust in 

the strut of the overhang supporting brackets. 

The permanent lateral deflection of the web is smaller at the 

girder of deck form separation (W742) than at the other 

exterior girder (W712). The magnitudes are about 0.5 in. and 

0.9 in., respectively. This difference possibly is because 

that the top flange of panel W742 was shored whereas that of 

panel W712 was not. 

3. Bracing of the web panel 142 before casting of concrete 

4. 

resulted in a smaller permanent out-of-flatness than that of 

web panel W712, which was braced after the casting of the deck 

concrete. 

The web panel at 242, with a length of 100 in., has a smaller 

permanent out-of-flatness than that of web panel W712, which 

has a length of 300 in. Other conditions being the same, 

obviously closer spacing of transverse stiffeners results in 

smaller out-of-flatness of the web. 

The maximum out-of-flatness of the web panels are summarized in 

Table 4.4. The final or permanent deflections are also expressed in terms 

of the web thickness in the table. Some of these final out-of-flatnesses 

are higher than the permitted magnitude at fabrication according to AWS 

specification. <5> There is no existing provisions with regard to the 

permissible permanent out-of-flatness of girder webs. Further discussion 

of web plate deflection will be made later in this report. 
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5. TEST TRUCK LOADING AND BRIDGE RESPONSE 

5.1 Test Trucks and Test Runs 

5.1.1 Test Trucks 

Before the bridge was opened to regular traffic, a series of live 

load tests using trucks with known axle loads and configuration were 

conducted to establish the response of the bridge superstructure. 

Ideally, the vehicles used for such tests should conform to the 

configuration of (1) the AASHTO HS-25 standard, and (2) the 204-kip 

Pennsylvania special permit truck. However, trucks of these 

configurations are not available. Six four-axle vehicles, each weighing 

approximately 67.5 kips, were used to simulate the HS-25 and 204 k loads. 

The axle spacings and axle weights of these trucks are summarized in Fig. 

5 .1. 

To simulate HS-25 standard live load, two test trucks were placed in 

tendon in each operating traffic lane, as illustrated in Fig. 5.2 and Fig. 

5.3. For a simple span of 228ft. (spans 3, 4 and 5), the two-truck 

combinations in the three traffic lanes would generate maximum bending 

moment of 6503, 6488 and 6561 k-ft., respectively. In comparison, the 

standard HS-25 live load would generate a moment of 6481 k-ft. (controlled 

by lane loading). 

Similarly, the effect of a 204-k permit vehicle was simulated by 

placing trucks 3, 5 and 6 in succession, as shown in Fig. 5.2. For a 

simple span of 228ft., this three-truck combination would cause a maximum 

bending moment of 9113 k-ft. This compares to the moment of 9870 k-ft. 

caused by a 204-k permit truck. 
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5.1.2 Test Runs 

The I- 7 8 bridge has a curb- to- curb roadway width of 48 ft. which 

contains three 12-ft wide normal operating traffic lanes, and shoulders of 

8 ft. and 4 ft., as shown in Fig. 5.3. 

within these traffic lanes. 

The test trucks were operated 

Seven runs at crawl speed (about 5 miles per hour) and three at 

moderate speed (about 50 miles per hour) were made by the test trucks. 

Each run included a forward (eastbound) travel of the trucks from span 1 

to span 7, followed by a backward travel to span 1. Table 5.1 lists the 

run designations and the configuration, location and speed of the test 

trucks for each run. For example, run Cl had a simulated HS 25 live load 

in lane No. 1, traveling at crawl speed, while run S23 had simulated HS 

25 loads in both lanes 2 and 3, simultaneously traveling at moderate 

speed. 

Only 21 strain gages could be monitored at one time by the magnetic 

tape recorder being used. As the total number of gages far exceeded this 

number, each test run was repeated six times while different groups of 

gages were monitored. Table 5.2 shows the groupings of the gages. It is 

noted that two girder flange gages (332B and 342B) were included in all 

six groups. Also, two deck gages (332ST and 342NL) were included in both 

groups 4 and 5, which contained all deck gages. These common gages were 

used to correlate the recorded responses of gages in different groups. 
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I Stresses in Bridge Components due to Test Trucks 

I Strain Variations in Girders 

A. Strain-Time Traces 

I As trucks travelled on the bridge, strains were generated in the 

I 
bridge components. The magnetic tape of the monitoring equipment recorded 

the continuous variation of strains at each strain gage. The variation 

I can be plotted out as strain-time traces (see Appendix B). Figures 5.4, 

5.5 and 5.6 are examples of such traces for eight strain gages. These 

I plotted strains were caused by one simulated HS 25 truck in traffic lane 

I 
3 alone (run C3), one simulated truck in lane 2 alone (run C2), and two 

simulated trucks side-by-side in lanes 2 and 3 (run C23), respectively. 

I 
For each strain-time trace the horizontal axis represents time (from 

I left to right) and the vertical dimension is the uncorrected or apparent 

strain. The time scale of all traces in all figures is the same and is 

I indicated (2 seconds for each smallest division), while the vertical scale 

I 
varies from figure to figure. In Figs. 5.4 and 5.5 the full scale of each 

strip of trace is 250 micro inches per inch (FS 250), corresponding to 7.5 

ksi in stress if a value of 30,000 ksi is used for the modulus of 

elasticity. ·(This value is used here for the sake of simplicity.) The 

full scale of strain in Fig. 5.6 is 500 micro inches per inch (FS 500), or 

I 
15 ksi. In all figures of strain- time traces, the test truck run 

condition and the position of traffic lanes are indicated. 

I Each of the continuous strain-time traces has upward excursion, 

downward excursion, or both, representing the variation of strain due to 

I passing of the truck load. These are live load strains (stresses). A 
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downward excursion corresponds to live load tension whereas an upward one 

represents live load compression. The bottom trace in Fig. 5. 4, for 

example, shows that strain gage 342B was subjected first to a small 

compression (0.8 ksi), then a tension of higher magnitude (about 5.3 ksi), 

and again to compression (1.1 ksi) as the test truck crawled forward in 

lane 3. Gage 342B is in span 3, on girder 4, at midspan (second quarter 

point) and on the bottom flange. The strain- time trace resembles the 

influence line of strain for this point of the multispan continuous bridge 

structure. In fact, all strain-time traces in Figs. 5.4, 5.5 and 5.6 are 

directly related to the influence lines for stresses at various points in 

girder flanges. 

B. Stresses in Girders due to Simulated HS Trucks 

By examining the strain-time traces generated by the simulated HS 

trucks, a wealth of information can be deduced, including the magnitudes 

of stresses in different girders and their components. The first three 

strips of Figure 5.4 are the strain time traces of gages 332 TN, 332B and 

332TS, which are located in the same cross section of girder 3 in span 3, 

at midspan. When the simulated HS 25 truck crawled from West to East in 

traffic lane 3 (see Fig. 5.3) the bottom flange (gage 332B) was primarily 

subjected to tension with a maximum live load stress of about 3.4 ksi. 

The stresses in the top flange of the steel girder (gages 332TN and 332TS) 

were quite low, being only about 0.5 ksi in compression. The simulated 

test truck took about 40 seconds to traverse span 3 which is 228 ft. in 

length; the travel speed was therefore less than 4 mph, and the dynamic 

effect was negligible. The stress reversal caused by the simulated HS 25 

truck run resulted in a total live load stress range of about 4.4 ksi. in 
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the bottom flange. 

At the girder cross section one quarter span to the east, cross 

section 333, the top and bottom flanges' response can be similarly 

examined. The maximum live load tension in the bottom flange (gage 333 B) 

was 2.2 ksi, and the maximum compression was 1.5 ksi. Again, the top 

flange stress was low, as is indicated by the strain-time traces of gages 

333TN and 333TS. Because the cross section 333 is at 3/4 span and closer 

to pier 3, the peak response occurred about 10 seconds later than that of 

the midspan cross section 332, and the stress magnitude was lower (3.4 ksi 

vs. 2.2 ksi). These "static" stresses from the crawl run of the simulated 

HS 25 truck are in full agreement with the nature of the influence lines 

of stresses in girder flanges. 

In Fig. 5.4, the last one and the first three strain-time traces are 

for strain gages at the same cross section of the bridge, cross section 

3x2. The maximum response of girders 3 and 4 occurred at the same time. 

The maximum live load tension in girder 4 (at gage 342B) was 5.3 ksi while 

that of girder 3 (at gage 332B) was 3.4 ksi. This indicates that girder 

4 carried more of the test truck load than girder 3, as would be expected 

because the simulated HS 25 truck was in lane 3, much closer to girder 4 

than to girder 3, (see Figs. 5.3 and 2.7). When the test truck was in 

traffic lane 2, away from girder 3 and further away from girder 4, the 

stresses in the flanges of these girders were correspondingly lower. This 

is depicted by the second and the last strain-time traces in Fig. 5.5. 

Gage 332B indicates a maximum live load tension of 2.7 ksi, and gage 342B, 

1. 9 ksi. 
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I By examining the instantaneous stresses at the strain gage locations 

I 
of the girders, the "static" response of the bridge and the distribution 

of truck loads among these girders can be deduced. The results will be 

I presented later in this section and in Section 5.3 of this report. 

Figure 5.6 shows the strain-time traces of the same eight strain 

I gages of Figs. 5.4 and 5.5 when two simulated HS 25 trucks were crawling 

side-by-side, one in traffic lane 3 and one in lane 2. The scale for 

I strain in this figure is twice of those in Figs. 5.4 and 5.5. The shapes 

I 
of the corresponding strain-time traces in these three figures are 

identical, and the sum of the strain magnitudes of each gage in Figs. 5.4 

I and 5.5 is the corresponding strain magnitude of Fig. 5.6. This result 

confirms the expected linear elastic behavior of the bridge and the 

I applicability of the principle of superposition. Further presentation of 

I 
results of superposition will be given later. 

I c. Girder Stresses Induced by a Simulated 204 K Permit Trucks 

The live load stresses in the bridge's components due to a 

I simulated 204K permit truck were higher than those induced by the 

I 
simulated HS 25 trucks at the same position on the bridge. Figure 5. 7 

shows strain-time traces of the same eight strain gages of Fig. 5.4 when 

I the 204K permit truck was in lane 3. The shape of all corresponding 

strain-time traces are identical. The strain scale of Fig. 5.7 is FS 500, 

I or about 15 ksi for the full width of each "strip chart". The maximum 

I 
live load tension in the bottom flange at midspan of girder 4 (gage 342B) 

was 6.9 ksi, higher than the 5.3 ksi tension induced by the HS 25 truck 

I (as shown in Fig. 5.4). The corresponding live load tension at the 
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midspan of girder 3 (gage 332B) was 4.5 ksi due to this simulated permit 

truck, as compared to 3.4 ksi by the HS 25 truck. 

Similar strain-time traces due to the simulated 204 K permit truck are 

presented in Appendix B. By comparing the corresponding strain records 

from the simulated 204 K truck and those from a simulated HS 25 truck, it 

is evident that the former always generates higher stresses in the girders 

than the later but the shape of strain-time trace remains the same. This 

condition indicates the repeatability of live load stress variations and 

the linear elastic nature of the bridge behavior. 

D. Stress Distribution in Bridge Cross Sections 

As indicated earlier, by examining the instantaneous strains or 

stresses in the girders the stress distribution in girder cross sections 

and among the four continuous girders can be deduced. Table 5.3 

summarizes the instantaneous strains and stresses in the midspan cross 

section of the four girders in span 2 due to the test trucks. These are 

the maximum strains and stresses converted from the maximum readings of 

the strain-time record with correction for the electrical resistance of 

the strain gage cables. Because the four cross sections (2x2) are at the 

same position along the length of the bridge, the maximum stresses due to 

a test truck occur at the same time. Results from the crawl runs Cl, C2, 

C3, C23 and Cl23 of the simulated HS 25 trucks and P2 and P3 of the 

simulated 204 K permit truck are all listed. 

When a test truck was in lane 1 (run Cl), it was located above girder 

1 and girder 2, and the stresses in the midspan cross section of these 
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girders were higher than those in girder 3 and girder 4. The maximum 

bottom flange stress of girders 2, 3 and 4 were 3.52 ksi, 1.91 ksi and 

0.23 ksi, respectively, in tension. This indicates a decreasing share 

taken by the girders away from the truck. The corresponding stresses in 

the top flanges were in compress ion and the magnitudes we·re quite low, but 

the decrease of magnitude from girder 1 to girder 4 was the same. 

Similarly, when a test truck was in lane 3 (run C3 and P3), it was located 

above girder 4 and girder 3. The stresses were highest in girder 4 and 

decreased towards girder 1. For example, the stress in the top flange 

gages 242TS, 232TS, 222TS and 212TS were, resp_ectively. -0.97 ksi, -0.95 

ksi, -0.57 ksi and 0.32 ksi when the 204 K permit truck was in lane 3 

(P3). (Note the reversal of stress in girder 1). 

These results clearly demonstrate the stress or load distribution 

character among the girders and the behavior of the four girder bridge 

under live load. Further demonstration is provided by the corrected 

instantaneous strains in the midspan cross sections of the girders in span 

3. The strains are listed in Table 5.4. Strains in the concrete deck, 

where available, are also listed. Once again, the results show that 

girders directly under or near the truck load have higher live load 

stresses and carry a large share of the truck load (test runs Cl, C2 and 

C3). When a truck was near one edge of the deck, (test runs C3 and P3), 

the girder on the other side of the bridge cross section endured a 

"negative bending". This behavior of "cross bending" of the bride, not 

indicated by bridge design specifications, has been a well known 

phenomenon to bridge engineers. 
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The strains in each girder cross section as summarized in Table 5.4 

also provide information of strain (and stress) distribution over the 

depth of a cross section. For example, in girder section 332, during test 

truck run C3, the maximum strains in the top flange of the steel girder 

were 16.6 and 19.6 micro inches per inch in compression. Simultaneously, 

the strains registered at the top level of the concrete deck were 24.0 and 

35.5 micro inches per inch in compression, and the strain in the bottom 

flange of the steel girder was 129.5 micro inches per inch in tension. 

These strain magnitudes form almost a straight line across the depth of 

the girder, and indicate that the girder cross section behaved compositely 

and that the neutral axis of the cross section was close to the steel top 

flange. More extensive examination of cross sectional stresses will be 

made in Section 5.3. 

E. Combination of Stresses due to Truck Loads 

It has been shown earlier in this section that superposition of 

loads and stresses can be confirmed by combining the stresses or strains 

from test truck runs in two different traffic lanes separately and compare 

the values with those from the trucks traveling side-by-side in these 

lanes. The cross-sectional strains and stresses presented in Table 5.3 

and Table 5.4 can be used for this purpose. As an example, the stresses 

at strain gage 232B on the bottom flange of girder 3 in span 2 was 1.91 

ksi, 2.82 ksi and 3.57 ksi, respectively for test truck runs Cl, C2 and C3 

(see Table 5.3). The sum of the values for C2 and C3 is 6.39 ksi, which 

is almost the same as that directly measured during test truck run C23, 

6.48 ksi. Similarly, at the same location, the sum of stresses from runs 
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Cl, C2 and C3 is 8. 30 ksi, and the stress from run Cl23 is 8.10 ksi. 

Again, the values are very nearly the same. 

For girder cross section 342, Table 5.4 gives the bottom flange 

strains of 27.4, 68.4 and 193.8 micro inches per inch from test truck runs 

Cl, C2 and C3, respectively. The sum of C2 and C3 is 262.2 micro inches 

per inch, which is the same as that from test run C23. The sum of Cl, C2 

and C3 is 289.2 micro inches per inch, and Cl23 gives 283.9 micro inches 

per inch. The difference is less than 2%. 

Considering the accuracy and precision of the strain measurements, 

the results illustrated above can be viewed as conclusive confirmation of 

the applicability of the principle of load and stress superposition to the 

bridge. More extensive discussions will be made later. 

5.2.2 Stresses in Diaphragm Members 

The cross diaphragms·between the bridge girders served to stabilize 

the girders during the construction stage. After the completion of the 

bridge, these diaphragms are utilized to transmit lateral forces due to 

wind loads. Generally, no consideration of traffic load induced forces in 

the diaphragms is made. Experience with girder bridges have pointed to 

the existence of diaphragm action under traffic load and occasional local 

distress at the connections between diaphragm members and the girders. 

Because this bridge has a large spacing between girders, the diaphragm 

action could be relatively strong. In order to examine the magnitude of 

forces in the diaphragm members of the bridge, six strain gages were 

placed on these members. (See Fig. 2.12.) (After test truck runs, two 

additional strain gages were attached to diaphragm members with additional 
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strain gages on the girders. These will be discussed later in Chapter 6). 

The recorded strain variation in the six diaphragm gages due to the 

passage of test trucks were examined to obtain the magnitudes of stress in 

these members. Figure 5.8 is an example of strain-time traces, which were 

induced by a simulated HS 25 truck crawling forward in traffic lane (run 

Cl). The strain-time record of the bottom flange of girder 3 and girder 

4 at middle of span 2 (332B and 342B), are also plotted for reference of 

time. The stresses in the diaphragm members were primarily tension or 

compression with minor reversal, and the maximum stresses occurred when 

the truck was in the span of the diaphragm. With the test truck in lane 

1 (between girder 1 and girder 2), the top strain gages D23TS, D33TS and 

D24TS near the top of girder 3 and girder 4 were in tension while the 

corresponding bottom strain gages D23BS, D33BS and D24BS were in 

compression. This condition of opposite stresses in the opposite members 

of the cross diaphragm implies that girder 2 had a downward deflection 

larger than that of girder 3, and girder 3 larger than girder 4. In other 

words, a truck load on one side of the bridge deck centerline caused 

differential deflection of the girders and induced diaphragm action 

between girders. 

The magnitudes of maximum stress in the diaphragm members due to 

test truck run Clare listed in Table 5.5, together with those from other 

test truck runs. The highest stress in the diagonal cross members during 

run Cl was 4.3 ksi, in D23TS. This is of the same order of magnitude of 

stress in the bottom flange of the girder (3.52 ksi, see Table 5.3). 

Assuming a uniform stress distribution within the 4x4x5/8 angle section of 

the diaphragm member, the total live load force in the member would be 4.3 
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ksi x 2.83 sq in= 12.2 kips. 

Examination of the maximum stresses listed in Table 5.5 reveals a 

number of behavioral conditions of the bridge and diaphragms. 

(a) As pointed out earlier, when a truck was off the bridge deck 

centerline, in the outside lanes, the top and bottom members of cross 

diaphragms had opposite stresses. This is indicated by the opposite sign 

of stresses in the top and bottom gages during test truck runs Cl, C3, P3 

and S3. Because of the highly statically indeterminate configuration of 

the cross frames, the stresses were not of the same magnitude in the two 

diagonal members of the cross diaphragms. 

(b) The magnitude of stresses in the top and bottom members of 

cross diaphragms at interior girders were more even when a truck was in 

the middle lane, (test truck runs C2 and P2). 

(c) The principle of superposition is valid, as is confirmed by 

comparing stress magnitudes from C2+C3 with C23 and Cl+C2+Cl with Cl23. 

For example, at gage D23TS, the magnitudes are 3.5 - 2.1 = 1.4 ksi versus 

1.5 ksi, and 4.3 + 3.5 - 2.1 = 5.7 ksi versus 5.2 ksi, respectively. 

(d) The highest magnitude of stress in a cross diaphragm member 

was not necessarily generated when there were trucks in more than one 

lane. 

Further examination of diaphragm action and related stresses will be 

made later. 

5.2.3 Stresses from Speed Runs 

During the time of test truck runs, the construction of 

approach roadway at the east end of the bridge was not yet complete. The 
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test trucks could travel at crawl speed at ease, but had to slow down 

beyond span 4 in the speed runs. Furthermore, it was not easy to maintain 

the desired distance between the two trucks which simulated the HS 25 

truck. These conditions limited the travel speed to about 50-55 mph and 

very likely diminished the effects on the bridge structure. Nevertheless, 

the measured stresses from the speed runs of the test trucks provided some 

information on the dynamic behavior of the bridge. 

Figure 5.9 shows examples of strain time record at selected locations 

due to one simulated HS truck in traffic lane 2 traveling at about 55 mph. 

The locations of strain measurements are the same as those of Fig. 5.5, 

which shows in different scales the corresponding strain-time record under 

a crawl run of a simulated HS 25 truck in the same lane. Comparison of 

the traces in these two figures reveals the dynamic effects of the speed 

run. While the strain-time traces of Fig. 5.5 are analogous to static 

influence lines, those in Fig. 5. 9 include the dynamic or vibrational 

response of the bridge components to the fast moving test trucks. By 

taking into consideration the difference of scale for time and for strain, 

the traces in Fig. 5.9 could be visualized as the corresponding ones in 

Fig. 5.5, superimposed by fluctuations caused by the bridge vibration. 

The frequency of the vibration, as measured from the traces, was about 4 

Hz. The vibration started when the test truck came onto the bridge, and 

continued well beyond the time when the truck got to the other end of the 

bridge. Examination of the traces in Fig. 5.9 shows that all three 

girders 4, 3 and 2 vibrated, with the fluctuation of stresses quite 

prominent in the steel bottom flanges but hardly measurable in the top 
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flanges just below the concrete deck. Examination of strain time traces 

of other speed runs (given in Appendix B), showed that in most cases the 

fast moving test trucks induced similar vibrations, but the amplitudes 

were much smaller. 

The consequence of the vibration or dynamic behavior is an increase 

of the magnitude of maximum live load stresses, usually referred to as 

"impact load stresses". The strain time traces of Fig. 5.9 (and those in 

the Appendix) show that the impact stresses in this bridge are quite 

small, being less than 0.5 ksi. 

Table 5.6 lists, for a few locations, the measured stress ranges 

from the test truck loads (after incorporating the electric resistance of 

the strain gage cables). These live load stress ranges are calculated as 

the algebraic differences between the maximum and minimum values of the 

stress-time traces. Included in the table are the results from speed runs 

S3 and S2, when a simulated HS 25 truck was traveling at moderate speed in 

lane 3 and in lane 2, respectively. Also listed are the corresponding 

results from the crawl runs C3 and C2. The magnitude of stress ranges due 

to the speed runs were not always higher than those of the corresponding 

crawl runs. For comparison, the measured stresses in a diaphragm are also 

listed and the results are similar. (See also Table 5.5.) This condition 

is most likely due to the characteristics of dynamic response of the 

bridge and the situation that the test trucks were not the same during the 

test runs and the lateral position of these trucks in the lane might be 

also not the same. 

Irrespective of the above, the following conclusions could be drawn 

from examining the stresses from the test truck speed runs. ( 1) A 
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simulated HS truck, at a speed of about 55 mph, induced noticeable 

vibration of the bridge at a frequency of about 4 Hz. (2) The "impact 

stresses" due to the simulated HS 25 truck loads were not high, even when 

bridge vibration was induced. No result of dynamic analysis was provided 

for this study. The dynamic behavior of the bridge under truck loads of 

regular traffic will be presented in Chapter 6. 

5.3 Comparison of Stresses from Measurement and Computation 

5.3.1 Cross Sectional Stresses 

For the comparison of stresses from computation and from 

measurements, the maximum values of test truck induced stresses in a few 

girder cross sections are plotted. Figures 5.10 to 5.17 show the stress 

profiles with an assumed linear stress distribution. Figures 5.10 and 

5.11 are for the midspan section of a fascia girder in spans 2 and 3, 

respectively; Figure 5.12 refers to the midspan section of the interior 

girder 3 in span 3; and Fig. 5.13 shows the stress profile of girder 3 

over pier 2 at the west end of span 3, all due to a simulated HS 25 truck 

in Lane 3. As before, because the computed values from the three 20 

computer programs are nearly the same, results from only one program are 

shown with those from the 3D finite element program (BSDI) and those from 

measurements. It is obvious from the stress profiles in these figures 

that all the computed results for a simulated HS 25 truck load agree very 

well with the corresponding measured stresses. Regardless of the lateral 

position of the girder, that is, interior or exterior, the neutral axis is 

within one-sixth of depth from the top at the middle of a span, and about 

four-fifth of the web depth from the bottom over a pier. These very high 
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positions of the neutral axis are consistent with full composite action of 

the steel girders with the concrete deck slab, even in the negative moment 

regions over the piers. This is also true when the bridge is under a 

simulated 204- kip permit truck, as is depicted by Figs. 5. 14 to 5. 17, 

which show the results from computation and measurements corresponding to 

those in Figs. 5. 10 to 5. 13. Again, the computed results of flange 

stresses agree very well with the measured values. The observed agreement 

between computed and measured stresses was not restricted to the girder 

section and test truck runs depicted in Fig. 5.10 to 5.17. In fact, for 

all cross sections and all test truck runs, the results agreed very well. 

It should be noted that the computed stresses were based on assumed 

material properties, while the measured values reflect the actual 

materials as built. Nevertheless, the effect of these differences on the 

comparison of computed and measured stress values is not likely to exceed 

a few percent. Therefore, the observed agreement between the computed and 

measured stresses can be accepted as indeed valid. 

As previously stated in Section 4.1.1 in the discussion of girder 

stresses due to deck construction, it is difficult to determine the cross 

sectional properties of individual composite girders. The girders are 

composite with the deck slab which is transversely continuous over the 

four girders, as well as longitudinally continuous over the piers. Under 

live load, the entire deck and all the girders participate in transmitting 

the live load down to the bearings, piers, and abutments. The entire 

bridge structure must be analyzed as a whole in order to estimate 

correctly the stresses in the various components< 4>. Effects such as shear 

lag and differential displacement also need to be considered.<6> The live 
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load distribution factors, and the criteria for effective flange width of 

composite girders given by the AASHTO Bridge Specifications<2> provide 

satisfactory guidelines for the designing of composite girder bridges. 

However, these provisions are not suitable for the analysis of the 

behavior of bridge structures under given loads. The computer programs<3> 

enable fairly accurate analyses of finite element models which 

approximately represent the real structure. Three of the four included 

programs (STRESS, DESCUS and CURVBRG) model the bridge structure by a 

horizontal grid system, where the properties of the longitudinal elements 

incorporate the effect of the composite deck slab as well as the offset of 

the beam axis from the plane of the deck. From the information 

received, <3> the effective cross section properties of these composite 

beams are calculated based on an effective width of the deck slab equal to 

twelve times its thickness, same as the AASHTO specifications provide for 

design< 2>. In the three-dimensional structural model used by the fourth 

program (BSDI), the steel girders and the concrete deck slab are 

represented by separate elements, and the selection of an "effective 

flange width" for the composite beam is not necessary. Nevertheless, the 

computed results in reference 3 included cross-sectional properties 

identical to those listed for the two-dimensional model programs. It is 

not known what was the significance of these cross-sectional properties in 

the 3-D model analysis, and how they affected the computed bending moments 

and stresses. Without knowing the input parameters and the details of 

these computerized analyses, the only observation possible from the 

comparison of computed and measured stresses is that, given the field 

measurement results, all four computer programs can be used to generate 
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very close estimates of the girder stresses under specified vehicular 

loads. The "goodness of fit" is clearly demonstrated in Figures 5.10 to 

5.17. 

Tables 5.7, 5.8, and 5.9 list the computed and measured stresses of 

three cross sections in the bridge for more comparison. 

agreement exists for almost all girder cross sections. 

5.3.2 Load Distribution Among Girders 

Very good 

One aspect of the behavior of girder bridges that has been studied 

extensively for the development of design rules is the lateral load 

distribution among bridge girders when a truck is on the deck at various 

transverse locations.<7> In view of the large spacing (14'-3") between 

girders in this bridge, and the slender design of the plate girders, it is 

uncertain that the traditional lateral load distribution of more 

conventional configurations is applicable. An extensive computerized 

analysis of the superstructure system for standard vehicular live loads in 

various traffic lanes would allow the determination of the live load 

distribution among the longitudinal girders. This, however, is beyond the 

scope of this research project. On the other hand, an examination of the 

measured girder stresses under a few selected loading conditions can 

provide qualitative insight to this very important aspect of the behavior 

of this bridge. 

Figure 5.18 shows the stresses in the flanges of the four plate 

girders at the middle of span 3 (section 3X2), when the test trucks were 

in lane 3 and very close to girder 4. (See Fig. 5.3 for the positioning 

of traffic lanes and test trucks). For both simulated HS-25 truck (test 
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run C3), and the simulated 204-K permit truck (run P3), the stresses were 

clearly lower in girders successively farther away from the load. In 

fact, the farthest girder (No. 1) was subject to negative bending. 

Because the overhanging portion of the deck slab is only slightly narrower 

than one half the spacing between adjacent girders and there are the cast

in-place parapets, all four girders may be reasonably assumed to have 

approximately the same "effective composite cross section". Therefore, 

the comparison of flange stresses in the girders provides an indication 

of the distribution of live load moments among the girders. 

distribution is seen to be approximately linear. 

The 

The stress distributions shown in Fig. 5.19 are for the bridge cross 

section at the end of span 3 and over pier 2 

simulated test trucks were in lane 3. The 

(section 3XO) when the 

condition of linearly 

decreasing participation of girders away from the trucks is also evident. 

When a test truck was in lane 2, slightly off the centerline of the 

bridge deck, the two interior girders developed nearly equal stresses and 

the exterior girders had slightly lower stresses. This condition is 

depicted in Figs. 5.20 and 5.21 for the middle and the end of span 3, 

respectively. This pattern of distribution is again in agreement with 

results from earlier studies on girders with more conventional spacingC 7>. 

5.3.3 Superposition of Loads 

The instantaneous stresses in girders due to test trucks can also be 

used for examining the effects of multiple vehicles in different lanes of 

the bridge. Under permissible live loads, the bridge is expected to 

respond linear-elastically, and the principle of superposition should 
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apply. The stresses in the girders due to more than one truck at specific 

positions should equal to the sum of the corresponding stresses due to the 

individual trucks at the respective positions. 

Figure 5.22 shows the stresses in the flanges of the girders at the 

middle of span 3 due to simulated HS-25 trucks in both lane 2 and lane 3 

simultaneously (C23), and the sums of stresses due to one HS-25 in lane 3 

and one in lane 2, separately, (C2+C3). The two sets of stresses are 

almost identical. This confirms the applicability of superposition. For 

comparison, the computed stresses, by the three-dimensional computer 

program (BSDI) for the same two trucks in lanes 2 and 3, are also 

superimposed and plotted (3D) in Fig. 5.22. The computed stresses also 

agree very well with the measured (C23) and superimposed-measured (C2+C3) 

values. 

To examine this further, the superposition of trucks in all three 

lanes is shown in Fig. 5.23. The girder flange stresses from measurement 

when three simulated HS-25 trucks travelled side-by-side in lanes 1, 2, 

and 3 (Cl23) are plotted. These values agree very well with the 

corresponding stresses which are the sums of measured stresses due to the 

three trucks individually (Cl+C2+C3). 

stresses (3D) is also quite good. 

The agreement with the computed 

Examination of the measured stresses in other girder cross sections, 

as listed in Tables 5.3, 5.7, 5.8 and 5.9, shows that in all cases, the 

sum C2+C3 is very close to C23, and Cl+C2+C3 to Cl23. Superposition of 

loads and the corresponding stresses is therefore applicable for this 

bridge. 
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For the possible but unlikely condition that a 204K permit truck and 

two HS-25 trucks occupy the three lanes simultaneously, the maximum live 

load stresses in the girders can be estimated by summation. For example, 

the maximum live load stress at cross section 342 would be, from Table 

5.8, P3+C2+Cl = 7.57 + 1.98 + 0.79 = 10.34 ksi (tension) in the bottom 

flange and -1.57 - 0.42 - 0.18 - -2.17 ksi (compression) in the top 

flange. These values are in very good agreement with the 3D computed 

values of 10.81 ksi and -2.19 ksi, respectively.<3 > It should be mentioned 

that the computed values from the 3D computer program are based on trucks 

in the three lanes positioned to produce maximum effect in girder 4 

according to AASHTO design specifications<2,3>, while as shown in Fig. 5. 3, 

the test truck in lane 2 was not as such a position; it was near the south 

edge of the lane instead of the north edge. The agreement between the 

computed and measured results is expected to improve if this difference in 

truck position were eliminated. Table 5.10 provides additional 

comparisons of measured and computed girder stresses. 

5.3.4 Deck Strains 

While the stresses in the steel girders can be converted directly 

from the measured strains, the state of stresses in the concrete bridge 

deck are two-dimensional in nature and cannot be calculated so easily. 

The difference between the elastic moduli of steel and concrete further 

complicates direct comparison of girder and slab stresses. On the other 

hand, the measured longitudinal strains are directly comparable. An 

examination of the longitudinal strains on the deck surface provides an 

insight to the participation of the deck slab in longitudinal bending. 
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I If the concrete deck slab is fully composite with the steel girders, 

I 
and the bridge structure behaves linear-elastically, the strain 

distribution would be linear between the bottom flange of the girder and 

I the top surface of the deck. With the girder flange strains known from 

measurements, the longitudinal strain at deck top can be calculated by 

I means of extrapolation. 

I 
The longitudinal strains at the top surface of the deck slab across 

the middle of span 3 are summarized in Table 5.11. Strains directly above 

I the girders are obtained from extrapolation, while those at the 

longitudinal deck gage locations are directly measured. Results from all 

I test truck crawl runs are presented. 

I 
The strain data from the simulated HS-25 truck in lane 3 (C3), and 

from the simulated 204K permit truck in lane 3 (P3), are plotted in Fig. 

I 5.24. A number of observations can be made from this figure. (1) The 

measured longitudinal strains at deck gage locations are consistent with 

I those obtained from extrapolation, although there appear to be shear lag 

I 
or local effects over the girders. (2) The variation of deck strains for 

the HS-25 and 204K permit trucks are similar. This is consistent with the 

I distribution of girder stresses across the bridge cross section as shown 

in Fig. 5.18. (3) When a truck is close to the edge of the roadway on one 

I side of the bridge, negative bending could occur at the other side of the 

I 
roadway deck, as it is indicated by the strain over girder 1 under test 

truck run C3. 

I Figure 5. 25 shows the deck strain across the same bridge cross 

section at the middle of span 3 due to three different test runs: one HS-

I 25 truck in lane 3 (C3), one in lane 2 (C2), and one each in lane 3 and 
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lane 2 simultaneously (C23). When the truck was in lane 3, near girder 4, 

the strain in the deck decreased continuously from girder 4 to girder 1 

away from the truck. When the truck was in the middle of the roadway, the 

strain distribution was by and large uniform across the deck. When two 

trucks were at the cross section at the same time, the strains generally 

decreased from the north edge (above girder 4) to the south edge (above 

girder 1), similar to the situation when a single simulated truck was in 

lane 3, but the magnitudes were higher. Examination of the tabulated 

values show that the principle of superposition applied very well to the 

concrete deck strains, as with the steel girder strains. 

The effect of lateral position of trucks can be further deduced from 

Fig. 5.26, which shows the strains when three trucks were on the bridge 

(Cl23). While one truck was near girder 4 and produced strains decreasing 

from girder 4 towards girder 1, the truck in lane 1 between girders 1 and 

2 did the opposite, and the truck in lane 2 induced nearly equal strains 

above all girders. The result is an approximately uniform strain 

distribution across the bridge deck, as indicated in the figure by the 

line designated Cl23. Summation of the deck strains from separate runs by 

three simulated trucks (Cl+C2+C3) shows essentially the same variation. 

The results again confirm the applicability of load and strain 

superposition. 

No computed deck stress or strain was provided for comparison with 

the measured values. From the fact that good agreement exists between the 

computed and measured stresses in the plate girders, it is anticipated 

good agreement of stresses or strains would also exist in the deck. The 

consistency of the measured and extrapolated deck strain values appears to 
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support this expectation. 

5.4 Stresses and Deflection of Web Panels 

5.4.1 Web Deflection 

A. Initial Out-of-Flatness 

While girder stresses and the vertical deflections are routinely 

evaluated, the stresses and lateral deflections of girder webs are rarely 

computed, on account of the unknown initial lateral deflection or out-of

flatness of the web plates due to fabrication and the weight of the 

bridge. Qualitatively, it is well known that larger initial lateral 

deflections will result in larger lateral deflections under live loads and 

possible fatigue damage. <B> Because of the different geometry of the 

girder web panels and the different condition to which some panels were 

subjected during construction of the bridge, it was expected that the long 

panels of web in the end spans of the exterior girders would have the 

largest initial deflections. (See Section 4.2) 

After the completion of the bridge deck, and prior to load testing 

using test trucks, it was found in the summer of 1988 that the web panels 

of an interior girder, girder 3, at the middle of span 4 had large, 

noticeable lateral deflection. Consequently, measurement of the initial 

deflections were made at two web panels in girder 3, panels 432Pl and 

432P2 (See Fig. 2.1lb). The results are plotted in Fig. 5.27. These 

adjacent panels have lateral deflections in opposite direction, with the 

maximum out-of-flatness at about the midpanel. 

Table 5. 12 summarized all measured initial deflections of web 

panels. The interior girder web panels 432Pl and 432P2 have the largest 
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lateral deflections, about 1.1 in. in magnitude, which is about twice the 

web thickness. Two web panels in an exterior girder which have similar 

geometrical conditions but were subjected to lateral forces from the deck 

form struts during construction, both deflected inward, with a maximum 

deflection of about half an inch, or about the thickness of the web. The 

initial deflections of web panels 432Pl and 432P2 were about twice as 

large. Visual examination of other web panels of the interior girders in 

spans 3 and 4 showed that all sustained noticeable initial deflections, 

though not as severely as panels 432Pl and 432P2. The deflections in 

adjacent panels are mostly in opposite directions, similar to the 

situation of panels 432Pl and 432P2. This type of deflection pattern 

suggests a correlation with the compressive flexural stresses in the 

girder. Further discussion will be made later. 

B. Web Deflection due to Test Truck Loads 

The lateral deflection, or movement, of the web plate in panel 432Pl 

was measured using a "clip gage" during the test trucks runs. The gage is 

a spring-mounted device with electrical resistance strain gages, which can 

be continuously monitored. The recorded strain-time variation during the 

test truck runs· is converted to deflection- time traces for evaluation. 

Figure 5.28 shows such a trace (the fifth trace) for a test truck crawl 

run in Lane 3 (C3). The pattern of the deflection-time trace remains the 

same regardless of the lane position of the test trucks, and is analogous 

to the pattern of influence line for bending moment in that panel. This 

analogy confirms the suspicion that the relatively large initial 

deflection was related to the dead load moments in the girders. 
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I Table 5.13 shows the total lateral movement (sum of deflections in 

I 
opposite directions) of panel 432Pl due to each test truck run, after the 

corrections to account for the resistance of strain gage cables. The 

I largest total movement was 0.21 in., occurring during test truck run Cl23 

when three simulated HS25 trucks travelled side by side in the three 

I lanes. The largest deflection in one direction was +0.17 in. Adding this 

I 
to the initial deflection of 1.13 in., the largest out-of-flatness of the 

web plate was 1. 30 in. When a single test truck was traversing the 

I bridges, the total lateral movement of the web was 0.11 in. or less, less 

than one-tenth of the initial deflection. Such a magnitude of lateral 

I movement of the web was not detectable by eye during the test truck runs. 

I 5.4.2 Web Plate Bending Stresses Under Test Truck Loads 

I Lateral deflection of web plates generates web (out-of-plane) 

bending stresses, particularly bending perpendicular to the plate boundary 

I in the flexural compression zone of the girder. Strain gages in back-to-

back pairs were mounted on the web, perpendicular to the top flange of 

I girders in panels 432Pl and 432P2, and on the inside surface of panel 242, 

I 
as shown in Fig. 2.lla. (Gage 242WN2 on the outside surface of exterior 

girder 4 was added later when a vehicle for inspection, snooper, was made 

I available). 

Examples of the strain- time traces from some of these web plate 

I gages during the test truck runs are shown in Figs. 5.28 and 5.29. Figure 

I 
5.28 from test run C3 includes the strain variations at the two strain 

gages on the inside surface of web in pane 242, the clip gage for web 

deflection in panel 432 (as described in Section 5. 4 .1), and several 
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reference strain gages in spans 2 and 3. The strain traces of gages 

242WS1 and 242WS2 both show tension on the inside surface, implying that 

the web was deflecting outward. The spikes in the traces correspond to 

live load compression generated by the axles of the test trucks almost 

directly over the gages. The general similarity between the shape of 

trace of these two gages and that of gages 222B and 222TS on the girder 

flanges indicates that the web plate bending is directly associated with 

the girder bending. 

Figure 5.29 shows the corresponding strain-time traces of the three 

strain gage pairs in panel 432Pl and 432P2, from test run C3. For each 

pair, the back-to-back gages showed stresses of about the same magnitude 

but of opposite sign. For gages 432WS1 and 432WN1, the condition of 

tension on the south (inner) face and compression on the north (outer) 

indicates that the web plate was deflecting north (outward), which is in 

agreement with the deflection pattern from measurement (See Fig. 5.27). 

The live load stresses at the web gages from the test truck runs are 

summarized in Table 5.14. The highest magnitude was 4.0 ksi in a panel of 

the interior girder and 5.3 ksi in a panel of the exterior girder, both 

occurred when three simulated HS25 trucks were traveling side by side (run 

Cl23). These magnitudes were higher than the primary flexural bending 

stresses in the respective top flange of the girders. For each pair of 

gages, during any test truck run, the recorded stresses were always of 

opposite sign, and of about the same magnitude, indicating out-of-plane 

bending of the web plate. In other words, the web plates always deflect 

laterally when the bridge was under live load. It is, therefore, prudent 

to consider web plate bending stresses when the initial lateral deflection 
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6. LIVE LOAD STRESSES DUE TO REGULAR TRAFFIC 

6.1 Live Load Stresses in Girder Flanges 

6.1.1 Stress Variations in Girders 

After the bridge was opened to regular traffic late in 1989, strain 

variations at some locations due to truck loads were measured in June, 

August and September of 1990. The purpose of these measurements was to 

detect noticeable changes of behavior of the bridge and to obtain stresses 

for assessing the fatigue life of certain structural details which are 

prone to fatigue cracking under live load stresses. Because live load 

stresses and the behavior of the bridge have already been examined using 

the results from test truck runs, comparison of live load stresses from 

regular truck traffic with those from test trucks would provide indication 

of noticeable behavioral changes. Additional strain gages were mounted on 

web panels and cross diaphragms for fatigue life assessment. These gages 

are shown in Fig. 2.11 but not included in the six groups of Table 5.2. 

The first set of measurements included practically all strain gages 

on the bridge which had shown measurable strains, except the gages on the 

concrete deck, which had to be removed before the bridge was opened to 

traffic. Examination of the stress magnitudes and distribution of 

stresses from this set confirmed that there was no change in the behavior 

of the bridge between the test truck runs and trucks of regular traffic. 

During two subsequent sets of measurements, attention was directed to the 

web and cross diaphragm strain gages for fatigue life assessment. 

That the bridge under regular truck traffic behaved as it did under 

the test truck loads, can be concluded upon comparison of the strain-time 

traces in Figs. 6.1 to 6. 6 with those in Figs. 5. 4 to 5. 7 and 5. 9. 
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Figures 6.1 to 6.6 show the strain-time traces of strain gages on sample 

girder flanges and web plates. Figures 6.1 to 6.3 show responses to a 

regular 18-wheel semi-trailer (3S2) in Lane 2 of the bridge deck (R2), 

travelling at about 60 mph, followed by two similar trucks 17 and 24 

seconds later in the same lane and at about the same speed. The first 

truck generated highest stresses in the bridge components. The shapes of 

the strain-time traces of gages 332B and 342B, in Fig. 6.1 due to the 

first truck, for example, are the same as those shown in Fig. 5.9 from 

test truck run S2, which is due to a simulated HS25 truck traveling in 

lane 2 at about 55 mph. The magnitudes of stress ranges, however, are 

different, being lower for this regular truck of unknown weight and 

configuration (2.24 ksi and 1.95 ksi) than for the simulated HS25 test 

truck (4.81 ksi and 2.57 ksi, respectively as listed in Table 5.6). 

The magnitudes of live load stress ranges at some locations due to 

the first truck of Figs. 6.1 to 6. 3 are listed in Table 6 .1. The 

magnitudes of stress ranges are not high. For a truck in lane 2, girders 

2 and 3 are expected to be stressed slightly more highly than girders 1 

and 4. Gages 322B and 332B indeed recorded slightly higher stresses than 

gages 312B and 342B. It is also important to note that all four gages 

recorded stress ranges less than 3 ksi. 

Similarly, the stress ranges at all locations due to two regular 

trucks travelling side by side in lane 2 and lane 3 (R23) are lower than 

those due to the test trucks in the same lanes (S23 or C23). Figures 6.4 

to 6.6 show the strain time traces of the same gages as those in Figs. 6.1 

to 6.3. The shape of strain-time records of gages 332B and 342B, for 

example, are analogous to those corresponding ones in Fig. 5.6 for two 
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trucks crawling side by side (C23). The stress ranges from measurement at 

some gages of Figs. 6.4 to 6.6 are also listed in Table 6.1. Again, the 

magnitude of stress ranges due to regular trucks are lower than those due 

to the simulated HS25 test trucks at crawl speed, (see Table 5.8 for C23). 

It is interesting to note that the distribution of stresses among 

the four girders under two regular 352 trucks (R23) was similar to that 

under two simulated HS-25 trucks in lanes 2 and 3 (test truck run C23). 

Considering that the regular truck responses included dynamic (impact) 

effect, comparison of the stress values listed in Tables 6.1 and 5. 8 

suggests that the effects of these regular 352 trucks is approximately 

that of a simulated HS-20 vehicle. 

Further comparison and confirmation that there was no change of 

bridge behavior can be made by examining the shape or pattern of strain

time traces at various points along girders and by evaluating the 

distribution of stresses across bridge cross sections. For example, the 

variation of shape of strain-time traces for gage 340B, 341B, and 342B in 

Figs. 6.1 to 6.6 due to regular trucks (R2 and R23) are identical to those 

of S2 and S23 (or C2 and C23) due to the test trucks (see Appendix B). 

This condition indicates that the behavior of the bridge under truck 

traffic is similar to that under the test trucks. 

change in the structural characteristics. 

There had been no 

Figure 6.7 summarizes the stress ranges in the four girders at the 

middle of span 3, during the assage of the distribution of stresses across 

the first truck of Fig. 6.1 to 6. 3 (R2). For comparison, the stresses 

caused by a simulated HS 25 truck in lane 2 (C2) are also shown. The 

qualitative similarity of the two distributions among the four girders is 
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evident. Additional comparison is given in Fig. 6.8, which shows the 

stress distribution at the middle of span 3 for the test truck run C23 and 

the regular truck record (R23) from Figs. 6.4 to 6.6. Again the 

distribution of stresses agrees well. 

All these comparisons confirm that the bridge behaved the same under 

the test truck loads and individual regular truck traffic load. The 

response of the bridge under continuous truck traffic with multiple 

presence of closely spaced trucks on the bridge is examined next. 

6.1.2 Stresses due to Multiple Presence of Trucks 

Each of the twin bridges has three traffic lanes. During the three 

periods of field measurement of live load stresses, it was observed that 

the bridge traffic was moderately heavy in some intervals of time. 

Because of the rightward curve of the roadway from the west approach 

around a stone wall, the eastbound truck traffic often travelled in the 

middle lane (lane 2) instead of the right lane (lane 1). Figures 6.1 to 

6.3 (R2) show that, for that particular set of strain records, three 3S2 

trucks were all in lane 2, travelling at about 60 mph. Figures 6.4 to 6.6 

(R23) show two trucks side by side in lanes 2 and 3, also travelling at 

about 60 mph. It was observed that often high speed trucks travelled in 

lane 3 to pass other trucks in lane 2. This would cause higher magnitude 

of stresses in girders 3 and 4 below lane 2 and lane 3. Therefore, the 

examination of stresses at gages on girders 3 and 4 is appropriate. 

The three trucks represented in Figs. 6.1 to 6.3, did not induce 

overlapping of individual strain- time traces. With a safe distance 

between trucks (about 500 and 600ft.) respectively, each truck caused an 

- 63 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

excursion of the strain- time trace independent of the preceding or 

following vehicle. Only when two or more trucks following each other at 

very close distances would the effects of strain variation overlap. 

Figures 6.9 and 6.10 are strain-time records from a number of strain gages 

while four trucks were travelling in tandem, at about 60 mph. The second, 

third and fourth trucks were about 4, 7 and 10 second behind the first, 

corresponding to a headway of about 350 ft., 260 ft., and 260 ft. between 

successive trucks. These distances are more than the length of the bridge 

spans, and there was almost no effect of any truck on the induced stresses 

of another truck. 

When trucks travelled in different lanes, either side by side or 

almost side by side, their effects on the stresses at various locations of 

the bridge would overlap and superposition of stresses occurred. Figures 

6.4 to 6.6 show the result of two trucks side by side, the effects are 

analogous to those of a single vehicle of heavier weight. This condition 

of stress superposition has been examined and discussed in Chapter 5 with 

reference to test truck runs. It suffices to mention here that random 

examination of strain variation on site during the strain measurement 

periods confirmed that two trucks side-by-side generated higher stresses 

than when the two trucks were staggered. Figures 6.11 and 6.12 show 

another set of strain-time traces caused by a series of trucks with two 

3S2 trucks side-by-side among them. The shape of the strain-time traces 

from these two trucks is practically identical to that of a single truck, 

only the magnitudes of stresses differ. 

From these examinations, it is clear that the bridge structure 

behaved linearly under normal truck traffic. It is extremely unlikely 
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that trucks following each other would be close enough to cause 

overlapping stress effects. When several vehicles travel side by side in 

different lanes, the effects can be estimated by simple superposition, as 

reported in Chapter 5. 

6.2 Stresses at Web Boundaries 

It has been reported earlier, in Section 5.4.2, that web plates with 

initial out-of-flatness deflected laterally under test truck loads and 

generated plate bending stresses perpendicular to the web boundary. Under 

random truck load of regular traffic, it was expected that web plate 

bending stresses would similarly occur. These stresses were measured at 

several selected locations. 

Figure 6.12 includes the strain-time traces of three pairs of strain 

gages on the webs of the girder panels with the largest initial lateral 

deflection (see Table 5.12 and Fig. 2.llb). These strains (stresses) were 

induced by two trucks side-by-side in lanes 2 and 3 (R23). The stresses 

recorded by each pair of back to back strain gages, for example, 432WN2 

and 432WS3, were always opposite in sign, indicating out-of-plane bending. 

The web plate deflected toward the side of compressive bending stress. 

The magnitude of the stress ranges are listed in Table 6.2, in the column 

with reference to Fig. 6.12. The magnitude of stresses are much smaller 

than those generated by two simulated HS 25 trucks travelling in the same 

lanes, (S23). These later magnitudes are also listed in Table 6.2 for 

comparison. 

Because only a limited number of strain gages could be monitored at 

any one time while trucks of regular traffic were random and not repeated, 
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it-was not possible to examine the stresses at all web plate gages due to 

the same truck. Table 6.2 lists several sets of measured live load stress 

ranges at web plate gages. The corresponding strain- time traces are 

included in Figs. 6.3, 6.6, 6.11, 6.13 and 6.14. For each of these cases, 

the lane position of the truck is indicated if it is known. The web plate 

bending stresses due to trucks of regular traffic, as listed in Table 6.2, 

are consistent with those due to the test trucks, summarized in Table 

5.14. 

From the results in Table 5.14 and 6.2, it can be deduced that, for 

web plates of interior girders, truck loads always increase the lateral 

deflection of the web. Depending on the direction of the initial lateral 

deflection, the web plate bending stress at the top edge was always 

compressive on the surface in the direction of deflection and tensile on 

the opposite surface of the web. For the web plates of exterior girders, 

however, the recorded web plate bending stresses were always in tension on 

the inside surface of the web, signifying that the web plate always 

deflected outward when the bridge was under truck loads. This direction 

of web deflection was opposite to the direction of the initial lateral 

deflection of the webs of the exterior girders. The inclined struts of 

the formwork for the deck overhang (Fig. 2.5) have caused the initial 

lateral deflection to be inward. 

Regardless of the direction of web deflection under truck loads, the 

magnitudes of web plate bending stresses were always less than those 

generated by the test trucks, as shown in Table 6.2. The assessment of 

potential for fatigue cracking at web plate boundary will be made later in 

Chapter 7. 
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6.3 Stresses at Cross Diaphragms 

I The stresses in cross diaphragm members differ in sign and magnitude 

as trucks traveled in different lateral positions (or lane) across the 

I bridge deck. This result has been presented in Section 5.2.2 with the 

I 
help of Table 5.5 which summarizes the cross diaphragm member stresses 

under test truck loads. It has also been pointed out that the diaphragm 

I member stresses were not necessarily higher when simulated HS trucks were 

present in more than one lane at a bridge cross section. During the 

I periods when stresses due to regular traffic were monitored, the position 

I 
and the weight of individual trucks were not known, yet similar 

differences of signs of stresses in diaphragm members were observed again 

and again. This occurred not only to a pair of top and bottom members on 

one side of a girder but also to top or bottom members on opposite sides 

of a girder. Figures 6.13 to 6.18 include examples of strain-time traces 

I 
of strain gages on cross diaphragm members and on girder webs at the 

connection of these members to the girders. 

I The tensile and compressive stresses in the members of the cross 

diaphragms signify corresponding forces in these members. These forces 

I push or pull the diaphragm connection plates (or stiffeners) which connect 

I 
the diaphragm members to the girder web. The forces act on the plate 

girder and may bend the girder web at the cope or gap at the web-to-flange 

I weld. Fatigue cracks have been observed to develop in these gaps of 

existing bridges where the connection plates were not positively attached 

I to the flanges. <9 •10> In the I-78 bridge over the Delaware River, the 

I 
diaphragm connection plates are welded to the flanges. The plate bending 

stresses in the web at the cope were not expected to be high, but the 
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large distance between girders (14 ft-3 in.) and the relatively thin webs 

caused some concern. This was amplified by the detection of large lateral 

deflections of the web panels. For this reason, the strain gages on the 

web at the cross diaphragms were added and the strain measurements were 

made. 

The strain-time traces in Figs. 6.13 to 6.18 include examples of the 

maximum responses of the diaphragm member strain gages to trucks of 

regular traffic during the period of monitoring. The maximum stress 

valuesare listed in Table 6. 3. The web plate bending stresses at the 

connections plate were found to be higher than those in web panels at 

midspan of girders (Table 6.2). The maximum magnitude was about 6.4 ksi 

in range of stress, being approximately the same as the flexural stresses 

in the flanges of the girders (Table 6.1). Further examination of these 

stresses with regard to fatigue will be made later. 

6.4 Stresses due to Vibration 

The strain- time traces of cross diaphragm members due to regular 

traffic, as shown in Figs. 6.13 to 6.18, are similar in shape to those 

shown in Fig. 5.8 from a test truck traveling at crawl speed. Although 

the regular traffic vehicles were traveling at high speed and were 

expected t induce significant impact effect, there was no vibrational 

response of the cross diaphragm members. In contrast, the girder flange 

gages showed noticeable vibrational response, as shown in Fig. 5.9. 

During test truck runs at high speed of 50-55 mph, the bridge 

girders were found to vibrate at about 4Hz when one simulated HS truck 

came onto the bridge. The vibration continued even when the truck got to 
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the other end of the bridge, lasting for more than twenty seconds before 

being damped out. This phenomenon was again observed under regular 

traffic when one truck came onto the bridge traveling at a speed of about 

60 mph. Example of strain-time traces with such vibrational effects in 

the girder flanges are shown in Figs. 6.1 to 6. 3 and 6.14. When two 

trucks traveled side-by-side, it was equivalent to a single truck and the 

vibration was similarly observed. Fig. 6.4 to 6.6 show examples of strain 

vibration in this situation. 

When there were subsequent trucks following the first one which 

induced the bridge vibration, the dynamic effect of the subsequent trucks 

interrupted or changed the vibrational response of the bridge. This is 

depicted by the flange strain records of Figs. 6.1 to 6.3, 6.9 to 6.11, 

and 6.16 to 6.17. The interruption could by and large eliminate the 

vibration, as was the case of Figs. 6.1 to 6.3; could superimpose and 

extend the vibration, as shown by the strain traces of Figs. 6.9 to 6.11; 

or induce a new vibration, as indicated by the strains of gage 342B in 

Figs. 6.16 and 6.17. In all this situations, the important phenomenon is 

that the bridge girders vibrated, and induced vibrational cyclic stress 

variations (stress ranges) in the bridge girders. 

Vibration of the girders led to the lateral vibration of the girder 

webs in web panels. This can be deduced from the strain variation in the 

two web plate gages, 242WN1 and 242WS1 in Fig. 6.11, the three pairs of 

web gages in Fig. 6.12, and gages 242 WSl, 242WS2 and 242WN2 in Fig. 6.14. 

The magnitudes of the cyclic stresses were not high, being less than 0.5 

ksi. In terms of the total live load stress range due to a truck, this is 

about 20 to 25 per cent, about the same as that for the girder flanges. 
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I Examination of the strain variation at the strain gages on the web at the 

I cross diaphragm connection plate, such as those included in Figs. 6.13 to 

6.16, reveals that those gages too were influenced by the vibration, but 

I the effect was only minor. 

I 
The vibration of multigirder bridges due to random traffic loads is 

a fairly complicated behavioral phenomenon; the analysis of the lateral 

I vibration of the web plates is even more complex. Although monitoring of 

flexural vibration and girder stresses using strain gages could be 

I conducted with effort, <11 • 12 > it was beyond the scope of the intended study 

I 
of this report. What must be kept in mind is that the bridge does vibrate 

due to truck traffic and, as a consequence, is subjected to large number 

I of cyclic stresses of relatively low magnitude. 

I 
I 
I 
I 
I 
I 
I 
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7.-

7.1 

7 .1.1 

DISCUSSIONS 

Assessment of Fatigue Life of Girders 

Web Panels 

One of the objectives of this study is to evaluate the fatigue 

life of girder web panels. The fatigue strength of a structural member is 

dictated by the strength of its details, which are represented by a set of 

curves correlating stress ranges and number of expected stress cycles (S-N 

curves). For the lateral or out-of-plane bending of web plates, the 

fatigue strength is currently represented by the Category C curve of the 

AASHTO specifications for bridge design. CZ, 13 > This curve is a straight 

line in the stress range versus cycles diagram of logarithmic scale, as 

shown in Fig. 7.1. The curve is applicable for stress cycles of constant 

amplitude. However, at any structural detail in a bridge, the stress 

ranges induced by the vehicular traffic of trucks and cars, are not of 

constant amplitude. Based on current knowledge, if the magnitude of all 

stress cycles is lower than the constant amplitude fatigue limit (CAFL), 

which is 10 ksi for Category C, no fatigue damage would be expected of 

this structural detail. C9, 13> 

As has been mentioned earlier in this report, large initial lateral 

deflections of the web plate result in higher web plate bending stresses. 

The measurement of these stresses in a few selected web panels with 

relatively large initial deflections yields stress ranges of about 1 to 2 

ksi for most of the trucks, up to about 2-4 ksi occasionally, but always 

lower than 10 ksi, the constant amplitude fatigue limit. (See Section 

6.2) Consequently, based on these results, no fatigue cracking would be 

expected of the web panels of the girders. 
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Two aspects concerning stress magnitudes and the vibration of the 

web plates need to be examined. Because the measurement of web plate 

bending stresses was carried out only for limited periods of time, it is 

uncertain whether the occurrence of the highest possible live load stress 

range has been captured. This is a question of traffic characteristics 

and probability and cannot be definitively answered without an extensive 

traffic survey. More important is the question of stress range magnitude. 

Examination of Table 5.14 reveals that the highest stress range recorded, 

due to three simulated HS25 trucks crawling side by side in the three 

lanes, was 5. 3 ksi in an exterior girder panel, and 4. 0 ksi in the 

interior girder panel 432 which exhibited the largest initial lateral 

deflection. 

During the periods of measurement of regular traffic load stresses, 

it was not known whether these heavy trucks ever occurred abreast in all 

three lanes. It was not known what vehicle configuration and position 

caused the largest recorded web bending stress of 3.7 ksi at gage 242WN2 

(on an exterior girder). Nevertheless, as illustrated in Chapter 6, the 

bridge behaved linear-elastically under traffic load, as under test truck 

runs. An estimate of the maximum range of the stress cycle can be 

obtained according to the principle of superposition. For the condition 

of three HS- 25 trucks traveling abreast, and applying a magnification 

factor of 1. 2 to reflect the dynamic effect, the maximum web bending 

stress range would be 5.3 x 1.2 = 6.4 ksi. For the improbable condition 

of an HS-25 in lane 3 overtaking a slow-moving 204-k permit truck, the 

corresponding stress range would be 3.7 x 1.2 + 1.6, or 6.0 ksi. These 

estimated stress ranges would still be considerably lower than the 
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constant amplitude fatigue limit of 10 ksi. As was previously pointed 

out, regardless of the large number of cycles·of low-amplitude stresses 

due to the effect of bridge vibration, no fatigue cracking along the web 

to top flange boundary is expected because the largest stress range live 

load is lower than the fatigue limit. 

It should be pointed out that the relatively large live load out-of

plane bending stresses induced in the web plates of the interior girders 

are the results of relatively large initial lateral deflection of the web 

plates. More discussion on the initial deflection will be made in Section 

7.3 

7.1.2 Diaphragm Connections 

The diaphragm action of the cross members induce push and pull 

between the diaphragm connection plates and the web plate, resulting in 

web plate bending stresses in the region. Many fatigue cracks have been 

found at this structural detail in existing bridges when the diaphragm 

connection plates are not positively connected to the girder flange 

(9,10,14) In the I-78 bridge under study, the diaphragm connection plates 

are welded to both the top and the bottom flanges at every cross 

diaphragm. This arrangement permits the transfer of forces from the cross 

diaphragm member through the connection plates to the flanges as well as 

to the web, and alleviates the development of high web plate bending 

stresses. 

However, possibly as a result of the large spacing between girders 

and the relatively thin web plates, the measured web plate bending 

stresses at the copes of diaphragm connection plates of this bridge were 
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not low. They are actually higher than those at the middle of web panels 

(See Section 6.3). The highest measured web plate bending stress at 

diaphragm connection plates was 6.4 ksi in the web of an exterior girder. 

The type, weight, and position of the truck which produced this stress are 

unknown. By the examination of concurrent stresses at other strain gages, 

it is estimated that the truck was in Lane 2, traveled at about 60 mph. 

Whether this magnitude of 6.4 ksi represents the highest possible 

stress under regular traffic is uncertain. Examination of Table 5. 5 

reveals that trucks in Lane 2 generated highest cross diaphragm member 

forces at exterior girders. These forces in turn produce the highest web 

plate bending stresses at the connection plates. Assuming that this 

vehicle was equivalent to an HS-20 truck, and that HS-25 trucks will be 

permitted on the bridge, the highest magnitude of web plate bending stress 

may be extrapolated to be 6.4 x (25/20) ~ 8.0 ksi. This is less than the 

constant amplitude fatigue limit of 10 ksi. Therefore, no fatigue 

cracking would be expected of the web at diaphragm connection plates. 

7.1.3 Girder Flanges 

The flanges of girders contain both bolted field splices at about 

quarter spans, and butt-welded joints with transition of width and 

thickness of the flange plates. In the middle half of each span, the 

girder flanges are single prismatic plates with continuous fillet weld 

connecting the plates to the webs. The fatigue strength of the bolted 

splices and the continuously welded flanges is that of category B, with a 

constant amplitude fatigue limit (CAFL) of 16 ksi. The butt-welded joints 

have a fatigue strength of category C and CAFL of 10 ksi. 
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The butt-welded joints of the bottom flanges are in the negative 

moment region near the piers and are subjected to compressive live load 

stresses; those of the top flanges are pnly subjected to very low tensile 

stresses (always below 2ksi) because of the composite action between the 

steel girders and the concrete deck. (See Table 5.9 for the stresses from 

measurement). Therefore, there should be no expected fatigue cracking at 

the butt-welded joints. 

The highest live load stresses due to trucks of regular traffic was 

measured to be 6.2 ksi in an exterior girder at the middle of span 3 when 

two trucks traveled side-by-side in lanes 2 and 3. The stresses in the 

bottom flanges of girders in Span 4 was slightly lower. If these trucks 

were equivalent HS 20 trucks, the expected live load stress due to two HS 

25 trucks would be 6.2 x (25/20) = 7.8 ksi. This is less than that due to 

the superimposing of test truck speed runs S2 and S3, 2.57 + 7.27 = 9.84 

ksi by Table 5.6, or that from the incorporation of dynamic effects to the 

crawl run Cl23 of three simulated HS 25 trucks, 8. 23 x 1. 20 9.88 ksi by 

Table 5.8. If a 204 kip permit truck is traveling in Lane 2 and a HS 25 

speeds by in Lane 3, the combined flange stress would be 2.78 + 5.62 x 

1.20 - 9.53 ksi from Table 5.8. All these live load stresses are well 

below the CAFL of 16 ksi for the flanges. Therefore, there should be no 

danger of fatigue cracking at the flange to web welds of the girders. 

No doubt, the consideration of fatigue strength of the flanges has 

been incorporated in the process of designing the bridge. The above 

results from measurement and interpretation confirm the adequacy of the 

girder flanges with respect to fatigue strength. With the flanges, web 

panels, and diaphragms all having sufficient fatigue strength under HS 25 
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loading, it can be stated with confidence that the bridge is not expected 

to develop fatigue crack in its components. As long as the bridge is 

adequately maintained, the girders should have indefinite life with 

respect to fatigue. 

7.2 Transverse Cracks in Concrete Deck 

Whereas the bridge structure is assessed to be satisfactory in 

fatigue strengths under traffic load, cracks were detected in the concrete 

deck before the bridge was opened to traffic. It was found that many 

transverse cracks existed in the deck across its widths and at some 

locations continued up the cast-in-place parapet. These cracks were at 

the middle of spans in the positive moment region much more than in the 

negative moment region over the piers. The width of some cracks was more 

than 0.05 in. on the deck surface. Under the bridge deck, where stay-in

place metal forms prevent visual examination of the lower surface of the 

concrete slab, corrosion of the metal form was noticed at several 

locations, indicating that water had seeped through the deck at these 

places. This was detected before the monitoring of stresses due to 

regular traffic. Visual observation of the exterior girders at that time 

revealed discoloration of the bottom flange at some places along the 

bridge. These "white" spots are directly under the overhang of the 

concrete deck where there is no stay-in-place metal form and water can 

drip onto the bottom flange. Transverse cracks in the deck could be found 

above the discolored spots. 

spans 2, 4, and 6. 

There appeared to be more white spots in 

The larger cracks have been patched and no new transverse cracks 
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have been reported. Continued monitoring of the discoloration of the 

bottom flange of exterior girders and corrosion of stay- in-place deck 

forms appear advisable, together with the detection of any additional 

cracking of the deck slab. On he other hand, a preliminary examination of 

the genesis of these cracks would be useful. 

As the transverse cracking of the deck slab was not originally 

included in the tasks of this study, there was no comprehensive 

surveillance of the deck slab at the very early stage when these cracks 

developed. Nevertheless, with the small amount of information available, 

it is possible to suggest two plausible causes for these cracks. 

It is well known that the hydration process of cement generates 

heat, and causes the temperature of fresh concrete to rise. The amount of 

heat generated, and the temperature rise, depend upon many parameters, 

including the type of cement, the composition of concrete: The curing 

procedure, the ambient environment, and the dimensions of the member. For 

highway bridge deck slabs, it is not unusual for a 50°F temperature 

increase to occur in the initial stage when concrete is still plastic. 

Subsequent cooling to the ambient temperature would cause hardened 

concrete to contract, and cracking could occur if the contraction is 

prevented from taking place. In the case of the bridge deck, longitudinal 

restraint is provided by the stud connectors on the top flange of the 

steel girders. The thermal contraction of concrete corresponding to a 50°F 

temperature drop would be approximate 270 microinches per inch. Even if 

a part of this contraction is relieved by the deformation of steel, the 

concrete tensile strength (particularly at the very early age) can be 

easily reached and cracks would develop. It is noted that in the 
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transverse direction, the steel structure is far more flexible, hence 

longitudinal cracks do not form on the concrete deck. 

The sequential casting of the concrete deck in segments may also be 

inducive to the transverse cracking of concrete deck. As indicated in 

Fig. 2.4, the continuous deck was cast in segments. The cross sections at 

the middle of spans 4 and 3 received the segments 1 and 2W, respectively 

in day 1. As other segments were subsequently cast on portions of the 

girders in other spans, segments 1 and 2W hardened gradually and the 

middle of spans 4 and 3 gradually developed into composite girders. When 

deck segment 2E was cast in span 5 on day 5, strains were in the concrete 

of segment 1 and 2W. Assuming that the deck concrete at those locations 

had hardened sufficiently to carry strain and that the strain variation 

was linear throughout the depths of the girder cross sections, the 

magnitude of the strains at the top fiber of the concrete deck could be 

estimated by extrapolating from those in the girder flanges. These 

estimated top fiber strains of the concrete deck at locations 432 and 332 

are listed in Tables 7. 1 and 7. 2. Also listed in the table are the 

measured strains in the girder flanges and the changes of strains from day 

1 when the deck concrete had been placed, but not yet set. The assumption 

is that there was no stress-related strain in the concrete deck at 432 and 

332 before casting of segment 2E on day 5. 

The estimated strain in the top fiber of the deck at 332 in span 3 

was compressive on day 5. This is consistent with the theoretical 

condition that application of loads in one span here (span 5) of a 

continuous beam induces positive bending two spans away (in span 3), hence 

compressive strain in the top fiber. However, cast 2E in span 5 also 
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induced compressive strain in the top fiber of the deck at location 432 in 

span 4. In fact, the entire cross section at 432 was subjected to 

compressive strain due to the casting of segment 2E. This state of strain 

included the combined effects of weight of segment 2E, construction loads 

on the bridge, bearing conditions at piers 3 and 4 at the ends of span 4 

as well as at all supports, concrete shrinkage and change of temperature 

due to hydration, and all other unknown causes. Many of these effects 

cannot be adequately estimated. Therefore, evaluation of the deck strains 

during construction of the bridge can only be reasonably made through the 

use of measured strains in the girder flanges. 

Table 7.1 shows that the estimated strain at the top fiber of the 

deck at 432 was -233 micro in. per in. For the next three days, days 6, 

7 and 8, the top fiber was subjected to reduction of strains due to the 

casting of other segments (3E, 3W, 4E and 4W) of the concrete deck. The 

magnitude of strain reduced from -233.1 to -227.5 to -169.5 to -149.8 

micro in. per in., with a total of 83.3 micro in. per in. Whether this 

magnitude of strain reduction in three days in the lightly compressed and 

slowly hardening concrete would produce the transverse cracks at location 

432, is not certain. No information is available in literature providing 

similar conditions for judgment. The suspicion is that hair cracks might 

develop, and these hair cracks would grow wider as hardening and shrinkage 

of concrete continued. Between days 13 and 15, the magnitude of strain 

again reduced, from -271.3 to -205.5 to -186.8 micro in. per in. for a 

total of 84.5 micro in. per in. This was about the same amount as that 

between days 5 to 8. It is suspected that additional transverse cracks in 

the deck formed in these later days. 
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I The estimated strains at the top fiber of concrete at location on 

I 332 reduced from -132.6 to -70.7 between days 6 and 9, as shown in Table 

7.2. The total reduction of 61.9 micro in. per in. was less than that at 

I location 432. Thereafter, the top fiber strains became continuously more 

I 
compressive. This is consistent with the observation that there were 

fewer transverse cracks in the deck in this region than in span number 

I 4. 

At cross section 232 in span 2, the concrete deck segment 4W 

I directly over this portion of the steel girders was cast on day 8. 

I 
Assuming that the concrete hardened sufficiently to carry stresses on day 

9, the estimated strains at the top of the concrete deck have been 

I computed and are listed in Table 7.3. From these estimated strain values 

there was a minor reduction of compressive strain between days 10 and 13, 

I and between days 14 and 15. Between days 16 and 22, compressive strain 

was continuously decreasing, changing from -125.5 to +97.0 micro in. per 

I in., for a total of 222.5 micro in. per in. This magnitude would no doubt 

I 
induce cracking of the deck in span 2. 

In summary, two contributing factors are suggested for the 

I development of transverse cracks in the concrete deck slab. Other factors 

may include the change of thermal gradient of the composite girders, and 

I the seasonal changes of ambient temperature. An understanding of the true 

I 
cause of these cracks, and the control of them, can be achieved through 

future research. At the current time, one such study is being conducted 

I under the auspices of the National Cooperative Highway Research Program, 

as Project 12-37. 

I 
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7.3 Flan~e Stability and Web Deflection Durin~ Construction 

7.3.1 Web Deflection 

From the results of measurements presented in Section 4.2, 5.4 

and 6.2, the following phenomena and observations can be summarized. 

(1) Web panels had initial out-of-flatness or lateral deflection of 

the web plates when the girders were erected. 

(2) Adding of concrete deck on top of the plate girders increased 

the magnitude of lateral deflection in web panels of both interior and 

exterior girders. This increase of lateral deflection is sometimes 

referred to as "buckling". 

(3) The inclined struts of the formwork for the overhanging portion 

of the deck caused the web plate of the exterior girder to deflect inward. 

(4) As a general rule, the web plates in adjacent web panels of 

interior girders "buckled" or deflected in opposite directions. 

(5) The magnitudes of lateral deflection of web plates were 

relatively large under the weight of the bridge. The largest measured 

value was 1.13 in. in a 100 in. x 90 in web panel at location 432 of an 

interior girder, corresponding to twice the thickness of the web plate. 

In exterior girders, the largest measured deflection was 0.89 in. or 1.6 

times the web thickness in a 300 in. x 82 in. panel which was braced 

during construction, and 0.60 in. or 1.1 times the web thickness in a 100 

in. x 86 in. panel which was not. 

(6) Under live loads on the deck, the lateral deflection increased 

slightly in web panels of interior girders, and decreased slightly in 

exterior girder web panels. The decreasing of web deflection in exterior 

girder web panels corresponded to the condition that the live loads caused 
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I the web plates to deflect outward, against the inward permanent deflection 

I 
due to dead load. 

(7) The magnitudes of web plate bending stresses due to live loads 

I were not high, being less than 6 Ksi in all cases of measurement. Even 

with additional dynamic effects and combination of high loads, no fatigue 

I damage is anticipated. 

I 
Based on the foregoing observations, it is concluded that, although 

the web deflections are relatively large, there is no problem of web 

I behavior under live loads, nor is there a problem of girder strengths 

under these loads. It is the behavior of the bridge girders during 

I construction that needs to be examined. The examination is made in the 

I 
following sections with respect to the web panels of interior girders and 

of exterior girders, separately. 

I A. Web Panels of Interior Girders 

The web panels of interior girders had initial lateral deflection 

I after fabrication. The maximum permissible out-of-flatness is specified 

I 
by the AWS Codes. <5> For the 1"00 in. x 90 in. web panels, the limit is 

90/67 = 1.34 in. and for the 300 in x 82 in. panels 82/150 = 0.53 in. 

I These values are comparable with the measured "permanent" lateral 

deflections, under the total dead load of the bridge structure (see Table 

I 5.12), which are much larger than the corresponding deflection at 

I 
fabrication time. It is clear that the girders of this bridge satisfied 

the AWS limits when fabricated. 

I Although not specifically required, the out-of-flatness of web 

plates due to fabrication is usually measured with the girders in the 

I upright position and continuously supported. The deadweight of a girder 
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is not acting on the girder in this condition. When girders are erected 

on site, the sequence of field splicing, the arrangement of bearings, the 

attachment of diaphragm and bracing members, etc., dictate the 

distribution of girder weights and create different web panel forces. The 

out-of-flatness or lateral deflection of the web plates changes 

accordingly and takes on "initial" deflection profiles such as those shown 

in Fig. 4. 36. For girders with relatively stocky cross section and 

moderate length, these "initial" lateral deflections of web plate panels 

under the girder's own weight are usually not large, and usually not 

noticeable. For this bridge, the girders are relatively slender, the span 

length of 228 ft. is fairly long, and the "initial" lateral deflection of 

the web under the girder weight was larger than usual and was visible. 

Unfortunately, the examination of web lateral deflections of the interior 

girders was requested late during the construction, and measurement of the 

"initial" deflections under the girder's own weight could not be made. 

Because the slenderness and flexibility of the girders caused some concern 

on their overall lateral stability, presumably the strength of the bare 

girders during erection was evaluated. But current design practice does 

not impose an upper limit of the lateral deflection of the web plates for 

the girders under their own weight; measurement of web deflection by the 

construction engineers was not expected. 

When the bridge deck was cast, the lateral deflection of web plates 

in girder web panels increased. Because there was initial out-of-flatness 

from fabrication and initial lateral deflection under the girders' weight, 

these increases are not "buckling" of the web plate in the narrow sense of 

sudden snapping or "bifurcation". It was just a gradual change of lateral 
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deflection of the web plates in response to the increase of dead weight of 

the bridge. Classical analysis of web panels with perfectly flat web 

plate provides the theoretical "buckling load" of the plate under various 

boundary and loading conditions. <B. 15 >. However, little information is 

available in the literature on the magnitude of lateral deflection of web 

plates with initial out-of-flatness. Computation of lateral deflection by 

procedures such as using finite element models is necessary and requires 

definite information of the initial lateral deflection. Furthermore, for 

this continuous composite girder bridge, the sequential placement of 

concrete deck segments, their gradual development of composite action with 

the steel girders below, the fixed bearing at both ends of span 4, and. 

other factors made accurate computation of web deflections impossible. 

On the other hand, it is well known from analyses of specific cases 

of plate panels with and without initial lateral deflection that the 

behav.ior of perfect plates can be viewed as an upper bound of the behavior 

of imperfect plates and that plate panels with larger initial lateral 

deflection will have larger lateral deflection under load. A quantitative 

sketch is shown in Fig. 7.2. The maximum capacity of the plate panel to 

carry load is not limited by the buckling load. The significant 

postbuckling strength of plates has been recognized and are incorporated 

in both the allowable stress design procedure and the load factor design 

procedure of AASHTO provisions< 2>. The condition which is important for 

the evaluation of web plates in this girder bridge is that web panels with 

relatively large initial lateral deflection and relatively low buckling 

strength would have larger lateral deflection when web panels are under 

relatively high loads. 
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I 
I For the 100 in. x 90 in. x 9/16 in. web plate at location 432, 

I under a triangular loading condition corresponding to that of Day 20 in 

Fig. 4. 2, the buckling stress of a perfectly flat plate with simply 

I supported boundary is estimated to be about 8.0 ksi. 

I 
I 

fCI = K 
'lt2 E ( _!) 2 

12(1-v2) D 

7 
0 

8 'Jt
2 (29 1 000) (9/16)2 (7 . 1) 

= 
12(1-0.32) 90 

= 8.0 ksi I 
I 

The stress in the top flange of the girder at this location 432, was 

I 22.70 ksi as shown in Fig. 4.2 The relatively large lateral deflection of 

I 
the web plate was consistent with this loading condition and load 

magnitude. The measured lateral deflections of the two adjacent web 

I panels were 1.13 in. and 1.06 in., respectively, nearly twice the plate 

thickness, as listed in Table 5.12. 

I To examine further the buckling stresses of the web panel at 

I 
location 432, the contribution of the vertical, gravity load of the 

concrete deck is considered. Figure 7.3 shows schematically the loading 

I condition of a perfectly flat web plate with all edges approximated as 

simply supported. By using the classical method which employs the energy 

I concept and a trigonometric series representation of web deflection, the 

I 
buckling stresses of the web plate panels at location 432 are computed for 

various ratios of top and bottom flange stresses. The results are plotted 

I in Fig. 7.4. The influence of the vertical edge load (estimated as 0.17 
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kips per in.) is seen to be not strong on the buckling of the web plate; 

it amount to only a few per cent. Of interest is the comparison between 

the analytical buckling stress and the actually measured stress at 

different days of deck concrete placement. On day 1, after the casting of 

concrete deck segments 1 and 2W (see Fig. 2.4), the measured stress was 

below the buckling curve, as it is shown in Fig. 7.4. The computed 

(theoretical) stress condition due to the deck segment 1 alone is also 

shown for reference (point TH). The fact that both points 1 and TH lie 

below the buckling curves indicates that perfectly flat plate would not 

"buckle" under these loading conditions. The data points corresponding to 

the measured flange stresses of days 5, 6, 9 and 20 all lie above the 

buckling curve in Fig. 7.4. It is therefore most likely that the web 

plate of the 100 in. x 90 in. panels in the interior girder at the middle 

of span 4 undertook relatively large magnitudes of lateral deflection at 

these stages of deck concrete placement. 

No measurement was made on the initial deflection of the web at 

location 132 or 122 under the girders' own weight, nor the deflection 

under the weight of the concrete deck. These 300 in. x 82 in. x 9/16 in. 

web plates were braced laterally against each other and against the webs 

of the exterior girders at locations 142 and 112. Had these long web 

panels been unbraced, the lateral deflection of the web plate after 

It is important to completion of the deck would be expected to be large. 

note that, all other conditions being the same, longer web 

and larger generally 

deflections 

have larger 

under load. 

initial out-of-flatness 

panels 

lateral 

The AWS codes (5) place a more stringent 

limitation on out-of-flatness from fabrication for unstiffened web panels. 
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But there is no provision in the AASHTO specifications <2> for a 

permissible lateral deflection of webs under load. It appears from 

examination of web deflections of test girders <8 , 16 • 17, 18, 19, 20, 21) that 

the simplest approach to control lateral deflection is to limit the aspect 

ratio (such as 1.5) for web panels. More discussion on this will be made 

with respect to exterior girders. 

B. Exterior Girder Webs subjected to Lateral Loads 

The computation of lateral deflection of webs in the exterior 

(fascia) girders of the bridge is even more complicated than that for the 

interior girders because of the inclined struts of the triangular wooden 

frames which support the formwork for the overhang of the concrete deck. 

The inclined struts, as shown schematically in Fig. 2.5, introduce lateral 

thrust forces on the web plate and cause the web plate to deflect inward. 

The lateral force applied onto the web plate by each strut was not 

known. Before the casting of deck concrete, this force was due to the 

weight of the formwork for the deck overhang, the reinforcing bars in this 

region, and the rail and supports for the concrete deck paving machine. 

Regardless of the actual magnitude of the force in a strut, it pushed the 

web plate inward. This was observed at all exterior girder web panels of 

the bridge during construction. The deflections at this stage of 

construction were measured at locations 142 and 242, and the results are 

shown in Table 4.4 and Fig. 4.36. When deck concrete was cast directly 

above, the weight of the concrete produced higher forces in the struts and 

also increased the girder bending moment at the web panel. Therefore, the 

computation of the web deflection of a girder web panel requires knowing 

not only the initial lateral deflection of the web plate (due to the 
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weight of the girder) and the thrusts in the struts acting in the panel, 

but also the primary bending stresses acting along the boundary of the 

panel. The actual web plate profiles at sections 142 and 242, from 

measured deflections at this stage are shown in Fig. 4.36. 

To explore the influence of the forces from the inclined struts on 

the lateral deflection of the web in a panel, several simplified analyses 

were made. The first is to consider the lateral deflection of perfectly 

flat web plates subjected to lateral forces from the struts in the panel. 

Assuming the triangular wooden frame (Fig. 2.5) to be a truss with hinged 

supports at the lower end of the inclined strut and at the anchor at the 

tip of the flange, the horizontal force at the lower end of the strut can 

be estimated. This force is applied at each triangular frame to the web 

plate of the girder panel at location 142 and 242. The resulting lateral 

deflection by a finite element model is about 1.7 in. for the web panel at 

142 and 0.8 in. at 242. The magnitude at location 242 is in very good 

agreement with the measured deflection, as listed in Table 4.4. The web 

panel at 142 was braced against the web at the interior girder at 132, and 

the actual lateral deflection was much less than the computed value which 

did not take the bracing into account. 

The second analysis is an examination of the effect of the vertical 

position of the inclined struts. A horizontal force is applied from each 

strut at different assumed distance from the top flange of the girder 

panel. This force is estimated from the truss model of the triangular 

supporting frame as described above, but having the assumed distance of 

the strut. Fig. 7.5 shows the maximum lateral deflection of the web panel 

242 as a function of the strut position. These computed lateral 
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deflections can only be considered as very rough estimates. However, the 

trend that the lateral deflection decreases as the strut position is 

lowered is unmistakable. It confirms the belief that placing the struts 

at the lower part of the web would reduce the lateral deflection of the 

web. One very good theoretical solution to the problem of lateral 

deflection of the web due to the deck form support at the overhang would 

be to place the lower end of the inclined strut at the junction of the 

bottom flange to the web. 

A third series of analyses was used to examine the effects of web 

panel aspect ratio (length to depth), d/D. By using the same model as 

used in the first analysis of the web panels at 142 and 242, but assuming 

different values of the aspect ratio, the magnitude of lateral deflection 

of web were computed. The results are shown in Fig. 7.6. Panel 242 has 

a web depth of 86 in. and a web slenderness ratio of D/t 153. For panel 

142, D is 82 in., and D/t ratio is 146. Since panel 242 is slightly more 

slender, it has slightly larger lateral deflection for the same aspect 

ratio of the web. The magnitude of web deflection consistently increases 

as the aspect ratio increases. This indicates that longer panels would 

have larger web deflections. A reduction of the aspect ratio from 3 to 1 

would result in a decrease of lateral deflection by approximately 50%. 

Therefore, reducing the distance between intermediate transverse 

stiffeners would be an effective solution to the problem of lateral 

deflection of web at exterior girders with inclined struts for the deck 

form support. 

With two possible ways of controlling the lateral deflection, a 

comparison is warranted. Before doing so, it should be noted that in both 
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series of analyses, the web plate is assumed to be perfectly flat and the 

primary bending moment of the web panel is not considered. With these 

conditions in mind, the following comments can be made with regard to the 

control of lateral deflection of webs of exterior girders when triangular 

support frames for deck overhand are utilized. 

(1) Without imposing new rule or changing existing rules on the 

design or fabrication of girders, the simplest procedure of avoiding 

development of large lateral deflection of exterior girder webs would be 

to place the inclined strut at or near the lower edge of the web plate. 

The advantage of this approach is that only one party, the contractor, 

would be involved in the decision as to the position of the strut.· 

However, to achieve an effective deflection control, the contractor would 

need to make supporting frames of different sizes, incurring added cost of 

construction. At the present time, the triangular support frames are more 

or less standardized to have the inclined struts about 30 in. to 45 in. 

from the top flange of a girder, which is typically less than half of the 

web depth of modern long span girders. Furthermore, even when such a 

statement of strut position is included in the construction contract and 

rigidly enforced, the exterior web may still exhibit relatively large and 

noticeable (and aesthetically disturbing) lateral deflections because of 

the possible large initial out-of-flatness, high girder moments, likely 

large panel length of web of modern girders, and the strut forces if the 

struts are not at the junction of the web and the bottom flange. 

(2) The reduction of the maximum permitted spacing between 

intermediate transverse stiffeners on girder webs can be easily 

accomplished. The current AASHTO limit is three times the web depth, or 
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3D, <2> which was determined on the basis that when the load carrying 

capacity in shear is adequate, transverse stiffeners at 3D spacings would 

provide some undefined control of the out-of-flatness of the web plate, 

and that the diaphragms are often placed at these spacings. In other 

words, this limit of 3D is based more on girder capacity (strength) and 

only marginally on girder behavior under load. In earlier AASHTO 

Specifications, the maximum permitted stiffener spacing was 1.5 times the 

web depth. That earlier limit of 1.5D was adopted with consideration of 

lateral deflection of the girder web under load, possible fatigue damages 

at web panel boundary, and the lateral flexibility of the entire girder 

during erection. <22 • 23, 24 > From the curves of Fig. 7. 6, it is obvious that 

web panels having lengths of l.SD have smaller lateral deflection than 

panels having lengths of 3D, when both are subjected to the same lateral 

force from the inclined struts. At 1.5D, the lateral deflection of the 

web after the completion of the bridge would most likely be less than 

about 1.5 times the web thickness. No plate girder web has been found to 

develop fatigue crack under traffic load with this magnitude of initial 

lateral deflection and an aspect ratio less than 1. SD. <B, 24 • 25 > Other 

advantages of imposing this upper limit of l.SD for stiffener spacing 

include that the likely smaller initial out-of-flatness from fabrication, 

the subsequent less visible permanent lateral deflection under dead load, 

and not having to rely on the contractor to control these possible 

unsightly permanent deflection. The addition of a few transverse 

intermediate stiffeners during fabrication and a very slight increase of 

girder weight appear to be minor disadvantages. For example, for this 

bridge system of eight continuous girder in the twin bridges, only one 
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midspan panel in the end span of each girder exceeds the 1. SD limit. 

Imposing the l.SD limit would only add four stiffeners and about 320 lbs. 

of weight to each girder. The increase of fabricational cost would be 

very small in comparison with the total cost of the bridge. 

Based on the above discussion, it is believed that the better 

approach to control the permanent lateral deflection of girder webs is to 

impose a more stringent limit for the distance between transverse 

stiffeners. It is recommended that the following equation, which was in 

the AASHTO Specifications up to 1983, be re-adopted. 

7.3.2 

do :s: D ( 2/6 0 ) 2 :s: 1 . SD 
D t"' 

Flange Stability During Construction 

(7 • 2) 

While there were unexpectedly large lateral deflections of web 

plates and high compressive stresses in the top flanges of girders, no 

damage of any web panel or flange in ~he interior girders of the bridge 

was detected during construction of the bridge superstructure. A single 

mishap occurred at the top flange of an end span of one exterior girder at 

location W742. The stay-in-place metal form for the concrete deck and the 

supporting angle separated from the flange. The tack welds between the 

supporting angle and the edge of the top flange were torn, and about 40 

in. of the metal form dropped, spilling the wet concrete. This event led 

to the shoring of the overhanging part of the concrete deck and bracing of 

the unstiffened web plates at similar locations of other girders. No 
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I 
I subsequent difficulty was encounted at these places. 

I To explore the cause which triggered the separation of the metal 

form from the top flange, an examination of the loads and conditions of 

I the girder panel is necessary. The web panel of the girder at W742 and 

I 
other similar web panels in the end spans has no transverse intermediate 

stiffeners between cross diaphragms, and is 300 in. long, 82 in. deep and 

I 9/16 in. thick (see Fig. 2.2). The top flange is a 12 in. x 5/8 in. plate 

and is not braced between the cross diaphragms. When the concrete deck 

I segment over the end of the girder was placed, the girder panel was 

I 
subjected to in-plane bending moment and shear, vertical gravity load of 

the wet concrete through the top flange, and horizontal out-of -plane 

I forces which were the component forces of the triangular formwork 

supporting the deck outside of the girder. 

I A schematic of a "compression flange beam-column" representing the 

I 
top flange is shown in Fig. 7.7. The vertical forces, q

0 
and qi, are from 

the outside and inside formworks of the deck, respectively; qc is the 

I 
weight of the portion of wet concrete and reinforcing bars directly above; 

and qw is the balancing or resisting force from the web. The horizontal 

I forces, p, are the reactions from the triangular supporting frame of the 

deck overhang. The twisting moment, m, is associated with the lateral 

I bending and deflection of the web plate. The magnitude of any of these 

I 
forces must be estimated to enable an evaluation of the behavior of this 

beam-column. There could also be horizontal forces above the flange 

I plate, induced by the interaction between the reinforcing bars and the 

shear connectors, but these forces are judged to be negligible because the 

I ties at the shear connectors are not "positively connected". 
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The breaking of the tack weld along the inner edge of the flange 

could be due to inferior quality of a few adjacent welds, or due to 

excessive deflection of the flange plate. Assuming that the tack welds 

were appropriately made, attention is here focussed on the possible 

deflection of the top flange. The flange plate could deflect vertically 

down towards the web plate, rotate or twist with respect to the junction 

between the web and the flange, or move sideways with the attached web. 

(1) The vertical, downward deflection of the top flange is 

associated with the lateral deflection or the broader sense of buckling of 

the web plate. An exaggerated configuration is sketched in Fig. 7.8. 

Lateral deflection of the web causes reduction of the distance between the 

flanges and thus the vertical deflection of the top flange. If the 

magnitude of vertical deflection of the flange plate is small and gradual 

from one end of the panel to the other, the metal stay-in-place form and 

the attachment angle along the inside edge of the flange would move down 

with the flange. No separation of the attachment angle would take place. 

Breaking of the tack welds and separation would occur only when there is 

a sudden and drastic change of slope, that is, large curvature of the 

flange profile, which is not compatible with the vertical bending rigidity 

of the attachment angle. 

Referring to Fig. 7. 8, the vertical deflection of the flange is 

dependent upon the vertical web force qw which in turn is related to the 

lateral deflection of the web plate. Accurately determining the 

distribution of qw is not currently possible. It is, however, 

qualitatively known that qw is not uniform along the panel length, and that 

this resisting force is smaller where the lateral deflection of the web is 
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I larger. Referring to the ideal case of a perfectly flat web plate and an 

I uniform qw, the maximum vertical stress which could be applied on the web 

along the top flange without causing web plate "buckling", and thus large 

I deflection and curvature of flange, has been estimated. <B, 22) This stress 

I 
is calculated by the formula 

I (7. 3) 

I 
I 

where dis the length of the flange between stiffeners. For the web panel 

at W742, d = 300 in. and the magnitude of the estimated maximum stress is 

I 2.59 ksi. The estimate value of q
0

, q; and qc are 22.8, 72.9, and 

10.4 lb per in. respectively, resulting in an applied vertical stress qw 

I of (22.8 + 72.9 + 10.4) + (9/16) = 189 psi. Since the applied force is 

I 
much smaller than the estimated strength, no large downward deflection of 

the flange would be expected to take place. 

I It is important to note that Eq. 7.3 indicates that a smaller d 

would provide a higher verticle buckling load of the web plate, and 

I consequently smaller downward deflection of the flange due to the vertical 

load. This means that closer spacings between stiffeners would reduce the 

I risk of vertical buckling of web plates. Adding an intermediate stiffener 

I between the diaphragm connection plates at W742 would reduce d to 150 in., 

and the web buckling strength according to Eq. 7.3 would become 3.70 ksi. 

I Examination of literature shows that the strength of vertical buckling of 

I 
flange into the web usually is not the governing condition of failure.<B, 

16, 18, 22> The significant benefit of adding an intermediate stiffener is 
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the reduction of vertical-load-induced lateral deflection of the web which 

had strong influence on other modes of girder panel failure. 

(2) The twisting of top flange plate could lead to the breaking of 

the tack welds between the flange and the attachment angle. For a flange 

plate subjected to compression without vertical loads, the flange local 

buckling stress corresponding to twisting is estimated by using the 

classical equation for long plates. 

(7. 4) 

In the equation, b is the outstanding width of the flange plate and tf is 

its thickness. The length of the plate does not appear in the equation 

because the buckling is of a local nature. If the constraint to flange 

twisting is equivalent to a fixed support along the flange-to-web 

junction, the coefficient, K, has a value of 1.277<8 >. Because the flange 

plate at the location of consideration is relatively stocky, the flange 

local buckling strengths is very high, thus is not governing. 

With the vertical loads q
0

, qi, and qc, and the twisting moment m, 

as shown in Fig. 7.7, the twisting phenomenon is much more complicated. 

There is no simple, readily available solution to the mathematical 

problem. The twisting of flange is associated with the vertical bending 

of the outstanding width of flange plate between supports which are the 

vertical intermediate stiffeners or the diaphragm connection plate of the 

web. Without knowing the twisting moment m, no attempt has been made to 

estimate the twisting of the flange at location W742. 
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It is, however, again obvious that the spacing of vertical 

stiffeners plays an important role. The closer is the distance between 

stiffeners, the higher would be the resistance to flange twisting. 

Physically, this is borne out by the negligible difference in flange 

stresses at the northern and southern tip of the flange at location 242 

after day 8 (see Fig. 4.34), when the concrete deck segment 4W was placed 

over the girder. The low magnitude of web plate bending stresses in the 

vertical direction, as shown in Fig. 4. 33, indicates that the lateral 

deflection of the web was also small. The distance between intermediate 

stiffeners is 100 in. at this location. 

(3) The lateral deflection of the top flange under longitudinal 

compression and lateral load from the supports of the deck overhang, is 

equivalent to the condition of a beam column. Neglecting the effects of 

the vertical loads and the twisting moment of Fig. 7. 7, the maximum 

lateral deflection of the top flange can be estimated by the formula:< 8> 

w = max 

where 

5pd 4 
[ 12 (2 Sec"A - 2 - P) ] 

384EI 5).2 
(7 • 5) 

P = flange compressive force=fb Anange 

Pe= Euler buckling load of the flange column 

p = Uniformly distributed lateral load on the flangE 

d = Length of the flange column 

I = Lateral moment of inertia of the flange column 
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The beam column is assumed to be 300 in. long and the lateral force 

p is estimated by the models of section 7. 3.1 B; then the maximum 

deflection can be computed for various load ratios P/Pe. The results are 

plotted in Fig. 7.9. For location W742, the load ratio is computed to be 

0.55 when the deck concrete was placed. The estimated lateral deflection 

of the flange is about 0.7 in. This magnitude of deflection would be 

sufficient to cause breaking of the tack welds and separation of the metal 

deck form from the flange. 

Equation 7.5 indicates the very strong influence of the length of 

the flange beam-column. At locations W742, 142, etc., of the end spans of 

the 178 bridge under study, the restraint to lateral movement of the 

girders are at the cross diaphragms, which are 300 inches apart. Whether 

the length of the hyperthetical beam-column in the continuous top flange 

at location W742 is 300 in., is subjected to interpretation. The direct 

influence of the flange moment of inertia against lateral deflection must 

be kept in mind. Sufficient rigidity with respect to lateral deflection 

must be provided against not only the maximum computed flange force P, but 

also the maximum lateral force p from the supports of the deck overhang. 

In the discussion above, the contribution of the twisting moment m, 

(see Fig. 7.7), has been ignored. The inward forces at the ends of the 

inclined struts and the inward deflection of the web plate would produce 

a twisting moment on the flange beam-column, which would increase the 

outward deflection of the flange. The control of the twisting moment is, 

therefore, beneficial against the lateral deflection of the top flange. 

As indicated a few times before, a closer distance between transverse 

stiffeners would reduce the lateral deflection of the web, and'thus would 
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control the twisting moment. The adoption of a more stringent limit of 

maximum spacing between transverse stiffeners, as given by Eq. 7.2, is 

recommended. 
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8. Summary and Recommendations 

The results of this study are the following: 

(1) The elevation of the top flanges of the girders in the spans 

moved up or down as expected as successive segments of the 

concrete deck were cast. 

(2) 

(3) 

(4) 

(5) 

The measured girder deflections after the completion of the 

deck are in good agreement with the theoretical values (from 

the design drawings) in spans 1 and 2, the measured 

deflections are greater than the theoretical values for span 

3, but slightly lower for span 4. Both ends of span 4 are 

supported on fixed bearings. However, the high piers would 

provide some flexibility and allow the distance between 

bearings to change. This is suspected to be the reason of the 

observed discrepancy. 

During the period of concrete deck placement, the measured 

stresses in the girder flanges increased and decreased as 

consecutive segments of the deck were cast. The fluctuations 

of flange stresses were more pronounced in girder span 4 than 

in other spans and over the piers. 

The measured and computed flange stresses in the girder spans 

differ rather substantially. In span 3, it is 5 ksi out of 

14.6 ksi for the top flange. In span 4, it is 10 ksi out of 

18 ksi for the top flange and about 10 ksi versus -1.0 ksi for 

the bottom flange. 

An in-house analysis of the bridge using a finite element 

model and incorporating the shrinkage of concrete yielded 

flange stresses which are in good agreement with the values 

from measurement, except for the bottom flange of span 4. 

Fixed bearings were assumed in this analysis. Consideration 

of shrinkage and pier flexibility in analyzing continuous 

girder bridges is important and is recommended. 
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(6) 

(7) 

(8) 

(9) 

Profiles of incremental stresses at girder cross sections 

confirmed the shifting of the neutral axis of the cross 

section, from that of a bare steel girder to that of a 

composite section as concrete hardened. Additional shifting 

of neutral axis of the composite section afterwards implies 

the existence of axial forces in the girders at certain 

locations. This is believed to be the effect of fixed 

bearings at the ends of span 4. 

Comparison of profiles of cumulative stresses in girder cross 

sections further revealed the difference between measured and 

computed stresses and the importance of considering concrete 

shrinkage in analysis. 

In an exterior girder panel with a 100 in. x 86 in. web plate, 

the measured web plate bending stresses in the vertical 

direction perpendicular to the top flange were small when 

concrete deck was cast directly above. 

The web plate of exterior girder panels deflected inward under 

the action of the inclined strut of the formwork for deck 

I overhang. The magnitude of deflection increased when concrete 

was cast over the panel. For a 100 in. x 86 in. x 9/16 in. 

II web plate, the magnitude of deflection before and after the 

casting was 0.32 and 0.80 in., respectively. After removal of 

I formwork, the permanent deflection was 0.6 in. 

I 
I 
I 
I 
I 
I 

(10) The permanent lateral deflection of three 300 in. x 82 in. x 

9/16 in. web plates of exterior girder panels, one braced 

before casting of concrete deck above, one braced after, and 

one braced and shored, were 0.34, 0.89 and 0.54 in., 

respectively. 

(11) Two adjacent web panels in an interior girder were found to 

have large, noticeable permanent lateral deflections after 

completion of the bridge deck. The web plates are 100 in. x 
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90 in. x 9/16 in. in dimension and the lateral deflections 

I were about 1.1 in. in opposite directions. Many web panels of 

the interior girders in the middle of spans 3 and 4 have 

II similar pattern of lateral deflection. 

(12) Test trucks simulating HS25 loading and 204 kip permit load 

II crawling along the bridge generated strain-time records which 

are in full agreement with the nature of influence lines of 

I 
II 
I 
I 
I 
I 
I 
I 
I 
I 
I 
II 
I 
I 

stresses at various points of the flanges. 

(13) The sum of stresses in a girder flange due to individual test 

trucks traveling in different lanes agrees very well with that 

due to these trucks traveling side by side in their lanes 

simultaneously. This result confirms the linear elastic 

nature of the behavior of the bridge, and the applicability of 

the principle of superposition. 

(14) When a test truck was on the bridge, instantaneous stresses at 

different locations indicated the load distribution among the 

four widely spaced girders of the bridge. The girder directly 

under or near the truck carried a larger share of the load. 

When a truck was near one edge of the roadway, the girder on 

the other side of the bridge cross section endured a negative 

bending. These results are similar to those from earlier 

studies on bridges with more conventional spacing between 

girders. 

(15) The computed stresses in girder cross sections due to test 

truck loads agree well with those from measurements. The 

computed stresses, provided for comparison, are from analyzing 

the entire bridge structure with trucks at specific position 

and not from utilizing the load distribution factor of the 

AASHTO design specifications. 
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(16) Measured strains at the top surface of the roadway deck are 

consistent with those strains extrapolated from the steel 

girders assuming full composite action between the girders and 

the deck. The principle of superposition is applicable to the 

deck strains, as revealed by an examination of the summation 

of deck strains due to various test truck combinations. 

(17) The highest magnitude of lateral movement of the web plate 

with the largest permanent lateral deflection was measured to 

be 0.21 in., occurring when three simulated HS25 trucks 

traveled side-by-side in the three lanes. The maximum total 

lateral deflection under this loading condition was 1.3 in. 

(18) The measured vertical stresses in two web panels along the top 

flange connection indicate out-of-plane bending of the web 

plate, in full agreement with the measured lateral deflection. 

The highest range of web plate bending stress was 4.0 ksi 

corresponding to the maximum movement of the web. 

(19) The highest measured range of web bending stress was 5.3 ksi 

in the web panel of an exterior girder, due to three simulated 

HS25 trucks travelling side by side. 

(20) Test trucks travelling at a moderate speed of 50-55 mph 

generated vibrations of the bridge girders, at a frequency of 

about 4 Hz. The impact stresses corresponding ~o the 

vibration were not high, being less than 0.5 ksi in the girder 

flanges, or about 20-25 percent of the live load stresses 

generated by the trucks. 

(21) When the bridge was subjected to regular traffic, the 

phenomenon of vibration was again detected. Subsequent trucks 

following one which caused the vibration to start were 

observed to interrupt, prolong, or eliminate the bridge 

vibration. 
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(22) The behavior of the bridge under truck loads of regular 

traffic is found to be consistent with that under test truck 

loads. The strain-time relationship for all locations of the 

bridge and the distribution of stresses in bridge cross

sections are all similar for similar test truck and regular 

truck runs. 

(23) The stress ranges (live load plus impact stresses) due to 

regular traffic are lower than those due to the test trucks 

I simulating HS25 loading. The stresses due to trucks of 

regular traffic were more nearly represented by those due to 

I HS 20 trucks. 

(24) The magnitude of live load stresses in the girder flanges, 

I even when projected for the most severe condition of a HS25 

truck speeding pass a 204 kip permit truck at the most 

II critical position, are below the fatigue limit of the 

structural details in the flanges. No fatigue cracking of the 

II flange is expected. 

I 
(25) Similarly, the projected maximum range of web plate bending 

stresses at web panel boundaries along the top flange of 

girders are below the fatigue limit of this structural detail, 

I even with the large permanent lateral deflection of the web 

plates. No fatigue crack is expected along these web 

I boundaries. 

(26) Measurements at cross diaphragm members between girders showed 

II that the magnitude of live load stresses in these members were 

about the same as those in the girder flanges. The tensile 

II and compressive forces in the diaphragm members induced web 

plate bending stresses at the junction of diaphragm connection 

I 
I 
I 
I 

plates to the girder flanges. The maximum measured stress 

range was 6.4 ksi. This magnitude of live load stress is not 

expected to cause fatigue damage at the diaphragm connections 
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even if heavier truck loads of HS25 are allowed on the bridge 

in the future. 

(27) Transverse cracks as wide as 0.05 in. were found in the 

concrete deck after the completion of the bridge. One 

possible cause of these cracks is the thermal change due to 

hydration of concrete and subsequent cooling. The variation 

of girder and deck strains during the sequential casting of 

concrete deck segments may also have a strong influence. Low 

compressive strains in concrete deck were computed to decrease 

by 100 to 200 micro in. per in. while the hardening process 

was in progress. 

(28) From a careful review of the well known concept of buckling of 

perfectly flat plates, the gradual increase of lateral 

deflections of initially out-of-flat plates, the AWS tolerance 

of web plate out-of-flatness caused by fabrication, the AASHTO 

rules regarding the placing of transverse stiffeners, and the 

measured stresses in the girder flanges during construction of 

the deck, it is concluded that the large magnitude of web 

deflection in the interior girder panels of span 4 were the 

results of high compressive stresses in the top flange with 

near zero tensile stress in the bottom flange. Control of the 

flange stresses during construction can be achieved through 

careful arrangement of deck casting length and sequence. The 

simplest way to reduce web lateral deflection is to limit the 

panel aspect ratio of stiffener spacing to web depth to 1.5. 

(29) For webs of exterior girder panels, which support the inclined 

struts of the formwork of deck overhang during construction, 

the magnitudes of lateral deflection can be reduced by 

lowering the position of the struts toward the bottom flange. 

Supporting the struts at the junction of the bottom flange and 

the web would minimize the lateral bending of the web plates. 
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made: 

(30) By evaluating analytically the lateral deflection of webs 

supporting the inclined struts as a function of the web panel 

aspect ratio, and comparing with the measured deflection of 

exterior web panels, it is concluded that limiting the web 

panel aspect ratio (or stiffener spacing) would be an 

effective solution to the problem of large magnitude of 

lateral deflection of exterior girder webs. It is recommended 

to re-adopt the AASHTO 1983 provision that limited the aspect 

ratio to 1. 5. 

(31) The mishap at the west bound girder, location W742, could be 

associated with large vertical deflection of the top flange, 

twisting of the flange plate, or large lateral ~eflection of 

the flange, all related to the lateral deflection of the web. 

An examination of the forces and stresses from simplified 

loading conditions of a compression flange beam-column 

suggested that the lateral deflection of the flange was the 

primary cause. That in turn was affected by the large 

unbraced length of the top flange, the relatively high 

compressive stresses in the flange, the lateral forces from 

the supports for the deck overhang, and the large lateral 

deflection of the web. The addition of intermediate 

stiffeners between the diaphragms would have provided control 

of the lateral deflection of the web and decreased the chance 

of the mishap. 

Based on the above observations, the following recommendations are 

(1) 

(2) 

The computer programs associated with this study were adequate 

as tools in the design process of highway bridges. 

For multispan composite girder bridges with continuous 

concrete deck, the stresses in the steel girder flanges should 
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(3) 

(4) 

(5) 

(6) 

(7) 

be carefully examined considering the length and sequence of 

casting concrete deck segments, the effects of shrinkage of 

concrete, and the influence of bearing fixity and pier 

flexibility. 

Consideration of the above factors as well as the thermal 

variation due to hydration of concrete and the change of 

ambient temperature is recommended for the investigation of 

transverse cracks in the concrete deck. 

The inclined struts of the formwork supports for the deck 

overhang should be placed as close to the lower flange as 

possible. 

The spacing of transverse stiffeners of girder webs should be 

limited to the following. 

D ( 2/6 0 ) 2 s: 1 • 5D 
D tw 

Consideration of the forces from the formwork for deck 

overhang should be made in evaluating the strength of the 

steel flange of exterior girders during deck construction. 

Continued monitoring of the small transverse cracks in the 

deck of this bridge is recommended. 
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Span 

2 

3 

4 

Table 2.1 Instrumentation Section Locations 

II 
Section 

I 
Distance from West End 

I of Span 

2X2 84'- 6" 

2X3 126' - 9" 

3XO 2'- 0" 

3 X 1 59'- 0" 

3X2 116' - 0" 

3X3 169' - 0" 

3X4 226' - 0" 
(2' - 0" from east end) 

I 

4 X 1 53'- 8" 

4X2 112'- 0" 
(2' - 0" from midspan) 
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Table 2.2 Flange Gages - Span 2 

I Gage I Location of Gage l Position l 
212TN 1/2" from edge of flange North 

212TS 1/2" from edge of flange South 

212B 3/4" from web North 

222TN 13/16" from edge of flange North 

222TS 1" from edge of flange South 

222B 7/8" from web North 

232TN 11/16" from edge of flange North 

232TS 13/16" from edge of flange South 

232B 3/4" from web South 

242TN 1/4" from edge of flange North 

242TS 1/2" from edge of flange South 

242B 3/4" from web South 

233TN 1/2" from edge of flange North 

233TS 7/16" from edge of flange South 

233B 13/16" from web South 

243TN 1/2" from edge of flange North 

243TS 1/2" from edge of flange South 

243B 5/8" from web South 

Note: All flange gages are on the top surface of the flange plate. Position gives 
gage location in relation to girder web. 
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Table 2.3 Flange Gages - Span 3 

I Gage I Location of Gage I Position II Gage l Location of Gage j Position 

310TN 5/8" from edge of flange North 322TN 11/16" from edge of flange North 

310TS 5/8" from edge of flange South 322TS 1/2" from edge of flange South 

310B 13/16" from web North 322B 13/16" from web North 

320TN 3/8" from edge of flange North 332TN 1 1/2" from edge of flange North 

320TS 7/8" from edge of flange South 332TS 3/4" from edge of flange South 

320B 13/16" from web North 332B 15/16" from web South 

330TN 1/2" from edge of flange North 342TN 9/16" from edge of flange North 

330TS 5/8" from edge of flange South 342TS 9/16" from edge of flange South 

330B 1" from web South 342B 3/4" from web South 

340TN 9/16" from edge of flange North 333TN 5/8" from edge of flange North 

340TS 1/2" from edge of flange South 333TS 1/2" from edge of flange South 

340B 7/8" from web South 333B 1" from web South 

331TN 3/4" from edge of flange North 343TN 1/2" from edge of flange North 

331TS 1" from edge of flange South 343TS 3/4" from edge of flange South 

331B 1 1/8" from web South 343B 1 1/8" from web South 

341TN 1/2" from edge of flange North 334TN 3/4" from edge of flange North 

341TS 5/8" from edge of flange South 334TS 3/4" from edge of flange South 

341B 1 1/8" from web South 334B 7/8" from web South 

312TN 1/2" from edge of flange North 344TN 5/8" from edge of flange North 

312TS 1/2" from edge of flange South 344TS 7/16" from edge of flange South 

312B 5/8" from web North 344B 7/8" from web South 

Note: All flange gages are on the top surlace of the flange plate. Position gives gage location in 
relation to girder web. 
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Table 2.4 Flange Gages - Span 4 

I Gage ! Location of Gage ! Position I 
431TN 1/2" from edge of flange North 

431TS 3/8" from edge of flange South 

431B 3/4" from web South 

441TN 1/2" from edge of flange North 

441TS 5/16" from edge of flange South 

441B 13/16" from web South 

432TN 9/16" from edge of flange North 

432TS 7 /16" from edge of flange South 

432B 5/8" from web South 

442TN 7/16" from edge of flange North 

442TS 1/2" from edge of flange South 

442B 13/16" from web South 

Note: All flange gages are on the top surface of the flange plate. Position gives 
gage location in relation to girder web. 
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E 
242 

432 

442 

Table 2.5 Web Gage Locations 

Gage Designation Web Surface 

242WS1 South 

242WS2 South 

242WN2 North 

432WS1 South 

432WS2 South 

432WS3 South 

432WN1 North 

432WN2 North 

432WN3 North 

442WS1 South 

442WS2 South 

442WN1 North 

442WN2 North 
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Distance from 
midspan 

1'- 4" West 

0'- 0" 

0'- 0" 

4' - 2" West 

3' - 2" West 

4' - 2" East 

4' - 2" West 

3' - 2" West 

4' - 2" East 

4' - 2" West 

4' - 2" East 

4' - 2" West 

4' - 2" East 
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Table 2.6 Diaphragm Gages 

Diaphragm Element Gage Designation 

D23TS 

D23BS 

D24TS 

Diagonals D24BS 

D33TN 

D33BN 

D33TS 

D33BS 

Stiffeners S33T 

S34T 

Bottom B33N 

Flange B33S 

W33TN1 

W33TN2 

Web W33BN1 

W33BN2 

W34TS1 

W34TS2 
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Fig. 2.12 (a) 

Fig. 2.12 (b) 

Fig. 2.12 (c) 
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SEd on Reacing No. 0 1 

Day No. 0 1 

Mlutment 13> 0 0 

131 0 -5 

132 0 (B) 

133 0 -10 

Pier 1 23) 0 20 

231 0 25 

232 0 45 

233 0 40 

Pier 2 33) 0 10 

331 0 -95 

332 0 (A) 

333 0 -45 

Pier3 43) 0 5 

431 0 -70 

432 0 (A) 

- - - - - - - - -
Table 3.1 Measured Deflections - Girder 3 

2 3 4 5 6 7 

5 6 7 8 9 11 

-5 0 0 -5 0 -5 

-10 (A) -40 -25 -20 -35 

(B) -70 -65 -10 -5 -20 

-15 -50 -40 10 10 0 

20 20 20 10 15 10 

3) 60 55 (A) -140 -115 

60 85 80 (A) -195 -135 

55 50 60 -95 -125 -50 

10 10 5 0 -5 -10 

-115 -125 -115 -10 60 -105 

-170 -170 -160 -55 80 -255 

-80 -85 -65 -15 120 -105 

0 0 -5 -10 -10 -15 

-30 -15 -40 -95 -325 -195 

-90 -75 -115 -180 -510 -390 

3 
Deflections are in ft. x 10 

8 

12 

0 

-30 

-20 

0 

10 

-115 

-135 

-40 

-5 

-190 

-310 

-160 

-20 

-135 

-290 

9 10 11 12 13 14 

14 15 16 19 22 303 A 
14-13\ 

0 -5 -5 -5 (B) 0 ---

-45 -50 -45 -50 -55 -45 10 

(A) -45 -40 -45 -50 -35 15 

tAl -5 -5 -15 -15 -5 10 

(A) 15 10 10 15 25 10 

-95 -100 -110 -90 -70 -65 5 

-110 -115 -135 -115 -95 -90 5 

-25 -35 tAl -40 -30 -15 15 

-5 -10 (A) -25 -25 -5 20 

-185 -195 -205 -180 -190 -185 5 

-3)0 -310 -320 -280 -3>0 -320 -20 

-155 -160 -165 -13) -155 -155 0 

-15 -15 -15 -10 -10 3) 40 

-125 -120 -115 -145 -165 -13> 35 

-255 -250 -255 -305 -3)0 -270 3) 

(A) Fresh concrete 

(B) Equipment on bridge 
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- -

t-' 
t-' 
00 

- -

Abutment 

f'ier1 

Pier 2 

Pier3 

-

Section 

140 

141 

142 

143 

240 

241 

242 

243 

340 

341 

342 

343 

440 

441 

442 

- -

Readng No. 0 1 

Day No. 0 1 

0 0 

0 0 

0 (B) 

0 ·10 

0 15 

0 30 

0 45 

0 35 

0 0 

0 -90 

0 (A) 

0 -40 

0 0 

0 -80 

0 (A) 

- - - - - - - - -
Table 3.2 Measured Deflections - Girder 4 

2 3 4 5 6 7 

5 6 7 8 9 11 

0 5 0 0 0 0 

-5 (A) -30 -5 ·5 -20 

(B) -75 -65 -10 ·10 -20 

-15 -50 ·40 5 10 -15 

5 5 5 -5 -5 -10 

40 65 00 (A) -120 -90 

65 95 85 (A) -200 -140 

50 00 55 -100 -130 -55 

5 0 0 -10 -10 -20 

-105 -115 -105 0 70 -140 

-165 -165 -155 -50 95 ·240 

-75 -75 -65 -10 135 -95 

-5 -5 -5 -15 -15 -20 

-30 -15 -40 -95 -330 -205 

-90 -60 -100 -175 -505 -395 

3 
Deflections are in ft. x 1 0 

8 

12 

0 

-15 

-25 

0 

·5 

-90 

-130 

-45 

-20 

-175 

-285 

-150 

-25 

-155 

-295 

9 10 11 

14 15 16 

0 0 0 

-30 ·35 -30 

(A) -45 -40 

(A) -20 -20 

(A) 0 0 

-75 ·75 -85 

-110 -110 -130 

-30 -35 tAl 

-15 -20 (A) 

-175 -180 -185 

-280 -285 -300 

-145 -150 -150 

-20 -25 -20 

-130 -135 -125 

-260 -260 -250 

12 13 14 

19 22 303 ll 
14-13) 

0 0 0 0 

·30 -30 -35 -5 

-50 -50 -40 10 

-25 -25 -15 10 

0 5 20 15 

-65 -50 -45 5 

-105 -90 -85 5 

-40 -35 -25 10 

(C) (C) (C) ---

-100 -170 -170 0 

-255 -265 -285 -20 

-120 -140 ·125 15 

-15 0 40 40 

-150 -170 ·135 35 

-300 -295 -275 20 

(A) Fresh concrete 

(B) Equipment on bridge 

(C) Location obliterated 

- - -
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Span 

1 

2 

3 

4 

Table 3.3 Deflections due to Total Slab Weight 

Girder 3 Girder 4 
Tenth 
Point 

Theoretical Measured Theoretical 
in. in. in. 

0 0.00 0.00 0.00 
1 -Q.25 -0.23 
2 -Q.45 -0.41 

2.5 -0.66 
3 -0.56 -0.51 
4 -Q.58 -0.52 
5 -0.55 -0.60 -0.49 
6 -Q.46 -0.41 
7 -Q.31 -0.27 

7.5 -0.18 
8 -Q.13 -0.12 
9 -0.03 -0.02 
0 0.00 0.18 0.00 
1 -Q.28 -0.27 
2 -Q.63 -0.60 

2.5 -0.84 
3 -1.02 -0.97 
4 -1.17 -1.11 
5 -1.08 -1.14 -1.01 
6 -Q.74 -0.67 
7 -Q.31 -0.26 

7.5 -0.36 
8 0.06 0.08 
9 0.16 0.17 
0 0.00 0.30 0.00 
1 -Q.93 -0.91 
2 -2.30 -2.25 

2.5 -2.28 
3 -3.80 -3.75 
4 -4.78 -4.74 
5 -5.05 -3.60 -5.01 
6 -4.50 -4.45 
7 -3.33 -3.27 

7.5 -1.86 
8 -1.85 -1.78 
9 -o.67 -0.64 
0 0.00 -0.12 0.00 
1 -Q.18 -0.16 
2 -G.88 -0.83 

2.5 -1.98 
3 -1.97 -1.91 
4 -2.84 -2.78 
5 -3.23 -3.60 -3.17 

- 119 -

Measured 
in. 

0.00 

-0.36 

-0.60 

-0.30 

0.06 

-0.60 

-1.08 

-0.42 

-2.04 

-3.18 

-1.68 

0.00 

-2.04 

-3.54 
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Table 4.1 Strains and Stresses in Girder Flanges at Location 332 

I Gage 3321N 332B 332TS 

Correction 140/120 139/120 139/120 
Factor I 

Day Readng Strain Stress Reading Stran Stress Reading Strain Stress 

I (J.Lin{lll) (ksi) (j.Lin!m) (ksi) (j.Lin{m) (ksi) 

0 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 

I 1 -286.0 -333.7 -9.68 170.0 196.9 5.71 -217.0 -251.4 -7.29 

5 -358.0 -417.7 -12.11 181.0 209.7 6.08 -299.0 -346.3 -10.04 

I 6 -380.0 -443.3 -12.86 154.0 178.4 5.17 -327.0 -378.4 -10.97 

Zero Balance 0.0 -443.3 -12.86 0.0 178.4 5.17 0.0 -378.4 -10.97 

I 7 28.0 -410.6 -11.91 27.0 209.7 6.08 27.0 -347.1 -10.07 

8 31.0 -407.1 -1 1.81 -28.0 146.0 4.23 28.0 -346.0 -10.03 

I 9 37.0 -400.1 -11.60 -100.0 62.6 1.81 31.0 -342.5 -9.93 

10 -19.0 -465.5 -13.50 101.0 295.4 8.57 -21.0 -402.7 -11.68 

I 12 -15.0 -460.8 -13.36 116.0 312.8 9.07 -20.0 -401.6 -11.65 

13 -20.0 -466.6 -13.53 83.0 274.5 7.96 -29.0 -412.0 -11.95 

I 14 -25.0 -472.5 -13.70 109.0 304.7 8.84 -22.0 -403.9 -11.71 

15 -44.0 -494.6 -14.34 103.0 297.7 8.63 -33.0 -416.6 -12.08 

I 16 -43.0 -493.5 -14.31 101.0 295.4 8.57 -34.0 -417.8 -12.12 

19 -52.0 -504.0 -14.62 68.0 257.2 7.46 -40.0 -424.7 -12.32 

I 20 -84.0 -541.3 -15.70 47.0 232.8 6.75 -73.0 -463.0 -13.43 

22 -96.0 -555.3 -16.10 10.0 190.0 5.51 -86.0 -478.0 -13.86 

I 
I 
I 
I - 120 -

I 



I 
I 
I 

Table 4.2 Strains and Stresses in Girder Flanges at Location 432 

I Gage 4321N 432B 432TS 

Correction 175/120 175/120 171/120 
Factor I 

Day Reading Strain Stress Reading Strail Stress Reading Strain Stress 

I ~in{m) (ksi) (jJ.in/in) (ksi) ~in/in) (ksi) 

0 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 

I I -221.0 -322.3 -9.35 112.0 163.3 4.74 -215.0 -306.4 -8.89 

5 -301.0 -439.0 -12.73 0.0 0.0 0.00 -448.0 -638.4 -18.51 

I 6 -325.0 -474.0 -13.75 -52.0 -75.8 -2.20 -430.0 -612.8 -17.77 

Zero Balance 0.0 -474.0 -13.75 0.0 -75.8 -2.20 0.0 -612.8 -17.77 

I 7 34.0 -424.4 -12.31 31.0 -30.6 -0.89 43.0 -551.5 -15.99 

8 29.0 -431.7 -12.52 40.0 -17.5 -0.51 76.0 -504.5 -14.63 

I 9 -14.0 -494.4 -14.34 252.0 291.7 8.46 42.0 -552.9 -16.04 

10 -I 1.0 -490.0 -14.21 160.0 157.5 4.57 43.0 -551.5 -15.99 

I 12 -6.0 -482.8 -14.00 102.0 73.0 2.12 17.0 -588.6 -17.07 

13 -17.0 -498.8 -14.46 67.0 21.9 0.64 -19.0 -639.9 -18.56 

I 14 -1.0 -475.5 -13.79 128.0 110.9 3.22 61.0 -525.9 -15.25 

15 -6.0 -482.8 -14.00 85.0 48.2 1.40 78.0 -501.6 -14.55 

16 -19.0 -501.7 -14.55 47.0 -7.3 -0.21 39.0 -557.2 -16.16 
' I 

19 -26.0 -511.9 -14.85 95.0 62.7 1.82 -5.0 -619.9 -17.98 

I 20 -32.0 -520.7 -15.10 28.0 -35.0 -1.01 -77.0 -722.5 -20.95 

22 -29.0 -516.3 -14.97 -17.0 -100.6 -2.92 -57.0 -694.0 -20.13 

I 
I 
I 
I - 121 -

I 
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Table 4.3 Strains and Stresses in Girder Flanges at Location 330 

I 
I Gage 3301N 330B 330TS 

Correction !30/120 130/120 !30/120 
FArtnr I 

Day Reading Strain Stress Reading Strain Stress Reading Strain Stress 

I 
(j.Lin{m) (ksi) (j.Lin{m) (ksi) (j.Lin/m) (ksi) 

0 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 

I I 46.0 49.8 1.44 -9.0 -9.8 -0.28 56.0 60.7 1.76 

5 53.0 57.4 1.66 -18.0 -19.5 -0.57 55.0 59.6 1.73 

I 6 63.0 68.3 1.98 -35.0 -37.9 -1.10 67.0 72.6 2.11 

Zero Balance 0.0 68.3 1.98 0.0 -37.9 -1.10 0.0 72.6 2.11 

7 7.0 75.9 2.20 25.0 -10.8 -0.31 9.0 82.3 2.39 

8 114.0 191.8 5.56 -83.0 -127.8 -3.71 112.0 193.9 5.62 
I 
I 9 65.0 !38.7 4.02 -51.0 -93.1 -2.70 70.0 148.4 4.30 

10 239.0 327.2 9.49 -200.0 -254.6 -7.38 236.0 328.3 9.52 

12 276.0 367.3 10.65 -230.0 -287.1 -8.32 277.0 372.7 10.81 

13 266.0 356.5 10.34 -236.0 -293.6 -8.51 270.0 365.1 10.59 
I 

14 270.0 360.8 10.46 -232.0 -289.2 -8.39 272.0 367.3 10.65 

15 261.0 351.1 10.18 -234.0 -291.4 -8.45 272.0 367.3 10.65 
I 

16 367.0 465.9 13.51 -305.0 -368.3 -10.68 382.0 486.4 14.11 

19 288.0 380.3 11.03 -313.0 -377.0 -10.93 297.0 394.4 11.44 I 
I 20 292.0 384.6 11.15 -345.0 -411.6 -11.94 297.0 394.4 11.44 

22 305.0 398.7 11.56 -312.0 -375.9 -10.90 308.0 406.3 11.78 

I 
I 
I 
I - 122 -

I 
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w 
(in.) 

Table 4.4 Maximum Permanent Web Deflection - w 

Location 142 242 W712 

d/D 300/82 100/86 300/82 

D/t 146 153 146 

Condition Braced* Nonnal Braced 

Before 
Casting of 0.16 0.32 ---

Deck 

After 
Casting of 0.38 0.80 ---

Deck 

After 
Removal of 0.34 0.60 0.89 
Fonnwork 

w/t 0.6 1.1 1.6 

* Braced before casting of concrete deck 
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W742 

300/82 

146 

Shored and 
Braced 

---

---

0.50 

0.9 
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Designation 

Cl 

C2 

C3 

C23 

C123 

S2 

S3 

S23 

P2 

P3 

Table 5.1 Test Truck Runs 

Simulated Live Load Lane(s) 

HS- 25 1 

HS- 25 2 

HS- 25 3 

HS- 25 2 and 3 

HS- 25 1, 2 and 3 

HS- 25 2 

HS- 25 3 

HS- 25 2 and 3 

204 k 2 

204 k 3 

- 124 -

Speed 

Crawl 

Crawl 

Crawl 

Crawl 

Crawl 

Moderate 

Moderate 

Moderate 

Crawl 

Crawl 
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I I 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Table 5.2 Strain Gage Groupings During Test Truck Runs 

1 I 2 I 3 I 4 I 5 

242TN 344TS 332TN 322TN 242SL 

242B 441TN 332TS 322B 242ST 

242TS 441B 333TN 322TS 340SL 

243TN 441TS 333B 212TN 340ST 

243B 442TN 333TS 212B 342SL 

243TS 442B 334TN 212TS 342ST 

340TN 442TS 334B 310TN 232NL 

340B 232TN 334TS 320TS 232NT 

340TS 232B 431TN 310TS 330NL 

341TN 232TS 431B 312TN 330NT 

341B 233TN 431TS 312B 332NL 

341TS 233B 432TN 342NT 332NT 

342TN 233TS 432B 242NL 232SL 

342TS 330TN 432TS 242NT 232ST 

343TN 330B 222TN 340NL 330SL 

343B 330TS 222B 340NT 330ST 

343TS 331TN 222TS 342NL 332SL 

344TN 331B 320TN --- 332ST 

344B 331TS 320B 332ST 342NL 

332B 332B 332B 332B 332B 

342B 342B 342B 342B 342B 
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I 6 I 
D23TS 

D23BS 

D33TS 

D33BS 

D24TS 

D24BS 

242WS1 

242WS2 

432WS1 

432WN1 

432WS2 

432WN2 

432WS3 

432WN3 

CL2 

222B 

222TS 

320TN 

320B 

332B 

342B 
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Gage 

Correction 
Factor 

Run 
Designation 

C1 

C2 

C3 

C23 

C123 

P2 

P3 

Gage 

Correction 
Factor 

Run 
Designation 

Cl 

C2 

C3 

C23 

C123 

P2 

P3 

Table 5.3 Strains and Stresses due to Test Trucks 
Middle of Span 2 

212TS 212B 

146.9/120 146.8/120 

Reading Strain Stress Reading Strain Stress Reading 
(J.I in/in) (ksi) (J.I in/in) (ksi) 

-44 -53.8 -1.56 --- --- --- -26 

-29 -35.5 -1.03 --- --- --- -17 

10 12.2 0.36 --- --- --- 3 

-21 -25.7 -0.75 --- --- --- -13 

-50 -61.2 -1.78 --- --- --- -33 

-36 -44.1 -1.28 --- --- --- -22 

9 11.0 0.32 --- --- --- 4 

222TS 222B 

146.7/120 136.3/120 

Reading Strain Stress Reading Strain Stress Reading 
(J.I in/in) (ksi) (J.I in/in) (ksi) 

-24 -29.3 -0.85 107 121.5 3.52 -27 

-20 -24.5 -0.71 90 102.2 2.97 -24 

-13 -15.9 -0.46 37 42.0 1.22 -16 

-29 -35.5 -1.03 126 143.1 4.15 -35 

-43 -52.6 -1.52 233 264.6 7.68 -51 

-26 -31.8 -0.92 117 132.9 3.85 -30 

-16 -52.6 -0.57 52 59.1 1.71 -20 
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212TN 

146.7/120 

Strain Stress 
(J.I in/in) (ksi) 

-31.8 -0.92 

-20.8 -0.60 

3.7 0.11 

-15.9 -0.46 

-40.3 -1.17 

-26.9 -0.78 

4.9 0.14 

222TN 

136.0/120 

Strain Stress 
(J.I in/in) (ksi) 

-30.6 -0.89 

-27.2 -0.79 

-18.1 -0.53 

-39.7 -1.15 

-57.8 -1.68 

-34.0 -0.99 

-22.7 -0.66 
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Gage 

Correction 
Factor 

Run 
Designation 

C1 

C2 

C3 

C23 

C123 

P2 

P3 

Gage 

Correction 
Factor 

Run 
Designation 

C1 

C2 

C3 

C23 

C123 

P2 

P3 

Table 5.3 (Con't) Strains and Stresses due to Test Trucks 
Middle of Span 2 

232TS 232B 

135.3/120 134.1/120 

Reading Strain Stress Reading Strain Stress Reading 
().1 in/in) (ksi) ().1 in/in) (ksi) 

-15 -16.9 -0.49 59 65.9 1.91 ---

-19 -21.4 -0.62 87 97.2 2.82 ---

-23 -25.9 -0.75 110 122.9 3.57 ---

-34 -38.3 -1.11 200 223.5 6.48 ---

-44 -49.6 -1.44 250 279.3 8.10 ---

-22 -24.8 -0.72 115 128.5 3.73 ---

-29 -32.7 -0.95 140 156.5 4.54 ---

242TS 242B 

148.4/120 133.8/120 

Reading Strain Stress Reading Strain Stress Reading 
().1 in/in) (ksi) ().1 in/in) (ksi) 

-3 -3.7 -0.11 7 7.8 0.23 -2 

-12 -14.8 -0.43 55 61.3 1.78 -6 

-23 -28.4 -0.83 169 188.4 5.47 -14 

-33 -40.8 -1.18 220 245.3 7.11 -16 

-37 -45.8 -1.33 234 260.9 7.57 -18 

-15 -18.6 -0.54 70 78.1 2.26 -9 

-27 -33.4 -0.97 216 240.8 6.98 -16 
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232TN 

143.9/120 

Strain Stress 
().1 in/in) (ksi) 

--- ---

--- ---

--- ---

--- ---

--- ---
--- . ---
--- ---

242TN 

142.8/120 

Strain Stress 
().1 in/in) (ksi) 

-2.4 -0.07 

-7.1 -0.21 

-16.7 -0.48 

-19.0 -0.55 

-21.4 -0.62 

-10.7 -0.31 

-19.0 -0.55 
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Table 5.4 Strains in Deck and Girders Test Truck Crawl Runs (J.l in./in.) 

Run 

I 

312TS 
I 

312TN 

I 

312B 

II 

322TS 

I 

322TN 

I 

322B 

I Designation 

C1 --- -22.2 132.9 -13.8 -13.9 120.2 

C2 --- -13.5 78.6 -9.2 -17.4 99.6 

C3 --- 2.5 -11.6 -4.6 -7.0 43.5 

C23 --- -4.9 64.7 -11.5 -20.9 152.3 

C123 --- -29.6 216.1 -26.4 -8.1 269.1 

P2 --- -18.5 111.0 -8.0 -20.9 131.7 

P3 --- 6.2 -10.4 -'5.7 -33.6 71.0 

Run 

I 

332TS 

I 

332TN 

I 

332SL 

I 

332NL 

I 

332B 

I Designation 

C1 -10.6 -6.9 -21.8 -14.3 72.2 

C2 -15.4 -10.4 -37.1 -22.0 103.1 

C3 -16.6 -19.6 -24.0 -35.5 129.5 

C23 -29.6 -30.1 -60.0 -61.6 233.7 

C123 -40.2 -37.0 -76.4 -80.3 302.5 

P2 -17.7 -12.7 -43.7 -29.7 131.8 

P3 -20.1 -26.6 -31.7 -55.0 171.9 

Run 

I 

342TS 

I 

342TN 

I 

342SL 

I 

342NL 

I 

342B 

I Designation 

C1 -8.4 -3.6 -7.6 -6.6 27.4 

C2 -16.8 -12.0 -22.9 -26.5 68.4 

C3 -48.1 -37.3 -60.9 -63.0 193.8 

C23 -60.1 -45.7 -84.9 -88.5 262.2 

C123 -71.2 -51.7 -92.5 -94.0 283.9 

P2 -21.6 -16.8 -30.5 -35.4 95.8 

P3 -60.1 -48.1 -87.1 -82.9 261.1 
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Run 

Designation 

C1 

C2 

C3 

C23 

C123 

P2 

P3 

S2 

S3 

S23 

Table 5.5 Maximum Stresses in Diaphragms 
Test Truck Runs (Ksi) 

Gage Locations 

023 TS 023 BS 033 TS 033 BS D24 TS 

4.7 -2.1 3.9 -1.8 0.8 

3.8 2.8 2.9 1.8 3.1 

2.3 1.0 -2.2 0.8 0.7 

1.6 3.6 0.7 3.0 2.7 

5.7 1.6 4.1 0.8 3.1 

4. 8 2.7 3.5 2.0 3.7 

-2.4 2.0 -2.6 1.7 -0.3 

3.3 2.1 2.4 2.1 2.5 

-2.0 1.0 -2.1 1.1 -0.3 

1.6 3.7 0.7 3.3 2.7 
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D24 BS 

-0.8 

-3.6 

1.8 

-2.0 

-3.0 

-4.1 

0.7 

-2.7 

1.6 

-2.0 
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Location 

242B 

340B 

341B 

342B 

343B 

344B 

332B 

333B 

334B 

431B 

432B 

D33TS 

D33BS 

Table 5.6 Bottom Flange Stress Ranges 
due to Test Truck (Ksi) 

Speed Runs Crawl Runs 

S3 S2 C3 

7.53 2.92 7.69 

3.41 1.10 3.17 

5.37 2.01 5.37 

7.27 2.57 7.18 

6.39 2.20 6.57 

2.58 1.03 2.98 

4.98 4.81 4. 81 

4.41 3.07 4.15 

1. 80 1. 60 1. 80 

5.19 3.11 4. 56 

5.84 (Off) 5.24 

(-)2.08 2.41 (-)2.19 

1. 09 2.07 0.76 
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C2 

2.84 

1. 30 

1. 85 

2.74 

2.56 

1.19 

3.95 

3.54 

1.40 

3.85 

4.54 

2.85 

1. 75 
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Location 

212 

222 

232 

242 

Table 5.7 Stresses due to Test Truck Crawl Runs 
Middle of Span 2 (ksi) 

2- D 3-D 

Designation Top Bottom Top Bottom 

C1 -0.51 3.53 -0.52 3.58 

C2 -0.27 1.84 -0.25 1.70 

C3 0.06 -0.44 -0.01 0.10 

C23 -0.21 1.40 -0.26 1.80 

C123 -0.72 4.93 -0.78 5.38 

P2 --- --- -0.33 2.31 

P3 0.08 -0.58 -0.02 0.12 

C1 -0.35 2.99 -0.42 3.64 

C2 -0.28 2.38 -0.34 2.88 

C3 -0.14 1.21 -0.13 1.10 

C23 -0.42 3.59 -0.47 3.98 

C123 -0.77 6.58 -0.89 7.62 

P2 --- --- -0.44 3.74 

P3 -0.19 1.63 -0.17 1.47 

C1 -0.19 1.64 -0.19 1.65 

C2 -0.28 2.38 -0.34 2.85 

C3 -0.36 3.11 -0.41 3.55 

C23 -0.64 5.49 -0.75 6.40 

C123 -0.83 7.13 -0.94 8.05 

P2 --- --- -0.44 3.74 

P3 -0.45 3.89 -0.49 4.23 

C1 -0.05 0.37 -0.06 0.38 

C2 -.027 1.84 -0.25 1.70 

C3 -0.71 4.87 -0.78 5.37 

C23 -0.97 6.71 -1.03 7.07 

C123 -1.02 7.08 -1.09 7.45 

P2 --- --- -0.33 2.30 

P3 -0.88 6.09 -0.92 6.38 
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Measured 

Top Bottom 

-1.24 ---

-0.82 ---

0.23 ---

-0.60 ---

-1.47 ---

--- ---

0.23 ---

-0.87 3.52 

-0.75 2.97 

-0.49 1.22 

-1.09 4.15 

-1.60 7.68 

--- ---

-0.61 1.71 

-0.49 1.91 

-0.62 2.82 

-0.75 3.57 

-1.11 6.48 

-1.44 8.10 

--- ---

-0.95 4.54 

-0.09 0.23 

-0.32 1.78 

-0.65 5.47 

-0.87 7.11 

-0.97 7.57 

--- ---

-0.76 6.98 
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Location 

312 

322 

332 

342 

Table 5.8 Stresses due to Test Truck Crawl Runs 
Middle of Span 3 (ksi) 

2-D 3-D 

Designation Top Bottom Top Bottom 

C1 -0.75 3.73 -0.79 3.92 

C2 -0.40 1.99 -0.40 1.99 

C3 0.07 -0.35 -0.01 0.04 

C23 -0.33 1.64 -0.41 2.03 

C123 -1.08 5.37 -1.20 5.95 

P2 -0.58 2.85 -0.57 2.82 

P3 0.09 -0.47 -0.01 0.06 

C1 -0.60 3.21 -0.65 3.53 

C2 -0.47 2.55 -0.52 2.78 

C3 -0.24 1.29 -0.23 1.24 

C23 -0.71 3.83 -0.75 4.02 

C123 -1.31 7.04 -1.40 7.55 

P2 -0.63 3.40 -0.69 3.70 

P3 -0.34 1.81 -0.32 1.71 

C1 -0.31 1.68 -0.32 1.70 

C2 -0.47 2.55 -0.51 2.77 

C3 -0.60 3.21 -0.65 3.48 

C23 -1.07 5.76 -1.16 6.25 

C123 -1.38 7.44 -1.48 7.95 

P2 -0.63 3.39 -0.69 3.70 

P3 -0.80 4.33 -0.86 4.65 

C1 -0.10 0.50 -0.09 0.45 

C2 -0.40 1.99 -0.40 1.98 

C3 -1.03 5.08 -1.09 5.41 

C23 -1.43 7.07 -1.49 7.39 

C123 -1.53 7.57 -1.58 7.84 

P2 -0.58 2.85 -0.57 2.81 

P3 -1.38 6.81 -1.47 7.27 
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Measured 

Top Bottom 

-0.64 3.86 

-0.39 2.28 

0.07 -0.34 

-0.14 1.88 

-0.86 6.27 

-0.54 3.22 

0.18 -0.30 

-0.40 3.49 

-0.39 2.89 

-0.17 1.26 

-0.47 4.42 

-0.87 7.80 

-0.42 3.82 

-0.20 2.06 

-0.26 2.09 

-0.37 2.99 

-0.53 3.76 

-0.86 6.78 

-1.12 8.77 

-0.44 3.82 

-0.68 4.98 

-0.18 0.79 

-0.42 1.98 

-1.24 5.62 

-1.53 7.60 

-1.80 8.23 

-0.56 2.78 

-1.57 7.57 
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Location 

310 

320 

330 

340 

Table 5.9 Stresses due to Test Truck Crawl Runs 
over Pier 2 (ksi) 

2- D 3-D 

Designation Top Bottom Top Bottom 

C1 0.50 -1.69 0.54 -1.82 

C2 0.28 -0.93 0.29 -0.97 

C3 -0.05 0.17 0.01 -0.03 

C23 0.23 -0.75 0.30 -1.00 

C123 0.73 -2.44 0.84 -2.82 

P2 0.37 -1.25 0.41 -1.38 

P3 -0.07 0.23 O.Gl -0.04 

C1 0.35 -1.40 0.39 -1.57 

C2 0.29 -1.15 0.32 -1.28 

C3 0.15 -0.62 0.16 -0.64 

C23 0.44 -1.76 0.48 -1.92 

C123 0.79 -3.17 0.87 -3.49 

P2 0.39 -1.57 0.45 -1.79 

P3 0.22 -0.86 0.23 -0.90 

C1 0.20 -0.81 0.22 -0.86 

C2 0.29 -1.15 0.32 -1.25 

C3 0.37 -1.47 0.40 -1.61 

C23 0.66 -2.62 0.72 -2.86 

C123 0.86 -3.43 1.12 -3.72 

P2 0.39 -1.57 0.45 -1.19 

P3 0.51 -2.04 0.57 -2.26 

C1 0.07 -0.22 0.07 -0.22 

C2 0.28 -0.93 0.29 -0.97 

C3 0.65 -2.20 0.72 -2.42 

C23 0.93 -3.13 1.01 -3.39 

C123 1.00 -3.35 1.08 -3.61 

P2 0.39 -1.30 0.41 -1.38 

P3 0.91 -3.05 1.01 -3.40 
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Measured, 

Top Bottom 

0.68 ---

0.36 ---

-0.23 ---

0.20 ---

0.96 ---

0.53 ---

-0.31 ---

0.46 -1.78 

0.38 -1.53 

0.22 -0.65 

0.67 -2.09 

1.16 -3.58 

0.55 -2.12 

0.33 -0.97 

0.20 -1.00 

0.24 -1.40 

0.44 -1.68 

0.74 -3.02 

0.97 -3.98 

0.38 -1.93 

0.66 -2.33 

0.08 -0.19 

0.30 -0.94 

1.08 -2.35 

1.18 -3.30 

1.23 -3.42 

0.34 -1.13 

1.36 -3.55 
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Table 5.10 Comparison of Maximum Live Load Stresses 
Cross Section 342 (ksi) 

HS - 25 Loading in All Lanes 

I 
2- D 

I 
3-D 

I 
Measured 

C123 

Top 

I 

-2.21 

I 

-2.13 

I 
-1.80 

Bottom 10.92 10.51 8.23 

204k +Two HS - 25 

I 
2- D 

I 
3-D 

I 
Measured 

C123 

Top 

I 

-2.19 

I 

-2.19 

I 
-2.17 

Bottom 10.21 10.82 10.34 
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Run 

Designation 

C1 

C2 

C3 

C23 

C123 

P2 

P3 

Table 5.11 Longitudinal Strains on Deck Surface 
Test Truck Crawl Runs (p in./in.) 

312 * 322 * 332SL 332 * 332NL 342SL 

-44.6 -33.1 -21.8 -20.4 -14.3 -7.6 

-26.8 -29.5 -37.1 -29.6 -22.0 -22.9 

4.5 -12.9 -24.0 -39.3 -35.5 -60.9 

-15.0 -40.4 -60.0 -67.7 -61.6 -84.9 

-65.1 -58.4 -76.4 -108.2 -80.3 -92.5 

-37.2 -35.4 -43.7 -36.3 -29.7 -30.5 

-12.8 -32.7 -31.7 -51.4 -55.0 -87.1 

* Extrapolated 
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342 * 342NL 

-10.8 -6.6 

-26.4 -26.5 

-76.7 -63.0 

-98.4 -88.5 

-111.3 '-94.0 

-35.8 -35.4 

-99.6 -82.9 
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I 

Location 

I 
I 

310 

I 
I 
I 
I 320 

I 
I 
I 
I 330 

i, 

I 
~ 

-: \ 

I l 

·I· 
340 

I 
I 

Table 5.9 Stresses due to Test Truck Crawl Runs 
over Pier 2 (ksi) 

2- D 3-D 

Designation Top Bottom Top Bottom 

C1 0.50 -1.69 0.54 -1.82 

C2 0.28 -0.93 0.29 -0.97 

C3 -0.05 0.17 0.01 -0.03 

C23 0.23 -0.75 0.30 -1.00 

C123 0.73 -2.44 0.84 -2.82 

P2 0.37 -1.25 0.41 -1.38 

P3 -0.07 0.23 0.01 -0.04 

C1 0.35 -1.40 0.39 -1.57 

C2 0.29 -1.15 0.32 -1.28 

C3 0.15 -0.62 0.16 -0.64 

C23 0.44 -1.76 0.48 -1.92 

C123 0.79 -3.17 0.87 -3.49 

P2 0.39 -1.57 0.45 -1.79 

P3 0.22 -0.86 0.23 -0.90 

C1 0.20 -0.81 0.22 -0.86 

C2 0.29 -1.15 0.32 -1.25 

C3 0.37 -1.47 0.40 -1.61 

C23 0.66 -2.62 0.72 -2.86 

C123 0.86 -3.43 1.12 -3.72 

P2 0.39 -1.57 0.45 -1.19 

P3 0.51 -2.04 0.57 -2.26 

C1 0.07 -0.22 0.07 -0.22 

C2 0.28 -0.93 0.29 -0.97 

C3 0.65 -2.20 0.72 -2.42 

C23 0.93 -3.13 1.01 -3.39 

C123 1.00 -3.35 1.08 -3.61 

P2 0.39 -1.30 0.41 -1.38 

P3 0.91 -3.05 1.01 -3.40 

Measured 

Top Bottom 

0.68 ---

0.36 ---

-0.23 ---

0.20 ---

0.96 ---

0.53 ---
-0.31 ---

0.46 -1.78 

0.38 -1.53 

0.22 -0.65 

0.67 -2.09 

1.16 -3.58 

0.55 -2.12 

0.33 -0.97 

0.20 -1.00 

0.24 -1.40 

0.44 -1.68 

0.74 -3.02 

0.97 -3.98 

0.38 -1.93 

0.66 -2.33 

0.08 -0.19 

0.30 -0.94 

1.08 -2.35 

1.18 -3.30 

1.23 -3.42 

0.34 -1.13 

1.36 -3.55 
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i 

169'-0" 
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Pier 1 

i 
i 

'I" I I 
i 
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i 

Pier 2 

228'-0" 

Grade +0.05 % 

I I I I I I I I ILl I 

Elevation View 

i 
i 

I Iii I 

i 
i 
i 

Pier 3 

114'-o· 

Half 
Span 1 Span 2 Span 3 Span 4 
too· o· 169·-o· 228·-o· 114·-o· 

Sym. 

<t 
Span 4 

East 

1
-_ _ _ _ _ __ E _ _ _ .. _ _ .. -----,~ -- --.. ... ------- ---- ----- -· ---,-- -- .......... .. -· -· .... · -......... _ .. li Girder No. 4 

-·---·---------·-------.. ··- -·-------.. ·-·-----.. ----·-·------.. -----·----·-----·----.. -·-----------------.. -----------------.. ---·--·-------------------·-.................. ---·--·--·-·--·------··-.... -----·-................... !Girder No. 3 
I . 

-·-------·--------·---··----·- .. -----·-------------·------------------- ----------------------------·------------------------- -----·-----·--.. --.. ·--··----·---·--·-.. j Girder No. 2 

;----- - - - --- --· - - - - ----- - - ----- -- -- - - - --·---·---- --·--·-- - -·---·--·---.. --.. --·---.. --·--·- ....... -...... ,................ .. .................................................................................. ..i Girder No. 1 

Abutment 1 Pier 1 Pier 2 

Plan View 

Fig 2.1 Plan and Elevation of East-Bound Structure 
(Abutment to midspan of Span 4) 

i 
Pier 3 



I 
I 100'-0· 

[ It 9/16 :I --Web Thickness (typ.) 

--Top Flange Plate (typ.) 

1 72·-o· 29·-o· 1 
--Bottom Flange Plate (typ.) 

1 
Abutment 1 Span 1 Pier 1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

! it'M6 
I 18·-o· 

It 18 X 1 1/-4 

Pier 1 

It '5/8 

17'-0' 37'-0' 

I 
It 2-4 X 1 1/-4 

I It 33 X I 718 

I 

117'-o· I 
I 

Pier 2 

It 27 X 1 5/8 

37'-0' 

169'-o· 

It 9116 

97'-0' 
It 12 X '5/8 

It 21 X 1 1/8 

97'-0' 

Span 2 

114'-0"' 

It 5/8 It 9116 

ss·-o· 
It 12 X 5/8 

It 33 X I 13116 I It 36 X 2 l/2 

11·-o· I 2o·-o· 22'-0' 

Pier3 Half Span 4 

It '518 ! 
31 ·-o· .1 23·-o· ! 

It 21 X 1 1/2 I I 
, It 33 X 1 7/8 I 

Pier 2 

228'-0· 

9/16 

120'-0' 
It 12 X 7/8 

It 2-4 X I 7/16 

120"-0' 

Span 3 

It '5/8 

17'-o· 20·-o· t7·-o· 

It 33 X I 13/16 I 

It 36 X 2 l/2 I 
I 17'-o· I 20·-o· I 17·-o· 

I 

Pier 3 

Fig 2.2 Variation of Plate-Girder Dimensions 
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-------------------
51'-6. 

4s·-o· 

North to· Typical Slope -0.02% 
South 

4'-4 112· 14'-3· 14'-3· 14'-3. 4'-4 1/2. 

Girder 4 Girder 3 Girder 2 Girder 1 

Fig. 2.3 Typical Cross Section of Bridge Superstructure 



I 
I 
I 
I 

West 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

so·-o· 76'-6" 86'-o· 1o1·-o· 116'•6" 

13! ,._;. F_j 4 ~-·_s! .. -_,.!61216! ~--· f ~-··Is w I 
I I I 
I I I i I ! I I I I I I IIIII~ IIIII I I I I I I I I II Ill I 1£11 I I I II I I I I I II I I I I II I II I I 1111111 I I I I I I I II 
i i I . I II 
• 100·-o· • 16'3·-o· • 22e·-o· ' tt-4·-o· . 
I Span I I Span 2 I Span 3 I Half Span 4 ! 

~ 
! 

116'-6" 101'-o· 86'-0" 76'-6" 

I tJ s! ~-·· ~ ~J 61216! ... _}~-·- 4 L.l ~J 31 
1 I I I I 
i i I I I ! I I I I I I I I I I I II! I I II I I I II I I I I I I I I II I I I I I II! I I I I I I I I II I I I I I I !Ill~ !Ill I I I I I I~ East 

; 11-4'·0• I 2i!B'-0" I 169'-0" I 100"-0" I 

; Half Span 4 Span 5 Span 6 Span 7 

Casting Day Casting Deflection * Sequence No. Date Measurement No. 

0 
1,2W 1 10/15187 (Th) 

1 
2E 5 1 0/19/87 (M) 

2 
3E,3W 6 1 0/20187 (Tu) 

3 
4E 7 10!.21187 (W) 

4 
4W 8 1 0/22187 (Th) 

5 
5E,5W 9 1 0123/87 (F) 

6 
6W 10 1 0!.24187 (Sa) 

7 
6E 12 1 0!.26187 (M) 

8 
7E 13 10/27187 (Tu) 

7'N 14 1 0!.28187 (W) 
. 9 

BE 15 10/29187 (Th) 
10 

fN'J 16 1 0!30187 (F) 
11 

9E 19 11l2/87 (M) 
12 

W-1 20 11!3187 (Tu) 
13 

14 

* For measurement dates refer to Fig. 3.1 

Fig. 2.4 Deck Casting Sequence 
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Fig. 2.5 concrete oeck Slab Edge Formwork 
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Fig. 2.6 Bridge under Construction (Newspaper photograph) 

I 
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Fig 2. 7 Plate Girder and Deck Slab Strain Gages 
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Fig. 2.8 Strain Gages on Deck Slab 
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Fig. 2.9 Polyester Mold Gage 
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Fig. 2.11 (a) Web Gage Locations- Span 2 
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Fig. 2.11 (b) Web Gage Locations- Span 4 
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Fig. 2.11 (c) Web Gage Locations- Span 4 
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Fig. 3.1 Time Table for Slab Placement/Deflection Readings 

Elevation 
Reading 

No. 

0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Date 

Oct. 14 
(1987) 

Oct. 15 

Time (pm) 

4:15-6:00 

4:00-5:30 

Oct. 19 3:50-5:15 

Oct. 20 4:00-5:00 

Oct. 21 3:50-5:00 

Oct. 22 4:00-5:15 

Oct. 23 3:50-5:00 

Oct. 25 3:00-4:30 

Oct. 26 3:00-4:30 

Oct. 28 3:00-4:00 

Oct. 29 3:30-4:45 

Oct. 30 3:15-4:30 

Nov. 2 3:30-4:50 

Nov. 5 3:35-5:00 

14 Aug. 12 3:20-5:00 
(1988} 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

<J 

Pedestal 

1 II X 1/8 II 

Ll 

<J 

Clearance: 3/8 II to 1 1/4 II 

~T ~ 
~No.4rebar 

<J 

<J 

Top part of plate girder 

Fig. 3.2 Detail of Pedestal 

- 151 -

Slab 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Reading Number 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 

140 -~ E <ll e e $ e e $ e e e e e e e ~ 

130 6 E ~ 
-1 

e tb e e ~ e tb e e tb ~ ~ ~ 

141 -~ E <ll 

-2 

131 -~ E t 
-2 

t t 4- +--t t--+- t- +-+-4--$--4-----4 
I 0 I I I I 0 0 I I I I I 

1 

142 :~ E t --r -1--*-+--t t· t t : --+--+--+--+------+ 
132 

143 

133 

240 

230 

t- t--t--+-1 t t t- i -t t t -+----i 1 E . 
-~ r 
-2 

-~ E t 
-2 

t t--+-t- t t ~ + 

1~ -~ r 
-2 

t= ±--+-+== t t : : t t -~- t= 

6E <ll ~ $ $ $ ~ ~ ~ ~ e e e $ 4 
-1 

6E <ll -~--$ ~-=r=-+ -4- ' ~ =I 4--~ ' ~= 4> 0 0 0 

-1 
Vertical scale: 1 unit = 0.1 0 ft. 
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Fig. 3.4 Measured Deflections due to Slab Placement - Span 2 
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Measured Stress vs. Day Number 
Location: 332 
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Day Number 
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Day Measured Measured 

Number (ksi) (ksi) 

1 -8.485 5.710 
5 -11.075 6.080 
6 -11.915 5.170 
7 -10.990 6.080 
8 -10.920 4.230 
9 -10.765 1.810 
10 -12.590 8.570 
12 -12.505 9.070 
13 -12.740 7.960 
14 -12.705 8.840 
15 -13.210 8.630 
16 -13.215 8.570 
19 -13.470 7.460 
20 -14.565 6.750 

Fig. 4.3 Variation of Stresses in Girder Flanges during Construction at Location 332 
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Measured Stress vs. Day Number 
Location: 432 
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14 -14.520 3.220 
15 -14.275 1.400 
16 -15.355 -0.210 
19 -16.415 1.820 
20 -18.025 -1.010 

Fig. 4.4 Variation of Stresses in Girder Flanges during Construction at Location 432 
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Measured Stress vs. Day Number 
Location: 330 
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8 5.590 -3.710 
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Fig. 4.5 Variation of Stresses in Girder Flanges during Construction at Location 330 
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Stress vs. Day Number 
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Day STRESS DESCUS CURVBRG BSDI Measured 
Number (ksi) (ksi) (ksi) (ksi) (ksi) 

0 0.00 0.00 0.00 0.00 0.000 
1 -8.15 -8.09 -8.26 -8.37 -8.485 
5 -8.23 -8.16 -8.32 -8.45 -11.075 
6 -8.26 -8.19 -8.35 -8.48 -11.915 
7 -8.23 -8.16 -8.32 -8.46 -10.990 
8 -7.91 -7.84 -8.00 -8.17 -10.920 
9 -7.57 -7.50 -7.66 -7.79 -10.765 
10 -8.69 -8.64 -8.81 -8.99 -12.590 
12 -8.82 -8.77 -8.91 -9.15 -12.505 
13 -12.740 
14 -8.84 -8.79 -8.92 -9.16 -12.705 
15 -13.210 
16 -8.87 -8.82 -8.96 -9.21 -13.215 
19 -8.84 -8.79 -8.93 -9.16 -13.470 
20 -8.88 -8.85 -8.99 -9.19 -14.565 

Fig. 4.6 Computed and Measured Stress Variation during Construction - Location 332T 
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I Fig. 4.7 Computed and Measured Stress Variation during Construction- Location 3328 
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Stress vs. Day Number 
Location: 432T 
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0 0.00 0.00 0.00 0.00 0.000 
1 -10.03 -9.95 -10.14 -7.58 -9.120 
5 -9.83 -9.75 -9.97 -7.39 -15.620 
6 -9.81 -9.73 -9.95 -7.38 -15.760 
7 -9.90 -9.82 -10.04 -7.44 -14.510 
8 -10.00 -9.92 -10.14 -7.54 -13.575 
9 -10.95 -10.89 -11.12 -8.65 -15.190 
10 -10.46 -10.40 -10.63 -8.19 -15.100 
12 -10.03 -9.97 -10.31 -7.79 -15.535 
13 -16.510 
14 -10.02 -9.96 -10.31 -7.79 -14.520 
15 -14.275 
16 -10.01 -9.95 -10.30 -7.77 -15.355 
19 -10.13 -10.07 -10.43 -7.94 -16.415 
20 -10.26 -10.20 -10.57 -8.10 -18.025 

Fig. 4.8 Computed and Measured Stress Variation during Construction - Location 432T 
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Stress vs. Day Number 
Location: 4328 
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0 0.00 0.00 0.00 0.00 0.000 
1 6.01 5.97 6.08 4.55 4.740 
5 4.79 4.76 5.02 3.34 0.000 
6 4.68 4.65 4.92 3.28 -2.200 
7 5.23 5.20 5.46 3.66 -0.890 
8 5.84 5.81 6.06 4.25 -0.510 
9 11.68 11.74 12.06 11.07 8.460 
10 8.69 8.76 9.09 8.23 4.570 
12 6.05 6.14 7.13 5.81 2.120 
13 0.640 
14 6.01 6.10 7.10 5.80 3.220 
15 1.400 
16 5.95 6.04 7.01 5.68 -0.210 
19 6.71 6.80 7.83 6.69 1.820 
20 7.50 7.57 8.71 7.69 -1.010 

Fig. 4.9 Computed and Measured Stress Variation during Construction- Location 4328 
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Stress vs. Day Number 
Location: 330T 
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Fig. 4.1 0 Computed and Measured Stress Variation during Construction - Location 330T 
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Day STRESS DESCUS CURVBRG BSDI Measured 
Number (ksi) (ksi) (ksi) (ksi) (ksi) 

0 0.00 0.00 0.00 0.00 0.000 
1 -1.80 -1.78 -1.79 -2.02 -0.280 
5 -2.06 -2.04 -2.01 -2.31 -0.570 
6 -1.71 -1.69 -1.68 -1.96 -1.100 
7 -1.59 -1.57 -1.57 -1.87 -0.310 
8 -5.49 -5.41 -5.44 -5.38 -3.710 
9 -4.05 -3.98 -4.04 -3.77 -2.700 
10 -9.27 -9.18 -9.16 -9.20 -7.380 
12 -9.62 -9.53 -9.41 -9.59 -8.320 
13 -8.510 
14 -9.47 -9.38 -9.30 -9.51 -8.390 
15 -8.450 
16 -12.14 -12.07 -11.84 -12.58 -10.680 
19 -12.03 -11.96 -11.72 -12.38 -10.930 
20 -12.14 -12.11 -11.90 -12.44 -11.940 

Fig. 4.11 Computed and Measured Stress Variation during Construction - Location 3308 
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Stress vs. Day Number 
Location: 342T 

- LU -- · 2-D ----· Meas. 

~-------------------

· . .............. _ ..... ----·--------,_____ ---------- ---

5 10 15 20 
Day Number 

Day LU 2-D Measured 
Number (ksi) (ksi) (ksi) 

1 -7.913 -7.97 -8.160 
5 -8.015 -8.05 -12.200 
6 -8.101 -8.09 -12.665 
7 -8.054 -8.05 -12.200 
8 -7.204 -7.71 -12.115 
9 -6.426 -7.35 -11.400 
10 -9.696 -8.62 -13.135 
12 -9.717 -8.76 -12.700 
13 -9.717 -12.615 
14 -9.732 -8.78 -12.580 
15 -9.732 -12.875 
16 -9.755 -8.82 -12.855 
19 -9.735 -8.79 -13.365 
20 -9.795 -8.84 -13.880 

Fig. 4.12 Comparison of Stresses at Location 342T (Shrinkage Excluded) 
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Stress vs. Day Number 
Location: 3428 

20~-------------------, 

.--15 g 
!G 
b) 10 
Q) 

7!5 c 
~ 

0 

- LU -- · 2-D ----· Meas. 

- - -- -- ---- ---- -
............ 

5 

Day 
Number 

1 
5 
6 
7 
8 
9 
10 
12 
13 
14 
15 
16 
19 
20 

10 

. -· ......... 

Day Number 

LU 2-D 
(ksi) (ksi) 

4.768 4.73 
4.945 5.12 
5.128 5.30 
5.044 5.12 
3.270 3.41 
1.848 1 .63 
8.069 7.89 
8.163 8.59 
8.164 
8.232 8.67 
8.232 
8.330 8.85 
8.244 8.69 
8.525 8.95 

-....... --- --- ---

15 20 

Measured 
(ksi) 

4.940 
5.070 
4.340 
5.170 
3.400 
1.100 
8.070 
8.400 
7.240 
8.100 
8.140 
8.040 
6.800 
6.200 

Fig. 4.13 Comparison of Stresses at Location 3428 (Shrinkage Excluded) 
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Stress vs. Day Number 
Location: 332T 

- LU -- · 2-D ----· Meas. 

-------------..... -- - --- --- ---- ---- ---
--. 

.. .......... 

5 

Day 
Number 

1 
5 
6 
7 
8 
9 
10 
12 
13 
14 
15 
16 
19 
20 

. ----·---··----- ·-- ......... 

10 15 
Day Number 

LU 2-D Measured 
(ksi) (ksi) (ksi) 

-9.303 -8.15 -8.485 
-9.417 -8.23 -11.075 
-9.489 -8.26 -11.915 
-9.440 -8.23 -10.990 
-8.733 -7.91 -10.920 
-7.947 -7.57 -10.765 
-10.805 -8.69 -12.590 
-10.826 -8.82 -12.505 
-10.826 -12.740 
-10.839 -8.84 -12.705 
-10.839 -13.210 
-10.852 -8.87 -13.215 
-10.834 -8.84 -13.470 
-10.880 -8.88 -14.565 

20 

Fig. 4.14 Comparison of Stresses at Location 332T (Shrinkage Excluded) 
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Stress vs. Day Number 
Location: 3328 

20-r----------------------. 
- LU -- · 2-D ---- · Meas. 

-15 

~ 
~ 

U5 10 
Q) 

·~ 

__ ,.....,_ .... 
·-· ~- .. :-:.-----.......... 

~ ---------=--, 
''-· 'I ,. I 

"'ol 

0 5 10 15 20 
Day Number 

Day LU 2-0 Measured 
Number (ksi) (ksi) (ksi) 

1 5.721 4.94 5.710 
5 5.924 5.35 6.080 
6 6.078 5.54 5.170 
7 5.992 5.36 6.080 
8 4.409 3.63 4.230 
9 3.036 1.80 1.810 
10 8.854 7.82 8.570 
12 8.957 8.55 9.070 
13 8.958 7.960 
14 9.023 8.63 8.840 
15 9.024 8.630 
16 9.097 8.79 8.570 
19 9.005 8.63 7.460 
20 9.356 8.87 6.750 

Fig. 4.15 Comparison of Stresses at Location 3328 (Shrinkage Excluded) 
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Stress vs. Day Number 
Location: 330T 

20~-------------------. 

- LU -- · 2-D ----· Meas. 

0 5 10 15 20 
Day Number 

Day LU 2-D Measured 
Number (ksi) (ksi) (ksi) 

1 2.328 1.94 1.600 
5 2.470 2.22 1.695 
6 2.019 1.84 2.045 
7 1.955 1.71 2.295 
8 6.539 5.91 5.590 
9 5.365 4.36 4.160 
10 10.858 9.99 9.505 
12 10.916 10.37 10.730 
13 10.916 10.465 
14 10.767 10.21 10.555 
15 10.767 10.415 
16 13.936 13.09 13.810 
19 13.910 13.06 11.235 
20 13.969 13.09 11.295 

Fig. 4.16 Comparison of Stresses at Location 330T (Shrinkage Excluded) 
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Stress vs. Day Number 
Location: 3308 

------ ...... __ .... '\ 
-------

--. -- .. ---- --· ........ --------- ...... 

- LU -- · 2-D ----· Meas. 

------------------

-2'0+------.----------..------r----------l 
0 5 10 15 20 

Day Number 

Day LU 2-D Measured 
Number (ksi) (ksi) (ksi) 

1 -2.110 -1.80 -0.280 
5 -2.239 -2.06 -0.570 
6 -1.828 -1.71 -1.100 
7 -1.771 -1.59 -0.310 
8 -5.966 -5.49 -3.710 
9 -4.896 -4.05 -2.700 
10 -9.879 -9.27 -7.380 
12 -9.931 -9.62 -8.320 
13 -9.931 -8.510 
14 -9.794 -9.47 -8.390 
15 -9.795 -8.450 
16 -12.445 -12.14 -10.680 
19 -12.369 -12.03 -10.930 
20 -12.636 -12.14 -11.940 

Fig. 4.17 Comparison of Stresses at Location 3308 (Shrinkage Excluded) 
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Stress vs. Day Number 
Location: 432T 

- LU -- · 2-D -··-· Meas. 

5 

Day 
Number 

1 
5 
6 
7 
8 
9 
10 
12 
13 
14 
15 
16 
19 
20 

--------------------

10 

....... __ ~~~~---.................. .. -..... _ ..... .,' 

15 20 
Day Number 

LU 2-0 Measured 
(ksi) (ksi) (ksi) 

-11.404 -10.03 -9.120 
-10.446 -9.83 -15.620 
-10.362 -9.81 -15.760 
-10.806 -9.90 -14.510 
-11.239 -10.00 -13.575 
-14.808 -10.95 -15.190 
-13.911 -10.46 -15.100 
-13.020 -10.03 -15.535 
-13.014 -16.510 
-13.008 -10.02 -14.520 
-13.004 -14.275 
-12.998 -10.01 -15.355 
-13.184 -10.13 -16.415 
-13.300 -10.26 -18.025 

Fig. 4.18 Comparison of Stresses at Location 432T (Shrinkage Excluded) 
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Stress vs. Day Number 
Location: 4328 

15.....----------------------. 
- LU --· 2-D ····· Meas. 

,., 
-10 I ', -

~ ,' . ' 
I\ ', _,..-

~ v ..... ___ ,'""::" /.. -------------
05 5 --------- I \\..,._ ......... / -
~ ·. . .. 
·ccn ........... _ .: , .. 

~ ..... _ -.·· . ' ~ ··... : -. .-· .. 

0 5 

Day 
Number 

1 
5 
6 
7 
8 
9 
10 
12 
13 
14 
15 
16 
19 
20 

. . ... ......... 

10 
Day Number 

LU 2-D 
(ksi) (ksi) 

5.950 6.01 
6.500 4.79 
6.532 4.68 
6.357 5.23 
6.183 5.84 
8.336 11.68 
8.950 8.69 
9.552 6.05 
9.555 
9.559 6.01 
9.562 
9.565 5.95 
9.919 6.71 
10.273 7.50 

15 

Measured 
(ksi) 

4.740 
0.000 
-2.200 
-0.890 
-0.510 
8.460 
4.570 
2.120 
0.640 
3.220 
1.400 
-0.210 
1.820 
-1.010 

20 

Fig. 4.19 Comparison of Stresses at Location 4328 (Shrinkage Excluded) 
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Stress vs. Day Number 
Location: 332T 

- LU -- · LUSH----· Meas. 

··--·· " 
~;.: :..-:..:-· -· ........................ ------ ...... ------...... __ ....... ---------.. ... 

5 10 15 20 
Day Number 

Day LU LUSH Measured 
Number (ksi) (ksi) (ksi) 

1 -9.303 -9.303 -8.485 
5 -9.417 -10.473 -11.075 
6 -9.489 -10.811 -11.915 
7 -9.440 -11.029 -10.990 
8 -8.733 -10.589 -10.920 
9 -7.947 -9.948 -10.765 
10 -10.805 -12.967 -12.590 
12 -10.826 -13.414 -12.505 
13 -10.826 -14.004 -12.740 
14 -10.839 -14.257 -12.705 
15 -10.839 -14.508 -13.210 
16 -10.852 -14.756 -13.215 
19 -10.834 -15.218 -13.470 
20 -10.880 -16.466 -14.565 

Fig 4.20 Comparison of Stresses at Location 332T (Shrinkage Included) 
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Stress vs. Day Number 
Location: 3328 

~~.-----------------------------------~ 
-LU 

-15 

~ 
~ 

05 10 

~ 
-~ 

~ 

0 5 

Day 
Number 

1 
5 
6 
7 
8 
9 
10 
12 
13 
14 
15 
16 
19 
20 

-- · LUSH----· Meas. 

..... _, .. -- .. _ ---.... -----, .... 

10 
Day Number 

LU LUSH 
(ksi) (ksi) 

5.721 5.721 
5.924 6.071 
6.078 6.263 
5.992 6.216 
4.409 4.672 
3.036 3.307 
8.854 9.078 
8.957 8.971 
8.958 9.112 
9.023 9.284 
9.024 8.687 
9.097 8.670 
9.005 7.512 
9.356 4.914 

15 

Measured 
(ksi) 

5.710 
6.080 
5.170 
6.080 
4.230 
1.810 
8.570 
9.070 
7.960 
8.840 
8.630 
8.570 
7.460 
6.750 

' ' 

20 

Fig. 4.21 Comparison of Stresses at Location 3328 (Shrinkage Included) 
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Stress vs. Day Number 
Location: 330T 

20-;--------------------....., 
- LU -- · LUSH····· Meas. 

-----------------· 

0 5 10 . 15 20 
Day Number 

Day LU LUSH Measured 
Number (ksi) (ksi) (ksi) 

1 2.328 2.328 1.600 
5 2.470 2.495 1.695 
6 2.019 2.051 2.045 
7 1.955 1.992 2.295 
8 6.539 6.579 5.590 
9 5.365 5.433 4.160 
10 10.858 10.902 9.505 
12 10.916 11.179 10.730 
13 10.916 11.422 10.465 
14 10.767 11.400 10.555 
15 10.767 11.379 10.415 
16 13.936 14.621 13.810 
19 13.910 13.572 11.235 
20 13.969 13.956 11.295 

Fig. 4.22 Comparison of Stresses at Location 330T (Shrinkage Included) 
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Stress vs. Day Number 
Location: 3308 

.. ----.- ... "'- ... -~ ... ', 

---
------ -" ', ___________ _ 

' '-! 
':\.---Ll 
'-- I 

--- ... 1 

-LU -- · LUSH----· Meas. 

5 10 15 20 
Day Number 

Day LU LUSH Measured 
Number (ksi) (ksi) (ksi) 

1 -2.110 -2.110 -0.280 
5 -2.239 -2.263 -0.570 
6 -1.828 -1.859 -1.100 
7 -1.771 -1.805 -0.310 
8 -5.966 -6.005 -3.710 
9 -4.896 -4.959 -2.700 
10 -9.879 -9.920 -7.380 
12 -9.931 -10.171 -8.320 
13 -9.931 -10.389 -8.510 
14 -9.794 -10.367 -8.390 
15 -9.795 -10.379 -8.450 
16 -12.445 -13.101 -10.680 
19 -12.369 -14.204 -10.930 
20 -12.636 -10.271 -11.940 

Fig. 4.23 Comparison of Stresses at Location 3308 (Shrinkage Included) 
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Stress vs. Day Number 
Location: 432T 

- LU -- · LUSH----· Meas. 

-::.~-~-~---.- -... _, ..... ---:~ 
---- \-, .~---- .. 

\ ·------------. .· ---'- ----- -- .... .., .. ---- ................ ... ---- ____ ... _ 

5 10 15 20 
Day Number 

Day LU LUSH Measured 
Number (ksi) (ksi) (ksi) 

1 -11.404 -11.404 -9.120 
5 -10.446 -11.521 -15.620 
6 -10.362 -11.703 -15.760 
7 -10.806 -12.414 -14.510 
8 -11.239 -13.117 -13.575 
9 -14.808 -16.830 -15.190 
10 -13.911 -16.473 -15.100 
12 -13.020 -16.025 -15.535 
13 -13.014 -16.193 -16.510 
14 -13.008 -16.376 -14.520 
15 -13.004 -16.554 -14.275 
16 -12.998 -16.750 -15.355 
19 -13.184 -17.498 -16.415 
20 -13.300 -17.726 -18.025 

Fig. 4.24 Comparison of Stresses at Location 432T (Shrinkage Included) 
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Stress vs. Day Number 
Location: 4328 

15....-------------------....., 
- LU -- · LUSH----· Meas. 

-10 --- ----------------:. 
~ 
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~ 5 v .. ·--------. __ _ 
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Day 
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8 
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14 
15 
16 
19 
20 

. . . .... 

- .. . . 

_ ..... ' 

. . . ... . . . . . . . . 

10 

. . . . 

Day Number 

LU LUSH 
(ksi) (ksi) 

5.950 5.950 
6.500 6.714 
6.532 6.800 
6.357 6.679 
6.183 6.558 
8.336 8.737 
8.950 9.384 
9.552 10.065 
9.555 10.128 
9.559 10.174 
9.562 10.200 
9.565 10.245 
9.919 10.653 

10.273 10.791 

.. 
' . . 

15 20 

Measured 
(ksi) 

4.740 
0.000 
-2.200 
-0.890 
-0.510 
8.460 
4.570 
2.120 
0.640 
3.220 
1.400 
-0.210 
1.820 
-1.010 

Fig. 4.25 Comparison of Stresses at Location 4328 (Shrinkage Included) 
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Day 8-9 
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-2.420 
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Measured Stress at Location 332 

Top 
Top Bottom Incremental 

Difference 
(ksi) (ksi) (ksi) 

0.000 0.000 
-8.485 5.710 -8.485 

-10.920 4.230 
-10.765 1.810 0.155 

-13.470 7.460 
-14.565 6.750 -1.095 

Day 19- 20 

-1.095 

-0.710 

Bottom 
Incremental 
Difference 

(ksi) 

5.710 

-2.420 

-0.710 

Fig. 4.26 Incremental Stresses in Cross Section 332 from Measurement 
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8.970 -2.830 

Measured Stress at Location 432 

Top Bottom 
Top Bottom Incremental Incremental 

Difference Difference 
(ksi) (ksi) (ksi) (ksi) 

0.000 0.000 
-9.120 4.740 -9.120 4.740 

-13.575 -0.510 
-15.190 8.460. -1.615 8.970 

-16.415 1.820 
-18.025 -1.010 -1.610 -2.830 

Fig. 4.27 Incremental Stresses in Cross Section 432 from Measurement 
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Measured Stress at Location 330 
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Difference 
(ksi) (ksi) (ksi) 

0.000 0.000 
1.600 -0.280 1.600 

5.590 -3.710 
4.160 -2.700 -1.430 

11.235 -10.930 
11.295 -11.940 0.060· 
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Difference 

(ksi) 

-0.280 

1.010 
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Fig. 4.28 Incremental Stresses in Cross Section 330 from Measurement 
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Fig. 4.29 Cumulative Stresses due to Deck Weight at Cross Section 432 
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Fig. 4.30 Accumulated Dead Load Stresses in Cross Section 332 
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Too -15.57 -21.45 -19.86 
Day9 

Bottom 14.46 11.51 11.23 
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Fig. 4.31 Accumulated Dead Load Stresses in Cross Section 432 
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Fig. 4.32 Accumulated Dead Load Stresses in Cross Section 330 
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0.73 -7.33 
0.62 -7.09 
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Fig. 4.33 Vertical Stresses in Girder Web during Construction at Location 242 
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8 -14.22 -15.74 
9 -16.77 -18.25 
10 -16.77 -18.29 
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14 -16.95 -18.14 
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Fig. 4.34 Stresses in Girder Flange during Construction at Location 242 
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Fig. 4.35 Web Deflection Measurement at Locations 142 and 242 
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Fig. 4.36 Lateral Deflection of Web due to Deck Placement 
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I Fig. 4.37 Lateral Deflection of Web at Span W7 after Completion of Deck 
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Fig. 5.1 Dimensions and Axle Loads of Test Trucks 
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Fig. 5.2 Simulated HS- 25 and 204K Live Loads 
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Fig. 5.5 Strain-Time Variations, Test Truck Run C2 
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Fig. 5.6 Strain-time Variations, Test Truck Runs C2 and C3 
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Fig. 5.7 Strain-Time Traces, Simulated Permit Truck (Run P3) 
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Fig. 5.8 Diaphragm Stresses, Test Truck Run Cl 
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Fig. 5.9 Examples of Strain-Time Record, Test Truck Run S2 
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Fig 5.1 0 HS25 Induced Maximum Stresses in Cross Section 242 
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Fig 5.11 HS25 Induced Maximum Stresses in Cross Section 342 
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Fig 5.12 HS25 Induced Maximum Stresses in Cross Section 332 
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Fig 5.14 204 Induced Maximum Stresses in Cross Section 242 
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Fig 5.15 204 Induced Maximum Stresses in Cross Section 342 
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Fig. 5.18 Distribution of Stresses, Middle of Span 3 (3 X 2), C3 and P3 
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Fig. 5.25 Strain Distribution on Deck, Middle of Span 3 (3 X 2) , C2, C3 and C23 
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Fig. 5.27 Lateral Web Deflection under Dead Load, at Section 432 
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Fig. 5.28 Variation of Web Deflection (Chip Gage) 
and Strain~ Test Truck Run C3 
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Fig. 5.29 Strain-Time Variation, Web Strain Gage· Pairs at 432 
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Fig. 6.1 Strain-Time Variation due to Regular 352 Trucks, at 3X2 
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Fig. 6.2 Strain-Time Variation due to Regular 332 Trucks, at 3Xl 
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Fig. 6.3 Strain-Time Variation due to Regular 332 Trucks, at 432 
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Fig. 6.4 Strain due to two 322 Trucks Side~by-Side, at 3X2 
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Fig. 6.5 Strain due to two 322 Trucks Side-by-Side, at 3Xl 
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Fig. 6.10 Strains due to Trucks in Tandem, at 432 
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Fig. 6.11 Strain-Time Traces, Regular Traffic, Span 2 
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Fig. 6.12 Strain-Time Traces, Regular Traffic, Span 4 
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Fig. 6.13 Strain-Time Traces, Regular Traffic, Web Gages at 432 
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Fig. 6.14 Strain-Time Traces, Regular Traffic, Web Gages at 242 

238 

I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 6.15 Strain-Time Traces, Regular Traffic, Diaphragm and Web, 
Span 3 
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Fig. 6.16 Strain-Time Traces, Regular Traffic, Diaphragm and Web, 
Span 2 
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Fig. 6.18 Strain-Time Traces, Regular Traffic, Web Gages, Span 3 
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