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1; INTRODUCTION 

1.1 Background and Objective 

Steel box girders are often used for medium and long span continuous 

bridges. [1.1] In the negative moment regions over the interior supports, the 

bottom flange of the box girder is subjected to compressive forces. Because 

the bridge bending moment is normally highest at the piers and the compres

sive strength of steel bottom flange plates are relatively low on account of 

buckling, thick steel plates with longitudinal stiffeners are necessary. 

For long span continuous box girders, a haunched profile is also often 

necessary so as to keep the compressive stresses in the compression flange 

within safe limit. 

The use cf longitudinal stiffeners on haunched box .girder bottom flanges 

increase the cost of fabricating the box girder and erecting the bridge. 

Coupled with the relatively inefficient utilization of strength of steel, 

with respect to yielding, this condition results in very high cost of steel 

,box girder bridges. Therefore, new arrangements for improving the efficiency 

of the negative moment area is urgently needed. 

One approach to the solution is the utilization of steel-concrete composite 

compression flange. The technique has been adopted for the construction of 

bridges in Europe. [1.2, 1.3] In one case, the haunched profile of the box 

girder is maintained. [1.2] In the other case, the construction procedure 

for the roadway deck was the main feather. 

The primary objective of this feasibility study is to examine the 

possibility of elimination of haunches through the use of composite compression 

flanges. Three examples of continuous steel box girder designs are used as 

the basis for examination. Some essential details of the bridge designs are 

reproduced as Figs. 1.1 to 1.10. 

1.2 Influencing Factors 

The factors which may influence the strength of the steel-concrete 

composite compression flange include the following: 
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a. Thickness and width of steel plate 

b. Thickness of concrete slab 

c. Spacing of shear connector 

d. Strength and weight of concrete 

e. Amount of reinforcement, if needed 

f. Spacing of longitudinal stiffeners, if needed 

g. Shrinkage and creep of concrete under long term compression. 

These factors are examined in this study, and the results are reported 

in the subsequent chapters. First the possibility of eliminating or reducing 

the haunches is evaluated in Chapter 2, assuming plain concrete slab for the 

composite flange. The thickness of steel plate and concrete slab are exam

ined in this chapter. Then the strength of the compression flange is exam

ined in Chapter 3 for an assumed sequence of construction. The compression 

flange consists of a steel plate which, with or without longitudinal stif

feners, must sustain the weight of wet concrete before developing into a 

composite flange. The requirements of shear connectors are reviewed and 

discussed in Chapter 4. The influence of concrete properties and effects of 

shrinkage and creep are discussed in Chapter 5. Also discussed are the 

alternate procedures of cast-in-place and precasting of the concrete slab. 

Chapter 6 presents a comparison of costs for the "original" design of the 

bridges and the "alternative design" resulting from this study. The com

parison is made on the basis of cost per unit weight of fabricated structure. 

Finally, the findings of this study are summarized in Chapter 7, concluding 

the feasibility of using composite compression flanges to eliminate haunches 

in steel box girder bridges. 
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2. REDUCTION OF HAUNCHES 

2.1 Review of "Benchmark" Designs 

The three continuous box girders designated for this feasibility study 

are the following: 

a. West Seattle Bridge 

b. Columbia River Bridge and 

c. Tennessee Tombigbee Waterway Bridge 

The general plan, elevation, cross section, and some details are shown in 

Figs. 1.1 to 1.10. Some geometrical dimensions are listed in Table 2.1. 

Each of these bridges has its own specific features such as rectangular 

or trapezoidal boxes, double or single boxes, etc. For the objective of this 

study, the most important dimensions are the depth of the boxes (D and D ) 
c p 

and the thickness of the bottom flange steel (tB) 

Because the West Seattle bridge has the longest span, highest depth at 

pier, highest haunch ratio of depth at pier to depth at center of span 

(D /D ), and the widest bottom flange, it is chosen for a more intensive 
p c 

examination. The results from altering the original or "benchmark" design 

can then be used as guidance for the other two bridges. However, before 

attempting examination of adding concrete slab on the bottom flange plate, 

results of a parametric study [2.1] on the effects of haunched box girder 

dimensions are briefly reviewed here so as to gain insight of stresses in 

haunched box girders. 

If all other component dimensions of a box girder remain unchanged, but 

the depth of the haunch at a pier is decreased, the stresses in the bottom 

compression flange over the piers increase, so do the stresses in the bottom 

tension flange at the center of a span. This trend is clearly depicted in 

Figs. 2.1 to 2.3. Each solid curve line in these figures represents the 

change of compressive stress in the bottom flange over the pier if the box 

girder depth at the pier is changed alone. The dotted lines are for tensile 

stresses in the bottom tension flange at midspan. All curves indicate 

increasing of stresses when the haunch ratio is reduced. A haunch ratio of 
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unity represents a constant depth box girder. Obviously decreasing the 

girder depth at piers reduces the moment of inertia and thus increases 

the bending stresses. 

Figure 2.1 shows the effects of changing bottom flange thickness and 

the haunch ratio. For simplicity, uniform bottom flange thickness is used 

in the comparison. If the bottom flange plate thickness alone is changed, 

the stresses in the flange plate increase and decrease with the plate 

thickness. A decrease of flange thickness must be accomplished by an 

increase in haunch ratio (dep~h at pier) in order to maintain the same level 

of stress in the flange. For example, a change from a 2 in. plate to a 1 in. 

plate requires an increase of haunch ratio from 1.6 to about 2.5 to keep the 

stress at about 0.58 F . y If the thickest available plate (say 3 in.) is 

already adopted and the stress level is to be kept very low (say 0.3 F), 
y 

then a very high haunch ratio must be employed. This condition requires 

that the depth of the box girder at the pier be much higher than that at the 

midspan, about 3 times higher in this example. From the solid curves of 

Fig. 2.1 it can be seen that for increasing values of haunch ratio the slopes 

of the curves are decreasing. This implies that a large difference between 

box girder depth at the pier and at midspan is not an efficient way of 

reducing stresses in the bottom flange compression plate. A lower haunch 

ratio is more proficient. 

To achieve a low haunch ratio, one approach is to adopt higher midspan 

depth. Figure 2.2 shows the effects of varying the midspan depth and haunch 

ratio. If the values of all parameters including the haunch ratio of 

(D /D ) are kept constant and the midsp~n depth alone is increased, the 
p c 

bottom flange stresses are reduced, as it is shown in the figure. However, 

if the depth of box girder at midspan (D ) is increased while the depth 
c 

(D ) at the pier is maintained, the compressive bottom flange stresses at the 
p 

pier remain practically unchanged. This condition is depicted in Fig. 2.4, 

plotting stresses versus midspan depth D for a constant D . Increase of 
c p 

midspan depth reduces the bottom flange tensile stress at the midspan. 

From the above review of results from a parametric study, the following 

conclusions can be drawn: 
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a. To reduce the compressive stresses in the bottom flange over the 

pier, thicker bottom flange plates and moderate haunch ratios 

would be more efficient. 

b. To reduce the tensile stresses in the bottom flange at midspan, 

thicker bottom flange plate and higher depth of box girder at 

midspan would be more effective. 

Figure 2.3 indicates that the web thickness has very limited effect on 

the flange stresses. Therefore, to achieve an efficient design of continu

ous span steel box girder, appropriate selection of girder depth at pier and 

at midspan (Dp and Dc) and the thickness of bottom flange (tB) is essential. 

2.2 Haunched Box Girders with Compressive Composite Bottom Flange 

When concrete slab is added to the bottom flange steel plate over the 

piers and the two materials work compositely, the effects on the stresses in 

the steel plates are two-fold. First, the composite compression flange has 

an equivalent plate thickness higher than that of the steel plate alone. 

This is equivalent to using a thicker flange plate, an efficient procedure 

as it has been shown in the last section of the report. Second, the composite 

flange should eliminate possible buckling of the steel flange plate and 

increase its usefulness to the yield stress of the steel. This combination 

may reduce or even eliminate the need of a haunched profile for the box 

girder bridge. 

The influence of concrete slab thickness and length on the stresses in 

haunched box girders is examined here by changing the dimensions of the 

"benchmark" design of the West Seattle Bridge. The results are shown in 

Figs. 2.5 to 2.7. For these figures, a concrete strength of 4,000 psi 

(n = 8) is assumed. 

Figure 2.5 shows the effects of concrete slab thickness and girder 

haunch ratio on the bottom flange stresses. For this comparison, it is 

arbitrarily assumed a thickness of 1 inch for the steel bottom flange and 

that the concrete slab tapers from a maximum thickness at the pier to zero at 

about 5/16 of the center span and 5/8 of the side span. When composite \ 

action between the concrete slab and the bottom flange steel is assured, 

the box girder has an equivalent bottom flange thickness higher at the pier 
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and lower at the center of span. The resulting stress versus haunch ratio 

relationship for the extreme fiber of the composite bottom flange is similar 

to that for the steel box without concrete slab (Fig. 2.1), but the composite 

stress over the pier is much lower. This is expected since the equivalent 

bottom flange thickness is 1 + (12/8) = 2.5 in. for the case of 1 ft. thick 

concrete slab and 4 in. and 5.5 in. for the 2 ft. and 3 ft. concrete slab, 

respectively. 

Obviously, a conc.rete slab of 2 ft. or 3 ft. is very thick and the steel 

plate may not be able to support the weight of the concrete. The capacity of 

the steel flange plate to carry transverse loads in addition to the in-plane 

forces from the box girder will be discussed in Chapter 3. It is important 

to conclude from the results in Figs. 2.1 and 2.5 that the adoption of a non

uniform thickness bottom flange with thickness tapering towards the center of 

the span will reduce the need of using a high haunch ratio. The utilization 

of concrete and composite flange can provide equivalent steel plate thickness 

higher than those commercially available steel plates. These conditions 

confirm favorably the concept of composite bottom flanges for long span 

continuous steel box girders. 

The effects of concrete slab length and haunch ratio are summarized in 

Fig. 2.6 for a maximum slab thickness of 2 ft. over the piers. Reducing the 

concrete slab length decreases the compressive stress in the bottom flange 

over the pier and increases the tensile stress in the bottom flange at mid

span. The amount of change, however, is quite small. The thickness of bottom 

flange at a cross-section between the pier and the center of span affects the 

stresses of the cross-section, but has only minor influence on the stresses 

at the pier and the center of span. 

Because placement of concrete slab over the bottom flange in the negative 

moment region increases the tensile stresses in the bottom flange of the 

positive moment region, the box girder depth at midspan may need to be 

increased. The effects of increasing midspan depth (D ) are shown in Fig. 
c 

2.7. The reduction of stresses at midspan with the increase of depth D is 
c 

similar to that of Fig. 2.2 for a steel box girder without concrete slab. 

The reduction of stresses at the pier, however, is very small when there 

is a concrete slab over the pier acting compositely with the steel plate. 

2-4 



It can be seen in Fig. 2.7 that from the geometrical configuration and 

dimensions studied a constant depth box girder can be selected for which both 

the compressive stress and tensile stress in the bottom flange are within 

those of the original "benchmark" design. 

2.3 Constant Depth Box Girders, Alternative Designs 

Among the three example steel box girders for examination in this study, 

the West Seattle Bridge and the Columbia River Bridge have haunched profiles 

whereas the Tennessee Tombigbee Waterway Bridge is of constant depth. There

fore, based on the results of evaluation in Section 2.3, the advantage to be 

gained by the addition of a concrete slab to the bottom compressive flange 

would be expected to be more for the West Seattle Bridge and the Columbia 

River Bridge. 

For the determination of an alternative design of each bridge, geometrical 

dimensions are arbitrarily assigned and component sizes are similarly chosen. 

The analysis of the bridge is then made using the load-factor design approach. 

The conditions and assumptions associated with the analysis are the 

following: 

a. Yield strength of steel: Fy = 50 ksi 

b. Concrete Strength: f 
I 

4000 psi = c 
n = 8 

c. The Top flange of the original design is adequate for the 

alternative designs. 

d. Buckling of the bottom compression flange in the negative moment 

region is prevented by the addition of the concrete slab. 

e. Steel reinforcing bars, if used in the bottom flange concrete 

slab, have little effect on the overall behavior of the box girder. 

f. The concrete slab is in complete composite action with the steel 

bottom flange. 

g. Flexural stresses dominate; torsional stresses due to live loads 

are minor. 
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2.3.A West Seattle Bridge 

The three-span West Seattle Bridge has a haunch ratio of 

(D /D ) = 2.16 and a bottom steel flange thickness of 2 in. over 
p c 

the piers. The bottom flange stresses are computed to be 32.7 ksi 

and 47.9 ksi, respectively at the pier and in the middle of the 

center span of the "benchmark" design. · A few trials of constant 

depth boxes are made by increasing the midspan depth and the 

bottom flange thickness without the addition of concrete slab. 

By using the results of these few trials as guides, concrete slab 

is then added. The results of all these trials are listed in 

Table 2.2. 

Examination of the computed bottom flange stresses reveals 

that the alternative designs, without use of the bottom flange 

concrete slab (Trials 1 to 6) all have bottom flange compressive 

stress higher than that of the original design. By appropriate 

arrangement of stiffeners for the steel compression flanges, their 

strength could be made sufficiently higher than the computed 

stresses. Trials 2, 3 and 6 could then be considered as acceptable 

designs with constant box girder depth. 

Trial 7 corresponds to Trial 1 but with a bottom flange 

concrete slab. Addition of the slab increases dead weight and the 

stresses in the bottom flange. With the concrete slab, the strength 

of the composite flange at the pier should be higher. The tensile 

stress, however, is higher than the steel's yield strength. The 

trial design is not considered acceptable. 

Trial 8 incorporates the same dimensions of components as for 

Trial 7, but has a higher depth of the box girder. Stresses in the 

bottom flange are lower than those of the original design. The 

estimated midspan deflection is within the guideline of 1/800 

of the span. The trial design is acceptable but the component 

dimensions may be reduced. 
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Trials 9 to 15 adopt different combinations of box girder depth, 

concrete slab length, and steel flange thickness. All have 

the original steel plate thickness of 2 in. over the pier and a 

1.5 ft. (18 in.) depth of concrete directly above. All except 

Trial 12 have bottom flange compressive stress lower than that of 

the original design and bottom flange tensile stresses at midspan 

within the yield strength of 50 ksi. Therefore, all these combina

tions, Trials 9 to 11 and 13 to 15, are possible alternative 

designs. 

For these possible alternative designs, a reduction of the concrete 

slab thickness may be taken. A reduction of concrete thickness 

alone is accompanied by an increase of compressive stress in the 

composite bottom flange and a slight increase of tension stress 

in the steel bottom flange at center span, see Fig. 2.5. However, 

without knowing the strength of the composite compression flange, 

reduction of the concrete slab thickness (for example, to 15 in.) 

is not fully justified. What is important is that not only the 

elimination of the haunches is possible, but there are also different 

combinations of component dimensions for fine adjustment of stresses 

in the constant depth box girder. 

The question to be answered, therefore, is whether the elimination 

of the haunches is economical. 

For a comparison of approximate cost in Chapter 6, the possible 

alternative designs are examined for least weight. Trial 14, with 

·a depth of 15 ft. and the shortest length of concrete slab in the 

bottom flange, would weigh the least. However, in consideration of 

uncertainties such as the strength of composite compression flange 

and the influence of box girder depth on pier top elevation, Trial 

11 is arbitrarily chosen for the subsequent discussions in this 

study. 

The dimensions of the chosen alternative design are shown in 

Fig. 2.8. 
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2.3.B Columbia River Bridge 

The original design of this five span bridge adopts a haunched 

profile with a box girder depth of 16 ft. at the first piers and 21 ft.-

4 in. at the interior piers. The depth at center of span is 10 ft.-4 in. 

so the higher haunch ratio is 21.3/10.3 = 2.06, a fairly high value com

parable to that of the West Seattle Bridge. The center span has a length 

of 450 ft. The cross-section of the bridge is a twin-cell single box of 

trapezoidal shape. The total width of the steel bottom flange is 357 ft., 

178.5 fr. for each cell. Other dimensions of the box girder are listed 

in Table 2.1. 

The bottom flange stresses in the center span are 38.8 ksi over 

the piers and 41.5 ksi at midspan by the computation of this study. 

Trial designs are made with constant box girder depth and arbitrarily 

selected concrete slab thickness and length. The composite compressive 

bottom flange should have strength higher than that of the original 

1.5 in. steel plate over the piers. Conservatively, the original 

stress of 38.8 ksi is used as a reference. The trial dimensions and 

resulting bottom flange stresses are summarized in Table 2.3. 

or the twelve trials, two box girder depths are used. The depth 

of 10 ft.-4 in. is the original value at midspan whereas the 12 ft. 

depth is a small increase at midspan, but a large reduction at the 

interior piers. The concrete slab depth at the piers is assumed to be 

1.5 ft. or 2 ft. as guided by the results of the West Seattle Bridge. 

The bottom flange steel plate thickness is either kept at 1.5 in. or 

increased to 2 in. All twelve trials appear to be acceptable, with 

bottom flange compressive stress within the arbitrary reference value 

of 38.8 ksi and bottom flange tensile stress less than the yield stress. 

Trial 9 is arbitrarily chosen as the alternative design for cost 

comparison later. The dimensions of this trial design is shown in 

Fig. 2.9. Some dimensions are also listed in Table 2.4 with those of 

the alternate design of the West Seattle Bridge. 
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2.3.C Tennessee Tombigbee Waterway Bridge 

Tennessee Tombigbee Waterway Bridge is a three span twin box 

design with trapezoidal box cross-section and constant depth over the 

entire length of the bridge. The center span is 400 ft. long and the 

depth is 12.5 ft. The bottom flange is 2 in. thick over the piers and 

1.375 in. at midspan. This data is listed in Table 2.1. 

As it has been discussed earlier, the adoption of a deeper 

girder depth and a thicker flange plate at the pier is to keep flange 

stresses within the strength of these flanges. The use of a thicker 

flange plate alone is sufficient to achieve this goal for the 

Tennessee Tombigbee Waterway Bridge. Therefore, adding of a concrete 

slab would not be as advantageous as for the other two bridges. 

Table 2.5 lists the geometrical dimensions of the box girder and 

concrete slab for nine trial designs. Trials 1 and 2 add concrete slab 

to the bottom flange of the original design, thus reducing the bottom 

flange stresses. This is not necessary. Trials 3 to 9 .adopt a. thinner 

uniform thickness bottom flange steel plate and add concrete slab, 

resulting in the condition that the midspan bottom flange tensile 

stresses are higher than the yield strength. Other trials can be made 

but are not expected to improve on the original design. 

In comparing the results of analysis of the Tennessee Tombigbee 

Waterway Bridge with those of the other two bridges, it confirms that 

the addition of concrete slab is efficient for reduction of haunches. 

If the strength of the composite steel-concrete compression flange can 

be utilized fully, alternative designs can be even more efficient. 

The strength of composite flanges is discussed next. 
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3. STRENGTH OF COMPRESSION FLANGES 

3.1 Introduction 

The incorporation of a concrete slab into the compression flange over 

the negative moment region of continuous steel box girders is for increasing 

the strength of the compression flange. Because the ratio of live-load 

stress to dead-load stress in long span box girders is relatively low, the 

major function of the compressive bottom flange in a completed bridge box 

girder is to sustain dead-load stresses. However, depending upon the method 

and sequence of construction and erection, the dead weight and construction 

load may be significant while the compressive bottom flange has only the 

steel plate portion. Therefore, it is essential to evaluate the strength of 

the compression flange at all stages of construction. 

The stages of construction are assumed in this study to be a successive 

addition of box segments from a pier, forming a balanced double cantilever. 

A bottom flange concrete slab is added to a box segment following the 

attachment of the next box. This sequence is illustrated in Fig. 3.1. 

Consequently, the bottom steel compression flange alone carries stresses 

of two steel box segments, then carries additional stresses due to the wet 

concrete on the steel flange, and thereafter combines with the concrete slab 

to form a composite compression flange. 

The conditions of the bottom flange which need to be examined are the 

following: (a) the strength of the steel compression flanges, (b) the strength 

of steel plates under wet concrete, that is, under combined in-plane loading 

and lateral load, and (c) the strength of steel-concrete compressive flanges. 

There exists in literature only very limited information as the basis for 

examination of these conditions. This chapter provides a very brief dis

cussion. 
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3.2 The Strength of Steel Compression Flanges Alone 

During construction of the bridge, before the concrete slab is placed 

on a steel compression flange plate, it acts alone to resist in-plane stresses. 

The steel plate is thus "conventional" for which there are existing rules 

and guidelines of design.[3.1, 3.2] The basic concept is that the steel 

compression flange should provide sufficient margin of safety against 

buckling or yielding. 

The buckling and yield strength of unstiffened compression plates are 

described by the following equations: 

a. AASHTO 10.51.5 [3.1] 

For E_ < 6140 t-v;
y 

F 
y 

For 6140 < E_ 
v"F- t 

y 

13300 

YF 
y 

Fu = 0.592 Fy (1 + 0.687 . sin c; 

with 
133oo - E_ Y.P 

c = ----=-::-:-:~t-~y._ 
7160 

For E_ < 13300 
t- VF 

y 

F 105 
X 10

6 
= 

u (b/t)
2 

in which b = width of bottom flange plate between the 

webs (in.) 

t thickness of the steel plate (in.) 

F = yield strength of the steel (psi) 
y 

F (buckling) strength of the plate (psi) 
u 
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b. Proposed Specification 1.7.205 [3.2] 

For A.pl < 0.65 

F 
u 

F 
y 

For 0.65 < A.pl < 1.5 

F 
u 

2 
Fy [0.50 + 0.43 (A.pl- 1.73) ] 

For A. < 1.5 
pl-

F 
u 

in which 

=~ = E_- [10:92F 
Fu t v :;z;-E 

F elastic buckling stress of plate panel 
cr 

K plate buckling coefficient (takes a 4 for 

simply supported panel) 

(3. 2A) 

(3.2B) 

(3. 2C) 

Figure 3.2 compares the above provisions using a yield point of 50 ksi. 

It is obvious that for bottom flange plates with high width to thickness 

ratios, the buckling stresses are low. However, as long as the stresses in 

the plate are lower than the buckling stress at all times, there is no ne~d 

to add longitudinal stiffener. 

The computed stresses in the steel bottom flange of the alternatively 

designed West Seattle Bridge are listed in Table 3.1 as examples. By fol

lowing the erection sequence of Fig. 3.1, there appears to be no need of 

bottom flange stiffener since the maximum in-plane stresses in the compression 

are always lower than the buckling stress. Similar conditions exist for 

the Columbia River Bridge. 

If erection sequence other than that of Fig. 3.1 is adopted, the bottom 

flange stresses could be higher and longitudinal stiffeners would then be 
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necessary. Furthermore, the more critical condition is when wet concrete is 

placed on the steel plate and before the two materials act together com

positely. This condition is examined next. 

3.3 Strength of Compression Flange Steel Plates Under Web Concrete 

When wet concrete is poured onto the compression flange steel plate 

during erection, lateral loads are applied to the steel plate causing addi

tional stresses in these plates. The approximate loading condition of the 

steel plate is depicted in Fig. 3.3 in which p is the in-plane loading and q 

the lateral load from the wet concrete and the steel plate itself. The 

boundary conditions along the plate length, a, and width, b, depend on the 

conditions of the adjacent components of the box girder. Conservatively, all 

edges can be considered as simply supported. 

Approximate solutions can be obtained by using the curves of W. 

Guffel. [3.3] These curves are shown in Fig. 3.4. Two arrangements of the 

bottom flange in the alternately designed West Seattle Bridge are examined as 

examples, one without longitudinal stiffeners and one with such stiffeners 

for the steel plate. 

3.3.A Without Longitudinal Stiffeners 

Thickness of steel plate 2 in. 

Thickness of Concrete 18 in. 

Plate panel length, a 177 in. 

b/t = 120 
s 

a/b = 0.74 

F SO ksi 
y 

Plate buckling stress 

without lateral load, K = 40 

F 
cr 

K TI
2 EZ = --~~~~~----

12 (1- v 2)(b/t)
2 

7.3 ksi 

tc 150 ts 490 
Lateral load q = 12 x 144 + U x 144 

2.13 psi 2.13 x 10-3 ksi 
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Maximum plate stress due to web concrete: 

crxl = 3.2 ksi (from Table 3.2) = crxl = ;:; = 0.44 Fu 

From Fig. 3.4 

(l = 0.06 

0.60 

0.40 

Therefore, Max. lateral deflection, W 
max 

(J 0
xl + 0 x2 xmax. 

b2 
= 3.2 + 8 .9..__E_ = 21.6 ksi 

X 2 
t 

b2 
< F 

(J = By ~= 12.3 ksi ymax. 2 
t < F 

y 

y 

in. 

The above computation indicates that the bottom flange plate of the 

alternatively designed West Seattle Bridge is adequate with respect to 

placement of wet concrete. However, the lateral (downward) displace

ment of 1.8 in. at the center of the flange plate is about equal to 

the thickness of the plate, and could be considered not acceptable. 

Consequently, longitudinal stiffeners may need to be used. 

3.3.B With Longitudinal Stiffeners 

The addition of longitudinal stiffeners to the steel compression 

flange results in stiffened compression plates, of which there is no 

simple, ready solution for combined in-plane and lateral loads. [3.4] 

One logical approximation is to consider the steel plate between 

longitudinal stiffeners as supported by elastic beams and to consider 

the stiffeners with part of the plate (the effective width) as beam 

columns. 
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a. The elastic buckling coefficient, K, of plates with boundary 

elements (Fig. 3.3, with A and I along length, a) can be 
s s 

evaluated by the formula [3.5] 

K . = 4 (1 
m1.n. 

1.5 ) 
2y - 88 

in which 
A 

0 s =-
bt 

EI 12 (1 - ,/) I s s y = --= 
Db b t3 

A area of longitudinal stiffener 
s 

I corresponding moment of inertia 
s 

(3. 3) 

For the alternately designed West Seattle Bridge, ST 10 x 45 is 

used as longitudinal stiffeners. By assuming that only one 

such stiffener is placed at mid-width of the plate, the following 

computation can be made: 

and 

b 120 in. a/b 177/120 1.475 

t = 2 in. 

A 14.1 in. 
2 

= 
s 3 

I = 143 in. s 

A 
8 = ~ = 0 059 bt . 

12 (1 - \!2) 
= 1.63 y 

bt3 

K min. 
= 4 (1 

2Y 
1.5 ) 

- 88 
= 1.85 

F cr 
13.5 ksi 

axl 3.2 ksi (from Table 3.2) 

0.24 F cr 
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From Fig. 3.4 

a = 0.11 

sx = 0.40 

sY 0.60 

-3 with q = 2.13 x 10 ksi, as 

Maximum deflection, W . = 
max 

a axl + ax2 xmax. 
b2 

= 3.2 + sx .9,__ = 6.3 2 
t 

2 
a = i3 s_Q_

2 
= 4.6 ksi 

ymax. y t 

ksi 

< F 
y 

< F 
y 

0.21 in. 

These results indicate that the deflection of the steel plate under 

concrete would be about one-tenth of the plate thickness, and the 

maximum stresses in the steel plate are quite low. If the 

longitudinal stiffeners are adequate, the sequence of 

construction is acceptable. In fact, it may even be possible to 

add concrete in two consecutive segments simultaneously, providing 

flexibility of construction scheme. 

b. The elastic strength of the longitudinal stiffener acting as a 

"beam-column" can be evaluated using the following interaction 

formula [ 3. 6] 

M 1 + 0.0281 (P/P E) 
(_x_) 

p 
0 [ + (~) 1 (3.4) 

M 1 - (P/PE) ] PE p 
y y 

with M 
1 q 12 

0 8 

q = lateral load 

M yield moment = s F 
y y 
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p = maximum axial force corresponding to q 

PE = Euler's buckling load = 

rr2 E 
12 

p = A F y y 

Equation 3.4 can be solved 
p 

for PE, resulting in 

(3.5) 

in which M p p 

al 0.0281 .....£ _y + 
My PE 

1 + _y 
PE 

M p 

(1 0 _y 
a2 = - -) 

M PE y 

The strength of the stiffener in terms of maximum average 

compression stress is 

(3.6) 

For the alternately design West Seattle Bridge compression flange 

with an ST 10 x 48 stiffener, assuming that the effective plate 

width to be b 60 in. e 

I 995 in. 4 

s 96.5 in. 3 

M 
0 

1/8 X (2 .13 X 10-3) 2 xl77 = 500 k-in. 

M SF 96.5 X 50 = 4825 k-in. y y 

M 
0 0.104 = 

M y 

A A + t b = 14.1 + 2 X 60 134.1 in. 2 
s s e 

PE = 9.1 X 103 kips 
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p 134.1 X 50= 6.7 X 10 3 kips 
y 

p 

f-=0.74 
E 

a1 0.0281 X 0.104 X 0.74 + 1 + 0.74 = 1.74 

a
2 

= (1 ~ 0.104) 0.74 = 0.663 

3 
F 9.1 X 10 (1.74- /1.742 2 

U 2 X 134.1 y - 4 X 0.663 ) 

The maximum stress in the flange under the weight of concrete 

is a = 3.2 ksi (Table 3.2), which is well within the strength 
xy 

of the stiffener beam-column. Results of computation show that 

if a concrete slab is added to two consecutive segments 

simultaneously, the maximum stress will be axl = 5.7 ksi, still 

well within the strength of the beam-column. 

With the compression flange steel plate capable of carrying 

the in-plane stresses and the wet concrete, and the plate 

deflection within nominal range, the sequence of erection as 

depicted in Fig. 3.1 is judged acceptable. 

3.4 Composite Flange Under Dead Weight and Live Load 

The composite action between the steel plate and the concrete slab relies 

on positive bonding or anchorage between the two materials. Besides the 

requirement of "shear connectors" for the development of complete interaction, 

there are other conditions which influence the behavior of the composite 

compression flange. Among the questions which need to be answered are the 

following. 

a. Are the ends of the concrete slab in bearing against transverse 

stiffeners or diaphragm plates? Are the forces in the concrete slab 

transmitted from the steel plates? 

b. What are the effects of concrete shrinkage and creep on the behavior 

of the composite flange? 

c. Are reinforcing bars necessary for the development of strength of 

the composite compression flange? 
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The requirements of shear connectors will be examined in Chapter 4 and 

the effects of shrinkage and creep in Chapter 5. The question of reinforcing 

bars are examined below. 

As long as the concrete slab and the steel compression plate are sub

jected to box girder flexural strain at the ends of the composite flange, 

each material is subjected to axial compressive force. There is no need of 

reinforcing bars in the concrete if its stresses are within limits. Since 

the geometrical configuration of the box girder and the thickness of the 

steel plate and concrete slab have been proportioned to ensure that stresses 

in all parts are within their appropriate strength, reinforcing bars are not 

needed in the concrete slab. 

However, the composite compression flange has initial downward deflections 

due to the weight of the concrete. Under additional dead weight of the bridge 

and live load, the axial forces in the compresion flange and the initial 

deflection produce a bending moment in the composite plate. This changes the 

distribution of stresses in the vicinity and the strength of the composite 

flange needs to be examined. Unfortunately, there is no available procedure 

or guideline for such a strength evaluation. Very conservatively, the 

composite plate may be considered as a composite beam for a gross examination. 

During erection of the box segments, the stresses in the steel bottom 

plate increases as each segment of box is added. (Table 3.3, Fig. 3.5) 

The maximum compressive stress of 29.4 ksi in the steel bottom plate occurs 

over the pier when the bridge is complete and under live load (Table 2.2). 

The increase of stress between placement of concrete in the first segment 

(Table 3.2) and the service condition (Table 3.3) is 29.4 - 3.1 = 26.3 ksi. 

This generates a resultant force and moment 

R 19,100 kips 

M 24,830 kip-in. 

for the 1.8 inch plate deflection at center of the bottom flange plate with 

no longitudinal stiffener. This combination of force and bending moment is 

within the permissible region of the force-moment interaction diagram of 

the bottom flange composite beam as it is depicted in Fig. 3. 
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Therefore, the alternately designed constant depth West Seattle Bridge 

as presented in Chapter 2 has sufficient strength of the composite bottom 

flange without longitudinal stiffener. If one longitudinal stiffener is used, 

as discussed in Section 3.3B, the initial plate deflection is only 0.21 in. 

and the corresponding "beam-column" effect will be negligible. 

In conclusion, it can be stated that the dimensions and geometry of the 

bottom flange composite plate can be properly arranged to assure its strength 

in all stages of the box girder bridge construction and service. 
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4. SHEAR CONNECTOR REQUIREMENTS 

4.1 The Need of Positive Anchorage 

The composite action between a concrete slab and the steel compression 

plate below relies on positive connection if there is transfer of shear 

forces between the two materials. In the case of a wide flange shape and 

a reinforced concrete slab combining to form a composite beam, there is 

such a transfer of shear force that shear connectors are needed. [4.1,4.2] 

Provisions for shear connectors are included in AASHTO Specifications [4.3] 

and corresponding specifications in other countries. [4.4,4,5] 

In the case of reinforced or prestressed concrete decks placed above 

compressive top flanges of steel box girders, the condition of shear force 

transmittal between the steel plate and the concrete deck is similar to that 

of composite beams. Shear connectors are required. The~e is no existing 

design specification in this country defining the requirements of connector 

spacing or total number between the steel and concrete plates. The British 

standards, on the other hand, considers lag effects in the steel plate and 

establishes an expression for estimating the shear force to be transmitted 

by a connector. [4.4,4.6] 

The concrete slab on the compressive steel bottom flange of a steel 

box girder may or may not require transmittal of shear forces between the 

slab and the steel plate. The most important factor is whether the 

concrete slab inside the box is under direct compression simultaneously 

with the steel plate. If so, the two materials share the function of 

resisting compressive forces, and shear connectors may be omitted. If 

not, then the situation is similar to that of the composite cbmpressive 

top flange and shear connectors are required. 

4.2 Concrete Slab in Bearing 

Assuming that the concrete slab in the bottom flange is in direct 

bearing with transverse diaphragms or transverse stiffeners, the concrete 

slab is, while supported laterally by the steel plate, subjected to 
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longitudinal strains proportioned to the distance to the neutral axis 

of the box girder cross-section. As long as the stresses in the concrete 

slab are within the concrete strength limit and the steel plate provides 

adequate lateral support, the concrete slab does not need to be connected 

to the steel plate below. 

The steel compression plate is subjected to axial forces and lateral 

load from the concrete slab above. The situation is similar to the case 

of wet concrete on steel plate as discussed in Chapter 3 but with a higher 

magnitude of axial stresses in the steel plate. Consequently, the buckling 

strength of the steel plate becomes the governing condition. Anchorage 

of the steel plate, not shear connectors for shear force transmittal, may be 

necessary. 

Buckling of steel compression plate under lateral load is discussed 

in Section 3.3, with the loading condition shown in Fig. 3.3. If stud 

connectors are employed as anchorage between the steel plate and the 

concrete slab, the loading condition for the portion of steel plate 

between the anchor points is slightly different. Two models are suggested 

in Fig. 4.1, one assumes no plate rotation on the edges of the plate 

"panel" and the other assumes no restraints at all. 

The solution for these models are not available. Assumptions are made 

here so as to arrive at some conservative estimates. 

a. At buckling of the steel plate between the anchors, the steel 

plate panel separates from the concrete slab and the lateral 

load of the concrete slab does not act on the steel plate. 

b. The relative lateral deflection between the center of the steel 

plate panel and the anchorage is small. Small deflection theory 

can be utilized. 

c. Axial forces (q) in the steel plate is uniform along the 

edge (Fig. 4 .1). 

d. Stud connectors remain in a plane. 
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The solution for the buckling coefficient, K, in the buckling 

formula, 

F 
cr (4.1) 

is plotted in Fig. 4.2 The lowest value of the buckling coefficient is 

K = 2.5 

corresponding to a ratio of (a/b) = 1.0 and rotation force boundaries. 

By substituting 

F F = 50 ksi 
cr y 

E 29,000 ksi 

v 0.3 

and the value of K into Eq. 4.1, it is obtained 

b/t < 36.2 (4.2) 

For the alternative design of the West Seattle Bridge, the thickness of 

bottom flange steel plate is t = 2 in. Therefore, the minimum spacing 

of anchors is about 70 in. 

When the steel compression plate is anchored to the concrete slab 

according to Eq. 4.2, the steel plate and the concrete slab can work 

together and share the duty of carrying compressive forces. The ·over

buckling of the steel plate in a segment of box girder is prevented because 

of the anchors. The overall strength of the most severely loaded composite 

compression flange over the pier has been examined in Section 3.4 and is 

adequate. 

Therefore, when the concrete slab is in direct bearing against the 

transverse diaphragms and participate in direct compression, the anchorage 

between the concrete slab and the steel plate is adequately defined by 

Eq. 4.2. 
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4.3 Shear Connectors Spacing for Composite Compression Flange 

If the concrete slab on the bottom flange steel plate is not in 

direct bearing against the transverse diaphragms, force shear transmittal 

between the steel plate and the concrete slab requires shear connectors. 

The AASHTO provisions for composite beams [4.3] and the British Standards 

or compressive upper flange decks [4.4] can be temporarily used. 

The AASHTO Specifications, Section 10.38.5, requires that the shear 

connectors be spaced according to fatigue and ultimate strength of the type 

of shear connectors, with a maximum spacing (pitch) of 24 in. 

British Standards Institute BS5400 specifies in Part 5, Section 

5.3.3.1, that the longitudinal shear force (Q ) on a shear connection at 
X 

a distance x from the box girder web be determined from [4.4] 

where 

Q = .9. [K 
x n 

X 2 
(1 - ~) + 0.15] 

w 

q design longitudinal shear per unit length of 

box girder 

n total number of shear connectors in the unit 

length 

(4. 3) 

K Coefficient, a function of number of shear 

connectors placed within a short distance from the 

web 

x = distance from the web (in millimeter) 

b b/2 
w 

The maximum spacing is specified as 600 mm (24 in.) which is the same as 

for composite beams. 

Because the maximum permissible spacing of 24 in. is more severe than 

the anchorage requirements as described by Eq. 4.2, shear connectors for 

the development of interaction between the concrete slab and the steel 

plate of the bottom flange are also sufficient for the anchorage of the 

steel plate. 
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4.4 Pull-Out of Anchors 

The direct pulling of the anchors between the steel plate and the 

concrete slab must be such that the strength of a full shear cone is not 

exceeded. The full cone for a stud connector is depicted in Fig. 4.3. 

The strength is defined by [4.6] 
I 

p = 4 A If 
uc fc c (4.4) 

with 

Afc 12 'IT L (L +D), the area of full conical surface e e s 

L = emedment length of anchor e 

D diameter of stud connector head 
s 

f = concrete strength 
c 

At the maximum spacing of 24 in. (2ft.), the 2 in. thick plate of the 

West Seattle Bridge exerts a maximum downward force of 

2 
2 X 2 XU X 490 327 lbs. 

Assuming a 4 in. long stud with a 1 in. head in 4,000 psi concrete, the 

cone strength is 

P = 4 ( 2 'IT X 4 (4 + 1)] 
uc 

22.4 ksi 

/4000 

which is much higher than pulling force. Even if the maximum spacing is 

increased after a thorough investigation of the shear connector require

ments, the cone strength is more than sufficient to anchor the steel 

plate. 
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5. EFFECTS OF CONCRETE SLAB PROPERTIES 

5.1 Effects of Shrinkage and Creep 

The long term shortening of the concrete slab due to shrinkage may cause 

separation of the concrete slab from the transverse diaphragms, thus changing 

the nature of loading in the composite bottom flange. The long term short

ening of the concrete slab due to creep is expected to transfer stresses from 

the concrete slab to the steel flange plate. 

Several factors influence these long term effects. The concrete slab is 

cast on the steel flange plate and between the webs, longitudinal stiffeners 

and transverse diaphragms, resulting in only an exposed top surface. This 

condition and the relatively constant and moderate humidity inside the steel 

box girder inhibit the evaporation of moisture from the concrete slab. The 

rates of shrinkage and creep are reduced. Also, the stresses in the concrete 

slab are gradually increased as additional box girder segments are attached. 

Appropriate scheduling of erection of steel boxes and placing of concrete can 

lead to not only lower stresses in the compressive bottom flange, but also 

more favorable effects of shrinkage and creep. 

Under nominal conditions, the long term shrinkage and creep coefficient 

are estimated from the expressions [5.1,5.2] 

Esh 

and 

c u 

where 

Esh 

c 
u 

V/S 

v 
e

-0.12(-s) 1080 

v 
e -0.54(-s) 1.8 + 1.77 

long term shrinkage for 7 days concrete 

creep coefficient 

effective volume to surface ratio 

5-l 

(5.1) 
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Correction factors are applied to the estimated values to account for humidity 

and other factors. 

For the composite bottom flange of the West Seattle Bridge, the concrete 

slab is 18 in. thick. V/S = 18 in. Assuming that the relative humidity is 

70%, the correction factors for shrinkage and creep are 0.70 and 0.80, 

respectively. The long term shrinkage is then 

(1080 e-O.lZ x 18 )(0.70)(1.20) 

= 105 x 10-6 in/in. 

The factor 1.2 accounts for shrinkage of the first seven days. 

Under the full factored load of the completed bridge, the maximum com

pressive stress in the composite bottom flange is 29.4 ksi over the piers 

(Table 2.2) The stress in the steel plate at the time of placing concrete 

is 3.1 ksi (Table 3.2). Therefore the increase of stress in the steel plate 

of the composite flange is 29.4 - 3.1 = 26.3 ksi and the corresponding concrete 

stress is 

26.3/8 = 3.29 ksi < 0.85 f 
c 

Under service load conditions, the stress in the steel plate is about 

29.4/1.5 = 19.6 ksi and the concrete stress is 19.6/8 = 2.07 ksi. The total 

axial load in the composite flange is 

Ff = 19.6 X 2 + 2.07 X 18 = 76.5 kips/in. 

Because the stresses in the steel and concrete components are gradually 

increased according to erection scheme and shrinkage and creep take place, 

an approximate value of Ff = 40 kips/in. is arbitrarily chosen for the 

evaluation of strains in the composite flange. 

A . compos1te 

Stress in 

Strain in 

(18/n) + 2 = (18/8) + 2 

4.25 in.
2
/in. 

steel plate 40/4.25 

9.4 ksi 

steel 9.4/E 
-6 

= = 3. 25 X 10 
s 
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This estimate average strain in the steel plate is larger than the maximum 

long term shrinkage strain of 105 x 10-
6 

in/in. for the concrete slab. In 

other words, for the completed bridge, there is no shrinkage gap between 

the concrete slab and the transverse diaphragm. 

The long term creep coefficient is estimated from Eq. 5.2. 

C = (0.8)(1.8 + 1.77 e - 0 · 54 
x 

18 ) 
u 

A correction factor of 0.8 is applied for a 70% relative humidity. The long 

term modulus of elasticity for the concrete is then 

E E /n 
E = _--::.c_ 
ct 1 + C 

u 

= ---'-s __ 

29 X 106/8 
1 + 1.44 

1 + c 
u 

1.49 x 10
6 

psi 

The total concrete strain due to shrinkage and creep is 

in which a 
c 

I 6 a I 

£ = 105 X 10 + __ c_ 
c E ct 

is the long term stress corresponding to E 
c 

(5. 3) 

(5.4) 

I 

From compati-

bility of strain between the components of the composite flange. 

£ £ 
c s 

a a I 

105 10
6 + __ c_ = s 

X E E 
ct 

and from equilibrium 

A a + A a 
c c s 

Equations 5.5 and 5.6 

a 
c 

0.60 ksi 

a 14.6 ksi 
s 

s 

= F 
s f 

combine to 

600 psi 

(5.5) 

(5.6) 

give 
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The total strain in concrete is, by Eq. 5.4, 

E 
1 

= 105 X 10 6 + - 6-'-0:....0-::.---:-
6 

C 1.49 X 10 

- -6 
510 x 10 in/in. 

The total long term concrete strain from the completion of the bridge is 

(510 - 325) x 10-6 = 185 x 10-6 in/in. 

The magnitude of long term concrete strain is not expected to present per

formance difficulties to the composite flange. 

It must be pointed out, again, that the amount of shrinkage and creep 

strains are very conservatively estimated. The phenomenon of shrink and 

creep of composite steel-concrete compression plate have not been studied. 

The calculations given above only serve as a very brief and very rough 

guideline for this feasibility study. The conclusion is positive that 

composite steel-concrete compression flange in box girders can be developed. 

5.2 Effects of Strength and Weight of Concrete 

Obviously, the strength and weight of concrete are expected to have 

some effect on the stresses in the steel box girder components. Different 

strength and weight of concrete of the same thickness over the bottom flange 

of the negative moment region is equivalent to slightly different thicknesses 

of a chosen concrete. The results of this equivalent change in concrete 

slab thickness are slight changes of stresses in the composite compression 

flange, as it has been shown in Chapter 2. 

To confirm this conclusion, two different concrete strengths and two 

different weights of concrete are used for the alternative design of the 

West Seattle Bridge. The computed bottom flange stresses are listed in 

Table 5 .1. 

In this table, the case with 4000 psi concrete is the alternative 

design of Table 2.2. An increase in concrete strength reduces the compres-

sive stress in the composite flange and changes the tensile stress at the bottom 

flange ofmidspan very little. The use of lightweight concrete changes 
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the weight of the concrete slab about 20%, but the total weight of the 

bridge and the bending moments are affected very little. Because the modulus 

of elasticity of lightweight concrete is lower, the effects of the modulus 

ratio (n) is more pronounced. The net results are that lightweight 

concrete causes higher compressive stresses in the composite flange. There 

is no advantage of using lightweight concrete for the box girder segments. 

5.3 Casting of Concrete Slab 

It has been pointed out that segmential casting of concrete slab inside 

the erected box girder segments is a very important part of the adoption of 

the compressive composite flange. Casting of concrete in-situ has been 

shown to be acceptable with regard to steel plate buckling and shrinkage 

and creep. Another procedure of developing the composite flange is by 

attachment of precast concrete slab. 

Adoption of precast concrete slabs as the concrete component of the 

composite flange has the following advantages. 

a. Reduction of amount of work on the partially erected 

bridge. 

b. Reduction of time between erection of box girder 

segments. 

c. Reduction of amount of shrinkage and creep from those of 

cast-in-place slabs. 

d. Reduction of concrete slab thickness and weight by a small 

percent because reinforcements are most likely needed for 

the precast slab for handling or hoisting. 

The disadvantages are: 

e. The added uncertainty of shear connector requirement and 

the behavior of the precast slabs. 

f. Necessary grouting between the precast slab and the steel 

components (webs, stiffeners and diaphragms). 

g. Requirement of reinforcing bars for the slab. 
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Whether the advantages outweighs the disadvantages depends on the 

length and geometry of the bridge as well as on its location. The important 

point is that the process of placing precast decks on bridges has been 

successfully tried, and it should be possible to be used for composite 

compression flanges. 

5-6 



.· 

6. COST COMPARISON 

The primary purpose of redesigning the three sample bridges is to 

achieve efficient and economical design through the use of composite concrete 

slab over the negative moment region. Whereas it has been demonstrated 

that efficiency can be gained, the economy of the scheme is not easily 

assessed. 

The total cost of a bridge is the sum of costs for various materials 

and for labor of fabrication, transportation and erection of all parts. 

The differences between an "original" design of a bridge and its alternative 

design includes not only the profile and height of the continuous box 

girder - thus the amount of material and labor for the superstructure - but 

also the elevation of the pier top. The reduction or elimination of the 

haunch over the piers necessitates the increase of pier height in order to 

maintain the appropriate clearaace or navigational channel. 

Without exerting extra effort to acquire information for the evaluation 

of foundation and pier costs as part of the total cost, estimates are made 

of the total cost of the superstructure and the increase of pier height for 

the box girder bridges. Furthermore, instead of estimating costs by 

counting the weight of various materials and the man-hours required for 

fabrication, transportation and erection, a unit price for each fabricated 

material is assumed. By employing a wide range of unit prices according to 

current market conditions [6.1], it is believed that fair comparisons can 

be made on cost of the "original" and alternative designs. 

Tables 6.1 and 6.2 list the total costs of the West Seattle Bridge and 

the Columbia River Bridge. There is found no structural advantage in using 

composite compression flanges in the Tennessee - Tombigbee Waterway Bridge 

so no alternative design is made. 

For the twin box, rectangular cross-sectional West Seattle Bridge, 

Trail 11 (Table 2.2) is chosen as the alternative "new" design, arbitrarily 

on lowest stress instead of on lowest weight. The total weight of the 
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steel portion is estimated to be 7027 kips as compared to 7270 kips for 

the original or "old" design. The composite compression flanges require 

170 cubic yards of concrete and the added height of the piers need 17 cubic 

yards. Table 6.1 itemizes the various combinations of unit costs for 

fabricated steel and concrete portions, and provides the estimated total 

costs in the last column. 

Because of the elimination of haunches, the fabrication 6£ the steel box 

girder segments is very much simplified. The transportation and erection 

of uniform depth box segments are also much easier than of the haunched 

portions. Therefore, the unit cost of the "new" steel superstructure is 

expected to be lower than that of the old, original superstructure. Case 

1, 3, 5 and 7 in Table 6.1 assume this condition. Case 2, 4, 6 and 8 assume 

the same unit price. The concrete in the steel boxes is assumed to be 

without reinforcement and that in the pier requires special formwork. 

Therefore, the prices are different. 

For all cases of unit cost combination, the total cost of the new 

alternative design is lower than the original design with haunched profile. 

In the case of the Columbia River Bridge, the original design has a 

trapezoidal, single box, twin cell cross-section. Constant depth Trial 9 

is chosen as the alternative design on the basis of lower weight. The 

original design, with 5/8 in. bottom flanges at midspans is lighter than 

the new, alternative design. In addition, concrete is needed in the box 

and for the increased pier height. However, the change from a haunched 

profile to that of a uniform depth significantly reduces the cost of steel 

fabrication. The unit price for steel is expected to be much lower for 

the alternative design. 

Cases 2, 4, 6 and 8 of Table 6.2 compare the total cost of the 

Columbia River Bridge on the basis of equal unit price for steel, fabrica

tion, transportation and erection. For these cases, the alternative new 

design is higher in cost. Cases 1, 3, 5 and 7 assume a lower unit price 

of steel superstructure. The resulting cost is lower for the new design. 
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7. SUMMARY AND CONCLUSIONS 

In summary the following can be stated. 

1. Reduction of box girder depth over the piers can be made with an 

increase of bottom flange plate thickness in order to keep the 

stresses within permissible limits. 

2. Placement of composite concrete slab on the steel compression 

flange over the piers is equivalent to increasing the steel 

plate thickness and permits the reduction or elimination of the 

haunch profile. 

3. Elimination of the haunch profile may require also an increase 

of midspan box girder depth. 

4. For safe construction of steel box girders with composite 

concrete slabs in the negative moment region, the sequence of 

erecting box girder segments and placing of concrete slab is 

very important. Buckling of steel compression flange plates 

under lateral and axial loads during construction must be 

prevented. 

5. The composite compression flange under lateral and axial loads 

during and after construction must also be checked to ensure 

strength and stability. 

6. Anchors or shear connectors are needed to anchor the steel plate 

below .the concrete slab and to transfer forces between the 

steel plate and the concrete slab. Not much information is 

available concerning composite action of steel-concrete plates. 

The existing provisions for shear connection in concrete decks 

can be temporarily adopted. 

7. The effects of concrete shrinkage are found to be not governing. 

The strains due to creep of concrete generate differential 

strains in the concrete slab and the steel plate. Again, little 

information is available on this behavior. 
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8. The strength and weight of concrete have some moderate effect 

on the compressive stress in the composite bottom flange but 

affects little the stresses in the midspan sections. 

9. The elimination of haunched profile permits easier fabrication 

of the steel box girders and result in lower unit cost for the 

steel superstructure. ·The weight of the steel superstructure may 

or may not be reduced. Concrete slab is added to the super

structure while additional height of pier also may be needed. 

The resulting total cost is lower for one of the sample 

bridge designs and is expectedly lower for the second sample 

bridge design. A third sample bridge design has uniform depth 

along its length and is found to have no need for composite 

compressive bottom flange over the piers. 

In examining the feasibility of the steel-concrete composite compres

sion flange for continuous box girders, it is realized that prestressed 

concrete deck can also be made composite with the box girder top flange 

over the piers. This condition may add to the efficiency of the composite 

compression flange, at least for moderately long and medium length con

tinuous box girders. Study of this approach and of the strength of 

composite compression plates are suggested. 

The conclusion, at this time, is that it is feasible structurally 

and economically to construct composite steel-concrete compression flanges 

over the negative moment region of continuous steel box girders. 
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TABLE 2.1 DIMENSIONS OF ORIGINAL DESIGN 

BRIDGE WEST SEATTLE COLUMBIA RIVER TENNESSEE TOMBIGBEE 
BRIDGE BRIDGE WATERWAY 

Haunched Haunched Constant Depth 
TYPE Twin Rectangular Box Single Trapezoidal Box ~in Trapezoidal Box 

( Twin cells ) 

L SPANS 375t.- 590' -375' 310'-400'-450'-400'-310' 200'-420'-200' 

D DEPTH 27~ 16 1 , 21'-411 12'-611 p AT PIER 

DEPTH AT 
D CENTER 12'-611 10'-411 12'-611 

c OF SPAN 

Bb 
WIDTH OF 

BOTTOM 240" 178.511 each cell 66 11 
FLANGE 

T WEB PLATE 1. .. .!. II - l II .!.II - 1" w THICKNESS 8 2 4 2 

BOTTOM 1 ....1.11 1 .!. II ,l11 
Tb PLATE II - 211 - 211 -

THICKNESS 
2 16 2 8 

LONGITUDINAL 

STIFFENER 6- ST 10* 47.5 10 WT 8* 28.5 2- WT shape 

AT PIER varies in size 

DIAPHRAGM 14 I -911=- 177 11 24'-911= 297 11 25'= 30011 
SPACING 
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I Carparisonl 

DC 
~ 

TABLE 2.2 TRIAL DESIGNS, WEST SEATTLE BRIDGE 

West Seatfte 8rid8e 

L, =375' Lz = .sr?o' 

- _1_ 
CH 

EL, FLz 

Durin!] the CO??parison only DC. CH. EL, ELz. TB r thickness of. botlbm ft'an_ge) 

ore cha/)ged.. 
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TABLE 2.2 TRIAL DESIGNS, WEST SEATTLE BRIDGE (continued) 

TB a;. Comments NtPnber DC CH E F pier cen~r 
(7_ 

Or?ginal Haunched. Section ' _2_ ,, i 
'+7.9 LFD 

Desi,gn /2,5,- ~7' 2" 8 32.7 

I 

I /2,5 - - - 2.5
11 

/. 5'' 53,2 S2.6 N6 

i 
/6 I 

I 
fl.(), 7 i z - - - // 1/ C+-1.4 

I 

3 I q I - - - /; I; 36.2 3 1../.. I 
I 

Lt I I I II SIJ bb.8 N6 12,5 1 - - - It 
i 
l . 

s /6 I 
I - - - I; II il-2 S/.2 N0 I 
I 

I ! 
I 
I 6 ;9' - - - /; II .35. fl. 1+2./L I 
i i 

i 
II so, fl. 7 12.5' i J,SI Q,J o,z 1/ /.5 3 L./.,/.t N6 

I 
8 I 1./- I /; II I; I; I/ .]Q,6 Lj./,1. 8 

9 /6 I I; o, 62 0,3!2S 2 (I I II 30,8 i.j. 7. 8 
- ·-

10 lb' 1/ o.i/. o,zs II /, sl' 29.8 39 

II lb' I; Q,J Q,2 1/ I/ 29.1+ 39,3 

12 15 1 ;,s/ 0,62 Q312S' 2 II I II .32.9 S/.3 N6 

13 15' II o.L; o,zs // /. s'' .31. 9 Lj.J, 6 

IL/. IS' I; 0,3 o,z I; II J/,5 Ll-2 

IS lb" /,S I Q,Lf o.zs- 2 II I II 30 '1-8.3 
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TABLE 2.3 TRIAL DESIGNS, COLUMBIA RIVER BRIDGE 

I Ccmparison j 

L, = 310' L 2 = f../.00 I LJ = LI.So' 

DC 

k KL I )f( GLz. 1(' FLz 

· During the comparison only DC, C H > E, r=, 6. H, T8 ore chai?Jed 
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TABLE 2.3 TRIAL DESIGNS, COLUMBIA RIVER BRIDGE (continued) 

j ·1. F G ! TB(at~_H , ~· 
i~·IVI_u._~--~~1-D __ c ___ c_H __ ~E--~--~----~-K--~P-~_r_-ro-~ __ ~~'-C'---~-~--+~ __ ComnJents 
I Orzgiooll Haunched Sect;on ,, S 11 

1 Design i 1033" -/6 I- 2/,33 I /. 
5 8 38.8 L,t/. 5 1 LFD i 

r I l ., ,.l . i 
1 ! /0,33i 2 I 0,298 0,3~_0,~3_~. q~~o!L_ 11 

_ r-· ~~-r--36_~_2 ~;~_·8~------------l 
! : ' : ! : I I 
: 2 : 12 I 1/ : // II . I II ! II II /I i: 30,1+ !.j-/,5" I 
r---~~~--~---+----~--~--+---~---+----~--~--~------------1 

! 3 l;a.J/ " i o,z o.zz~! o,tb o-z ! // ; " 135.2 '1-5 i 
! 

!;... I I 2 I . II ! II 

! I I 

II i I/ 1/ II I // : 29.5 38,b 
I i I ~ l ! 

·----~--------~----~--~--+---~--~----~--~--~------------· 
: I , ' ! I I I I 

___ s __ _.!_;_o_,J_J_;: __ ~-_~ -+: --~~--+---~~-+--~~-+-~~----4-:-z_'l_--+_" / 3 z I ~ '~- i i 
' 6 I : I . ' I I 
i I 2 I ' I; ' I; 11 ! // 11 11 11 

: 2 b ' 911 3 8, 2 I! ,. 

i-----4---------+--~~--~--+---~--~--~~--~---+------------
i i I ! ! I i 
! 7 ; 1o,33 1, s I !o,z98 o,335 1 o.zss o3o3! 1. s'' fl' 1 3B.s. ~.,tCJ.zj 
I I I I I i i 
I 8 i 12' 1/ II II II II ! /1 I/ I3Z.b,~l.9 ! 

~--~~----,,_--~----+---+---+---~,----+---ll~----+----~----------1 
q !o,J3 /1 o,z azzs o,;b o,z ~ 11 1 37,b 45,.3 i 

r---~----,_---+----r---+---+---~'----+----r----r---~-----------1 
~ 

10 12 I /; II I; II I; I/ I/ 3/.8 38.9 
1--- ---+-----+-----+---~---+----+-----1r-----+----+--~------ .. -- .. -

// // // 2" "" 33,8 '14.6 I I 
, 

/Q,3J I/ 

~--~---4----4----~--+----+--4----+----~--~---1-----------

12 /2 I 1/ I/ // 28,7 38/J. 

9-5 



TABLE 2.4 DIMENSIONS OF ALTERNATIVE DESIGN 

BRIDGE WEST SEATTLE COLUMBIA RIVER 
BRIDGE BRIDGE 

Constant :Pepth Constant Depth 
TYPE 

Twin Rectangular Box Single Trapezoidal Box 
( Twin cell ) 

L SPANS 375'-590'-375' 310'-400'-450 1 -400 1 -310 1 

D DEPTH OF BOX 16' 10'-411 
c 

Bb 
WIDTH OF 

240 11 178.5 11 each cell BOTTOM FLANGE 

T WEB PLATE 1 II - 111 ..!. II 3 II 

w THICKNESS 8 2 -4 

Tb 
BOTTOM PLATE 1 ..!. II - 2" 111 - 1 ..!. II 

THICKNESS 2 2 

LONGITUDINAL 

STIFFENER AT PIER No stiffener needed No stiffener needed 

DIAPHRAGM SPACING 14 1 -9 11=177" 24 1 -9 11•297" 

CONCRETE 
1 1 -6" 11 -6 11 

THICKNESS AT PIER 

CONCRETE LENGTH 112 I t 118 I 62 I t 64 I t 90 I t 90 I 
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TABLE 2.5 TRIAL DESIGN, TENNESSEE TOMBIGBEE WATERWAY BRIDGE 

I Comparison I Tennessee Tombi9hee Wa~. 

Number 

I O!igim 
'Design 

I 

z 

I 3 
! 
i '+ l 

! 
j 

s I \ 

i I 
' b ' 

7 

8 

I I L, = 200 Lz =iJ.20 

I EL, I FLz. CH 

DC CH E F 

Consftmt depth sect-ron 
!X=/2,5' 

/2,5' I I Q,LJ.9 Q,3 

I; 21 II I/ 

1/ - - I 

I -

I; I I l o.Li-9 : o,J 
! 

I 
I; j 21 lj lj 

i i 
! . 

/j : I I /. /, 

---·-r----· . 3 ---+---: -- _J - ~ 
I 
I 

10' i I I II 1/ 

2 
I 

I; 
If If 

I 

I 
t· 
I 

I 

TB o-_ 0+ pler center Comments 
If 2 ,, 1,37S 39.8 'f.o. 7 LFD 

II ! I/ 29 39 

II II 2S,I 38.5 

I II 
II 

! 86.3 I b8.9 IV& 

I/ 1/ . /.i$.7 I 62, I . N6 
i 

I 

1/ // j3s.5" 60,/ Nb 

i 
1 ' ' 

' i /. /I 'I .Jz.z : s-9. 6 1 N'& . 
--;---+----------t------- -·--1 

~~ ! S 0 I 82.3 
1 
N6 J 

I I : 
1/ 

. I 
II ; 41-6.b I 80 ! NG II 

1----+----+------+---+---+------+---r----+--~~--- _,. -·-· ! 
9 'I J' II It 1

/ ! 43.6
1 

7'1.61 N6 
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TABLE 3.1 BOTTOM FLANGE STRESSES DUE TO WEIGHT OF STEEL BOXES 

16' 

~ I <:A A B 

1 1 .1 
2 2.9 1.1 

3 2.9 

4 
5 
6 
7 
8 
9 

crane load aok ______________ _... <t 
I 
I 

I 
I 

I 

c D E F G H I 

1.2 
3.1 1.2 

2.9 1.5 

3.8 1.5 

3.8 1.4 

3.3 1.3 

3.4 1.3 
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TABLE 3.2 BOTTOM FLANGE STRESSES DUE TO WEIGHT OF STEEL BOXES AND 

WET CONCRETE 

crane load aok 
--------------~ 

16' 

~ segme A B c D E F G H 

1 

2 3.1 

3 3. 

4 3.2 

5 2.9 

6 
7 
8 
9 

9-9 

I 

<t 
I 
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I 
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TABLE 3.3 COMPOSITE FLANGE STRESSES DURING CONSTRUCTION 

16' 

~ess 
kc;" 

lsetJ•enL~ A B 

1 

2 1.8 

3 3.5 2. 

4 5.4 3.8 

5 7.4 5.8 

6 9.7 8.2 

7 12.2 10.8 

8 15.1 13.8 

9 18.2 17.3 

crane load 8 0 k 
--------------~ 

<t 
I 

c D E F G H I 

2.6 

4.6 2.7 1. 5 

7.1 5. 3.8 1.5 

10. 7.9 5.4 3.8 1.4 

13.5 11.3 11.1 6.9 3.3 1.3 

17.5 15.3 16. 11. 6.9 3.4 1. 3 
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TABLE 5.1 EFFECTS OF CONCRETE STRENGTH AND WEIGHT 

WEST SEATTLE BRIDGE 

f I 

Case c 
Cksi) 

Original -

Trial 4 

1 1 6 

4 

•6 

D = 16' c 
T c = 18" 

n 

-
8 

6.5 

1 1 

9 

we 0"- cr+ 
(lb/ft3

) (ksi) (ksi) 

- 32.7 479 

150 29.4 39.3 

150 26.8 38.8 

120 32.9 39.5 

120 30.7 39.4 
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TABLE 6.1 COST COMPARISON FOR BRIDGE SUPERSTRUCTURE (WEST SEATTLE BRIDGE) 

Steel Unit Cost of Concrete Unit Concrete Unit Cost of TOTAL 

CASE Weight Price in Flange Price in Pier Price 

(Kips) ($/Kips) Steel (yd3) ($/yd3) (yd3) ($/yd3) Concrete COST 

old 
design 7270 3000 21810000 - - - -· - 21810000 

1 
new 
design 7027 2500 17567500 170 100 17 150 19550 17587050 

old 
7270 design 2500 18175000 - - - - - 18175000 

2 
new 

7027 2000 14054000 170 100 17 150 19550 14073550 design 

old 
7270 2500 18175000 18175000 design - -· - - -

3 
new 

7027 2500 17567500 170 100 17 150 19550 17587050 design 

old 
7270 2000 14540000 14540000 design - - - - -

4 
new 

14054000 14073550 design 7027 2000 170 100 17 150 19550 



TABLE 6.1 COST COMPARISON FOR BRIDGE SUPERSTRUCTURE (WEST SEATTLE BRIDGE) (continued) 

Steel Unit Cost of Concrete Unit Concrete Unit Cost of TOTAL 

CASE Weight Price in Flange Price in Pier Price 

(Kips) ($/Kips) Steel (yd3) ($/yd3) (yd3) ($/yd3) Concrete COST 

old 
7270 14540000 14540000 design 2000 - - - - -

5 
new 
design 7027 1500 10540500 170 100 17 150 19550 10560050 

old 
7270 1500 10905000 design - - - - - 10905000 

6 
new 

7027 1500 10540500 170 design 100 17 150 19550 10560050 

old 
7270 1500 10905000 10905000 design - - - - -

7 
new 

7027 1000 7027000 170 100 17 150 19550 7046550 design 

old 
7270 1000 7270000 7270000 design - - - - -

8 
new 
design 7027 1000 7027000 170 100 17 150 19550 7046550 



TABLE 6.2 COST COMPARISON FOR BRIDGE SUPERSTRUCTURE (COLUMBIA RIVER BRIDGE) 

Steel Unit Cost of Concrete Unit Concrete Unit Cost of TOTAL 

CASE Weight Price in Flange Price in Pier Price 

(Kips) ($/Kips) Steel (yd3) ($/yd3) (yd3) ($/yd3) Concrete COST 

old 
design 7093 3000 21279000 - - - - - 21279000 

1 
new 
design 7196 2500 17990000 170 100 117 150 34550 18024550 

old 
design 7093 2500 17732500 - - - - - 17732500 

2 
new 
design 7196 2000 14392000 170 100 117 150 34550 14426550 

old 
design 7093 2500 17732500 - - - - - 17732500 

3 
new 
design 7196 2500 17990000 170 100 117 150 34550 18024550 

old 
design 7093 2000 14186000 - - - - - 14186000 

4 
new 
design 7196 2000 14392000 170 100 117 150 34550 14426550 



TABLE 6.2 COST COMPARISON FOR BRIDGE SUPERSTRUCTURE (COLUMBIA RIVER BRIDGE) (continued) 

Steel Unit Cost of Concrete Unit Concrete Unit Cost of TOTAL 

CASE Weight Price in Flange Price in Pier Price 

(Kips) ($/Kips) Steel (yd3) ($/yd3) (yd3) ($/yd3) Concrete COST 

old 
design 7093 2000 14186000 - - - - - 14186000 

5 
new 
design 7196 1500 10794000 170 100 117 150 34550 10828550 

old 
design 7093 1500 10639500 - - - - - 10639500 

6 
new 
design 7196 1500 10794000 170 100 117 150 34550 10828550 

old 
design 7093 1500 10639500 - - - - - 10639500 

7 
new 
design 7196 1000 7196000 170 100 117 150 34550 7230550 

old 
design 7093 1000 7093000 - - - - - 7093000 

8 
new 
design 7196 1000 7196000 170 100 117 150 34550 7230550 
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