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ABSTRACT 

An analytical solution is presented for the elastic 

response of a slab panel subjected to an in-plane end shear. 

The loading condition is separated into a pure shear component 

and an essentially bending component. Simplified approximations 

are provided and example applications are included. 
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I. INTRODUCTION 

In a building structure containing several lateral load resisting 

systems, the floor systems act as diaphragms connecting these vertical 

systems and control the distribution of lateral load among the several 

parallel systems. The basic behavior of a floor panel under such a con

dition may be taken to be that of a cantilever deep beam subjected to a 

distributed shear load on its free end as shown in Fig. 1a. Because of 

the geomet_ry of the panel, where the planar dimensions B and H are typi

cally of the same order of magnitude, and the thickness is much smaller, 

a satisfactory analysis cannot be achieved by the conventional methods 

of strength of materials. This report presents an analytical solution 

based on a separation of the shear and bending effects. 

The distribution of the shear load T at the end of the floor slab 

panel is generally not known. In the proposed solution, a uniform dis

tribution is initially assumed, considering that the loading is typi

cally induced either by inertia (as in the case of earthquake) or rela

tive displacement between the connected vertical systems. It is then 

possible to resolve the present problem into two component parts, as 

shown in Fig. 1b and 1c. The first component, shown in Fig. 1b, repre

sents a pure shear condition. For a member of uniform thickness, 

T = 
0 

and 

!::. = 
s 

where 

T 
Bt 

T TH ....£H = GBt G 

T = Uniform shearing stress in the member 
0 

t = Thickness of slab 

G = Shear modulus of elasticity 

(1-1) 

(1-2) 

The second component of the load, shown in Fig. 1c,causes the slab 

panel to deform in an essentially "bending" mode. The free end displace

ment caused by this load, ~' will be referred to as the "bending 
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displacement" in this report. The solution for ~ is presented in the 

next section. It is clear that the total deflection ~ in Fig. la can 

be obtained by superposition. 

(1-3) 

It should be pointed out that a conceptual difference exists bet

ween the shear and bending displacements defined here and those commonly 

found in literature on mechanics of materials. In the later case, the 

two components are caused by the same load, but are derived from the 

separate (but coexisting) strain components. Here, they refer to sepa

rate loading conditions. 
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II. SOLUTION FOR THE "BENDING DISPLACEMENT" 

Fig. 2 shows the "bending component" problem in an idealized form. 

The in-plane dimensions are H and B in the x and y directions respectively. 

The thickness of the plate, in z direction, is t. The plate is fixed 

along the edge x=O, and free on the edges x=H and y= ~ B/2. The load

ing consists of uniformly distributed shear stress T
0 

(per unit area) on 

the edges y= ~ B/2. All other surface forces on the free edges are zero. 

The problem as defined is a plane stress problem. It is well 

known that such a problem is solved by the biharmonic differential equa

tion with appropriate boundary conditions. (2) 

= 2 

where ~ = Airy stress function 

which is related to the stress components by 

cr 
X 

= cr 
y 

= and T xy 

0 (2-1) 

= (2-2) 
axay 

To facilitate a series solution for the stress function, the con

stant shearing stress T
0 

on the edges y= ~ B/2 is first replaced by 

its Fourier series equivalent, using H as quarter period length for the 

fundamental mode. 

4T 1 m'IT 0 l: T = -- -Sin- X 
'IT m 2H m = 1, 3, 5, ••• 

Or, defining 

mrr 
Cl. = 2H 

2T 
1 s· 0 

l: T = H - ~n CI.X 
Cl. 

2Ha --= 
'IT 

1, 3, 5, •.• (2-3) 
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The selection of H for quarter period length is necessary to satisfy 

the boundary conditions, as will be shown later. 

It is now appropriate to suggest the following solution for the 

stress function: 

<P = l:¢ = a 
1 l: - Cos axf (y) a a (2-4) 

where e~ch <Pa satisfies the biharmonic equation (2-1) separately. Solu

tion of the biharmonic equation leads to: 

f (y) 
a = 

From Equation (2-2) 

a = l: ..!:.. Cosaxf" (y) x a a 

a = - l:a Cosaxf (y) 
Y a 

The stress field in the member is skew-symmetric with respect to the 

x-axis, i.e., 

a = -a (-y) x(y) x 

T (y) = T (-y) 
xy xy 

Consequently, f~ (y) must be odd functions of y, and f~(y) must be even. 

Hence, = = o. 
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The general solution of this problem is, therefore, as follows: 

¢ = 

cr = 
X 

cr = y 

T = xy 

(2-5) 

(2-6) 

(2-7) 

(2-8) 

In equations (2-5) through (2-8), the summations are over the values of 

a such that 

2Ha 
-- = m = 1, 3, 5, ••• 

'IT 

The coefficients c 2 and c 3 are determined by the boundary stress con

ditions on y= ~ B/2, where 

cr = o 
y 

T = T xy 

Substituting Equations (2-3), (2-7) and (2-8), and equating the corres

ponding terms of each series 

aB B . aB 1 aB 
c 2cosh z- + c3 { 2 S~nh z- + a Cosh z- } 

Solving these equations for c 2 and c 3 

4T 
0 

=- aH 

B aB 
2 Cosh z-
aB - SinhaB 

S . h aB 
~n- z-

aB - SinhaB 
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Substituting into the general solutions (2-5) through (2-8) 

B aB aB 
4-r

0 1 ~osh 2 Sinhay - Sinh 2-"f Cosh ay 
= --- I -- Cosax ------~~--~~~~--~----------H 2 aB - SinhaB a 

(2-9) 

4 B C haB Si h S' h aB C h 2 s· h aB s· h T 2 OS 2 n ay - ~n z-Y OS ay - a ~n z- ~n ay 
cr 

X 

cr 
X 

T xy 

= ---
0 

I Cosax ~----~------~--~~--~--------~~----~-------H an - Sinh aB 

4-r ~osh ~B Sinhay 
aB 

0 Co sax 
Sinh z- yCoshay 

(2-11) = - - I H aB - Siuh aB 

4T 
B aB aB Sinhay - ~inh ~B Coshay 2 Cosh z- Coshay Sinh z-Y 

= __.£I Sin ax H aB - Sinh aB 

m'IT Along the end boundary x=H, ax= z-· Therefore, form= 1, 3, 5, ••• , 

cos ax= O, and sin ax= +1. The boundary stress condition that cr = 0 is 
X 

clearly satisfied, but T xy does not automatically vanish. The zero shear 

stress condition is only partially satisfied 

force is self-balanced over each half of the 
B o::Y::z). 

in that the total shear 
B end width ( - - < y < 0 and 
2 -

J 
~ T ay 

4-r
0 1 ~ Cosh ~B Sinh ay - Sinh ~B y Cosh ay 

= --- I - Sin ax ~----~--~--~~~~--~---------

B 
2 

xy H a aB - Sinh aB 
0 0 

= 0 

It is interesting to note that the validity of this relationship is in

dependent of the value of x. The total shear force is self-balanced 

within each half-width at any transverse section, not only at the free 

end boundary. 

6 
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The displacement boundary conditions at the fixed edge (x=O) will 

now be examined. From the stress solutions Equations (2-10), (2-11) 

and (2-12), the general expressions for the strain components are as 

follows: 

4T0 C (1+v) (~ Cosh ~B Sinhay - Sinh~ByCoshay)- ~in~inhay 
= --- r osax ~--~----------------------------------------------EH 

aB - SinhaB 

(2-13) 

1 
s = - (cr -vcr ) 

y E y x 

4T 0 C (1+v) (~osh ~inhay - Sinh ~Coshay) - ~inh~BSinhay 
= - --- r osax ~~~------~----------------~--------~----------EH 

aB - SinhaB 

(2-14) 

2 (l+V) y = . T 
xy E xy 

8T
0

(1+v) ~osh~oshay Sinh~BySinhay- ~in~oshay 
= ~~--- L: Sinax ~--~------------~----------~--~-----------EH 

Integrating, 

u=fsdx 
X 

4T = __ o L: Sinax 
EH a 

aB - SinhaB 

(2-15) 

(1+v) (~osh ~inhay - Sinh~ByCoshay) - ~inh~inhay 
+g1 (y) 

aB - SinhaB 

(2-16) 
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v = f E: dy -y 

B Ci.B Ci.B 1-v . Ci.B 
4T0 Cosax ( 1+v)(~os~ Coshety- Sinh~Sinhety) + ~~n~oshay 

= -~ L Ci. +g2 (x) 
etB - SinhetB 

Th d 1 1 h - au + av e strain- isp acement re ations ip Yxy - ay ax 

' ' g1(y) + g1 (x) = 0 

(2-17) 

then requires 

Observing that g1 (y) is independent of x, and g2 (x) is independent of y, 

' = - s2 Cx) = constant 

And 

The coefficients A1, A2 and A3 will be determined by the given fixed 
au 

boundary conditions at the origin. Let u = v = ax = 0 at the origin, 

X = y = 0. 

A2 = 0 

4 (~2 osh~2B\ + 1:vsin~2B 
T 0 1 ( 1 +V) 'I u. 

- - L: - -=---.:.---------- + A3 = 0 
EH a etB - SinhetB 

Therefore, g1 (y) = 0 (2-18) 

= = 4T0 L: ..!:._ (l+v) <¥cosh ~B) + (1-v)Sinh~B A3 EH 2 ....:....._;,..__ _____ __, _____ _ 

a aB - SinhaB 
(2-19) 
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The "bending displacement" £\ being sought for is the v-displacement 

at (x = H, y = 0). Noting that Cosax = 0 for x = H, 

aB aB aB 
(1+v)2 Cosh 2 + (1-v)Sin~ 

aB - SinhaB 

The negative sign is introduced to conform with the coordinating direc
mrr tions shown in Figs. 1 and 2. Substituting a = 2H , 

mrrB mrr B mrrB 
(1+v) 4H Cosh4 H + (l-v)Sinh7;if 

m= 1, 3, 5, ••• 

2 • mrrB mrrB) 
m (SJ.nh 2H - 2H (2-20) 

In summary, the bending problem of Fig. 2 is completely solved 

by the stress function Equation (2-9) and the displacement functions 

(2-16) and (2-17) combined with the auxiliary functions (2-18) and 

(2-19). The solution satisfies the following stress and displacement 

boundary conditions: 

Along the end boundary x = H: 

0 = 0 = 0 
X y 

Along the side boundaries y = + B -z 
0 = 0 

y 

2T 
T xy 

o .,. 1 s· --- ~ - J.narr = T H a o 

9 

2Ha -- = 
TI 

1, 3, 5, ••• 



Along the fixed 

u = o, 

boundary x = 0 

au 
ay = o 

At the center of the fixed boundary x = 0, y = 0 

av 
v=a;c=O 

It is interesting to note that at the end boundary x = H, v is 

independent of y, and the entire boundary undergoes uniform lateral dis

placement of '\· 
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III. SIMPLIFICATION OF THE BENDING SOLUTION 

The elastic solution for bending displacement ~' presented in the 

preceding section, can be simplified considerably without introducing 

serious errors. In Equation (2-20), the terms under the summation sign 

diminishes in magnitude rapidly with increasing m, on account of the 

doubled argument of the hyperbolic sine function in the denominator, as 

well as the factor l/m2• Table 1 shows numerical values of the first 

three terms of the series for several selected aspect ratios (B/H). It 

is clear that for the range of aspect ratio shown, the series under sum

mation is strongly dominated by the leading term (m=l). Therefore, all 

other terms may be omitted without any significant effect. 

1TB 1TB 1TB 
(l+v) 4H Cosh 4H + (1-v)Sinh 4H 

1TB 1TB 
Sinh 2H - 2H 

. (3-1) 

Equation (3-1) can be further simplified by expanding the hyper

bolic functions into the equivalent power series. Let k= :: 

(l+v) 1214) 1 3 1 
k (1'7fk + T:'k +... + (1-V) (k+J:k + ~5 + ••• ) 

3~ (2k) 3 + h-<2k) 5 + ; ! (2k) 
7 

+ ••• 

2T
0
H 2 + jy (4+2v)k2 + ir(6+4v)k4 + ••• 

= 
1T2Ek2 

Both power series, in the numerator and the denominator, converge 

strongly, particularly for moderate values of k. For aspect ration B/H 

11 



not more than 2.0 (knot exceeding approximately 1.5), two terms in 

each series would be quite adequate. 

2 + 4 + 2v k2 
6 

1 + 0.103 (2+v)(~) 2 

1 + 0.123 (B) 2 
H 

(3-2) 

Observing that TI~ is approximately equal to 96, the first factor on the 

right hand side of Equation (3-2) represents the end deflection (Fig. 1a) 

as computed by the conventional cantilever- beam formula. 

=---
384T H3 

0 (3-3) 

Therefore, Equation (3-2) shows that the bending displacement ~ can be 

evaluated by applying a modifying factor to the conventional solution 

~a· Equation (3-2) is therefore rewritten in the form of Equation (3-3), 

with an additional simplification in the numerical coefficients as 

shown in Equation (3-4) 

~ = L\all (3-4) 

1 + 0.1(2+v) (B) 2 
H 

).l = (3-5) 

1 + 0.12 (B)2 
H 

Equations (3-4) and (3-5) make a very close approximation of the 

elastic solution (2-20). The two measures taken (the truncation of the 

summation series and the rationalization of the hyperbolic functions) 

12 



induce errors opposite each other, resulting in very small total error. 

The closeness of the approximation is demonstrated in Table 2. For 

this comparison, Equation (2-20) is first rewritten with reference to 

mrrB mrrB m~B 
(1+v) 4H Cosh 4H + (1-v) Sinh 4H 

E --------------------------------
2(Si h m~B _ m~B) 

m n 2H 2H 

m= 1, 3, 

(3-6) 

Table 2 shows values of ~ and ~ 1 , calculated for v=0.16 and a range of 

aspect ratios. For aspect ratio between 0.5 and 2.0, the two values do 

not differ by more than 0.5%. This degree of agreement is obviously 

acceptable. 

It should be cautioned that the discussion in this section deals 

with the evaluation of displacement only. Whether the stress solutions, 

Equations (2-15), (2-16) and (2-17) could be similarly simplified was 

not examined in this study. 

13 
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IV. EXAMPLES 

Two examples are presented here to illustrate the application of 

the proposed method of displacement evaluation. The first example re

fers to a flat plate panel 61.33 inches long, 96 inches wide ~d 2. 22 

inches thick. (These dimensions were taken from a reduced scale speci

men tested in a related study, Ref. 1) A shear force of 3,000 lbs. is 

applied at the free end. Material properties are E= 3.1 x 106 psi, 

V= 0.16 and G= 1.34 x 106 psi (Fig. 3) 

Aspect Ratio = 96 
61.33 = 1.565 

I = .!..... (2. 22) (96) 3 = 163800 in 4 

12 

TO = 96 X 2.22 
3000 = 14.06 psi 

From Equation (1-2) 

14.06 
~ = ----- X 61.33 = 

s 1. 34 X 106 

From Equation (3-3) 

3000(96) 3 

L\a = -3-(3-.-1-x-1._.:0_6 ._.:) (-1-6-38_0_0_) 

From Equation (3-5) 

f.! = 

Therefore, 

1 + 0.1 (2.16)(1.565) 2 

1 + 0.12 (1.565) 2 

= 

0.644 

= 
1.529 
1.194 

in. 

in. 

= 1.18 

~ = 0.454 X 10- 3 
X 1.18 = 0.536 X 10- 3 in. 

14 



In comparison, a finite element analysis of this flat plate panel 

yields an end displacement of 1.171 x 10- 3 in., reflecting an error of 

less than one percent. 

It is interesting to also compare the solution with that based on 

ordinary mechanics of materials theory, considering _both flexual and 

shearing strains. The flexual displacement has been calculated above, 

~ = 0.454 x 10- 3 in. 
ba 

The shearing effect is 

b. 6 TH 
sa = 5 GA = 

6 (3000) (61. 33) 
5(1.34 X 106) (2.22) (96) 

b. = 1.228 x 10- 3 in. 
a 

= 

It is seen that the proposed solution agrees much better with the finite 

element solution than-the conventional theory. 

For a second example of application, a specimen waffle slab panel 

with dimensions shown in Fig. 4, under an end shear force of 900 lbs. is 

analyzed. 

Although the derivations in Section 2 refer to a flat plate of 

uniform thickness, the Equations (3-3), (3-4) and (3-5) could be used 

for beam-supported floor panels as well. The effect of the beams (or 

ribs, in the case of a waffle slab) is included in the calculation of 

I in Equation (3-3), as illustrated in this example. 

Islab = i2 (o.67) (96) 3 = 49400 in.~ 

I = ribs 

I = 

= 

I .b 
r~ s 

900 (61. 33) 3 

= 73500 in.~ 

3(3.1 x106) (73500) 

15 

= 24100 

in. 

. ~ 
~n. 



B - = H 
1.565 

j.l = 1.18 

= 0.304 X 10- 3 
X 1.18 = 0. 358 x 10- 3 in. 

For the estimation of the pure shear displacement ~ , an equivalent 
s 

slab thickness is used to account for the contribution of the closely 

spaced ribs. The development of the equivalent thickness approach is 

presented in a separate report. (3) For this example waffle slab, the 

equivalent thickness S = 1.0434, 

TH 
~s = GSA = 

900 (61.33) 
= O. 614 x 10- 3 in. 

1.34 X 10~ (1.0434) (96) (0.67) 

= 

In comparison, a 2-D analysis by the finite element nethod yields an end 

displacement of 0.981 x 10- 3 in. The discrepancy is again less than one 

percent. 
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V. CONCLUSIONS 

A solution has been presented for the estimation of displacement 

caused by an in-plane end shear load on a cantilever slab panel, based 

on the separation into a pure shear condition and a "bending" condition. 

The bending solution is simplified without incurring significant errors. 

Examples show that the results obtained from Equations (1-3), 

(3-4) and (3-5) are very nearly the same as those obtained by finite 

element analyses. 

The example on waffle slab further demonstrates the Equations 

(3-4) and (3-5) can be extended to non-flat slab panels. In these 

cases, the moment of inertia of the bending section is calculated to in

clude contributions of the beams as flanges. 
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TABLE 1 

Convergence of Series in Equation (2-20) 

Aspect Ratio 0.7 1.0 2.0 

Term 1 5.1923 2.6509 0.7738 

Term 2 0.0790 0.0413 0.0063 

Term 3 0.0108 0.0043 0.0001 

NOTE: Calculations based on v = 0.16 
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TABLE 2 

Comparison of Complete and Approximate Solutions 

Aspect Ratio 
(B/H) 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

2.00 

1.024 

1.051 

1.085 

1.128 

1.170 

1.216 

1.261 

NOTE: Calculations based on v = 0.16 

20 

1.025 

1.054 

1.088 

1.130 

1.175 

1.221 

1.267 

Percentage 
Difference 

0.1% 

0.3 

0.3 

0.2 

0.4 

0.4 

0.5 
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Fig. 1 Slab Panel Under End Shear 
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Fig. 2 Idealized "Bending" Problem 
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61.33
11 

T=3000 lbs. 

Fig. 3 Flat Plate Example 
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Sect. 1-1 

Fig. 4 Waffle Slab Example 
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