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ABSTRACT 

Ultimate strength test results are presented for a horizontally 

curved closed composite steel-concrete box girder. Prior to casting 

the concrete slab the non-composite steel box girder was also tested 

under low load elastic conditions with and without the steel Bridgform 

in place. All tests were performed with a concentrated load placed at 

mid-span directly above the outside web (web having the largest radius). 

The tests were conducted in the 5,000,000 lb. Baldwin testing machine 

located in Fritz Engineering Laboratory, Lehigh University. Test 

results presented herein consist of load-deflection behavior and 

stresses at selected locations. Premature failure of the concrete 

slab and shear connection near the two ends of the girder did not 

permit attainment of a higher ultimate strength of the girder which 

would involve yielding of the steel girder near mid-span. 
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1. INTRODUCTION 

1.1 Background 

The research reported herein is part of an investigation into the· 

ultimate strength of horizontally curved steel plate and box girder 

members for bridges. Reference 1* is the first of two proposed reports 

on the results of the plate girder investigation. Fritz Laboratory 

Report No. 454.2 containing design recommendations which are applicable 

to the design of compression flanges for curved steel plate girders over 

interior supports is in preparation by B. T. Yen, Professor of Civil 

Engineering, Lehigh University. 

This report presents the results of an ultimate strength test of 

one horizontally curved single cell closed composite steel/concrete 

box girder. Also presented are the results of tests conducted on the 

I 
non-composite steel box girder with and without the steel Bridgform in 

place. The steel portion of this box girder was part of a horizontally 

curved steel box girder assembly which was fabricated and tested in 1974-76 

to over 2,000,000 cycles of loading during a previous investigation into the 

fatigue behavior of curved steel bridge elements (2)*. That study consisting 

of fatigue tests of 8 full sized curved plate and box girder test assemblies 

was sponsored by the Federal Highway Administration (FHWA) of the U. S. 

Department of Transportation (US DOT). Reference 2 describes the steel 

plate and box girder test assemblies which were tested in fatigue during 

the FHWA sponsored study. Box Girder Test Assembly 2, described in Ref. 2, 

was made available after the fatigue tests were completed, and modified for 

use in the investigation reported herein. 

* References are presented in Chapter 7 at the end of this report. 
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The modifications consisted of making welded or bolted splice 

repairs to fatigue damaged areas of the girder, removing the horizontal 

web stiffeners over the central half of the girder and adding four 

transverse web stiffeners to the 9 foot bays on either side of mid-span, 

as shown in Fig. 1. 

1.2 Objective and Scope 

The objectives of the investigation reported herein are as follows: 

1. To experimentally determine the low-load elastic behavior of 

the non-composite curved steel box girder under the following 

load conditions and test configurations: 

2. 

(a) Concentrated load at mid-span of the outside web (Fig. 1) 

of an open steel cross-section. (Referring to Fig. 2 the concrete 

slab and steel Bridgform are not present in the open cross-section). 

(b) Concentrated load at mid-span of the outside web with the 

Bridgform in place using the recommended pattern of connecting 

screws. (Art. 3.2.2) 

(c) Concentrated load at mid-span of the outside web with the 

Bridgform in place using a closer screw spacing along each web 

than the recommended spacing. (Art. 3.2.2) 

To experimentally determine the ultimate strength behavior of 

the closed composite steel-concrete curved box girder under a 

concentrated load at mid-span above the outside web. 

The scope of the investigation is as follows: 

1. To report the experimental elastic and ultimate strength load­

deflection test results for curved girders at selected girder 

locations. 
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2. To report selected stress levels in the curved girders for the 

several test configurations. 

3. To report other experimentally obtained results of interest. 

The scope of the investigation does not include theoretical analyses 

of the test results or the computation of analytical predictions with which 

the test results can be compared. Although it was originally planned to 

compare the ultimate strength load-deflection behavior with a predicted 

behavior, assuming complete interaction, the premature failure of the 

composite slab and shear connection near the ends of the girder does not 

enable such a comparison to be made. 
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2. DESCRIPTION OF CURVED BOX GIRDER 

Schematic plan and cross section views of the box girder are shown 

in Fig's. 1 and 2. North is to the right in Fig. 1. Table 1 summarizes 

the cross-sectional dimensions and material properties of the composite 

box girder. The material properties are based on average values obtained 

from material tests and mill test reports. 

The box girder used in this study was originally designed for the 

fatigue investigation reported in Ref. 2. Box Girder Test Assembly 2, 

which is described in Ref. 2, was modified for use in the investigation 

reported herein. At the conclusion of the fatigue study the box girder 

had experienced some fatigue cracking, Cracks which, due to their size 

and location, could influence the ultimate strength test results were 

repaired. Repairs consisted of welding or bolting small patch or cover 

plates over the visible cracks or removing the crack tip by means of 

drilling a small hole. 

As shown in Fig. 2 and referring to Ref. 2, only the portion of 

Box Girder Test Assembly 2 below the tops of the webs, was retained 

(including the 5" x 1" plates) for the ultimate strength tests. A 

composite concrete slab was attached to the webs using 3/4 in. diameter 

shear studs as shown in Fig's. 1 and 2. The slab was constructed using 

• steel BRIDGFORM spanning between the webs. Figures 3 and 4 show the 

box girder with Bridgform in place prior to and after pouring the 

composite concrete slab. 

Prior to performing the tests reported herein the longitudinal 

3" x 1/4" web stiffeners which existed on Test Assembly No~ 2 (Ref. 2) 
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were removed from the central 18 ft. length of both webs of the girder, 

retaining them only in the outer two 9 ft. bays. The longitudinal 

stiffeners are located 9 in. above the bottom flange. After removal of 

the longitudinal stiffeners, 3~" x 1/2" transverse web stiffeners were 

.. welded to the inside of each web midway between the center and quarter 

point diaphragms, both sides of the mid-span, for a total of 4 stiffeners 

as shown in Fig. 1. The original longitudinal stiffener on the bottom 

flange, which were needed in the fatigue tests (Ref. 2), were left in 

place, as shown in Fig. 2. The left most stiffener in Fig. 2 was not 

continuous through the mid-span . 

... 
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3. INSTRUMENTATION AND TESTING PROCEDURE 

3.1 Instrumentation 

The strain gages and girder displacement gages used for the box 

girder tests are shown in Fig's. 5 and 6. 

Figure 5 shows the locations of the electrical resistance strain 

gages used in conjunction with a 120-channel B&F data acquisition system. 

The strain gages are located on the two webs and bottom flange at three 

cross-sections adjacent to mid-span as shown in the figure. Two types 

of strain gages are used; single gages and rosette gages. All single 

gages are mounted to measure strain parallel to the longitudinal axis 

of the box girder. The rosette gages on the webs consist of three strain 

gages. These gages are mounted so that the two legs of the rosette at 90° 

to each other measure strains parallel to and perpendicular to the longi-

tudinal axis of the girder. The third leg of the rosette measures strains 

at 45° to the parallel and perpendicular gages and are oriented up and 

away from mid-span as shown in the figure. Strain data was not always 

recorded for all gages at all load levels. Only selected data of interest 

was recorded. 

Figure 6 shows the locations of the Ames dial gages to measure 

vertical and horizontal displacements of the box girder and out-of-plane 

displacements of the outside web. The letters H and V refer to the hori-

zontal and vertical box girder displacements, respectively. The letters 

A through G and I through K refer to locations of potential web displace-

ment measurements. Web displacements were not always measured at all 

locations. When web displacement data was taken, measurements were made 

at locations 1 through 5 as shown on the typical cross-section X-X. 
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Ames dials reading to 0.001 in. were used for the box girder displacements. 

Ames dials reading to 0.0001 in. were used for the web displacements. All 

Ames dials had a stroke of 1 in. except for those measuring vertical dis­

placements within the middle half of the box girder. Those had strokes 

of 6 in. 

Figure 7 shows a view of some of the strain gages on the outside web 

as well as some Ames dial deflection gages. Vertical and horizontal dis­

placements were measured at the intersection of the web plates and bottom 

flange plate. Horizontal displacements were measured at the top of the 

web in Tests 1, 2A and 2B and at mid-depth of the concrete slab in Test 3. 

(See Chapter 3). 

Figure 8 shows the device used to take the web out-of-plane 

displacements. Ames dials 1 through 5 (Fig. 6) were bolted to a bar which 

could be moved to locations A through G and I through K. The bar was fitted 

with magnets to hold the bar against the web while dial readings were being 

taken. Web displacements are therefore out-of-plane displacements measured 

relative to the top and bottom edges of the outside web. 

3.2 Test Procedure 

Four tests of the box girder were carried out culminating with the 

ultimate strength test of the composite box girder. The four tests are 

described in Art's. 3.2.1 through 3.2.3 below. 
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3.2.1 Test 1 - Without Bridgform 

The purpose of this test was to establish the load-deflection 

behavior, under low load, of the open steel box girder without the 

Bridgform and composite concrete slab in place. 

Figure 9 shows the non-composite box girder prior to testing. 

The east end of the girder is in the foregrcund. The girder was posi­

tioned under the 5,000,000 lb. Baldwin universal testing machine located 

in Fritz Engineering Laboratory. Vertical concentrated load was applied 

to the girder at mid-span of the outside web. The small plates shown in 

the figure were used to transmit load to the outside web. 

The girder was supported at each of the four corners with the roller 

assemblies shown in Fig. 9 and again in Fig. 10. The roller assembly in 

Fig. 10 is at the SE corner of the girder. These roller assemblies were 

used throughout all the fatigue tests reported in Ref. 2 and functioned 

very well. Two 8 in. diameter steel rollers at right angles to each other 

are stacked together with three 2 in. thick steel plates between rollers 

as shown in Fig. 10. Steel pintels maintain alignment of each roller 

with the steel plates.· At each of the four supports the roller assemblies 

permit horizontal displacement in any horizontal direction, as well as 

rotation, about any horizontal axis. Rigid body horizontal displacement 

of the girder is restrained at the point of loading by the test machine 

itself. Rigid body rotation of the girder about a vertical axis through 

the point of loading is restrained by a suitably placed strut at one end 

of the girder. 
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Uplift of the supports at each end of the inside web was prevented, 

using two 1 in. diameter tension rods, as shown in Fig. 11, which shows 

the NE corner of the box girder. A small compression load cell was placed 

on top of the inside web, as shown in the figure, to measure the uplift 

force. 

3.2.2 - Tests 2A and 2B - With Bridgform 

Two tests were made to establish the load-deflection behavior, under 

low load, of the box girder with only the steel Bridgform in place. The 

two tests differed only in the configuration of the Super Tek/3 screws 

used to attach the sheets to the girder. Figure 12 shows a view of the 

box girder with Bridgform in place prior to testing. The girder was posi-

tioned under the 5,000,000 lb. testing machine, loaded and supported in 

the same manner as that for Test 1, described in Art. 3.2.1. The steel 

; , plates shown in the figure and located at mid-span over the outside web 
l 

shows the lcoation of the test load. 

In each test the steel Bridgform was attached to steel angles which 

were welded to the steel box girder, as shown in Fig. 2. The two different 

screw configurations used to attach the Bridgform to the angles for each of 

the two tests are described below: 

Test 2A - In the first test the Bridgform was connected to the girder 

using the screw configuration shown in Fig. 13. The outside web is in 

the foreground. The screws connect the Bridgform to the angles at 

sheet laps and at mid-sheet. Screws also connect sheets at mid-span 

of each sheet. This was the screw configuration recommended by the 

Bridgform supplier. 
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Test 2B - In the second test the Bridgform was connected to the 

angles using the configuration shown in Fig. 14. The screws connect 

the Bridgform to the angles at sheet laps at seven points along each 

sheet as shown in the figure. The screws were located at the center 

of each trough and midway between troughs as shown. Sheets were also 

connected together at mid-span of each sheet as described for Test 2A. 

3.2.3 - Test 3 - With Composite Concrete Slab 

The purpose of this test was to establish the load-deflection behavior 

of the composite box girder up to the ultimate load. 

Figure 15 shows the composite box girder prior to the ultimate strength 

test. The west end of the girder is to the left. The composite box girder 

was positioned under the 5,000,000 lb. Baldwin Universal testing machine 

located in Fritz Laboratory. Vertical load was applied to the top of the 

concrete slab at mid-span directly over the outside web as shown in Fig. 16. 

The composite box girder was supported at each of the four corners using the 

roller assemblies described in Art. 3.1. Uplift of the supports at each end 

of the inside web was prevented using two 1 in. tension rods and the large 

capacity compression load cell as shown in Fig. 17. The east end of the 

girder is shown in the figure. Due to the larger loads involved in the 

ultimate strength tests, rigid body horizontal displacement was not permitted 

to be restrained by the test machine itself at the point of load as was done 

in Tests 1, 2A and 2B. Instead, both ends of the girder were restrained so 

that although horizontal displacements in any direction at each of the four 

supports was permitted, overall rigid body horizontal displacements of the 

girder was prevented. Figure 18 shows the two orthogonal rigid body restraints 
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used to prevent lateral and longitudinal rigid body horizontal displace-

ments at the east end of the girder. These restraints are provided by 

the two rods shown in the figure which connect the girder to the two 

rings on the steel floor plate. A similar rod was used at the west end 

as shown in Fig. 8. 

I 
i 
' 

f 

f 

I 
I 

I 
) 
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4. TEST RESULTS AND DISCUSSION 

4.1 Load-Deflection Behavior 

Figure 19 shows the load-deflection behavior obtained for Tests 1, 

2A and 2B. The load P is a concentrated load at mid-span of the outside 

web (Art. 3.2). The deflection ~lis the mid-span deflection directly 

below the outside web. The deflection ~2 is the mid-span deflection 

directly below the inside web. The load was limited to 50 kips in each 

test so that elastic behavior would result. Loading and unloading 

behavior was nearly the same in each test. 

Test 1 was performed on the open steel box girder without the steel 

Bridgform in place. At the load of 50 kips no distress was observed in 

the open section. The resulting load-deflection curve is the base line 

behavior which can be used to compare the stiffening effect of the 

Bridgform in Tests 2A and 2B. 

Test 2A was performed with the Bridgform in place and with the 

recommended screw configuration shown in Fig. 13 (Art. 3.2.2). At a load 

of 20 kips the Bridgform began to lift slightly between the fasteners at 

several locations along the outside web. Figure 20 shows one of these 

locations near mid-span. At a load of 50 kips the Bridgform at the same 

location lifted about 1 inch as shown in Fig. 21. At most other locations 

along the outside web the upward lifting of the Bridgform at 50 kips was 

about the same as shown in Fig. 20. Little or no uplifting of the Bridgform 

was observed along the inside web. 
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As a result of the behavior shown in Figs. 20 and 21, it was decided 

to repeat the test but with a closer spacing of the screws over both webs, 

as shown in Fig. 14 (Art. 3.2.2). At a load of 20 kips in Test 2B, no 

significant lifting was observed along either web. Figure 14 shows the 

Bridgform at a load of 20 kips. When the load reached 50 kips some slight 

lifting of the Bridgform occurred near mid-span over the outside web as 

shown in Fig. 22. Elsewhere along both webs little or no lifting occurred 

at a load of 50 kips. 

A study of Fig. 19 indicates that in Test 2A, although the Bridgform 

reduced the mid-span deflection, ~l under the load the deflection~ ~2, 

under the inside web opposite the load was essentially unaffected. 

However, in Test 2B, with the decrease in screw spacing the mid-span 

deflections on both sides of the girder were~affected. The Bridgform in 

Test 2B therefore, was more effective in closing the box girder and 

reducing vertical and torsional displacements. 

No analyses were performed to predict the load-deflection behavior 

of the box girder in the Test 1, 2A or 2B configurations. 

Figure 23 shows the load-deflection behavior obtained for Test 3. 

For comparison the P versus ~. curves for Tests 1, 2A and 2B are also 

shown in the figure. The load P is a concentrated load applied at 

mid-span to the top of the concrete slab directly over the outside web 

(Fig. 16). The deflections ~land ~2 are as previously defined. 

The solid line shows the loading and unloading behavior of the 

composite box girder at mid-span of the outside web. The loading and 

13 



unloading behavior at mid-span of the inside web was essentially the 

same and is shown by the dashed line. 

With reference to the lettered points along the solid line in 

Fig. 23 the following observations were made during the test. 

A- At a load of 100 kips and a deflection of 0.55 in. cracking 

of the concrete slab was observed around the compression load 

cells over· the inside web at the two ends of the girder. 

A single crack occurred about 3 inches from each load cell 

on the side away from the corner of the slab and extended 

around the load cell, intersecting both edges of the slab at 

approximately right angles. 

B - At a load of 200 kips and a deflection of 1.04 in. the concrete 

slab and Bridgform separated from the top of the web at the west 

end of the outside web, as shown in Fig. 24. The figure shows 

the west end of the outside web. The concentrated load is at 

mid-span over this outside web. The top of the outside web 

appears to have moved horizontally to the left relative to the 

concrete slab. Actually the entire slab has moved horizontally 

to the right as the box girder rotates clockwise at mid-span 

under the load. The displacement shown in the figure was 

accompanied by a large noise as the shear connectors and 

Bridgform near the ends of the outside web failed in shear. 

C - Between 200 kips and 260 kips the concrete cracks described in 

A above widened considerably. Additional cracks in the concrete 

slab were evident further from the load cells. 
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D - Point D corresponds to the attainment of the ultimate load of 

263 kips and a deflection of 2.42 in. Figures 25 through 28 

show the girder at the ultimate load. Figure 25 is a view of 

the west end of the girder. The concrete under the load cell 

has separated from the remainder of the slab. The 1~ in. crack 

in the end of the slab is a result of the shear displacement 

occurring over the outside girder on the right which is shown 

j at the 200 kip load level in Fig. 24. Figure 26 shows a view 

l of the east end of the girder with the outside web on the left. 

1 
The slab did not displace horizontally relative to the two webs 

at this end of the girder. The cracks are therefore much smaller 

than those at the west end. Figures 27 and 28 show views of the 

west and east halves of the girder, respectively, at the ultimate 

load. The large crack shown in Fig. 25 can be seen in Fig. 27 

to extend directly over the inside web to the quarter point. 

The shear connectors were exposed by this crack. At the quarter 

point the crack branches. One branch continues along the inside 

web exposing more shear connectors. The other crosses the slab, 

reaching almost to the outside web. Figure 28 shows that on the 

east half the slab cracking is confined to a fairly large region 

around the load cell. 

E - Unloading of the girder was initiated at a load of 240 kips and a 

corresponding vertical deflection of 3.95 in. It was obvious at 

this point that the large crack in the west half of the slab was 

getting larger and no further increase in the load could be expected. 
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With increased cracking over the inside web and exposing of the 

shear connectors, the box girder is reverting basically to an 

open section. 

F - At zero load the permanent deflection is 1.62 in. 

No analyses were performed to predict the ultimate strength behavior 

of the composite box girder. 

The premature failure of the concrete slab is attributed to the 

manner in which uplift of the inside web was resisted. With the configura-

tion of rollers used to support the four corners it was more practical to 

resist uplift and measure the uplift forces using the compression load 

cells mounted on the surface of the slab. Although the shear connection 

and slab reinforcement was calculated to be sufficient to achieve the 

primary ultimate load capacity of the girder these calculations did not 

consider the additional slab reinforcement which would be needed to resist 

1 the slab forces introduced by the load cells. 
~ 

A nearly identical composite box girder was tested to ultimate 

strength as part of the previous FHWA project reported in Ref. 2. That 

girder was designated Box Girder Assemblage 1. It was also modified for 

the ultimate strength test following fatigue testing. The results of the 

ultimate strength test are reported in Ref. 3 and the girder is designated 

Composite Box Girder 1 in that reference. Except for a slight difference 

in configuration of the interior diaphragms Composite Box Girder 1 and the 

composite girder reported herein have the same steel cross-sections. 
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However, Composite Box Girder 1 had a 54" by 6" concrete slab without 

Bridgform, which is to be compared with the 60" by 8" concrete slab with 

Bridgform for the box girder reported herein. Composite Box Girder 1 had 

a mid-span concentrated load offset 12 in. towards the inside web, which 

is to be compared with the mid-span concentrated load offset 18 in. and 

over the outside web of the girder reported herein. The ultimate strength 

of Composite Box Girder 1 was 424 kips as reported in Ref. 3. The mode of 

failure was crushing of the slab together with yielding and buckling of the 

inside web under the load. 

4.2 - Web Out-of-Plane Displacements 

Figure 29 shows the measured out-of-plane displacements of the outside 

web. In the figure, locations A through G and I through K correspond to the 

same locations shown in Fig. 6. The locations 1 through 5 also correspond 

to the same locations shown on the typical cross-section X-X in Fig. 6. 

The out-of-plane web displacements were measured using the device shown 

in Fig. 8. 

In Fig. 29 the dashed curves indicate the initial out-of-plane web 

displacements before beginning the ultimate strength tests. The initial 

web displacement corresponds to the initial fabricated condition of the 

web which was subsequently modified an unknown amount due to the previous 

fatigue testing as well as Tests 1, 2A and 2B of this investigation. Since 

all of these tests were conducted in the elastic range the modification 

should be relatively small. The solid curves indicate the out-of-plane 

web displacements at the ultimate load of 263 kips reached in Test 3. 
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All of the out-of-plane displacements shown in Fig. 29 are relative 

to the top and bottom edges of the web as explained in Art. 3.1. It is 

apparent that at locations containing the longitudinal stiffener, the 

stiffener was quite effective in preventing out-of-plane web displacement 

except at location A. The longitudinal stiffener was needed near the 

bottom flange of the box girder in the previous fatigue investigation and 

is not in the optimal location for the ultimate strength test. Calcula-

tions indicated that longitudinal or transverse stiffeners between 

diaphragms were not needed in the ultimate strength test. However, the 

longitudinal stiffeners in the middle two 9 ft. bays were removed and 

transverse stiffeners added as mentioned in Chapter 2, in order to minimize 

out-of-plane web displacements of the webs in the vicinity of the strain 

gages. Figure 29 shows that at location E, which is at section 2 of Fig. 5, 

the web displacements under load are relatively small. 

4.3 - Girder Rotations 

Figure 30 shows the measured girder displacements from which girder 

rotations can be determined at the west quarter-point and mid-span diaphragms 

at the ultimate load of 263 kips. The displacements shown in the figure were 

measured using Ames dials placed as shown in Fig. 6. 

In Fig. 30 the solid lines represent schematically the mid-planes 

of the steel webs, bottom flange and concrete slab as well as the diaphragm 

member axes. The displacements are shown to an exaggerated scale for clarity. 

18 



1 

I 
1 
i 
! 

l 
I 
t 

J 

t 

·i 
' ' 

' 

4.4 - Flexural Stresses 

Flexural stresses (stress in the direction of the girder) in ksi 

are shown in Fig's. 31 through 36 for several cross-section configurations 

and locations and for several load levels. 

Fig's. 31 and 32 show flexural stresses at cross-section 1 of Fig. 5. 

Values of stress without parentheses are computed from the experimental 

strains recorded at each of the horizontal strain gages shown in Fig. 5. 

Where a value is missing (indicated by dashes) either the strain gage 

did not function or it was indicating an obviously erroneous value of 

strain. Corresponding stresses on adjacent sides of the web are expected 

to differ because of membrane stresses generated by out-of-plane web 

displacements. An average of the two adjacent stresses provides an 

indication of the in-plane flexural stress. 

Values of stress in parentheses in Fig's. 31 and 32 are computed from 

the calculated elastic cross-section properties of the girder in the Test 1 

and Test 3 configurations. These stresses were computed assuming a straight 

girder of 36'-0" span with a mid-span concentrated load placed midway between 

girder webs. In the Test 1 configuration the calculated moment of inertia 

about a horizontal axis is 9,871 in. 4 The sectionmodulus for stress in . 
the extreme bottom fiber of the bottom flange is 609 in. 3 The corresponding . 
values in the Test 3 configuration are 21,225 in. 4 and 802 in. 3 The 

stresses computed from these elastic properties are shown only for compara-

tive purposes. Elastic analyses of the curved girder in the test configura-

tions were not performed. No attempt was made to compute the cross-section 

properties of the girder in the Test 2A and Test 2B configurations. 
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A maximum experimental stress of 31.1 ksi was reached in the Test 3 

configuration at the ultimate load of 263 kips. This stress is somewhat 

below the average yield stress of 44 ksi for the steel plates which is 

shown in Table 1, confirming the premature failure of the concrete slab. 

Figures 33 and 34 show flexural stresses at cross-section 2 of Fig. 5. 

Although in-plane flexural stress may be expected to be lower at this 

cross-section compared to cross-section 1, out-of-plane displacements 

result in some higher surface stresses. Cross-section 2 is midway 

between the mid-span diaphragm and the first transverse web stiffener, 

and coincides with location E, Fig. 6 where relative out-of-plane dis-

placements of the outside web were measured and shown in Fig. 29. The 

displacement pattern at location E in Fig. 29 is compatible with the 

increased stress of 46 ksi shown in Fig. 34 on the inner surface near the 

bottom of the outside web at the ultimate load of 263 kips. Since the 

average yield stress of the plate material is 44 ksi, as shown in Table 1, 

• onset of yielding probably occurred at this point at the ultimate load. 

Figures 35 and 36 show flexural stresses at cross-section 3 of Fig. 5. 

Out-of-plane displacements and resulting stresses are somewhat less since 

this cross-section is close to the transverse web stiffener. 

4.5 - Yield Patterns 

The outside surfaces of the steel webs and bottom flange were painted 

white for the purpose of observing yield patterns during the ultimate strength 

test. Figure 37 shows the only yield pattern that was observed. Yielding 

occurred in the outside web near the west support and was associated with 
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the separation of the concrete slab and Bridgform from the top of the 

outside girder, as shown in Fig. 24. Figure 24 also shows the steel 

bars that were welded to the west end of the outside girder to reinforce 

this area during the ultimate strength test. Following the test, these 

bars were cut away as shown in Fig. 38. This figure shows the tearing 

of the upper part of the west end diaphragm from the outside web which 

occurred at a load of 200 kips (Point B, Fig. 23). 
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5. CONCLUSIONS 

Results of an ultimate strength test of a horizonally curved steel-

concrete box girder are presented. The test was performed at Fritz 

Engineering Laboratory, Lehigh University. Results are also presented 

of low-load elastic tests of the non-composite steel box girder prior to 

and after installation of the Bridgform which was used to support the 

concrete slab during construction of the composite box girder. The tests 

with the Bridgform in place were conducted with two different patterns of 

screws used to attach the Bridgform to the steel box girder. The first 

pattern used the screw spacing recommended by the Bridgform supplier. 

A closer screw spacing was used for the second pattern. 

The test results of the non-composite steel box girder indicate that 

the steel Bridgform significantly reduced the vertical deflection of the 

outside web, especially when the second pattern of screws was used. With 

this pattern the deflection of the outside web at mid-span is about half 

of that attained without the Bridgform and about three-quarters of that 

attained when the Bridgform is attached with the recommended screw pattern. 

The deflection of the inside web was not significantly altered when the 

recommended screw pattern was used but increased somewhat with the second 

screw pattern. Thus, installation of the steel Bridgform with a closer 

screw pattern, resulted in about half the rotation of the box girder 

compared to the open section without the Bridgform. Analytical predictions 

of the box girder behavior with and without the Bridgform were not performed. 

The test results of the composite box girder were inconclusive with 

respect to attainment of the expected ultimate strength. The manner in 
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which the ends of the inside web were supported to prevent uplift due 

to the large applied torque is believed to have resulted in premature 

splitting and failure of the concrete slab. Crushing of the slab, 

buckling of the steel webs and yielding of the steel bottom flange of 

the composite box girder did not occur. 
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TABLE 1 - CROSS-SECTIONAL DIMENSIONS 
AND MATERIAL PROPERTIES* 

Centerline total length 

Centerline span length 

Centerline radius 

Cross-section properties: 

web depth 

web thickness 

bottom flange width 

bottom flange thickness 

composite slab width 

composite slab thickness 

Material properties: 

Steel - F (average for plates) y 
I 

Concrete - f c 

f sP 

Reinforcement - Fy 

* Refer to Ref. 2 for further information. 
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ft. 

ft. 

ft. 

in. 

in. 

in. 

in. 

in. 

in. 

ksi 

psi 

psi 

ksi 

37 

36 

120 

34~ 

3/8 

38 

3/8 

60 

8 

44 

4,300 

500 

60 
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3 Y2" x Y2 11 
Transverse Web 

Stiffeners at Mid Panel 

Location of Load P 

50 Connectors 
@9 11 =36'-9 11 

Interior 
Diaphragms 

-
0 
I -0) 

0 
I 

en 

0 

t Roller Bearing 
Supports Under 
End Diaphragm 

120' -0 11 
Radius 

II 5 11 W I x Plate elded 
To Top of Each Web 

.J:I 48 Connectors 
; @ 9 11 

= 35'-3 11 

CD 
"0 ·u; 
c:: 

End Diaphragm (Ref. 2) 

t Roller Bearing 
Supports Under 
End Diaphragm 
(see fig. 10) 

Fig. 1 Plan View of Box Girder At 
Top of Steel (See Fig. 2) 
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Reinforced Concrete Slab - f ~ = 4300 psi 

511 

Outside 
Web 

711 

f 3ta 11 

6
11
x 6

11 
WW Mesh 

3
11 x Y4" Longitudinal 

Stiffeners 

36" 0/o of Webs 

3811 

3 11
X 3 11

X 3/8 11 (typ) 
Interior Diaphragms 

* 18 Sheets Bridgform , 22 gage , 61/2 11 Pitch, ASTM A -446 
Grade E , 2 V2" Nom. Depth , Connected to 2 114" x 3 1!2" 
Type 24 Angles With SUPER TEK/3 Screws Described 
in Art. 3.2.2 

Fig. 2 - Cross Section of Box Girder at 
the Midspan Diaphragm (See Fig. 1) 
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Fig. 3 Box Girder Prior to Pouring Slab 

Fig. 4 Box Girder After Pouring Slab 
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Fig. 5 - Locations of Electrical Resistance 
Strain Gages 
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Fig . 11 View of Tension Rods and Load re lls [sed 
to Prevent Uplift a t each end of the 
Inside ~eb 

35 



Fig . 12 Vi ew of Box Girder with Bridge form in olace 
prior t o Tes ting 
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fig . 13 - Sere"' Configuration Used in Test 2A 
and Desc ribed in Art. 3 . 2 . 2 . 

~n~ De s c rib ed in Art. 
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Fi~ . 15 View of Composi te Box Girder Prior 
t o the Ul tima te Strength Test 
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fig . l/ l.' ieh' o f"; i r der shoh'L1 '2; Com!) r essicr. Lo.:.d Cell 
a t ends of t~le 1·leb 



Fig . 18 View of East End of Girder Showing 
Compressio n Load Cell and Two 
Orthogo nal Rigid Bodv Restraints 
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Fig. 19 - Midspan Load-Deflection Behavior 
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Fig. 20 Up~vard Lifting of Bridgform Between Fasteners 
Over th e Outside Web at a Load of 20 Kips 

Fi~ . ~1 Cpward Lifting of Bridgform Between Fasteners 
Over the Outise Web at a Lo ad of 50 Kip s 
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fig . 22 Beh av i or of Brid gfo r m Over t he b:t c: rior \\'eb at 

a Load of 50 Kips 
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Fig. 23 - Midspan Load-Deflection Behavior 
Tests 1, 2A, 2B and 3 
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fig . 24 Seoa r a tion of Concrete Slab and 
Bridqfo r m f r om t he To p o f t he 
Ou t s i de Girde r - hlest End 



Fig . 25 ~ es t End of Girder with Ou t side Web 
on the Right 
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Fig . 26 East End of Girder Wi th Outside Web 
on the Left 
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Fig. 27 West Half of Girder at the Ultimate Load 

fi g . 28 East Half of Girder a t the Vltimate Load 
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Fig. 30 - Measured Girder Displacements at the 
Ultimate Load of 263 Kips 
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Fig. 31 - Flexural Stresses (Ksi) at 
Cross-Section 1 of Fig. 5 
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Cross-Section 1 of Fig. 5 
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Fig. 33 - Flexural Stresses (Ksi) at 
Cross-Section 2 of Fig. 5 
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Fig. 37 Yielding of Outside Web Near the West 
Support 

Fig. 38 Tearing of the Upper Part of 
the West End Diaphragm from 
the Outside Web 
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