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ABSTRACT 

Based on the 1970-1977 operating data, projections were made for 

future gas production ranging from 130,000 cubic feet/day for a no-growth 

condition up to 309,000 cubic feet/day on a theoretical basis for the year 

2000. Digester gas analyses confirmed the heat value of the digester 

gas at approximately 600 BTU/ft3 . 

1 

Potential electric power generation capacity would be 285 KW to 720 KW 

depending upon the projected digester gas production value. An economic 

analysis showed a potential gross savings of $233/year/KW installed. 

Further economic analysis showed a gross cost of $206 to $161/year/KW for 

the installation of re-generator equipment depending upon the size 

selected. 

Thus, a net savings of $27 to $72/KW is possible based on a 10 year, 

12% interest payback condition. 

Further energy recovery from digester gas re-generators is possible. 

A large fraction, approximately 60% or more of the thermal needs for 

anaerobic digester operation and for space ~eating could be met from 

rc engine heat recovery systems. 
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1. INTRODUCTION 

The 1978-79 upgrade and expansion of the regional Allentown Kline's 

Island Wastewater Treatment Facility has had a profound impact, not only 

on the quality of the final effluent from the plant, but also on the 

amount of electrical energy required to operate the new facility. The 

increased energy use coupled with the rising cost of energy made the City 

of Allentown interested in energy conservation and recovery at the new 

facility. 

2 

There has been a long history and experience with heat recovery from 

burning the digester gas at the treatment plant. Recognizing the high 

costs involved with the expanded wastewater facility, it seemed desirable 

to investigate an even greater recovery of energy from the digester gas. 

In early 1979, it was proposed to study the feasibility of electric 

power production at the Kline's Island Treatment Facility on a co-generation 

basis. The study was to address not only the capacity potential but also 

the economic benefit, if any, to be derived from this scheme. The 

electricity generated would be utilized in the treatment facility, primarily 

for the pump motors which are the largest electric power use. 

Coupled with the electric power generation study was an investigation 

of heat recovery not only from the engine-generator sets, but also from the 

wastewater flow itself, via heat pump, thus incorporating a total energy 

concept approach to the study. Also incorporated into the study were 

investigations of possible operating·and design modifications to further 

enhance the energy recovery at this facility. 



2. WASTEWATER TREATMENT PROCESS DESCRIPTION 

This chapter is written in three sections. The first deals with 

generalaspectsof wastewater treatment, the second with the Allentown 

Wastewater Treatment plant prior to the recent expansion and the third 

deals with the current plant design and facilities. This organization 

provides an explanation of terms together with alternative design and 

operating concepts. 

3 

The historical data upon which many of the projections in this report 

are based pertain to the wastewater treatment facility prior to the recent 

expansion. The· current -plant is also described to form a basis for 

discussion of modifications to advance the basic aim of this study. 

2.1 General Wastewater Process Concepts 

The natural self-purification processes in a stream can be compressed 

in time and space into a series of wastewater treatment unit processes (1). 

The processes typically involved are settling, bio-oxidation of the non

settleable and dissolved organic material, and anaerobic decomposition of 

the settled and separated solids (2). In wastewater treatment facilities 

these processes -are accelerated, monitored, controlled and supplemented 

to meet the desired effluent quality for protecting the receiving water body. 

Where sewers collect both sanitary sewage and perhaps storm water, grit 

removal is required. Grit chambers are used for removal of sand and grit 

in a short detention settling channel or tank which allows the subsidence 

of coarse sand and grit particles. The purpose of grit removal is to 

protect pumps and other equipment plus preventing the accumulation of 

inert grit in sludge lines and digesters. Bar racks intercept rags and 



4 

debris in sewage as it enters the plant. To minimize handling, automatic 

scrapers are often fitted to the intercepting racks, which carry the 

screenings to a grinder or for removal by burial or burning. The grindings 

are·usually returned to the wastewater stream. 

The first major unit process that the wastewater flows through is 

sedimentation. Sedimentation is simple gravitational settling, and when 

applied to raw wastewater is termed primary settling. The settled material 

(sludge) and any floating solids or scum are removed for continuous or 

periodic pumping to a digester or other sludge process. 

Bio-oxidation is the same phenomena as aerobic stabilization in a 

stream. The two most widely used processes are trickling filters and 

activated sludge. There are two steps associated with the processes. First, 

there is the sorption of the organic nutrients into the biological mass. 

Second, there is the utilization of the organic material in the presence 

of sufficient oxygen. In trickling filters, the sorption and biological 

utilization appear to be concurrent, with the biological mass attached to a 

rock or plastic media bed. In activated sludge, the system is a more 

delicate arrangement. The recycled activated sludge provides the seed 

to the entering wastewater. The organic nutrient sorption and subsequent 

utilization occurs in an aeration tank. The product of the biological 

activity is new biological cells (activated sludge), which is a floc that 

is separated in a settling basin for subsequent recycle. Both trickling 

filters and activated sludge processes require a sequential settling step 

(secondary sedimentation). These separate either the activated sludge floc 

or the new biological cell mass generated by the trickling filters for 

return in the process or for subsequent treatment. 



Disinfection by chlorination is a final main-stream process which is 

used to maintain the bacteriological quality of the receiving water. The 

receiving water may subsequently be utilized as a drinking water source. 

2.1.1 Wastewater Solids Processing - The sludge collected from the 

primary and secondary clarifiers forms a separate waste stream, distinct 

from the main-stream effluent. The waste sludge flow must also be 

treated. The sludge consists of organic and inorganic solids present in 

the raw wastewater and removed in the primary clarifier, plus organic 

solids generated in the bio-oxidation steps and removed in the secondary 

clarifier. The sludge will contain a greater or lesser amount of water 

depending in part on the processes involved. The sludge ranges from less 

than 1% solids to 10% solids. 

The moisture associated with the waste sludge is in part free, and 

separable by sedimentation; in part trapped in the interstices of floc 

particles, and separable by mechanical dewatering; in part held by 

capillary action, and separable by compaction; and in part chemically 

5 

bound within or around the bacterial cell, and separable only by destruction 

of the cell. The effect of moisture content upon sludge volume is 

appreciable, and sludge handling techniques are directed toward reducing 

the moisture content, and thereby the volume of sludge as well as reducing 

the pathogenic and obnoxious character of the sludge solids. 

Sludge conditioning includes a variety of processes, some biological, 

some chemical, and some physical, which may be applied to favorably alter 

the characteristics of sludge and improve its dewaterability. The 

biological processes also provide up to about 35% decrease in total solids 
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content because of gas production from organic solids. Conditioning 

processes include sludge digestion (both aerobic and anaerobic), chemical 

coagulation, and heat treatment. 

The most common waste sludge process and the one of particular 

interest to this study is anaerobic digestion (3,4). Anaerobic digestion 

is a two-step biological process in which the complex organic material in 

the waste solids are first broken down to simpler compounds - notably the 

short chain volatile fatty acids. In the second step, these intermediate 

compounds are further reduced (gasified) by a separate group of bacteria 

to methane and carbon dioxide. 

The time required for the biological destruction (gasification) of the 

organic sludge solids is quite long at ambient temperatures. For both 

biological and economic reasons, the sludge digestion process is usually 

0 0 operated at elevated temperatures, usually around 95 F (35 C). The 

process can also be operated at even higher temperatures near 120°F (50°C). 

Even with elevated temperatures, the time required for sludge solids 

destruction is quite long. Minimum detention periods of 10-14 days are 

required with 20-30 days being more typical of the design and operating 

conditions in normal practice. Because of the long detention period 

required, it is desirable to reasonably minimize the water content of the 

sludge feed to the anaerobic digesters, thus reducing both the required 

volume of the digester and the energy required to heat and maintain the 

sludge at the higher operating temperatures. 

The digester gas (methane plus carbon dioxide) produced by the 

destruction of the organic solids has a moderately high energy content 
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(600 BTU/ft3) and has been used beneficially in wastewater plant design 

and operation for many years (2). In small to moderate sized facilities, 

the digester gas is almost universally used to help maintain the elevated 

temperature required for sludge digestion, and perhaps space heating in 

the buildings. 

Many moderate to large sized wastewater treatment facilities utilize 

the digester gas for on-site power generation or for direct prime movers of 

pumps and other equipment, partially meeting the energy needs of the 

treatment plant. Heat recovery systems incorporated with the prime mover 

uses or on-site power generating capability allow a very high recovery of 

the total energy content in the digester gas. 

2. 2 Allentown Kline '.s Island Wastewater Treatment Plant 

Prio'r to Recent (1978-79) Expansion 

The Allentown Wastewater Treatment Plant prior (5) to the recent 

expansion consisted of the following unit processes: 

- mechanically-cleaned bar racks 

- pumping station 

- detritus (grit) removal and dewatering facilities 

- primary settling 

- trickling filter (fixed nozzle) 

- secondary (final) settling 

- disinfection 

- sludge thickening 

- sludge digestion (primary and secondary) 

- eltitriation 

- sludge dewatering facilities. 
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Detailed plant records are available (6), and the period 1970 through 

1977 form the data base used in this report. Records from 1978 to the 

present were not considered representative due to the influence of the 

construction period and the expansion start-up. 

Figure 1 shows a plot of cumulative digester gas production and 

wastewater flow for the 1970-77 data base period.;- Figure 2 is a similar 

plot showing-cumulative wastewater flow·and electrical use during the same 

data base period. 

The digester gas produced by the destruction of the organic solids 

(total volatile solids-TVS) in the wastewater sludge was used primarily 

to heat and maintain the digester tanks at 90-95°F (32-35°C). The dual 

fuel hot water boilers used for this purpose also provided space heating for 

the buildings. Excess digester gas was burned in the waste gas burner. 

2.3 Current Allentown Wastewater Treatment Plant 

The major additions and modifications of the Allentown Wastewater 

Treatment Plant (5) were: 

- an auxiliary pumping station 

- new aerated grit chamber 

- new primary settling 

- new plastic media trickling filters 

- conversion of existing primary settling to intermediate settling 

- use of existing trickling filters for nitrification 

- additional final settling 

- additional primary sludge digestion 

- an additional vacuum sludge filter. 
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Associated with the additional digester, more hot water boiler 

capacity was installed. New meters were also installed to privide more 

accurate monitoring of the digester gas production. Although intended 

primarily for operational control purposes, the new metering capability 

will provide better data for digester gas utilization. 
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3. PRESENT AND FUTURE DIGESTER GAS PRODUCTION 

This chapter deals with estimating the digester gas production value 

for 1980 (the base year) from the historical data and then projecting gas 

production for future years 1990 and 2000 using several methods. The 

historical data reflect the operation of the plant without the current 

expansion. Therefore the values extracted- as the base of projecting future 

conditions are considered to be quite conservative. 

Three methods were used to obtain the digester gas production figures. 

Results from all methods are compared at the end of the chapter. 

3.1 Gas Production Data 

A linear extrapolation based on past digester gas production data is 

shown in Fig. 3 to estimate the future cumulative digester gas production. 

This projected amount of gas production translates into an average daily 

3 rate of 130,000 ft /day. The actual daily digester gas production will 

vary considerably. Figure 4 shows the observed monthly gas production 

during the 1970-77 base data period. The highly variable production rate 

is due to many factors, most of which are beyond control at the present 

time. The data strongly emphasize the need for gas storage such as the 

existing digester gas dome cover to ensure a uniform supply of gas for 

effective use at the plant. 

No allowance for increased gas production was made using this technique, 

thus the values estimated are low and cari be considered an ultraconserva-

tive "no growth" condition. 
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3.2 Sludge Production Data 

The second method employed to project future gas production was based 

on an estimate of the future sludge solids production coupled with the 

digester gas production per unit sludge. The organic sludge solids 

are the actual "foodstuff"· which are biologically metalo1ized (digested) 

to produce the digester gas. These foodstuff solids are termed the 

"volatile solids" due to analytical techniques used in analysis of the 

sludge and not due to the character of the sludge since it is not really 

volatile in any aspect except perhaps odor. 

The cumulative total and volatile (organic) sludge solids that were 

fed to the digesters during the 1970-77 base data period are shown in Fig. 

5 and Fig. 6 along with the total wastewater flow and digester gas produced. 

This information was the souce of data for projection of future sludge and 

digester gas production. 

The extrapolation used to estimate the future total and volatile solids 

production as'shown in Fig. 7 and,Fig. 8 was essentially linear. It should be 

noted that a six (6) month moving average was used to smooth the variability 

in the data. 

Since the digester gas is produced by the destruction of the volatile 

(organic) sludge solids, it is important to consider not just the sludge 

production, but also the fraction that is converted into the usable digester 

gas. Figure 9 shows the sludge solids destroyed together with the digester 

gas produced during the 1970-77 base data period. 

The monthly unit digester gas production for the 1970-77 base data 

period is shown in Fig.lO. There is appreciable variation in this data. 
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However, the average value over the eight (8) year base data period is 8.5 

cubic feet digester gas/pound volatile solids destroyed. The value of 8.5 

ft 3/lb volatile solids destroyed is quite low compared to normal values in 

3 the range of 12 to 18ft gas/lb volatile solids destroyed (2). Digester gas 

production is a function of many variables, primarily the sludge characteris-

tics and the two major digester operating parameters of temperature and 

detention time previously discussed. 

Since the digester volume is fixed, the detention time depends on the 

volume of sludge sent to the digesters. Figure 11 shows the monthly sludge volume 

produced over the 1970-1977 base data period using a six month moving 

average to smooth variations. The sludge volume appears to have increased 

rather dramatically over the 1975-77 period, while the mass of wastewater 

solids sent to the digesters has not increased proportionately. This would 

cause shorter dentention time in the digesters with the resulting lower 

unit gas production. This probably corresponds to a period when industrial 

waste loads (Schaeffer and Kraft) from Lehigh County Authority increased 

and also when the sludge thickeners ahead of the digesters were overloaded, 

a condition that was addressed and hopefully corrected by the recent plant 

expansion. 

From the projected future sludge solids shown in Fig. 8 and assuming a 

typical value of 2/3 destruction of the volatile (organic) solids, the 1990 

and 2000 gas production was estimated. A slightly increased unit value of 

12 cubic feet digester gas/lb volatile solids destroyed was used in this 

projection. The results of these extrapolations and projections are shown 

in Table 1. 
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Table 1 

PROJECTED SLUDGE AND DIGESTER GAS PRODUCTION 

Sludge Solids Production a (pounds/day) Digester Gas Production 
Year Total Volatile (cubic feet/day) 

1980 31,800 22,500 180,000 

1990 36,500 25,800 206,000 

2000 42,000 29,700 238,000 

~ased on 2/3 destruction of volatile solids and 12 ft 3 gas per lp 
volatile solids destroyed. 

3.3 Theoretical Model Projection 

24 

The third procedure used to estimate the future gas production uses a 

biological SRT model applied to the future estimated influent biochemical 

oxygen demand (BOD). The BOD is a measure of the organic foodstuff 

available for digestion and gas production. 

Future wastewater flow to the treatment plant was estimated using 

the linear extrapolations shown in Fig. 12. Using the average influent 

BOD concentration for 1978 and the future flow rates, the SRT model 

(Appendix A) was used to estimate the future gas production. The results 

of this approach are shown in Table 2. 
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Year 

1980 

1990 

2000 

a See Appendix A 

Table 2 

PROJECTED THEORETICAL DIGESTER GAS PRODUCTIONs 

Flow Rate 
MGD 

33 

40 

47 

Digester Gas Production 
(cubic feet/day} 

217,000 

263,000 

309,000 

Table 3 summarizes the results from all three techniques used to 

predict the future digester gas production. 

Year 

1980 

1990 

2000 

a"No growth" 
b See Appendix A 

Table 3 

FUTURE DIGESTER GAS PRODUCTION 

Estimated Digester Gas Production 
(cubic feet/day) 

From Past From Projected 
Gas Production a Sludge Production 

130,000 180,000 

130,000 206,000 

130,000 238,000 

Theoreticalb 
SRT Model 

217,000 

263,000 

309,000 

26 
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4. DIGESTER GAS UTILIZATION SCHEMES 

There is a wide variety of methods to utilize the energy content in 

digester gas, ranging from complete waste burning of the gas to complex 

power and heat recovery schemes. Some methods that have been employed are 

listed below. 

• Fired in hot water or low pressure steam boilers for digester and/or 

space heating. This is presently the method used in the Allentown 

Wastewater Treatment Facility. 

• Fuel for on-site internal combustion engines with or without heat 

recovery systems to drive: 

- Pumps 
- Air compressors and blowers 
- Electric generators 

e Clean, purify and compress the digester gas for: 

- Input to gas pipeline systems 
Stationary internal combustion engines used as above 

- Cars, trucks and other mobile internal combustion engines. 

Since this study was based on investigating electric power co-generation, 

the other possible uses were not studied further, however, ~t is 

advisable to keep some of these other potential uses in mind. 

4.1 Potential Electric Power Generation Capacity 

Internal combustion (IC) engines are available in numerous sizes, shapes 

and configurations. A fairly normal range of efficiencies that can be 

obtained is from 25 to 40%. Modern low-speed IC engines will commonly 

provide 35% efficiency. 
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A recent technical report by the U.S. Environmental Protection Agency 

_(8) provides some generalized data for IC engine-generator sets. Based 

on this report, the input energy consumption is estimated at 11,400 BTU/KWH. 

Using 600 BTU/ft3 energy value for digester gas (Appendix B) the gas 

consumption would be 19 ft 3/KWH. These figures are based on an input gas 

to output wire efficiency of 30%, comparable to the normal range of values 

to be expected (8). 

Using the projected digester gas production values from Table 3, the 

potential power generation capacity at Allentown varies from 285 KW for 

current conditions (no growth) to year 2000 values of 522 KW (from sludge 

projection) or 720 KW (theoretical SRT projection). If generators were 

operated only during the peak demand charge period (7 AM to 7 PM), the 

potential capacity would be twice these values, assuming adequate gas 

storage capacity. 

For comparison purposes, this study investigated an installed capacity 

range from 100 KW to 1000 KW, operating either 12 hour daytime periods or 

24 hours continuously. In all cases, it was assumed that heat recovery 

systems would also be provided for digester and space heating needs. 

4.2 Heat Recovery Systems 

One of the major energy needs at a wastewater facility is the heat 

required for the anaerobic digester. Since all IC engines require a 

cooling system to dissipate the heat generated, it is possible to incor-

porate heat recovery systems that allow the heat rejected from the engine 

to be used to heat the digesters or other needs such as space heating. Heat 

recovery systems thus increase the overall energy recovery from the 
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digester gas fuel used in the IC engine. Figure 13 shows a general schematic 

of energy use and heat rejection in an IC engine-generator set (7,8). 

The EPA report previously mentioned (8) considers 25% of the input di-

gester gas energy as recoverable for heating purposes. As Fig. 13 shows, this 

is very conservative and a value of 30 to 40% is probably more realistic. 

To provide a basis for comparison the heating requirements for 1977 

were estimated from the operating data. The results of this relatively crude 

analysis is shown in Appendix C. The total heating requirements, both for 

10 the digester operation and space heating were estimated at 1.936xl0 BTU/year. 

This estimated value is quite conservative and probably would not change 

greatly over the years. 

Based on the projected gas production values shown in Table 3 for the 

theoretical gas production the overall heat recovery system of an IC-

generator system would need to function at 40% thermal energy recovery to 

satisfy the digester and space heating requirements. A thermal recovery of 

68% would be required from the quantity of gas produced under the "no-

growth" condition to satisfy the same heating needs. It will be necessary 

to properly define the actual heat requirements by design calculations, how-

ever it appears that the recovery of the heat rejected by re-generator sys-

terns will be very close to satisfying all thermal needs in addition to the 

benefit from the electric power generated. 

There are several aspects of the anaerobic digester design and operating 

that would warrant further investigation. First would be reduction of heat 

loss by more· insulation, particularly in the digester floating covers. The 

second aspect would be to reduce the digester operating temperature slightly 
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during the coldest parts of the season. For a short two to four week 

period, this would have little impact on the efficiency of the digesters. 

4.2.1 Heat Pumps - In addition to the heat recovery systems that could 

be incorporated into the re-generator systems, another source of thermal 

energy to be considered is the actual heat content of the wastewater itself. 

Although information on design or practical operation of such systems is 

limited, the EPA report (8) does provide some information and guidelines 

from theoretical calculations and from the proposed installation at Wilton, 
i 

Maine. 

A heat pump operates on a refrigeration cycle so its components and 

circuit diagram are similar to a conventional refrigeration system. A 

refrigeration system operates in a cycle with the net result being the 

absorption of some heat at a low temperature (at the evaporator), the 

rejection of a larger amount at a higher temperature (at the condenser). 

A heat pump provides relatively cool temperatures at the evaporator (less 

than 45°F) and relatively warm temperatures at the condenser (greater than 

90°F). The heat rejected at the condenser is available for either space 

heating or for digester heating. Work is done on the refrigerant by the 

compressor but there is a net energy gain by the system. 

Based on the operating conditions outlined in the EPA report (8) for 

Wilton, Maine, estimates were made of potential water to water heat pump 

output at Allentown for the 1977 conditions. The results are summarized 

in Table 4. 



Month 

Jan 
Feb 
Mar 
Apr 
May 
Jun 
Jul 
Aug 
Sep 
Oct 
Nov 
Dec 

Total 

aBased on 1977 

Table 4 

ESTIMATED HEAT PUMP OUTPUTa 

Wastewater Temperature 
(oF) 

61 
59 
59 
60 
61 
65 
68 
69 
69 
67 
66 
62 

conditions 

Output 
(million BTU) 

180 
177 
177 
179 
180 
184 
190 
191 
191 
189 
187 
182 

2082 
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The thermal energy to be derived from the wastewater is small compared 

to potential from the digester gas, however it is an additional source 

that should be incorporated into the overall energy consideration. 
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5. ECONOMIC ANALYSIS OF POWER GENERATION 

This chapter evaluates the economic feasibility of electric power 

generation by using digester gas in IC engine-generator sets. 

5.1 Present Electricity Costs 

The cost of electricity supplied to the Allentown Wastewater Treatment 

Facility by Pennsylvania Power and Light (PP&L} is a fairly complex function 

dependent upon both the maximum 15 minute power demand (KW) and the total 

electrical energy use (KWH). The particular electric rate schedule used 

is termed LP4. A computer program (LP4) to calculate the monthly charge 

was obtained from PP&L personnel. The following input to the LP4 program 

was used: 

Energy Charge - A value, adjusted monthly depending on PP&L 
generating capacity; zero (0.000) was used for 
this comparative study 

Pennsylvania Tax Surcharge - 0.0737 

Deferred Fuel Expense - $0.001047/KWH 

Tax Exemption - 0.06 

Peak 15 minute power demand (KW) in billing period 

Total energy use (KWH) in billing period. 

The 15 minute power demand values (KW) for the Allentown Wastewater 

Treatment Facility were obtained from PP&L for the period April 1979 to 

March 1980. A separate computer program was written to analyze this raw 

data and to determine the required input values for the LP4 rate computation 

program, namely, peak (adjusted) 15 mintute power demand (KW) and total 

energy use (KWH) over the monthly billing period. The LP4 program was then 

used to calculate the monthly charges and subsequently the annual electrical 
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cost to the City of Allentown was determined. Since no attempt was made to 

use the particular value for energy charge (LP4 input figure) each month, the 

results of this computation are comparative only. However, they are quite 

close to the actual billed electrical costs that Allentown had during this 

time period. 

Both computer programs were used to calculate the cost benefit of on

site electric power generation. Different scenario used generating capaci

ties of 200, 400, 600, 800 and 1000 KW during the 12 hour daytime peak 

period (7 AM to 7 PM), and 100, 200, 300, 400 and 500 KW over the entire 

24 hour period. In all cases, synchronized co-generation conditions were 

assumed. 

The potential results of using these different sizes of generating 

units are shown in Fig. 14. There are two important aspects shown in Fig. 

14. First, the benefit of extra electric power generation during the daytime 

period (when the peak 15 minute KW demand is more costly) is negligible 

compared to generating over the 24-hour period. The same amount of elec

trical energy (KWH) supplied over the 24 hour period would provide a similar 

cost reduction, yet require only one-half the installed generating capacity. 

Secondly, the relationship between annual electrical cost and on-site 

electric power generation is linear. 

On-site electrical generating capacity operating continuously over the 

24 hour period would save $233/KW/year in operating costs. 

5.2 Estimated Costs for Generating Capacity 

The EPA technical report (8) previously mentioned provides some 

conservative cost figures for digester gas fuel IC engine-generator 
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installations. Estimated costs for 300, 600 and 1000 KW installed capacity 

are summarized in Table 5. 

Table 5 

COSTS FOR DIGESTER GAS ENGINE-GENERATOR SYSTEMSa 

Annual Operating and 
Capacity First Cost Maintenance Costs 

(KW) ($) ($/year) 

300 300,000 $ 8,800 

600 500,000 17,000 

1000 790,000 21,000 

~ased on 600 rpm IC engine-generator sets with heat recovery and alternate 
fuel system, and gas storage using existing digester covers domes. 

In addition to the costs shown in Table 5 taken from the EPA 

generalized data, a budget quotation was obtained from the American MAN 

Corporation. The quotation was for six co-generation units with an 

installed capacity of 1038 KW at a cost of DM 885, 000 ($508,620). This 

reduces to an ·initial capital cost of $490 per kilowatt installed capacity. 

This would indicate that the cost estimates based on the EPA data ($790/KW 

to $1000/KW) are reasonably valid and conservative. 

5.3 Economic Comparison 

The figures from this study show a potential reduction in operating costs 

of $233/KW/year if the digester gas were used for on-site power generation. 

However, in order to obtain these savings, it will be necessary to invest in 

electric power generating capacity, not only first costs but also operation 
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and maintenance costs. Any savings in total plant operating costs must be 

adequate to pay off the additional investment required within a reasonable 

time period, certainly some time less than the physical life of the equip-

ment. 

The total annual costs for the different alternatives are shown in 

Table 6. 

Table .6 

ANNUAL COSTS FOR ON-SITE POWER GENERATING ALTERNATIVES 

Capacity First Cost Debt Repayment 
(KW) ($/year) 

300 53,100 

600 88,500 

1000 139,800 

alO-year period, 12% annual interest 

bsee Table 5 

a O&Mb Total. Annual Costs 
($/year) ($/year) ($/KW) 

8,800 61,900 206 

17,000 105,500 176 

21,000 160,800 161 

Since the total annual cost of on-site power generation is less than 

the $233/KW/year potential savings previously developed, all of the different 

power generation capacity installations would be economically feasible. The 

gas production rate appears to be the limiting factor in selecting the size 

of the generating capacity. The net savings increase with the size of the 

generating capacity installed and used. 
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6. DISCUSSION AND RECOMMENDATIONS 

Using the conditions and values of this study, electric power co

generation at the Allentown Wastewater Treatment Facility appears to be 

economically justified. Throughout the study, conservative conditions 

have been used and it·is highly probable that the net savings to the 

City of Allentown would be even larger than projected. There are several 

operational and design aspects that have large impacts on the gas produc

tion and merit further consideration. 

Since so much of the digester gas energy (or other source) is used 

to heat the raw sludge and maintain the elevated digester temperature, 

it would seem valuable to minimize the water that is carried along with the 

waste solids. More effective concentration of the sludge solids by the 

clarifier withdrawal system and sludge thickeners will reduce sludge 

heating requirements and increase the effective detention time that the 

organic sludge solids will undergo biological degradation in the digesters. 

Not only would this reduce heat and sludge handling requirements, but it 

would also increase the amount of digester gas produced in the existing 

units. 

Even though a somewhat higher value of 12 ft 3/lb volatile solids 

destroyed was used in the projection of future gas production, the value is 

considerably less than the normal range of 15-18 ft 3/lb volatile solids 

destroyed. Certainly the observed value of 8.5 ft 3/lb volatile solids 

destroyed is very low and warrants further investigation. If the expected 

values were achieved, the gas production would essentially double the 

current rate and be 50% higher than the projected values. This investi

gation into the nature of the Allentown sludge and the expected unit gas 
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production value should be started immediately to verify or even better, to 

increase the power production potential. 

The digester gas production results from biological destruction of 

"foodstuff". Although the organic material in wastewater is the usual 

"food", there are other sources. In particular, the biodegradable portion 

of garbage and other solid wastes could be utilized for feed stock to the 

digesters. The economic advantages of on-site co-generation would seem to 

favor a greater food supply to the digesters. Of course, the primary 

purpose of the digesters for wastewater processing must be upheld. However, 

it would appear desirable to determine other sources and investigate the 

feasibility of incorporating these waste materials in an energy recovery 

process. 

The potential power generation capacity ranges from 285 to 720 KW 

based on different gas production projections. The comments above point 

out some areas of even greater potential that need to be investigated. 

There are strong economic advantages and it seems advisable to proceed 

with design and construction of on-site power generating capacity. Since 

the actual installed capacity will be a blend of economic potential and 

pragmatic limitations, it is advisable to incorporate expansion potential 

in the plans to provide for any positive results of the above suggested 

areas of investigation. 

In s~ry~ the specific recommendations from this study are 

l, 

2. 

3, 

Initiate development of plans fo~ on-site co-generation capacity, 

!nvestigate means to improve raw sludge thickening, 

Study the nature and digestability of the Allentown sludge to 
determine an ace t d ura e gas pro uction value for future utilization. 



4. Determine the accuracy and precision of the digester gas meters 
to allow proper future planning. 

40 
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APPENDIX A 

THEORETICAL SRT ANALYSIS 

Assumptions: 

1. Ultimate biochemical oxygen demand (BODL) is 1.5 times BOD5 • 

2. Sources of BODL irt the sludge. 

• t Influent BODL settles in primary clarifiers 

• t remaining BODL (; of influent BODL) converted to biological 

cells (sludge solids). 

. 42 

1 1 
• Plant effluent BODL considered to be 2 soluble BODL and 2 cell 

(sludge) BODL. 

3. SRT model constants 

• Y = 0.05 lb biological cells/lb BODL utilized 

-1 = 0.03 days 

= 25 days 

• e = 0.80 (digester BODL removal efficiency) 

Data (1978): 

Average Plant Influent Flow = 28 MGD 

Average Plant Influent BOD5 = 164 mg/1 

Average Plant Effluent BODS = 24 mg/1 

Calculations: 

1. BOD Load to Digesters 

Primary Solids BODL = }. (164) x 1.5 = 82.0 mg/1 

Secondary Solids BODL = B (164) - 2~ x 0. 5 = 42. 7 mg/ 1 

Total Solids BODL to Digester= 82.0 + 42.7 = 124.7 mg/1 

8.34 lb 
Total Solids BODL to Digester= ( 124.7mg/l) x 28 MGD x mg/l MGD = 29 100 J:£... 

' day 
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2. Digester Biological Solids Production: 

dX where -- = net growth rate, lb/day dt 

y dF 
dt 

Y = growth-yield coefficient, lb/lb 

dF 
dt = e (BOD

1
) = rate of substrate utilization, lb/day 

kd = decay coefficient, days -1 

e =mean cell residence time (SRT), days c 

The growth and decay coefficients are quite variable and should be 

determined experimentally. The growth coefficient can range from 0.054 

for fatty acids to 0.240 for carbohydrates. Conservative values were 

selected for this evaluation 

Hence: 

dX 
dt 

0.05 
= 

• 0.80 
1 + 0.03 

• 29,100 
25 

3. Volume of Methane and Digester Gas Produced 

= 665 lb/day 

The volume of methane produced by anaerobic digestion of the solids 

BOD1 can be evaluated from 

Hence: 

C = 5.62(e • BOD1 - 1.42 ~~) 

c = 5.62(0.80 • 29100 - 1.42 • 665) 

C = 125,500 ft 3/day 
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The Allentown digester gas was found to be 65% methane (Appendix B) which 

fits the normal range of 60-70% methane. 

Hence the total theoretical digester gas produced is: 

Digester Gas Production= 125,500/0.65 = 193,100 ft 3/day 



APPENDIX B 

DIGESTER GAS ANALYSES 

Gas samples were taken from the primary digester gas outlet on 
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October 12 and on October 29, 1979. Both samples were analyzed for methane 

(CH4), carbon dioxide (C02) and hydrogen sulfide (H2S) in the Department 

of Chemistry GC/MS Laboratory at Lehigh University. The results were 

virtually identical and showed the digester gas to be 64.8% CH4 , 35.2% co2 

with H2s less than 0.1%. 

Based on stoichiometric oxidation of the methane (CH4) in the saturated 

digester gas, the net heat value would be in excess of 600 BTU/cubic foot 

~t standard temperature and pressure. 



APPENDIX C 

SPACE HEATING REQUIREMENTS 

A very rough estimate was made of the space heating requirements 

using the following. 

where: ~ = Digester heat requirements, BTU 

TD = Digester operating temperature, oF 

Ts = Raw sludge temperature, oF 

TA = Ambient air temperature, °F 

vs = Raw sludge volume, gallons 

45 

(1) 

The first term in Eq. 1 is the heat required to raise the raw sludge 

temperature up to th~ digester temperature. The second term in Eq. 1 is 

the heat loss from the digester to the ambient surroundings, both air and 

soil. The factor K is an overall coefficient incorporating digester 

volume, heat loss characteristics and all other factors. 

The total heat requirements at the treatment plant are 

(2) 

where: ~ = Total plant heating requirements 

HD = Digester heat requirements 

Hs = Plant space heat requirements 

During the months of May through September, the space heat requirements 

are zero and since all information in Eq. 1 is known, except K, we can 

estimate the value of K. This value can be used in Eq. 1 and in Eq. 2 for the 

space heating season to estimate HS' the space heat requirements. 
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Using the 1977 monthly operating data, together with the climatic 

data from the ABE Weather Observation Station, the various heating values 

were estimated. The results are summarized in Tables 7 and 8. 

Month 

May 

June 

July 

August 

September 

Average 

Table 7 

ESTIMATE OF COEFFICIENT K 
(1977 Data) 

liu = H.r a K 

(million BTU) (million BTU/°F) 

1220 9.26 

1343 11.41 

1191 14.00 

776 2.81 

1085 8.18 

9.13 

aBased on 600 BTU/ft3 x Digester gas used in boilers 



Table 8 

DIGESTER AND SPACE HEATING REQUIREMENTS 
(1977 Data) 

~ ~a 
a 

HS = HT - ~ 

Month (million BTU) (million BTU) (million BTU) 

January 3185 1645 1540 

February 2185 1508 677 

March 2155 1397 758 

April 1788 1025 763 

May 1220 1220 0 

June 1343 1343 0 

July 1191 1191 0 

August 776 776 0 

September 1085 1085 0 

October 1501 1401 100 

November 1342 1342 0 

December 1691 1691 0 

Total 19362 15524 3838 

aBased on ~ = 600 BTU/ft3 x Digester gas used in boilers and ~ taken 
from Eq. 1. 
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