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LOCAL BUCKLING OF CYLINDRICAL TUBULAR COLUMNS 
MADE OF A-36 STEEL 

by 

Alexis Ostapenko 
David F. Grimm 

ABSTRACT 

To investigate the effect of the yield stress on the local buckling 
of tubular columns fabricated by cold-rolling and welding, tests were 
conducted on five specimens made of ASTM A-36 steel (nominal yield stress 
250 MPa (36 ksi)) and on dne made of ASTM A-514 steel (nominal yield 
stress 700 MPa (100 ksi)). The wall thickness varied from 6.55 to 9.73 mm 
(0.26 to 0.38 in.) and the diameter-to-thickness ratio (D/t) from 59 to 
233. The slenderness ratio (L/r) was less than 9 to preclude the effect 
of overall column buckling. 

The ultimate stress was limited by the formation of local buckles 
in four of the specimens. In the remaining two, stresses were reached 
slightly above those at which buckling was observed. The buckling 
stresses ranged from 0.829 to 1.069 of the static yield stress and 
generally decreased with an increase in D/t ratio. 

The initial geometric imperfections and the longitudinal welding 
residual stresses appeared to have no influence on either the location 
or the pattern of the local buckles. In the post-buckling range the 
specimens were able to maintain capacities of 12 to 23% of their buckling 
strength. 

The test results were compared using several design parameters and 
equations. Current American design equations were all found to be con­
servative. An equation was proposed to predict the local buckling 
strength of cylindrical tubular columns fabricated from steels with a 
static yield stress of 250 MPa (36 ksi) to 700 MPa (100 ksi). 
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1. INTRODUCTION 

1.1 Background 

The symmetry of a cylindrical tubular member permits it to be 

efficiently used to resist the three-dimensional loadings that occur 

in structures such as offshore platforms, elevated storage tanks and 

transmission towers. When these members are subjected to compression, 

one of the possible failure mechanisms is that of local buckling. Yet, 

despite its importance as a design parameter, there are no methods 

currently available for accurately predicting the local buckling strength. 

There is considerable disagreement among various local buckling 

theories and generally poor correlation between these theories and the 

relatively sparse test results (1,2,3,4). Many of the theories are based 

on tests conducted principally on small tubes of various materials manu­

factured by extrusion, electric resistance welding, and other manufacturing 

processes. On the other hand, the Large cylindrical members currently 

used in many structures are usually made of steel and fabricated by cold­

rolling and welding which generally results in more severe imperfections 

and higher residual stresses than in the manufacturing processes (1,2). 

The local buckling of these members was believed to be particularly in­

fluenced by their·size, material and the production process. As only a 

small number of test results for cylinders with relatively low yield 

stress levels was available, there was an evident need for more accurate 

local buckling criteria for fabricated high strength members. 

1 
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1.2 Previous Research at Lehigh University 

In order to gain a better understanding of local buckling of 

fabricated high-strength steel cylindrical columns, eleven specimens 

were tested in a research program supported by AISI at Lehigh University 

(5,6,7). Very consistent correlation was obtained among the ten test 

results from the specimens. made of steel with a yield stress of 

350 MPa (50 k~i) and an equation was developed for predicting the local 

buckling stress (4). However, a test on a 700 }~a (100 ksi) specimen 

gave a significantly higher local buckling stress than indicated by this 

equation. This fact pointed to the possibility that cylindrical columns 

with a yield stress lower than 350 MPa (50 ksi), such as 250 MPa (36 ksi) 

may have a substantially lower local buckling stress than would be 

predicted by this equation. 

1.3 Objectives of Present Research 

The objective of the research described herein was to investigate 

the local buckling strength of cylindrical tubular columns fabricated from 

ASTM A36 steel (8) with a nominal yield stress of 250 MPa (36 ksi) and to 

propose a suitable local buckling design method. Two areas of particular 

interest were whether the design equation proposed in Ref. 4 could also be 

applied to members made of 250 MPa (36 ksi) steel, and whether the 

consistency observed in the test results of Refs. 5, 6 and 7 could also be 

achieved for the 250 MPa (36 ksi) specimens since the test results for this 

steel reported by other researchers showed considerable scatter (9,10). 

An additional objective was to validate the previous test result on 

the 700 MPa (100 ksi) specimen (4) by retesting the old specimen. 

2 
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2. DESCRIPTION OF THE TEST SPECIMENS 

2.1 Geometric Parameters 

The dimensions and other physical parameters of the cylindrical 

specimens are listed in Tables 1 (SI units) and lA (English units). 

The outside diameters ranged from 0.58 m (23.02 in.) to 1.53 m (60.30 in.) 

and the thicknesses from 2.02 mm (0.080 in.) to 9.94 mm (0.391 in.). The 

diameter-to-thickness ratios (D/t) ranged from 59 to 294. The length-to­

radius of gyration ratios (L/r) of the specimens were less than 9.0 in order 

to preclude the effect of overall column buckling. 

2.2 Material Properties 

Specimens Tl to T5 were fabricated from ASTM A36 steel plate with a 

nominal yield stress of 250 MPa (36 ksi) (8). The intent of the project 

that the mill test results should deviate no more than 10% from the ASTM 

nominal yield stress was maintained for Specimens Tl to T4. However, the 

plate for Specimen T5 was taken from the fabricator's stockyard, and its 

yield stress was substantially higher. Specimen Pll, donated to AISI, 

was fabricated from ASTM A514 Type B steel with a nominal yield stress of 

700 MPa (100 ksi). 

Static yield stress has been found to be the most consistent and 

reliable material property for analyzing the results of tests on steel 

structures and components. The procedure for determining the static yield 

stress is as follows. Shortly upon reaching the flattened portion of the 

stress-strain curve, that is, upon reaching the yield stress, the machine 

3 
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head is stopped~·and the load is allowed to stabilize within three to five 

minutes at a lower level. The resumption of straining leads to an increase 

of the load to a level dependent on the strain rate. At least two more 

stops are made within the plateau of yielding as shown in Fig. 1. The 

average of the reduced stresses at the bottoms of the dips is defined as 

the static yield stress, that is, the stress at a zero strain rate. After 

this, the coupon test proceeds in the usual manner (12) 

The static yield stress for each specimen is given in Column 3 of 

Tables 1 and lA. The yield stresses for Specimens Tl to T5 were obtained 

as the average of six or seven standard eight-inch gage length tensile 

coupons of each thickness cut in the longitudinal direction of the specimens. 

One set of three or four coupons of each plate thickness was tested at 

Lehigh University, and the second set was tested at Chicago Bridge & 

Iron Company (CB&I). For the 9.94 mm (3/8 in.) plate used in Specimen Tl, 

the average static yield stress was 239 MPa (34.67 ksi) and the dynamic yield 

stress was 265 MPa (38.50 ksi). For the 6 •. 73 mm (1/4 in.) plate used in 

Specimens T2, T3 and T4, the static yield stress was 204 MPa (29.56 ksi) 

and the dynamic was 239 MPa (34.67 ksi). These dynamic yield stresses were 

determined at a strain rate of 1042 ~m/m/sec (1/16 in./in./min). This rate 

is the maximum testing rate permitted by ASTM A370 (11) and is commonly 

used by steel producers for determining mechanical properties given in mill 

test reports. The term nominal yield stress used in this report is the 

minimum specified yield stress on a tension specimen strained at rates up to 

the maximum permitted by ASTM A370(11). 

* In a screw type machine, rotation of the screws is stopped: in a hydraulic 
machine, the valve is carefully controlled so that a dial gage, placed between 
the machine head and the base indicates no relative motions of the head. 

4 
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The yield stresses for Specimen TS were determined as the average of 

seven standard eight-inch gage length tensile coupons cut in the 

longitudinal direction of the specimen. The static yield stress was 336 MPa 

(48.67 ksi) and the dynamic was 362 MPa (52.5 ksi) at a testing rate of 

1042 um/m/sec. 

Even though a rather large range existed among the yield stresses 

determined in the three A36 steel plates, the variation in a given plate 

at a given testing rate was small. The maximum difference in the static 

yield stress for the 9.94 mm (0.391 in.) plate was 14.9 MPa (2.16 ksi), 

or 6.2% of the average static yield stress. The static yield stress and 

the dynamic yield stresses at two different crosshead speeds are listed 

for individual coupons in Tables 2 and 2A. 

For the 6.73 mm (0.265 in.) plate (Specimens T2, T3 and T4) an 

increase of 10% existed between the static and dynamic yield stresses 

determined at a crosshead speed of 52 ~m/m/sec. An increase of 17% was 

between the static and dynamic yield_ stresses was determined at a_ maximum 

ASTM rate of 1042 ~m/m/sec. These yield stresses are about 4% higher than 

the increases predicted by the equations developed in Ref. 12. The effect 

of strain rate was not as severe in the 9.94 mm (0.391 in.) plate (Specimen Tl) 

as the dynamic yield stress was 8% higher than the static at 52 ~m/m/sec 

and 11% higher at 1042 ~m/m/sec. 

The material properties of Specimen Pll were assumed to be those of 

the original Specimen P9. The static yield stress was 623 MPa (90.32 ksi) 

and the dynamic was 645 MPa (93.60 ksi) at 52 ~m/m/sec (7); 

5 



450.7 

2.3 Fabrication Process 

All of the specimens were formed into cylinders in a pyramid three-roll 

bending machine by repeatedly cold-rolling the plate to a smaller and smaller 

radius until the opposite edges met. In Specimens Tl to T4 the edges were 

joined with a two-pass butt weld made from one end of the specimen to the 

other by the automatic submerged-arc process. As welding caused a 

flattening of the wall in the vicinity of the weld, the specimens were re­

rolled to restore circularity. To permit re-rolling, the excess weld 

material was ground off. Afte+ re-tolling, steel end rings 22 mm thick by 

127 mm wide (7/8 in x 5 in.) were welded to the ends of the specimens. 

In Specimen T5 most of the welding distortions were prevented by small 

struts which had been tack welded inside the specimen near the longitudinal 

joint. The edges were joined with a two-pass single-bevel weld made 

manually by the submerged-arc process. After welding, the struts were 

removed and the ertd rings added. 

Specimen Pll was made from Specimen P9, which had been tested in a 

previous project sponsored by the AISI at Lehigh University (7). The 

length of the original specimen containing the buckles (approximately 0.5 m, 

or 19 in.) was removed by flame cutting. Some small portions of the buckles 

were expected to recover elastically and were not removed. However, they 

_failed to fully straighten out and the remaining dents were partially 

straightened by preheating both sides of the specimen wall and hammering. 

Finally, the end ring was rewelded to the shortened end. The local 

imperfections which remained are discussed in_Chapter 3. 

6 
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3. INITIAL GEOMETRIC IMPERFECTIONS 

3.1 Standard Imperfections 

3.1.1 Definitions and Methods of Measurement 

A standard measure of initial geometric imperfections in a tubular 

member is given by the out-of-roundness and the out-of-straightness. The 

out-of-roundness at any given cross section is defined by: 

OUT-OF-ROUNDNESS = 
on -on 

max min 

OD (1) 

where OD and OD i are the maximum and minimum outside diameters max m n 

of the cross section and OD is the mean outside diameter. The outside 

diameters at each end of the specimen were determined by placing the 

specimen within a reference circle drawn on the floor and measuring 

the distances between the reference circle and the specimen wall at 

the grid lines. (For example, Figure 2 shows the location 

of the grid lines for Specimen T5). The mean diameter was computed from 

the average of the measured circumferences at each end of the specimen. 

The out-of-roundness of other cross sections was determined from the end 

diameters and the offsets between the specimen wall and straight lines 

connecting the grid points on the end circumferences. 

The out-of-straightness is defined by the maximum offset between a 

longitudinal straight line and the specimen wall in any 1.5 m (5 ft) 

length. The measurements were taken with a dial gage rig, and the offsets 

were determined as the differences between reference readings taken against 

a flat surface and the initial readings taken on the specimen. 

7 
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3.1.2 Discussion of Imperfections 

A sunnnary of the out-of-roundness and ou~-of-S~traigthness 

measurements on each specimen is given in Tables 3 and 3A. The largest 

difference between the maximum and minimum outside diameters in the A36 

specimens was 11.7 mm (0.46 in.) in Specimen T4. Specimen T5 was the 

most out-of-round at 0.0132, and T2 deviated the most from straightness 

with an initial inward deflection of 3.05 mm (0.120 in.) 

Figs. 2 and 40 show the cross sections of Specimens T5 and T4 where 

the maximum imperfections were measured. The imperfections at the cross 

section near the location where the buckling occurred in each specimen 

are shown in Figs. 37 to 42. In these figures the reference circle is 

shown by the light dashed lines and the initial shape by the solid dark 

line. The offsets between the two shapes are the initial deviations 

magnified by a factor of 10. 

Specimen Pll had the largest difference between diameters in any 

specimen with 18.3 mm (0.72 in.) at the bottom. This measurement may 

not, however, give a true indication of the imperfections in the specimen 

due to the presence of the local dents which are described in Section 3.3. 

There seemed to be no correlation between the magnitude of the 

initial imperfections and the dimensions of the specimen. However, the 

maximum out-of-straightness was consistently observed in the two gage lines 

along either side of the weld. 

8 
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3.1.3 Comparison with API Recommendations 

The American Petroleum Institute recommends the following standards 

for allowable imperfections (13): 1) the difference between the maximum 

and minimum outside diameters should. not exceed l%.of the riominal 

diameter (out-of-roundness) or 6.35 mm (~ in.) for wall thickness less than 

50 mm (2 in.), and 2) the out-of-straightness should not exceed 3.18 mm 

(1/8 in.) in any 3.05 m (10 ft) length. 

Specimens· T4, TS and Pll exceeded the recommended standards for 

out-of-roundness. Specimen Pll exceeded the maximum difference between 

diameters requirement by 188% (11.9 mm, or 0.47 in.), and Specimen TS 

exceeded t~e. require~~nt by 22% (1.4 ~or 0.055 in.) •. These specimens 

also exceeded the out-of-roundness criterion by 19 to 32%. Specimen T4 

exceeded the difference between diameters requirement by 84% (5.4 mm, 

or 0.21 in.) but met the out-of-roundness criterion. Based on a 3.05 m 

(10 ft) length, all of the specimens met the out-of-straightness criteria. 

These comparisons indicate that only Specimens Tl, T2 and T3 were 

fabricated in accordance with current industrial practice. 

3.2 Initial Shape 

The initial shape of a specimen was determined with respect to an 

"ideal-cylinder" which was visualized to have been superimposed over the 

specimen. The diameter of the ideal cylinder was computed as the average 

of the circumferences measured at each end of the specimen. The ends of 

the ideal cylinder were set to balance the inward and outward deviations 

of the specimen wall at the ends. This was approximately achieved by 

9 
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making the ideal cylinder (actually, the ideal circle at the ends) 

pass through the two nearest grid points which straddled the largest 

diameter of the specimen. With the location of the ideal cylinder 

established, the offsets from this cylinder to the specimen wall were 

computed at each dial gage point along each gage line. These offsets 

are the initial deviations shown between the reference and the initial 

shape in Figs. 2, 3, 14, 15, and 37 to--42-~ 

3.3 Local Imperfections 

Some local imperf~ctions were present in Specimens T3 and Pll 

that would not normally exist in fabricated tubular members. In Specimen 

T3 there were five areas of laminar separations which caused a local 

reduction of the wall thickness. Four of the areas were located near 

gage line 5 and one near gage line 8. All were more than 0.56 m (22 in.) 

from the top of the specimen (where local buckling occurred) and more 

than 1.0 m (40 in.) from the weld. The most severe area was located near 

gage line 8 and was approximately 38 mm long by 19 mm wide by 1.5 mm deep 

(1.5 in x 0.75 in. x 0.06 in.). 

In Specimen Pll there were three dents which remained after the 

modification of the previously tested Specimen P9 to Pll. The dents, as 

shown in Fig. 3, were located within 0.1 m (4 in.) of the top of the 

specimen and were directed radially inward up to 7.9 mm (0.31 in.) from 

a straight line along the wall of the specimen. 

10 
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4. RESIDUAL STRESSES 

4.1 General 

The effect of residual stresses on the strength of steel structural 

members can be significant, and the magnitude and distribution of such 

stresses are greatly influenced by the method of fabrication and the 

geometry of the cross section. The objective of this investigation was 

to determine the influence of residual stresses on the pattern and the 

location of local buckles. 

Circumferential stresses due to cold-rolling vary through the 

thickness of the plate, but as the stresses are essentially constant 

around a cross section they were not expected to affect the buckling 

pattern (14). Longitudinal stresses from the Poisson's ratio effect 

in cold-rolling and from the original cooling of the plate can be 

considered to be negligible in comparison to the welding residual stresses 

(15). As the longitudinal residual stresses due to welding were of major 

interest, these stresses were computed from measurements taken on Specimens 

T2 and T4. 

4.2 Method of Measurement 

The residual stresses were computed from the strain caused by the 

welding process. These strains were determined from the change in the 

distance between pairs of target holes which were located on the inside 

and outside surfaces of the specimen wall. The distances between the 

pairs of holes were measured with a Whittemore mechanical strain gage 

11 



450.7 

with a 0.25 m (10 in.) gage length after the specimen had been rolled, 

but prior to welding the longitudinal seam, and then again after welding. 

As shown in Fig. 4, the holes were located 0.76 m (30 in.) from one end of 

the specimen to preclude the effect of the free end. The inside and 

outside pairs of holes were located opposite each other and were circum­

ferentially spaced closer near the weld where the stresses were expected 

to change more rapidly. The holes were 1.2 mm in diameter by approximately 

4 mm in depth (3/64 in.x 3/16 in.), and each had a countersunk shoulder on 

which to seat the tip of the measurement gage. 

4.3 Discussion of Residual Stresses 

The residual stress distributions computed in Specimens T2 and T4 

are shown in Figs. 5 and 6. For the_purpose of this presentation, the 

stress distribution around the circumference of the specimen is shown on 

a tube visualized to have been cut, unfolded, and laid out flat. The 

vertical line through the center corresponds to the weld seam, and the 

right and left edges correspond to the line which is diametrically 

opposite the weld on the specimen. The distance from the weld is given 

by the abscissa, and the stress is given by the ordinate. Computed 

stresses from both the inside and outside surfaces are plotted for a 

given distance from the weld, and the averages of these stresses are 

connected with a smooth curve. 

At some locations there is a rather large difference between the 

inside and outside surface stresses. These differences may be attributed 

to longitudinal curvature or warping of the specimen wall, grinding of 

12 
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the weld prior to re-rolling, holes not being located exactly opposite 

one another, disturbance of the targets, or damaged holes. Despite these 

differences, the smooth curve connecting the average of these readings 

does not vary significantly from the patterns determined in previous 

tests (5, 6, 16). The above reasons may also explain why the residual 

stress patterns presented are not fully symmetric about the weld, and 

why the stresses are not self-equilibrating. 

The band of compressive stress extends from about 0.05 to 0.40 m 

(2 to 15 in.) on either side of the weld in Specimen T2 and has an average 

maximum stress of approximately 40 MPa (6 ksi). This zone in Specimen T4 

extends from about 0.03 to 0.65 m (1 to 25 in.) from the weld and has an 

average maximum stress of approximately 60 MPa (9 ksi). The width of the 

residual compressive stress band increased with increasing specimen 

diameter. Beyond the compression zones the magnitude of the stress diminishes 

and tends to fluctuate between compression and tension in a wave-like 

pattern. 

Specimens T2 and T4 can also be compared to three other tubular 

specimens fabricated from 350 MPa (50 ksi) steel whose welding residual 

stresses were measured previously. Specimen T2 was similar in geometry 

to Specimens Pl and P2 of Ref. 16. The width of the compressive bands 

was similar in all three tubes (approximately 0.45 m or 18 in.), but the 

maximum compressive stress in Specimen T2 was only about 65% of the 

stresses found for Specimens Pl and P2 (16). Specimen T4 was geometrically 

similar to Specimen PS of Ref. 5. The compressive stress bands were 

13 
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approximately 0.60 m (24 in.) in width, but the maximum stress in Specimen 

T4 was again only about 65% of the stress measured in Specimen P5 (5). 

Thus, it appears that the width of the compressive band is dependent on the 

geometry of the specimen, whereas the magnitude of the maximum stress is 

dependent on the yield stress. 

14 
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5. TEST PROCEDURE 

5.1 Test Setup 

The general test setup for the specimens is shown schematically in 

Fig. 7. As illustrated in Fig. 25, the larger specimens stood in a five 

million pound hydraulic testing machine between the loading head and the 

machine floor. For convenience in taking measurements during the testing, 

Specimen T5 stood between the loading head and the machine pedestal, as 

illustrated in Fig. 31. The specimens were whitewashed with a lime solution 

in order to give a visual indication of the surface yielding during the 

test. 

Alignment was accomplished by centering the specimen in the testing 

machine and by plumbing with a four foot level. To further assure the 

application of a uniform, concentric load to the specimen, a layer of 

gypsum ("Hydrostone") grout was placed between each of the end rings and 

the testing machine components. In order to form smooth contact surfaces, 

a small initial load (less than 2.5% of the predicted buckling load) was 

applied to the specimen before the grout could set. 

5.2 Instrumentation 

The instrumentation consisted of both mechanical dial gages and 

electric-resistance strain gages. Four mechanical dial gages at the 

corners of the machine head were used to measure the longitudinal shortening -

of the specimen. Two additional mechanical dial gages located diametrically 

opposite one another were attached between the end rings close to the wall 

15 
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of Specimens Tl to TS. Three electric-resistance strain gages located 

at third points around the circumference and at approximately midheight 

of the specimen served as a check on the concentricity of the load and 

as an additional means for determining longitudinal deformations. For 

Specimens T2 and T4 these deformations were further checked with 

Whittemore strain gage readings which were taken periodically between the 

residual stress tRrget holes. 

The lateral deflection of the specimen wall relative to its ends 

was measured by means of the special movable dial gage rig shown standing 

at the side of the specimen in Figs. 25 and 31. The rig consisted of 

seven or eight mechanical dial gages attached to either an aluminum truss 

or an aluminum channel. ·The bottom of the rig sat on the end ring and 

touched the specimen wall, and an electromagnet held the top of the rig 

against the specimen. Readings were taken at nine to thirteen locations 

around the circumference by-successively repositioning the rig. 

5.3 Test Sequence 

Following the alignment of the specimen, readings were taken of all 

gages to serve as the initial reference. Generally, load increments of 

445 kN (100 kips) were slowly applied until the load reached approximately 

85% of the expected buckling load. The load increments were then reduced 

to 220 kN (50 kips) as the buckling load was approached. 

At all load levels prior to buckling, readings were taken of the 

longitudinal dial gages and the electric-resistance strain gages. At 

16 
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several of the load levels, readings from the dial gage rig were also 

taken. In addition, on Specimens T2 and T4, Whittemore strain gage 

readings were periodically made. After bucklin~only the longitudinal 

dial gages and the electric-resistance strain gages were read since the 

buckling prevented the use of the dial gage rig. 
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6. TEST RESULTS 

6.1 General Specimen Behavior 

6.1.1 Prebuckling Behavior 

The behavior of a test specimen prior to buckling can be 

described by its stress-strain relationship. The stress-strain 

curves for Specimens Tl to TS, and Pll are shown in Figs. 8 to 

13, respectively. The ordinate in these figures is the average 

axial stress nondimensionalized with respect to the static yield stress, 

and the abscissa is the strain. In this investigation the strain was 

obtained by several different methods. Two measures of strain obtained 

for all of the specimens were: 1) the average of the three electric-

resistance strain gage readings, and 2) the average axial deformation 

measured by the four corner longitudinal dial gages divided by the 

overall specimen length. In Specimens Tl to TS strain was also com-

puted as the average axial deformation measured by the two near longi-

tudinal dial gages divided by the overall specimen length. In addition, 

in Specimens T2 and T4,average strains were computed from Whittemore 

strain gage readings. 

The strain curves computed from longitudinal deformations generally 

had an initial nonlinear region (due to self-adjustments in the grouted 

ends) up to about 0.1 F/F . The deviation from linearity was greater ys 

in the curves computed from the corner deformations than in the curves 
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computed from deformations measured near the specimen wall. The strain 

curves based on electric-resistance and Whittemore readings were linear 

from the start and agreed almost identically with one another. All of 

the curves remained linear to a stress of approximately 0.7 F/F . ys 

Specimens Tl and T5 became nonlinear near this stress and strained 

extensively with increasing stress prior to the formation of the 

buckles. Specimens T2 and T3 behaved linearly up to stresses of approxi-

mately 0.9 F/F before-becoming nonlinear. The behavior of Specimens ys 

T4 and Pll remained essentially linear up to the buckling stress. 

Lateral deflections were measured in the specimens prior to the 

formation of the buckles. Typical profiles are shown in Figs. 14 and 

15 for Specimens T3 and T5. The sketch to the left (not drawn to scale) 

shows the buckled specimen, and the three profiles are for the gage 

lines indicated. The profiles are the deflections from the ideal cylinder. 

The lower set of profiles for gage line 9 in Fig. 15 is based on deflec-

tions with respect to the initial shape measurements along the line. 

The small circled numbers indicate the sequence of the profile changes 

during the testing. The profile numbered 3 was measured just prior to 

buckling. 

The changes in the lateral deflections in Specimen T3 are generally 

less than those in T5, which seems to be consistent with the appearance 

of the buckled specimen. However, the profiles do not seem to correspond 

to the initial shape of the specimen. This is apparent in Fig. 15 for 
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Specimen TS, for which the pattern of buckles in the left sketch has 

no correlation with the prebuckling profiles. 

6.1.2 Behavior at Buckling 

At stresses near buckling the elastic response of Specimens Tl, 

T2, T3, and TS became qui·te sensitive to the rate of loading. After 

a particular load level was reached and the machine stopped, and 

during the time when instrumentation readings were being taken, the load 

gradually dropped to a lower (static) level even though the rate of load­

ing was very slow. \Vhen testing was resumed the load climbed above the 

previously reached level, but again fell when the machine was stopped. 

This behavior is shown in Fig. 22 by the dashed lines between the static 

and the dynamic (at a very slow rate of loading) load-deflection curves. 

Since the buckling and the ultimate stresses were reached during the 

application of a load increment in all of the specimens except T4, the 

maximum load reached is used in the description of the prebuckling and 

the buckling behavior although the corresponding "static" load would 

represent the specimen capacity more properly. 

Local buckling occurred in all of the test specimens. The ultimate 

stress reached was limited by the formation of buckles in all of the 

specimens except Tl and TS. The stress in these two specimens contin­

ued to climb above the stress at which buckling was first observed. 

The nondimensional buckling stress of each specimen is listed in 

Column 11 of Tables 1 and lA. 

Specimens Tl to TS buckled at one end through the gradual formation 

of a uniform, circumferential ring bulge approximately 0.10 to 0.15 m 
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(4 to 6 in.) in width. Surface yielding was quite extensive over the 

length of Specimens Tl and T5, but the yielding was localized in the 

buckled regions of the o-ther specimens. Specimens Tl and T5 also 

showed a tendency of forming additional ring bulges (in a wave-like 

pattern) along the length of the specimen prior to buckling at the end. 

Typical ring bulges are illustrated in Figs. 27 and 33. Specimen Pll 

buckled suddenly with an explosive sound into a diamond-shaped pattern, 

as shown in Fig. 35 

6.1.3 Post-Buckling Behavior 

Buckling was followed by a sudden reduction in the applied stress 

in Specimens T2, T3, T4, and Pll. Specimens Tl and T5 continued to 

carry significant additional stresses after buckling had been visibly 

detected. After local buckling occurred, most of the increase in defor­

mation was concentrated in the buckled regions. The strains from the 

electric-resistance gages and the average strains did not accurately 

represent the behavior of the buckled portion of the specimen. A 

more valid representation of the overall specimen behavior in the post­

buckling range is the stress-deformation relationship. These curves 

are shown for each specimen in Figs. 16 to 21. In these figures the 

ordinate is the nondimensional stress and the abscissa is the average 

longitudinal deformation measured by the four corner dial gages. 

The postbuckling capacities of the specimens stabilized at 12 to 

23 percent of the buckling strength at an overall longitudinal shorten­

ing of 75 to 150 rnm (3 to 6 in.). As shown in Figs. 28 and 34, further 
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longitudinal compression resulted in the transformation of the ring 

bulge into a polygonal shape. The orientation of the polygon with 

respect to the weld was random, but the number of sides increased with 

an increasing D/t. 

Additional compression always resulted in the specimen wall folding 

over onto itself, and after the folds contacted either the specimen 

wall or an end ring, slightly increased loads could be carried until 

a second layer of buckles formed. These increases in stress are indi-

cated by the rising portions of the curves in the post-buckled regions 

of Figs. 16, 17, 19 and 20. 

6.2 Behavior of Individual Specimens 

6.2.1 Behavior of Specimen Tl 

The stress-strain curves for Specimen Tl are shown in Fig. 8. The 

strains computed from longitudinal deformations measured near the speci-

men wall were nearly the same as those read from the electric-resistance 

gages, and these strains were approximately 0.0003 less than the strains 

obtained from the corner longitudinal deformations. The curves began 

to deviate from linearity at approximately 0.7 F/F . At a stress of 
ys 

0.85 F/F , surface yielding became apparent as the whitewash began ys 

flaking off the specimen along both sides of the weld over the full 

length of the specimen (regions of maximum residual compressive stress). 

Y~elding soon spread completely around the specimen at midheight, and 

later progressed to form 14 to 16 equally spaced circumferential rings, 

as shown in Fig. 24. The specimen seemed to be on the verge of 
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forming a series of ring bulges (which would have given the specimen a 

corrugated appearance), but the lateral deflections did not develop over 

the length. Small ring bulges did initially appear at both ends of the 

specimen. Upon reaching the ultimate stress of 1.07 F/F the defor­ys 

mation became concentrated in the bottom ring, and the top ring relaxed 

into a nearly straight position. 

As the compression was continued beyond the maximum load, the 

bottom ring bulge was transformed into a three-sided polygon. As 

shown in Fig. 16, the post-buckling capacity stabilized at approxi-

mately 0.23 F/F , and the capacity increased to approximately 0.50 ys 

F/F prior to the formation of the second set of buckles. The second ys 

set was also three-sided, but it was offset by a half wave just above 

the first pattern. 

6.2.2 Behavior of Specimen T2 

The stress-strain behavior of Specimen T2 is shown in Fig. 9. 

The strains computed from the longitudinal deformations measured near 

the specimen were approximately midway between the strains read from 

the strain gages and the strains computed from the corner longitudinal 

deformations. At a stress of approximately 0.90 F/F the curves ys 

became nonlinear and surface yielding was observed along both sides of 

the weld near the top of the specimen. At the ultimate stress of 1.00 

F/F , the uniform ring bulge illustrated in Figs. 26 and 27 appeared 
. ys 

at the top. These photographs also show that surface yielding occurred 
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only in the buckled portion of the specimen. Fig. 17 shows the decrease 

in the applied stress that immediately followed buckling. After 

additional compression, the ring bulge was transformed into a three-

sided pattern, and a stable post-buckling capacity of 0.18 F/F ys 

occurred at approximately 90 mm (3.5 in.). Prior to the formation of 

the second set of buckles illustrated in Fig. 28, a maximum postbuckling 

stress of 0.37 F/F was reached. ys 

6.2.3 Behavior of Specimen T3 

Fig. 10 shows the stress-strain curves for Specimen T3. The 

strains computed from the longitudinal deformations measured near the 

specimen were very similar to those read from the electric-resistance 

strain gages. In the linear portion of the curves these strains were 

approximately 0.0002 less than the strains computed from the longitud-

inal deformations measured at the corners of the loading head. 

Specimen T3 was loaded.to a stress of 0.80 F/F during the first ys 

day of testing and then unloaded to 0.40 F/F before leaving it over­
ys 

night. When testing was resumed the previous loading path was retraced, 

and a stress of approximately 0.90 F/F was reached before the behavior ys 

became nonlinear. Yielding was first observed at the top of the speci-

men in a very narrow band along the weld toe of the end ring at a stress 

of 0.97 F/F . At a stress of 1.00 F/F a ring bulge began to form at ys ys 

the top. Two additional load increments were applied before the ring 

bulge extended completely around the specimen. Fig. 18 shows that 
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immediately after buckling the applied stress dropped to approximately 

0.50 F/F and later stabilized in the post-buckling region at 0.18 
ys 

F/F ys The ring bulge developed into a four-sided polygon during this 

post-buckling deformation. The final view is shown in Fig. 29. 

6.2.4 Behavior of Specimen T4 

The stress-strain behavior of Specimen T4 is shown in Fig. 11. 

The strains computed from longitudinal deformations measured near the 

specimen wall were approximately midway between the strains read from 

the electric-resistance gages and those computed from the corner longi-

tudinal deformations. 

At a stress of 0.47 F/F some local yielding was observed at the 
ys 

tOR of the specimen along the weld toe of the end ring. The yielding 

did not spread significantly until stresses were near the ultimate, and 

the stress-strain and load~deformation curves remained linear. 

During the first day of testing a stress of 0.54 F/F was reached, ys 

but the specimen was unloaded to 0.37 F/F before leaving it overnight. 
ys 

When testing was resumed the following day, these same linear paths 

were followed. The behavior remained essentially linear up to the 

ultimate stress of 0.88 F/F . The ultimate stress was reached under 
ys 

essentially static conditions, as no loading was being applied and 

instrumentation readings were being taken when buckling occurred. The 

ring bulge formed rather suddenly and was followed by the large drop in 

the applied stress level shown in Fig. 19. The post-buckling stress 
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stabilized at approximately 0.13 F/F ys 

With additional deformation the ring bulge eventually transformed 

into a six-sided polygon. Testing continued until a second set of 

buckles formed. As the specimen wall folded over, _as_ §lhown __ in Fig~30, 

6.2.5 Behavior of Specimen T5 

The stress-strain curves for Specimen T5 are shown in Fig. 12. The 

strains computed from longitudinal deformations near the specimen wall 

were essentially the same as the strains read from the electric-resis-

tance gages. For a given increase in stress, these strains increased 

at a slightly slower rate than the corresponding strains computed from 

the corner longitudinal deformations. The difference between the strains 

varied from about 0.0005 to 0.0008. 

Surface yielding was first observed near the weld at a stress of 

0.94 F/F 
ys 

Two yield lines formed at 0.20 and 0.38 m (8 and 15 in.) 

from the top of the specimen and a third yield line later appeared 

between the two. At a stress of 1.07 F/F surface yielding became ys 

concentrated near the bottom of the specimen, and a wave-like pattern 

of four buckles formed along the length. The shadow cast on the right 

side of the specimen in Fig. 32 shows the wave-like pattern, which was 

most pronounced near the weld. At a stress near 1.11 F/F the bottom ys 

wave grew into the ring bulge shown in Fig. 33, and the level of stress 

dropped as shown in Fig. 20. The stress level stabilized at 0.25 F/F , ys 

and a three-sided polygon pattern developed from the ring bulge. 
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As the wall of the specimen deformed as shown in Fig. 34, the weld 

cracked at the fold. The wave-like rings retained most of their initial 

magnitudes during the post-buckling deformation. 

6.2.6 Behavior of Specimen Pll 

Figure 13 shows the stress-strain behavior of Specimen Pll. During 

the first day of testing a stress of 0.80 F/F (87% of the buckling 
ys 

stress of Specimen P9) was reached, then the specimen was unloaded to 

0.26 F/F before leaving it overnight. When testing was resumed, the 
ys 

stress-strain curve computed from longitudinal deformations was paral-

lel, but offset, from the previous curve, thus indicating the presence 

of some plastic deformations. Strains read from the electric-resistance 

gages were also slightly offset, but the differences were negligible 

for the scale used in the figure. For a given increase in stress, the 

strains computed from the corner longitudinal deformations increased at 

a slightly greater rate than the corresponding strains read from the 

electric-resistance gages. The curves deviate only slightly from 

linearity just prior to reaching the buckling stress. 

Buckling occurred with an explosive bang at an ultimate stress of 

0.83 F/F ys Initially, three diamond-shaped buckles formed near the top 

of the specimen, two on one side of the weld and one on the other. 

Without further loading, seven additional buckles formed and the 

resulting pattern shown in Fig. 35 circled the specimen. 

As shown in Fig. 21, the applied stress dropped suddenly after 

buckling, and the post-buckling strength stabilized at a stress of 
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0.10 F/F ys 
During additional compression, the wall of the specimen 

folded over as shown in Fig. 36, and cracks appeared under the folds. 

7. DISCUSSION OF TEST RESULTS 

7.1 General Specimen Behavior 

7.1.1 Prebuckling Behavior 

The stress-strain curves for Tl to T4 in Figs. 8 to 11 show a con-

siderable difference among the strains measured at a particular stress. 

The larger initial strains computed from the corner dial gage readings 

may be attributed to the compression of the capping grout on the speci­

mens and other initial adjustments that would affect the overall 

deformation of the specimen but would not be reflected in the local 

strains measured by the electric-resistance gages. After the initial 

nonlinearities, the slopes of the stress-strain curves are very similar 

and compare favorably with the assumed modulus of elasticity of 

203,400 MPa (29,500 ksi). 

This consistency among the stress-strain slopes of the 

A36 specimens was not observed in Specimen Pll with the 

yield stress of 700 HPa (100 ksi) or in the previous tests conducted 

on high-strength steel specimens (16). It was assumed that the 

difference in slopes may have been caused by the deflection of the 

corners of the testing machine loading platen. To check this assump­

tion, Specimens Tl to T5 had two dial gages located near the specimen 
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wall to measure the longitudinal deformations. The strains computed 

from these two near gages would then be expected to approach the strains 

read from the electric-resistance gages since the effects of platen 

bending in the machine would be eliminated. This theory does not 

appear completely valid, however, since the slopes of the stress-strain 

curves for Specimens Tl to T4 were very similar. 

There is one additional inconsistency that exists in the magni­

tude of the strains computed from the two near dial gages. Figures 

9 and 11 (Specimens T2 and T4) indicate, as expected, that these 

strains are between the strains read from the electric-resistance 

gages and those computed from the corner longitudinal deformations. 

However, Figs. 8,10, and 12 (Specimens Tl, T3, and TS) show that the 

strains computed by the two near gages were nearly the same as those 

read from the electric-resistance gages. No explanation other than the 

particular conditions of the individual tests can be made for these 

discrepancies. 

The lateral deflection profiles shown in Figs. 14 and 15 must 

be viewed with some caution. When measurements were being taken with 

the dial gage rig it was assumed that the ends of the rig were positioned 

at a fixed location on a straight line relative to the ends of the 

specimen. However, in some specimens the magnet holding the rig 

against the specimen wall was near the location where the ring bulges 

appeared. Consequently, any lateral deflections in this region would 

have affected the dial gage readings. It was also observed that the 
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variation among readings which were taken against the flat reference 

surface may have exceeded the magnitude of the actual deflection in 

the specimen for a given load increment. 

7.1.2 Behavior at Buckling 

In most specimens buckling occurred at one end. A possible 

explanation for this is that due to Pois_son' s ratio the wall of the 

specimen desires to expand laterally as the specimen is compressed. 

The ends of the specimen are restrained from expansion by the end 

rings, thus inducing local bending moments which act in combination 

with the axial load. In previous research where end rings were not 

added, buckling still commonly occurred at the ends (5). In these 

cases the· restraint was probably offered by the friction between 

the ends of the specimen and the testing machine. This preferential 

location for buckling was not so obvious in Specimens Tl and TS, as 

both showed a tendency to form ring bulges at other locations along 

the length. 

The buckling stress was not clearly defined in the specimens with 

low D/t ratios and high straining capacities. Ring bulges were 

observed in Specimens Tl and TS_ at stresses below the ultimate. For 

such specimens the use of a critical strain may perhaps be a more 

meaningful parameter to define the point of buckling. 
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7.1.3 Post-Buckling Behavior 

The post-buckling stress of the specimens stabilized within a 

range of 12 to 23 percent of the buckling stress. This range is 

similar to that previously observed for high-strength specimens (4,16). 

Some additional stresses could be carried after the wall of the specimen 

had folded over and come into contact with the unbuckled wall or an 

end ring. It appears that the points of contact provided the addi-

tional longitudinal support required for the formation of the second 

set of buckles. 

7.2 Comparison of Specimen Behavior 

7.2.1 Comparison of Specimens Tl and T5 

Specimens Tl and T5 had D/t ratios less than 80, L/r ratios less 

than 8, and a nominal thic~~ess of 9.5 mm (3/8 in.). Figures 8 and 12 

show that the specimens had the capacity to strain quite extensively 

prior to buckling. The extensive surface yielding which occurred 

prior to buckling is illustrated in Figs. 24 and 32. Each specimen 

was able to carry a stress above the stress at which the formation of 

buckles became visible. Each specimen showed a tendency to form:a 

series of longitudinal waves (or circumferential ring bulges) along 

its length with the larger initial rings near the ends. The final ring 

bulge formed near the bottom of the specimen, and it transformed into 

a three-sided polygonal pattern during the post-buckling deformation. 

Figure 23 shows that the stress-deformation behavior was nearly 

identical up to a stress of 1.00 F/F , and also that the post­ys 
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buckling behavior was similar. The post-buckling stress stabilized at 

approximately 0.24 F/F at a deformation of approximately 0.12-0.13 m ys 

(5 in.). 

7.2.2 Comparison of Specimens T2, T3, and T4 

Specimens T2, T3, and T4 were fabricated from the same plate but 

had D/t ratios from 113 to 226 and L/r ratios from 5.6 to 8.5. Figures 

9 to 11 and 17 to 19 indicate that the specimens deviated very little 

from linear behavior prior to buckling. The buckling strain was 

approximately 0.001 to 0.002, and the deformation at buckling was 

approximately 6 mm (0.24 in.). The buckling stresses were near 1.00 

F/F for Specimens T2 and T3 and 0.88 F/F for T4. The stable post-ys ys 

buckling stress level for Specimen T4 was about 20% less than that of 

T2 or T3. Formation of the ring bulge occurred near the top of each 

specimen with relatively little prior surface yielding. 

The premature local yielding which was observed in Specimen T4 and 

the comparatively lower ultimate stress may lead to some suspicions 

concerning the magnitude of the buckling stress. The local yielding 

described in Section 6.2.4 was probably caused by the concentrated 

stresses that could have resulted from insufficient grout covering 

over some metal projections on the top end ring of the specimen. 

However, a similar pattern of local yielding was observed in Specimen 

T3 (but at a higher level of stress), which had no metal projections. 

The fact that linearity in the stress-strain and the stress-

deformation curves (Figs. 11 and 19) was not disturbed and that the 
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stable post-buckling stress was also lower than the corresponding 

stresses in T2 and T3 lend credibility to the buckling stress results. 

7.2.3 Comparison of Specimens Pll and P9 

Specimen Pll was made by modifying the previously tested Specimen 

P9 (7). As shown in Fig. 21, Specimen Pll followed nearly the same 

linear stress-deformation path as P9 but buckled at a stress of 

0.83 F/F compared to 0.91 F/F for P9. Two previous retests ys ys 

showed that the buckling stress should be nearly the same in both the 

original and the modified specimens (Specimens P3 and P3A of Ref. 5 

and P6 and P8 of Refs. 6 and 7). This indicates an apparent effect 

of the relatively large geometric imperfections, which are described 

in Chapter 3 and Section 7.3, on the buckling stress. The level of 

the stable post-buckling stress was 0.08 

specimens. 

7.3 Effect of Initial Imperfections 

to 0.10 F/F for the ys 

There seemed to be no correlation in the A36 specimens between 

the initial imperfections and the buckling pattern or location, as 

each of these specimens failed initially through the formation of a 

ring bulge. Column 8 of Tables 3 and 3A lists the type and the loca-

tion of the initial local buckling in each specimen. Figures 37 to 

41 show the polygonal post-buckling patterns of Specimens Tl to TS 

superimposed on the initial shape. The buckled shape, shown by the 

dark solid line in the figures, does not represent a particular stress 

level nor is it drawn to a specific scale. A comparison among the 
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figures indicates that no correlation exists between the orientation 

of the polygon post-buckling pattern and the initial deflections. 

The initial indentations and the buckling pattern of Specimen 

Pll are shown in Fig. 42. Two of the initial dents are near the locations 

where the specimen buckled inward, but the third dent was located 

where the specimen buckled outward. The reduction in the buckling 

stress of Specimen Pll compared to that of P9 seems to indicate that 

imperfections with magnitudes that approach the thickness of the 

specimen wall, and with patterns similar to the potential buckling 

pattern, may have some effect on the level of the buckling stress. 

During testing, no local yielding or other disturbances were 

observed near the laminations in Specimen T3. The laminations seemed 

to have no effect on either the buckling stress or the buckle pattern. 

7.4 Effect of Residual Stresses 

Figures 5 and 6 indicate that a narrow band of high tensile 

residual stress exists at the longitudinal weld. This is confirmed 

by Fig. 24, which shows a lack of surface yielding (light areas on 

the photograph) along the weld in an otherwise extensively yielded 

specimen. Figures 5 and 6 also indicate the regions and magnitude 

of maximum compressive residual stress, and these were generally the 

first to show signs of surface yielding. However, each of the A36 

specimens (Tl to T5) failed initially through the formation of a uniform, 

circumferential ring bulge at one end, and as shown in Figs. 37 and 41, 

the polygonal post-buckling pattern that later developed was randomly 
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oriented. Thus, it appears that the welding residual stresses had 

no effect on the buckling pattern of the tubular specimens. This 

confirms the conclusion that was reached previously for the effect 

of residual stresses on high-strength steel tubular specimens (5,16). 

7.5 Effect of 0/t Ratio 

The nondimensional buckling stress of each specimen and the 0/t 

ratio are listed in Tables 1 and lA and plotted in Fig. 43. Also 

shown in the figure are some of the results from previous tests con-

ducted on fabricated tubular columns (5,6,7,9). 

The buckling stresses generally decreased with increasing 0/t 

ratios. At 0/t ratios less than 100 the buckling stress was nearly 

equal to or exceeded the static yield stress. The occurence of 

buckling stresses above yield was probably caused by strain-hardening due 

to cold working of the rolling process and/or by the strain rate 

at the time of loading as indicated in Fig. 22 for Specimen T5. 

7.6 Effect of a and c 

Nondimensional parameters a and c are used in the presentation 

of test data. They tend to reduce the scatter among the test results 

for specimens with different yield stresses. The parameter a is 

defined by 

E a=-
F 

y 

1 
0/t 

The buckling -stress and a for each specimen are given in Tables 1 
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and lA and plotted in Fig. 45. Also shown are some of the results 

from previous tests conducted on fabricated tubular columns (5,6,7,9). 

Previous research conducted on high-strength steel specimens 

reported a trend for the mode of buckling to be dependent on a (16). 

The A36 specimens followed this trend, that is, for a greater than 

2.4 buckling occurred gradually through the formation of a uniform 

ring bulge. There were no A36 specimens tested with a less than 2.4. 

Specimen Pll, with a less than 2, also followed this guideline by failing 

suddenly through the formation of a series of diamond-shaped buckles. 

Parameter c was used in Ref. 4 to propose an equation for predict-

ing the local buckling strength of 350 MPa (50 ksi) steel tubular 

columns. Parameter c is defined by 

c=w 
y 

1 
D/t 

(3) 

The buck~irig stress and c for each specimen are given in Tables 1 and 

lA and plotted in Fig. 46. The use of c reduced the scatter among 

test results much more effectively than the use of a. 

In computing a and c for Table 1 and for Figs. 45 and 46, the 

static yield stress F was used for the yield stress F of Eqs. 2 and 
ys Y 

3. When the test data did not indicate how the yield stress was deter-

mined, such as in Reference 9, the yield stress was assumed to be 

dynamic and it was used without any adjustments for F . 
y 
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7.7 Comparison of Test Results with Design Curves 

Several local buckling design curves which are in current use 

(1,17,18) are shown in Fig. 45 together with test results on 

fabricated cylindrical columns. The nondimensional parameter a is 

used as the abscissa. The optimistic DNV curve gives the best 

correlation with the test results except for Specimen T4, whose 

buckling stress falls about 7% below the curve. All of the other 

design curves are conservative in comparison with the test results. 

The following design curve, proposed by the API Mini-Committee 

on tubular columns (19), has been approved for inclusion in the 11th 

edition (1980) of the API specification RP 2A (20): 

for D/t < 60 

F c 
1.00 = 

F 
(4a) 

y 

for 60 < D/t < 300 

= 1.64 - 0.23~ (4b) 

As can be seen in Fig. 43, this curve is quite conservative when 

the static yield stress F is used as the non-dimensionalizing value ys 

for the yield stress F . 
y 

However, the prudent intent of the API Mini-Committee 

developing Eq. 4 from the test data was to be on the conservative 

side by using the ASTM dynamic yield stress Fyd which is the industry 

acceptance standard. In this case, as shown in Fig. 44, Eq. 4 becomes 

,j reasonable and. c-onservative approximation of the test results. In Fig. 45, 

Eq. 4 is plotted for comparison with other curves. It is more conservative 

for lower D/t and less conservative for higher D/t than the old API rule (17). 
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One of the objectives of the work presented here was to check 

whether the local buckling equation proposed in Reference 4 for 

tubular members made from 350 MPa (50 ksi) steel would also be 

applicable to members made from 250 MPa (36 ksi) steel. A slightly 

modified version of that equation is 

for c < 0.07 

F 
c 

F 
y 

= 38 c - 480 c 2 + 2020 c 3 

for c > 0.07 

F 
c F = 1.0 
y 

where c is defined by Eq. 3. 

(5) 

Figure 46 shows the curve corresponding to Eq. 5 and the test 

results nondimensionalized with respect to the static yield stress 

F The curve correlates with the test results very closely and is 
ys 

somewhat conservative with respect to the three points on the left 

side which are the test results on specimens with: static-yield ·stress __ _ 

Thus, it can be concluded that Eq. 5 gives an accurate prediction 

of the local buckling stress of cylindrical tubular columns made from 

steels with · static yield stress F Qt 250 MPa (36 ksi) and it m.<'l.v - ys 

be conservative for higher values of F ys In the application of this 

equation to practical design, careful consideration should be given 
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to the significance of the difference between the static F and ys 
dynamic F yield stresses. . yd 

8. SUMMARY AND CONCLUSIONS 

Local buckling tests were conducted on six tubular specimens 

fabricated by cold-rolling flat plate into a cylindrical shape and 

then welding the joint. Five of the specimens were made from 250 

MPa (36 ksi) steel, and one by modifying a 700 MPa (100 ksi) specimen 

tested previously. The outside diameters ranged from 0.58 m (23.02 in) 

to 1.53 m (60.30 in) and the thicknesses from 6.73 mm (0.265 in) to 

9.94 mm (0.391 in). The corresponding diameter-to-thickness ratios 

(D/t) ranged from 59 to 233. The slenderness ratios (length-to-radius 

.of gyration) were less than 9 to preclude the effect of overall column 

buckling. 

Local buckling occurred in each of the specimens. The ultimate 

stress reached was limited by buckling· ·in four of the specimens, 

but in two a slight increase in stress was achieved after 

buckling could be visibly detected. The influence of initial geometric 

imperfections and welding residual stresses on the location and pattern 

of the buckles was examined, as well as the behavior of the specimens 

in the post-buckling region. The test results were examined using 

several design parameters and equations. 

The following conclusions can be drawn from the results of these 

tests: 
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1) The design rules for local buckling which are currently 

recommended by the API and AISI are adequately conservative for 

tubular members fabricated from 250 MPa (36 ksi) steel which fall 

within the range of parameters tested (59 < D/t < 227 and 4.41 < 

a< 11.09). 

2) The nondimensional buckling stresses for the 250 MPa (36 ksi) 

specimens are in good agreement with the 350 MPa (50 ksi) specimens 

tested previously when nondimensionalized with respect to F and ys 

plotted versus parameter c. 

3) The test results from the 250 MPa (36 ksi) specimens are not 

as consistent as those from the 350 MPa (50 ksi) specimens. This may 

be attributed to the higher sensitivity of the 250 MPa steel to the 

strain rate during testing. 

4) The post-buckling strength depends on D/t (or a, or c). In 

general, the post-buckling strength will decrease with an increase in 

D/t. 

5) By forming successive sets of buckles, tubular columns can 

effectively dissipate energy at approximately 12-23% of the buckling 

stress. 

6) There is no apparent correlation between the pattern of 

longitudinal residual stresses due to welding and the pattern of 

local buckling. 
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7) The width of the compressive residual stress band on each 

side of the weld appears to be dependent on the diameter of the 

specimen, whereas the magnitude of the maximum compressive stress 

seems to be dependent on the yield stress level. 

8) Initial g~on:e~_!ic __ imperfections whose magnitude-s are 

of the order of those established by the API specifications appear 

to have no apparent influence on either the local buckling stress 

or the pattern of the buckles for the range of parameters tested. 

9) Imperfections of the order of magnitude of the plate thick­

ness and distributed in a manner similar to the buckling pattern 

appeared to adversely influence the buckling stress in one 

specimen (Specimen Pll). 

10) The mode of initial buckling conformed to the previously estab­

lished guidelines which were based on the value of a. For specimens 

with a greater than 3.6 (Specimens Tl toTS), the mode was a gradual 

formation of ring bulge, and for specimens with a less than 2.4 

(Specimen Pll), it was sudden buckling into a diamond-shaped pattern. 

41 



450.7 

9. RECOMMENDATIONS 

Since Eq. 5 gives a more accurate prediction of the local buckling 

stress for cylindrical tubular columns fabricated from steel with 

a static yield stress level F from 250 MPa (36 ksi) to 700 MPa ys 

(100 ksi) than other available methods, this equation is recommended 

as a basis for developing design criteria. In this, attention should 

be paid to the statistic significance of the difference between 

the static and dynamic yield stresses. 

As research conducted so far on the local buckling of fabri-

cated tubular columns has covered only relatively stocky members 

(D/t < 227 for F = 250 MPa and D/t < 295 for F = 350 MPa), it ys ys 

is recommended that additional tests be conducted on specimens with 

larger D/t ratios, so that Eq. 5 could be verified for such D/t 

ratios and/or a more comprehensive new formulation developed. 

At present only approximate consideration is made of local 

buckling in the design of long tubular columns which are subject 

to interaction between local and overall buckling (4). It is 

therefore recommended that a research program be initiated on the 

effect of local buckling upon the overall buckling strength of long 

cylindrical columns. 
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11. tWMENCLATURE 

A = cross-sectional area 

c = nondimensional parameter = 3tE. 
1r: 

1 
D/t 

y 

D 
-- ---------= mean-diameter OD-t 

E = modulus of elasticity = 203, 400 MPa (29,500 ksi) 

F = nominal ~~ial stress ... p 
A 

F local buckling stress 
c 

F = yield stress 
y (nominal, static, or dynamic as applicable) 

F = static yield stress ys 

Fyd = dynamic yield stress 

L length 

L/r = slenderness ratio 

p axial load 

r = radius of gyration = 

t = thickness 

r--
,/I 
VA. 

a. = nondimensional parameter E 1 
F D/t 

y 
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TABLE 1. SPECIMEN DATA 

Coupon Measured Test 
No. Steel Static D L a c F - c 

F OD t L t r -ys 
(m) (nun) (m) 

F 
(MPa) ys 

l 2 3 4 5 6 7 8 9 10 11 

Tl A36 239.0 0.77 9.94 2.03 76.7 7.54 11.09 0.124 1.056 

T2 A36 203.8 0.78 6.73 2.03 113.3 7.53 8.81 0.088 1.004 

T3 A36 203.8 1.02 6.73 3.05 150.7 8.50 6.62 0.066 0.999 

T4 A36 203.8 1.53 6.73 3.05 226.5 5.65 4.41 0.044 0.880 

T5 A36 335-.6 0.58 9.73 1.22 59.1 5.99 10.20 0.143 1.069 
-.- ·-------

~1.009) 

P11 A514 622.8 1.53 6.55 1.96 232.9 3.63 1.40 0.030 I 0.829 
Tp B 

\ 

Notes: 

c = 3/....L • 1 
IJ F D/t ys 

*Static Value (See Fig. 22) 

. 
' . 
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I I ' 
Couponj 

No. Steel 
S~aticl 

ys 
(ksi) 

l 2 I 3 I 

Tl A36 34.67 

T2 A36 29.56 

T3 A36 29.56 

T4 A36 29.56 

TS A36 48.67 .. 

Pll A514 90.32 
Tp B 

Notes: 

TABLE lA. SPECIMEN DATA 

OD 

(in.) 

4 

30.40 

30.30 

40.21 

60.30 

23.02 

60.29 

Measured 
D L - -t L t r 

(in.) (in. 

5 I 6 7 I 8 

0.391 80 76.71 7.54 

0.265 80 113.3 7.53 

0.265 120 150.,7 8.50 

0.265 \120 1226.5 5.65 

I 0.383 48 I 59 .1, 5. 99 

I I 

I 
232.913.63 J 0.258 77 

c = 3 ~FE • _1_ -=vF D/t 
ys 

*Static Value (See Fig. 22) 
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Test 1 
a c F 

c 
F ys 

9 I 10 I 11 
--

11.091 0.124 1.056 

I I I 
8. 81 1 o. o88 

1

11. oo41 

II 

'I 6.62 0.066 110.999 

4.41 0.044 II 0.880 

II 1 
10.20 0.143 i! 1.069j 

II I 
i(l. 009) * " I il 

il I !! I II I II 
i 

1.40 0.030 i 0. 829 
I 

I .. 
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TABLE 2 . TENSILE COUPON RESULTS 

Source* 

j j Yield Stress (MPa) I 
I Thick-11---F-~-:F:::-y-d----.-1 -F-d 'j-=-F y-'-d-";-1-F-yd-

Coupon ness j ys 52u.m/l Fv 11042u.mj F Fu ! 
No. (mm) 1 (MPa) m/ sec· j ys i /m/ sec ys (MPa) 

Specimens T2., T3, and T4: nominal 6.4 mm plate 

1 
2 

3 

4 

I 1262.0+1 
T22 6.78 203.3 222.4 1.09 367.2 

368.6 
369.5 

T23 6.79 206.8 222.9 1.08 
T24 6.79 202.4 218.4 1.08 
L7 6.68 204.1 226.2 1.11 
L8 6.65 203.4 224.8 1.10 
L9 6. 69 202. 7

1

225.5 1. 11 
L2 
L3 

IA I I 
Averag~ 6.73 , 203.8 1223.4 1.10 

239.3 
239 .. 9 
237.9 

I 264 .1+ 
I, 257.9: 

279.2 

l 239.0 

1.17 
1.18 
1.17 

l 
. I I 
I I 
I I I ! 1. 17 ; 368.4 

Specimen Tl: nominal 9.5 mm plate 

1 
2 

3 

; : 
I I j 

Tll I 9.87 242.7 255.7 
T12 9.90 246.6 270.1 
Tl4 9.90 244.3 265.5 
T15 9.98 231.7 251.0 
Tl9 9.99 235.1 257.2 
T20 9.99 233.7 255.1 

1. 05 
1.09 I 

1.09 I 
1. 08 
1.09 
1.09 

268.2 

259.9 
271.0 
265.5 

11.12 

Average 9.94 239.0 
1
259.1 !1.08 i 265.5 

!
1 .. 15 
1.14 

!1.14 
Specimen T5: nomi.aal 9.5 mm plate 

5 
2 

3 

T51 
T53 
T54 
T55 
T52 

1 
2 

Average 

I I 

9.74 
9.74 
9.74 
9. 72 
9.79 
9.74 
9.14._ 
9.74 

' 
339.5 
336.0 
337.4 
337.2 
333.0 
331.6 
334.4 
335.6 

349.9 1. 03 
+ 361.6 1.08 

349.6 1.04 
349.7 1. 04 

I 

349.7 11.04 

363.4 
I 

I 

I 
I 
I 

! 
' 359.2 il.08 

I 
1424.5 
I 420.0 

422.5 

I 
I 

:422.3 

491.5 

1

494.8 
494.0 

1490.4 
I 

I 364.1 11.10 
362.0 !1.08 
362.0 il. 09 

~------~----~--~~~--~~----------~----~~----------' 
i 492.7 

*Sources: 1 -
2 -
3 -
4 -
5 -

Bethlehem Steel Corp. (Mill Test Report) 
Fritz Lab, Lehigh University 
Chicago Bridge and Iron Co. 
Bethlehem Steel Corporation 
Lukens Steel Co. (Mill Test Report) + Values not included in average 
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TABLE 2A. TENSILE COUPON RESULTS 

I 
I . ! 

Yield Stress (ksi) 

Source*! 
Coupon 

No. 

Thick-

1 
ness 
(in) 1 

I 
Fd I F Fd I y I ~ y 

F 52~in/ F 1042 ~in J' 
ys I in/sec ys /in/sec 

Fyd 

F ys 

F I 
U I 

(ks i) ~ 
1 i 2 I 3 4 I 5 6 7 ! 8 

9 ·j 
Specimens. T2, T3, and T4: nominal ~ in plate 
~~--~~~--~r-------.------r--~--r---~r----.--~----r-----

1 38.0+ 1 1 
2 

3 

4 

T22 
T23 
T24 
L7 
L8 
L9 
L2 
L3 
L4 

.2668 

.2672 

.2665 

.263 

.262 

.2635 

29.48 32.25 1.09 
30.00 32.33 1.08 
29.35 31.68 1.08 
29.6 32.8 1.11 
29.5 32.6 1.10 
29.4 32.7 1.11 

I 

34.7 
34.8 
34.5+ 
38.3+ 
37 .4+ 
40.5 

Average I .26481 29.56i I I 32.40 i 1.10: 34.67 

Specimen T1: nominal 3/8 i~ plate 

1 
2 

3 

I ! 

i I 
Tll I • 3888 35. 20 i 

Tl2 .3897 35.76i 
Tl4 .3896 35.43J 
Tl5 .393 33.6 l 
Tl9 .3935 34.1 I 
T20 .3935 I 33.9 I 

Average 1 .3914 ; 34.67: 

Specimen T5: nominal 3/8 i~ plate 

5 
2 

3 

T51 
T53 
T54 
T55 
T52 

1 
2 

Average 

I 
. 3834 i 
.3834 
.3834 
.3825 
.3856 
.3833 
_._3836.­
.38}6 

49.24 
48.73 
48.93 
48.91 
48.3 
48.1 
48 •. 5. 
48.67 

37.09 
39.18 
38.51 
36.4 
37.3 
37.0 

37.58 

50. 74+ 
52.44 
50.71 
50.72 

50.72 

1. 05 
1.09 
1.09 
l. 08 
1.09 
1. 09 

! 1.08 

1. 03 
1.08 
1. 04 
1. 04 

1.04 

38.9 

37.7 
39.3 
38.5 

38.5 

52.7 

52.1 
52.8 
52.5 
52.5 

1.17 I 

1.18 
1.17 

I I 

53.25 
53.46 
53.59 

1 1. 11 I 53.43 

! 
' 
I 
I 
I 
1 1.12 
!1.15 
I 1.14 
I 1. l4 

I 
I 

i 
I 

I 

1

1.08 
1.10 
1. 08 

1 1.o9 

I 
I I 

61.56 I 
60.92 
61.28 

I 
\ 
: 61.25 

i 
j71.28 I 

I 71.76 II 

i71.65 

.71131 
,71.46 i 
' i ' ; 

L-------L----------''-----.....:....-----.:....---------'----------~-----

*Sources: 1 -
2 -
3 -
4 
5 -

Bethlehem Steel Corp. (Mill Test Report) 
Fritz Lab, Lehigh University 
Chicago Bridge and Iron Co. 
Bethlehem Steel Corporation 
Lukens Steel Co. (Mill Test Report) + Values not included in average 
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No. 

TABLE 3. INITIAL GEOMETRIC lliPERFECTIONS 

Maximum 
OUT-OF-ROUNDNESS 

OD -max 
OD . m1.n 

Maximum 
OUT-OF-STRAIGHTNESS 

Offset Location 
** from Top I 

(mm) 
Col. 2 

OD 

Location 
from Top 

(m) (mm) (m) GL 

1 2 3 4 5 6 7 

T1 

T2 

T3 

T4 

T5 

Pll 

7.60 0.0075 

5.56 0.0072 

5.94 0.0058 

11.71 0.0076 

7. 75 I 0.0132 

18.29 i 
0.0119 1 

2.03 +1.55 

0.0 

1. 75 

0.24 

0.0 

I -3.05 

II +2.46 I 

~1 ~~::: I 
I I 
I I 

1.96 ! : :• +2 .36 

*Type and location of buckling failure: 
RB-T = Ring bulge at top of specimen 
RB-B = Ring bulge at bottom 
W =Wave-like pattern along length 

1.14 

0.89 

1. 75 

1.44 

0.80 

0.33 

DB-T,M = Diamond-shaped buckles at top and middle 
**A negative offset is inward, a positive is outward 
GL = Gage Line 
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·I 
1 II 

I 
I 

! 

I 
Type* \ 

and Jl 

Location 
of I 

Buckles i 

8 I 

RB-B 

RB-T 

RB-T 

RB-T 

W,RB-B 

DB-T,M 
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TABLE 3A. INITIAL GEOMETRIC IMPERFECTIONS 

' 

I 
Maximum Maximum 

OUT-OF-ROUNDNESS OUT-OF-STRAIGHTNESS 

I I 

OD Col. 2 Location Offset Location max-
** OD from top from top! GL No. OD .. 

I m~n 

(in.) (in.) (in.) (in.) 
\ 

l 2 3 4 5 6 l 7 

I I I Tl 0.229 0.0075 80.0 +0.061 45.1 I 8 

T2 0.219 0. 0072 0.0 -0.120 35.1 9 

T3 0.234 0.0058 68.9 +0.097 68.9 I 2 
I 

T4 0.461 ! 0.0076 9.4 +0.072 56.9 2 
I 

T5 0.305 I 0.0132 0.0 -0.087 31.5 1 
I 

\ 

I 
I ' Pll 0. 720 I 0.0119 I 77.0 !I +0.093 13.0 113 I 
); 
!: 

* Type and location of buckling failure: 
RB-T = Ring bulge at top of specimen 
RB-B = Ring bulge at bottom 
W = Wave-like pattern along length 

I 

DB-T,M =Diamond-shaped buckles at top and middle 
** A negative offset is inward, a positive is outward 
GL = Gage Line 

52 

I 

I 
Type *I 
and 
loc. 
of 

I buckles l 
ll 8 I 
\I l 'I RB-B j 
i I 

RB-T I 
\, RB-T 

I! RB-T 

\llv ,RB-B 
!I 
'I 
\1 ' 

II I! DB-T ,M 
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Fig. 30 Post-Buckling Deformations in T4 



Fig. 31 Test Setup for TS 

• 

Fig. 32 Longitudinal 
Wave-Like 
Buckles in TS 
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